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Abstract
We provide a simulation study complementing the theoretical results of Bos
and Schmidt-Hieber (2021) for supervised classification using deep neural
networks. Their main risk bound suggests a faster truncated Küllback-Leibler
divergence risk convergence rate with smoother conditional class probability
functions and when fewer conditional class probabilities are near zero; as
well as that convergence rate is fast when the functions have a high degree of
smoothness even if many probabilities are near zero. The proportion of small
conditional class probabilities can be measured by small value bound index U.
We calculate U for an illustrative selection of settings with conditional class
probability functions that have an arbitrarily high Hölder smoothness index V.
We estimate the Küllback-Leibler divergence risk convergence rate in these
settings by evaluating networks trained on simulated datasets of various sizes.
We find slower convergence rates than suggested by the main risk bound.
However, in line with expectations, U has no consistent effect on convergence
rate when combined with arbitrarily high V.
Keywords: simulation study, ReLU networks, softmax, small value bound, Hölder
smoothness, Küllback-Leibler divergence.
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Single Page Summary (With Overview of Contributions)
Deep neural networks (DNNs) have recently been applied successfully to supervised classification
tasks such as image and speech recognition. The theoretical understanding of DNNs has improved
over the years, but this work is far from complete. For example, consider the batch normalization
method due to Ioffe and Szegedy (2015). The method was proposed as a fix for the internal covariate
shift problem and became widely used. Then Santurkar et al. (2019) found batch normalization to
work for completely different reasons.
A supervised classification task is generally approached as the approximation of a discrete conditional
probability distribution. This enables one to use a wide range of loss functions with characteristics
that are desirable for DNN training. A commonly used loss function is the negative logarithm of the
likelihood. A commonly used measure for the difference between two distributions more generally is
the Küllback-Leibler (KL) divergence.
In our simulation study, we examine whether the expected KL divergence loss (or risk) of adequately
trained DNNs changes along with properties of the dataset as expected after the theoretical work by
Bos and Schmidt-Hieber (2021). Their derived main risk bound suggests a faster risk convergence rate
with smoother conditional class probability functions and when fewer conditional class probabilities
are near zero. The main risk bound suggests a fast convergence rate when the functions have a high
degree of smoothness, even if many probabilities are near zero.
We perform a simulation study, so that we can generate multiple datasets and know the true conditional
class probabilities. We define the distribution from which we sample input, as well as the conditional
probability function used for sampling corresponding output classes from a categorical distribution.
We use the true conditional class probabilities only during evaluation; the DNNs train on class labels.
There are no particularly unrealistic or strict requirements on the input distribution and conditional
class probability function; we look at an illustrative selection of distributions and arbitrarily smooth
conditional class probability functions. We experiment with multiple training set sizes and a large test
set per setting to uncover estimated risk convergence rates.
The theoretical results hold for DNNs
with a feedforward architecture, that
make use of rectified linear unit and soft-
max activation functions. The theoret-
ical work prescribes rates at which the
networks’ width, depth, and number of
nonzero parameters should grow with
the size of the training set. The main
risk bound assumes low negative log-
likelihood training loss, but prescribes
no optimization method; we use a vari-
ant of stochastic gradient descent.
As figure 1 exemplifies, our DNNs are
able to approximate simple conditional
class probability functions well from a
visual perspective. We found slower es-
timated KL divergence risk convergence
rates than expected. However, in line
with theory, the proportion of small con-
ditional class probabilities did not affect
convergence rate when the conditional
class probability function is arbitrarily
smooth.
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Figure 1: DNN performance when the input distri-
bution is - ∼ uniform( [0, 1]), and the conditional
class probability functions consist of squashed sines:
ℙ(class = 1 | - = F) = (1 + sin(2cF))/2 and ℙ(class =
2 | - = F) = (1 − sin(2cF))/2. The class distribution of
the 8192-sized training set is shown in the histogram.
The full lines display the true conditional class probabil-
ities, while the dashed lines display the trained DNN’s
predicted probabilities on a large test set.
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1 Introduction
1.1 Deep Neural Networks for Classification
We are not impressed when computers outperform humans on well-defined simple tasks such as
calculating, remembering, or consistently being logical. Many challenging tasks we use computers
for now involve learning patterns from noisy data sampled from an unknown distribution. Deep
neural networks (DNNs) have recently been applied successfully to a wide range of such tasks. For
instance, DNNs that involve convolutional filters obtain state-of-the-art supervised image classification
performance since Krizhevsky, Sutskever, and Hinton (2012).
The focus of this work is on supervised classification with deep feedforward neural networks. In this
setting, there is access to a training datasetD< B

{
(^ 8,_8) : 8 = 1, . . . , <

}
with elements independent

of but distributed as the pair of random variables (^,_). The < samples in the training set consist of
input distributed as ^ ∈ ℝ3 , and an indication of one of  corresponding class membership labels in a
vector _ ∈ ℬ B

{
v ∈ {0, 1} : ∑ 

9=1 D9 = 1
}
. We denote the conditional probability of a sample of

input x being labeled class 9 ∈ {1, . . . ,  } given the distribution of (^,_) by >9 (x) B ℙ_ |^ (.9 = 1 | ^ =

x). The label that determines the _ = y associated with ^ = x is drawn from a categorical distribution
with probability vector p(x) B (>1 (x), . . . , > (x)). Example 1 describes what a supervised image
classification dataset could consist of.
Example 1
In a supervised image classification task, datasets consist of samples from the images’ distribution,
along with corresponding labels. For instance, ^ can represent the distribution of grayscale intensities
in the 3 = 1024×1536 pixels of mammography images. The associated _ can then represent whether
there are early signs of cancer. For instance, _ = (1, 0) indicates no early signs, and _ = (0, 1)
indicates there are early signs. In this cancer detection context, mammography experts generally
provide the labels manually.
We consider the two images in Figure 1 samples from image distribution ^. We can refer to the
respective samples as ^ = xA and ^ = xB. Since both samples contain early signs of cancer, the
corresponding label vectors _ = yA and _ = yB are (0, 1).

Figure 1: Mammography images with masses (A, left) or microcalcifications (B, right), which can
both be early signs of cancer (Ragab et al. 2019).

Deep neural networks learn to approximate the conditional class probability function p. A DNN p̂
should learn parameters that minimize the risk �(^,_) !( p̂(^),_), where ! is a chosen loss function.
Loss functions measure error; risk is the expected amount of loss. Calculating the risk requires
knowledge of the distribution of (^,_). Since this knowledge is not available, the DNN’s learning
process uses the loss over a training set, (1/<)∑<

8=1 !( p̂(^ 8),_8), as a proxy. A DNN trains by iteratively
changing its parameters to reduce training loss using (stochastic) gradient descent. The generalization
error of a DNN is measured over samples from (^,_) that did not occur in the training set. Details
follow later in this work.
A widely used loss function for training DNNs for supervised classification is the negative log-likelihood
(NLL, also known as cross-entropy). In this case, the training loss is

NLL( p̂ | D<) =
1
<

<∑
7=1

 ∑
9=1

. 79 log >̂9 (^7),

where log denotes the natural logarithm (other logarithm bases will be mentioned in subscript).

1.1 Introduction: Deep Neural Networks for Classification 1



Since p̂(^ 8) is compared with _8, it may seem logical to let DNNs predict a class label rather than a
discrete probability distribution per input. The predicted class label can in fact be extracted from a
discrete probability distribution: it is the most probable class. The training loss associated with the
label prediction approach could be the proportion of misclassifications over a D<,

1 − 1
<

<∑
8=1

[
1{9 : G

8

9
=1} (argmax p̂(^ 8))

]
, (1)

where the indicator function 1� (F) is 1 if F ∈ � and 0 if F ∉ �.

1.2 Statistical Theory for DNNs
The statistical theory of deep neural networks has been of interest to researchers for decades, but
the current wave of DNN popularity has followed good performance in practice. A detailed history of
the theory and application of neural networks is out of the scope of this work. The recent impressive
practical results seem to stem mostly from the availability of larger datasets and the computational
feasibility of training larger DNNs (Goodfellow, Bengio, and Courville 2016, §1.2).
That DNNs’ popularity seems to follow practical rather than theoretical results can be illustrated with
a recent addition to DNN training algorithms, batch normalization. Ioffe and Szegedy (2015) proposed
the method as a fix for the internal covariate shift problem.1 Batch normalization became widely used,
in part because it was applied by an image classification DNN that obtained impressive benchmark
results (He et al. 2015a). Later, Santurkar et al. (2019) investigated how batch normalization really
works. The investigation found that batch normalization can indeed improve a DNN’s performance,
but does so for different reasons. Batch normalization can speed up and stabilize the training process,
but does not necessarily reduce covariate shift. The history of batch normalization is an example of:

• how a useful DNN variation can be identified by its impressive practical performance;
• how a DNN variation can become widely used if it obtains good practical results;
• but also that there is, generally speaking, a lack of theoretical understanding of DNNs. It is

often unclear what influences DNN performance, as well as how and why this influence occurs.
Theoretical results about deep neural networks do not necessarily reflect real-world performance. For
instance, Hornik, Stinchcombe, and White (1989) showed that neural networks with at least one
hidden layer and sufficiently many neurons can approximate practically any function with any amount
of accuracy. However, there is no training algorithm that is guaranteed to find this approximation.
There is a need for relevant theoretical results, which can be obtained with known training algorithms
and which are applicable in realistic settings.
The development of relevant theoretical results has become easier since deep neural networks com-
posed of rectified linear units (ReLUs) have become widely used. The wide use of the ReLU activation
function within DNNs follows promising (practical) results by Nair and Hinton (2010) and Glorot,
Bordes, and Bengio (2011). The definition of the ReLU activation function is f(F) B max{0, F}. Its
derivative is thus 0 or 1 (f′(0) can be defined as either). It is easier to develop theoretical results
for DNNs that use ReLU activation functions, than for DNNs that use previously common activation
functions with more complicated derivatives. Although the zero-derivative may cause issues during
the gradient-based training process of DNNs – prompting proposals for and comparisons of slight
variations of ReLUs in, e.g., He et al. (2015b) and Ramachandran, Zoph, and Le (2017) – the standard
ReLU activation function remains popular in both practice and research.
Theoretical results for deep neural networks can come in the form of bounds on risk. The convergence
rate of risk bounds – convergence as the training set size increases – can depend on a wide range of
quantities. Schmidt-Hieber (2020) gives an example of a potentially applicable theoretical result that
involves the discussed concepts. The paper finds fast mean squared error risk convergence rates for
sparse feedforward DNNs that consist of ReLUs and have small parameter values in a nonparametric
regression setting.
Kim, Ohn, and Kim (2019) study risk convergence rates of DNNs that use the ReLU activation function
as well, but examine the supervised classification setting. The paper investigates the misclassification
rate risk ((1) defines the misclassification rate loss function). Fast rates occur when conditional class

1 The technical details are not important, but the internal covariate shift refers to the distribution of all of a network’s
layers’ in- and output changing throughout the iterative learning process. This is potentially problematic because the
parameter magnitudes are adapted to the distributions of the previous rather than current iteration (batch).

