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Abstract

In the context of factor analysis, the most common estimation method for analysing discrete data

is multiple step Diagonally Weighted Least Squares (DWLS). A novel estimation method is called

Pairwise Maximum Likelihood (PML). PML calculates the product of bivariate likelihoods by

only using a single step. PML estimation was found effective for small datasets with few discrete

variables. In this study, we investigate how PML performs with large datasets and different types

of data (e.g., discrete data, continuous data, and combinations thereof).

We conducted two different simulation studies to compare the performance of PML to the

DWLS estimation method in terms of accuracy and efficiency. We thereby examined different

experimental conditions; model sizes (small, medium, large, and huge), sample sizes (200, 400, and

800), and answer categories (two and four). In addition, we checked the robustness of PML by

fitting a model without misspecifications (i.e., correctly specified model) and with misspecifications

(i.e., misspecified model). ANOVAs were conducted to test whether the differences between PML

and DWLS depend on the aforementioned design factors. Regarding the performance of PML

and DWLS, our results indicate that the (relative) bias of both the parameter estimates and the

standard errors remain very small among the varying experimental conditions for the correctly

specified model and slightly increases in conditions with a misspecified model. Overall, our findings

demonstrate that PML performed slightly better compared to DWLS in terms bias of both the

parameter estimates and the standard errors.
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Chapter 1

Introduction

Today’s often used estimation method for analysing discrete data within the confirmatory factor

analysis (CFA) context, is (diagonally) Weighted Least Squares (DWLS; Browne, 1984; Jöreskog,

1969; Muthén, 1984). However, less is known about the novel Pairwise Maximum Likelihood

(PML) estimation method. The goal of the current study is to evaluate the performance of the

PML estimates. DWLS estimation is a multi-step procedure in which the parameter estimates

obtained in the first step do not reflect the sampling variability of the third step. In contrast, PML

is able to estimate all parameters in one step simultaneously incorporating all sampling variability

at once (Katsikatsou et al., 2012). In this study, two simulation studies will be conducted to com-

pare the accuracy and efficiency of the estimated PML model parameters to the more common

DWLS estimates. Following the proposed recommendation of Katsikatsou and colleagues (2012),

this is the first study evaluating PML in large datasets.

In social and behavioural sciences, the researchers’ interest often lies in examining (psychological)

concepts, such as personality, intelligence, and motivation. In many cases, questionnaires or tests

serve as a tool to measure such unobserved, latent variables. To identify the relationships between

the observed and the latent variables in the data, structural equation modeling (SEM) is the

standard analysis technique (Bollen, 1989). The measurement part of the model in factor analysis

relates the latent variables to their observed indicators. In case there are no structural parameters

(i.e., regressions) between the latent variables and the focus is only on the measurement part of

the model, it is typically referred to as factor analysis (Thurstone, 1947).

Factor analysis is a classical statistical technique that can be divided into two types: ex-

ploratory factor analysis, which is data driven and mainly addresses the evaluation of a test’s

dimensionality, and CFA, which tests whether the observed variables form meaningful indicators

to examine the latent variables that are inferred from the data (Jöreskog, 1969). In other words,

CFA offers a more parsimonious and hypothesis-driven understanding of the dependencies among

a set of those potentially meaningful observed variables and expresses those dependencies through

the inferred latent responses. In this study, we will specifically focus on CFA. CFA was originally

developed for analysing continuous data using the Maximum Likelihood (ML) fitting function

(Brown and Moore, 2012). This method has been widely regarded as the standard iterative esti-
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CHAPTER 1. INTRODUCTION 2

mation approach in the SEM framework with optimal statistical properties if all the assumptions

(e.g., normality) hold, and if the sample size is sufficiently large (Bollen, 1989). Throughout the

years, SEM was developed to analyse different types of data (e.g., non-normal, discrete, multilevel

data). In social sciences, discrete data are commonly collected using questionnaires in which sub-

jects express their level of agreement, ranging from ‘strongly disagree’ to ‘strongly agree’. Here,

we will focus on the analysis of discrete data, such as data that stems from questionnaires with

Likert point scales, or combinations of discrete and continuous data.

In analysing discrete data, we can distinguish two different approaches; full information ap-

proaches and limited information approaches. The full information methods use all information in

the data. Two well-known full information approaches are Marginal Maximum Likelihood (MML;

Bock and Aitkin, 1981) and Bayesian estimation method (e.g., Lee, 2007). However, the compu-

tational complexity of these methods increases rapidly with the number of latent and observed

variables (Katsikatsou et al., 2012; Fox, 2010). Throughout this study, we will therefore focus on

limited information methods which are mostly developed in the SEM framework. These limited

information methods only use the summary of the data and won’t be affected by the number of

latent and observed variables. The most popular limited information method for analysing discrete

data is multi-step Diagonally Weighted Least Squares (Browne, 1984; Muthén, 1984; DiStefano

and Morgan, 2014; Sajid et al., 2021). Another limited information method, which is relatively

unknown, is the so-called Pairwise Maximum Likelihood (PML) estimation method. This method

was introduced inside the SEM framework by Jöreskog and Moustaki (2001) and has been exam-

ined by various researchers since (e.g., Varin, 2008; Varin et al., 2011; Katsikatsou et al., 2012;

De Leon, 2005). The PML estimation calculates the product of bivariate (and sometimes univari-

ate) likelihoods, as Jöreskog and Moustaki (2001) suggested. Within the SEM framework, PML

already demonstrated good performance (i.e., low standard errors) in small datasets (Katsikatsou

et al., 2012; Jöreskog and Moustaki, 2001; Barendse et al., 2016). Although Varin et al. (2011)

suggested PML to be an effective alternative estimation method for large data, PML has not yet

been thoroughly examined for large datasets.

Building on prior research of Katsikatsou and colleagues (2012) about the PML estimation

method, we will perform two simulation studies to investigate this method in large datasets. Each

of the simulation studies will compare the PML estimation method with DWLS. As DWLS is a

well-known estimation method, DWLS will serve as benchmark to judge the performance of PML.

The first simulation study addresses on the robustness of PML compared to DWLS using only

discrete data, while the aim of the second simulation study is the same using a combination of

discrete and continuous (i.e., mixed-type) data. Up until now, to the best of our knowledge, this

is the first study that investigates the performance of the PML estimates based on large datasets

with mixed-type data.

The outline of this thesis is organized as follows: Chapter 2 provides a theoretical framework

consisting of a brief overview of CFA for continuous data followed by the mathematical funda-

mentals of the PML method and a brief explanation of the benchmark estimation method (i.e.,

DWLS). In Chapter 3, the method of the two simulation studies will be described to compare

PML and DWLS in terms of accuracy and efficiency of the parameter estimates under different
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conditions. The results of the simulation studies will be discussed in Chapter 4. Chapter 5 covers

the discussion and provides our future perspective on PML.



Chapter 2

Theoretical framework

2.1 Confirmatory Factor Analysis

The linear CFA relates the latent variables to their observed variables (i.e., indicators) and is

defined as

y = ν + Λζ + ε (2.1)

where y is a p× 1 vector of observed variables (Y = {y1,y2, . . .yp}), ν is a p-dimensional vector

of intercepts. Λ is a p ×m matrix of factor loadings, in which m refers to the number of latent

factors, ζ is a vector of latent factor scores with ζ ∼ N(0, φ) and ε is a p-dimensional vector of

residual terms with ε ∼ N(0,Θ). The measurement errors are uncorrelated to the latent factor

scores, i.e., Cov(ζ, ε) = 0. It follows that the variance–covariance matrix Σ = V ar(y) and the

model–implied mean vector µ = E(y) are given by:

Σ(θ) = ΛΨΛT + Θ, (2.2)

µ(θ) = ν + Λα. (2.3)

The variances and covariances of ζ and ε are denoted by Ψ and Θ, respectively. The model

parameter vector θ includes the free parameters in Λ, Θ, Ψ, and ν. For given values of θ,

the model–implied statistics can be written as µ(θ) and Σ(θ) which are functions of the free

parameters. To achieve model identifiability, some parameters should be fixed. This can either be

done by fixing the variance of the latent factor, by fixing a factor loading to unity and the mean

of the factor, or by fixing the intercept to zero. Given a set of data vectors, we seek values of θ

that minimize a discrepancy function (e.g., maximum likelihood or (weighted) least squares) that

reflects the distance between the model and the data.

2.2 Pairwise Maximum Likelihood Estimation

To estimate the parameters for a CFA, different estimation methods can be used to minimize a

discrepancy function, i.e., the distance between the model and the data. In this study, we will
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CHAPTER 2. THEORETICAL FRAMEWORK 5

examine the novel Pairwise Maximum Likelihood (PML) estimation method. When Jöreskog

and Moustaki (2001) introduced PML in the SEM literature, they considered the product of the

univariate as well bivariate likelihoods. Later, De Leon (2005) suggested the PML estimation

method using only the bivariate information, because the univariate information has no additional

value in parameter estimation. The results of Katsikatsou et al. (2012) also demonstrated that

the sum of the univariate likelihoods did not change the estimated parameter accuracy.

The log-likelihood of the PML estimation method is calculated as the sum of p? = p(p− 1)/2

components. Each component is the bivariate log-likelihood of two variables (i.e., j and k) for

individual i:

log li =

p−1∑
j=1

p∑
k=j+1

[log f(yij , yik;θ)]

=
∑
j<k

[log f(yij , yik;θ)]. (2.4)

The sum of all individual contributions in a random sample determines the total log-likelihood

that equals

logL(θ; Y) =

I∑
i=1

log li. (2.5)

The PML estimation method has been introduced for discrete data as the bivariate likelihood

calculations are computationally easy to handle. Due to the natural order of these response

categories, a discrete variable can be considered as the measured manifestation of a continuous

underlying latent variable y∗i . Consequently, the observed score yi on item j with Cj categories

stems from an underlying continuous variable y∗ij with a normal distribution N(y∗ij ; 0, σ2
j ) and τj,c

values that refer to thresholds

yij = cj ⇐⇒ τj,c−1 < y∗ij < τj,c (2.6)

for categories cj = 1, 2, . . . , Cj , with τj,0 = −∞ and τj,C =∞. The exact form of f(yij , yik;θ) in

Equation (2.4) for discrete indicators j and k equals

log f(yij , yik;θ) =

Cj∑
a=1

Ck∑
b=1

I(yij = a, yik = b) logω(yij = a, yik = b;θ), (2.7)

where

ω(yij = a, yik = b;θ) =

τj,a∫
τj,a−1

τk,b∫
τk,b−1

f(y∗ij , y
∗
ik;θ)dy∗ijdy

∗
ik,

= Φ(τj,a, τk,b; ρjk)− Φ(τj,a−1, τk,b; ρjk)−

Φ(τj,a, τk,b−1; ρjk) + Φ(τj,a−1, τk,b−1; ρjk), (2.8)

where ρjk is the model implied correlation between y∗ij and y∗ik, and Φ(τ1, τ2; ρ) is the bivariate

cumulative normal distribution with correlation ρ evaluated at the point (τ1, τ2; Jöreskog and
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Moustaki, 2001). For discrete data, the metric for y∗ needs to be determined by using the delta-

or the theta-parameterization. Within the SEM framework the delta parameterization is imple-

mented, where Θ is given by Θ = ∆−2 − diag(Σ∗) and in which Σ∗ can be defined as Σ∗ =

ΛΨΛT .

Although the PML estimation method was originally developed for discrete data, Equations

(2.4) and (2.4) can be more widely interpreted, thereby allowing us to incorporate more complex

types of data into PML (e.g., Barendse and Rosseel, 2020). In case of a combination of a discrete

and a continuous variable, we can estimate the association between those two variables using poly-

serial correlations (Olsson et al., 1982). For polyserial correlations, the likelihood is a conditional

distribution for continuous variable yik and discrete variable yij :

log f(yij = a, yik;θ) = [log(yik) + log(yij=a; yik)] (2.9)

where

f(yik) = (2πσk)−
1
2 e

[
−1

2

(
yik − µk
σk

)2
]
. (2.10)

The log-likelihood is calculated with respect to µyk , σ2
yk

, ρyj ,yk , and τyj .

Z =
(yik − µk)

σk
(2.11)

Let Z be the conditional probability that can be obtained by noting that the conditional distribu-

tion of y∗ij given yik is normal with µ = ρZ and variance σ2 = (1− ρ2). Therefore, the conditional

distribution of yij is

logf(yij = a|yik) = Φ(τj)− Φ(τj−1) (2.12)

where

τj,a =
τj − ρZ

(1− ρ2)1/2
. (2.13)

In case both variables (i.e., yij , yik) are continuous, we can calculate the Pearson correlation (e.g.,

Benesty et al., 2009). This correlation relies on the bivariate normal probability density function

with log f(yij , yik;θ) = log f(yij , yik). In this two-dimensional space, the probability density

function of random variables yj and yk equals:

f(yij , yik) =
1

2πσyjσyk
√

1− ρ2
e
− 1

2(1−ρ2)

[(
yij−µyj
σyj

)2

−2ρ
(
yij−µyj
σyj

)(
yik−µyk
σyk

)
+
(
yik−µyk
σyk

)2
]

(2.14)

where ρ is the correlation between yj and yk, σyj > 0, σyk > 0, and where

µ =

(
µyj

µyk

)
,Σ =

(
σ2
yj ρσyjσyk

ρσyjσyk σ2
yk

)
. (2.15)
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2.3 Benchmark estimation method: Diagonally Weighted Least

Squares

As the PML estimation method is a novel estimation method, we have used the most well-known

Weighted Least Squares technique, i.e., diagonally WLS (DWLS; Muthén et al., 1997), as a bench-

mark. The DWLS is a well-established estimation method that is developed in the SEM framework

and implemented in most SEM computer programs (e.g., MPlus; Muthén and Muthén, 2009; and

the R-package lavaan; Rosseel, 2012). The general Weighted Least Squares method is based on a

three-steps procedure. In the first stage, the thresholds are estimated using the univariate data. In

the second stage, the p× polychoric correlations, polyserial correlation, and bivariate correlations

are estimated (see paragraph 2.2 that describes the PML estimation method). In the third stage,

the model parameters are estimated using the weighted least squares estimation method. The

general discrepancy function is given by

FDWLS = (q − ĝ)′W−1(q − ĝ), (2.16)

where q denotes a vector with non-redundant sample-based statistics, ĝ is a vector with the non-

redundant model-based statistics (i.e., thresholds and polychoric correlations), and W−1 refers

to the inverse of a weight matrix that estimates the asymptotic covariance matrix of
√
Iq (see

Muthén et al., 1997). In the least squares framework (see Browne, 1984; Muthén et al., 1997),

there are different choices for W (e.g., unweighted least squares). In this study, the diagonal of

the weight matrix W will be used, referred as the DWLS.



Chapter 3

Simulation studies

Two simulation studies were conducted to evaluate the PML estimation method for large datasets.

The distinctive factor between the two simulation studies is the nature of the data. The first simu-

lation study consists of discrete data only, and the second simulation study contains a combination

of discrete and continuous data. The simulation studies allowed us to assess the accuracy and ef-

ficiency of the parameter estimates under different conditions. This chapter describes the design

of the experiment, data generation process, analyses, and performance criteria.

