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Abstract

Missing data is common in clinical research. How these missing values
are handled has a direct impact on the final study results. Existing medi-
cal studies commonly use complete case analysis to remove observations
with missing values, which has the advantage that it is simple and easy
but depletes the information in the original dataset, and may result in bi-
ased estimated. Multiple imputation (MI) methods are often considered
more reliable than complete case analysis, missing indicator methods and
single imputation methods. However, recent research has shown that by
comparing a number of MI methods, particularly where the underlying
assumptions are undermined, some MI methods may cause more bias in
model estimates than complete case analysis.

To study which methods would perform better under which circum-
stances, this thesis will perform a simulation study, comparing the results
of the above-mentioned techniques under certain types of missingness,
such as MCAR, MAR and MNAR. Complicated connections like miss-
ingness is also correlated with survival time will be considered.

The various parameter settings for the simulation study are based on
a real case study where about 12% of the observations contain missing
values for some variables. In addition to the basic MICE, two other multi-
ple imputation methods are compared, one with interaction terms between
the full variables and the baseline hazard in the imputation model, and the
other with a specific substantive model in the iteration. In this thesis, the
substantive model is Cox model. The simulation studies show that the
one with interaction terms is not significantly different from MICE and
its improvements are of limited applicability. The one with the specific
substantive model is more suitable for complex data types and when there
are strong correlations between covariates. Besides, basic MICE also per-
forms well in data sets with a high proportion of missing binary covariates,
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while the missing indicator method produces large bias in many settings,
even for full case studies.

Keywords: missing values, overall survival, multiple imputation, al-
loHCT
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1 Introduction

Missing values, common in epidemiological studies, are a major problem in ob-
taining valid estimates. Then there are some method used in solving missing values
as following: complete cases analysis method which only uses the observations
without any missing values, missing indicator method which need to add an vari-
able indicates whether it is missing in each observation for the variable with miss-
ing and imputation methods. Simple imputation method replace the missing values
by mean or median. Multiple imputation method which is based on Bayesian the-
ory considers the imputed values are random and derived from the observed val-
ues. In general, multiple imputation methods are more effective than complete case
analyses. However, under certain conditions, its bias may be greater than that of
simpler methods such as complete case analysis. Groenwold [1] and his colleagues
focused on the missing indicator method, comparing it with multiple imputation
and complete case analysis, using real data with incomplete covariates from ran-
domized and non-randomized studies. The results showed that in randomed trials
the missing indicator approach worked better when the data were missing not at
random (MNAR), while it resulted in biased estimates in non-randomized trials .
In contrast, the complete data analysis method performed similar to the missing
indicators methods when data were missing completely at random (MCAR). Simi-
larly, Donders [2] showed that the missing indicator method would produce biased
results when data are MCAR or missing at random (MAR), while complete data
analysis would produce valid results when data are MCAR. Furthermore, multiple
imputation was unbiased under both MCAR and MAR missingness mechanisms.
White and Thompson [3] focused on the missing baseline data in randomized trials
and suggest that missing indicator method was a good approach when the missing-
ness of baseline hazard does predict the outcome.

However in 2009, White and Royston [4] analysed the plausibility of the im-
putation method from a theoretical perspective in conjunction with simulations.
They imputated missing data in Cox models using new methods based on cumu-
lative baselines or marginal hazards. Among the different multiple imputations,
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those based on the Nelson-Aalen estimator had lower bias and higher power in
most simulations. However, as covariates become more predictive of the results,
all MI methods are likely to be biased. The reason is that imputation models are
not entirely correct. Therefore, it can be concluded that MI is not always optimal
in any situation. The fact could be considered as the true underlying models may
be non-linear. The true underlying model is the analysis model whose regression
coefficients are of substantive interest, also called substantive models. According
to this, substantive model compatible fully conditional specification (SMC-FCS)
is a new improving multiple imputation method. In original multiple imputation,
a simple linear model is generally used to interpolate the missing values. Bartlett
[5] proposed this new imputed way of incorporating the substantive model into
the imputation model and pointed out that when the imputation model is specified
exactly and the missing data mechanism is MAR, SMC-FCS will give the same
results as MICE gives an estimate that is consistent with the results obtained from
the complete data.

In a lot of EBMT studies, there are up to 70 % missing baseline data. The
main aim of this thesis is to use a simulation study to compare the performance
of multiple methods in different situations in order to discover when we can use
simple methods (complete case studies or missing indicators) and when we need
more complex methods (MI). For comparing which method is best for missing
data in different situations of a simulation study, bias and root mean square error
(RMSE) will be used to assess the merits of the various analyses. In Section 3,
we will explain how we calculate these two evaluation indexes. Moreover, these
methods will be studied in a simulation study and data from a real case study
combined with findings of.

In this simulation study design, we use different scenrios in which we vary a
number of factors. The first factor considered is missing data mechanism. In the
missing data literature, three kinds of missingness patterns are considered (MCAR,
MNAR and MAR, which are subdivided into those with missing variables that are
only correlated with other complete covariates, and those that are correlated with
both complete covariates and survival time ). The second factor we vary are differ-
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ences in strength of correlation between variables. It is important to note that we
not only consider correlations between covariates, but also considered correlations
between outcome (survival time and status) and covariates. The effects of other
factors such as sample size and the proportion of patients with missing data are
also studied.

In Chapter 2, we discuss the theory for several approaches of dealing with
missing values. Chapter 3 describes simulation study, including the generation
of missing data. Chapter 4 describes an application of these approaches to han-
dling missing values to data from a real case EBMT study. Finally, we discuss the
experimental results and state the limitations of this experiment in Chapter 4.
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2 Method

2.1 Survival analysis

Survival analysis is a method of analysing survival time data and allows investi-
gating the relationship between survival time and factors that are associated with
it. It has a wide range of applications in many fields, such as the survival of a
person or animal, a patient’s condition being in remission (as opposed to relapse
or deterioration), a system or product working properly (as opposed to failure or
malfunction), or even the loss of customers in business. The endpoint event in this
thesis is the time of the last occurrence before death or cessation of observation.

The two necessary components for survival analysis are whether the endpoint
occurred (usually dichotomous, occurred or did not occur) and when the endpoint
occurred (survival time) or,in case the endpoint has not occurred yet, the time the
endpoint was last observed not to have occurred. This is when death has not been
observed in a patient (possibly due to not long enough follow-up, or patients being
lost to follow-up), and it is only known that the patient is still alive at a certain
point in time, the survival time of the patient is said to be right-censored, which is
the most common censored type and considered in this thesis.

More formally, the right censoring time C is known, not the actual but unknown
survival time T. We assume that C is independent of T , and the final survival time
is defined as T̂ = min(T,C). In non-censored data, the survival time T is the time
elapsed from the start of the observation to the occurrence of the end event and
is observable. To mark whether N observations are right-censored, status D =

I(T ≤C) is introduced, where D = 0 indicates a right-censored observation; each
observation, i ∈ {1,2, ...,N} corresponds to (t̂i,di).

There are two types of functions for survival analysis of central interest: hazard
or risk functions and survival functions. The survival function is the probability,
that the survival time of ab individual is greater to t, defined as S(t) = P(T > t).
When t = 0, the survival function has the value 1, and as time passes (the value
of t increases), the value of the survival function becomes progressively smaller,
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that is, a monotonically decreasing function of time t. Based on the above, the
cumulative survival function is derived as F(t) = 1− S(t). The derivative of the
cumulative survival function yields the risk probability function, which represents
the probability of an event occurring at a point in time t:

f (t) =
dF(t)

dt
= lim

∆t↓0

F(t +∆t)
∆t

Ultimately, the hazard function can be obtained from the following calculation:

h(t) =
f (t)
S(t)

= lim
∆t↓0

S(t)−S(t +∆t)
∆t ·S(t)

It represents the probability of the event occurring at the next instant in time
when T the patient has survived up to time point t.

A commonly used method for estimating S(t) is the Kaplan-Meier method (KM
curves). The idea is to write S(t) as a recursive equation. We assume that we have
calculated the value of the survival function S(t1) for time t1 and want to calculate
the value of the survival function for time t2 (t2 > t1) where t2 is the next event
time after t1, then the individual first has to live past time t1, expressed as follows:

S(t2) = prob(alive between t1 and t2)∗S(t1),

with prob(alive between t1 and t2) = 1−d/n,

where d represents the number of individuals that actually had an event at time t2; n
represents the total number of individuals that could have had an event at t2 (which
can be interpreted as the total number of individuals that are still alive and at risk
just point to time t2). Obviously, if no individuals had an event during the period
from t1 to t2 (d = 0), then the value of S(t) would remain the same. So we only
need to go through the recursive formula to update the value of S(t) at time t when
an event is observed to have occurred. The treatment of censored data need to be
paid attention to. The number of objects at risk n, contains individuals censored at
time t and after that in time, but no individual censored before that time point.
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2.2 Cox proportional hazards model

Cox’s proportional hazards (PH) model is one of the most widely used models used
to study the relationship between various covariates and the hazard function and is
a semi-parametric model. From the relationship between the survivor function and
the hazard function an estimate of the survivor function can be found. It is then
possible to make predictions of survival time for current or future patients with
particular values for these factors. It only specifies the relationship between the
influencing factors and the hazard function, and does not qualify the distribution
of survival time. The risk function h(t) can be expressed as follows:

h(t|Xi) = h0(t)exp(β1X1 +β2X2 + ...+βpXp)

whereX1,...,Xp are covariates and β1,...,βp > 0 are the coefficients to be estimated
by the model. The greater the coefficient the shorter the survival time, while β i <
0 means protective factors. exp(βi) is called hazard ratio (HR). h0(t) is the baseline
risk function, which is the risk function with all covariates at zero or the standard
state. In Section 3.1, it will be discussed how to generate survival time by h0(t)
with an assumed distribution.

The Cox model needs to satisfy the proportional hazard assumption, i.e. the HR
is assumed not to change over time. Therefore, a PH hypothesis test is required
after we fit the Cox model. Schoenfeld residuals can be used for validation [6].

2.3 Methods to deal with missing values

It is important to consider the reason for data being missing (e.g. new valu-
able variables are proposed with long studies. For these variables, the absence is
clearly related to variables about time such as year.). Missing baseline values are
usually classified into three categories according to the possible mechanisms of
missing baseline values: missing completely at random (MCAR), missing at ran-
dom (MAR) and missing not at random (MNAR). MCAR indicates that the prob-
ability of missing data occurring is independent of both observed and unobserved
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data. If the probability of missing data occurring is related to the observed variable
but not to the characteristics of the unobserved data, then it is MAR, while MNAR
refers to non-negligible missing data if the missing data in the incomplete variable
depend on both the complete variable and the incomplete variable itself. In realily,
it’s not possible to distinguish between MAR and MNAR, and judgements have to
be made empirically.

In general, in statistical analyses missing values are usually handled by the
deletion of patients with missing values or by imputing new values for the miss-
ing values. These two methods and other methods sometimes used are described
below.

2.3.1 Complete case analysis

The deletion method is divided into removing samples or features where there are
missing ones. This approach is also known as complete cases analysis (CCA),
which is simple and easy to implement, but is recommended when the propor-
tion of missing data is small, otherwise it can lead to bias and increase the bias,
especially in the case of MNAR.

2.3.2 Missing indicator

As the name implies, this method creates a dependent variable to mark it as missing
or not based on the variable that has the missing variable. If it is a continuous
variable X , then an additional dependent categorical variable X ′ needs to be added,
with 0 indicating normal and 1 indicating that it is a missing value. When X is a
categorical variable, then a new category can be added to indicate a missing value,
i.e. the missing value is defined as a new category. In the remainder of this thesis,
we abbreviate missing indicator as MID.

2.3.3 Multiple imputation

The idea behind imputation comes from the idea that imputing missing values with
the most likely values produces less information loss than removing patients with
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partially missing data altogether. Typical examples are single imputation, such
as mean or median imputation that use mean or median of the observed values.
This method is simple and easy to implement. However, by pretending you have
observed values which were missing, the standard errors of estimate are most likely
to be too small. In an attempt to solve the problem of standard errors being too
small, Rubin [7] proposed in the 1970s not to impute a single value but multiple
values.