1.2 Introduction: Statistical Theory for DNNs 2



probabilities are close to 0 or 1, or if, e.g., the margin condition is met. The margin condition limits
the proportion of conditional class probabilities near the decision boundary. The decision boundary is
the hypersurface beyond which one class becomes more likely than another. In case there are two
classes, the decision boundary is {x : >1 (x) = >2 (x) = 1/2} – for any x not on the decision boundary,
either >1 (x) > >2 (x) or vice versa.

1.3 This Work
We perform a simulation study complementing the theoretical result of Bos and Schmidt-Hieber
(2021) for supervised classification using deep neural networks. Their main result states that two
properties of the conditional class probability function determine the convergence rate of the truncated
Küllback-Leibler (KL) divergence risk. The KL divergence risk is defined by

�(^,_) KL ( p̂(^), p(^)) B �(^,_)

[
 ∑
9=1

>9 (^) log
(
>9 (^)
>̂9 (^)

)]
, (2)

and is a commonly used measure for the difference between two probability distributions. In our
setting, the two distributions are discrete, and the reference distribution is that of the true conditional
class probabilities, p(^). The KL divergence risk of two identical distributions is zero.
For our simulation study, we consider an illustrative but simple selection of settings, each characterized
by a distribution of input (^) and an arbitrarily smooth conditional class probability function (p).
We calculate relevant quantities for the theoretical result per setting, and later run simulations with
multiple training set sizes for an estimated risk convergence rate. We compare the estimated risk
convergence rate to the rate suggested by the theoretical result. We study input distributions and
conditional class probability functions with domains [0, 1]3 . This simplifies calculations but results
can be generalized, since values in any 3-dimensional compact set can be mapped to values in [0, 1]3 .
The theoretical result only holds for DNNs with a specific architecture. This architecture is completely
feedforward and uses the ReLU activation function in the input and all hidden layers. The later-
introduced softmax activation function is used in the networks’ final layer. The networks’ parameters
are constrained to [−1, 1]. Finally, the theory prescribes rates at which the networks’ width, depth,
and number of nonzero parameters should grow with the size of the training set. The theory assumes
low negative log-likelihood training loss, but does not prescribe a training method. We use a variant
of stochastic gradient descent.
Our scope is limited to examining whether the theoretical convergence rate of Bos and Schmidt-Hieber
(2021) can be found using simulations. Since the result only holds for specific DNNs, we do not
compare with other supervised classification methods. Similarly, since the result depends on quantities
that can only be known in simulation settings, we do not attempt to find its effect in real-world
settings. We do justify choices not prescribed by the theory, such as for hyperparameter values. We
also highlight where and explain why we deviate from theory.
If our practical results are in line with expectations, they indicate relevance of the theoretical result.
The expected result would imply that other factors do not diminish the theoretical influence of the
proportion of small conditional class probabilities and smoothness of conditional class probability
functions in simulation settings.
There is potential for practical relevance, because small conditional class probabilities are common. For
instance, in image classification tasks with many classes, most classes have low conditional probability.
This is necessarily true if  is large: the probability that an image that displays a car in fact displays a
cat when there are hundreds of labels that occur equally often is practically zero. Additionally, the
minimization of negative log-likelihood using ReLU and softmax networks is practically the standard
approach for supervised classification with DNNs.
Our work is a rare combination of practice and statistical theory about deep neural networks. The
discrete probability distribution approximation approach to supervised classification is common, but
simulation studies using the assumed statistical model are not. If we find that DNNs can indeed learn
the relationship between ^ and _ in our model – where _ is sampled from a categorical distribution
with probability function p(^) – we lend credence to the practice of interpreting a softmax DNN’s
output as probabilities rather than as class-ranking.
We also provide an implementation of a reproducible experimental setup for examining the discrete
probability distribution approximation capabilities of any supervised classification algorithm. Our

1.3 Introduction: This Work 3



methodology can be adapted for examination of other theoretical supervised classification results,
or to generate datasets of different settings. The Python implementation, available on https://
github.com/bramotten/DNN-Classification-Theory-In-Practice, makes use of the NumPy,
Hyperopt, TensorFlow, and Keras packages.
The outline of the rest of this work is as follows:

• Section 2.1 formally introduces the deep neural networks we study.
• Section 2.2 describes the small value bound, a measure for the proportion of small conditional

class probabilities.
• Section 2.3 describes Hölder smoothness.
• Section 2.4 describes the main (truncated KL divergence) risk bound of Bos and Schmidt-Hieber

(2021) – this is the theoretical result we aim to complement.
• Section 3 describes (novel) tools for simplifying calculation of the small value bound.
• Section 4.1 introduces the specific settings we consider in our simulation study, and features

the calculation of quantities that are relevant for the theoretical result.
• Section 4.2 explains how we sample from uncommon distributions.
• Section 4.3 describes the DNN implementation details, and demonstrates that the implemented

DNNs can indeed approximate the true conditional class probability functions in the considered
simulation settings.

• Section 4.4 explains how we search for DNN hyperparameter values.
• Section 4.5 describes the experimental setup used in our simulation study.
• Section 4.6 describes how we fit formulas of the theoretical convergence rate form to the

estimated risk convergence rate we obtain from our experiments.
• Section 4.7 explains the reproducibility of the whole simulation study.
• Section 5 describes our results.
• Section 6 summarizes this work.
• Section 7 contains suggestions for future work.

1.3 Introduction: This Work 4
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2 Statistical Theory for DNNs
2.1 Description of DNNs for Classification
2.1.1 ReLU and Softmax Architecture
We detail the deep neural network architecture of Bos and Schmidt-Hieber (2021) first. We use this
DNN architecture in our simulation study as well. The remainder of Section 2.1 describes training
DNNs with (stochastic) gradient descent more generally. We sometimes introduce multiple approaches
with the same goal, such as multiple weight initialization strategies. In these cases, the approach
taken in our simulation study is specified later.
We specify the number of hidden layers of a DNN with ! ∈ ℕ, and the width of the layers with
m = (;0, . . . , ;!+1) ∈ ℕ!+2. The widths of the non-hidden input and output layers correspond to
the dimensionality of the input and output of the network respectively, so ;0 = 3 (the dimensionality
of an input sample) and ;!+1 =  (the number of output classes). The depth of a DNN is ! + 2.
The DNNs we consider use the activation function of a rectified linear unit (ReLU) on all neurons
except those in the output layer. This activation function is defined as f(F) B max{0, F}. We use the
following notation to rectify and shift @ non-activated neuron values with bias vector v ∈ ℝ@ at once:

fv
©«
F1
...

F@

ª®®¬ =
©«
f(F1 + D1)

...

f(F@ + D@)

ª®®¬ .
We use the softmax activation function on the neurons in the final layer. This function converts the  
non-activated neuron values into probabilities:

Φ
©«
F1
...

F 

ª®®¬ =
1∑ 

8=1 4
F 8

©«
4F1

...

4F 

ª®®¬ ,
so that Φ(x)9 ∈ [0, 1] and

∑ 
9=1 Φ(x)9 = 1. The output of our DNNs is thus a discrete probability

distribution (of a discrete random variable that can take on  values).
A feedforward DNN with our architecture is a function p̂ : [0, 1]3 → [0, 1] defined by

p̂(x) = Φ
(
]!fv!−1 · · ·]2fv1

(
]1fv0

(
]0x

))
· · ·

)
, (3)

where ] 8 is the ; 8+1 × ; 8 matrix of real numbers representing weights and v 8 ∈ ℝ; 8 contains the
biases.2 There is a weight associated with every input of every neuron, and a bias associated with
every neuron. These ∑!

8=0 ; 8+1
(
; 8 + 1

)
parameters are learned by the network during the training

process.
To make (3) more concrete, the values of the ;1 neurons in the first hidden layer are:

fv0 (]0x) = fv0

©«
©«
E0

1,1 · · · E0
1,3

...
. . .

...

E0
;1,1 · · · E0

;1,3

ª®®®¬
©«
F1
...

F3

ª®®¬
ª®®®¬

= fv0

©«
∑3
7=1E

0
1,7 F7

...∑3
7=1E

0
;1,7

F7

ª®®®¬ =

©«
f

(
D01 +

∑3
7=1E

0
1,7 F7

)
...

f
(
D0;1 +

∑3
7=1E

0
;1,7

F7

)
ª®®®®¬
.

We also define a subset of networks with at most A non-zero parameters – i.e., a certain degree of
sparsity – and no parameters with absolute value greater than 1:

ℱ(!,m, A) B
{
p̂ as in (3) :

!∑
8=0
‖] 8‖0 +

!∑
8=0
‖v 8‖0 ≤ A, max

8
‖] 8‖∞ ≤ 1, max

8
‖v 8‖∞ ≤ 1

}
. (4)

Definition (4) contains two norms. These are the norms we may use for a vector x ∈ ℝ3:
2 The domain of p̂ is identical to that of p, which we assume to be [0, 1]3 .

2.1 Statistical Theory for DNNs: Description of DNNs for Classification 5



• The number of nonzero entries ‖x‖0 B
∑3

8=1 (F 8)
0 =

∑3
8=1 1{F : F≠0} (F 8).

• The absolute sum of all entries ‖x‖1 B
∑3

8=1 |F 8 |.
• The maximum entry ‖x‖∞ B max 8 |F 8 |. For application on a function 5 : � → ℝ, we define
‖ 5 ‖∞ B supF∈� | 5 (F) |.

2.1.2 Loss Functions and Estimating Risk
Loss functions quantify the cost of the difference between the true conditional class probability function
p and the trained deep neural network’s approximation, p̂. The expected value of a loss function is
the risk function. We introduce the loss and (estimated) risk functions we use in this section.
We first describe two types of non-training datasets: the validation set and the test set. These datasets
should be independent of but distributed as the training set. They can be created by splitting an initial
dataset

{
(^ 8,_8) : 8 = 1, . . . , < + : + ;

}
into three parts that serve the following purposes:

• The training set D< is used in the optimization part of the training process, to learn DNN
parameters (weights and biases).

