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Abstract

The technique of whole slide imaging (WSI) boosts the application of deep
learning in medical imaging analysis and computational pathology. How-
ever, fully supervised learning stucks into bottlenecks due to the heavy
reliance on manual annotations, which requires specific expertise and ex-
pensive cost. Self-supervised learning would be a potential solution, which
is supervised by the signals generated from itself. It has been proved
to perform as well as supervised learning on ImageNet in classification
tasks. Yet, its performance on medical image classification is unexplored.
This study verifies the effectiveness of four self-supervised learning to de-
tect anatomic structures on kidney biopsy WSI, including SimCLR, MoCo,
SwAV and Barlow Twins. In the pretext-task, these self-supervised learn-
ing algorithms are trained in 500 epochs with the same backbone archi-
tecture, ResNet-50, which is initialized by the weights pre-trained on Im-
ageNet correspondingly. The evaluation protocol is a semi-supervised
linear classifier, implemented by using multi-nomial logistic regression.
The results of the classification task show the features extracted by the
four algorithms all achieve good accuracy scores, higher than 85% with
only 10% labels. Among them, SwAV outperforms the other algorithms
from the perspective of overview and each class. Through this study,
self-supervised learning algorithms exhibit the potential for more complex
tasks related to renal pathology.
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Chapter 1
Introduction

1.1 Background

Whole slide imaging (WSI), also termed as virtual microscopy, refers to
creating a single high-resolution digital image by scanning a complete mi-
croscope glass slide. [16] The emerging technique of WSI designs to emu-
late conventional light microscopy in a computer-generated manner, and
enables the adoption of digital image processing in computational pathol-
ogy tasks like objective prognosis, diagnosis and therapeutic response pre-
diction. An impressive generic approach to tackle these complex tasks is
deep learning, having advantages like automatic feature generation and
scalability, especially beneficial for the high resolution WSI (e.g., > 10,000×
10,000 pixels on 40×). One of the typical categories in deep learning is su-
pervised learning that refers to learn a function that can map an input
object to a desired output supervised by given labels. However, concern-
ing clinical research field, supervised learning hits the bottleneck in com-
puter vision tasks, because it depends on exhaustive manual annotations
of medical images, but the annotations demand specific expertise and la-
borious efforts on gigapixel high-resolution WSI.

Rather than being fed with input-output pairs, self-supervised learn-
ing (SSL) enables models to be supervised simply by data itself without
massive number of labels, In light of how human learn to classify objects,
self-supervised learning is introduced to establish generalized knowledge
for deep learning models which approximates to ’common sense’ for hu-
man, so that the machines can recognize the world without requiring mas-
sive amounts of teaching on every single task. The general technique is to
build pre-training predictive models, predicting an unobserved and shuf-
fled part of an input from an observed and ordered part of an input. In the

1



2 Introduction

tasks about natural language processing and natural image classification,
the models pre-trained with self-supervised learning have demonstrated
higher performance than the models merely trained in supervised learn-
ing manners.

Yet self-supervised learning is not promised to preserve the high per-
formance on kidney biopsy WSI dataset, which is less heterogeneous in
diverse classes than natural images. When the kidney is diseased, the
pathological changes such as fibrosis and atrophy would derive many ex-
tra variation in patterns, making machines hard to distinct them. This
thesis will examine if the features pre-trained on self-supervised learn-
ing could reduce the dependence on labels while keep good performance
on downstream tasks. Four self-supervised learning algorithms will be
investigated, including Simple framework for Contrastive learning (Sim-
CLR), Momentum Contrastive learning (MoCo), Swapping Assignments
between multiple Views of the same image (SwAV) and Barlow Twins
(BarlowTwins). The downstream task is set as kidney anatomic struc-
ture classification, implemented by multinomial logistic regression. Var-
ied proportion of labels are used to train the classification models, from
1%, 10%, 30%,..., to 90%, and the remaining data are used as the test set.
We use the measurement metrics on the test set to evaluate and compare
them, including accuracy scores of the whole model and precision, recall
and f1 scores of each class. The results reveal the algorithms have excel-
lent scores and accuracy even trained with simply 10% labels. Through the
comparison of the four algorithms, we notice SwAV outperforms other al-
gorithms from the perspective of every class. We could conclude that self-
supervised learning would promote the leverage of the large amount of
unlabelled medical imaging data. It has great potential to be proceeded
with more complicated computer vision tasks pertaining to renal pathol-
ogy based on kidney biopsy WSI.

1.2 Research Questions

The thesis examines the performance of self-supervised learning algorithms
on classifying anatomic structures in kidney biopsy WSI. In particular, we
focus on the performance of SimCLR, MoCo, SwAV and BarlowTwins on
classifying of glomeruli, vessels and tubules. The research questions are
comprised three parts. First, we generate feature representations for each
sample. To intuit about the patterns, we apply t-distributed stochastic
neighbor embedding (t-SNE) to visualize the features and check if there
are clusters of specific structures. Second, we use a linear classifier im-
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1.3 Thesis Structure 3

plemented by multinomial logistic regression to evaluate the features rep-
resentations. For the linear classifiers, the percentage of labels used for
training is varied. We want to figure out the proportion of labels that is
the most effective. Third, we compare the overall performance of the four
algorithms and verify whether any of them are suitable for recognizing
specific structures. We discuss the feasibility of assembling the algorithms
and the possibility of proceeding to more complicated tasks like object de-
tection and instance segmentation.

1.3 Thesis Structure

The remaining sections of the thesis are arranged as follows: in chapter
2, the necessary background knowledge about self-supervised learning,
visualization and classification models is provided; in chapter 3, the ex-
periments are elaborated, followed by their results in chapter 4; in chapter
5, conclusions and discussions are drawn.

3





Chapter 2
Review of Methods

This chapter will provide the background knowledge for this project. Be-
fore covering the self-supervised learning algorithms, ResNet-50 is clar-
ified in section 2.1. ResNet-50 is an important pre-requisite knowledge,
used as the backbone of self-supervised architecture in this study. What
follows is an in-depth overview of the four self-supervised learning inves-
tigated in this study in section 2.2. In section 2.3, t-SNE, the technology
that suitable for visualizing high-dimensional features is introduced. At
last, section 2.4 explains multinomial logistic regression, the classification
model that is applied to evaluate the features extract by the self-supervised
learning algorithms.