If we impute m times a value we end up with, m different dataset which are
all separately analysed. All m estimates are then combined into 1 estimate and
a standard error according to Rubin’s rule. This is usually done in three steps as
follows in Figure 1:

Figure 1: Progress of multiple imputation

Imputation: For each missing value, it produces a set of possible imputation
values that reflects the uncertainty (noisy); each value can be used to impute miss-
ing values in the data set, producing m complete data sets. Analysis: Each imputed
data set is statistically analysed using statistical methods specific to the complete
data set. As a result, m sets of parameter estimates β̂i are obtained along with the
corresponding standard error. Pool: The results from each imputed data set are
selected according to Rubin’s Rules[7] to produce the final imputed values. For
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example, the pooled parameter estimate for the parameter βi is

β̄i =
1
m

m

∑
j=1

β̂i j

The variance of parameter estimators is divided into within imputation variance
(represented by the confidence intervals):

Ūi =
1
m

m

∑
j=1

Ûi j

and between imputation variance (horizontal shift between imputations):

Bi =
1

m−1

m

∑
j=1

(β̂i j− β̄i)
T (β̂i j− β̄i)

The overall variance and (1− α)100% confidence interval (CI) referenced a t-
distribution of pooled parameter estimators are

Vi = Ūi +Bi +Bi/m

β̄i± tνi(α/2)
√

Vi, degrees of freedomνi = (m−1)(1+
Ūi

Bi +Bi/m
)2

In the imputation section, if we have only one variable with missing values,
i.e. univariate missing data, if we apply the fitted function directly to imputation,
imputed values do not take into account the added uncertainty and for each missing
value. As an example, we assume there are three variables X1,X2,X3, of which
only X2 contains missing values. First, the complete data is fitted: xi2 = β0 +

β1xi1 + β2xi3 + εi ,x2isacontinuousvariable, then each missing value is imputed
based on the value of the other variable in the observation: x̂i2 = β̂0+ β̂1xi1+ β̂2xi3.
This method can be further improved by taking into account the standard error of
the parameter estimators and the uncertainty of the imputed value (variation of
the residuals). The final value can be taken as its mean and the variation can be
obtained directly.
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However, when missing values occur in more than one variable, the imputa-
tion process is a challenge. In conjunction with the Markov chain Monte Carlo
(MCMC) idea, there are two ways of imputing multivariate data: joint modelling
(JM) and fully conditional specification (FCS), also known as multivariate impu-
tation by chained equations (MICE). JM, developed by Schafer [8], requires spec-
ifying a multivariate distribution containing missing values and using MCMC to
imputed from the conditional distribution. In contrast, MICE imputes multivariate
missing data on a variable-by-variable basis, based on the univariate missing data
imputation described above. in the absence of a suitable multivariate distribution,
MICE clearly outperforms JM. This paper selects MICE and one of its modifi-
cations, substantive model compatible fully conditional specification (SMC-FCS).
The details of this two methods are as follows.

2.3.3.1 MICE

MICE assumes that the missing data is MAR[9], which means the probability that
a value is missing is dependent on other observed values nd not on unobserved
values, so it is also possible to predict this missing value from other values. We
consider X = {X1,X2, ...,Xp} as the p partially observed covariates and let X− j =

{X1,X2, ...X j−1,X j+1, ...,Xp}, q fully observed covariates Z = {Z1,Z2, ...,Zq} and
fully observed outcome Y. We assumed a missing indicator matrix R, where 0
means that the corresponding position in X is missing and 1 means that there is
an observed value. Observed and missing in X are denoted by Xobs and Xmis

respectively. Then the MAR hypothesis can be expressed as: P(R|Y,X ,Z) =
P(R|Y,Xobs,Z). The parameters are denoted as θ .

Combined with the above process of doing imputation for univariate missing
data, the MICE process is as follows:
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MICE algorithm for hth imputed dataset
1.Starting imputations X0

j is randomly drawn from Xobs
j

2.The posterior distribution of θ is sampled iteratively from conditional
distributions of the form:

P(Xi|X−i,Z,Y,θi), i ∈ 1, ..., p
3.for t in 1,...,q:

for j in 1,...,p;
Draw parameters θ ∗tj ∼ P(θ t

j|Xobs
j ,Z,Y,X∗(t−1)

− j ,R)

Draw imputations X∗tj ∼ P(Xmis
j |X

∗(t−1)
− j ,Z,Y,R,θ ∗tj )

end for
end for

Here, q need to satisfy convergence, i.e. the sampling distribution does not
change any more. But as the previous imputation of X∗tj goes to the next loop
iteration by association with other variables, rather than directly. This speeds up
convergence, so the value of q can be a very small value, and in Chapter 3 we
choose q = 2. Although it seems to be quite small, it works fine most time in
Chapter 3. Once the above process is complete, an imputed data set is formed. To
obtain m imputed data sets, the above process needs to be run m times.

Under the Cox model, we use two imputation models to impute missing Xs.
Firstly, with the log-likelihood of outcomes T , D and Bayes’ algorithm, we could
get the conditional distribution of X with complete covariates Z:

logp(T̂ ,D|X ,Z) = Dlogh(T̂ |X ,Z)−H(T̂ |X ,Z)

= D(logh0(T̂ )+βXX +βZZ)−H0(T )exp(βXX +βZZ),

logp(X |T̂ ,D,Z) = logp(X |Z)+D(βXX +βZZ)−H0(T̂ )exp(βXX +βZZ)+ const
.
= α0 +α1D+α2H0(T̂ )+α3Z.

Here, the Cox’s PH model is h(t|X ,Z) = h0(t)exp(βXX +βZZ) and α is equal to
θ in the MICE algorithm above. For increasing the accuracy of approximation, an
interaction term α4Z ∗H0(T̂ ) could be added in the formula.
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2.3.3.2 SMC-FCS

One of the advantages of MI is that it separates the process of dealing with the
missing values (the Imputation part) from the analysis of the completed data (the
Analysis part). However this division could cause bias. In the case of imputation of
partially observed covariates, the imputation may be generated from a model that
is incompatible with the substantive model, which may lead to biased parameter
estimates (asymptotic approximations) in the analysis part. According to the def-
inition of compatibility given by Liu et al.[10], when there is no condition equal
to the joint model of two conditional models, such two conditional models are
incompatible. If the substantive model contains non-linear covariates or interac-
tions of covariates, the imputation model chosen by default will be incompatible
with the substantive model. For example, we usually use the logit model as an
imputation model to impute the missing values in binary variables. However, if
the substantive model (true underlying model) contains an interaction term of this
binary variable, i.e. this binary variable interacts with other variables and the in-
teraction has an effect on the outcome (survival time and status), the default logit
model does not take this interaction into account and could impute biased data.
In order to avoid incompatibility between univariate imputation models and solid
models in MICE, Bartlett et al.[11] proposed substantive model compatible fully
conditional specification (SMC-FCS).

Based on Bayes’ theorem, the conditional distribution can be expressed as:

P(X j|X− j,Z,Y ) =
P(Y,X j|X− j,Z)

P(Y |X− j,Z)

=
P(Y |X j,X− j,Z)P(X j|X− j,Z)

P(Y |X− j,Z)

∝ P(Y |X ,Z)P(X j|X− j,Z)

Thus, using the density proportion P(Y |X ,Z,ψ)P(X j|X− j,Z,θ j) to impute X j could
make the imputation model automatically be compatible with the substantive model
P(Y |X ,Z,ψ), where ψ are the parameters of substantive model and θ j is a vec-
tor of imputation model parameters for given jth iteration. The choice of model
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P(X j|X− j,Z) could be same with the normal FCS above. At the tth iteration, SMC-
FCS algorithm imputes missing values in X j depending on both θ j and the substan-
tive model parameters ψ , by performing the following draws:

θ
t
j ∼ f (θ j)P(Xmis

j ,X jobs|X∗t− j,Z,θ j)

ψ
(t, j) ∼ f (ψ)P(Y |Xmis

j ,Xobs
j ,X∗t− j,Z,ψ)

where f (θ j) and f (ψ) denote uninformative priors. Being similar with MICE,
the SMC-FCS algorithm uses a random selection from the observed values as the
initial value. In this paper, the substantive model is a Cox model, then outcome
Y is survival time T̂ = min(T,C) as well as status D, and the substantive model
can be expressed as h(t|X) = h0(t) f (X j,X− j,Z,β ). The baseline hazard h0(t) is
represented parametrically by a finite set of parameters λ , so that ψ = (β ,λ ). In
summary, SMC-FCS adds elements of the substantive model to the imputation
model of simple MICE, so that the data generated is more closely aligned with the
substantive model that we subsequently use to analyse.
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3 Simulation

In each Monte Carlo replication, we generate N (sample size) individuals. The
whole simulation process can be summarized as follows:

Step 0: For each Nrep Monte Carlo replications:

Step 1: Generate Covariates Zc,Zb,Xc,Xb.
Z means it is a complete variable and X means it has missing values.

c means continuous variables and b means binary variables. Pay attention
to the correlation between these covariates (Section 3.1.1)

Step 2: Generate Survival time and status.
Use weibull distribution (Section 3.1.2) depending on covariates sam-

pled in the previous step. Censoring time is generated from exponential
distribution.

Step 3: Model fitting I.
Calculate the parameters and CI based on the complete data, set as

benchmark.

Step 4: Generate missing values in X c,X b.
The main scenarios are MCAR, MNAR and MAR.(Section 3.13)

Step 5: Model fitting II.
Use the five methods presented in Section 2 in the amputed dataset,

and parameters and CIs are calculated based on the processed dataset.
Step 6: Evaluation.

Compute bias and RMSE by using the results of Step 3 and Step 5.
bias of coefficient βi: 1

Nrep
∑

Nrep
j (β̂i j−βi)

RMSE of coefficient βi:

√
∑

Nrep
j (β̂i j−βi)2

Nrep

The bias of the parameter estimates are given prior to compare. The definition
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of the Monte Carlo standard error for the bias is:

MCSE =

√√√√ 1
Nrep(Nrep−1)

Nrep

∑
i=1

(β̂i−β )2 .
=

√
variance of β̂

Nrep
.

The number of repetitions Nrep is set to 100, taking into account the time of the
experiment. We found that the standard errors SE(β̂1), SE(β̂2) of the estimated β̂1

and β̂2 are 0.149 and 0.107 respectively in the base scenario with complete data.
These are the largest observed empirical standard errors in small trials. According
to these, MCSE(β1) = 0.0149 and MCSE(β1) = 0.0107.

This simulation study was conducted using version R3.6.3 [12]. Survival mod-
els as well as proportional hazard models were analysed using the coxed package
version 0.3.3 [13] as well as the survival package version 3.1.12 [14]. Incom-
plete data were imputed based on the proportional hazard model using the smcfcs
package version 1.5.0 [11] and missing data were generated and imputed using the
mice package version 3.9.0 [15]. Modifications applicable to this simulation study
were made based on the PoisBinOrdNor package version 1.6.3 [16], resulting in
the transformation of the correlation coefficients.

3.1 Data-generating mechanisms

3.1.1 Covariates

In each Monte Carlo replication in this simulation, there are four variables, two
are complete, labelled Z, and the other two are generated and replaced partially in
Section 3.1.3 for missing values, labelled X . Of the two complete Zs, one is the
continuous variable Zc and the other is the binary variable Zb. Similarly, the two
Xs are Xc,Xb.

These parameters are estimated based on real case data. To represent the age
of patients and donor, Zc ∼ N(45.87,12.56) and Xc ∼ N(36.74,12.50). Referring
to the Karnofsky score, the CMV status categorical variable, Xb ∼ Bern(0.25) and
Zb ∼ Bern(0.33). Before fitting substantive model for analysis, two continuous
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covariates Xc and Zc are scaled as follows: (Xc−45)/10 and (Zc−45)/10.
Given that covariates are potentially correlated with each other, two correlated

continuous-type variables can be sampled from a binary normal distribution. How-
ever, it is somewhat tricky to take into account the correlation between binary and
continuous variables in the generation. Referring to the point-biserial correlation
proposed by Demirtas et al[17]. it is possible to generate covariates that are eligi-
ble. In this paper the correlation between covariates was all set to ρ and varied to
ρ = {0.01,0.2,0.5} in the simulations.