• The validation set V: is used to reduce the generalization error of the training process. The
validation loss indicates generalization error, since the validation set’s samples are not directly
used in training. The validation set is used for tuning DNN hyperparameters and monitoring
training progress.

• The test set T; is only used for evaluating a DNN that is trained using the definite hyperpa-
rameter settings. The performance of a DNN on the test set gives a more honest indication
of generalization error than its performance on the validation set, because the DNN’s (hy-
per)parameters are indirectly chosen for minimal validation loss.

Our primary loss function is the negative log-likelihood or (categorical) cross-entropy loss. It is widely
used for training DNNs in supervised classification tasks. The NLL training loss is

NLL( p̂ | D<) =
1
<

<∑
7=1

 ∑
9=1

. 79 log >̂9 (^7), (5)

while NLL( p̂ | V:) = (1/:)
∑:
7=1

∑ 
9=1 .

7
9
log >̂9 (^7) is the validation loss. The expected training imper-

fection of a specific p̂ compared to the hypothetical DNN in class ℱ that obtains the lowest possible
training loss is

Δ< ( p̂ | D<) = �D<

[
−1
<

<∑
7=1

_7 log p̂(^7) −min
q∈ℱ
−1
<

<∑
7=1

_7 log q(^7)
]
.

The first risk function we introduce is the �-truncated Küllback-Leibler divergence risk

'� ( p̂(^), p(^)) = � [KL� ( p̂(^), p(^))] = �^

[
p(^)max

{
�, log

(
p(^)
p̂(^)

)}]
. (6)

If � is chosen reasonably large, the �-truncated KL divergence risk is only different from the regular
KL divergence risk, defined in (2), when p̂(^) � p(^). For instance, with � = 2, p̂(^) must be at
least 42 ≈ 7.39 times larger than p(^) to reach the threshold where � > log (p(^)/ p̂(^)). Truncation
is useful for theoretical reasons, but later we estimate the (�-truncated) KL divergence risk with

KL( p̂ | T;, p) =
1
;

;∑
7=1

 ∑
9=1

>9 (^7) log
(
>9 (^7)
>̂9 (^7)

)
. (7)

Note that this estimate of risk depends on ^1, . . . , ^; from the test set as well as the true conditional
class probability function p.
We also consider the estimated mean squared error (MSE) risk

MSE( p̂ | T;, p) =
1
;

;∑
7=1

 ∑
9=1
(>9 (^7) − >̂9 (^7))2 . (8)

The proportion of small conditional class probabilities has a natural effect on the KL divergence risk,
but not on the MSE risk. For example, let the true conditional class probability be 0.1 away from the
estimated probabilities (0.11, 0.89) in a binary classification setting. For the KL divergence, the (0.01,
0.99) true probability results in 0.01 log(0.01/0.11) + 0.99 log(0.99/0.89) ≈ 0.082. The (0.21, 0.79)
true probability results in 0.21 log(0.21/0.11) + 0.79 log(0.79/0.89) ≈ 0.042. There is no effect on
the MSE: (0.21 − 0.11)2 + (0.79 − 0.89)2 = 0.02 = (0.01 − 0.11)2 + (0.99 − 0.89)2.

2.1 Statistical Theory for DNNs: Description of DNNs for Classification 6



2.1.3 Optimization
The parameters (weights and biases) of a DNN are optimized for minimal training loss using an
iterative (stochastic) gradient descent-based algorithm during a training (or learning) process.
The parameters must first be initialized, usually with zeros as biases and small values as weights.
Initialization plays a surprisingly important role in the performance of trained DNNs (Goodfellow,
Bengio, and Courville 2016, beginning of §8.4). The initialization strategy should involve randomness
in order to differentiate neurons from each other. This differentiation is stronger when initial values
are sampled from a broad distribution. However, the amount of differentiation must not be too large,
so that the parameter updates per training iteration have a similar effect on all neurons.
Glorot and Bengio (2010) suggest sampling all weights in the 8th layer from a
uniform

( [
−
√
6/(; 8 + ; 8+1),

√
6/(; 8 + ; 8+1)

] )
distribution. The goal of this layer width-dependent

distribution is equal variance of activated neuron values and update gradients within layers. This
equal variance is never achieved because of the nonlinearity of activation functions, but Glorot
initialization works reasonably well in practice. He et al. (2015b) derive a weight initialization
strategy for equal variance within layers as well, but they keep in mind the nonlinearity of, in
particular, the ReLU activation function. They arrive at a normal distribution with mean zero and
standard deviation

√
2/; 8. He et al. (2015b) found their strategy to outperform Glorot initialization

on benchmark datasets, but both strategies are widely used.
After parameter initialization, a number of iterations of the following loop are performed:

1. Compute the loss of the DNN with current parameters.
2. Compute the gradient of the loss function with respect to the DNN’s parameters.
3. Change parameters by a small amount, in order to reduce training loss.

The gradient of step 2 decides the direction in which parameters are changed in step 3. The amount of
change is decided by a (stochastic) gradient descent-based optimization algorithm and its learning rate
hyperparameter, [. Classic optimization algorithms base the parameter update on only the gradient
and [, but variants like Kingma and Ba (2017)’s Adam optimizer take into account momentum from
previous iterations.
The forward and backward passes in steps 1 and 2 are usually performed with batches instead of all
samples of the training set. This is primarily done for a computational reason – training is quicker with
many parameter update iterations based on a subset of data, rather than with fewer, more accurate
parameter updates based on all data (Goodfellow, Bengio, and Courville 2016, §8.1.3). When using
batches, we say we are using the stochastic version of gradient descent or one of its variants in step 3.
When all the data has been used for parameter updates once, one epoch has taken place.
2.1.4 Regularization
The ultimate objective of supervised classification is not low training loss but low generalization error.
Regularization methods are intended to decrease generalization error, through reducing overfitting on
the training set.
If a DNN overfits, it has learned to classify the samples in the training set well, but classifies other
samples from an identical distribution poorly. Overfitting can be diagnosed by a large discrepancy
between training loss and validation or test loss. A DNN that underfits has not learned to approximate
the general relationship either, but obtains high training loss as well.
The first regularization approach we discuss is early stopping. The simplest early stopping strategy
is to limit the number of epochs, instead of letting training continue until training loss no longer
decreases. Another early stopping strategy makes use of the validation loss, which can be calculated
after every epoch. This second early stopping strategy halts training when validation loss no longer
improves enough per epoch. The idea behind the strategy is that a network starts to overfit if its
validation loss does not decrease anymore, regardless of training loss.
A more statistical approach to regularization is to add a parameter norm penalty, that discourages
large parameter values, to the loss function. For instance, the negative log-likelihood training loss
with !1 regularization penalty _ > 0 on all weights (but not biases) is

NLL_ ( p̂ | D<) = −
1
<

<∑
7=1

_7 log p̂(^7) + _
;!+1∑
8=1
‖] 8‖1. (9)

2.1 Statistical Theory for DNNs: Description of DNNs for Classification 7



The regularization penalty _ must not be too large or small. A value of _ that is too small leads to
ineffective !1 regularization and does not reduce overfitting; a value of _ that is too large leads to
underfitting. With !1 regularization, a DNN’s parameters are encouraged to be small and often zero,
as the sparse DNNs in ℱ should be.3

2.2 Small Value Bound
The small value bound (SVB) index U ≥ 0 is a measure for the proportion of small conditional class
probabilities. A function class ℋ is U-small value bounded if for all p = (>1, . . . , > ) ∈ ℋ there is a
� > 0 such that

ℙ^ (>9 (^) ≤ B) ≤ �BU for all B ∈ (0, 1] and 9 ∈ {1, . . . ,  }. (10)

In our context, the expression ℙ^ (>9 (^) ≤ B) represents the proportion of conditional probabilities of
class 9 that are smaller than or equal to B under the distribution of ^. This means ℙ^ (>9 (^) ≤ B) is
the same as �^ [1{x : >9 (x) ≤B} (^)].

With a tighter small value bound, a higher proportion of conditional class probabilities is away from
zero. A larger index U implies a tighter SVB, because a larger U implies a smaller BU. Figure 2 displays
BU for a few values of U.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

B

BU

B1/4

B2/4

B3/4

B1

B6/4

Figure 2: The influence of a few values of U on BU.

Example 2 demonstrates how the U-SVB index can be calculated. More on the calculation of the U-SVB
index follows later in this work.
Example 2
This example demonstrates the calculation of small value bound index U in a simple - ∼
uniform( [0, 1]) and p(F) =

(
F5, 1 − F5) setting. Figure 3 displays this setting. Filling in definition

(10) with >1 and >2 shows that p is small value bounded with index U = 1/5 and � = 1:

ℙ- (>1 (-) ≤ B) = ℙ- (-5 ≤ B) = ℙ- (- ≤ B1/5) = B1/5;
ℙ- (>2 (-) ≤ B) = ℙ- (1 − -5 ≤ B) = ℙ- (-5 > 1 − B) = 1 − ℙ- (-5 ≤ 1 − B)

= 1 − ℙ- (- ≤ (1 − B)1/5) = 1 − (1 − B)1/5 ≤ B1/5.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

F

>1 (F) = F5

>2 (F) = 1 − F5
5- (F)

Figure 3: The conditional class probability function p(F) =
(
F5, 1 − F5) and probability density

function 5- of - ∼ uniform( [0, 1]).

3 Although to get closer to DNNs in ℱ, the biases would have to be regularized too. The negative log-likelihood with !1
regularization penalty _ > 0 on all weights as well as biases is − 1

<

∑<
7=1 _7 log p̂(^7) + _

∑;:+1
8=1

(, 8

1 +

D 81) .
2.2 Statistical Theory for DNNs: Small Value Bound 8



2.3 Hölder Smoothness
Before introducing Hölder smoothness, we clarify the remaining standard notation:

• We refer to the <th derivative of a function 5 with respect to its input as 5 (<) , whereas non-
parenthesized superscripts are used for indexing or raising numbers to powers.

• We define floor bFc B max{; ∈ ℤ : ; < F} and ceiling dFe B min{; ∈ ℤ : ; ≥ F}. For
instance, b3c = b2.4c = 2 and d3e = d2.4e = 3.