2.1 Backbone: ResNet-50

ResNet, abbreviated for ’Residual Network’ introduced in 2015 by Kaim-
ing He et al. [9] In the beginning, they speculate that additional layers in
the deep neural networks should produce growing accuracy and perfor-
mance, since more complicated features should be learned steadily with
the additional parameters. Whereas, the fact is counterintuitive in the ex-
periments of plain networks, that the performance of plain networks de-
grades after stacking more layers, due to the problems of gradients van-
ishing or gradients explosion. They address the degradation problem by
introducing a deep residual learning framework, instead of counting on
each few stacked layers directly fits a desired underlying mapping. Ex-
pressed in formula, the desired underlying mapping is denoted as H(x)
and the stacked nonlinear layers fitting another residual mapping is de-
noted as F(x) = H(x)− x. So the original mapping is recast into F(x) + x,

5



6 Review of Methods

realized by feedforward neural networks with ’shortcut connections’, see
Figure 2.1. [9] These blocks of residual learning overcome the problem of

Figure 2.1: A building block of residual learning [9]

gradients vanishing by allowing this alternate shortcut path for the gra-
dient to flow through, making it reasonable to construct deeper networks
for better performance.

ResNet-50 is a 50-layer deep ResNet, see its architecture in Figure 2.2.
From left to right, the elements are explained as follows:

• An input image with size 224× 224.

• A 1-layer convolution with 64 kernels and a max pooling layer; each
kernel is in size 7× 7 and with stride 2.

• One convolution block repeated 3 times; each block encloses 3-layer
convolution: 1× 1,64 kernels, following 3× 3,64 kernels and at last
1× 1,256 kernels, all with stride 2.

• One convolution block repeated 4 times; each block encloses 128,
128, and 512 kernels, and the other setting are same with the blocks
above.

• One convolution block repeated 6 times; each block encloses 256,
256, and 1024 kernels, and the other setting are same with the blocks
above.

• One convolution block repeated 3 times; each block encloses 512,
512, and 2048 kernels, and the other setting are same with the blocks
above.

• An average pooling and fully connected layer.

6



2.2 Head: MLP 7

Figure 2.2: The architecture of ResNet-50 [10]

2.2 Head: MLP

Another structure used as the projection head of the self-supervised learn-
ing is multilayer perceptron, abbreviated as MLP. A MLP is a fully con-
nected artificial neural network, comprised of one input layer, one output
layer and many hidden layers, see Figure 2.3. All the hidden layers are fol-
lowed by rectified linear unit (ReLU), an activation function defined as the
positive part of its argument: f (x) = max(0, x). MLP head could lower
the rank of the feature matrix extracted by backbone, which is beneficial
to calculate the contrastive loss, but poorer to represent the input image.

Figure 2.3: A multilayer perceptron

7



8 Review of Methods

2.3 Self-supervised learning

In the pipeline of computer vision task, the task for pre-training is called
’pre-text task’, and the task for fine-tuning is called ’downstream task’.
Self-supervised learning gains popularity in pre-text task since its poten-
tial of reducing the cost of annotation on large-scale image datasets. Self-
supervised learning establishes signals through predicting any distorted
or unobserved parts or properties with the data itself, so as to evade the
dependence on labels. One general architecture consists of an augmenta-
tion family, a siamese network, a head projector and objective loss func-
tion.

In this section, the four self-supervised architectures used in this study
are clarified, including SimCLR, MoCo, SwAV, BarlowTwins. The four
algorithms have various ways of generating pseudo labels: particularly,
SimCLR and MoCo are based on contrastive instance learning, SwAV is
based on contrastive clustering learning, Barlow Twins is based on redun-
dancy reduction learning.

2.3.1 SimCLR

SimCLR, abbreviated from ’a Simple framework for Contrastive Study of
visual Representations’, is a typical algorithm of contrastive learning pro-
posed by Chen, Ting, et al. in 2020, which learns representations by max-
imizing agreement between individually augmented views of the same
data example via a contrastive loss in the latent space, see its framework
in Figure 2.4. [12]. The architecture of contrastive learning contains four
elements, an augmentation family denoted as T, a base encoder denoted
as f (·), a projection head denoted as g(·) and a contrastive loss function.
Suppose x is an input image, two random augmentations t, t sampled
from augmentation family T are applied to generate two augmented im-
ages: x̃i and x̃i. Next the augmented images are fed through the base en-
coder f (·) and the projection head g(·) successively. During training, the
outputs given by the projection head g(·), zi and zj, are used to maximize
agreement with contrastive loss. When the training is finished, the pro-
jection head g(·) as well as its output zi and zj are abandoned. The base
encoder f (·) are preserved to extract the features of input images. Each of
the four elements are clarified as below:

• An image augmentation family: three simple augmentations are ap-
plied sequentially random cropping (with flip and resize), random

8



2.3 Self-supervised learning 9

Figure 2.4: A simple framework of contrastive learning [12]

6

Figure 2.5: An example of the augmentation family [12]

color distortions, and random Gaussian blur, see the example of the
augmentations in Figure 2.5.

• A base encoder: ResNet-50 is adopted in this study for simplicity.

• A projection head: a MLP with one hidden layer.

• The contrastive loss: for each augmentation pairs, first a pairwise
similarity is calculated; based on the similarity, the contrastive loss
is converted. Suppose there are N input images in a batch, so there
are N augmentations and 2N images in total. Expressed in formula,
the pairwise similarity si,j is:

si,j = zi
Tzj/(∥zi∥

∥∥zj
∥∥) (2.1)

9



10 Review of Methods

where i, j = 1, 2, ..., 2N. Here the negative pairs are not sampled
explicitly: all the other 2(N − 1) samples are regarded as negative
given a positive pair where i = k. Borrowing the idea from noise con-
trastive estimation (NCE) loss, the loss for a pair is calculated as the
equation below and termed as NT-Xent (the normalized temperature-
scaled cross entropy loss):

li,j = −log
exp(si,j/τ)

∑2N
k=1 1k ̸=iexp(si,k/τ)

(2.2)

where 1k ̸=i ∈ 0, 1 is an indicator function equal to 1 iff k ̸= i, and
τ is a temperature parameter. This contrastive loss function is also
called infoNCE loss in later research. [3] Finally, the contrastive loss
employed to update the SimCLR architecture is calculated as the av-
erage of the loss between positive pairs, expressed in the formula
as:

L =
1

2N

N

∑
k=1

(l(2k− 1, 2k) + l(2k, 2k− 1)) (2.3)

2.3.2 MoCo

MoCo, abbreviated from ’Momentum Contrast’, is still a typical algorithm
of contrastive learning proposed by He, Kaiming, et al in 2020. In MoCo,
the global architecture appears akin to the classic contrastive learning, but
the process of comparing positive and negative pairs is considered as a
look-up problem of matching keys and query in dynamic dictionaries, see
in Figure 2.6. Dynamic dictionary is in the sense that the keys are sampled
randomly during the training of the encoder for keys. They hypothesize
that more negative samples would result in better features, so they build
a large dictionary while maintain the encoder for keys as consistent as
possible. Driven by this motivation, they propose ’Momentum Contrast’
with three essential tricks described below:

• Dictionary as queue: the keys queue up in the dictionary. Through
the queue, the samples in the dictionary is progressively updated:
when a new mini-batch are enqueued, the oldest are dequeued. This
allows a large number of negative samples involved in the dictio-
nary, but not constricted to the typical size of mini-batch. Addition-
ally, this increases the consistency of the learning process, since the
encoded keys of the oldest batch are outdated and the least consis-
tent with the keys of the newest batches.