In brief, four variables are generated using a multivariate normal distribution
based on a specific correlation matrix. Two of these variables are transformed into
binary variables using the dichotomous method. Then we need to convert some
correlation coefficients ρ into new correlation coefficients. We assume X1, X2 both
follow standard normal distribution N(0,1), and X3 = I(X1 > k)∼ Bern(p). Here,
k is dichotomization threshold, and when X1 ∼ N(0,1), P(X1 < k) = p. Thus,
E(X3) = p,Var(X3) = p(1− p). If δ12 denotes the correlation between X1 and X2,
then X2 = δ12X1+ε, ε ∼ N(0,1−δ 2

12). Further, the correlation between X3 and X1

δ13, and the correlation between X3 and X2 δ23 can be calculated as follows:

δ13 =
Cov(X1,X3)√

Var(X1)Var(X3)
= E(X1,X3)/

√
p(1− p) = fN(0,1)(k)/

√
p(1− p),

ρ = δ23 =Cov(X2,X3) =Cov(δ12X1 + ε,X3)

= δ12Cov(X1,X3)+Cov(X3,ε) = δ12δ13,

fN(0,1)(k) denotes the value of standard normal distribution density function f (x)
when x = k.

Moreover, if X1 and X2 are both binary variables, phi correlation Φ (Pearson
correlation applied to dichotomous data) is used. It is calculated as follows:
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Step 1: Calculate a two by two contingency table.
X2 = 0 X2 = 1

X1 = 0 A B
X1 = 1 C D

Step 2: Φ = (AD−BC)/
√

(A+B)(C+D)(A+C)(B+D) = ρ

After that, the ”phi2tetra” function in R can be used to convert the phi correla-
tion into the desired correlation. By using the method described above, the original
correlation coefficient matrix can be transformed into a correlation coefficient ma-
trix for generating multivariate normal distributions.

3.1.2 Survival time and status

By observing the real cases in Chapter 4, the assumption of a constant hazard func-
tion does not hold for the data set in alloHCT studies. And in the initial part, the
risk rises to a high value, then decreases when the survial time is longer. Therefore,
the Weibull distribution, which is characterised by two positive parameters, is used
to sample the lifetime T . In Weibull(λ ,α), the parameter λ is known as the rate
parameter, while α is the shape parameter. Hazard function which is introduced
above can be expressed as h(t|X) = h0(t)exp(β1(Zc +Xc)+β2(Zb +Xb)), Cumu-
lative hazard funtion is H0(t) = λ tα . According to the probability density function
of the Weibull distribution, the baseline hazard can be written as h0(t) = λαt(α−1).
For α > 1, the hazard function increases and for 0 < α < 1, the hazard function
decreases.

Let Y be a random variable following the distribution function F, then we have
U = F(Y ) following a uniform distribution with interval [0,1]. Combining this
with 1−U ∼Uni f (0,1), the generation algorithm of T could be derived as fol-
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lows:

1−U = exp(−H0(t)exp(β1(Zc +Xc)+β2(Xb +Zb))),

T = H−1
0 (

−log(1−U)

exp(β1(Zc +Xc)+β2(Xb +Zb))
)

= (
−log(1−U)

λ · exp(β1(Zc +Xc)+β2(Xb +Zb))
)1/α .

At the same time, censoring time C is independently generated from a expo-
nential distribution with parameter λC, i.e. C ∼ Exp(λC). The survival time is
denoted as T̂ = min(T,C) with status D = I(T ≤C). In this simulation study, we
set λ = 0.044,α = 0.634,λC = 0.08 which are estimated by Maximum Likelihood
function with real case data. The formulas of this part could be found in Appendix.
Regarding the coefficients, we varied β1 = {0.05,0.2,0.5} and fixed β2 = 0.5 in
the simulations.

(a) KM curves of a sampling dataset (b) KM curves of real case dataset

Figure 2: KM curves

Figure 2 shows the KM curves of survival time in one simulated dataset and the
real dataset separately. It could be seen that the trends are same, but the number
of individuals in tails is quite small. Only 5 individuals exist at the time point 72
months. If we check the density of survival times in the real dataset in Figure 3, it
is obviously different from a normal Weibull distribution (blue line). In the right
tail, it changes to have more individuals instead of being infinitely close to 0.
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Figure 3: Density plot of survival time in real dataset.

3.1.3 Missing data mechanisms

In the simulation experiments in this paper, there are two variables Xc and Xb that
need to be replaced with some of their missing values before proceeding to the
next step in the analysis. Simple univariate amputation procedures typically do
amputation on one variable at a time, i.e. the missing values are now generated in
Xc, followed by Xb. Although there are a number of modified univariate amputation
procedures, all are specific to a particular data set.

Consider that the causes of missingness are not only independently random,
but may be correlated with each other, depend on values of covariates, or depend
on the variables themselves. The proportion of missingness is hardly guaranteed
to be the same under different missingness mechanisms because of the undergone
of missingness mechanism. Therefore, this thesis uses the multivariate amputation
method proposed by Rianne Schouten [18], and the disadvantages of using more
univariate amputation procedures she also elaborates on. Figure 4 shows how to
ampute a dataset with 4 variables and N individuals.

First, we need a pattern matrix to illustrate the possible forms of missing values,
namely Xc only is missing, Xb only is missing, or both Xc and Xb are missing. Here,
we set the probability of occurrence to be equal for all three cases. If we use 0 to
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Figure 4: Progress of amputation. In this simulation study, Freq I = Freq II = Freq III = 1/3. Thus, the subsets
of three patterns have same size respectively.

mark non-missing and 1 for missing, we get the following pattern matrix:

Zc Xc Xb Zb

Tpat =

 0 1 0 0
0 0 1 0
0 1 1 0


Depending on the number of patterns, the original dataset will first be divided

into 3 random subsets. The size of each subset is then determined by the likelihood
of each pattern occurring. Since we set them equal, the three subsets in this paper
are approximately equal in size.

The concept of weighted sum scores was introduced in order to link miss-
ing values with other value relationships. According to the weighted sum scores,
each observation is given a probability of being missing. Weighted sum scores are
calculated as the outcome of a linear regression equation of the observed values
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{Zc,Xc,Xb,Zb} according to pattern matrix Tpat , where the coefficients are deter-
mined by the researcher. The weighted sum score of observation i is calculated as
follows:

wssi = ω1Zci +ω2Xci +ω3Xbi +ω4Zbi,

where {ω1,ω2,ω3,ω4} are the corresponding pre-specified weights. The weight
of each variable controls its effect on the weighted sum score. The sign of the
weight value is also meaningful. Positive weights make the weighted sum score
larger and thus increase the probability of being missing, while negative weights
have the opposite effect. If the absolute value of the variable weight is large, this
means that the variable has a greater effect on missingness. Therefore, variables
that are more strongly correlated with missing variables have greater weights. By
adjusting for differences in weights, the type of missingness can then be adjusted.
When all ω equal to zero, no variable would play a role in generating missing
values. In the case of MCAR, all weights are equal to 0. If we want to generate
data as MAR, we can do this by setting the weights of the missing variables to zero
and only adjusting the weights of the complete variables. When only the missing
variable has a non-zero weight, the data is MNAR. If the missingness is connected
with survival time, a term ω5T could be added in the formula.

In this thesis, we set all the weights uniformly to ω . When we want to generate
MAR data, the weight of the complete variable is ω . And when the data is MNAR,
the weight of the missing variable is ω . In the MCAR condition, there will be no
different scenarios in terms of weights which are all equal to 0. In addition, in the
MAR scenario, we can also take survival time into account and divide it into those
where only the full variable has an effect and those where both the full variable and
survival time have an effect. Because the missing proportion of MAR missingness
depends on the value of the observed variable, we can generate a MAR missingness
data by assigning 0 weights to all variables that will be amputed. In contrast, if we
choose to assign a non-zero weight to one or more of the variables that will be
amputed, the missingness mechanism generated becomes MNAR.
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3.2 Scenarios

We compared the performance of the different methods in a variety of setting data,
Figure 5 shows the factors which were varied in the different scenarios. Each factor
has a base value. This value is based on values observed in the real case study.
When one factor from the baseline model is changed, all other factors remain the
same with these base values. This means that we only change one factor at a time.
In imputation part, continuous covariates were imputed using linear regression and
binary covariates were imputed using logistic regression.

Figure 5: Different scenarios parameter setting.Each point would be amputed missing values under MCAR,
MNAR, MAR and MAR-T missingness mechanisms and would be analyzed with 5 methods.
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(a) KM curves of Xb (b) KM curves of Zb

Figure 6: KM curves of a simulated dataset

3.3 Results

Before proceeding with the overall model building, we first consider whether the
generated variables have different risks at different levels. Therefore, we per-
formed a simple univariate analysis using KM curves. In Figure 6, it can be
observed from the KM curves constructed for the two categorical variables that
different categories of the same variable do have different survival functions. The
p-value in the graph is the result of the log-rank rank test, where less than 0.05
means that the difference between the different groups is statistically significant.

Table 1 and 2 shows the bias and RMSE of the results which are obtained in
different scenarios when using different methods under MCAR missingness. Table
3 and 4 shows the bias and RMSE of the results which are obtained in different
scenarios when using different methods under MAR-T missingness. Tables of
bias and RMSE values for MAR, and MNAR are included in the Appendix A. By
comparing bias and RMSE, the inclusion of interaction terms in the imputation
model of MICE does not reduce it significantly, namely column MI and MI-Int are
quite same, so the subsequent discussion combines MI and MI-Int into a unified
discussion of MICE.

CCA performs well in most scenarios of MCAR, especially in estimating the
parameters of dichotomous variables, like column CCA compared with other columns
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in Xb part in Table 1 are smaller except under small sample size dateset. MICE and
MID are less biased when the data set is small. In particular, MICE gives better
parameter estimates for the missing variables, while MID gives better parame-
ter estimators for the complete variables. At the same time, there is a significant
increase in the bias of analysis with complete data (CD) with increasing percent-
age of mssingness indicating that the overall bias of parameter estimates increases
significantly when sample size decreases due to an increase in MCSE, which cor-
roborates Morris and White’s findings [19]. The bias in MID is severe on all co-
variates when the proportion of missing observations is elevated, and while bias
in SMC-FCS is severe only on variables containing missing values. Although the
bias estimated by MICE was smaller than that of CCA on the complete variables,
it was much larger in the missing variables, especially when there are missing di-
chotomous variables, than in CCA (about 80%).

Correlation between covariates can also have an impact on accuracy. When the
correlations between covariates are strong, SMC-FCS produces the least bias, fol-
lowed by CCA, both are almost unbiased. Meanwhile, MID showed a significant
increase in bias with increasing correlation. There is a similar increasing trend for
MICE, but its utility is comparable to SMC-FCS for dichotomous variables with
missing covariates. In terms of the values of the parameters, the bias of the SMC-
FCS is smaller when the actual parameter estimators are larger, i.e. when the HRs
are larger. The bias of MICE does not change very much when the HR increases,
except for continuous variables with missing variables. This could be seen in the
rows of strength of association in Table 1.

MCAR can be seen as a special missingness mechanism of MAR. If we com-
pared Table 1 and 2 with the tables of MAR in Appendix A, the almost unbiased
case mentioned above can only be called less biased at this point due to the rela-
tionship with other covariates, despite the same trend in bias. And when the actual
parameter values change, the bias produced by MICE also changes significantly,
although it is still the SMC-FCS that performs most consistently and optimally.