Smoothness intuitively means that the outcome of a function does not change drastically when input
is changed subtly. Smoothness and differentiability are closely related.
The ball of functions with domain � ⊂ ℝ; that have Hölder smoothness index V > 0 with radius
& ∈ ℝ is defined as

�V (�, &) =
{
6 : �→ ℝ :

∑
$:‖$‖1<V

‖m$6‖∞ +
∑

$:‖$‖1= bVc
sup

x,y∈�,x≠y

|m$6(x) − m$6(y) |
‖x − y‖V−bVc∞

≤ &
}

where m$ = mW1 . . . mW; , with $ = (W1, . . . , W;) ∈ ℕ;. Functions in �V ( [0, 1]3 , &) are called V-smooth
because the partial derivatives of orders up to V are bounded. This idea is made more concrete in the
one-dimensional case in Example 3.
The ball of V-Hölder smooth conditional class probability functions with radius & is

G(V, &) B
{
p = (>1 (x), . . . , > (x)) : [0, 1]3 → [0, 1] , >9 ∈ �V

(
[0, 1]3 , &

)}
.

All functions in G(V, &) that also satisfy the small value bound condition with index U for a given
input distribution ^ belong to GU (V, &).

Example 3
This example demonstrates Hölder smoothness index V and ball �V ( [0, 1], &) calculation for the
simple function 6(F) = F.
For one-dimensional functions with domain [0, 1] and V > 0, the ball of V-Hölder functions with
radius & > 0 is

�V ( [0, 1], &) =
6 : [0, 1] → ℝ:

bVc∑
8=0

6 ( 8)
∞
+ sup
F,G∈[0,1]

F≠G

��6 bVc (F) − 6 bVc (G)��
|F − G |V−bVc

≤ &

 .
Filling in the terms that occur in the definition of �V ( [0, 1], &) gives

bVc∑
8=0

6 ( 8)
∞
≤ ‖6 (0) (F)‖∞ + ‖6 (1) (F)‖∞ = ‖F‖∞ + ‖1‖∞ = 2;

sup
F,G∈[0,1]

F≠G

��6 bVc (F) − 6 bVc (G)��
|F − G |V−bVc

=

{
sup |F−G |

|F−G |V ≤ 1, bVc = 0
0, bVc ≥ 0

.

Therefore, 6 ∈
{
�V ( [0, 1], 3), V ≤ 1
�V ( [0, 1], 2), V > 1

.

Thus, an arbitrarily high Hölder smoothness index V condition holds for 6(F) = F.

2.3 Statistical Theory for DNNs: Hölder Smoothness 9



2.4 Main Risk Bound
We describe the theoretical result we complement with our simulation study in this section. It is
proven as theorem 3.3 in Bos and Schmidt-Hieber (2021). We first define rate

q< =

 
(1+U) V+(3+U)3
(1+U) V+3 <

− (1+U) V
V (1+U)+3 , if U ∈ [0, 1]

 
2V+43
2V+3 <

− 2V
2V+3 , if U > 1

, (11)

where U is the small value bound index and V is the Hölder smoothness index. We elaborate on the
definition of q< after stating the main risk bound.
Theorem 2.1 (main risk bound). Consider our classification model with p ∈ GU (V, &), U ∈ [0, 1], and
< > 1. Let p̂ be a deep neural network in ℱ(!,m, A) satisfying

1. �(3, V) log2 (<) ≤ ! . <q<,
2. min7=1, · · · ,! ;7 & <q<,
3. A � <q< log <

for a suitable constant �(3, V). If < is sufficiently large, then there exist constants � ′, � ′′ only depending
on small value bound index U and constant �, Hölder smoothness index V, and input dimensionality 3
such that whenever training imperfection Δ< ( p̂ | D<) ≤ � ′′�q<!(log <)2, then

'� ( p̂(^), p(^)) ≤ � ′�q<!(log <)2.

The main risk bound only holds for deep and wide DNNs that train on a “sufficiently large” dataset.
Theoretical results are commonly derived to understand asymptotic behavior, rather than to minimize
constants. It is therefore not surprising that the conditions under which the main risk bound holds
seem strict. Theoretical results that are derived to understand asymptotic behavior typically hold
under looser conditions in practice. However, a consequence of the involved constants is that only the
convergence rate within a setting – rather than the absolute risk values between settings – can be
studied.
The non-constant factor of theorem 2.1’s bounds on the �-truncated Küllback-Leibler divergence risk
and training imperfection is q< (log <)2. The main risk bound thus implies that the convergence rate
of the truncated KL divergence risk gets faster:

• as the small value bound index U gets closer to 1, but that no more is gained for U ≥ 1;
• as the Hölder smoothness index V increases.

Since V values much greater than 1 still have an effect on q<, the convergence rate can be dominated
by V. Figure 4 illustrates the asymptotic behavior of q< (log <)2 for a few U and V when 3 = 1.

100 1,000 10,000 100,000

0.01

0.1

1

<

<
−
(1
+U
)V

V
(1
+U
)+
3
(lo

g<
)2

V = 100, U = 1
2 ;q< � <−3/5

V = 100, U = 1;q< � <−2/3
V = 101, U = 1

2 ;q< � <−15/16
V = 101, U = 1;q< � <−20/21
V = 103, U = 1

2 ;q< � <−1500/1501
V = 103, U = 1;q< � <−2000/2001

Figure 4: The asymptotic behavior of q< (log <)2 for a few U and V when 3 = 1.
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3 Simplifying SVB Calculations
The combination of a conditional class probability function p and input distribution ^ determines the
small value bound index U that is satisfied per setting. We can simplify the calculation of the U-SVB
index in many cases. Lemma 3.1 proves that if an U-SVB index condition is satisfied under a uniform
distribution, it is satisfied under any continuous distribution with bounded density function.
We first note that satisfying an U-SVB condition implies satisfying an U′-SVB for U′ ≤ U. Since B ∈ (0, 1],
we have for Y > 0 that BU+Y ≤ BU. A larger SVB index (U + Y) thus indicates a tighter small value bound
than an index U does.
Next, if >(^) is never (arbitrarily close to) zero on the support of ^, we are in the U ≥ 1 case. In this
case, there is a fixed �0 ∈ (0, 1] such that ℙ^ (>(^) ≤ �0) = 0. Setting � = �−U0 means �BU ≥ 1 for any
U ≥ 0. Thus, (10) holds for any U ≥ 0.
The last basic point we make is: if there is a fixed g ∈ (0, 1) such that ℙ^ (>(^) ≤ B) ≤ �BU for all
B ∈ (0, g], the U-SVB condition is satisfied. This is because � ′ = max{�, 1/gU} makes ℙ^ (>(^) ≤ B) ≤
� ′BU hold for B > g as well. This property is useful when the behavior of ℙ^ (>(^) ≤ B) is different for
small B than larger B – we only have to study the behavior for small B to determine the U-SVB index.
Lemma 3.1. Let ^ be a continuous random variable with domain [0, 1]3 and probability density function
5^ . Let [ ∼ uniform( [0, 1]3), p : [0, 1]3 → [0, 1], and B ∈ (0, 1]. If 5- is bounded away from zero and
bounded from above – which is to say infx∈[0,1]3 5^ (x) > 0 and supx∈[0,1]3 5^ (x) < ∞ respectively – then
ℙ^ (p(^)) � ℙ[ (p([)).

Proof. Since 5- is bounded away from zero,

ℙ^ (p(^) ≤ B) = �^ [1{z : p(z) ≤B} (^)] =
∫

1{x : p(x) ≤B} 5^ (x) dx

∈
[
inf
x
5^ (x)

∫
1{z : p(z) ≤B} (x) dx, sup

x
5^ (x)

∫
1{z : p(z) ≤B} (x) dx

]
.

Furthermore, we know that

ℙ[ (p(u) ≤ B) = �[ [1{z : p(z) ≤B} ([)] =
∫

1{z : p(z) ≤B} (u) 5[ (u) du =

∫
1{z : p(z) ≤B} (u) du.

Therefore
inf
x
5^ (x) ℙ[ (p([) ≤ B) ≤ ℙ^ (p(^) ≤ B) ≤ sup

x
5^ (x) ℙ[ (p([) ≤ B),

and thus ℙ^ (p(^)) � ℙ[ (p([)), because infx 5^ (x) > 0 and supx 5^ (x) < ∞. �

Remark. Let 0 < g < 1. There is a possibly tighter bound for ℙ^ (p(^) ≤ B) around ℙ[ (p([) ≤ B) if
B ∈ (0, g]:

ℙ^ (p(^) ≤ B) ∈
[

inf
x : p(x) ≤g

5^ (x) ℙ[ (p([) ≤ B), sup
x : p(x) ≤g

5^ (x) ℙ[ (p([) ≤ B)
]
.

4

Corollary 3.1.1 ( 5^ only bounded from above). Consider the case of the lemma, but with only
supx∈[0,1]3 5^ (x) < ∞ and not infx∈[0,1]3 5^ (x) > 0. Then the U^ in ℙ^ (p(^) ≤ B) . BU^ is at least the
U[ in ℙ[ (p([) ≤ B) . BU[ .

Proof. We know ℙ^ (p(^) ≤ B) ≤ supx∈[0,1]3 5^ (x) ℙ[ ([) ≤ B), and therefore BU^ . BU[ . Since
B ∈ (0, 1], that means U^ ≥ U[ . �

Remark ( 5^ only bounded from below). Similarly, we have U[ ≥ U^ if we assume infx∈[0,1]3 5^ (x) > 0
but not supx∈[0,1]3 5^ (x) < ∞. 4
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4 Simulation Methodology
4.1 Scenarios
4.1.1 Binary Classification With One-Dimensional Input
In this section, we introduce the exact settings for our simulation study. We call these settings scenarios.
Scenarios are characterized by a combination of a distribution of input ^ and a conditional class
probability function p. We first consider binary classification with one-dimensional input scenarios,
and later multiclass classification and multidimensional input scenarios.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

F

5-A (F)
5-B (F)
>11 (F)
>21 (F)

Figure 5: The probability density functions of -A and -B, as well as >11 and >21.

The scenarios with one-dimensional input (3 = 1) have one of the following input distributions:
A. The well-known -A ∼ uniform( [0, 1]). This random variable has probability density function

5-A (F) = 1 if F ∈ [0, 1] and 5-A (F) = 0 if F ∉ [0, 1].
B. A random variable -B : [0, 1] → [0, 1] whose probability density function resembles two

pyramids with maxima 5-B (0) = 5-B (1/2) = 5-B (1) = 2 and minima 5-B (1/4) = 5-B (3/4) = 0.
The cumulative distribution function of -B is defined in (12) later.

The binary classification ( = 2) scenarios have one of the following conditional class probability
functions:

1. Squashed cosines with domain and range [0, 1] and period 1:

p1 (F) =
(1 + cos(2cF)

2 ,
1 − cos(2cF)

2

)
.

2. Squashed sines with domain and range [0, 1] and period 1:

p2 (F) =
(1 + sin(2cF)

2 ,
1 − sin(2cF)

2

)
.