10



2.3 Self-supervised learning 11

• Momentum update: though using queue enlarges the capacity of the
dictionary, it impedes back propagation in the update of key encoder,
because the gradients should propagate all samples in the queue.
Copy the weights from query encoder to the key encoder is a naive
but poor solution. They hypothesize that the abrupt change damage
the consistency of the encoders. Thus, they propose ’a momentum
update’ to curb the damage. Denote the parameter of the key en-
coder fk as θk and those of query encoder fq as θq. θk is updated by:

θk = mθk + (1−m)θq (2.4)

Where m ∈ [0, 1) is a momentum coefficient. With dictionary as
queue, only θq can be updated by back propagation, thereby weighted
average between θk and θq could improve the consistency. Verified
by experiments, large m could evolve the key encoder progressively
and make the queue more efficient, so m = 0.999 by default.

Figure 2.6: The architecture of MoCo [5]

The contrastive loss function still applies infoNCE loss, but it is adapted
to compare between the keys and query. Mathematically, denote a query
as q given by the query encoder fq(·), a set of keys as k0, k1, k2, ... given by
the key encoder fk(·), the single key that matches q is k+. The adapted
infoNCE loss is:

Lq = −log
exp(q · k+/τ)

∑K
i=0 exp(q · ki/τ)

(2.5)

11



12 Review of Methods

where τ is a temperature parameter. It is a softmax-like function of classi-
fying q as k+ over the sum of 1 positive and K negative samples.

After SimCLR released, MoCo published its second version ’MoCov2’,
which absorbs the tricks of SimCLR about augmentation and MLP head
to improve its baseline. MoCov2 shares the same augmentation family,
encoder and head projector architectures with SimCLR, but with a more
effective batch learning style of key encoders, momentum contrast. The
comparison of the two batch learning style is shown in Figure 2.7. We use
MoCov2 in this study. The end-to-end batch learning style require higher
time and memory cost than momentum contrast style.

Figure 2.7: A batching perspective of SimCLR and MoCov2 optimization mecha-
nisms for contrastive learning. [6]

2.3.3 SwAV

SwAV, abbreviated from ’Swapping Assignments between multiple Views
of the same images’, is one adapated contrastive learning algorithm pro-
posed by Caron, Mathilde, et al in 2020. [13] Intead of pairwise feature
comparisons in typical contrastive instance learning, SwAV learns features
in an online clustering fashion which correlates the cluster assignments of
multiple image views see Figure 2.8.

They defined a swapped prediction problem to solve the online clus-
tering. Illustrated according to the right image in Figure 2.8, two augmen-

12



2.3 Self-supervised learning 13

Figure 2.8: Contrastive instance learning (left) vs. SwAV (right) [13]

tations of an image xt and xs are encoded as features zt and zs by encoders
fθ(·). Then the features zt and zs are assigned to prototype vectors qt and
qs by matching K prototypes c1, ..., cK with the following loss function:

L(zs, zt) = l(zs, qt) + l(qs, zt) (2.6)

where l(q, z) represents the cross entropy loss between the codes and the
probability activated by softmax function of the dot products of features z
and prototype vectors c, expressed in the formula as below:

l(qs, zt) = −∑
k

q(k)s logp(k)t , where p(k)t =
exp( 1

τ zT
t ck)

∑k′ exp( 1
τ zT

t ck′)
(2.7)

where τ is a temperature parameter. This loss function is jointly mini-
mized with respect to the prototypes c and the parameters θ of encoder
fθ.

During the training, two vital innovation contribute to SwAV: online
computation of codes and multi-crop augmentation strategy, explained as
below:

• Online computation of codes: in online manner, the computation
is carried within a mini-batch, but not passing over all the samples
offline. Within a batch, the features are equally partitioned by the
prototypes, which precludes trivial solutions that the features are all
assigned to same codes. The number of prototypes is 3000 by de-
fault. When working with small batches, if the number of samples
is smaller than the number of prototypes, the features in previous
batches are retained to augment the size of samples for equal parti-
tion, but are discarded for training loss calculation.

Mathematically, to map B feature vectors Z = [z1, ..., zB] K into pro-
totypes C = [c1, ..., cK], the mapping are represented by codes Q =

13



14 Review of Methods

[q1, ..., qB], through maximizing the similarity between features Q
and between the features Z and the prototypes C:

maxQ∈QTr(QTCTZ) + εH(Q), where H(Q) = −∑
ij

QijlogQij (2.8)

where H is an entropy function and ε is a smoothness parameter. By
default, ε is setting at a low value because a strong entropy regular-
ization parameter is likely to induce trivial solution. The prototypes
C resemble the centers of each cluster. To enforce equal partition,
the solution of matrix Q is modified to belong to the transportation
polytope within mini-batches, see Figure 2.9, expressed in formula
as:

Q = {Q ∈ RK×B
+ |Q1B =

1
K

1K, QT1K =
1
B

1B} (2.9)

where 1B, 1K denote the vectors of ones in dimension B and K. They

Figure 2.9: Cluster assignments in SwAV [13]

proved that in this online fashion, continuous codes work better than
discrete codes. One probable reason is that discretion like rounding
leads to an aggressive optimization and rapid convergence, hinder-
ing the sufficient training. Hence, they retain the soft code Q as the
probability over set Q, in forms of normalized exponential matrix:

Q∗ = Diag(u)exp(
CTZ

ε
)Diag(v) (2.10)

where u and v are renormalization vectors in RK and RB correspond-
ingly, computed by a small number of matrix multiplications using
the iterative Sinkhorn-Knopp algorithm.