When in the presence of MAR-T missingness (the results are in Table 3 and 4),
the bias of CCA is noticeable in many scenarios. First, for the complete continuous
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variable Zc, CCA and MID produced significantly biased results in eight different
scenarios. In addition, for the parameter estimators of the other complete variables,
the MID results are also strongly biased. SMC-FCS is better than MICE only when
the correlations are strong (between covariates and between continuous covariates
Zc,Xc and outcome). Other times MICE produces relatively small biases, but the
differences are quite small that the differences of bias are around 0.01. The results
for the other covariates show that CCA is likely to outperform SMC-FCS when
the sample size is very small. However, for larger sample sizes, the least biased
method changes from CCA to SMC-FCS.

(a) Coefficients of Xb (b) Coefficients of Xc

(c) Coefficients of Zb (d) Coefficients of Zc

Figure 7: Box plots of Monte Carlo estimated coefficients in different base scenarios. Red line means
the true value. The left and right line of the boxes mean the 25th and 75th percentile. The points are outliers and the
bold short black lines are medians. Xb and Xc are the binary and continuous variable with missing values. Zb and Zc
are the complete binary and continuous variable.

25



When missingness is MNAR, when the factor is related to increase correla-
tion, the bias increases more significantly than the MAR. When the correlation
between covariates increased, CCA produced less bias than SMC-FCS, especially
the parameters of categorical variables.

When comparing RMSEs, the differences between the several methods are
small and the RMSE for CCA is usually slightly larger. The value of the RMSE
incorporates variance and bias. Therefore, although CCA produces small bias at
times, its variance is large and the actual results are likely to be in its confidence
interval. In the actual case analysis, attention needs to be paid to the confidence
intervals of the parameter estimates.

The results of the above bias can be due to individual specific replications.Therefore
all 100 individual simulation estimates from the baseline scenario are shown in the
box plot in Figure 6. It is clear that the MID and CCA bias is relatively large,
especially with MAR-T missingness. In (c) and (d) of Figure 7, the boxes (in-
terquartile) of MID and CCA in Zb and Zc under MAR-T missingness are totally
deviate from the true value. SMC-FCS performs a little better than MICE. How-
ever, when it comes to MNAR missingness, CCA is the method with less bias even
than SMC-FCS. In both the MAR and MCAR missingness, SMC-FCS generally
produces less biased results, while MICE and CCA are slightly more biased, but
still within acceptable limits.

Other box plots are shown in the Appendix B. In the case of smaller sam-
ple sizes, CCA produces significantly larger deviations. At the same time, MID
performs slightly better in some cases with missing variables, but there is still a
significant bias in the parameter estimates for the complete variables. In addition,
the performance of MICE and SMC-FCS is comparable for smaller data sizes.
When the correlation between the variables themselves is small, it can be found
that the overall parameter estimates are closer to the true values. When the cor-
relation between the variables themselves is higher, SMC-FCS and MICE are the
methods that produce less bias. Furthermore, it could be concludes that CCA and
MID produce larger biases in MAR-T when it is estimating the parameters of the
complete variables.
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4 Application

This chapter will analyse a real case study. The original aim of this case was to
compare philadelphia+ chronic myelogenous leukemia (Ph+ CML) patients can-
didate for allogeneic hematopoietic cell transplantation (allo-HCT) from a hap-
loidentical (haplo) donor for Ph+ CML might be advantageous in compar- ison to
matched related donor (MRD), matched unrelated donor (MUD) or mismatched
unrelated donor (MMUD). For the purpose of this article, we will focus only on
the overall survival endpoint.

4.1 Clinical background

Chronic myeloid leukaemia (CML) is a type of leukaemia (commonly known as
blood cancer) that causes abnormal proliferation of white blood cells and usually
develops slowly, over a period of months or even six months, before becoming
life-threatening. The disease is caused by a genetic mutation in the blood-forming
cells of the bone marrow (BM). This genetic mutation can be detected in about
90-95% of patients with chronic myeloid leukaemia.

The use of tyrosine kinase inhibitors (TKI) was introduced in clinical practice
in 2001. However, the number of people treated with allo-HCT for CML has
remained stable at around 300 per year in recent years in Europe. Although TKI
reduces the frequency of advanced disease, it does not perform well at the end
stage of the disease. Based on previous studies, a combination of both modalities is
recommended for treatment. Thus, in the first chronic phase (CP1), TKI resistance
was the most common transplant indication for allogeneic haematological stem
cell transplantation ( allo-HSCT).

In recent years, the use of haploidentical donors (Haplo/MMRD) has gradually
increased thanks to improved protocols for complete T-cell transplantation, and its
transplantation results are comparable to those of matched related donor (MRD),
matched unrelated donor (MUD) or mismatched unrelated donor (MMUD). It
seems that for high-risk patients, Haplo is even more beneficial.
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4.2 Data description

To explore whether Haplo has an advantage, the following covariates were in-
cluded in the analysis when estimating hazard ratios: Xage refers to the age of
patients, Xdon refers to the donor type, Xks refers to Karnofsky score (This runs
from 100 to 0, where 100 was ”perfect” health and 0 was death.), Xcmv refers to
Cytomegalovirus in patient (2 classes are + and−), Xric refers to reduced intensity
conditioning (2 classes are reduced and standard), Xstage refers to disease status (4
classes are CP1, CP2 or more, accelerated phase (AP) and blast crisis (BC)) and
Xss refers to source of the stem cell (bone marrow (BM) or peripheral blood (PB)).
The total number of patients in this dataset was 1686, of which 534 (31.7%) pa-
tients died and 171 (10.1%) patients were censored. The mean age of the patients at
transplantation was 45 years. Table 3 shows the descriptive statistics and the corre-
lation matrix for covariates. Among them, Xage and Xdon are complete covariates.
As most of these variables are categorical and have missing values, the correla-
tion coefficients here are calculated using Spearman’s correlation coefficients for
pairwise complete observations which are 1482 patients.

Table 5: Descriptive analysis of covariates

mean median [min, max] Nmissing
Xage 45.2 46.1 [18.0,73.7] 0

class size
(% among N) Nmissing class size

(% among N) Nmissing

Xdon HD 136 (8.1) 0 Xric reduced 552 (32.7) 24 (1.4)
MRD 661 (39.2) standard 1110 (65.8)
MUD 677 (40.2) Xstage CP1 718 (42.6) 33 (2.0)
MMUD 212 (12.6) CP2 or more 445 (26.4)

Xks >=90 1240 (73.6) 104 (6.2) AP 194 (11.5)
<90 342 (20.3) BC 296 (17.6)

Xcmv + 1062 (63.0) 68 (4.0) Xss PB 1418 (84.1) 8 (0.5)
- 556 (33.0) BM 260 (15.4)

PB: peripheral blood. BM: bone marrow. CP: chronic phase,1 or 2 means the number of chronic phase.
AP: accelerated phase. BC:blast crisis also called blast phase.

32



Table 6: Correlation matrix
Xage Xdon Xks Xcmv Xric Xstage Xss

Xage 1.0000 0.0828 0.0702 -0.0056 0.4213 -0.0256 -0.1229
Xdon 0.0828 1.0000 -0.0183 -0.1366 0.0813 -0.0958 -0.1530
Xks 0.0702 -0.0183 1.0000 0.0490 0.0911 0.1259 -0.0058

Xcmv -0.0056 -0.1366 0.0490 1.0000 -0.0550 0.0890 0.0363
Xric 0.4213 0.0813 0.0911 -0.0550 1.0000 -0.0413 -0.1170

Xstage -0.0256 -0.0958 0.1259 0.0890 -0.0413 1.0000 -0.0363
Xss -0.1229 -0.1530 -0.0058 0.0363 -0.1170 -0.0363 1.0000

It is clear to see that most of the variables are weakly correlated with each
other, except for Xric and Xage which are weakly correlated.
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4.3 Analysis

Figure 8: Forest plot with estimated HR and 95% CI for the Cox model. On the x-axis are the hazard
ratios. (need to change to plot: on the log scale where the confidence intervals are symmetric.)
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The choice of covariates for the above model was determined based on univariate
analysis as well as the research context of the subject. The proportional hazard
assumptions of the Cox model were verified to be satisfied. Unlike in the simu-
lation experiments, there were covariates not in the model that were added as one
of the complete variables during the imputation process. For example, the year
in which the observations were collected. Observations from earlier years may
have more missing values due to improvements to the way data are collected. In
addition, to ensure that the iterative process in smcfcs converges, Niter is raised
here to 5. No non-convergence was observed through the observations. In the
present data, the only variables with missing values are multicategorical and di-
chotomous variables. Thus, dichotomous covariates were imputed using logistic
regression, and unordered categorical variables were imputed using multinomial
logistic regression. Figure 8 summarises the estimated HRs which is the exponen-
tial of coefficients, and associated 95% confidence intervals (CI), which are based
on the pooled standard errors and the t-distribution.

It could be seen that the CI of CCA is slightly wider than the other methods.
CCA produces larger differences from the other methods in the estimation results
for Xdon, Xks and Xstage. However, this difference is not in fact on the variables as
a whole. Similarly, for the estimation of disease status, the apparent difference is
between the categories BC and CP2 or more, and by looking at the distribution of
the number of categories in the descriptive statistics, it is possible to speculate that
one of the reasons for this may be an imbalance in the proportion of the number
of categories. For example, the number of haplo in the donor type is low and the
information is already limited. By looking at the classification of observations with
missing values in the donor type it can be found that about 10% of haplo need to be
excluded from the complete case analysis, again reducing the information in this
category. The difference in performance between MICE and SMC-FCS is not very
large. A similar situation is found in Bartlett’s article [20].
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5 Discussion

In this paper, we evaluate the performance of complete cases analysis, missing in-
dicator, MICE and SMC-FCS for processing Cox models with missing data. Based
on the characteristics of the data in the real case studies, we consider categorical
variables as well as continuous variables. Although there is no missing values in
the continuous variable we used, it has many missing values in other continuous
variables from the real data set, like age of donors. This is a result of the analysis
in a specific data structure. In the simulation study, we considered a variety of sce-
narios, which covered parameters such as the type of missingness, and the strength
of association. In each scenario, we modified only one variable each time. For the
missing data, we emphasise that the overall missingness mechanism is of one type.
For the analysis of the results, we have focused on bias and RMSE.

The simulation results show that although CCA theoretically loses a lot of data
information, it can perform very well in the MCAR missing scenario and that it
generally performs well for parameter estimation of categorical variables, whereas
MID has very limited applications and even performs poorly in MAR. We consider
that MID produces a large bias by adding new variables in order to express the
missing case of one variable, which has some impact on the nature of the model.
When missing variables are correlated with other variables, the new variables in-
troduced thus also have an impact on the other variables. At the same time, the
missing proportion of baseline covariates is not balanced across different groups is
also one of the reason that missing indicator causes bias results. Both SMC-FCS
and MICE also show unbiased performance in MCAR as well as MAR scenarios.
In general SMC-FCS outperforms MICE, especially when the correlation between
the variables is strong. To improve performance, MICE can be extended to include
and interaction between covariates and the cumulative hazard. However, this ex-
tension is not lead to significant different results compared to the MICE imputation
model without interaction in the scenarios studied. As the proportion of missing
data increases, the performance gap between MICE and SMC-FCS becomes larger.
From the imputation principles of MICE and SMC-FCS, it is clear that they work
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mainly in the context of MAR missingness. However, when the missingness is
correlated with survival time MAR-T, all methods show more bias than normal
MAR. Besides, surprisingly MICE and SMC-FCS produce even more bias than
CCA, like in MNAR missingness mechanism.