Figure 5 displays the densities of -A and -B, as well as >11 and >21. It is convenient to denote the first
and second component of p 8 by > 81 and >

8

2 respectively. For example, the function >21 : [0, 1]3 → [0, 1]
is defined by >21 (F) = (1 + sin(2cF))/2. The subscript “1” in >21 (F) indicates that we are referring to
the probability of class 9 = 1 given input F; the superscript “2” indicates that we are considering the
conditional class probability function of squashed sines, p2.
We refer to individual scenarios by a combination of the subscripted letter of the input distribution
and the subscripted number of the conditional class probability function. For example, scenario B2
refers to the combination of -B and p2.
We calculate the relevant quantities for the main risk bound before running any simulations. One of
the quantities that occurs in the definition of convergence rate-determining q< – (11) – is the U-SVB
index. We now calculate which U-SVB condition holds per scenario.
Lemma 4.1. In scenarios A1 and A2, the 1/2-SVB condition holds.

Proof. For the 1/2-SVB condition to hold, wemust haveℙ-A (>
8

9
(-A) ≤ B) . B1/2 =

√
B for all 9, 8 ∈ {1, 2}

and B ∈ (0, 1].
We examine >11 of scenario A1 first. Its small outcomes occur around the root >11 (1/2) = 0. The
third-order Taylor series expansion around 1/2 is ) (F) = c2 (F − 1/2)2. The remainder is '(F) =

4.1 Simulation Methodology: Scenarios 12



(c4/3) cos(2cb) (F−1/2)4 for some b between 1/2 and F. Because F ∈ [0, 1] and therefore (F−1/2)2 ≥
(F − 1/2)4, there is a � ′ > 0 such that � ′(F − 1/2)2 ≤ ) (F) − ‖'(F)‖∞ ≤ >11 (F). Thus,

ℙ-A

(
>11 (-A) ≤ B

)
≤ ℙ-A

(
� ′

(
-A −

1
2

)2
≤ B

)
= ℙ-A

(
−
√

B

� ′
+ 1
2 ≤ -A ≤

√
B

� ′
+ 1
2

)
.

This last term is equal to
√
B/� ′ + 1/2 −

(
−
√
B/� ′ + 1/2

)
= 2

√
B/� ′ for B such that

√
B/� ′ + 1/2 ≤ 1,

i.e., when B ≤ � ′/4. If we fix any g ∈ (0, � ′/4], then ℙ-A
(
>11 (-A) ≤ B

)
≤ �
√
B for all B ∈ (0, 1] with

� = max
{
2/
√
� ′, 1/√g

}
. We can see that the general method applied last works in this case because

� = 2/
√
� ′ =⇒ �

√
B = 2

√
B/� ′ ≥ 1 for all B ≥ � ′/4. For instance, 2

√
(� ′/4)/� ′ = 1.

We examine >12 next, to finish scenario A1. There are two roots, @1 = 0 and @2 = 1; the third order
Taylor series expansion is for both 8 ∈ {1, 2} again c2 (F− @ 8)2, with remainder (c4/3) cos(2cb(F− @ 8)4
for some b between @ 8 and F. The same reasoning as for >11 applies: there is a � ′ > 0 such that
ℙ-A

(
>12 (-A) ≤ B

)
≤ ℙ-A

(
� ′(-A − @ 8)2 ≤ B

) for some B > 0, and thus ℙ-A
(
>12 (-A) ≤ B

)
.
√
B for all

B ∈ (0, 1].
We examine scenario A2 now, where the roots are >21 (3/4) = 0 and >22 (1/4) = 0. For 8 ∈ {1, 2}, the
third-order Taylor series expansions of >2

8
(F) around @1 = 3/4 and @2 = 1/4 are again c2 (F − @ 8)2

with remainders −c4/3 sin(2cb) (F − @ 8)4 for some b between @ 8 and F. The same reasoning as for >11
applies for both 8 ∈ {1, 2}: there is a � ′

8
> 0 such that ℙ-A (>28 (-A) ≤ B) ≤ ℙ-A (� ′8 (-A − @ 8)2 for some

B > 0, and thus ℙ-A

(
>2
8
(-A) ≤ B

)
.
√
B for all B ∈ (0, 1]. �

Lemma 4.2. In scenario B1, the 1/2-SVB condition holds; in B2, the 1-SVB condition holds.

Proof. For the respective U-SVB conditions to hold, we must have ℙ-B (>19 (-B) ≤ B) . B1/2 and
ℙ-B (>29 (-B) ≤ B) . B for all 9 ∈ {1, 2} and B ∈ (0, 1].
The input distribution -B has the cumulative distribution function

�-B (F) =



0 F < 0
−4F2 + 2F 0 ≤ F ≤ 1/4
4F2 − 2F + 0.5 1/4 < F ≤ 1/2
−4F2 + 6F − 1.5 1/2 < F ≤ 3/4
4F2 − 6F + 3 3/4 < F ≤ 1
1 F > 1

. (12)

We examine scenario B1 first. The only root of >11 is 1/2 (because >11 (F) = 0 =⇒ F = 0). We make
use of a lower bound � ′(-B − 1/2)2 ≤ >11 (-B) for a � ′ > 0 as in Lemma 4.1. Using the two cases of
�-B that suffice for 1/4 <

√
B/� ′ + 1/2 ≤ 3/4 =⇒ B ≤ � ′/16, we have:

ℙ-B

(
>11 (-B) ≤ B

)
≤ ℙ-B

(
� ′

(
-B −

1
2

)2
≤ B

)
= ℙ-B

(
−
√

B

� ′
+ 1
2 ≤ -B ≤

√
B

� ′
+ 1
2

)
= −4

(√
B

� ′
+ 1
2

)2
+ 6

(√
B

� ′
+ 1
2

)
− 1.5

− ©«4
(
−
√

B

� ′
+ 1
2

)2
− 2

(
−
√

B

� ′
+ 1
2

)
+ 0.5ª®¬

=
4√B
√
� ′
− 8B
� ′
,

which is less than
√
16/� ′√B, for example. Thus, ℙ-B

(
>11 (-B) ≤ B

)
.
√
B for all B ∈ (0, 1].
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The first root of >12 we consider is 0. With a new � ′ > 0 and the two cases of �-B that suffice for
B ≤ � ′/16, we have:

ℙ-B

(
>12 (-B) ≤ B

)
≤ ℙ-B (� ′(-B − 0)2 ≤ B) = −4

(√
B

� ′
+ 0

)2
+ 2

(√
B

� ′
+ 0

)
− 0 =

2√B
√
� ′
+ 4B
� ′

For the second root, 0, and with a new � ′ > 0:

ℙ-B

(
>12 (-B) ≤ B

)
≤ ℙ-B (� ′(-B − 1)2 ≤ B) = 1 − ©«4

(√
B

� ′
+ 1

)2
− 6

(√
B

� ′
+ 1

)
+ 3ª®¬ =

2√B
√
� ′
− 4B
� ′
.

Thus, ℙ-B
(
>12 (-B) ≤ B

)
.
√
B for all B ∈ (0, 1].

We examine scenario B2 now. With the lower bound and the two �-B cases around the root 3/4 of >21
that suffice for B ≤ � ′/16, we have for a � ′ > 0:

ℙ-B

(
>21 (-B) ≤ B

)
≤ ℙ-B

(
� ′

(
-B −

3
4

)2
≤ B

)
= 4

(√
B

� ′
+ 3
4

)2
− 6

(√
B

� ′
+ 3
4

)
+ 3

− ©«−4
(
−
√

B

� ′
+ 3
4

)2
+ 6

(
−
√

B

� ′
+ 3
4

)
− 1.5ª®¬

=
8B
� ′
.

And thus, ℙ-B
(
>21 (-B) ≤ B

)
. B for all B ∈ (0, 1].

Finally, we examine >22 with root 1/4. There is a � ′ > 0 such that:

ℙ-B

(
>22 (-B) ≤ B

)
≤ ℙ-B

(
� ′

(
-B −

1
4

)2
≤ B

)
= 4

(√
B

� ′
+ 1
4

)2
− 2

(√
B

� ′
+ 1
4

)
+ 1
2

− ©«−4
(
−
√

B

� ′
+ 1
4

)2
+ 2

(
−
√

B

� ′
+ 1
4

)ª®¬
=

8B
� ′
.

And thus, ℙ-B
(
>22 (-B) ≤ B

)
≤ ℙ-B (� ′(-B − 1/4)2 ≤ B) . B. �

In scenarios A1, A2, and B1, the 1/2-SVB condition holds and results in

q< � <−
(1+U) V
V (1+U)+3 = <

− (1+1/2) V
V (1+1/2)+1 = <−3V/(3V+2) .

In scenario B2, the 1-SVB condition holds and results in a faster convergence rate, q< � <−2V/(2V+1) .
The quantity other than SVB index U that occurs in q< is Hölder smoothness index V. Since p1 and
p2 both have arbitrarily large Hölder smoothness index V, the convergence rate is <−1 in all binary
classification with one-dimensional input scenarios.
4.1.2 Multiclass Classification and Multidimensional Input
Our multiclass classification ( = 2) scenarios have one of the following conditional class probability
functions:

p3 (F) =
(1 + cos(2cF)

3 ,
1 − cos(2cF)

3 ,
1
3

)
,

p4 (F) =
(2F
3 ,

2(1 − F)
3 ,

1
3

)
.

Figure 6 displays p3 and p4. We consider p3 and p4 in combination with input distribution -A ∼
uniform( [0, 1]) and refer to the resulting scenarios as A3 and A4.
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Figure 6: The conditional class probability functions p3 (left) and p4 (right).

Lemma 4.3. In scenario A3, the 1/2-SVB condition holds; in A4, the 1-SVB condition holds.

Proof. For the respective U-SVB conditions to hold, we must have ℙ-A (>39 (-A) ≤ B) . B1/2 and
ℙ-A (>39 (-A) ≤ B) . B for all 9 ∈ {1, 2} and B ∈ (0, 1].
We consider the A3 scenario first. Note that >11 (F) = (3/2)>31 (F) and >12 (F) = (3/2)>32 (F). We can
therefore make use of the findings of Lemma 4.1, albeit with different constants: ℙ-A (>31 (-A) ≤ B) .

√
B

and ℙ-A (>32 (-A) ≤ B) .
√
B. Since >33 is constant, ℙ-A (>33 (-A) = 1/3 ≤ B) . √B for all B ∈ (0, 1] as well.