14



2.3 Self-supervised learning 15

• Multi-crop augmentation strategy: to balance the higher performance
and heavier memory burden caused by increasing the number of
crops, they propose a multi-crop strategy where V more low reso-
lution crops are augmented in addition to two standard resolution
crops, see Figure 2.10. These crops are augmented in the way same

Figure 2.10: The architecture of multi-crop strategy [13]

with augmentation in SimCLR. Thus the total loss would be:

L(zt1 , zt2 , ..., ztV+2) = ∑
i∈1,2

V+2

∑
v=1

1v ̸=il(ztv , qti) (2.11)

2.3.4 Barlow Twins

Barlow Twins is a self-supervised learning proposed by Zbontar, Jure, et
al. that applies redundancy-reduction principle, which is a principle first
proposed in neuroscience. In 1961, neuroscientist H.Barlow proposed that
highly redundant sensory inputs are recoded into a factorial code, explain-
ing the organizations of visual system. In regards the research field of
machine learning, it inspired many supervised and unsupervised learn-
ing algorithms. Likewise, Barlow Twins has a distinct objective function
which aims to make the cross-correlation matrix of twin embeddings as
close to the identity matrix as possible.[1] The global architecture of Bar-
low Twins is shown in Figure 2.11 More specifically, two augmented views
YA and YB of an image X are made from augmentation family T. Two high-
dimensional embeddings ZA and ZB are encoded by YA and YB with en-
coders fθ respectively. Then ZA and ZB are mean-centered along the batch
dimension before calculating loss function. The innovative loss function
of Barlow Twins is:

LBT = ∑
i
(1− Cii)

2 + λ ∑
i

∑
j ̸=i

C2
ij (2.12)

15



16 Review of Methods

Figure 2.11: The architecture of Barlow Twins [1]

where the former term ∑i(1 − Cii)
2 represents the parts that should be

invariant to distortion, and the latter term λ ∑i ∑j ̸=i C2
ij represents the re-

dundant parts that should be reduced. In the equation, λ is a positive
constant that penalizes the off-diagonal elements in the correlation matrix
C and the correlation matrix C is computed between two mean-centered
high-dimensional embeddings ZA and ZB:

Cij =
∑b zA

b,iz
B
b,j√

(∑b zA
b,i)

2
√
(∑b zB

b,j)
2

(2.13)

where b means the b-th mini-batch, and i or j means the dimension of the
embedding z. As for the other implementation details, they are the same
with the settings of SimCLR.

2.4 Visulization: t-SNE

Before evaluation, we want to visualize the high dimensional features on
a low dimensional manifold to explore the hidden patterns of the fea-
tures by human observation intuitively. t-SNE is an effective choice for
dimensionality reduction of non-linear data, which is capable to interpret
complex polynomial relationship between features. t-SNE, abbreviated
from t-distributed stochastic neighbor embedding, is a common statisti-
cal method to visualize high-dimensional data in two or three dimensions
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2.4 Visulization: t-SNE 17

evolved from stochastic neighbor embedding algorithms (SNE), proposed
by Van der Maaten, Laurens, and Geoffrey Hinton in 2008. [14]. t-SNE
algorithm calculates pairwise similarity metrics between samples both in
high dimension and low dimension, and then make their distribution as
similar as possible by means of minimizing Kullback-Leibler (KL) diver-
gence.

We introduce SNE first before t-SNE. In SNE, the similarity between
two data points are converted by Euclidean distances using softmax func-
tion. The similarity of datapoint xj to datapoint xj in high dimension is
regarded as a conditional probability pj|i, given by:

pj|i =
exp(−∥xi − xj∥2 /2σ2

i )

∑k ̸=i exp(−∥xi − xj∥2 /2σ2
i )

(2.14)

where σi is the Gaussian variance centered on datapoint xi. pi|i = 0 be-
cause the similarity of the same datapoint is 0. Similarly, for the coun-
terparts datapoints yj to datapoint yj in low dimension, the conditional
probability qj|i is given by:

qj|i =
exp(−∥yi − yj∥2)

∑k ̸=i exp(−∥yi − yj∥2)
(2.15)

where Gaussian variance centered on datapoint yi is set as 1√
2

and qi|i = 0.
The objective cost function C applies KL divergence, which is a statistical
measure of the dissimilarity between to probability distribution, given by:

C = KL(P|Q) = ∑
i

∑
j

pijlog
pij

qij
(2.16)

where P and Q are the joint probability distribution of the datapoints in
high and in low dimension respectively. The minimization of C with re-
spect to yi is calculated with gradients:

∂C
∂yi

= 2 ∑
j
(pj|i − qj|i + pi|j − qi|j)(yi − yj) (2.17)

It can be inferred that: large pj|i and small qj|i will lead to high cost; and
small pj|i and large qj|i will lead to low cost. The latter is problematic
because it means the cost is low when two datapoints are far in high di-
mensions and close after mapped into low dimensions.
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18 Review of Methods

t-SNE improve SNE by two means. First it is more reasonable to make
the probability distribution symmetric by averaging the conditional prob-
ability distribution:

pij =
pi|j + pj|i

2N
, qij =

qi|j + qj|i
2N

(2.18)

Second, a student t-distribution is employed in low dimension map in-
stead. This ensures that modeling dissimilar datapoints by means of large
pairwise distances, and modeling similar datapoints by means of small
pairwise distances.[14] In more detail, qij is changed to:

qij =
(1 +

∥∥yi − yj
∥∥2
)−1

∑k ̸=l(1 +
∥∥yk − yl

∥∥2
)−1

(2.19)

Based on the new qij, the gradient of KL divergence is:

∂C
∂yi

= 4 ∑
j
(pij − qij)(yi − yj)(1 +

∥∥yi − yj
∥∥2
)−1 (2.20)

2.5 Evaluation: multinomial logistic regression

If no specific downstream task is assigned, a common evaluation proto-
col is to train a linear classifier on top of the features extracted by self-
supervised learning. Usually, the classifier is implemented by multi-nomial
logistic regression and semi-supervised learning is employed to fine-tune
on a proportion of labels. [12] Multinomial logistic regression is an exten-
sion of logistic regression to multi-class problems, implemented by a set
of independent binary logistic regression.

First logistic regression is briefly introduced. Logistic regression is
widely used to model binary dependent variables, such as vote or do not
vote, success or failure. It has its basis in the odds of a 2-level outcome
of interest, where odds is the probability of success divided by the prob-
ability of failure. Mathematically, denote a response variable y has two
outcomes 0 and 1 and a predictor variable matrix x, the odds of y is:

odds(y = 1) =
P(y = 1|x)

1− P(y = 1|x) =
P(y = 1|x)
P(y = 0|x) (2.21)

The log odds function of y, which is also the inverse of standard logistic
function is defined as:

ln(odds(y = 1)) = βTx (2.22)
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2.5 Evaluation: multinomial logistic regression 19

where β is the coefficient vector. Inverse it back, the standard logistic re-
gression function, also the sigmoid function, is:

P(y = 1|x, β) =
1

1 + e−βT x

P(y = 0|x, β) = 1− P(y = 1|x, β) =
1

1 + eβT x

(2.23)

The two equations can be equally compacted to joint distribution:

P(y|x, β) = (
1

1 + e−βT x
)y(1− 1

1 + e−βT x
)1−y

= hβ(x)y(1− hβ(x))1−y
(2.24)