3.1 Design

Several experimental conditions were created by systematically varying a number of facets. As the

experimental conditions slightly differ among the two simulation studies, they will be described

separately.

3.1.1 Simulation study 1: discrete data

Regarding the design of the first simulation study, the following facets were systematically varied:

the response scales of the indicator variables (dichotomous and four-point), model size (small,

medium, large, and huge), and sample size (N ∈ 200, 400, 800). This resulted in a full factorial

design of 24 unique experimental conditions (see Table 3.1).

3.1.2 Simulation study 2: mixed data

In the second simulation study we varied model size (two, four, six, and eight factors) and sample

size (N ∈ 200, 400, 800). Since the second simulation study consists of a combination between

discrete and continuous data, a four-point answer scale was chosen for the discrete part of the

simulation study. In total, twelve unique conditions were formed (see Table 3.2).

3.2 Data generation

In order to explain the set-up of the general data generation process, conditions with the small

sized model (i.e., two latent variables and twelve items) will be described first (see conditions 1,

8
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Table 3.1: Unique experimental conditions for the first simulation study with discrete data

cond nfact N ncat nitems nmis cond nfact N ncat nitems nmis

1 2 200 2 12 1 13 2 200 4 12 1
2 4 200 2 24 2 14 4 200 4 24 2
3 6 200 2 36 3 15 6 200 4 36 3
4 8 200 2 48 4 16 8 200 4 48 4
5 2 400 2 12 1 17 2 400 4 12 1
6 4 400 2 24 2 18 4 400 4 24 2
7 6 400 2 36 3 19 6 400 4 36 3
8 8 400 2 48 4 20 8 400 4 48 4
9 2 800 2 12 1 21 2 800 4 12 1
10 4 800 2 24 2 22 4 800 4 24 2
11 6 800 2 36 3 23 6 800 4 36 3
12 8 800 2 48 4 24 8 800 4 48 4

Note. cond = conditions, nfact = number of latent variables, N = sample size, ncat = number of answer
categories, nitems = number of items, nmis = number of misspecifications, please note that nitems and
nmis are not included as design factors in the simulation study since they gradually expand as the number
of factors increases.

Table 3.2: Unique experimental conditions for the second simulation study with mixed data

cond nfact N nitems nmis

1 2 200 12 1
2 4 200 24 2
3 6 200 36 3
4 8 200 48 4
5 2 400 12 1
6 4 400 24 2
7 6 400 36 3
8 8 400 48 4
9 2 800 12 1
10 4 800 24 2
11 6 800 36 3
12 8 800 48 4

Note. cond = conditions, nfact = number of latent variables, N = sample size, ncat = number of answer
categories, nitems = number of items, nmis = number of misspecifications, please note that nitems and
nmis are not included as design factors in the simulation study since they gradually expand as the number
of factors increases.
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5, 9, 13, 17, and 21 of Table 3.1). Figure 3.1 visualizes all parameters underlying the simulated

data for the smallest model size. This model comprises two (correlated) latent variables, each

containing six items. One multidimensional item is added to the model. This cross-loading is

indicated by a dotted line in Figure 3.1.

ζ1 ζ2

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

λ6,2λ1,1 λ2,1 λ3,1 λ4,1 λ5,1 λ6,1 λ7,2 λ8,2 λ9,2 λ10,2 λ11,2 λ12,2

ρ(Ψ1,2)

ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 ε11 ε12

Figure 3.1: Simplest experimental design two latent variables and 12 items (y). Note: ε refers
to the residual variances. Variances of the latent variables (not shown here) contain equality
restrictions for model identification purposes.

Figure 3.1 visualizes all parameters underlying the simulated data for the smallest model size.

This model comprises two (correlated) latent variables, each containing six items. One multidi-

mensional item is added to the model. This cross-loading is indicated by a dotted line to item y6

in Figure 3.1.

Values of the variance-covariance matrix were drawn from the multivariate normal distribution

with zero means and a 2 × 2 correlation matrix Ψ to obtain the ζ-values for each individual,

according to Equation (2.1) and (2.2). As the mean structure was not of interest, the intercepts

equal zero. The chosen true values of the parameters are shown in matrices Λ, Ψ, and Θ:

Λ =


0.8
0.8
0.7
0.7
0.6
0.6 0.2

0.8
0.8
0.7
0.7
0.6
0.6

 ,Ψ = [ 1
0.3 1 ] ,
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Θ =


0.36 0 0 0 0 0 0 0 0 0 0 0
0 0.36 0 0 0 0 0 0 0 0 0 0
0 0 0.51 0 0 0 0 0 0 0 0 0
0 0 0 0.51 0 0 0 0 0 0 0 0
0 0 0 0 0.64 0 0 0 0 0 0 0
0 0 0 0 0 0.53 0 0 0 0 0 0
0 0 0 0 0 0 0.36 0 0 0 0 0
0 0 0 0 0 0 0 0.36 0 0 0 0
0 0 0 0 0 0 0 0 0.51 0 0 0
0 0 0 0 0 0 0 0 0 0.51 0 0
0 0 0 0 0 0 0 0 0 0 0.64 0
0 0 0 0 0 0 0 0 0 0 0 0.64


The factor loadings mentioned above range from high to medium, 0.8 and 0.6 respectively, and are

representative of the values regularly observed in empirical and used simulation studies. Based

on the non-centrality parameter and power (power varied from approximately .2 for the small

model to .9 for the huge model), a cross-loading (indicated by a gray value) of 0.2 is chosen for

the multidimensional item. The correlation coefficient between the latent factors is chosen to be

0.3, which corresponds to a medium correlation (Cohen, 1988). Error values were generated from

a multivariate normal distribution with zero means and Θ variance. As can be seen in the Θ

matrix, the values of the diagonal were calculated according to Θ = I − diag(ΛΨΛ′) and referred

to as ε in Figure 3.1.

Based on the small sized model with twelve items and two latent factors represented in Figure

3.1, other model sizes were expanded accordingly. In the medium sized models, the number of

items and latent factors were doubled, implying models with 24 items and four latent variables.

The data generation design of the small model was tripled for the large model (i.e., 36 items and

six latent variables) and fourfold for the huge model size (i.e., 48 items and eight latent variables).

In these expanded experimental designs, the data generation values in matrices Λ, Ψ, and Θ were

kept the same.

Since the nature of the data is different between the two simulation studies, the unique char-

acteristics of the data generation will be described in the next paragraphs.

3.2.1 Simulation study 1: discrete data

For the first simulation study, only discrete data was analysed. To obtain the discrete data,

thresholds were computed in such a way that equally sized categories were formed (see Equation

(2.6)). For the dichotomous response scale, continuous scores were categorized into two categories

with one threshold, i.e., 0, yielding expected proportions of .5 and .5. For the four-point response

scale, continuous scores were grouped into categories with three thresholds: -1.2, 0, 1.2, yielding

expected proportions of .11, .39, .39, and .11. In total, 400 random datasets were drawn for each

of the 24 conditions resulting in 24 × 400 = 9, 600 unique data sets for each estimation method

separately.

3.2.2 Simulation study 2: mixed data

Although the design of the second simulation study is kept similar to the first simulation study, the

unique part of the second simulation study entails splitting the data into two equal blocks during

the data generation process. Taking Figure 3.1 into account, the first block contains the first six

items (i.e., y1 to y6). This data is kept continuous. The second block represents the second six
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items (i.e, y7 to y12). For the data of the second block, the same steps were taken as for the

four-point response scale of the first simulation study. Again, continuous data were discretized to

obtain discrete data yielding the same three thresholds as in the first simulation study: -1.2, 0,

1.2, such that observed variables were assumed to have four response scales. Here, 250 datasets

were generated∗.

3.3 Analyses

In both studies, PML estimation method as well as DWLS estimation method were applied to the

simulated data. To test the accuracy of the parameter estimates, a correctly specified model, i.e.,

a model including the cross-loading, was fitted to the simulated data. To test the robustness of

the parameter estimates, a misspecified model, i.e., a model excluding the cross-loading, was also

fitted to the data. For the first simulation study, 9, 600×2×2 = 38, 400 analyses were conducted in

total, including both methods (i.e., PML and DWLS) and model types (i.e., correctly specified and

misspecified). For the second simulation study, 3, 000 × 2 × 2 = 12, 000 analyses were conducted

due to the fixed discrete part of the mixed-type data. All analyses were performed using R 4.0.2

(R Core Team, 2020). The R-package lavaan, suitable for latent variable modeling, was used to

obtain the estimated parameters (Rosseel, 2012).

3.4 Performance criteria

Parameter estimates

The performance criteria of the estimation methods are the accuracy and efficiency of the param-

eter estimates of the model with and without specified cross-loadings. The performance criteria

aim to test the robustness of the model. The relative bias (expressed in %) of the estimated

factor loadings, thresholds, and correlation(s) serve as indicator of accuracy. The relative bias

of the estimated standard errors of the factor loadings, thresholds, and correlation(s) serve as

indicator of efficiency. In addition, to obtain an overview of the performance of both estimation

methods separately, the parameter estimate is compared to the true value among all experimental

conditions. This difference is called the raw bias.

The equations of the relative bias of the estimated parameters and standard error are respec-

tively:

% bias =
100

R

R∑
r=1

(θ̂r − θ)
θ

, (3.1)

% bias =
100

R

R∑
r=1

(SEr − SD)

SD
(3.2)

∗Due to time limits, we chose for an unequal number of replications among the simulation studies to keep it
computationally feasible. E.g., to carry out one replication for the huge model using PML took about 16 hours.
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Here, R denotes the number of replications (with R ∈ 400, 250 in the current study), θ̂r denotes

the estimate of the parameter at the rth replication and θ refers to the corresponding true value.

To calculate the bias of the standard errors, the SD in Equation (3.2) is used. SD refers to

the standard deviation of the parameter estimates across all 400 and 250 replications. The SEr

denotes the estimate of the standard error at the rth replication. Please note that according to

Equation (3.2), the SD of the parameter estimates may differ among PML and DWLS. Therefore,

both the parameter estimates and standard errors are computed separately for PML and DWLS.

The criteria described above were evaluated for a selected number of parameters that differs

among the two simulation studies, because of the nature of the data (see Table 3.3 and Table

3.4). Since all of these values were obtained from the smallest sized model, a sanity check was

performed on some other parameter estimates belonging to other blocks to detect any deviating

results.

Table 3.3: Unique parameter estimates of interest to be analysed for the first simulation study
with discrete data

Parameter True value
λ6,1 0.60
λ6,2* 0.20
λ7,2 0.80
τ6,1 0.00
τ7,2 0.00
ψ1,2 0.30

Note.* Misspecified model does not include the cross-loading. To compare all experimental conditions,
only parameters belonging to the small model were selected.

Table 3.4: Unique parameter estimates of interest to be analysed for the second simulation study
with mixed-type data

Parameter True value Data type
λ2,1 0.80 continuous
λ6,1 0.60 continuous
λ6,2* 0.20 continuous
λ8,2 0.80 discrete (four-point)
λ12,2 0.60 discrete (four-point)
Θ2,1 0.36 continuous
Θ6,1 0.53 continuous
τ8,2 0.00 discrete
τ12,2 0.00 discrete
ψ1,2 0.30 continuous

Note.* Misspecified model does not include the cross-loading. To compare all experimental conditions,
only parameters belonging to the small model were selected.
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Results

After estimating all the parameters with both the PML and the DWLS estimation method, the

obtained results were inspected for possible outliers. An estimate of the parameter value was

considered to be an outlier when it exceeded four standard deviations from the mean parameter

estimates evaluated at each unique experimental condition separately. For the estimates of the

standard errors, a more lenient approach was considered, i.e., all estimates greater or lower than

eight standard deviations from the mean were removed instead. The problematic datasets were

removed and replaced by new datasets to maintain the number of replicates per cell of the simula-

tion design. Regarding the first simulation study, 30 datasets contained parameter estimates that

were considered as outliers, i.e., 3.8% of all datasets. Of those 30 datasets, 22 datasets contained

outliers generated by PML and DWLS as estimation method. There were five unique problem-

atic datasets in which the DWLS was the estimation method that generated outliers and three

unique datasets in which PML was the estimation method that generated outliers. For the second

simulation study, only one dataset contained outliers with PML as well as DWLS as estimation

method (i.e., 0.4% of all datasets).

To investigate the bias, the parameter estimates and associating raw biases will be summarized

to obtain a general overview of the performance of both estimation methods. The goal of the tables

that provide this overview is to compare the raw biases among different experimental conditions

for both estimation methods. This allows us to detect differences between the PML and DWLS

estimation method at a detailed level. The following values are reported for all unique conditions

separately: the true values, raw means (i.e., parameter estimates), and raw biases (i.e., differences

between the true value and parameter estimate).

To test whether the differences between estimation methods depend on the design factors,

analyses of variance (ANOVA) were performed in which the estimation method was the within-

subjects factor and the design factors (i.e., experimental conditions) were the between-subjects

factors. Following Equations (3.1) and (3.2), the performance of the estimators and standard

errors of both models are evaluated by calculating the relative bias (in %). The relative biases

were entered as dependent variable in the ANOVAs. Since we are interested in differences in

relative bias of the two estimation methods (i.e., PML and DWLS), we only considered significant

main and interaction effects in which the estimation method was included (p < .05). Only effects

14
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with the highest order were interpreted following the principal of marginality. Due to the large

number of datasets, the statistical power is huge, i.e., the probability that a test of significance will

pick up on an effect is very high. Therefore, the generalized eta squared (η2) serves as measure of

the magnitude of the effect and is computed for all main and interaction effects.

In the following paragraphs, the results of the first simulation study and second simulation

study will be described after another. For both simulation studies, the results of the parameter

estimates of the correctly specified model will be discussed. After that, the results for the param-

eter estimates of the misspecified model will be covered. Then, the results of the standard errors

of the parameters of both model types will be addressed. The subsections are divided into results

based on the raw bias among experimental conditions on one hand and the ANOVA results on the

other hand.

4.1 Simulation study 1: discrete data

After applying each of the two estimation methods to all 9,600 datasets with discrete data, the es-

timation methods converged.∗ To illustrate how both estimation methods perform independently,

Appendix A contains tables that include information about estimates and standard errors of the

24 unique experimental conditions (see Table A1, A3, A4, and A5). ANOVA was employed on

the relative bias of a convenient selection of parameters to detect whether the differences between

estimation methods depended on the design factors. To compare the values of the relative bias

based on the ANOVA results for both models, a fixed scale range of 0 to 20 for the y-axis in the

plots was chosen for the parameter estimates and a fixed scale range of -5 to 5 for the y-axis was

chosen for the standard errors. As indicated in Table 3.3, the parameters of both model types

were analysed (i.e., λ6,1, λ6,2, λ7,2, τ6,1, τ7,2, and ψ1,2 for the correctly specified model and λ6,1,

λ7,2, τ6,1, τ7,2, and ψ1,2 for the misspecified model).