In the A4 scenario, we have for all B ∈ (0, 1] the relatively simple:
• ℙ-A

(
>41 (-A) = 2-A/3 ≤ B

)
= (3/2)B . B;

• ℙ-A
(
>42 (-A) = 2(1 − -A)/3 ≤ B

)
= ℙ-A (-A ≥ 1 − 3B/2) = 1 − (1 − 3B/2) = (3/2)B . B;

• ℙ-A
(
>43 (-A) = 1/3 ≤ B) . B. �

Finally, we introduce scenarios in which there is multidimensional input (3 = 2). These scenarios use
the input distribution

^C ∼ uniform( [0, 1]2)
and have one of the following conditional class probability functions:

p5 (x) =
(( F1 + F2

2
)2
, 1 −

( F1 + F2
2

)2)
,

p6 (x) =
(( F1 + F2

2
)4
, 1 −

( F1 + F2
2

)4)
.

Lemma 4.4. In scenario C5, the 1-SVB condition holds; in C6, the 1/2-SVB condition holds.

Proof. For the respective U-SVB conditions to hold, we must have ℙ^C (>59 (^C) ≤ B) . B and
ℙ^C (>69 (^C) ≤ B) . B1/2 for all 9 ∈ {1, 2} and B ∈ (0, 1].
Let / = -1 + -2 where -1, -2 ∼ uniform( [0, 1]), so that / represents the sum of the individual random
variables in the random vector ^C. We use a convolution to define the cumulative distribution function

�/ (H) =
∫ 1

0
�-1 (H − F) 5-1 (F1) dF =


0, H < 0
H2/2, 0 < H ≤ 1
−H2/2 + 2H − 1, 1 < H ≤ 2
1, H > 2

.

We examine >51 first. The expression ℙ^C (>51 (^C) ≤ B) can be rewritten as ℙ/ ((//2)2 ≤ B) = ℙ/ (−2
√
B ≤

/ ≤ 2√B). This means ℙ^C (>51 (^C) ≤ B) = (2
√
B)2/2 − 0 = 2B for B ≤ 1/4 and thus ℙ^C (>51 (^C) . B for

all B ∈ (0, 1].
We examine >61 next. Similarly to just above, ℙ^C (>61 (^C) ≤ B) = ℙ/ (−2B1/4 ≤ / ≤ 2B1/4) = (2B1/4)2/2−
0 = 2√B for B ≤ 1/16. Thus, ℙ^C (>61 (^C) ≤ B) .

√
B for all B ∈ (0, 1].

We now examine >52. The expression ℙ^C (>52 (^C) ≤ B) is equivalent to

ℙ/ (1 − (//2)2 ≤ B) = ℙ/

(
/ ≥ 2

√
1 − B

)
= 1 − ℙ/

(
/ ≤ 2

√
1 − B

)
,
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which for B ∈ (0, 1/4) is

1 −
©«−

(
2
√
1 − B

)2
2 + 2

(
2
√
1 − B

)
− 1

ª®®¬ = 2 − 4
√
1 − B + 2(B − 1).

The second-order Taylor series expansion of 2 − 4
√
1 − B + 2(B − 1) around 0 is ) (B) = B2/2 with

remainder '(B) = (B3/3!)3/(2(1 − b)5/2) ≤ B3/2 for some b ≤ B. Hence, there is a � ′ > 0 such that
� ′B2 ≥ ) (B) + ‖'(B)‖∞ ≥ 2− 4

√
1 − B + 2(B − 1). Thus, ℙ^C (>52 (^C) ≤ B) ≤ 2− 4

√
1 − B + 2(B − 1) ≤ � ′B2

for B ∈ (0, 1/4), and ℙ^C (>52 (^C) ≤ B) . B2 ≤ B for all B ∈ (0, 1].
Finally, we examine >62. Similarly to above, ℙ^C (>62 (^C) ≤ B) = 1 − ℙ/

(
/ ≤ 2(1 − B)1/4), which

is 2 − 4(1 − B)1/4 + 2(B − 1)1/2 for B ∈ (0, 1/16). The second-order Taylor series expansion of
2 − 4(1 − B)1/4 + 2(B − 1)1/2 around 0 is ) (B) = B2/8 with remainder '(B) = (B3/3!) ((21 − 12(1 −
b)1/4)/(16(1 − b)11/4)) ≤ B3/8 for some b ≤ B ≤ 1/16. Hence, there is a � ′ > 0 such that � ′B2 ≥
) (B) + ‖'(B)‖∞ ≥ 2−4(1− B)1/42(B−1)1/2. Thus, ℙ^C (>52 (^C) ≤ B) ≤ 2−4(1− B)1/4 +2(B−1)1/2 ≤ � ′B2
for B ∈ (0, 1/16), and ℙ^C (>62 (^C) ≤ B) . B2 ≤

√
B for all B ∈ (0, 1]. �

The Hölder smoothness index V of p3, p4, p5, and p6 is arbitrarily large. Based on the main risk bound,
we thus have KL divergence risk convergence rate q< � <−1 in scenarios A3, A4, C5, and C6.

4.2 Data Generation
The distribution of the datasets we generate follows from the distribution of input, ^, and the
conditional class probability function, p, of each scenario. We sample the label that determines _8
from a categorical distribution with probability vector p(^ 8), where >9 (x) = ℙ_ |^ (.9 = 1 | ^ = x).
To sample from -B – an uncommon distribution with pyramidal density – we use rejection sampling.
The purpose of rejection sampling is to uniformly sample from the region under the curve of the target
probability density function 5-B . Rejection sampling uses candidate samples from a scaled version of a
proposal distribution for which there are implemented sampling methods, such as the uniform.

0 0.2 0.4 0.6 0.8 1
0
1
2

F

5-B (F)
"6(F)

Figure 7: Rejection sampling illustration, with 5-B (F) the density of -B, 6(F) the density of a
uniform( [0, 1]) RV, and " = 2.4.

Rejection sampling works as follows. Let the proposal density 6(F) be the density of a uniform( [0, 1])
RV. We require 5-B (F) < "6(F) and choose ". Since 5-B (F) ∈ [0, 2] and 6(F) ∈ [0, 1], we can choose
" = 2.4 (or any other " > 2). Figure 7 illustrates the idea of getting 5-B entirely under the curve of
"6. After these preliminary choices, rejection sampling works as follows:

1. Sample F 8 ∼ [the random variable with density 6].
2. Sample C 8 ∼ uniform( [0, 1]).
3. If C 8 < 5-B (F 8)/("6(F 8)), accept F 8 as sample from -B. Else, reject F 8, and return to step 1. This

means, for instance, that F 8 = 0.5 is accepted with probability 2/2.4 ≈ 0.83 and that F 8 = 0.3 is
accepted with probability 0.4/2.4 ≈ 0.17.

The rejection sampling method extends to any number of dimensions and works with all target
densities. The downside of the method is that the expected proportion of proposed F 8 that is accepted
is 1/", which can be much smaller than 1. The resulting extra operations are inconsequential for us,
since sampling is a trivial part of our total computational cost.

4.3 Our ReLU and Softmax DNNs
4.3.1 Implementation
For the implementation of deep neural networks, we use the Keras and TensorFlow packages in Python.
In particular, our DNNs are Keras models.Sequential models, consisting of layers.Dense layers.
In Dense layers, every neuron has a bias, and every connection has a weight. Neurons in the first
(non-hidden) layer receive the network’s input. Neurons in every other layer receive input from all
neurons in the preceding layer. This corresponds to our DNN definition, (3). Our Dense layers:
4.3 Simulation Methodology: Data Generation 16



1. use the rectified linear unit (ReLU) activation function;
2. have initial bias values zero, and weights sampled from He et al. (2015a)’s normal distribution

with mean 0 and standard deviation
√
2/; 8 for neurons in the 8th layer;

3. have !1 regularization on weights.
This corresponds to Dense layer arguments: 1. activation = "relu"; 2. kernel_initializer =
"he_normal"; 3. kernel_regularizer = regularizers.l1(l1), where variable l1 represents
the !1 regularization penalty _.
The resulting DNNs can be members of the ℱ(!,m, A) class, but biases are not regularized
and parameters are not constrained to [−1, 1]. The definition of ℱ, (4), suggests both.
Both additions can be made to the Dense layers with the arguments bias_regularizer
= regularizers.l1(l1), kernel_constraint = constraints.max_norm(1.0), and
bias_constraint = constraints.max_norm(1.0). We have chosen to leave out bias reg-
ularization and parameter magnitude constraints because DNNs with said additions perform
significantly worse in informal experiments.
Our first Dense layer has an input_shape ;0, and consists of ;1 neurons. Then follow ! − 2 of our
(hidden) Dense layers with ;2, . . . , ;!−1 neurons, respectively. The final Dense layer has ;! neurons,
but a few different properties from the other layers. The activation function in this final layer is the
softmax, and the initial weight values are sampled from a Glorot uniform. This corresponds to Dense
layer arguments activation = "softmax" and kernel_initializer = "glorot_uniform".
We use Kingma and Ba (2017)’s Adam optimizer to minimize the negative log-likelihood training loss
(we define the latter in (5); it is named categorical_crossentropy in Keras). Adam hyperparam-
eters other than learning rate [ are left on optimizers.Adam’s defaults. The maximum number of
training epochs is 500. Batch size is 128. Training stops early when (NLL) validation loss has failed to
improve by more than 0.005 over 50 epochs. Early stopping usually occurs long before 500 epochs
have occurred.4 The weights and biases that obtain the best validation loss are chosen as final DNN
parameters.
4.3.2 Demonstration
In this section, we demonstrate that DNNs are able to approximate the true conditional class proba-
bilities in our simulation settings. Figures 8 and 9 demonstrate DNN performance in the B2 and A3
scenarios (using hyperparameter values that are specified later). The visualizations and estimated
risks throughout this section are intended to make the later numerical reporting more interpretable.
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Figure 8: DNN test set performance in scenario B2. The class distribution of the 4096-sized
training sets is shown in the histogram. The full lines display true >9 (F (1) ), . . . , >9 (F (;) ), while
the dashed lines display learned >̂9 (F (1) ), . . . , >̂9 (F (;) ). The corresponding estimated risks are
KL( p̂ | T;, p) ≈ 0.00472 and MSE( p̂ | T;, p) ≈ 0.00143. (Training seed is 0, validation seed is 1,
and network seed is 2.)

4 The specific 0.005, 50, and 500 values are conservative compared to what works well in informal experiments. With
“conservative”, we mean that the required minimum loss decrease (for continuing training rather than early stopping) is
relatively low, and both patience and the maximum number of epochs are chosen relatively high.
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Figure 9: Same as Figure 8, but for scenario A3. The corresponding estimated risks are KL( p̂ |
T;, p) ≈ 0.00862 and MSE( p̂ | T;, p) ≈ 0.000838.