Based on that, the cost function of a single sample is taking a negative
logarithmic function, expressed in formula:

cost(hβ(x), y) = −y(i) × log(hβ(x))− (1− y(i))× log(1− hβ(x)) (2.25)

where the superscript (i) indicates the i-th sample. For a dataset or batch
contains m samples, the total cost function is their sum:

J(β) = − 1
m

m

∑
i=1

[−y(i) × log(hβ(x))− (1− y(i))× log(1− hβ(x))] (2.26)

In machine learning, the minimization of cost function is usually imple-
mented by gradient descent, which iterates on every parameter β j in coef-
ficient vector β:

β j ← β j − λ
∂J(β)

∂β j
,

where
∂J(β)

∂β j
=

1
m

m

∑
i=1

(hβ(x(i))− y(i))x(i)j

(2.27)

where λ means the hyperparameter learning rate. [4]
Extensively, in multi-nomial logistic regression for K possible classes,

the Kth class is chosen as the base with coefficient βK = 0, so K− 1 classes
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are separately regressed against the Kth class, expressed in formula:

ln
Pr(Yi = 1)
Pr(Yi = K)

= β1 · Xi

ln
Pr(Yi = 2)
Pr(Yi = K)

= β2 · Xi

...

ln
Pr(Yi = K− 1)

Pr(Yi = K)
= βK−1 · Xi

(2.28)

Adding up the equations, Pr(Yi = K) can be solved by;

Pr(Yi = K) =
1

1 + ∑K−1
j=1 eβ j·Xi

(2.29)

and generally for Pr(Yi = k) where k = 1, ..., K− 1:

Pr(Yi = k) =
eβk·Xi

1 + ∑K−1
j=1 eβ j·Xi

(2.30)

And each of the binary linear classifiers is solved in the way same with
standard logistic regression.
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Chapter 3
Experiments

Several experiments with various configurations were conducted to assess
the performance of the introduced self-supervised learning algorithms on
kidney biopsy WSI. The flowchart of the experiments is given in Figure
3.1. The experiments follow three steps: data pre-processing clarified in
section 4.1, training based on self-supervised learning clarified in section
4.2, evaluation based on classification clarified in section 4.3.

Figure 3.1: Flowchart of the experiments

3.1 Data Pre-processing

All the kidney biopsy WSI data is anonymized and collected in Leiden
University Medical Center (LUMC). In the kidney WSI, we are interested
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22 Experiments

in recognizing three essential anatomic structures: glomeruli, tubules and
vessels. One example of the three anatomic structures in a healthy region
is shown in Figure 3.2. We cut the WSI in 20x magnification into 256 ×

Figure 3.2: Anatomic structures of kidney

256 patches and labelled them according to the structures of the largest
proportion in a patch. There are 19456 patches, including 5192 glomeruli
patches, 3600 tubule patches and 10664 vessel patches. See examples of the
patches of glomerulus, tubules, and vessels in Figure 3.3, Figure 3.4 and
Figure 3.5 respectively. It is observed that the structures of vessels have
the most complex patterns among them, and some structures become less
distinguishable when they are diseased.

3.2 Self-supervised learning

The training part of the experiments is conducted by applying the four
self-supervised learning algorithms on the patches without labels gener-
ated from the kidney biopsy WSI dataset mentioned above. For each input
of 256× 256 image patch, an output of 2048× 1 vector feature will be ob-
tained. (The output feature is extracted at the last layer of backbone but
not MLP head. ) The settings of parameters of each algorithm are given in
section 3.2.1. The initialization of weights of the architecture is described
in section 3.2.2.

22



3.2 Self-supervised learning 23

Figure 3.3: glomerulus Figure 3.4: tubules Figure 3.5: vessels

3.2.1 Parameters

The settings of the parameters for the four algorithms mostly follow the
default configuration in their corresponding papers, see Table 3.1. The
explanation of the parameters is followed.

Table 3.1: Parameter Settings of Self-supervsed learning Algorithms

SimCLR MoCo SwAV BarlowTwins
epochs 500 500 500 500

backbone ResNet-50 ResNet-50 ResNet-50 ResNet-50

MLP heads 2048× 2048
2048× 128

2048× 2048
2048× 128

2048× 2048
2048× 128

2048× 8192
8192× 8192
8192× 8192

batchsize 64 32 64 64
optimizer SGD SGD SGD SGD

learning rate Cosine annealing Multi-step Cosine annealing Cosine annealing

• Epochs: We set the training epochs 500 for the four algorithms, be-
cause it is enough for convergence while not wasting computing re-
sources.
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• Backbone: The backbones of the four algorithms are all ResNet-50.

• Heads: The heads of Barlow Twins are 3-layer MLP in shape 2048×
8192× 8192× 8192. The heads of ther other three algorithms are 2-
layer MLP in shape 2048× 2048× 128.

• Batchsize: The batchsize of MoCo is 32, while that of the other algo-
rithms is 64.

• Optimizer: The optimizers of the four algorithms are all stochastic
gradient descent (SGD). SGD is a stochastic approximation of gradi-
ent descent optimization. Standard gradient descent optimizes the
objective function in an iterative way: w = w− η▽ Q(w), where η
is the learning rate and Q(w) is the total loss values on the dataset or
the batch. But stochastic gradient descent calculates and updates the
derivative from every sample as: w = w− η▽ Qi(w), where Qi(w)
is the loss value of the i-th sample in the dataset or the batch. Com-
pared with gradient descent, SGD requires less computation mem-
ory and speed up the convergence. [11]

• Learning rate: The learning rate schedule of MoCo is multi-step,
while that of the others is cosine annealing.
Multi-step learning rate schedules the decay of the learning rate with
a certain multiplicative factor when a milestone, which means a cer-
tain number of epochs, is reached. The certain number of epochs is a
hyperparameter. In this training, the decay factor is set at 0.1, and the
starting learning rates are set at 0.03 and 0.003. The milestones are
120 before learning rate reaches 0.003 and 160 after then correspond-
ingly. When learning rate decays to 0.0003, it keeps at this constant.
With Cosine annealing schedule, the learning rate starts with a large
value and decreases to minimum value rapidly, and then restart from
large value and decreases rapidly again. Specifically, Cosine anneal-
ing schedules the learning rate as: ηt = ηi

min + 1
2(η

i
max − ηi

min)(1 +

cos(Tcur
Ti

π)), where ηi
max and ηi

min are the range of learning rate, Tcur
and Ti are the current epoch since the restart and the epoch since
the last linear warm-up finished respectively. [15] The range of the
learning rate for BarlowTwins is [0.002, 0.2], for the other algorithms
is [0, 4.8].
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3.3 Classification 25

3.2.2 Initialization

Wherever possible, neural network should be trained and fine-tuned with
a pre-trained model, since pre-training is much more efficient than train-
ing from scratch. Though there are very few pre-trained models in the
field of medical imaging, it has been identified that using even a few early
layers from a pre-trained ImageNet model can improve both the speed
of training and final accuracy of medical imaging models. [8] Following
that, the weights of the four algorithms are initialized by the pre-trained
weights of the corresponding algorithms on ImageNet, which is a large
public natural image database designed for visual object recognition re-
search. The top-1 accuracy of the pre-trained weights on ImageNet of the
four algorithms is listed in Table 3.2. Compared with the accuracy us-
ing supervised learning, the four self-supervised learning algorithms have
comparable performance. Using the weights trained on ImageNet to ini-
tialize the weights for this medical imaging task could make the training
more robust and fast to converge.