Bias of parameter estimates

Correctly specified model For the correctly specified model, Table A1 shows very small biases

among all experimental conditions, i.e., no estimated parameter deviates more than 0.02 from the

true value. This holds for both estimation methods (PML and DWLS). Regarding the differences

between the two methods, the ANOVA results revealed two significant effects. For λ6,1, there

was a significant main effect for method, F (1, 9576) = 11.84, p < .001, η2 < .001, indicating

a higher relative bias for DWLS. Although the difference between PML and DWLS in relative

bias was statistically significant (i.e., |−0.020%− 0.290%| ≈ 0.3% respectively), the difference in

raw parameter estimates for PML and DWLS averaged over all experimental conditions was very

small (i.e., |0.600− 0.602| = 0.002 respectively). This is consistent with the small size of η2 and

the results in Table A1 in which the raw bias of PML and DWLS is below 0.01. For λ6,2, no

significant main or interaction effect was found, which indicates that PML and DWLS performed

equally well. For λ7,2, a significant two-way interaction effect between the number of answer

∗Sometimes the cluster computer refused to replicate models with eight factors due to computational intensity.
However, additional analyses with exactly the same number of seed showed that the analyses were doable, so it was
not a structural missing.
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categories and method was found, F (1, 9576) = 4.47, p < .034, η2 < .001. This interaction effect

is plotted in Figure 4.1. The difference in relative bias between the two estimation methods is

larger in conditions with two answer categories than in the conditions with four answer categories.

Based on Figure 4.1, the dotted line representing the PML estimation method is slightly closer

to zero than the solid line corresponding to the DWLS estimation method in the case of two

answer categories. This difference in relative bias between PML and DWLS is not visible for

conditions with four answer categories. For the thresholds of item 6 (τ6,1) and item 7 (τ7,2), no

effects approached significance. The same conclusion applies to the factor correlation (ψ1,2). This

means that there were no significant differences between the two estimation methods.
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Data obtained from the correctly specified model

Relative bias of the estimated  λ7,2

Figure 4.1: Two-way interaction effect between the number of answer categories and estimation
method for λ7,2.

Misspecified model For the misspecified model, in which the cross-loading (i.e., λ6,2) is not

part of the measurement model, λ6,1 was expected to show a higher relative bias compared to the

other parameter estimates. The estimate of λ6,1 reflects the influence of the second latent factor

on item 6 which is not part of the misspecified measurement model (see dotted line in Figure

3.1). Overall, as can be seen in Table 4.1, the ANOVA results revealed a number of significant

interaction effects. For λ6,1 and λ7,2, there were significant three-way interaction effects between

sample size, the number of answer categories, and method (see Figure 4.2). For λ6,1, the difference

in relative bias of PML and DWLS depended on both the sample size and the number of answer

categories. Also for λ7,2, the relative bias of the parameter estimate depended on the estimation

method, the sample size, and the number of answer categories. The left plot of Figure 4.2 shows

that the PML estimation method with four answer categories resulted in the lowest relative bias

over all sample sizes. The DWLS estimation method yielded the highest relative bias in conditions

with two answer categories when the sample size is 400 (N = 400). The right plot of Figure 4.2

shows slightly larger differences in estimation method in conditions with a smaller sample size (N

= 200) regardless of the number of answer categories. As the sample size increases, the difference
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between the methods becomes smaller. Comparing the plots in Figure 4.2, it should be recognised

that the relative bias of both estimation methods in the left plot is much higher than the relative

bias in the right plot indicating an overestimation of the parameter estimate of λ6,1. The same

conclusion can be drawn based on the results of Table A3, the raw bias of λ6,1 averaged over all

experimental conditions is 0.11 for PML and 0.12 for DWLS. This corresponds to our expectations

of λ6,1 which is most affected by the misspecification in the model and can therefore be seen as

the least robust parameter estimate.

Table 4.1: ANOVA results of the highest order interaction effects between design factors and
estimation method for the parameter estimates of the misspecified model.

Par.
est.

F-statistic η2 Figure Sign. result

λ6,1 4.49* < .001 4.2 N × ncat × method
λ7,2 7.47* < .001 4.2 N × ncat × method
ψ1,2 16.89*, 19.10*, 12.93* < .001, < .001, < .001 4.3** nfact × method,

N × method,
ncat × method

Note. * indicates an associating p-value of <.001. ** Plot (a), (b), and (c) respectively. Par. est. =
Parameter estimate, Sign. result = Significant ANOVA result, nfact = number of latent variables, N =
sample size, ncat = number of answer categories.
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Figure 4.2: Three-way interaction effects between sample size, the number of answer categories,
and method for λ6,1 (left plot) and λ7,2 (right plot).

No significant effects were found for the thresholds of item 6 (τ6,1) and item 7 (τ7,2), which

implies that both estimation methods performed equally well. This corresponds to the results in

Table A3, no estimated threshold deviated more than 0.02 from the true value. For the factor
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correlation (ψ1,2), both estimation methods showed a raw bias of 0.05 indicating that the exclusion

of the cross-loading in the misspecified model affects the correlation as well (see Table A3). Based

on the ANOVA results, three two-way interaction effects appeared to be significant (see Figure

4.3). Regarding Figure 4.3, plot (a) displays an interaction effect between estimation method and

number of factors. Plot (b) shows an interaction effect between estimation method and sample

size. Plot (c) demonstrates an interaction effect between estimation method and number of answer

categories. In general, each plot shows that the PML estimation method is associated with the

lowest relative bias for the estimated factor correlation (ψ1,2). Furthermore, Figure 4.3 displays

a smaller difference in relative bias between the two estimation methods as the number of factors

(plot (a)) or the sample size (plot (b)) increases. Plot (c) shows an opposite pattern, i.e., the

difference between PML and DWLS is smaller for conditions with two answer categories (ncat

= 2) than in conditions with four categories (ncat = 4). Equivalent to the results in Table A3,

the relative bias for ψ1,2 in Figure 4.3 is high compared to the other significant effects in the

misspecified model.

Bias of Standard Errors

Equivalent to the parameter estimates, tables were created for the standard errors of the parameter

estimates as well to see how PML and DWLS performed separately. Furthermore, based on the

relative bias of the standard errors of the estimates, the same ANOVAs were conducted on the

identical selected parameters as for the parameter estimates described above.

Correctly specified model For the correctly specified model, Table A4 displays very small

biases for the standard errors of the estimated parameters among the experimental conditions.

Focusing on the differences between PML and DWLS, ANOVA revealed statistically significant

effects for all the standard errors of the selected parameters. An overview of the results are

displayed in Table 4.2. For the standard error of λ6,1, Figure 4.4 displays subtle differences in

performance between PML and DWLS. The plots show that the PML estimation method performs

relatively better in terms of relative bias. More specific, if the sample size is 200 (N = 200) and

the number of answer categories is two (ncat = 2), the four-way interaction effect for the standard

error of λ6,1 shows an increased difference in relative bias between the two estimation methods

as the number of latent factors increases. This is indicated by a larger distance between the two

methods in the plots when the number of latent factors is eight (factors = 8) compared to two

(factors = 2). As the sample size increases, the difference between the two methods becomes

smaller (two-way interaction). Especially for the largest sample size, the lines of the two methods

coincide despite the number of latent factors. As can be deduced from the plots in Appendix A

(Figures A1 - A5), the relative bias of the standard errors of the parameter estimates do not show

very different patterns compared to Figure 4.4.
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Figure 4.3: Two-way interaction effects; plot a displays interaction between the number of factors
and estimation method; plot b shows interaction between sample size and estimation methods;
plot c reveals interaction between number of categories and estimation methods. The dashed line
and solid line respectively represent the data sets with PML and DWLS as estimation method.
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Table 4.2: ANOVA results of the highest order interaction effects between design factors and
estimation method for the SE of parameter estimates of the correctly specified model.

SE of par. F-statistic η2 Figure Sign. result
λ6,1 25.80* .001 4.4 nfact× N × ncat× method
λ6,2 16.10* < .001 A1 nfact× N × ncat× method
λ7,2 4.42* < .001 A2 nfact× N × ncat× method
τ6,1 80.35* .001 A3 nfact× N × ncat× method
τ7,2 103.12* .002 A2 nfact× N × ncat× method
ψ1,2 22.81* < .001 A5 N × ncat × method

Note. * indicates an associating p-value of <.001. SE of par. = Standard Error of parameter, Sign. result
= Significant ANOVA result, nfact = number of latent variables, N = sample size, ncat = number of
answer categories.

Misspecified model Table A5 reveals that the standard errors of the parameter estimates are

quite accurate, i.e., no raw bias exceeds 0.02. As can be deduced from Table A2, ANOVA showed

statistically significant effects for all standard errors of the selected parameters for the misspecified

model. Regarding the results of the standard errors of the parameter estimates for the correctly

specified model, approximately the same patterns were found in plots for the misspecified model.

However, some subtle inequalities can be detected, e.g., for the standard error of λ6,1. According

to Figure 4.5, the lines in all plots follow approximately the same pattern compared to Figure

4.4. However, for the misspecified model, the PML estimation method does not perform better

in all conditions in terms of relative bias. In conditions with a sample size of 800 (N = 800)

and four answer categories (ncat = 4), the four-way interaction effect for the standard error of

λ6,1 showed an increased difference in relative bias between the two estimation methods as the

number of factors increases. In general, when the sample size increases, the difference between

the two methods gets smaller. Since the trends of the lines in the plots for the standard errors of

the parameters follow approximately the same pattern compared to those based on the correctly

specified model, the remaining plots are provided in Appendix A (see Figures A6 - A9).
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Figure 4.4: Four-way interaction effect between number of latent factors, sample size, number of
answer categories and estimation method for λ6,1
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Figure 4.5: Four-way interaction effect between the number of latent factors, sample size, number
of answer categories and estimation method for λ6,1

4.2 Simulation study 2: mixed data

After applying each of the two estimation methods to all 6,000 datasets with mixed-type data,

the estimation methods converged. Similar to the first simulation study, the performance of the

estimation methods separately were shown in Tables B1, B3, B4, and B6 in Appendix B. These

tables provide information about the estimates and standard errors of all twelve experimental con-

ditions. Equally, ANOVAs were conducted to discover whether the differences between estimation

methods depended on the design factors. However, the design of the second simulation study is

somewhat different since one option in the number of answer categories was excluded resulting

in fewer experimental conditions. Given the nature of the data of the second simulation study,

another series of parameters were selected to evaluate the relative bias. As outlined in Table 3.4,
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continuous as well as discrete parameter estimates are included in the correctly specified model

(i.e., λ2,1, λ6,1, λ6,2, λ8,2, λ12,2, θ2,1, θ6,1, τ8,2, τ12,2, and ψ1,2). The same parameter estimates

were selected for the misspecified model with the exception of the cross-loading, i.e., λ6,2. The

selection of error values, thresholds, and correlations are identical for both the correctly specified

and misspecified model. It is worthwhile to note that the y-axis of the plots displaying the relative

bias of parameter estimates and the standard errors are fixed in a different way, i.e., ranging from

-40 to 20 and ranging from -5 to 5 respectively, to improve comparability.

Bias of parameter estimates

Correctly specified model For the correctly specified model, very small biases were found

for both estimation methods. The parameter estimates suggest very accurate results for PML

and DWLS, i.e., no raw bias exceeded 0.02. Regarding the differences between PML and DWLS,

the results are presented in Table 4.3. No significant effect was found for λ2,1. This indicates

that the performance of the estimation methods is approximately the same. For λ6,1 and λ6,2,

main effects for estimation method appeared to be significant in which PML was associated with

a lower relative bias. Based on the result of λ6,1, the difference in relative bias between PML and

DWLS is small, (i.e., |−0.19%−−0.28%| ≈ 0.1% respectively). Regarding λ6,2, approximately

the same conclusion can be drawn about the difference in relative bias between PML and DWLS

(|−0.33%−−0.65%| ≈ 0.3% respectively). These results were consistent with Table B1 in Ap-

pendix B in which raw biases across all conditions were rather small, i.e., no raw biases of PML

or DWLS were above 0.02 or below -0.02 for λ6,1 and λ6,2. Furthermore, a three-way interac-

tion effect between the estimation method, number of latent factors, and sample size for λ8,2 was

found. Partially due to the wide range of the fixed scale of the y-axis, Figure B1 shows very small

differences in relative bias. Even though differences between the two estimation methods can be

barely detected with the unaided eye, after manually adjusting the range of y-axis such that the

result is amplified, it appears that the the difference in relative bias between the two estimation

methods decreases as the number of factors and the sample size (N) increase. Based on Table

B1 in Appendix B, very low raw biases appeared for PML and DWLS. Furthermore, two-way

interaction effects for λ12,2 were found. The number of latent factors and method had a significant

effect on the relative bias of λ12,2 (see plot a in Figure B2). The estimation method and sample

size also showed a significant effect on the relative bias of λ12,2 (see plot b in Figure B2).

Regarding the selected error values (i.e., θ2,1 and θ6,1), only θ6,1 was showing a statistically

significant effect. A two-way interaction effect between estimation method and sample size was

found. Figure 4.6 illustrates a larger difference between PML and DWLS in relative bias for the

error value for the smallest sample size (N = 200). As the sample size increases, the difference

between the two estimation methods seems to disappear. Again, because of the scale of the y-axis,

differences are hard to detect. Surprisingly, the relative bias of θ6,1 is considerably lower (around

-20%, indicating an underestimation of the parameter estimate) than the relative bias of the factor

loadings (around 0%).
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Figure 4.6: Two-way interaction effect between sample size and estimation method for θ6,1. The
dashed line and solid line respectively represent the data sets with PML and DWLS as estimation
method.

No significant effects were found for the selected thresholds (i.e., τ8,2 and τ12,2) indicating

a similar performance of both PML and DWLS. For the factor correlation (ψ1,2), a three-way

interaction effect between the estimation method, number of latent factors, and sample size was

statistically significant. As can be seen in Figure B3, if the number of latent factors is 2 (factors

= 2), both estimation methods showed a somewhat larger relative bias for the highest sample size

(N = 800). This difference was not visible for the other number of latent factors.

Table 4.3: ANOVA results of the highest order interaction effects between design factors and
estimation method for the parameter estimates of the correctly specified model.

Par. est. F-statistic p-value η2 Figure Sign. result
λ6,1 5.14 .023 < .001 - method
λ6,2 25.62 < .001 < .001 - method
λ8,2 2.31 .031 < .001 B1 nfact × N × method
λ12,2 7.18, 155.82 < .001, <.001 < .001, < .001 B2* nfact × method,

N × method
θ6,1 5.50 .004 < .001 4.6 nfact × method,

N × method
ψ1,2 2.32 .031 < .001 B3 nfact × N × method

Note. * Plot (a) and (b) respectively. Par. est = parameter estimate, Sign. result = Significant ANOVA
result, nfact = number of latent variables, N = sample size.

Misspecified model For the misspecified model, in which the cross-loading is not part of the

model, some parameter estimates showed higher raw biases. As can be seen in Table B3, especially



CHAPTER 4. RESULTS 25

the parameters estimated with DWLS as estimation method revealed higher biases. ANOVAs

were performed to see whether the differences between PML and DWLS were significant. Table

4.4 provides an overview of all significant results. Below, only remarkable deviating results will be

discussed. According to Table B3, the raw bias of λ2,1 for PML and DWLS was -0.01 and -0.03,

respectively. Based on the ANOVA results, this difference in performance between the estimation

methods was illustrated by a significant main effect for λ2,1. The relative bias of PML was -0.192

and for DWLS -0.280 (i.e., difference of |−0.19−−0.28| = 0.09%). In addition, the effect size was

higher for this parameter estimate compared other parameter estimates. Furthermore, Table B3

illustrates high raw biases for λ6,1. This is the factor loading that is most affected by the exclusion

of the cross-loading. Raw biases of 0.10 and 0.14 were found for PML and DWLS, respectively.