Figure 8 also displays minor overfitting on an imperfectly representative training set. Around F ≈ 0.55,
the training set happens to contain a lower proportion of samples labeled class 1 than the true >21 (F).
The DNN therefore learns a too small >̂1 (F) for F ≈ 0.55. This can be alleviated with a larger !1
regularization penalty, but that would bias >̂1 (F) and >̂2 (F) towards 1/2 for all F.
We consider it a failure to train if the DNN learns a constant class probability. This behavior is relatively
easy to diagnose: the training loss is comparable to predicting exactly (1/2, 1/2) given any input.5
Figure 10 displays such extreme underfitting, resulting from a too large !1 regularization penalty.
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Figure 10: Same as Figure 8 but with extreme underfitting, because of too much !1 regularization
(_ = 0.05). The corresponding estimated risks are KL( p̂ | T;, p) ≈ 0.171 and MSE( p̂ | T;, p) ≈
0.0743.

Figure 11 displays the negative log-likelihood loss on training and validation set per epoch of training
the DNNs of Figures 8 and 9. As expected and desirable, a decrease in training loss tends to coincide
with a decrease in validation loss. Figure 11 also demonstrates early stopping: the training processes
stop after far fewer than the maximal 500 epochs, namely when validation loss stops improving.

5 The (1/2, 1/2) prediction given any input only indicates failed training in the case of binary classification with equally
likely classes. The more general indication of this failure is predicting (proportion of samples in class 1 in the training set,
..., proportion of samples in class  in the training set) given any input.
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Figure 11: Negative log-likelihood training and validation loss per training epoch for the DNNs of
Figure 8 (left) and 9 (right).

4.4 Hyperparameter Search
To find suitable choices for hyperparameters, we use the hyperopt package. We aim to find values
for the !1 regularization penalty _ and the Adam optimizer’s learning rate [ directly, and values for
the number of hidden layers, !, and number of neurons per layer, m, indirectly. The latter two are
indirect because the main risk bound suggests their values should scale with training set size <. We
use hyperopt to search for an !∗ and ;∗ that relate to !,m, and < as follows:

! = d!∗ log1.04 (<) − 0.5e, (13)
;1 = . . . = ;! = <;

∗
. (14)

The manner of scaling described in (13) and (14) is subjectively chosen as balance between the
theorem’s conditions and common DNN architectures. The logarithm base 1.04 in (13) is chosen for a
smaller amount of scaling with < than the main risk bound’s squared natural logarithm. This choice is
based on performance in informal experiments. To give an idea of how the hidden layer sizes of a
DNN scale with training set size < when !∗ = 0.02 and ;∗ = 0.35:

• < = 4096 =⇒ {;1, . . . , ;10} = {18, 18, 18, 18, 18, 18, 18, 18, 18, 18};
• < = 16384 =⇒ {;1, . . . , ;12} = {30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30};
• < = 131072 =⇒ {;1, . . . , ;15} = {62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62}.

We attempt to find good values for the influential regularization penalty _ and learning rate [

directly. The regularization penalty should be set to a balanced value that results in neither over-
nor underfitting. The learning rate should also be balanced, for gradient updates that are neither
too small nor too large for stable optimization during training. Another consideration for avoiding a
large regularization penalty and small learning rate is that these generally increase the significant
computational cost of training. (The regularization penalty has a major impact on the duration of
training because of our reliance on early stopping.)
We use the hyperparameter search approach described in Bergstra, Yamins, and Cox (2013). The
method is based on Bayesian optimization. It should be an improvement over manual or random
hyperparameter search in terms of both empirical results and reproducibility. The hyperparameter
search approach involves a manually specified hyperparameter search space, an objective function, a
hyperparameter optimization algorithm, and a history of previously obtained objective scores.
The details of the hyperparameter search approach are out of our scope, but a brief description follows.
We use the tree-structured Parzen estimator hyperparameter optimization algorithm, suggested in
Bergstra et al. (2011). This algorithm chooses the current iteration’s hyperparameters from the
manually specified search space, based on the hyperparameter search’s history thus far. The algorithm
intends to choose informative hyperparameters, balancing exploration and exploitation. A DNN using
these hyperparameters is trained on newly generated training and validation sets. We vary the size of
the training sets; the size of the validation set is always 104. The objective score of an iteration is the
estimated KL divergence risk of the trained DNN on a 105-sized test set.
We let hyperopt perform a hyperparameter search for relatively few iterations, but still expect to
find better hyperparameters in this manner than with random guessing. Whether optimal values for
(hyper)parameters of deep neural networks exist is itself an interesting research question.
We start with the following initial hyperparameter ranges (or distributions), based on commonly
recommended starting values and informal experiments:

• Learning rate [ ∼ uniform(0.0001, 0.001);
• Regularization penalty _ ∼ uniform(0.0001, 0.001);
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• DNN depth-related !∗ ∼ uniform(0.02, 0.08);
• DNN width-related ;∗ ∼ uniform(0.2, 0.5).

We run thirty hyperopt iterations with training set sizes < = 8192 and < = 65536 for scenarios
B2, A3, and C5. These simulation scenarios are chosen because they seem to be the hardest of the
scenarios per combination of input dimensionality and number of output classes. Hyperparameters
that work in the hardest scenarios should work in easier scenarios as well.
Figures 17-22 in Appendix B display the estimated KL divergence risks of the thirty hyperopt iterations
per scenario and training set size. The range of estimated risks differs significantly between the
scenarios. The few very high losses result from a combination of underfitting and an unrepresentative
class imbalance in the training and validation sets.
While the estimated risks depend on the scenario, they are robust to different hyperparameter values.
This implies that most values in the initial hyperparameter ranges are sensible choices. Nevertheless,
the specific hyperparameters we choose are:

• Learning rate [ = 0.0005.
• Regularization penalty _ = 0.0002. Given our initial range, we pick a small value, because

smaller values lead to better estimated risks in all hyperopt settings. With _ = 0.0002, we
sometimes observe minor visual evidence of overfitting, but never the large discrepancy between
training and validation/test set loss that is characteristic of overfitting.

• DNN depth-related !∗ = 0.05 and width-related ;∗ = 0.35. The effect of !∗ and ;∗ is not
very clear, so we choose relatively small values (given our ranges). Lower values of !∗ and
;∗ could slightly decrease computational cost. The chosen !∗ and ;∗ result in the DNN sizes
exemplified above: e.g., < = 4096 =⇒ {;1, . . . , ;10} = {18, . . . , 18} and < = 131072 =⇒
{;1, . . . , ;15} = {62, . . . , 62}.

4.5 Experimental Setup
We describe the experimental setup used in our simulation study now. For each of the simulation
scenarios introduced in Section 4.1, we first generate a test set of size ; = 105.
The computational bulk of our experimental setup comprises forty iterations of:

1. Generating a training set of size <. The sampling seed is the iteration number.
2. Generating a validation set of size 104. The seed is 1 + [the iteration number].
3. Training two DNNs with the same architecture, hyperparameters, and training and validation

sets. These DNNs have as seeds < + 2×[the iteration number]+[0 for the first DNN; 1 for the
second DNN]. We train two networks per training set because of the variability of DNN training.
We want to evaluate a DNN that trained successfully in the next step, and the best network
of two is more likely to have trained successfully. Informal experiments suggest training two
DNNs is a good compromise between computational cost and probability of successful training.

4. Evaluating the DNN with the lowest validation loss on the test set as well, without retraining.
In this step, we obtain our estimated risks, (KL( p̂ | T;, p) and MSE( p̂ | T;, p)).

To find differences in (estimated) risk convergence rate among the different scenarios, we perform the
forty iterations described above with various training set sizes per scenario. The training set sizes we
consider are < ∈ {4096, 8192, 16384, 32768, 65536, 131072}.
Instead of training two DNNs per training set, we could also use the training or validation loss to
determine if training has been successful enough. In the following box, we propose an alternative
experimental setup that does the former. We do not report experimental results obtained with this
setup, but do provide its implementation. The setup takes the training imperfection condition of the
main risk bound seriously. The idea is to retry the training process with new initialization seeds until
a training loss close to the previous best is obtained. This means the amount of trained networks can
turn out to be very large. In contrast, the actually used setup gives every scenario, training set size,
and iteration approximately the same amount of computation time (and always two trained DNNs).
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Alternative experimental set-up
The only difference between the alternative and actually used setup is the third of the steps that are
performed for forty iterations per scenario and training set size. The alternative version of step 3 is:

3. Training a variable number of DNNs with the same architecture, hyperparameters, and training
and validation sets. The number of trained DNNs varies because we wish to evaluate networks
that have trained relatively successfully in the next step. To select such DNNs, we retrain
with new network seeds until we find a DNN that has training loss no more than a chosen
factor times the minimum training loss of any DNN for this scenario and training set size.
This may be the first DNN we train in an iteration. However, in the first two iterations, we
try a minimum of five networks to create an initial database of training losses to compare
with. We judge training losses obtained in earlier iterations again if the minimal training loss
decreases in a later iteration. The result is that all training losses are eventually at most the
chosen factor times the minimal training loss.

The alternative setup involves retraining until training loss is as desired. It is also possible to do this
with real-world datasets, for instance when cross-validating. We only assume a training loss of a
certain order is possible, which is reasonable since a DNN with identical architecture trained on an
already assumed to be identically distributed dataset did obtain such loss.

4.6 Determining Risk Convergence Rates
The purpose of our simulation study is to compare the convergence rates suggested by the main risk
bound with the estimated risk convergence rates obtained in our experiments. We determine the
estimated risk convergence rates by fitting lines of the form \1<\2 (log <)2 to the estimated risks. The
fit’s \1 captures constants of the main risk bound, and is of no particular interest. The main risk
bound’s convergence rate, q<, is represented by <\2 .
To fit \1<\2 (log <)2 to the estimated risks, we use a generalized simulated annealing optimization
method by Xiang et al. (1997). We minimize

∑
<

1
<

(
A< ( p̂ | T;, p) − \1<\2 (log <)2

)2
A< ( p̂ | T;, p)

,

requiring \2 ∈ [−1, 0]. We always set A< to the first quartile of the forty estimated risks. We choose
the first quartile rather than the minimum to ensure robustness. We do not choose the mean, median,
or all values because we want to limit the influence of DNNs that failed to train.