There are some limitations to this paper. The first is in the setting of the sce-
narios. In addition to dichotomous and continuous variables, ordered categorical
variables and multi-categorical variables could have been included in the discus-
sion. In the process of generating missing data, many adjustable parameters can
be found, and there are many more complex missing data scenarios discussed for
study, for example, some data are MCAR and some are MAR. if one wants to
have multiple missing mechanisms in the same dataset, this can be achieved using
adjustments to the pattern and corresponding weight score. For example, weak
MAR is composed of part MCAR and part MAR, as discussed in Schouten’s paper
[18]. These more complex scenarios could be studied in a new study. Secondly,
the number of iterations of SMC-FCS was set relatively low in order to speed up
the experimental time. This resulted in very few cases of non-convergence of re-
sults during the experiment. At the same time, the sample sizes in this thesis are
small in the generated data. If we check the parameter estimation results based on
the complete data (CD) it is also biased sometimes. Consider the fact that there
are many other endpoints such as Relapse and NRM in the actual clinical analysis.
Further sub-exploration could also include modelling with other endpoints. In this
article, the inclusion of interaction terms in MICE did not have a significant impact
on performance.However, in the results of White and Royston’s study[4], the two
approaches are different. Moreover, for time saving, we only use 100 replications
in Monte Carlo simulations. If the number of replications could be increased to
1000, the results might be more reliable.

The aim of our study is to compare which method is better in different scenar-
ios. Looking at the results of the simulation experiments together, SMC-FCS is the
most robust approach. It gave more stable results when there was more missing
data and complex relationships between variables. Although we spent a lot of time
running SMC-FCS during the simulation study, it took about four times as long as
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MICE, this is due to the Monte Carlo replications. In the real case, the imputation
only needs to be done once. The time consuming problem can be ignored unless
the size of the data set is large and the imputation parameters are set relatively
large. MID can easily produce results with large bias in similar data sets. The
simplest implementation CCA may produce unbiased results in many scenarios,
such as MNAR missingness and when there is relatively little missing data. Com-
bined with the results of the previous section on real data, CCA and SMC-FCS can
be applied in combination, and take into account the confidence intervals of the
coefficients estimated by these two methods.
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Appendix

A. MLE of Weibull distribution parameters
Weibull Cumulative distribution function (CDF) and Probability density func-

tion (PDF) are as following with shape parameter α and scale parameter β :

F(x) = 1− e−(x/β )α

,

f (x) =
α

x
γ

αe−γx

here γ = α/β . Definition of censored likelihood function is:

L =
n

∏
i=1

( f (xi))
δi(1−F(xi))

1−δi,

δi =

{
1 if x≤ threshold,
0 if x > threshold.

Substitute the CDF and PDF into both sides of the likelihood function to find the
logarithm, and simplify to find the log-likelihood function:

logL =
n

∑
i=1

(−γ
α
i +δiαlnγi +δ ln

α

xi
)

In order to maximise this natural function for the parametric expression, find the
first order derivative of the above equation and make it zero:

n

∑
i=1

γ
α
i −δi = 0 ⇒ β = (

∑
n
i xα

i

∑
n
i δi

)
1
α ,

n

∑
i=1

(−γ
α
i lnγi +δilnγi +

δi

α
) = 0,
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Then we assume h(α) = ∑
n
i=1(−γα

i lnγi + δilnγi +
δi
α
) and with using Newton-

Rapson method:

h(α) = n(−∑xα
i lnxi

∑xα
i

+
1
α
+

1
n ∑δilnxi),

h′(α) = n(− 1
α2 +

∑xa
i (lnxi)

α

∑xα
i

−
(∑xα

i lnxi)
2

(∑xα
i )

2 )

Using Newton iterative method, the following equation can be solved for h(α) = 0
by iterating over the following formula. Then α and β could be find step by step.

αk+1 = αk−
h(αk)

h′(αk)

B. Bias and RMSE tables
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C. Box plots

(a) Coefficients of Xb (b) Coefficients of Xc

(c) Coefficients of Zb (d) Coefficients of Zc

Figure 9: Box plots of Monte Carlo estimated coefficients in different scenarios when sample size
is equal to 200.
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(a) Coefficients of Xb (b) Coefficients of Xc

(c) Coefficients of Zb (d) Coefficients of Zc

Figure 10: Box plots of Monte Carlo estimated coefficients in different scenarios when sample size
is equal to 500.
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(a) Coefficients of Xb (b) Coefficients of Xc

(c) Coefficients of Zb (d) Coefficients of Zc

Figure 11: Box plots of Monte Carlo estimated coefficients in different scenarios when 60% data
is missing.
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(a) Coefficients of Xb (b) Coefficients of Xc

(c) Coefficients of Zb (d) Coefficients of Zc

Figure 12: Box plots of Monte Carlo estimated coefficients in different scenarios when stength of
association β1 is equal to 0.05.
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(a) Coefficients of Xb (b) Coefficients of Xc

(c) Coefficients of Zb (d) Coefficients of Zc

Figure 13: Box plots of Monte Carlo estimated coefficients in different scenarios when strength of
association β1 is equal to 0.5.
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(a) Coefficients of Xb (b) Coefficients of Xc

(c) Coefficients of Zb (d) Coefficients of Zc

Figure 14: Box plots of Monte Carlo estimated coefficients in different scenarios when correlation
between covariates is 0.01.
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(a) Coefficients of Xb (b) Coefficients of Xc

(c) Coefficients of Zb (d) Coefficients of Zc

Figure 15: Box plots of Monte Carlo estimated coefficients in different scenarios when correlation
between covariates is 0.5.

R code

Simulation part

Generating data

#############Functions############
#input: dataset: for lapply function, this could be ignored; N is the number

of observations; kai & lambda: the shape and scale parameter of Weibull
distribution for survival analysis; no_bin & no_norm: the number of binary
and continuous variables respectively; pbin: a vector of probabilities for
the binary variables; normean & norvar: a vector of means/variances for the
normal variables; betas: the true coefficients of continuous variables
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#output: data frame with these columns: survival time, status, Z_c, X_c, X_b,Z
_b

sim_3<-function(dataset,N,kai,lambda,s,no_bin,no_norm,cormat,pbin,normean,
norvar,betas){

#covariate part
covaria<- genpb(n = N,no_bin = no_bin,

no_norm = no_norm,inter.mat = cormat,prop_vec_bin = pbin,
nor.mean = normean,nor.var = norvar)$data

covaria_df <- as.data.frame(abs(covaria))
colnames(covaria_df) <- c("Z_c","X_c","X_b","Z_b")
#scaled continuous variable
covaria_df$Z_c <- as.numeric(scale(covaria_df$Z_c,scale = F)/10)
covaria_df$X_c <- as.numeric(scale(covaria_df$X_c,scale = F)/10)

u <- runif(N)
#x1 -- miss x2 -- com
beta <- matrix(c(rep(betas,2),0.5,0.5),nrow = 4)
Y <- (-log(1-u) / (lambda * exp(as.matrix(covaria_df) %*% beta)))ˆ(1/kai)
C <- rexp(n = N,rate = s)
YC <- cbind(Y,C)
time_c <- apply(YC, 1, min)
status_c <- I(Y <= C) *1

#artificial censored
time_c <- ifelse(time_c >= 72,72,time_c)
status_c <- ifelse(time_c >72,0,status_c)
data <- as.data.frame(cbind(time_c,status_c))

covaria_df$X_b <- as.factor(covaria_df$X_b)
covaria_df$Z_b <- as.factor(covaria_df$Z_b)
data <- data.frame(time_c= time_c,status_c = status_c)

data_df <- cbind.data.frame(data,covaria_df)
data_df$status_c <- as.numeric(data_df$status_c)
return(data_df)

}
################ Adjusted function according to package PoisBinOrdNor

###############
# simulates a multivariate data set that is composed of binary and continuous

variables with specified marginals and a correlation matrix.
# input: inter.mat: the intermediate correlation matrix obtained from function

reintermat; others are same with sim_3
# output: covariates data frame

genpb <- function (n, no_bin,no_norm, inter.mat = NULL,
prop_vec_bin = NULL, nor.mean = NULL, nor.var = NULL)

{
n2 = no_bin
n4 = no_norm
d = n2 +n4
xx1 = rmvnorm(n, rep(0, d), inter.mat)
if (n2 != 0) {
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BB = matrix(0, n, n2)
for (j in 1:n2) {

for (i in 1:n) {
if (1 * xx1[i, j] > qnorm(1 - prop_vec_bin[j]))

BB[i, j] = 1
else BB[i, j] = 0

}
}

}
else BB = NULL
if (n4 != 0) {

NN = t(t(xx1[, (n2 + 1):d]) * sqrt(nor.var) +
nor.mean)

}
else NN = NULL
data = cbind(NN,BB)
final.corr = cor(data)
result <- list(n.rows = n, prob.bin = prop_vec_bin,

nor.mean = nor.mean, nor.var = nor.var,
no.bin = n2, no.norm = n4,
data = data)

return(result)
}
#############################
# Calculates and assembles the intermediate correlation matrix entries for the

multivariate normal data
#input: corr.mat: prespecified correlation matrix for the multivariate data
#output: intermediate correlation matrix

reintermat <- function (no_bin, no_norm, corr_mat = NULL,
prop_vec_bin = NULL, nor_mean = NULL, nor_var = NULL)

{
if (no_bin != 0) {

n2 = no_bin
p1 = prop_vec_bin

}
if (no_norm != 0) {

n4 = no_norm
normean = nor_mean
norvar = nor_var

}
d = n2+ n4
if (n2 == 0 && n4 == 0) {

stop("Number of variables cannot all be zero!\n")
}
#check if there is specification problem
revalidation(n2,n4, corr_mat, p1,normean, norvar)
inter.mat = diag(nrow(corr_mat))

if (n2 != 0 && n4 != 0) {
for (i in 1:n2) {

for (j in 1:n2) {
if (i != j) {
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inter.mat[i, j] = inter.mat[j, i] = corr.nn4bb(p1[i], p1[j], corr_
mat[i, j])

}
}

}
inter.mat[(n2 + 1):d, (n2 + 1):d] = corr_mat[(n2+ 1):d, (n2 + 1):d]
for (i in (n2 + 1):d) {

for (j in 1: n2) {
if (i != j) {

inter.mat[i, j] = inter.mat[j, i] = corr.nn4bn(p1[j], corr_mat[i, j
])

}
}

}
}
if (!is.positive.definite(inter.mat)) {

warning("Intermediate correlation matrix is not positive definite. Nearest
positive definite matrix is used!")

inter.mat = as.matrix(nearPD(inter.mat, corr = TRUE,
keepDiag = TRUE)$mat)

inter.mat = (inter.mat + t(inter.mat))/2
}
return(inter.mat)

}

##############################
# computes the lower and upper bounds for all possible pairs that involve

binary and normal variables.
# output: returns TRUE if no specification problem is encountered
revalidation <- function (no.bin, no.norm, corr.mat = NULL,

prop.vec.bin = NULL,nor.mean = NULL, nor.var = NULL)
{ n2 = no.bin

n4 = no.norm
d = n2 +n4

is.wholenumber <- function(x, tol = .Machine$double.epsˆ0.5) abs(x -
round(x))

< tol
p = prop.vec.bin
q = 1 - p
sigma = corr.mat
L_sigma = diag(d)
U_sigma = diag(d)
u = runif(1e+05, 0, 1)

if (no.bin > 0) {
for (i in 1:n2) {

for (j in 1:n2) {
if (i != j)

L_sigma[i, j] = L_sigma[j, i] = max(-sqrt((p[i] * p[j])/(q[i] * q[j
])),

-sqrt((q[i] * q[j])/(p[i] *p[j])
))
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if (i != j)
U_sigma[i, j] = U_sigma[j, i] = min(sqrt((p[i] * q[j])/(q[i] * p[j])

),
sqrt((q[i] * p[j])/(p[i] * q[j])

))
}

}
}

if (no.bin > 0 & no.norm > 0) {
for (i in (n2+1):d) {

for (j in 1:n2) {
if (i != j)

L_sigma[i, j] = L_sigma[j, i] = -dnorm(qnorm(p[j]))/sqrt(p[j] * q[j
])

if (i != j)
U_sigma[i, j] = U_sigma[j, i] = dnorm(qnorm(p[j]))/sqrt(p[j] * q[j])