Based on the ANOVA results, a two-way interaction effect appeared between estimation method

and the number of factors. The difference between PML and DWLS in terms of relative bias

decreases as the number of factors increases. Furthermore, Figure 4.7 displays a clear distinction

between the PML and DWLS estimation method which is consistent with the results of the raw

biases in Table B3. Although the difference between PML and DWLS decreases as the number

of factors increases, the relative bias associated with PML remains lower every model size (i.e.,

number of latent factors).
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Figure 4.7: Two-way interaction effect between sample size and estimation method for λ6,1. The
dashed line and solid line respectively represent the data sets with PML and DWLS as estimation
method.

As indicated in Table B3, a significant main effect appeared for method for θ2,1. The relative

bias was 2.957 and 9.000 for PML and DWLS respectively (i.e., difference is |2.957− 9.000| =

6.043%). This significant result was associated with a relatively high effect size (η2 = .048).

Based on the results in Table B3, the difference in estimation method was also exposed (raw

bias of 0.01 and 0.03 for PML and DWLS respectively). For θ6,1, a two-way interaction effect

between estimation method and sample size showed a distinctive difference in relative bias for
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the estimation methods. Figure B6 in Appendix B illustrates a smaller bias for PML compared

to DWLS over all sample sizes. Again, this points towards a better performance of PML for

estimating the error value (θ6,1) for the misspecified model. This corresponds to the results of

Table B3 in which the raw biases were -0.02 and -0.08 for PML and DWLS respectively. As can

be seen in Table B5, no significant effects appeared for the thresholds. For ψ1,2, a three-way

interaction effect between the estimation method, number of latent factors, and sample size was

statistically significant. Based on Figure B7 in Appendix B, the degree of relative bias is similar

to the factor correlation in the misspecified model of the first simulation study (see Figure 4.3).

Higher relative biases were found across all sample sizes and number of latent factors. As before,

the PML indicates a better performance compared to DWLS, i.e., the dashed line continues to be

below the solid line indicating a lower relative bias. This is consistent with the results of the raw

bias in Table B3 in which PML was associated with a lower raw bias than DWLS.

Table 4.4: ANOVA results of the highest order interaction effects between design factors and
estimation method for the parameter estimates of the misspecified model.

Par. est F-statistic p-value η2 Figure Sign. result
λ2,1 2432.33 < .001 .020 - method
λ6,1 12.44 < .001 < .001 4.7 nfact × method
λ8,2 2.65 .014 < .001 B4 nfact × N × method
λ12,2 6.61, 153.91 < .001 < .001, < .001 B5* nfact × method,

N × method
θ2,1 2369.86 < .001 .048 - method
θ6,1 5.56 < .001 < .001 B6 N × method
ψ1,2 2.62 .015 < .001 B7 nfact × N × method

Note. * Plot (a) and (b) respectively. Par. est = parameter estimate, Sign. result = Significant ANOVA
result, nfact = number of latent variables, N = sample size.

Bias of Standard Errors

Since the results of the relative bias of the standard error of the parameter estimates did not

exceed values below -5 and above 5, the scale of the y-axis was adjust to a range of [-5,5]. Although

ANOVAs indicated many significant results, it implies that the relative bias does not deviate a lot

from zero.

Correctly specified model As can be derived from Table B4, very small biases were found

for both estimation methods indicating accurate results for PML and DWLS, i.e., no raw bias

exceeded 0.02. Regarding the ANOVAs, Table B2 depicts the results for the standard errors of the

parameter estimates for the correctly specified model. Figures B8 to B17 display the associating

plots which do not show very deviating results. Although the figures indicate small differences

between the two estimation methods, it is remarkable that the effect size is relatively high for λ2,1

and ψ1,2, indicating that PML and DWLS differ in relative bias. For λ2,1, two significant two-way

interactions were found (see Table B2). As can be deduced from Figure B8, plot (a) indicates
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that difference in relative bias between the estimation methods increases as the number of factors

increases. Plot (b) displays a smaller difference in relative bias between the estimation methods

as the sample size increases. For ψ1,2, two two-way interaction effects appeared to be statistically

significant. Based on Figure B17, plot (a) shows an interaction effect between the estimation

method and the number of factors. Plot (b) displays an interaction effect between the estimation

method and sample size. Although the effect size of the second two-way interaction effect was

relatively high (η2 = .022), the difference in relative bias between the two estimation methods is

barely noticeable in plot (b) in Figure B17. Only a small decrease in difference in relative bias

between PML and DWLS is visible as the sample size increases.

Misspecified model Based on the results of the standard error of the parameter estimates of

the misspecified model, Table B6 reports relatively small raw biases for both estimation methods

(i.e., no raw bias exceeded 0.03).

As can be deduced from Table B5, ANOVA showed statistically significant effects for all stan-

dard errors of the selected parameters for the misspecified model. Figures B18 to B26 provide the

associating plots. Based on the size of η2, the two two-way interaction effects of the standard error

of λ1,2 stand out compared to the other standard errors of the parameter estimates. Regarding

Figure B18, plot (a) indicates an interaction effect between the estimation method and the num-

ber of factors. As the number of factors increases, the difference between the estimation method

also increases. Plot (b) shows an interaction effect between the estimation method and sample

size. Here, the difference between the two estimation methods becomes smaller as the sample size

increases.
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Discussion

Discrete data is often analysed with limited information methods within SEM. A well-known lim-

ited information method is the Diagonally Weighted Least Squares estimation method (DWLS).

DWLS is a multiple-step procedure in which parameter estimates are obtained using three se-

quential stages. In this study, we examined a rather unknown limited information method, called

Pairwise Maximum Likelihood (PML). The PML estimation method is able to estimate all model

parameters in one step.

Two simulation studies were conducted to investigate the performance of PML in large datasets

in terms of the accuracy and efficiency. In these simulation studies PML was compared to DWLS,

where DWLS served as benchmark to judge the performance of the PML estimation method.

Discrete and mixed-type data were used in the first and second simulation study respectively. By

systematically varying design factors, several experimental conditions were created.

Overall, PML achieved accurate results in parameter estimation among almost all experimen-

tal conditions, i.e., the mean raw biases for PML across all conditions for the first and second

simulation study were |0.003| and |0.006| respectively. Regarding the accuracy of the parameter

estimates of both simulation studies, PML and DWLS showed similar results with respect to rela-

tive bias. The resemblance in parameter estimates is not surprising since both estimation methods

rely on bivariate data. The ANOVA results, which display whether the differences between the

estimation methods depended on the design factors, indicated that sample size and the number

of answer categories occurred most often in the first simulation study. A trend seems to appear

in which the smallest sample size (N = 200) and fewer number of factors (nfact = 2) are asso-

ciated with a larger difference in relative bias between the estimation methods. In the second

simulation study, sample size was also the most prevalent design factor. Although various effects

appeared to be statistically significant, the difference between the PML and DWLS estimation

method remained small with a subtle advantage of PML over DWLS. Due to the large number

of the datasets, the huge power caused subtle differences to be statistically significant. One main

effect worth mentioning is the error value (θ2,1) in the second simulation study for the misspecified

model (η2 = 0.048) in which PML shows better results compared to DWLS. In general, the relative

bias is very small for the correctly specified model (ranging from approximately 0% to 20% for the

first simulation study and ranging from -20% to 5% for the second simulation study) and slightly

28
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higher in conditions with a misspecification (ranging from approximately -30% to 20% for the first

simulation study and ranging from -30% to 30% for the second simulation study). Equivalent to

our prior expectations, the most sensitive parameter estimate λ6,1 in the misspecified model was

associated with a higher relative bias for both estimation methods. Due to the exclusion of the

cross-loading in the misspecified model, the relative bias of the estimated factor correlation (ψ1,2)

was also higher for the misspecified model compared to the correctly specified model. For these

parameter estimates, PML revealed reduced relative bias compared to DWLS regardless of the

design factors. This indicates a higher robustness of PML as estimation method. Regarding the

efficiency of the parameter estimates, the standard errors of the parameter estimates are associated

with small (relative) biases for both PML and DWLS, i.e., approximately zero bias.

In short, the main result of both simulation studies is that PML performed at least as good or

even better than DWLS in terms of (relative) bias. For the majority of the selected parameters,

PML showed slightly lower (relative) biases compared to DWLS. The overall conclusion is that

PML is comparable to DWLS in terms of accuracy and efficiency since the estimation methods

are associated with very close parameter estimates and standard errors. Katsikatsou et al. (2012)

investigated the performance of the PML estimator, and its standard error during a preliminary

simulation study where they only included six experimental conditions. We expanded the exper-

imental design to see how PML would perform on more elaborate models. Therefore, under the

simulated conditions, this study provides evidence to use PML as estimation method in the case

of discrete and mixed-type data. We tried to comprise common experimental conditions to keep

the design manageable (see for example Barendse and Rosseel, 2020; Xi, 2011; Nestler, 2013).

However, it is unfeasible to include all experimental conditions in only two simulation studies. A

recommendation would be to include the number of items as separate experimental design factor

to be able to investigate its influence.

Overall, analysing data with PML as estimation method comes with several advantages. As

Katsikatsou et al. (2012) pointed out earlier, one-step procedures such as the PML estimation

method ought to be more efficient than multiple step approaches. In our simulation studies, this

could be an explanation of a better performance of PML, since DWLS depends on the diagonal

of a huge weight matrix before model parameter estimates can be calculated (as explained in

paragraph 2.3). Due to small sample sizes, this weight matrix becomes quite unstable (Li, 2016).

PML, by contrast, is able to estimate model parameters without such a matrix. In this one step

procedure, final parameter estimates include all sampling variability (Katsikatsou et al., 2012).

As a result, PML has various advanced options including multilevel modeling extensions (e.g.,

Barendse and Rosseel, 2020). Besides, PML estimates are associated with low computational

complexity (De Leon, 2005; Katsikatsou et al., 2012). Obtaining the estimates is relatively easy

since it only involves evaluation of up to two-dimensional integrals irrespective of the number of

observed variables (Katsikatsou et al., 2012).

However, PML is also accompanied by some limitations. Although PML is associated with

less computational complexity from a theoretical point of view, the computational time necessary

to perform all analyses was much higher for PML compared to DWLS. For one replication, it

took several hours to estimate parameters of the most elaborate model with PML as estimation
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method (see condition 24 in Table 3.1). Hence, the bivariate marginal likelihood is maximized for

every distinct pair in each iteration, i.e., for the condition with 48 items,
(
48
2

)
= 1128 pairs has

to be evaluated. Therefore, improving the PML algorithm to gain computational efficiency could

be done in future research. One suggestion could be to evaluate every bivariate item pair after

each iteration and assess to what extent the pair adds additional value to the log likelihood. If

pairs do not add to the likelihood, they can be deleted. To decrease the computational time of

the algorithm, another option would be to obtain bivariate correlations of all items. Before the

estimation procedure starts, item pairs that are not related to each other will then be deleted.

Besides, although PML is freely available in the lavaan package in R (Rosseel, 2012), it should

be accessible in other SEM software programs as well, e.g., MPlus, Lisrel, and EQS (Muthén and

Muthén, 2009; Jöreskog and Sörbom, 1996; Byrne, 1994).

The results of the current study offer a promising perspective to further expand the knowledge

regarding the applicability of the PML estimation method. Further research is needed to apply

PML on real mixed-type data to compare estimates and standard errors of PML and DWLS

in an illustrative example. Furthermore, additional research should provide overall measures to

evaluate the goodness-of-fit (e.g., fit measures indicated by Barendse et al., 2016; Katsikatsou

et al., 2012) associated with PML in large datasets (especially in the case of mixed-type data).

Such information would allow researchers to test the model fit of PML. Lastly, future research

might examine the potential role of missing values in the parameter estimation process. These

values can be encountered in the simulation study to further test the robustness of the estimation

methods and mimic real-life research settings. Based on promising results of Katsikatsou et al.

(2021), PML is expected to perform better compared to DWLS in case of incomplete data with

large datasets.
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Appendix

6.1 Appendix A

Simulation study 1: discrete data

31



CHAPTER 6. APPENDIX 32

T
ab

le
A

1:
T

ab
le

w
it

h
tr

u
e

va
lu

es
,

ra
w

m
ea

n
s,

an
d

ra
w

b
ia

s
fo

r
th

e
p

a
ra

m
et

er
es

ti
m

a
te

s
fo

r
ea

ch
o
f

th
e

2
4

co
n

d
it

io
n

s
se

p
a
ra

te
ly

.
V

a
lu

es
a
re

o
b

ta
in

ed
fr

om
th

e
co

rr
ec

tl
y

sp
ec

ifi
ed

m
o
d

el
.

E
x
p

e
ri

m
e
n
ta

l
c
o
n

d
it

io
n

V
a
lu

e
P

a
ra

m
e
te

r
M

e
th

o
d

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

M
e
a
n

*
T

ru
e

λ
6
,1

B
ot

h
0.

60
0
.6

0
0
.6

0
0.

60
0
.6

0
0.

60
0.

60
0.

6
0

0.
6
0

0.
60

0
.6

0
0.

6
0

0
.6

0
0
.6

0
0.

60
0
.6

0
0.

60
0.

60
0.

60
0
.6

0
0.

6
0

0
.6

0
0.

60
0.

60
-

E
st

im
at

e
λ
6
,1

P
M

L
0
.6

0
0.

6
0

0.
59

0.
60

0.
60

0
.6

0
0.

60
0
.6

1
0
.6

0
0
.6

0
0.

60
0
.6

0
0.

5
9

0
.6

1
0.

6
0

0
.6

0
0.

6
0

0.
60

0.
60

0
.6

0
0.

60
0.

60
0.

6
0

0
.6

0
0.

60
R

aw
b

ia
s

λ
6
,1

P
M

L
0
.0

0
0.

0
0

-0
.0

1
0
.0

0
0.

00
0.

00
0
.0

0
0.

01
0.

00
0
.0

0
0.

0
0

0.
00

-0
.0

1
0.

0
1

0.
00

0.
0
0

0.
00

0.
00

0
.0

0
0
.0

0
0.

0
0

0.
00

0.
00

0.
00

0.
00

E
st

im
at

e
λ
6
,1

D
W

L
S

0.
60

0
.6

0
0
.5

9
0.

60
0
.6

0
0.

60
0.

60
0.

61
0
.6

0
0.

60
0.

60
0
.6

0
0
.5

9
0.

6
1

0
.6

0
0.

6
0

0
.6

0
0.

60
0.

6
0

0.
60

0.
60

0.
60

0
.6

0
0.

60
0.

6
0

R
aw

b
ia

s
λ
6
,1

D
W

L
S

0.
00

0
.0

0
-0

.0
1

0.
00

0.
00

0
.0

0
0.

00
0
.0

1
0
.0

0
0.

0
0

0.
00

0
.0

0
-0

.0
1

0
.0

1
0.

0
0

0
.0

0
0.