4.7 Reproducibility
The Python code, models, and results can all be found on https://github.com/bramotten/
DNN-Classification-Theory-In-Practice. All Python 3.7.10 packages (and versions) are listed
in requirements.txt. All required code is in the main.ipynb Jupyter notebook.
We use and store seeds underlying every random process, so that experimental results are as repro-
ducible as possible. The seeds that have to do with dataset generation are set as numpy.random.seeds.
The training of deep neural networks is not made reproducible straightforwardly. There is a
tensorflow.random.set_seed function, but it is not sufficient. We use the fixes provided by
the tensorflow-determinism package. With this package installed, it should be enough to set
os.environ["TF_DETERMINISTIC_OPS"] = "1". However, this turns out to not be enough. The
seed and package do have an impact on the sampling of network parameters and eventual fit, but
some randomness persists within the training process.
The entire experimental stage of this simulation study is automated after defining a list of hyperpa-
rameter (range)s, scenarios, and training set sizes. The experiments are interruptible because the
files with results are periodically updated. The hyperparameter search is also interruptible, through
periodic saves of a hyperopt.Trials object.
The Python dictionaries with experimental results are stored in pickle files in the test_losses
folder. This folder also contains all Keras model files that contain, e.g, DNN parameters and the history
of the training and validation loss, grouped in folders named according to the scenario, training set
size, training seed, and network seed. The hyperopt folder contains the hyperopt.Trials objects
per scenario and training set size.
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5 Simulation Results
Figure 12 displays the forty estimated Küllback-Leibler divergence and mean squared error risks
per training set size for all binary classification with one-dimensional input scenarios. The results
for scenarios A1 and A2 are identical, so only the results for scenarios A2, B1, and B2 are shown.6
Figure 13 displays the estimated risks for the multiclass classification scenarios A3 and A4 and the
multidimensional input scenarios C5 and C6.
Because of the inherent variability of deep neural network training, the estimated risks are not tightly
and symmetrically grouped around their mean. The distributions of the estimated risks are positively
skewed. Some evaluated DNNs have failed to train successfully, but no estimated risks are as bad as the
worst we have seen in the hyperparameter search. Furthermore, many networks obtain approximately
the lowest estimated risk per setting, especially at larger training set sizes. Especially considering this
last observation, the DNNs perform more consistently than expected.
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Figure 12: Box- and scatter plots of forty estimated risks per training set size < for the binary
classification with one-dimensional input scenarios. The estimated risks are obtained using the
experimental setup described in Section 4.5. The definitions of the estimated risks, KL( p̂ | T;, p)
and MSE( p̂ | T;, p), are given in (7) and (8) respectively.

6 The conditional class probability functions p1 and p2 are shifted compared to each other, but that is inconsequential in
combination with the uniform input distribution -A.
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Figure 13: Same as Figure 12, but for the multiclass and multidimensional input scenarios.

Figures 14 and 15 display the first quartiles of the estimated KL divergence and MSE risks, with
corresponding fits of the form \1<\2 (log <)2. The main risk bound suggests a KL divergence risk
convergence rate q< (log <)2, where q< � <−1 in all scenarios. Thus, it suggests \2 = −1 in all
scenarios. The observed convergence rates are considerably slower.
As suggested by the main risk bound, the U-SVB index has no consistent effect on the convergence
rate in our scenarios. The convergence rate is relatively slow in the B1 scenario and relatively fast
in the A3 scenario. The 1/2-SVB condition holds in both the slowly-converging scenario B1 and the
quickly-converging scenario A3. In the other scenarios, which have similar convergence rates to each
other, the U-SVB condition with either U = 1/2 or U = 1 holds.
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Figure 14: Scatter plots of the first quartiles of the experimentally obtained estimated risks,
and fits of the form \1<\2 (log <)2 as described in Section 4.6. The binary classification with
one-dimensional input scenarios and corresponding \1 and \2 are denoted in the legend.
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Figure 15: Same as Figure 14, but for the multiclass and multidimensional input scenarios.
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6 Discussion
We used simulations to examine the main risk bound of Bos and Schmidt-Hieber (2021). The main risk
bound suggests a truncated Küllback-Leibler divergence risk convergence rate of <−1 in all considered
simulation scenarios. We found considerably slower rates.
We experimented with both binary and multiclass classification, as well as with both one- and
multidimensional input settings. We reported manual calculations of the different U-small value bound
index conditions per setting, and proposed a lemma and techniques that simplify such calculations.
Because of the arbitrarily smooth conditional class probability functions in the proposed settings, the
main risk bound suggests identical KL divergence risk convergence rates for the settings in which
different U-SVB conditions hold.
We indeed found that the SVB index U did not have an effect on the estimated convergence rates in
such settings. This finding supports one of the main risk bound’s implications – that DNNs can obtain
relatively fast KL divergence risk convergence rates even if a large proportion of true conditional class
probabilities is small, as long as the conditional class probability functions are sufficiently smooth.
There is an inherent difficulty involved in examining theoretical results for DNNs using a simulation
study. The results of DNN training are highly variable, so that performing many experiments is
desirable. But DNN training – and thus performing extra experiments – is computationally expensive.
The source code for this simulation study is freely available. The implementation can be used to
generate datasets after specification of any input density and conditional class probability function.
The implementation can be used to train individual DNNs, find good hyperparameters, or perform
our whole experimental setup with any combination of dataset distributions. The progress of compu-
tationally expensive operations is saved periodically, so that interruption and resumption are possible.
In the case of low-dimensional input distributions, visualizations such as Figure 8 can display the
datasets and the DNN’s approximation of the conditional class probability functions for the purpose of
monitoring experiments.
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7 Open Questions
This work is exploratory and leaves many questions unanswered. Our first suggestions for future work
are:

1. To study additional scenarios that satisfy only a small Hölder smoothness index V. In this case,
the main risk bound suggests an observable effect of the small value bound index U on the
truncated Küllback-Leibler divergence risk convergence rate. Our simulation study only involves
scenarios in which the effect of the U-SVB index on the convergence rate is diminished because
of the arbitrarily large Hölder smoothness index V.

2. To study additional scenarios that only satisfy an SVB index U < 1/2 while following suggestion
1. Such scenarios lead to a more pronounced effect of U on the convergence rate than the lowest
U = 1/2 occuring in our scenarios.

3. To study additional scenarios that satisfy an SVB index U > 1. Such scenarios target an
interesting aspect of the main risk bound, namely that the convergence rate improves with
larger U-SVB index, but only up to U = 1.

4. To study additional scenarios that have higher-dimensional input (3 > 2) and more than
the three output classes ( > 3) that we considered. Such scenarios are interesting because
high-dimensional input settings especially are common in DNN applications.

The next suggestion for future work arises from not just this work, but the whole practice of approaching
classification as discrete probability distribution approximation. It would be useful to have publicly
available datasets involving empirical conditional class probabilities. Example 1 describes a medical
setting in which these empirical probabilities can have a sensible meaning. The empirical probability
of label 9 given an image could represent the proportion of questioned experts who thinks the image
should be labeled 9. Datasets with empirical conditional class probabilities could be created in this
medical setting, but not in many other supervised classification settings.
Datasets with empirical conditional class probabilities can reduce the gap between theory and practice
in multiple ways. First, it will become clear whether the conditions of many theoretical classification
results are often satisfied in practice. These results have conditions that can only be checked using
currently unknown conditional class probability functions. Second, theoretical results that depend on
conditional class probabilities can be examined using these special datasets, rather than only using
simulations. The main risk bound of Bos and Schmidt-Hieber (2021) is an example of a theoretical
result that could benefit from datasets with empirical conditional class probabilities. It requires an SVB
index U and Hölder smoothness index V – these are now unknown for real-world datasets, but could
be approximated using empirical conditional class probabilities. Appendix A describes a methodology
for computing the U-SVB index using a conditional class probability function.
Future work could also investigate how well the SVB and Hölder smoothness indices can be approxi-
mated without knowing the true – or at least empirical – conditional class probabilities.
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Appendix A Empirical SVB Index Calculation
We measure the proportion of small conditional class probabilities using the small value bound,
indexed by U. To reduce the need for manual calculation, we propose an empirical estimate of U using
p and < samples of ^. The method works as follows:

1. Generate a grid of small positive values, for instance 3 = (0.0001, 0.0002, . . . , 0.05).
2. Calculate 59 (<, g) = (1/<)

∑<
8=1 1{H : H≤g} (>9 (^ 8)) for each 9 ≤  and g ∈ 3.

3. Fit \13\2 for each 9 to minimize (1/<)∑<
8=1

∑
g∈3

(
59 (<, g) − \1<\2

)2, for instance using gener-
alized simulated annealing as in Section 4.6.

4. The class 9 whose corresponding fit \2 is smallest is the class that determines the U-SVB index.
Figure 16 displays the results of this methodology for some of the simulation scenarios we consider.
The results are in agreement with the manually calculated U.

0.00 0.25 0.50 0.75 1.00
t

0.0

0.2

0.4

0.6

0.8

1.0 (p2
1 (XB t)

0.8215t0.9683

0.00 0.25 0.50 0.75 1.00
t

0.0

0.2

0.4

0.6

0.8

1.0

(p3
1 (XA t)

0.7576t0.5053

0.00 0.25 0.50 0.75 1.00
t

0.0

0.2

0.4

0.6

0.8

1.0

(p5
1 (XC t)

1.6475t0.9446

0.00 0.25 0.50 0.75 1.00
t

0.0

0.2

0.4

0.6

0.8

1.0

(p6
1 (XC t)

2.0735t0.4995

Figure 16: The empirical U-SVB based on a dataset of 4096 samples. The scenarios are indirectly
indicated in the legend (clockwise from top-left: B2, A3, C5, C6). The displayed >9 is the one
with the smallest empirical U in the scenario. The dashed line is a fit of \13\2 form up to B = 0.05.

However, regular supervised classification datasets consist of (^1,_1), . . . , (^<,_<) – knowledge of p
is missing. Without p, step 2 is impossible. Replacing step 2 with (1/<)∑<

8=1 1{G : G≤g} (.
8

9
) does not

work since it gives the proportion of .9 that is zero with any g > 0. That proportion is not informative
because it is equal to the proportion of samples that does not belong to class 9.
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Appendix B Hyperparameter Search
Figures 17-22 are explained in Section 4.4.
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Figure 17: Thirty hyperopt iterations in scenario B2 with < = 8192.
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Figure 18: Thirty hyperopt iterations in scenario A3 with < = 8192.
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Figure 19: Thirty hyperopt iterations in scenario C5 with < = 8192.
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Figure 20: Thirty hyperopt iterations in scenario B2 with < = 65536.
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Figure 21: Thirty hyperopt iterations in scenario A3 with < = 65536.
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Figure 22: Thirty hyperopt iterations in scenario C5 with < = 65536.
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