}
}

}
if (no.norm > 0) {

for (i in (n2+ 1):d) {
for (j in (n2 + 1):d) {

if (i != j)
L_sigma[i, j] = L_sigma[j, i] = -1

if (i != j)
U_sigma[i, j] = U_sigma[j, i] = 1

}
}

}
valid.state = TRUE
for (i in 1:d) {

for (j in 1:d) {
if (j >= i) {

if (sigma[i, j] < L_sigma[i, j] | sigma[i, j] >
U_sigma[i, j]) {

cat("Range violation! Corr[", i, ",", j, "] must be between",
round(L_sigma[i, j], 3), "and", round(U_sigma[i,

j], 3), "\n")
valid.state = FALSE

}
}

}
}
if (valid.state == TRUE)

cat("All correlations are in feasible range! \n")
if (valid.state == FALSE)

stop("All correlations must be in feasible range!")
return(TRUE)

}

#################parameters setting#######################
N = 2000#number of patients 200 or 500
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reps<- 1:100 #Monte Carlo replications
max_followup <- 72
imp <- 50 #mice number of datasets
iters <- 2 #mice number of iterations
nbin = 2
nnorm = 2
pbin = c(1/4,1/3)
normean = c(45.87,36.74)
norvar = c(12.56,12.50)
srv_a <- 0.9443
k <- 0.634
MLE_b <- 136.3343 # use surreg function can get 138.1906
surreg_b <- MLE_bˆ(-k)
lam <- 0.2
s <- 0.08
var_list <- c("Z_c","X_c","X_b1","Z_b1") # comes from the summary of model
pattern_MCAR <- matrix(c(1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,0,0,1),nrow = 3,byrow =

T)
weight_MNAR <- matrix(c(0,0,0,0.2,0,0,0,0,0,0,0.2,0,0,0,0,0.2,0.2,0),nrow = 3,

byrow = T)
pattern_MNAR <- matrix(c(1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,0,0,1),nrow = 3,byrow =

T)
weight_MAR1 <- matrix(c(0,0,0.2,0,0,0.2,0,0,0.2,0,0,0.2,0,0,0.2,0,0,0.2),nrow

= 3,byrow = T)
weight_MAR2 <- matrix(c(0.2,0,0.2,0,0,0.2,0.2,0,0.2,0,0,0.2,0.2,0,0.2,0,0,0.2)

,nrow = 3,byrow = T)# MAR-T
pattern_MAR <- matrix(c(1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,0,0,1),nrow = 3,byrow =

T)
#----------------correlation matrix--------
corr_1 <- c(0.2,0.2,0.2,0.2,0.2,0.2)# or 0.01,0.5
cor_df_1=diag(4)
cor_df_1[lower.tri(cor_df_1)]=corr_1
ccor_df_1=cor_df_1+t(cor_df_1)
diag(ccor_df_1)<-1
intmat_1 <- reintermat(nbin,nnorm,ccor_df_1,pbin,normean,norvar)

#---------generating 100 datasets---------------
set.seed(2021)
data <- list()
data[["base"]] <- lapply(

X = reps,
FUN = sim_3,
N = N,
kai = k,
lambda = surreg_b,
s = s,
no_bin = nbin,
no_norm = nnorm,
cormat = intmat_1,
pbin = pbin,
normean = normean,
norvar = norvar,
betas = 0.2 #\beta_1 could be changed to 0.05 or 0.5
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)

5.0.0.1 Ampute

############functions#######################
#input:X:dataset; missing_prop: missing proportion; pattern_list: A matrix or

data frame of size patterns by variables where 0 indicates that a variable
should have missing values and 1 indicates that a variable should remain
complete; weight_list: A matrix or data frame of size patterns by variables
. The matrix contains the weights that will be used to calculate the
weighted sum scores.

#output: data frame with missing values in X_c and Z_c

#ampute missing value ---MCAR
sim_miss <- function(X,missing_prop,pattern_list){

X_miss <- ampute(X,missing_prop,mech = "MCAR",patterns = pattern_list)$amp
X_miss$X_b <- as.factor(X_miss$X_b)
levels(X_miss$X_b ) <- c("0","1")
X_miss$Z_b <- as.factor(X_miss$Z_b)
levels(X_miss$Z_b) <-c("0","1")
return(X_miss)}

#ampute missing value ---MNAR
sim_miss_MNAR <- function(X,missing_prop,pattern_list,weight_list){

X_miss <- ampute(X,missing_prop,mech = "MNAR",patterns = pattern_list,
weights = weight_list)$amp

X_miss$X_b <- as.factor(X_miss$X_b)
levels(X_miss$X_b ) <- c("0","1")
X_miss$Z_b <- as.factor(X_miss$Z_b)
levels(X_miss$Z_b) <-c("0","1")
return(X_miss)}

#ampute missing value ---MAR & MAR-T
sim_miss_MAR <- function(X,missing_prop,weight_list,pattern_list){

X$X_b <- as.numeric(X$X_b)
X$Z_b <- as.numeric(X$Z_b)
X_miss <- ampute(X,missing_prop,mech = "MAR",weights = weight_list,patterns

= pattern_list)$amp
X_miss$X_b <- as.factor(X_miss$X_b)
levels(X_miss$X_b ) <- c("0","1")
X_miss$Z_b <- as.factor(X_miss$Z_b)
levels(X_miss$Z_b) <-c("0","1")
return(X_miss)}

#missing_prop could change to 0.6
#-------------amupte missing values under MCAR mechanism-------------
missing_df <- list()
missing_df[["MCAR"]] <- lapply( X = data[["base"]],

FUN = sim_miss,missing_prop = 0.2,
pattern_list = pattern_MCAR)

#-------------amupte missing values under MNAR mechanism-------------
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missing_df[["MNAR"]] <- lapply( X = data[["base"]], FUN = sim_miss_MNAR,
missing_prop = 0.2 ,pattern_list=pattern_MNAR,weight_list=weight_MNAR)
#-------------amupte missing values under MAR mechanism-------------
missing_df[["MAR"]] <- lapply( X = data[["base"]], FUN = sim_miss_MAR,
missing_prop = 0.2,weight_list = weight_MAR1,pattern_list = pattern_MAR )
#-------------amupte missing values under MAR-T mechanism-------------
missing_df[["MAR2"]] <- lapply( X = data[["base"]], FUN = sim_miss_MAR,
missing_prop = 0.2,weight_list = weight_MAR2,pattern_list = pattern_MAR )

5.0.0.2 Analysis

########function#######
# analysis in complete data
full_fun <- function(data,meth = "breslow"){

coxph(Surv(time_c, status_c) ˜ Z_c+X_c+X_b+Z_b,
data = data, method = meth)

}

###model function##-------------------------------------------------------
comp_fun <- function(X){

index <- !is.na(X$X_b)&!is.na(X$X_c)
X_comp <- X[index,]
comp_model <- coxph(Surv(time_c, status_c) ˜ Z_c+X_c+X_b+Z_b,

data = X_comp, method = "breslow")
return(comp_model)

}

missing_indicator <- function(X){
X_miss <- X
X_miss$X_b <- as.integer(X_miss$X_b)
index_1 <- is.na(X_miss$X_b)
index_2 <- is.na(X_miss$X_c)
X_miss$X_b[index_1] <- 3
X_miss$X_b <- as.factor(X_miss$X_b)
levels(X_miss$X_b) <- c("0","1","2")
X_miss$X_c[index_2] <- 0
X_miss$Ad_ind <- rep(0,dim(X_miss)[1])
X_miss$Ad_ind[index_2] <- 1

mis_ind_model <- coxph(Surv(time_c, status_c) ˜ Z_c+X_c+X_b+Z_b+Ad_ind,
data = X_miss, method = "breslow")

return(mis_ind_model)
}

mice_fun <- function(data,imp,iters){
missl <- colnames(data)[sapply(data,anyNA)]
data$haz_os <- nelsonaalen(data, time_c, status_c)
pred_mat <- matrix(1,ncol(data),ncol(data),dimnames = list(names(data),names

(data)))
diag(pred_mat) <- 0
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pred_mat[!(rownames(pred_mat) %in% missl),] <- 0
non_pred <- c("time_c","status_c","Z_c", "Z_b")
pred_mat[,!(colnames(pred_mat) %in% non_pred)] <- 0

imputation <- mice(data, maxit = iters, m = imp, seed = 2021, pred = pred_
mat, print = T)

mice1_model <- with(imputation,
coxph(Surv(time_c, status_c) ˜ Z_c+X_c+X_b+Z_b))

return(pool(mice1_model))
}

mice_int_fun <- function(data,imp,iters){
missl <- colnames(data)[sapply(data,anyNA)]
data$haz_os = nelsonaalen(data, time_c, status_c)

compl <- c("Z_c","Z_b")
haz = rep(’haz_os’, each = length(compl))

cc = as.data.frame(data[, compl])
cc[,2] <- as.numeric(cc[,2])
inter = data[, haz] * cc
data[, paste0(names(inter), ’.int’)] = inter
pred_mat <- matrix(1,ncol(data),ncol(data),dimnames = list(names(data),names

(data)))
diag(pred_mat) <- 0
pred_mat[!(rownames(pred_mat) %in% missl),] <- 0
non_pred <- c("time_c","status_c","Z_c", "Z_b")
pred_mat[,!(colnames(pred_mat) %in% non_pred)] <- 0

imputation <- mice(data, maxit = iters, m = imp, seed = 2021, pred = pred_
mat, print = T)

mice2_model <- with(imputation,
coxph(Surv(time_c, status_c) ˜ Z_c+X_c+X_b+Z_b))

return(pool(mice2_model))
}

smcfcs_fun <- function(data,imp,iters){
outcome <- c("time_c","status_c")
predictor <- colnames(data)[!(colnames(data) %in% outcome)]
formu <- stats::reformulate(termlabels = predictor, response = "Surv(time_c

, status_c)" )
smformu <- c(Reduce(paste, deparse(formu)))

meth_list <- c("","","","norm","logreg","")
imput <- smcfcs(data, smtype="coxph", smformula= smformu,method = meth_list,

numit = iters,m=imp)
coxfun <- function(imp)coxph(Surv(time_c, status_c) ˜ Z_c+X_c+X_b+Z_b,data

= imp)
smcfcs_os <- pblapply(imput$impDatasets,FUN = coxfun)
return (pool(smcfcs_os))

}

#######functions for summarizing the results and preparing for the plots######
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# the estimating coefficients, CIs from complete data

full_df <- function(model,varible){
as.data.frame(summary(model)$coef[,1:3],row.names = varible)

} #coef, lower.95, upper.95

#let the coefficients and Cis of five methods be fitted function ggplot
sum_tab <- function(coxsum_df){

coxsum_df <- as.data.frame(coxsum_df)
term <- as.character(coxsum_df$term)
esti <- coxsum_df$estimate
HR <- exp(coxsum_df$estimate)
se <- coxsum_df$std
mat <- as.data.frame(cbind(esti,HR,se))
rownames(mat) <- term
return(mat)

}
# summarize the coefficients and CIs of 5 methods
fit_models <- function(data,model,varible){

#data is for fuction lapply
if (model == "complete_cases" ){

fit <- comp_fun(data)
}else if (model == "missing_indicator"){

fit <- missing_indicator(data)
}else if (model == "MICE"){

fit <- mice_fun(data,50,2)
}else if (model == "MICE_intern"){

fit <- mice_int_fun(data,50,2)
}else {

fit <- smcfcs_fun(data,50,2)
}
if (model == "complete_cases" | model == "missing_indicator"){

data.frame( esti = summary(fit)$coef[varible,"coef"],
HR = summary(fit)$coef[varible,"exp(coef)"],
se = summary(fit)$coef[varible,"se(coef)"],row.names =

varible)}
else{sum_tab(list(summary(fit)))}

}

#--------------analysis with complete data-----------
full_model <- list()
full_model[["base"]] <- lapply(

X = data[["base"]],
FUN = full_fun

)

#------------------impute methods-----
#--use MCAR as an example other scenarios are quite same----
MCAR_result <- list()
MCAR_result [["complete_cases"]] <-lapply(

X = missing_df[["MCAR"]], #change to MAR, MNAR,MAR2
FUN = fit_models,
model = "complete_cases",
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varible = var_list)

MCAR_result [["missing_indicator"]] <-lapply(
X = missing_df[["MCAR"]],#change to MAR, MNAR,MAR2
FUN = fit_models,
model = "missing_indicator",
varible = var_list)