0
0

0.
00

0.
00

0.
00

0
.0

0
0.

00
0.

0
0

0.
00

0.
00

T
ru

e
λ
6
,2

B
ot

h
0.

20
0
.2

0
0
.2

0
0.

20
0
.2

0
0.

20
0.

20
0.

2
0

0.
2
0

0.
20

0
.2

0
0.

2
0

0
.2

0
0
.2

0
0.

20
0
.2

0
0.

20
0.

20
0.

20
0
.2

0
0.

2
0

0
.2

0
0.

20
0.

20
-

E
st

im
at

e
λ
6
,2

P
M

L
0
.2

0
0.

2
0

0.
20

0.
20

0.
20

0
.2

1
0.

20
0
.1

9
0
.2

0
0
.2

0
0.

20
0
.2

0
0.

2
0

0
.1

9
0.

2
0

0
.1

9
0.

2
0

0.
20

0.
20

0
.1

9
0.

20
0.

20
0.

2
0

0
.2

0
0.

20
R

aw
b

ia
s

λ
6
,2

P
M

L
0
.0

0
0.

0
0

0.
00

0.
00

0.
00

0
.0

1
0.

00
-0

.0
1

0.
00

0
.0

0
0.

0
0

0.
00

0
.0

0
-0

.0
1

0.
00

-0
.0

1
0.

00
0.

00
0
.0

0
-0

.0
1

0.
00

0.
00

0.
0
0

0
.0

0
0.

00
E

st
im

at
e

λ
6
,2

D
W

L
S

0.
20

0
.2

0
0
.2

0
0.

20
0
.2

0
0.

21
0.

20
0.

19
0
.2

0
0.

20
0.

20
0
.2

0
0
.2

0
0.

1
9

0
.2

0
0.

1
9

0
.2

0
0.

20
0.

2
0

0.
19

0.
20

0.
20

0
.2

0
0.

20
0.

2
0

R
aw

b
ia

s
λ
6
,2

D
W

L
S

0.
00

0
.0

0
0
.0

0
0.

00
0
.0

0
0.

01
0.

00
-0

.0
1

0
.0

0
0.

0
0

0.
00

0
.0

0
0.

00
-0

.0
1

0.
0
0

-0
.0

1
0.

0
0

0.
00

0.
00

-0
.0

1
0.

00
0.

00
0.

00
0.

00
0.

0
0

T
ru

e
λ
7
,2

B
ot

h
0.

80
0
.8

0
0
.8

0
0.

80
0
.8

0
0.

80
0.

80
0.

8
0

0.
8
0

0.
80

0
.8

0
0.

8
0

0
.8

0
0
.8

0
0.

80
0
.8

0
0.

80
0.

80
0.

80
0
.8

0
0.

8
0

0
.8

0
0.

80
0.

80
-

E
st

im
at

e
λ
7
,2

P
M

L
0
.8

0
0.

8
0

0.
80

0.
80

0.
81

0
.8

0
0.

80
0
.8

0
0
.8

0
0
.8

0
0.

80
0
.8

0
0.

8
0

0
.8

0
0.

8
0

0
.8

0
0.

8
0

0.
80

0.
79

0
.8

0
0.

80
0.

80
0.

8
0

0
.8

0
0.

80
R

aw
b

ia
s

λ
7
,2

P
M

L
0
.0

0
0.

0
0

0.
00

0.
00

0.
01

0
.0

0
0.

00
0
.0

0
0
.0

0
0
.0

0
0.

00
0
.0

0
0.

0
0

0
.0

0
0.

0
0

0
.0

0
0.

0
0

0.
00

-0
.0

1
0.

00
0.

00
0.

00
0
.0

0
0.

00
0.

0
0

E
st

im
at

e
λ
7
,2

D
W

L
S

0.
80

0
.8

0
0
.8

0
0.

80
0
.8

1
0.

80
0.

80
0.

80
0
.8

0
0.

80
0.

80
0
.8

0
0
.8

0
0.

8
0

0
.8

0
0.

8
0

0
.8

0
0.

80
0.

7
9

0.
80

0.
80

0.
80

0
.8

0
0.

80
0.

8
0

R
aw

b
ia

s
λ
7
,2

D
W

L
S

0.
00

0
.0

0
0
.0

0
0.

00
0
.0

1
0.

00
0.

00
0.

00
0
.0

0
0.

00
0.

00
0
.0

0
0
.0

0
0.

0
0

0
.0

0
0.

0
0

0
.0

0
0.

00
-0

.0
1

0.
0
0

0.
00

0.
00

0.
00

0.
00

0
.0

0
T

ru
e

τ 6
,1

B
ot

h
0.

00
0
.0

0
0
.0

0
0.

00
0
.0

0
0.

00
0.

00
0.

0
0

0.
0
0

0.
00

0
.0

0
0.

0
0

0
.0

0
0
.0

0
0.

00
0
.0

0
0.

00
0.

00
0.

00
0
.0

0
0.

0
0

0
.0

0
0.

00
0.

00
-

E
st

im
at

e
τ 6
,1

P
M

L
-0

.0
1

-0
.0

1
-0

.0
1

0.
00

0.
00

0
.0

0
0.

00
-0

.0
1

0.
00

0
.0

0
0
.0

0
0.

00
0
.0

0
0
.0

0
0.

00
0
.0

0
0.

00
0.

00
0.

00
0
.0

0
0.

0
0

0
.0

0
0.

00
0.

00
0.

00
R

aw
b

ia
s

τ 6
,1

P
M

L
-0

.0
1

-0
.0

1
-0

.0
1

0.
00

0.
00

0
.0

0
0.

00
-0

.0
1

0.
00

0
.0

0
0
.0

0
0.

00
0
.0

0
0
.0

0
0.

00
0
.0

0
0.

00
0.

00
0.

00
0
.0

0
0.

0
0

0
.0

0
0.

00
0.

00
0.

00
E

st
im

at
e

τ 6
,1

D
W

L
S

-0
.0

1
-0

.0
1

-0
.0

1
0.

00
0
.0

0
0.

00
0.

00
-0

.0
1

0
.0

0
0
.0

0
0.

00
0
.0

0
0.

0
0

0.
00

0
.0

0
0.

0
0

0
.0

0
0.

00
0.

00
0.

00
0
.0

0
0.

00
0.

0
0

0.
00

0.
00

R
aw

b
ia

s
τ 6
,1

D
W

L
S

-0
.0

1
-0

.0
1

-0
.0

1
0.

00
0
.0

0
0.

00
0.

00
-0

.0
1

0
.0

0
0
.0

0
0.

00
0
.0

0
0.

0
0

0.
00

0
.0

0
0.

0
0

0
.0

0
0.

00
0.

00
0.

00
0
.0

0
0.

00
0.

0
0

0.
00

0.
00

T
ru

e
τ 7
,2

B
ot

h
0.

00
0
.0

0
0
.0

0
0.

00
0
.0

0
0.

00
0.

00
0.

0
0

0.
0
0

0.
00

0
.0

0
0.

0
0

0
.0

0
0
.0

0
0.

00
0
.0

0
0.

00
0.

00
0.

00
0
.0

0
0.

0
0

0
.0

0
0.

00
0.

00
-

E
st

im
at

e
τ 7
,2

P
M

L
0
.0

0
-0

.0
1

0.
00

0
.0

0
0.

00
0.

00
0
.0

0
0.

00
0.

00
0
.0

0
0.

0
0

0.
00

0
.0

0
0.

0
0

0.
00

0
.0

0
0.

00
0.

00
0
.0

0
0
.0

0
0.

0
0

0.
00

0.
00

0.
00

0.
00

R
aw

b
ia

s
τ 7
,2

P
M

L
0
.0

0
-0

.0
1

0.
00

0
.0

0
0.

00
0.

00
0
.0

0
0.

00
0.

00
0
.0

0
0.

0
0

0.
00

0
.0

0
0.

0
0

0.
00

0
.0

0
0.

00
0.

00
0
.0

0
0
.0

0
0.

0
0

0.
00

0.
00

0.
00

0.
00

E
st

im
at

e
τ 7
,2

D
W

L
S

0.
00

-0
.0

1
0.

00
0.

00
0.

00
0
.0

0
0.

00
0
.0

0
0
.0

0
0.

0
0

0.
00

0
.0

0
0.

00
0
.0

0
0.

0
0

0.
00

0.
0
0

0.
00

0.
00

0.
00

0
.0

0
0.

00
0.

0
0

0.
00

0.
00

R
aw

b
ia

s
τ 7
,2

D
W

L
S

0.
00

-0
.0

1
0.

00
0.

00
0.

00
0
.0

0
0.

00
0
.0

0
0
.0

0
0.

0
0

0.
00

0
.0

0
0.

00
0
.0

0
0.

0
0

0.
00

0.
0
0

0.
00

0.
00

0.
00

0
.0

0
0.

00
0.

0
0

0.
00

0.
00

T
ru

e
ψ
1
,2

B
ot

h
0.

30
0
.3

0
0
.3

0
0.

30
0
.3

0
0.

30
0.

30
0.

3
0

0.
3
0

0.
30

0
.3

0
0.

3
0

0
.3

0
0
.3

0
0.

30
0
.3

0
0.

30
0.

30
0.

30
0
.3

0
0.

3
0

0
.3

0
0.

30
0.

30
-

E
st

im
at

e
ψ
1
,2

P
M

L
0
.3

1
0.

3
0

0.
30

0.
31

0.
30

0
.3

1
0.

30
0
.3

1
0
.3

0
0
.3

0
0.

30
0
.3

0
0.

2
9

0
.3

0
0.

3
1

0
.3

1
0.

3
0

0.
30

0.
30

0
.3

0
0.

30
0.

30
0.

3
0

0
.3

0
0.

30
R

aw
b

ia
s

ψ
1
,2

P
M

L
0
.0

1
0.

0
0

0.
00

0.
01

0.
00

0
.0

1
0.

00
0
.0

1
0
.0

0
0
.0

0
0.

00
0
.0

0
-0

.0
1

0.
00

0
.0

1
0.

0
1

0
.0

0
0
.0

0
0.

0
0

0.
0
0

0.
00

0.
00

0.
00

0.
00

0
.0

0
E

st
im

at
e

ψ
1
,2

D
W

L
S

0.
31

0
.3

0
0
.3

0
0.

31
0
.3

0
0.

31
0.

30
0.

31
0
.3

0
0.

30
0.

30
0
.3

0
0
.2

9
0.

3
0

0
.3

1
0.

3
1

0
.3

0
0.

30
0.

3
0

0.
30

0.
30

0.
30

0
.3

0
0.

30
0.

3
0

R
aw

b
ia

s
ψ
1
,2

D
W

L
S

0.
01

0
.0

0
0
.0

0
0.

01
0
.0

0
0.

01
0.

00
0.

01
0
.0

0
0.

00
0.

00
0
.0

0
-0

.0
1

0.
0
0

0.
01

0
.0

1
0.

00
0.

00
0
.0

0
0
.0

0
0.

0
0

0.
00

0.
00

0.
00

0.
00

N
o
te

.
V

a
lu

es
<

0
.0

1
a
re

ro
u
n
d
ed

to
0
.0

0
.

T
h
e

ex
p

er
im

en
ta

l
co

n
d
it

io
n
s

co
rr

es
p

o
n
d

to
th

o
se

sp
ec

ifi
ed

in
T

a
b
le

3
.1

.
*

ca
lc

u
la

te
d

a
cr

o
ss

a
ll

co
n
d
it

io
n
s.



CHAPTER 6. APPENDIX 33

Table A2: ANOVA results of the highest order interaction effects between design factors and
estimation method for the SE of parameter estimates of the misspecified model.

SE of par. F-statistic η2 Figure Sign. result
λ6,1 7.03* < .001 4.5 nfact× N × ncat× method
λ7,2 3.84* < .001 A6 nfact× N × ncat× method
τ6,1 51.98* < .001 A7 nfact× N × ncat× method
τ7,2 99.47* .002 A6 nfact× N × ncat× method
ψ1,2 19.90* < .001 A9 N × ncat × method

Note. * indicates an associating p-value of <.001. SE of par. = Standard Error of parameter, nfact =

number of latent variables, N = sample size, ncat = number of answer categories
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Figure A1: Four-way interaction effect between the number of latent variables, sample size, number
of answer categories, and estimation method for the SE of λ6,2
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Figure A2: Four-way interaction effect between the number of latent variables, sample size, number
of answer categories, and estimation method for the SE of λ7,2
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Figure A3: Four-way interaction effect between the number of latent variables, sample size, number
of answer categories, and estimation method for the SE of τ6,1
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Figure A4: Four-way interaction effect between the number of latent variables, sample size, number
of answer categories, and estimation method for the SE of τ7,2
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Figure A5: Four-way interaction effect between the number of latent variables, sample size, number
of answer categories, and estimation method for the SE of ψ1,2
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Figure A6: Four-way interaction effect between the number of latent variables, sample size, number
of answer categories, and estimation method for the SE of λ7,2
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Figure A7: Four-way interaction effect between the number of latent variables, sample size, number
of answer categories, and estimation method for the SE of τ6,1
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Figure A8: Four-way interaction effect between the number of latent variables, sample size, number
of answer categories, and estimation method for the SE of τ7,2
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Figure A9: Four-way interaction effect between the number of latent variables, sample size, number
of answer categories, and estimation method for the SE of ψ1,2



CHAPTER 6. APPENDIX 45

T
ab

le
A

5:
T

ab
le

w
it

h
tr

u
e

va
lu

es
,

ra
w

m
ea

n
s,

an
d

ra
w

b
ia

s
fo

r
th

e
S

E
o
f

th
e

p
a
ra

m
et

er
es

ti
m

a
te

s
fo

r
ea

ch
o
f

th
e

2
4

co
n
d

it
io

n
s

se
p

a
ra

te
ly

.
V

a
lu

es
ar

e
ob

ta
in

ed
fr

om
th

e
m

is
sp

ec
ifi

ed
m

o
d

el
.

E
x
p

e
ri

m
e
n
ta

l
c
o
n

d
it

io
n

V
a
lu

e
P

a
ra

m
e
te

r
M

e
th

o
d

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

M
e
a
n

*
S

D
o
f

p
ar

a
m

et
er

es
ti

m
a
te

λ
6
,1

P
M

L
0
.0

5
0.

05
0.

0
5

0.
05

0.
05

0.
05

0.
05

0.
05

0
.0

5
0
.0

5
0.

0
5

0
.0

5
0.

0
5

0
.0

5
0.

05
0.

0
5

0.
0
5

0
.0

5
0
.0

5
0
.0

5
0.

05
0.

05
0.

05
0.

05
-

E
st

im
a
te

S
E

of
λ
6
,1

P
M

L
0
.0

7
0.

07
0.

0
7

0.
08

0.
05

0.
05

0.
05

0.
06

0
.0

4
0
.0

4
0.

0
4

0
.0

4
0.

0
5

0
.0

5
0.

05
0.

0
6

0.
0
4

0
.0

4
0
.0

4
0
.0

4
0.

03
0.

03
0.

03
0.

03
0.

05
R

aw
b
ia

s
S

E
of
λ
6
,1

P
M

L
0
.0

2
0.

02
0.