Table 3.2: Accuracy of the pre-trained weights on ImageNet

supervised SimCLR SwAV MoCo Barlow Twins
Top-1 acc. 76.5% 69.3% 75.3% 66.4% 73.2%

3.2.3 Environments

For the software environment used in the experiments, Python is the main
language and Vissl is the main library. Vissl is produced by Facebook,
which implements the state-of-the-art self-supervised learning approaches
on top of Pytorch. For the hardware environment, we use 3 graphics pro-
cessing unit (GPU) and their models are Quadro RTX 6000.

3.3 Classification

Within each self-supervised architecture, we retain the features of the im-
age patches at the last layer of the ResNet-50 backbone to do evaluation, so
the MLP heads are discarded. First, before quantifying the evaluation of
the algorithms, we use t-SNE to visualize the vector features of the image
patches in two dimensions, with setting perplex=50.0 and random initial-
ization. To evaluate the features learned by self-supervised learning, a

25



26 Experiments

linear classifier with multinomial logistic regression is employed to clas-
sify the features on top of the ResNet-50 backbone of the self-supervised
learning architecture. We use 1%, 10%, 30%, 50%, 70%, 90% of the labels to
supervise the training of the classification models respectively and predict
the labels of the rest of the data. To improve the robustness of the re-
sults, for each certain percentage of labels, the training of the classification
models is repeated 5 times with 5 different random sampled dataset. The
evaluation metrics of the prediction on the test set is used for quantifying
the performance of the features extracted by the self-supervised learning
algorithms. As for evaluation metrics, the mean and standard deviation
of the accuracy scores of the models and the precision, recall and F1 scores
for each class are calculated. Accuracy score of the classification model is
calculated by the fraction of correct predictions, formulated as:

accuracy =
#correct predictions
#total predictions

(3.1)

where # means ’the number of’. In multi-nomial classification, supposing
a confusion matrix oriented as row for truth and column for prediction,
precision and recall for the i-th class Ci are defined as following:

precisioni =
Cii

∑j Cji
, recalli =

Cii

∑j Cij
(3.2)

Precision is the ratio that the correct prediction of Ci out of all the predic-
tion of Ci, and recall is the ratio that the correct prediction of Ci out of all
the true Ci F1 score for the ith class Ci are defined as the harmonic mean of
precision and recall:

F1i =
precisioni · recalli

precisioni + recalli
(3.3)
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Chapter 4
Results

The results obtained by the experiments are discussed in this chapter. Af-
ter the features obtained, they are visualized by t-SNE and trained by
multi-nomial logistic regression.

For each self-supervised algorithm, the features are extracted at the
last layer of its ResNet-50 backbone, at 0, 100, 200, ..., 500 training epochs.
Specifically, at epoch=0, the features are extracted using the weights pre-
trained on ImageNet. Firstly, the 2-dimensional visualization of its fea-
tures based on t-SNE are produced. To display the points clearly, we
randomly generated 2500 samples to draw the t-SNE plot, consisting 456
tubules, 1363 vessels and 681 glomeruli. In the plots, the points for tubules,
vessels and glomeruli are colored by blue, green and red respectively. Sec-
ondly, multinomial logistic regression models are applied to the features
and the corresponding measurement metrics are given. The measurement
metrics include accuracy scores of the whole model, precision, recall and
f1 scores of each class.

Moreover, to examine the capability of ’self-supervised’ for each algo-
rithm, the percentages of the labels used for training the linear classifiers
are varied among 1%, 10%, 30%, 50%, 70% and 90%. To compare the ef-
ficiency of the percentage of labels, we define the marginal benefits as the
maximum scores a model can obtain for additional percentage of labels in
training. We regard the model with the percentage of labels that has the
maximum marginal benefit as the optimal model.
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4.1 SimCLR

First, the 2-dimensional t-SNE plot of the features at different epochs trained
by SimCLR is presented, see Figure 4.1. At epoch=0, when only the weights
pre-trained on ImageNet are applied, the points of glomeruli and tubules
are already clustered respectively, and the points of vessels spread around
without mixing up with the points of other classes too much. It indi-
cates that the weights pre-trained on ImageNet accelerate the convergence
speed. At epoch=100, the mixed area between the clusters of glomeruli,
the clusters of tubules and the surrounding points of vessels are reduced
further. From then, there is no significant change in the clusters. It can be
speculated that the features extracted by SimCLR at are capable of recog-
nizing the three classes.

Figure 4.1: 2-dimensional t-SNE plot of the features trained by SimCLR at every
100 epochs

4.1.1 Classification

The mean of the accuracy scores of the multinomial logistic regression
model trained with the features extracted by SimCLR and different per-
centage of labels are calculated, see Table 4.1. A plot of the mean of the
accuracy scores trained with different percentage of labels based on the
SimCLR features at different epochs is provided in Figure 4.2. The bands
in the plot are the 95% confidence interval of the mean accuracy scores. It
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Table 4.1: The mean accuracy scores of the linear classification model trained
with features extracted by SimCLR and different percentage of labels at every 100
epochs

Percent
Epochs 0 100 200 300 400 500

1% 76.90% 81.44% 80.39% 80.24% 79.88% 79.80%
10% 85.31% 88.44% 88.06% 88.13% 87.97% 87.87%
30% 88.61% 91.22% 90.96% 90.99% 91.20% 90.99%
50% 90.13% 92.55% 92.38% 92.29% 92.34% 92.39%
70% 91.01% 93.21% 92.98% 92.91% 92.97% 93.11%
90% 91.52% 93.63% 93.60% 93.22% 93.80% 93.63%

shows that more labels used for training would lead to less uncertainty,
depicted as narrower confidential interval bands. Comparing different
epochs, it indicates that at epoch=100, the SimCLR features perform best
to be classified. Comparing different percentage of labels, it shows that
with only 1% labels the classifier could reach 81.44% mean accuracy score
at epoch=100 on the test dataset with 99% labels, which is fairly good.
Increasing the percentage of labels to 10%, the mean accuracy score at
epoch=100 improves to 88.44%, where receives the maximum marginal
benefit. The growth of mean accuracy score slows down from increasing
10% labels to 90% labels. With 90% labels, the accuracy score is around
93.63%, but the 5% gain of accuracy score is costly considering the expense
of 80% extra labels. Afterward, we shift our perspective of evaluation from