MCAR_result [["MICE"]] <-lapply(
X = missing_df[["MCAR"]],#change to MAR, MNAR,MAR2
FUN = fit_models,
model = "MICE",
varible = var_list)

MCAR_result [["MICE_intern"]] <-lapply(
X = missing_df[["MCAR"]],#change to MAR, MNAR,MAR2
FUN = fit_models,
model = "MICE_intern",
varible = var_list)

MCAR_result [["smcfcs"]] <-lapply(
X = missing_df[["MCAR"]],#change to MAR, MNAR,MAR2
FUN = fit_models,
model = "smcfcs",
varible = var_list)

#------------------------perpare for calculating bias and RMSE----------
full_HRdf <- lapply(

X = full_model[["base"]], #change to MAR, MNAR,MAR2
FUN = full_df,
varible = var_list)

MCAR_bias <- plot_bias(MCAR_result,100)$df
MCAR_RMSE <- plot_RMSE(MCAR_result,100)$df
#----------------------boxplot------------------------
###################function####################
#input: all estimated coefficients of specific variable
#output: box plot of coefficients distribution of one variable unber a

specific scenario

rep_coef <- function(result,varible,rep = 100){
#varible: 1-Z_c, 2-X_c, 3-X_b, 4-Z_b
result_list <- numeric(rep)
for (i in 1:rep) {

result_list[i] <- result[[i]][,1][varible]
}
return(result_list)

}
########use X_b in baseline model under 4 missingness mechianisms and 5

methods#######
meth_list <- c("complete_cases","missing_indicator","MICE","MICE_intern","

smcfcs")
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CD_Zb <- rep_coef(full_HRdf,4)
MCAR_Zb <- matrix(unlist(lapply(MCAR_result,rep_coef,varible = 4)),nrow = 100,

ncol = 5)
MNAR_Zb <- matrix(unlist(lapply(MNAR_result_1,rep_coef,varible = 4)),nrow =

100,ncol = 5)
MAR_Zb <- matrix(unlist(lapply(MAR_result_1,rep_coef,varible = 4)),nrow = 100,

ncol = 5)
MAR_T_Zb <- matrix(unlist(lapply(MAR_result_2,rep_coef,varible = 4)),nrow =

100,ncol = 5)

Zb_res <- as.data.frame(cbind(CD_Zb,MCAR_Zb,MNAR_Zb,MAR_Zb,MAR_T_Zb))
MCAR_label <- c("MCAR:CCA","MCAR:MID","MCAR:MI","MCAR:MI-Int","MCAR:SMC-FCS")
colnames(Zb_res) <- c("CD",MCAR_label,gsub("MCAR","MNAR",MCAR_label),

gsub("MCAR","MAR",MCAR_label),gsub("MCAR","MAR-T",MCAR_
label))

Zb_res_long <- Zb_res%>%pivot_longer(col = 1:21, names_to = "Scenrios",values_
to = "Estimated_Coefficients")

Zb_plot <- ggplot(Zb_res_long ,aes(x=Scenrios,y= Estimated_Coefficients)) +
geom_boxplot() +

geom_hline(yintercept = 0.5,col="darkred") + coord_flip()+labs(y="Estimated
Coefficients")+

theme_bw()+
theme(axis.title = element_text(size=16),axis.text = element_text(size = 14)

)
ggsave("Zb_missprop.png",plot = Zb_plot,width = 10,height = 8 )

###########functions for bias and RMSE###############
#calculate bias and plot the bias under different scenrios
plot_bias <- function(result_list,rep,beta,full_model = full_HRdf){

bias_bench <- data.frame(row.names = var_list)
for (i in 1:rep) {

bias_bench[,i] <- full_model[[i]][,1]- c(beta,beta,0.5,0.5)

}
bias_bench_val <- apply( bias_bench, 1, mean)

bias_comp <- data.frame(row.names = var_list)
for (i in 1:rep) {

bias_comp[,i] <- result_list[["complete_cases"]][[i]][["esti"]]-c(beta,
beta,0.5,0.5)

}
bias_comp_val <- apply( bias_comp, 1, mean)
bias_mis_ind <- data.frame(row.names = var_list)
for (i in 1:rep) {

bias_mis_ind [,i] <- result_list[["missing_indicator"]][[i]][["esti"]]-c
(beta,beta,0.5,0.5)

}
bias_mis_ind_val <- apply( bias_mis_ind, 1, mean)
bias_mice <- data.frame(row.names = var_list)
for (i in 1:rep) {
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bias_mice[,i] <- result_list[["MICE"]][[i]][["esti"]]-c(beta,beta
,0.5,0.5)

}
bias_mice_val <- apply( bias_mice, 1, mean)
bias_mice_int <- data.frame(row.names = var_list)
for (i in 1:rep) {

bias_mice_int[,i] <- result_list[["MICE_intern"]][[i]][["esti"]]-c(beta,
beta,0.5,0.5)

}
bias_mice_int_val <- apply( bias_mice_int, 1, mean)

bias_smcfcs <- data.frame(row.names = var_list)
for (i in 1:rep) {

bias_smcfcs [,i] <- result_list[["smcfcs"]][[i]][["esti"]]-c(beta,beta
,0.5,0.5)

}
bias_smcfcs_val <- apply( bias_smcfcs, 1, mean)
bias <- as.data.frame(rbind(unlist( bias_bench_val),unlist( bias_comp_val),

unlist( bias_mis_ind_val),
unlist( bias_mice_val),unlist( bias_mice_int_

val),unlist( bias_smcfcs_val)))
bias$model <- c("CD","CCA","MID","MI","MI-Int","SMC-FCS")

bias <- bias %>%pivot_longer(cols = -model,names_to = "term",values_to = "
bias")

bias$term <- as.factor(bias$term)
bias <- as.data.frame( bias[order(bias$term),])
bias$label <- 1:24
pp <- ggplot(data = bias,aes(x=label,y=bias,color = model,shape = term))+

geom_point() +
scale_color_manual(values=c("darkred", "blue","green" ,"orange","purple"))

+
xlab("Covarite") + ylab("Coefficient Bias")+
geom_hline(yintercept = 0,lty = 2,col = "red")+
theme(panel.grid =element_blank(),panel.background = element_rect(fill = "

transparent")) +
theme(axis.line = element_line(size=0.5, colour = "grey")) +
scale_x_continuous(breaks=seq(3, 25, 6),labels = c("X_b","X_c","Z_b","Z_c"

))

return(list(pp=pp,df=bias))
}

#calculate RMSE and plot the RMSE under different scenrios
plot_RMSE <- function(result_list,rep = 100,beta, full_model = full_HRdf){

RMSE_bench <- data.frame(row.names = var_list)
for (i in 1:rep) {

RMSE_bench[,i] <- (full_model[[i]][,1]-c(beta,beta,0.5,0.5))ˆ2
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}
RMSE_bench_val <- sqrt(apply(RMSE_bench, 1, mean))

RMSE_comp <- data.frame(row.names = var_list)
for (i in 1:rep) {

RMSE_comp[,i] <- (result_list[["complete_cases"]][[i]][,1]-c(beta,beta
,0.5,0.5))ˆ2

}
RMSE_comp_val <- sqrt(apply(RMSE_comp, 1, mean))
RMSE_mis_ind <- data.frame(row.names = var_list)
for (i in 1:rep) {

RMSE_mis_ind [,i] <- (result_list[["missing_indicator"]][[i]][,1]-c(beta,
beta,0.5,0.5))ˆ2

}
RMSE_mis_ind_val <- sqrt(apply( RMSE_mis_ind, 1, mean))
RMSE_mice <- data.frame(row.names = var_list)
for (i in 1:rep) {

RMSE_mice[,i] <- (result_list[["MICE"]][[i]][,1]-c(beta,beta,0.5,0.5))ˆ2

}
RMSE_mice_val <- sqrt(apply(RMSE_mice, 1, mean))
RMSE_mice_int <- data.frame(row.names = var_list)
for (i in 1:rep) {

RMSE_mice_int[,i] <- (result_list[["MICE_intern"]][[i]][,1]-c(beta,beta
,0.5,0.5))ˆ2

}
RMSE_mice_int_val <- sqrt(apply(RMSE_mice_int, 1, mean))

RMSE_smcfcs <- data.frame(row.names = var_list)
for (i in 1:rep) {

RMSE_smcfcs [,i] <- (result_list[["smcfcs"]][[i]][,1]-c(beta,beta,0.5,0.5)
)ˆ2

}
RMSE_smcfcs_val <- sqrt(apply(RMSE_smcfcs, 1, mean))
RMSE<-as.data.frame(rbind(unlist(RMSE_bench_val),unlist(RMSE_comp_val),

unlist(RMSE_mis_ind_val),
unlist(RMSE_mice_val),unlist(RMSE_mice_int_val)

,unlist(RMSE_smcfcs_val)))
RMSE$model <- c("CD","CCA","MID","MI","MI-Int","SMC-FCS")

RMSE <- RMSE %>%pivot_longer(cols = -model,names_to = "term",values_to = "
RMSE")

RMSE$term <- as.factor(RMSE$term)
RMSE <- as.data.frame( RMSE[order(RMSE$term),])
RMSE <- as.data.frame(RMSE)
RMSE$label <- 1:24
pp <- ggplot(data = RMSE,aes(x=label,y=RMSE,color = model,shape = term))+

geom_point() +
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xlab("covariate") + ylab("Coefficient RMSE")+
geom_hline(yintercept = 0,lty = 2,col = "red")+
theme(panel.grid =element_blank(),panel.background = element_rect(fill = "

transparent")) +
theme(axis.line = element_line(size=0.5, colour = "grey")) +
scale_x_continuous(breaks=seq(3, 25, 6),labels = c("X_b","X_c","Z_b","Z_c"

))

return(list(pp=pp,df=RMSE))
}
##############################

5.0.1 Application

sd <- Hmisc::spss.get("D:/testbook/internship/case/CMLHaplovsMRD_UD_20210713
NEC.sav", allow = ’_’, to.data.frame = TRUE, use.value.labels = TRUE,
datevars = c("datdiag1", "datallo1", "datallo1", "DATCRGR2_allo1", "DPLAT20
_allo1", "DPLAT50_allo1", "DATRESP_allo1", "DATAGVH_allo1","datcgvhd_allo1"
,"datrel_1_allo1","datlast"), max.value.labels = 30)

sd$age_allo1 <- as.numeric(as.character(sd$age_allo1))
sd$AGEDONOR_allo1_1 <- as.numeric(as.character(sd$AGEDONOR_allo1_1 ))
label(sd$age_allo1 ) <- "Age at allo HCT"

#donor type
sd$donrel_ori <- factor(sd$donrel)
sd$donrel <- factor(with(sd, ifelse(as.character(donrel) %in% "Identical

sibling" ,"MRD",ifelse(as.character(donrel) %in% "Haplo","HD",ifelse(as.
character(donrel) %in% "MUD","MUD","MMUD")))),levels = c("MRD","HD","MUD","
MMUD"))

# if max_followup needed
max_followup = 72
# time vector
timevect = c(24, 48, 60, 72)
#Exclude patients transplanted with MRD/MUD/MMUD
noverlap <- (sd$cyclophos_prophy_allo1 == "no")|(sd$donrel == "HD")
sd <- sd[noverlap,]

#Exclude patients without donor type
sd <- sd[!is.na(sd$donrel),]
#######---------perpare the data-------------------
sd$karnofskcat2_allo1 <- factor(with(sd,ifelse(is.na(KARNOFSK_allo1), NA,

ifelse(KARNOFSK_allo1%in%c("Normal, NED","Normal activity / Minor
restrictions in strenous physical activity"),">=90","<90"))),levels = c("
>=90","<90"))
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sd$cmv_pat_allo1 <- factor(with(sd,ifelse(is.na(cmv_combi_allo1_1),NA,ifelse(
cmv_combi_allo1_1%in% c("-/-","-/+"),"-","+"))),levels = c("-","+"))

labsource <- label(sd$source_allo1)

sd$source_allo1 <- droplevels(sd$source_allo1)
label(sd$source_allo1) <- labsource