0
2

0.
03

0.
00

0.
00

0.
00

0.
01

-0
.0

1
-0

.0
1

-0
.0

1
-0

.0
1

0.
0
0

0
.0

0
0.

0
0

0
.0

1
-0

.0
1

-0
.0

1
-0

.0
1

-0
.0

1
-0

.0
2

-0
.0

2
-0

.0
2

-0
.0

2
0.

0
0

S
D

o
f

p
ar

a
m

et
er

es
ti

m
a
te

λ
6
,1

D
W

L
S

0
.0

5
0.

05
0
.0

5
0.

05
0
.0

5
0
.0

5
0
.0

5
0
.0

5
0
.0

5
0.

05
0.

0
5

0
.0

5
0.

0
5

0
.0

5
0.

05
0.

0
5

0.
0
5

0
.0

5
0
.0

5
0
.0

5
0.

05
0.

05
0.

05
0.

05
-

E
st

im
a
te

S
E

of
λ
6
,1

D
W

L
S

0
.0

7
0.

08
0
.0

8
0.

08
0
.0

5
0
.0

5
0
.0

5
0
.0

5
0
.0

4
0.

04
0.

0
4

0
.0

4
0.

0
5

0
.0

5
0.

05
0.

0
6

0.
0
4

0
.0

4
0
.0

4
0
.0

4
0.

03
0.

03
0.

03
0.

03
0.

05
R

aw
b
ia

s
S

E
of
λ
6
,1

D
W

L
S

0
.0

2
0.

02
0
.0

3
0.

03
0
.0

0
0
.0

0
0
.0

0
0
.0

0
-0

.0
2

-0
.0

1
-0

.0
1

-0
.0

1
0.

0
0

0
.0

0
0
.0

0
0.

0
0

-0
.0

2
-0

.0
1

-0
.0

1
-0

.0
1

-0
.0

3
-0

.0
3

-0
.0

2
-0

.0
2

0.
00

S
D

o
f

p
ar

a
m

et
er

es
ti

m
a
te

λ
7
,2

P
M

L
0
.0

4
0.

04
0.

0
4

0.
04

0.
04

0.
04

0.
04

0.
04

0
.0

4
0
.0

4
0.

0
4

0
.0

4
0.

0
4

0
.0

4
0.

04
0.

0
4

0.
0
4

0
.0

4
0
.0

4
0
.0

4
0.

04
0.

04
0.

04
0.

04
-

E
st

im
a
te

S
E

of
λ
7
,2

P
M

L
0
.0

6
0.

06
0.

0
7

0.
07

0.
04

0.
05

0.
05

0.
05

0
.0

3
0
.0

3
0.

0
3

0
.0

4
0.

0
4

0
.0

4
0.

05
0.

0
5

0.
0
3

0
.0

3
0
.0

3
0
.0

3
0.

02
0.

02
0.

02
0.

02
0.

04
R

aw
b
ia

s
S

E
of
λ
7
,2

P
M

L
0
.0

2
0.

02
0.

0
2

0.
02

0.
00

0.
00

0.
00

0.
00

-0
.0

1
-0

.0
1

-0
.0

1
-0

.0
1

0.
0
0

0
.0

0
0.

0
0

0
.0

0
-0

.0
1

-0
.0

1
-0

.0
1

-0
.0

1
-0

.0
2

-0
.0

2
-0

.0
2

-0
.0

2
0.

0
0

S
D

o
f

p
ar

a
m

et
er

es
ti

m
a
te

λ
7
,2

D
W

L
S

0
.0

4
0.

04
0
.0

4
0.

04
0
.0

4
0
.0

4
0
.0

4
0
.0

4
0
.0

4
0.

04
0.

0
4

0
.0

4
0.

0
4

0
.0

4
0.

04
0.

0
4

0.
0
4

0
.0

4
0
.0

4
0
.0

4
0.

04
0.

04
0.

04
0.

04
-

E
st

im
a
te

S
E

of
λ
7
,2

D
W

L
S

0
.0

6
0.

07
0
.0

7
0.

07
0
.0

4
0
.0

5
0
.0

5
0
.0

5
0
.0

3
0.

03
0.

0
3

0
.0

4
0.

0
4

0
.0

5
0.

05
0.

0
5

0.
0
3

0
.0

3
0
.0

3
0
.0

3
0.

02
0.

02
0.

02
0.

02
0.

04
R

aw
b
ia

s
S

E
of
λ
7
,2

D
W

L
S

0
.0

2
0.

02
0
.0

3
0.

03
0
.0

0
0
.0

0
0
.0

0
0
.0

1
-0

.0
1

-0
.0

1
-0

.0
1

-0
.0

1
0.

0
0

0
.0

0
0
.0

0
0.

0
0

-0
.0

1
-0

.0
1

-0
.0

1
-0

.0
1

-0
.0

2
-0

.0
2

-0
.0

2
-0

.0
2

0.
00

S
D

o
f

p
ar

a
m

et
er

es
ti

m
a
te

τ 6
,1

P
M

L
0
.0

7
0.

07
0.

0
7

0.
07

0.
07

0.
07

0.
07

0.
07

0
.0

7
0
.0

7
0.

0
7

0
.0

7
0.

0
7

0
.0

7
0.

07
0.

0
7

0.
0
7

0
.0

7
0
.0

7
0
.0

7
0.

07
0.

07
0.

07
0.

07
-

E
st

im
a
te

S
E

of
τ 6
,1

P
M

L
0
.0

9
0.

09
0.

0
9

0.
09

0.
06

0.
06

0.
06

0.
06

0
.0

4
0
.0

4
0.

0
4

0
.0

4
0.

0
9

0
.0

9
0.

09
0.

0
9

0.
0
6

0
.0

6
0
.0

6
0
.0

6
0.

04
0.

04
0.

04
0.

04
0.

06
R

aw
b
ia

s
S

E
of
τ 6
,1

P
M

L
0
.0

2
0.

02
0.

0
2

0.
02

0.
00

0.
00

0.
00

0.
00

-0
.0

2
-0

.0
2

-0
.0

2
-0

.0
2

0.
0
2

0
.0

2
0.

0
2

0
.0

2
0.

00
0.

00
0.

00
0.

00
-0

.0
2

-0
.0

2
-0

.0
2

-0
.0

2
0.

00
S

D
o
f

p
ar

a
m

et
er

es
ti

m
a
te

τ 6
,1

D
W

L
S

0
.0

7
0.

07
0
.0

7
0.

07
0
.0

7
0
.0

7
0
.0

7
0
.0

7
0
.0

7
0.

07
0.

0
7

0
.0

7
0.

0
7

0
.0

7
0.

07
0.

0
7

0.
0
7

0
.0

7
0
.0

7
0
.0

7
0.

07
0.

07
0.

07
0.

07
-

E
st

im
a
te

S
E

of
τ 6
,1

D
W

L
S

0
.0

9
0.

09
0
.0

9
0.

09
0
.0

6
0
.0

6
0
.0

6
0
.0

6
0
.0

4
0.

04
0.

0
4

0
.0

4
0.

0
9

0
.0

9
0.

09
0.

0
9

0.
0
6

0
.0

6
0
.0

6
0
.0

6
0.

04
0.

04
0.

04
0.

04
0.

06
R

aw
b
ia

s
S

E
of
τ 6
,1

D
W

L
S

0
.0

2
0.

02
0
.0

2
0.

02
0
.0

0
0
.0

0
0
.0

0
0
.0

0
-0

.0
2

-0
.0

2
-0

.0
2

-0
.0

2
0.

0
2

0
.0

2
0
.0

2
0.

0
2

0.
00

0.
0
0

0
.0

0
0
.0

0
-0

.0
2

-0
.0

2
-0

.0
2

-0
.0

2
0
.0

0
S

D
o
f

p
ar

a
m

et
er

es
ti

m
a
te

τ 7
,2

P
M

L
0
.0

7
0.

07
0.

0
7

0.
07

0.
07

0.
07

0.
07

0.
07

0
.0

7
0
.0

7
0.

0
7

0
.0

7
0.

0
7

0
.0

7
0.

07
0.

0
7

0.
0
7

0
.0

7
0
.0

7
0
.0

7
0.

07
0.

07
0.

07
0.

07
-

E
st

im
a
te

S
E

of
τ 7
,2

P
M

L
0
.0

9
0.

09
0.

0
9

0.
09

0.
06

0.
06

0.
06

0.
06

0
.0

4
0
.0

4
0.

0
4

0
.0

4
0.

0
9

0
.0

9
0.

09
0.

0
9

0.
0
6

0
.0

6
0
.0

6
0
.0

6
0.

04
0.

04
0.

04
0.

04
0.

06
R

aw
b
ia

s
S

E
of
τ 7
,2

P
M

L
0
.0

2
0.

02
0.

0
2

0.
02

0.
00

0.
00

0.
00

0.
00

-0
.0

2
-0

.0
2

-0
.0

2
-0

.0
2

0.
0
2

0
.0

2
0.

0
2

0
.0

2
0.

00
0.

00
0.

00
0.

00
-0

.0
2

-0
.0

2
-0

.0
2

-0
.0

2
0.

00
S

D
o
f

p
ar

a
m

et
er

es
ti

m
a
te

τ 7
,2

D
W

L
S

0
.0

7
0.

07
0
.0

7
0.

07
0
.0

7
0
.0

7
0
.0

7
0
.0

7
0
.0

7
0.

07
0.

0
7

0
.0

7
0.

0
7

0
.0

7
0.

07
0.

0
7

0.
0
7

0
.0

7
0
.0

7
0
.0

7
0.

07
0.

07
0.

07
0.

07
-

E
st

im
a
te

S
E

of
τ 7
,2

D
W

L
S

0
.0

9
0.

09
0
.0

9
0.

09
0
.0

6
0
.0

6
0
.0

6
0
.0

6
0
.0

4
0.

04
0.

0
4

0
.0

4
0.

0
9

0
.0

9
0.

09
0.

0
9

0.
0
6

0
.0

6
0
.0

6
0
.0

6
0.

04
0.

04
0.

04
0.

04
0.

06
R

aw
b
ia

s
S

E
of
τ 7
,2

D
W

L
S

0
.0

2
0.

02
0
.0

2
0.

02
0
.0

0
0
.0

0
0
.0

0
0
.0

0
-0

.0
2

-0
.0

2
-0

.0
2

-0
.0

2
0.

0
2

0
.0

2
0
.0

2
0.

0
2

0.
00

0.
0
0

0
.0

0
0
.0

0
-0

.0
2

-0
.0

2
-0

.0
2

-0
.0

2
0
.0

0
S

D
o
f

p
ar

a
m

et
er

es
ti

m
a
te

ψ
1
,2

P
M

L
0
.0

7
0.

07
0.

0
7

0.
07

0.
07

0.
07

0.
07

0.
07

0
.0

7
0
.0

7
0.

0
7

0
.0

7
0.

0
7

0
.0

7
0.

07
0.

0
7

0.
0
7

0
.0

7
0
.0

7
0
.0

7
0.

07
0.

07
0.

07
0.

07
-

E
st

im
a
te

S
E

of
ψ
1
,2

P
M

L
0
.0

9
0.

09
0.

0
9

0.
09

0.
06

0.
06

0.
06

0.
06

0
.0

4
0
.0

4
0.

0
4

0
.0

4
0.

0
7

0
.0

7
0.

07
0.

0
7

0.
0
5

0
.0

5
0
.0

5
0
.0

5
0.

04
0.

04
0.

04
0.

04
0.

06
R

aw
b
ia

s
S

E
of
ψ
1
,2

P
M

L
0
.0

2
0.

02
0.

0
2

0.
02

0.
00

0.
00

0.
00

0.
00

-0
.0

2
-0

.0
2

-0
.0

2
-0

.0
2

0.
0
1

0
.0

1
0.

0
1

0
.0

1
-0

.0
1

-0
.0

1
-0

.0
1

-0
.0

1
-0

.0
3

-0
.0

3
-0

.0
3

-0
.0

3
-0

.0
1

S
D

o
f

p
ar

a
m

et
er

es
ti

m
a
te

ψ
1
,2

D
W

L
S

0
.0

7
0.

07
0
.0

7
0.

07
0
.0

7
0
.0

7
0
.0

7
0
.0

7
0
.0

7
0.

07
0.

0
7

0
.0

7
0.

0
7

0
.0

7
0.

07
0.

0
7

0.
0
7

0
.0

7
0
.0

7
0
.0

7
0.

07
0.

07
0.

07
0.

07
-

E
st

im
a
te

S
E

of
ψ
1
,2

D
W

L
S

0
.0

9
0.

09
0
.0

9
0.

09
0
.0

7
0
.0

6
0
.0

6
0
.0

6
0
.0

5
0.

05
0.

0
5

0
.0

5
0.

0
8

0
.0

8
0.

08
0.

0
8

0.
0
6

0
.0

6
0
.0

6
0
.0

6
0.

04
0.

04
0.

04
0.

04
0.

06
R

aw
b
ia

s
S

E
of
ψ
1
,2

D
W

L
S

0
.0

3
0.

03
0
.0

3
0.

03
0
.0

0
0
.0

0
0
.0

0
0
.0

0
-0

.0
2

-0
.0

2
-0

.0
2

-0
.0

2
0.

0
1

0
.0

1
0
.0

1
0.

0
1

-0
.0

1
-0

.0
1

-0
.0

1
-0

.0
1

-0
.0

3
-0

.0
3

-0
.0

3
-0

.0
3

0.
00

N
o
te

.
V

a
lu

es
<

0
.0

1
a
re

ro
u
n
d
ed

to
0
.0

0
.

T
h
e

ex
p

er
im

en
ta

l
co

n
d
it

io
n
s

co
rr

es
p

o
n
d

to
th

o
se

sp
ec

ifi
ed

in
T

a
b
le

3
.1

.
*

ca
lc

u
la

te
d

a
cr

o
ss

a
ll

co
n
d
it

io
n
s.



CHAPTER 6. APPENDIX 46

6.2 Appendix B

Simulation study 2: mixed data

Factors = 6 Factors = 8

Factors = 2 Factors = 4
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Figure B1: Three-way interaction effect between the number of latent factors, sample size, and
estimation method for λ8,2. The dashed line and solid line respectively represent the data sets
with PML and DWLS as estimation method.
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Figure B2: Two two-way interaction effects; plot a displays interaction effect between the number
of latent factors and the estimation method for λ12,2; plot b shows the interaction effect between
sample size and estimation method for λ12,2. The dashed line and solid line respectively represent
the data sets with PML and DWLS as estimation method.
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Factors = 6 Factors = 8

Factors = 2 Factors = 4
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Figure B3: Three-way interaction effect between number of latent factors, sample size, and esti-
mation method for ψ1,2. The dashed line and solid line respectively represent the data sets with
PML and DWLS as estimation method.
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Table B1: Table with true values, raw means, and raw bias for the parameter estimates for each
of the 12 conditions separately. Values are obtained from the correctly specified model.