Figure 4.2: The accuracy scores of the linear classification model based on Sim-
CLR features at every 100 epochs

overview to each class. Respecting the trade-off between the cost of labels
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and the accuracy scores, we focus on the models trained with 1%, 10% and
30% labels. Their mean precision, recall and F1 scores at different training
epochs are plotted in Figure 4.3. The 95% confidence interval bands of
the models trained with 1% labels are remarkably wide. For instance, that
of the precision score for tubules is about 28%. The uncertainty becomes
much less when the labels for training are increased to 10%, where the 95%
confidence interval of precision score for tubules is around 5%. Overall,
the improvement of the scores is big from 1% labels to 10% labels, while
little from 10% labels to 30% labels. Hence, the models trained with 10%

(a) with 1% labels (b) with 10% labels (c) with 30% labels

Figure 4.3: precision, recall and F1 score of the classification model based on
SimCLR features

at epoch=100 are regarded as the ones manage the cost of labels but main-
tain good scores. The scores of the model trained with 10% labels at epoch
100 are listed in Table 4.2. The first two columns show a trade-off between
the precision and recall scores within some classes: glomeruli have high
recall scores above 90% while low precision scores below 90%, and ves-
sels are the reversal. Tubules have worse performance on both precision
and recall scores. According to F1 scores, the performance of the SimCLR
features for each class are ranked by: vessels, glomeruli and tubules.
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Table 4.2: The precision, recall and F1 score at epoch=100 of the classification
model trained with 10% labels based on SimCLR features

labels
scores precision recall F1

glomerulus 84.69% 92.06% 88.22%
vessel 92.93% 87.58% 90.18%
tubule 82.01% 85.77% 83.88%

4.2 MoCo

First, the 2-dimensional t-SNE plot of the features trained by MoCo at ev-
ery 100 epochs is presented, see Figure 4.4. At epoch=0, the weights pre-
trained on ImageNet gather the points of each class in to clear but small
clusters. At epoch=100, the small clusters of each class start to merge into
bigger clusters, where the boundaries between the clusters become sharp.
From then, there is no notable development in the clusters. It can be spec-
ulated that the features extracted by MoCo at are capable of recognizing
the three classes.

Figure 4.4: 2-dimensional t-SNE plot of the features trained by MoCo at every 100
epochs
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4.2.1 Classification

The mean of the accuracy scores of the multinomial logistic model trained
with the features extracted by MoCo at different epochs and different per-
centage of labels are calculated, see Table 4.3. A line chart of the mean
accuracy scores in the table is provided in Figure 4.5. The bands in the
plot are the 95% confidence interval of the mean accuracy scores. The
mean accuracy scores grow little as the training epochs continue, showing
that Moco did not learn further specific knowledges with the specialized
kidney biopsy WSI datasets. Generally, the mean accuracy scores of the
classification model are slightly higher at epoch=300. Regarding the effi-
ciency of labels, the classification model trained with 10% labels receives
the maximum marginal benefit, where the mean accuracy score is raised to
89.14% from 89.10% at epoch=300. Next we shit our perspective of eval-

Table 4.3: The mean accuracy scores of the linear classification model trained
with features extracted by MoCo and different percentage of labels at every 100
epochs

Percent
Epochs 0 100 200 300 400 500

1% 79.24% 79.97% 80.83% 80.91% 80.97% 80.93%
10% 88.53% 88.96% 89.10% 89.14% 89.13% 89.12%
30% 91.49% 91.29% 91.45% 91.47% 91.44% 91.45%
50% 92.80% 92.59% 92.63% 92.63% 92.62% 92.64%
70% 93.53% 93.36% 93.24% 93.29% 93.29% 93.28%
90% 94.33% 94.29% 93.95% 93.99% 94.02% 94.08%

uation from overview to each class. Considering the trade-off between
the cost of labels and the accuracy scores, we focus on the models trained
with 1%, 10% and 30% labels. The precision, recall and F1 scores of the
three models every 100 epochs are plotted in Figure 4.6. At epoch=300,
the MoCo features maintain good robustness even for the models trained
with only 1% labels, the biggest 95% confidence interval is about 10%.
Increasing the percentage of labels from 1% to 10% makes scores grow ef-
fectively, for instance, at epoch=200, the precision scores for tubules and
vessels increase about 12%. Compared to this, the benefits of increasing
the labels from 10% to 30% is small, about 3% for the scores. Thus, we
regard the model trained with 10% labels at epoch=300 are the optimal
choice. The precision, recall and F1 scores of the model trained with 10%
at epoch=300 are listed in Table 4.4. Glomeruli and tubules have high re-
call scores about 94.84% and 90.76% respectively, and low precision scores
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Figure 4.5: The accuracy scores of the linear classification model based on Moco
features at every 100 epochs

about 71.86% and 70.22% respectively. On the contrast, vessels have high
precision scores about 95.07% and low recall scores about 70.80%. Accord-
ing to F1 score, the abilities of MoCo features to classify glomeruli, vessels
and tubules are similar, about 81.74%, 81.15% and 79.14% respectively.

Table 4.4: The precision, recall and F1 score at epoch=200 of the classification
model trained with 10% labels based on MoCo features

labels
scores precision recall F1

glomerulus 71.86% 94.84% 81.74%
vessel 95.07% 70.80% 81.15%
tubule 70.22% 90.76% 79.14%

4.3 SwAV

First, the 2-dimensional t-SNE plot of the features trained by SwAV is pre-
sented in Figure 4.7. At epoch=0, there are some clusters of the classes
overlap each other. At epoch=100, it seems that the clusters of tubules
merge at center and the clusters of vessels gather at periphery. The 2-
dimensional t-SNE plot of SwAV features does not reveal obvious clusters,
so the quantified evaluation with linear classifiers is very necessary.
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(a) with 1% labels (b) with 10% labels (c) with 30% labels

Figure 4.6: precision, recall and F1 score of the classification model based on
MoCo features