#source has no missing value,delet PB+BM group here
sd$catsource_allo1 <- factor(with(sd, ifelse(source_allo1 %in% "PB", "PB",

ifelse(source_allo1 %in% "BM","BM", NA))), levels = c("PB", "BM"))

sd$catyear_allo1 <- factor(sd$YEAR_allo1)
# Status and time variables for overall survival###########artificial censored
sd$srv_s <- ifelse(sd$srv_s_allo1 %in% "dead", 1, 0)
sd$srv_t <- sd$srv_allo1

sd$srv_tc <- ifelse(sd$srv_allo1 > max_followup, max_followup, sd$srv_allo1)
sd$srv_sc <- ifelse(sd$srv_allo1 > max_followup, 0, sd$srv_s)
sd$stagecat3_allo1 <- factor(with(sd,ifelse(as.character(stagecat_allo1) %in%

"CP1","CP1",
ifelse(as.character(stagecat_allo1) %in% c("CP2","CP3 or higher","CP

undefined nr"),"CP2 or more",
ifelse(as.character(stagecat_allo1) %in% "AP","AP",
ifelse(as.character(stagecat_allo1) %in% "other"|is.na(stagecat_allo1), NA

,"BC"))))),levels = c("CP1","CP2 or more","AP","BC"))

# Set "Haplo" as the baseline group
sd$donrel <- factor(sd$donrel,levels = c("HD","MRD","MUD","MMUD"))
# complete cases analysis

com_items <- !is.na(sd$source_allo1)&!is.na(sd$ric_allo1)&!is.na(sd$stagecat3_
allo1)&!is.na(sd$karnofskcat2_allo1)&!is.na(sd$cmv_pat_allo1)&!is.na(sd$age
_allo1)

de_items <- !com_items
sd$age2_allo1 <- (sd$age_allo1 - 40)/10 #scaled
sd_MA <- droplevels(sd[com_items,c("donrel", "age2_allo1", "stagecat3_allo1",

"srv_tc", "srv_sc", "ci_tc", "ci_sc", "catsource_allo1", "cmv_pat_allo1", "
ric_allo1","karnofskcat2_allo1","catyear_allo1")])

coxph.com.os <- coxph(Surv(srv_tc, srv_sc) ˜ age2_allo1 + donrel +
karnofskcat2_allo1 + cmv_pat_allo1 + ric_allo1 + stagecat3_allo1 +
catsource_allo1, data = sd_MA, method = "breslow")

###############check the PH assumption#############
summary(coxph.com.os)
os.com.ph <- cox.zph(coxph.com.os, terms = FALSE)
os.com.ph

# #########################missing indicator
sd_Mind <- sd
sd_Mind$ric_allo1 <- factor(with(sd,ifelse(is.na(ric_allo1),"missing",ifelse(

as.character(ric_allo1)%in% "standard","standard","reduced"))),levels = c("
standard","reduced","missing"))
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sd_Mind$cmv_pat_allo1 <- factor(with(sd,ifelse(is.na(cmv_combi_allo1_1),"
missing",ifelse(cmv_combi_allo1_1%in% c("-/-","-/+"),"-","+"))),levels = c(
"-","+","missing"))

sd_Mind$stagecat3_allo1 <- factor(with(sd,ifelse(as.character(stagecat_allo1)
%in% "CP1","CP1",
ifelse(as.character(stagecat_allo1) %in% c("CP2","CP3 or higher","CP

undefined nr"),"CP2 or more",
ifelse(as.character(stagecat_allo1) %in% "AP","AP",
ifelse(as.character(stagecat_allo1) %in% "other"|is.na(stagecat_allo1), "

missing","BC"))))),levels = c("CP1","CP2 or more","AP","BC","missing"))

sd_Mind$karnofskcat2_allo1 <- factor(with(sd,ifelse(is.na(KARNOFSK_allo1), "
missing",ifelse(KARNOFSK_allo1 %in% c("Normal, NED","Normal activity /
Minor restrictions in strenous physical activity"),">=90","<90"))),levels =
c(">=90","<90","missing"))

coxph.missind.os <- coxph(Surv(srv_tc, srv_sc) ˜ age2_allo1 + donrel +
karnofskcat2_allo1 + cmv_pat_allo1 + ric_allo1 + stagecat3_allo1 +
catsource_allo1, data = sd_Mind, method = "breslow")

#####MICE#######################’
sd_MAim <- droplevels(sd[,c("donrel", "catyear_allo1", "age2_allo1", "

stagecat3_allo1", "srv_tc", "srv_sc", "catsource_allo1", "cmv_pat_allo1", "
ric_allo1","karnofskcat2_allo1")])

missl <- colnames(sd_MAim)[sapply(sd_MAim,anyNA)]
sd_MAim$haz_os = nelsonaalen(sd_MAim, srv_tc, srv_sc)
sd_MAimcat <- sd_MAim
pred <- matrix(1, ncol(sd_MAimcat), ncol(sd_MAimcat), dimnames = list(names(sd

_MAimcat), names(sd_MAimcat)))
diag(pred) <- 0
pred[!(rownames(pred) %in% missl),] <- 0
non_pred <- c("dornel","age2_allo1","catyear_allo1","srv_tc", "srv_sc")
pred[,!(colnames(pred) %in% non_pred)] <- 0
# number of imputations and iterations
m <- 50
iters <- 5
imputation <- mice(sd_MAimcat, maxit = iters, m = m, seed = 2021, pred = pred,

print = T)

cox_mice1 <- with(imputation, coxph(Surv(srv_tc, srv_sc) ˜ age2_allo1 + donrel
+ karnofskcat2_allo1 + cmv_pat_allo1 + ric_allo1 + stagecat3_allo1 +

catsource_allo1))

sd_MAimcat2 <- sd_MAim

# #################complete covarites#######################
compl <- c("catyear_allo1","age2_allo1","donrel")
#covarites actually have missing data

haz = rep(’haz_os’, each = length(compl))
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cc = as.data.frame(sd_MAimcat2[, compl])
cc[,1] <- as.numeric(cc[,1])
cc[,3] <- as.numeric(cc[,3])
inter <- sd_MAimcat2[, haz] * cc
sd_MAimcat2[, paste0(names(inter), ’.int’)] = inter

pred <- matrix(1, ncol(sd_MAimcat2), ncol(sd_MAimcat2), dimnames = list(names(
sd_MAimcat2), names(sd_MAimcat2)))

diag(pred) <- 0
pred[!(rownames(pred) %in% missl),] <- 0
non_pred <- c("dornel","srv_tc", "srv_sc", "ci_tc", "ci_sc","age2_allo1","

catyear_allo1")
pred[,!(colnames(pred) %in% non_pred)] <- 0

# number of imputations and iterations
m <- 50
iters <- 5
imputation2 <- mice(sd_MAimcat2, maxit = iters, m = m, seed = 2021, pred =

pred, print = T)

cox_mice2 <- with(imputation2, coxph(Surv(srv_tc, srv_sc) ˜ age2_allo1 +
donrel + karnofskcat2_allo1 + cmv_pat_allo1 + ric_allo1 + stagecat3_allo1 +
catsource_allo1))

final2 <- summary(pool(cox_mice2)
final1 <- summary(pool(cox_mice1))
##############smcics
sd_MAimsm <- droplevels(sd[,c("donrel", "catyear_allo1", "age2_allo1", "

stagecat3_allo1", "srv_tc", "srv_sc", "ci_tc", "ci_sc", "catsource_allo1",
"cmv_pat_allo1", "ric_allo1","karnofskcat2_allo1")])

outcomes <- c("srv_tc", "srv_sc")
#outcomes <- missl
#predictors <- c("catyear_allo1")
predictors <- colnames(sd_MAimsm)[!(colnames(sd_MAimsm) %in% outcomes)]

form_os <- stats::reformulate(termlabels = predictors, response = "Surv(srv_
tc, srv_sc)" )

smform_os <- c(Reduce(paste, deparse(form_os)))
meth <- c("","","","mlogit","","","","","mlogit","logreg","logreg","logreg")
set.seed(2021)
imps <- smcfcs(sd_MAimsm, smtype="coxph", smformula= smform_os,method = meth,

numit = iters,m=m)
coxfun <- function(imp)coxph(Surv(srv_tc, srv_sc) ˜ age2_allo1 + donrel +

karnofskcat2_allo1 + cmv_pat_allo1 + ric_allo1 + stagecat3_allo1 +
catsource_allo1,data = imp)

smcfcs_os <- pblapply(imps$impDatasets,FUN = coxfun)
smcfcs_osre <- pool(smcfcs_os)

######################forest plot###############################

70



colnames(real_HR)<- c("mean","lower","upper","term","type","term-type")
real_HR1<- real_HR[,c("term","type","mean","lower","upper")]
tab <- matrix(c("Term",as.character(real_HR1$term[1:11])),ncol = 1)
mean_mat <- matrix(real_HR1$mean,11,5)
mean_mat <- rbind(rep(NA,5),mean_mat)
lower_mat <- matrix(real_HR1$lower,11,5)
lower_mat <- rbind(rep(NA,5),lower_mat)
upper_mat <- matrix(real_HR1$upper,11,5)
upper_mat <- rbind(rep(NA,5),upper_mat)

fp <- forestplot(tab,
tex_gp = fpTxtGp(ticks = gpar(cex=3),

xlab = gpar(cex=3),
label = gpar(cex=3)),

legend = c("CCA","MID","MI","MI-Int","SMC-FCS"),
fn.ci_norm = c(fpDrawNormalCI,fpDrawDiamondCI,fpDrawCircleCI,

fpDrawDiamondCI,fpDrawCircleCI),
mean = mean_mat,
lower = lower_mat,
upper = upper_mat,
clip = c(0.5,3),

lty.ci = c(1,2,1,2,1),
lwd.ci = 2,
col = fpColors(box = c("#008B8B", "#FFB90F", "#0000CD","#8A2BE2","

#8B2323"),lines = c("#008B8B", "#FFB90F", "#0000CD","#8A2BE2","
#8B2323")),

vertices = T,
boxsize = .15,
ci.vertices = TRUE,

xticks = c(0.5,1,1.5,2,3),
xlog = T,
grid = structure(c(1,2),gp=gpar(lty=3,lwd=2,col="darkgray")),

xlab = "Hazard ratio (95% CI)")

##################correlation matrix between the variables in real case study
##############

#corr
sd_corr <- droplevels(sd[,c( "age_allo1","donrel","karnofskcat2_allo1","cmv_

pat_allo1", "ric_allo1", "stagecat3_allo1", "catsource_allo1")])
sd_corr <- sapply(sd_corr, as.numeric)

corr_mat <- round(cor(sd_corr,method = "spearman",use = "pairwise.complete.obs
"),4)

library(corrplot)
corrplot(corr_mat, type = "upper", order = "hclust", tl.col = "black", tl.srt

= 45)

#####################Weibull parameters based on rral case study######
data <- data.frame(cbind(sd$srv_t,sd$srv_s))
data[which(sd$srv_t<=0),] <- 0.0001
colnames(data) <- c("srv_t","srv_s")
death <- data[data$srv_s == 1,]
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x_death <-death$srv_t
death$lnx_div_r <- log(death$srv_t)/length(x_death)

#initial value
shape <- 0.01
for (i in c(1:40)) {

a <- sum(log(death$srv_t))/length(x_death)
b <- sum((data$srv_t)ˆshape)
c <- sum(((data$srv_t)ˆshape)*log(data$srv_t))
d <- sum(((data$srv_t)ˆshape)*(log(data$srv_t))ˆ2)

shape <- shape + (a+ (1/shape) - (c/b))/((1/(shapeˆ2))+((b*d) - cˆ2)/(bˆ2))
cat("iter",i,shape,"\n")

}
shape <- max(shape,0.01)
scale <- (sum((data$srv_tˆshape)/length(x_death)))ˆ(1/shape)
cat("shape:",shape,"scale:",scale)
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