Experimental condition
Value Parameter Method 1 2 3 4 5 6 7 8 9 10 11 12 Mean*
True λ2,1 Both 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 -
Estimate λ2,1 PML 0.80 0.79 0.80 0.79 0.80 0.79 0.80 0.80 0.80 0.80 0.80 0.80 0.80
Raw bias λ2,1 PML 0.00 -0.01 0.00 -0.01 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Estimate λ2,1 DWLS 0.80 0.79 0.79 0.79 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
Raw bias λ2,1 DWLS 0.00 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
True λ6,1 Both 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 -
Estimate λ6,1 PML 0.60 0.60 0.59 0.60 0.60 0.60 0.60 0.60 0.59 0.60 0.60 0.60 0.60
Raw bias λ6,1 PML 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00
Estimate λ6,1 DWLS 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.59 0.60 0.60 0.60 0.60
Raw bias λ6,1 DWLS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00
True λ6,2 Both 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 -
Estimate λ6,2 PML 0.19 0.20 0.20 0.20 0.20 0.20 0.20 0.19 0.20 0.20 0.20 0.20 0.20
Raw bias λ6,2 PML -0.01 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00
Estimate λ6,2 DWLS 0.19 0.20 0.20 0.20 0.20 0.21 0.20 0.19 0.20 0.20 0.20 0.20 0.20
Raw bias λ6,2 DWLS -0.01 0.00 0.00 0.00 0.00 0.01 0.00 -0.01 0.00 0.00 0.00 0.00 0.00
True λ8,2 Both 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 -
Estimate λ8,2 PML 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
Raw bias λ8,2 PML 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Estimate λ8,2 DWLS 0.80 0.80 0.80 0.79 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
Raw bias λ8,2 DWLS 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
True λ12,2 Both 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 -
Estimate λ12,2 PML 0.61 0.61 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
Raw bias λ12,2 PML 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Estimate λ12,2 DWLS 0.60 0.60 0.59 0.59 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
Raw bias λ12,2 DWLS 0.00 0.00 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
True θ2,1 Both 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 -
Estimate θ2,1 PML 0.35 0.36 0.35 0.37 0.35 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
Raw bias θ2,1 PML -0.01 0.00 -0.01 0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Estimate θ2,1 DWLS 0.35 0.36 0.35 0.36 0.35 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
Raw bias θ2,1 DWLS -0.01 0.00 -0.01 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
True θ6,1 Both 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 -
Estimate θ6,1 PML 0.52 0.53 0.53 0.52 0.52 0.52 0.52 0.53 0.53 0.52 0.53 0.53 0.53
Raw bias θ6,1 PML -0.01 0.00 0.00 -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00
Estimate θ6,1 DWLS 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.53 0.53 0.52 0.53 0.53 0.52
Raw bias θ6,1 DWLS -0.01 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 -0.01
True τ8,2 Both 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -
Estimate τ8,2 PML 0.00 -0.01 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Raw bias τ8,2 PML 0.00 -0.01 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Estimate τ8,2 DWLS 0.00 -0.01 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Raw bias τ8,2 DWLS 0.00 -0.01 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
True τ12,2 Both 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -
Estimate τ12,2 PML -0.01 -0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
Raw bias τ12,2 PML -0.01 -0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
Estimate τ12,2 DWLS -0.01 -0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
Raw bias τ12,2 DWLS -0.01 -0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
True ψ1,2 Both 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 -
Estimate ψ1,2 PML 0.31 0.30 0.30 0.30 0.31 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
Raw bias ψ1,2 PML 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Estimate ψ1,2 DWLS 0.31 0.30 0.30 0.30 0.31 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
Raw bias ψ1,2 DWLS 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note. Values < 0.01 are rounded to 0.00. The experimental conditions correspond to those specified in

Table 3.2. * calculated across all conditions.
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Factors = 6 Factors = 8

Factors = 2 Factors = 4
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Figure B4: Three-way interaction effect between number of latent factors, sample size, and esti-
mation method for λ8,2. The dashed line and solid line respectively represent the data sets with
PML and DWLS as estimation method.
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Figure B5: Two two-way interaction effects; plot a displays interaction effect between the number
of latent factors and the estimation method for λ12,2; plot b shows the interaction effect between
sample size and estimation method for λ12,2. The dashed line and solid line respectively represent
the data sets with PML and DWLS as estimation method.
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Figure B6: Two-way interaction effect between sample size and estimation method for θ6,1. The
dashed line and solid line respectively represent the data sets with PML and DWLS as estimation
method.



CHAPTER 6. APPENDIX 53

Factors = 6 Factors = 8

Factors = 2 Factors = 4
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Figure B7: Three-way interaction effect between number of latent factors, sample size, and esti-
mation method for ψ1,2. The dashed line and solid line respectively represent the data sets with
PML and DWLS as estimation method.
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Table B2: ANOVA results of the highest order interaction effects between design factors and
estimation method for the parameter estimates of the correctly specified model.

SE of par. F-statistic p-value η2 Figure Sign. result
λ2,1 68.29, 108.40 <.001, <.001 .042, .045 B8* nfact × method, N × method
λ6,1 47.11, 18.30 <.001, <.001 .016, .004 B9* nfact × method, N × method
λ6,2 20.94 <.001 .005 B10 nfact × N × method
λ8,2 6.62 <.001 <.001 B11 nfact × N × method
λ12,2 2.29 .033 <.001 B12 nfact × N × method
θ2,1 24.68 <.001 .009 B13 nfact × N × method
θ6,1 16.91 <.001 .005 B14 nfact × N × method
τ8,2 79.92 <.001 .007 B15 nfact × N × method
τ12,2 52.54 <.001 .003 B16 nfact × N × method
ψ1,2 4.15, 261.20 .006, <.001 <.001, .022 B17* nfact × method, N × method

Note * Plot (a) and (b) respectively. SE of par. = Standard Error of parameter, Sign. result = Significant
ANOVA result, nfact = number of latent variables, N = sample size
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Table B3: Table with true values, raw means, and raw bias for the parameter estimates for each
of the 12 conditions separately. Values are obtained from the misspecified model.

Experimental condition
Value Parameter Method 1 2 3 4 5 6 7 8 9 10 11 12 Mean*
True λ2,1 Both 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 -
Estimate λ2,1 PML 0.79 0.79 0.79 0.78 0.80 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79
Raw bias λ2,1 PML -0.01 -0.01 -0.01 -0.02 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
Estimate λ2,1 DWLS 0.78 0.77 0.77 0.77 0.78 0.77 0.78 0.78 0.78 0.78 0.77 0.77 0.78
Raw bias λ2,1 DWLS -0.02 -0.03 -0.03 -0.03 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02 -0.03 -0.03 -0.03
True λ6,1 Both 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 -
Estimate λ6,1 PML 0.68 0.69 0.70 0.71 0.68 0.69 0.70 0.71 0.68 0.70 0.70 0.71 0.70
Raw bias λ6,1 PML 0.08 0.09 0.10 0.11 0.08 0.09 0.10 0.11 0.08 0.10 0.10 0.11 0.10
Estimate λ6,1 DWLS 0.73 0.74 0.74 0.75 0.73 0.74 0.74 0.75 0.73 0.74 0.75 0.75 0.74
Raw bias λ6,1 DWLS 0.13 0.14 0.14 0.15 0.13 0.14 0.14 0.15 0.13 0.14 0.15 0.15 0.14
True λ8,2 Both 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 -
Estimate λ8,2 PML 0.80 0.80 0.80 0.79 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
Raw bias λ8,2 PML 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Estimate λ8,2 DWLS 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
Raw bias λ8,2 DWLS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
True λ12,2 Both 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 -
Estimate λ12,2 PML 0.60 0.60 0.59 0.59 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
Raw bias λ12,2 PML 0.00 0.00 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Estimate λ12,2 DWLS 0.61 0.61 0.59 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
Raw bias λ12,2 DWLS 0.01 0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
True θ2,1 Both 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 -
Estimate θ2,1 PML 0.36 0.37 0.37 0.38 0.36 0.37 0.37 0.37 0.37 0.37 0.38 0.38 0.37
Raw bias θ2,1 PML 0.00 0.01 0.01 0.02 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01
Estimate θ2,1 DWLS 0.38 0.39 0.38 0.40 0.39 0.40 0.39 0.39 0.39 0.39 0.40 0.40 0.39
Raw bias θ2,1 DWLS 0.02 0.03 0.02 0.04 0.03 0.04 0.03 0.03 0.03 0.03 0.04 0.04 0.03
True θ6,1 Both 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 -
Estimate θ6,1 PML 0.52 0.51 0.50 0.49 0.52 0.51 0.50 0.50 0.53 0.51 0.50 0.50 0.51
Raw bias θ6,1 PML -0.01 -0.01 -0.02 -0.04 -0.01 -0.02 -0.03 -0.03 0.00 -0.02 -0.03 -0.03 -0.02
Estimate θ6,1 DWLS 0.45 0.45 0.44 0.43 0.46 0.44 0.44 0.44 0.46 0.44 0.44 0.44 0.44
Raw bias θ6,1 DWLS -0.07 -0.08 -0.09 -0.10 -0.07 -0.09 -0.09 -0.09 -0.06 -0.08 -0.09 -0.09 -0.08
True τ8,2 Both 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -
Estimate τ8,2 PML 0.00 -0.01 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Raw bias τ8,2 PML 0.00 -0.01 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Estimate τ8,2 DWLS 0.00 -0.01 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Raw bias τ8,2 DWLS 0.00 -0.01 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
True τ12,2 Both 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -
Estimate τ12,2 PML -0.01 -0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
Raw bias τ12,2 PML -0.01 -0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
Estimate τ12,2 DWLS -0.01 -0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
Raw bias τ12,2 DWLS -0.01 -0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
True ψ1,2 Both 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 -
Estimate ψ1,2 PML 0.34 0.34 0.34 0.35 0.35 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34
Raw bias ψ1,2 PML 0.04 0.04 0.04 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
Estimate ψ1,2 DWLS 0.35 0.34 0.34 0.35 0.35 0.35 0.34 0.35 0.34 0.35 0.35 0.35 0.35
Raw bias ψ1,2 DWLS 0.05 0.04 0.04 0.05 0.05 0.05 0.04 0.05 0.04 0.05 0.05 0.05 0.05

Note. Values < 0.01 are rounded to 0.00. * calculated across all conditions.
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Figure B8: Two two-way interaction effects; plot a displays interaction effect between the number
of latent factors and the estimation method for λ2,2; plot b shows the interaction effect between
sample size and estimation method for the SE of λ2,1. The dashed line and solid line respectively
represent the data sets with PML and DWLS as estimation method.
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Figure B9: Two two-way interaction effects; plot (a) displays the interaction effect between the
number of latent factors and the estimation method for λ12,2; plot (b) shows the interaction effect
between sample size and estimation method for the SE of λ6,1. The solid line and dashed line
respectively represent the datasets with DWLS and PML as estimation method.
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Figure B10: Three-way interaction effect between number of latent factors, sample size, and
estimation method for the SE of λ6,2. The solid line and dashed line respectively represent the
datasets with DWLS and PML as estimation method.
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Figure B11: Three-way interaction effect between number of latent factors, sample size, and
estimation method for the SE of λ8,2. The solid line and dashed line respectively represent the
datasets with DWLS and PML as estimation method.
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Figure B12: Three-way interaction effect between number of latent factors, sample size, and
estimation method for the SE of λ12,2. The solid line and dashed line respectively represent the
datasets with DWLS and PML as estimation method.
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Figure B13: Three-way interaction effect between number of latent factors, sample size, and
estimation method for the SE of θ2,1. The solid line and dashed line respectively represent the
datasets with DWLS and PML as estimation method.
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Figure B14: Three-way interaction effect between number of latent factors, sample size, and
estimation method for the SE of θ6,1. The solid line and dashed line respectively represent the
datasets with DWLS and PML as estimation method.
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Figure B15: Three-way interaction effect between number of latent factors, sample size, and
estimation method for the SE of τ8,2. The solid line and dashed line respectively represent the
datasets with DWLS and PML as estimation method.
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Figure B16: Three-way interaction effect between number of latent factors, sample size, and
estimation method for the SE of τ12,2. The solid line and dashed line respectively represent the
datasets with DWLS and PML as estimation method.
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Figure B17: Two two-way interaction effects; plot (a) displays the interaction effect between
the number of latent factors and the estimation method for the SE of ψ1,2; plot (b) shows the
interaction effect between sample size and estimation method for the SE of ψ1,2. The solid line
and dashed line respectively represent the datasets with DWLS and PML as estimation method.
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Table B4: Table with true values, raw means, and raw bias for the SE of the parameter estimates
for each of the 12 conditions separately. Values are obtained from the correctly specified model.

Experimental condition
Value Parameter Method 1 2 3 4 5 6 7 8 9 10 11 12 Mean*
SD of parameter estimate λ2,1 PML 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -
Estimate SE of λ2,1 PML 0.07 0.07 0.07 0.07 0.05 0.05 0.05 0.05 0.03 0.03 0.04 0.04 0.05
Raw bias SE of λ2,1 PML -0.01 -0.02 -0.02 -0.02 0.01 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.00
SD of parameter estimate λ2,1 DWLS 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -
Estimate SE of λ2,1 DWLS 0.07 0.07 0.07 0.07 0.05 0.05 0.05 0.05 0.03 0.03 0.04 0.04 0.05
Raw bias SE of λ2,1 DWLS -0.02 -0.02 -0.02 -0.03 0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.01 0.00
SD of parameter estimate λ6,1 PML 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -
Estimate SE of λ6,1 PML 0.07 0.07 0.07 0.07 0.05 0.05 0.05 0.05 0.03 0.03 0.04 0.04 0.05
Raw bias SE of λ6,1 PML -0.01 -0.02 -0.02 -0.02 0.01 0.01 0.00 0.00 0.02 0.02 0.02 0.02 0.00
SD of parameter estimate λ6,1 DWLS 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -
Estimate SE of λ6,1 DWLS 0.07 0.07 0.07 0.07 0.05 0.05 0.05 0.05 0.03 0.03 0.04 0.04 0.05
Raw bias SE of λ6,1 DWLS -0.02 -0.02 -0.02 -0.02 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.00
SD of parameter estimate λ6,2 PML 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -
Estimate SE of λ6,2 PML 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.03 0.03 0.03 0.03 0.05
Raw bias SE of λ6,2 PML -0.01 -0.01 -0.01 -0.02 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.00
SD of parameter estimate λ6,2 DWLS 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -
Estimate SE of λ6,2 DWLS 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.03 0.03 0.03 0.03 0.05
Raw bias SE of λ6,2 DWLS -0.01 -0.01 -0.01 -0.01 0.01 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.00
SD of parameter estimate λ8,2 PML 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 -
Estimate SE of λ8,2 PML 0.04 0.04 0.05 0.05 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.03
Raw bias SE of λ8,2 PML -0.01 -0.01 -0.01 -0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00
SD of parameter estimate λ8,2 DWLS 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 -
Estimate SE of λ8,2 DWLS 0.04 0.04 0.05 0.05 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.03
Raw bias SE of λ8,2 DWLS -0.01 -0.01 -0.01 -0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00
SD of parameter estimate λ12,2 PML 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -
Estimate SE of λ12,2 PML 0.06 0.06 0.06 0.07 0.04 0.04 0.05 0.05 0.03 0.03 0.03 0.03 0.05
Raw bias SE of λ12,2 PML -0.01 -0.01 -0.02 -0.02 0.01 0.00 0.00 0.00 0.02 0.02 0.02 0.01 0.00
SD of parameter estimate λ12,2 DWLS 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -
Estimate SE of λ12,2 DWLS 0.06 0.06 0.06 0.07 0.04 0.04 0.05 0.05 0.03 0.03 0.03 0.03 0.05
Raw bias SE of λ12,2 DWLS -0.01 -0.01 -0.02 -0.02 0.01 0.00 0.00 0.00 0.02 0.02 0.02 0.01 0.00
SD of parameter estimate θ2,1 PML 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 -
Estimate SE of θ2,1 PML 0.06 0.07 0.07 0.08 0.04 0.05 0.05 0.06 0.03 0.03 0.04 0.04 0.05
Raw bias SE of θ2,1 PML -0.01 -0.02 -0.02 -0.03 0.01 0.00 0.00 0.00 0.02 0.02 0.01 0.01 0.00
SD of parameter estimate θ2,1 DWLS 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 -
Estimate SE of θ2,1 DWLS 0.06 0.07 0.07 0.08 0.04 0.05 0.05 0.06 0.03 0.03 0.04 0.04 0.05
Raw bias SE of θ2,1 DWLS -0.01 -0.02 -0.03 -0.03 0.01 0.00 -0.01 -0.01 0.02 0.01 0.01 0.01 0.00
SD of parameter estimate θ6,1 PML 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -
Estimate SE of θ6,1 PML 0.06 0.06 0.07 0.07 0.04 0.05 0.05 0.05 0.03 0.03 0.03 0.04 0.05
Raw bias SE of θ6,1 PML 0.00 0.00 -0.01 -0.01 0.02 0.02 0.01 0.01 0.03 0.03 0.03 0.02 0.01
SD of parameter estimate θ6,1 DWLS 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -
Estimate SE of θ6,1 DWLS 0.06 0.06 0.07 0.07 0.04 0.05 0.05 0.05 0.03 0.03 0.03 0.04 0.05
Raw bias SE of θ6,1 DWLS 0.00 0.00 -0.01 -0.01 0.02 0.02 0.01 0.01 0.03 0.03 0.03 0.02 0.01
SD of parameter estimate τ8,2 PML 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 -
Estimate SE of τ8,2 PML 0.09 0.09 0.09 0.09 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04 0.06
Raw bias SE of τ8,2 PML -0.02 -0.02 -0.02 -0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.00
SD of parameter estimate τ8,2 DWLS 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 -
Estimate SE of τ8,2 DWLS 0.09 0.09 0.09 0.09 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04 0.06
Raw bias SE of τ8,2 DWLS -0.02 -0.02 -0.02 -0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.00
SD of parameter estimate τ12,2 PML 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 -
Estimate SE of τ12,2 PML 0.09 0.09 0.09 0.09 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04 0.06
Raw bias SE of τ12,2 PML -0.02 -0.02 -0.02 -0.02 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.00
SD of parameter estimate τ12,2 DWLS 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 -
Estimate SE of τ12,2 DWLS 0.09 0.09 0.09 0.09 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04 0.06
Raw bias SE of τ12,2 DWLS -0.02 -0.02 -0.02 -0.02 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.00
SD of parameter estimate ψ1,2 PML 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 -
Estimate SE of ψ1,2 PML 0.07 0.07 0.07 0.07 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.05
Raw bias SE of ψ1,2 PML -0.02 -0.02 -0.02 -0.02 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.00
SD of parameter estimate ψ1,2 DWLS 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 -
Estimate SE of ψ1,2 DWLS 0.07 0.07 0.07 0.07 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.05
Raw bias SE of ψ1,2 DWLS -0.03 -0.03 -0.03 -0.03 -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 -0.01

Note. Values < 0.01 are rounded to 0.00. The experimental conditions correspond to those specified in

Table 3.2. * calculated across all conditions.
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Table B5: ANOVA results of the highest order interaction effects between design factors and
estimation method for the SE of parameter estimates of the misspecified model.

SE of par. F-statistic p-value η2 Figure Sign. result
λ2,1 50.33, 91.02 < .001, < .001 .031, .037 B18* nfact × method, N × method
λ6,1 2.62 .015 .003 B19 nfact × N × method
λ8,2 6.79 < .001 < .001 B20 nfact × N × method
λ12,2 2.24 .037 < .001 B21 nfact × N × method
θ2,1 16.72 < .001 .006 B22 nfact × N × method
θ6,1 33.54 < .001 .014 B23 nfact × N × method
τ8,2 80.01 < .001 .007 B24 nfact × N × method
τ12,2 52.09 < .001 .003 B25 nfact × N × method
ψ1,2 331.58 < .001 < .001 B26 N × method

Note * Plot (a) and (b) respectively. SE of par. = Standard Error of parameter, Sign. result = Significant
ANOVA result, nfact = number of latent variables, N = sample size.
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Figure B18: Two two-way interaction effects; plot (a) displays interaction effect between the
number of latent factors and the estimation method for λ2,1; plot (b) shows the interaction effect
between sample size and estimation method for the SE of λ2,1. The dashed line and solid line
respectively represent the data sets with PML and DWLS as estimation method.
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Figure B19: Three-way interaction effect between number of latent factors, sample size, and
estimation method for the SE of λ6,1. The solid line and dashed line respectively represent the
datasets with DWLS and PML as estimation method.
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Figure B20: Three-way interaction effect between number of latent factors, sample size, and
estimation method for the SE of λ8,2. The solid line and dashed line respectively represent the
datasets with DWLS and PML as estimation method.
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Figure B21: Three-way interaction effect between number of latent factors, sample size, and
estimation method for the SE of λ12,2. The solid line and dashed line respectively represent the
datasets with DWLS and PML as estimation method.
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Figure B22: Three-way interaction effect between number of latent factors, sample size, and
estimation method for the SE of θ2,1. The solid line and dashed line respectively represent the
datasets with DWLS and PML as estimation method.
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Figure B23: Three-way interaction effect between number of latent factors, sample size, and
estimation method for the SE of θ6,1. The solid line and dashed line respectively represent the
datasets with DWLS and PML as estimation method.
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Figure B24: Three-way interaction effect between number of latent factors, sample size, and
estimation method for the SE of τ8,2. The solid line and dashed line respectively represent the
datasets with DWLS and PML as estimation method.
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Figure B25: Three-way interaction effect between number of latent factors, sample size, and
estimation method for the SE of τ12,2. The solid line and dashed line respectively represent the
datasets with DWLS and PML as estimation method.
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Figure B26: Two-way interaction effect between sample size and estimation method for the SE of
ψ1,2. The solid line and dashed line respectively represent the datasets with DWLS and PML as
estimation method.
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Table B6: Table with true values, raw means, and raw bias for the SE of the parameter estimates
for each of the 12 conditions separately. Values are obtained from the misspecified model.

Experimental condition
Value Parameter Method 1 2 3 4 5 6 7 8 9 10 11 12 Mean*
SD of parameter estimate λ2,1 PML 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -
Estimate SE of λ2,1 PML 0.07 0.07 0.07 0.07 0.05 0.05 0.05 0.05 0.03 0.03 0.04 0.04 0.05
Raw bias SE of λ2,1 PML -0.02 -0.02 -0.02 -0.03 0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.01 0.00
SD of parameter estimate λ2,1 DWLS 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -
Estimate SE of λ2,1 DWLS 0.06 0.06 0.06 0.07 0.04 0.04 0.05 0.05 0.03 0.03 0.03 0.03 0.05
Raw bias SE of λ2,1 DWLS -0.01 -0.01 -0.01 -0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.01
SD of parameter estimate λ6,1 PML 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -
Estimate SE of λ6,1 PML 0.07 0.07 0.08 0.08 0.05 0.05 0.05 0.06 0.03 0.04 0.04 0.04 0.06
Raw bias SE of λ6,1 PML -0.02 -0.02 -0.02 -0.03 0.00 0.00 0.00 0.00 0.02 0.02 0.01 0.01 0.00
SD of parameter estimate λ6,1 DWLS 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 -
Estimate SE of λ6,1 DWLS 0.06 0.07 0.07 0.07 0.05 0.05 0.05 0.05 0.03 0.03 0.03 0.03 0.05
Raw bias SE of λ6,1 DWLS 0.00 0.00 -0.01 -0.01 0.01 0.01 0.01 0.01 0.03 0.03 0.03 0.03 0.01
SD of parameter estimate λ8,2 PML 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 -
Estimate SE of λ8,2 PML 0.04 0.04 0.05 0.05 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.03
Raw bias SE of λ8,2 PML -0.01 -0.01 -0.01 -0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00
SD of parameter estimate λ8,2 DWLS 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 -
Estimate SE of λ8,28 DWLS 0.04 0.05 0.05 0.05 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.03
Raw bias SE of λ8,2 DWLS -0.01 -0.01 -0.01 -0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00
SD of parameter estimate λ12,2 PML 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -
Estimate SE of λ12,2 PML 0.06 0.06 0.06 0.07 0.04 0.04 0.05 0.05 0.03 0.03 0.03 0.03 0.05
Raw bias SE of λ12,2 PML -0.01 -0.01 -0.02 -0.02 0.01 0.00 0.00 0.00 0.02 0.02 0.02 0.01 0.00
SD of parameter estimate λ12,2 DWLS 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -
Estimate SE of λ12,2 DWLS 0.06 0.06 0.07 0.07 0.04 0.04 0.05 0.05 0.03 0.03 0.03 0.03 0.05
Raw bias SE of λ12,2 DWLS -0.01 -0.01 -0.02 -0.02 0.01 0.00 0.00 0.00 0.02 0.02 0.02 0.01 0.00
SD of parameter estimate θ2,1 PML 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 -
Estimate SE of θ2,1 PML 0.06 0.07 0.07 0.08 0.04 0.05 0.05 0.05 0.03 0.03 0.04 0.04 0.05
Raw bias SE of θ2,1 PML -0.01 -0.02 -0.02 -0.03 0.01 0.00 0.00 -0.01 0.02 0.01 0.01 0.01 0.00
SD of parameter estimate θ2,1 DWLS 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 -
Estimate SE of θ2,1 DWLS 0.05 0.05 0.05 0.06 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.04
Raw bias SE of θ2,1 DWLS 0.01 0.01 0.01 0.01 0.03 0.02 0.02 0.02 0.04 0.04 0.03 0.03 0.02
SD of parameter estimate θ6,1 PML 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -
Estimate SE of θ6,1 PML 0.06 0.07 0.08 0.08 0.05 0.05 0.06 0.06 0.03 0.04 0.04 0.04 0.06
Raw bias SE of θ6,1 PML 0.00 -0.01 -0.02 -0.02 0.01 0.01 0.00 0.00 0.03 0.02 0.02 0.02 0.01
SD of parameter estimate θ6,1 DWLS 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 -
Estimate SE of θ6,1 DWLS 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.05 0.03 0.03 0.03 0.03 0.04
Raw bias SE of θ6,1 DWLS 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.01 0.03 0.03 0.03 0.03 0.02
SD of parameter estimate τ8,2 PML 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 -
Estimate SE of τ8,2 PML 0.09 0.09 0.09 0.09 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04 0.06
Raw bias SE of τ8,2 PML -0.02 -0.02 -0.02 -0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.00
SD of parameter estimate τ8,2 DWLS 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 -
Estimate SE of τ8,2 DWLS 0.09 0.09 0.09 0.09 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04 0.06
Raw bias SE of τ8,2 DWLS -0.02 -0.02 -0.02 -0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.00
SD of parameter estimate τ12,2 PML 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 -
Estimate SE of τ12,2 PML 0.09 0.09 0.09 0.09 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04 0.06
Raw bias SE of τ12,2 PML -0.02 -0.02 -0.02 -0.02 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.00
SD of parameter estimate τ12,2 DWLS 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 -
Estimate SE of τ12,2 DWLS 0.09 0.09 0.09 0.09 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04 0.06
Raw bias SE of τ12,2 DWLS -0.02 -0.02 -0.02 -0.02 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.00
SD of parameter estimate ψ1,2 PML 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 -
Estimate SE of ψ1,2 PML 0.07 0.07 0.07 0.07 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.05
Raw bias SE of ψ1,2 PML -0.03 -0.03 -0.03 -0.03 -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 -0.01
SD of parameter estimate ψ1,2 DWLS 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 -
Estimate SE of ψ1,2 DWLS 0.08 0.08 0.08 0.08 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.06
Raw bias SE of ψ1,2 DWLS -0.02 -0.02 -0.02 -0.02 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.00

Note. Values < 0.01 are rounded to 0.00. The experimental conditions correspond to those specified in

Table 3.2. * calculated across all conditions.
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6.3 Appendix C

Overview Github files

The following link provides access to all files used to replicate the current study:

https://github.com/mmcstorm/PML.git

The tables below show an overview of the files in the folders of the Github repository.

Table C1: File overview of folder: ’Simulation scripts (study 1)’

Filename Description
ORDINAL MainSimulationScript owncomputer.R File contains simulation script for testing the code without

using the cluster computer
ORDINAL all functions script.R File contains all functions used for data generation
ORDINAL MainSimulationscriptSLURM.R File contains simulation script for the cluster computer
ORDINAL RunMySimulationSLURM4GB.sh File used to run simulation on the cluster computer

Table C2: File overview of folder: ’Simulation scripts (study 2)’

Filename Description
MIXED MainSimulationScript owncomputer.R File contains simulation script for testing the code without

using the cluster computer
MIXED all functions script.R File contains all functions used for data generation
MIXED MainSimulationscriptSLURM.R File contains simulation script for the cluster computer
MIXED RunMySimulationSLURM4GB.sh File used to run simulation on the cluster computer

Table C3: File overview of folder: ’Simulation data (study 1)’

Filename Description
ORD aov withC errR1 24 ID.csv Simulated data with SE of the parameter estimates ob-

tained from the correctly specified model
ORD aov withC estR1 24 ID.csv Simulated data with parameter estimates obtained from

the correctly specified model
ORD aov withoutC errR1 24 ID.csv Simulated data with SE of the parameter estimates ob-

tained from the misspecified model
ORD aov withoutC estR1 24 ID.csv Simulated data with parameter estimates obtained from

the misspecified model

https://github.com/mmcstorm/PML.git
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Table C4: File overview of folder: ’Simulation data (study 2)’

Filename Description
MIX aov withC errR1 12 ID.csv Simulated data with SE of the parameter estimates ob-

tained from the correctly specified model
MIX aov withC estR1 12 ID.csv Simulated data with parameter estimates obtained from

the correctly specified model
MIX aov withoutC errR1 12 ID.csv Simulated data with SE of the parameter estimates ob-

tained from the misspecified model
MIX aov withoutC estR1 12 ID.csv Simulated data with parameter estimates obtained from

the misspecified model

Table C5: File overview of folder: ’ANOVA (study 1)’

Filename Description
ORDINAL ANOVA results (RAW).R File used to create tables with true values, raw means, and

raw biases
ORDINAL Analysing ANOVA results.R File used to conduct the ANOVAs

Table C6: File overview of folder: ’ANOVA (study 2)’

Filename Description
MIXED ANOVA results (RAW).R File used to create tables with true values, raw means, and

raw biases
MIXED Analysing ANOVA results.R File used to conduct the ANOVAs
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