4.3.1 Classification

The mean of the accuracy scores of the multinomial logistic classification
model trained with the features extracted by SwAV and different percent-
age of labels are calculated, see Table 4.5. A line chart of the mean accuracy
scores in the table in is Figure 4.8. The bands in the chart are the 95% con-
fidence interval of the mean accuracy scores. The bands become narrower
apparently after increasing the percentage of labels for training from 1%
to 10%. As the training epochs continue, the mean accuracy scores slightly
increase from 91.35% at epoch=0 to 91.39% at epoch=100, then decrease.
Therefore, the model trained with 10% labels at epoch=100 has the maxi-
mum marginal benefit considering the cost of labels, training time and the
mean accuracy scores. Here, the optimal model is trained with 10% labels
at epoch =100, with the mean accuracy score around 91.39%. Afterwards,
we shift the perspective of evaluation from overview to each class. We fo-
cus on the classification models trained with 1%, 10%, 30% models. The
precision, recall and F1 scores of the three models every 100 epochs are
shown in Figure 4.9. Regarding precision scores, it is noteworthy that the
scores of tubules vary little with the percentage of labels used for training,
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Figure 4.7: 2-dimensional t-SNE plot of the features trained by SwAV at every 100
epochs

which are 87.33%, 90.40% and 90.65% at epoch=100 for the models trained
with 1%, 10% and 30% respectively. Vessels have the largest growth in
precision scores, from 77.02% to 93.65% at epoch=100, with the percent-
age of labels used for training increased from to 1% to 10%. With regard
to recall, the increasing percentage of labels used for training improve the
scores of tubules obviously, which are about 51.44%, 85.10%, 89.52% at
epoch=100 for 1%, 10% and 30% labels. The scores of glomeruli and ves-
sels are about 92.16% and 93.14% respectively, which are quite good in the
models trained with 10% labels at epoch=100. For F1, the scores in the
models trained with 30% labels at epoch=100 are fairly good, which are
about 93.81%, 94.84% and 89.96% for glomeruli, vessels and tubules re-
spectively. Considering the marginal benefit of the percentage of labels,
we list the scores for the three classes at epoch=100, see Table 4.6. Out of
our expectation, SwAV features not only have high scores on the measure-
ment metrics, they also balance the trade-off between precision and recall
scores. The precision and recall scores for glomeruli are about 90.38% and
92.16%; for vessels are about 92.79% and 93.14%; for tubules are about
88.65% and 85.10%. It tells that SwAV features are roughly equally good
at assigning the labels of each class properly as it is at classifying instances
of each class properly.
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Table 4.5: The mean accuracy scores of the linear classification model trained
with features extracted by SwAV and different percentage of labels at every 100
epochs

Percent
Epochs 0 100 200 300 400 500

1% 79.97% 77.51% 75.27% 72.65% 71.12% 69.72%
10% 91.35% 91.39% 90.01% 87.85% 86.93% 86.12%
30% 93.58% 93.66% 92.63% 90.99% 90.13% 89.69%
50% 94.16% 94.36% 93.45% 92.02% 91.25% 90.94%
70% 94.65% 94.81% 94.01% 92.81% 91.78% 91.56%
90% 94.89% 94.89% 94.19% 93.08% 91.97% 91.97%

Figure 4.8: The accuracy scores of the linear classification model based on SwAV
features at every 100 epochs

4.4 Barlow Twins

First, the 2-dimensional t-SNE plot of the features trained by Barlow Twins
is plotted, see Figure 4.10. At epoch=0 and epoch=100, the points of the
three classes are totally blended. After epoch=200, it implies that the points
of glomeruli and tubules are gathering slightly. From then, the points of
tubules and glomeruli seem to gather more closely, yet there are not clear
clusters. Observing the t-SNE plot of BarlowTwins features, we speculate
that the ability of BarlowTwins features for classification is limited.
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(a) with 1% labels (b) with 10% labels (c) with 30% labels

Figure 4.9: precision, recall and F1 score of the classification model based on
SwAV features

4.4.1 Classification

The mean of the accuracy scores of the multinomial logistic classification
model trained with the features extracted by BarlowTwins and different
percentage of labels are calculated, see Table 4.7. A line chart of the mean
accuracy scores in the table see Figure 4.11. The bands in the chart are
the 95% confidence interval of the mean accuracy scores.The 95% confi-
dence interval bands are not wide, even for the models trained with 1%
labels. From epoch=0 to epoch=100, the mean accuracy scores are rela-
tively low and steady, which are about 53%, 61% and 65% for the models

Table 4.6: The precision, recall and F1 score at epoch=100 of the classification
model trained with 10% labels based on SwAV features

labels
scores precision recall F1

glomerulus 90.38% 92.16% 91.26%
vessel 92.79% 93.14% 92.96%
tubule 88.65% 85.10% 86.83%
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Figure 4.10: 2-dimensional t-SNE plot of the features trained by Barlowtwins at
every 100 epochs

trained with 1%. 10% and 30% labels, respectively. From epoch=100 and
epoch=200, the mean accuracy scores rise sharply about 15%. Then, as
training epochs continue, the mean accuracy scores go up gradually, so
the highest scores are achieved at epoch=500. At epoch=500, the mean ac-
curacy scores go up to 82.46% from 71.94% after increasing the percentage
of labels for training from 1% to 10%, which is the largest improvement
among them. The mean of the accuracy scores of the multinomial logistic

Table 4.7: The mean accuracy scores of the linear classification model trained with
features extracted by Barlow Twins and different percentage of labels at every 100
epochs

Percent
Epochs 0 100 200 300 400 500

1% 52.86% 53.04% 66.88% 68.86% 70.94% 71.94%
10% 60.92% 61.75% 76.59% 79.55% 81.48% 82.46%
30% 65.19% 64.95% 80.37% 83.31% 85.07% 85.84%
50% 66.70% 66.89% 82.05% 85.15% 86.40% 86.97%
70% 67.78% 68.17% 83.19% 86.09% 87.65% 87.87%
90% 68.79% 68.91% 83.70% 86.90% 88.29% 88.76%

classification model trained with the features extracted by BarlowTwins
and different percentage of labels are calculated, see Table 4.7. A line chart
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Figure 4.11: The accuracy scores of the linear classification model based on Bar-
lowTwins features at every 100 epochs

of the mean accuracy scores in the table see Figure 4.11. The bands in
the chart are the 95% confidence interval of the mean accuracy scores.The
95% confidence interval bands are not wide, even for the models trained
with 1% labels. From epoch=0 to epoch=100, the mean accuracy scores are
relatively low and stable, which are about 53%, 61% and 65% for the mod-
els trained with 1%. 10% and 30% labels, respectively. From epoch=100
and epoch=200, the mean accuracy scores rise sharply about 15%. Then,
as training epochs continue, the mean accuracy scores rise gradually, so
the highest scores are achieved at epoch=500. At epoch=500, the mean ac-
curacy scores achieve 82.46% from 71.94% after increasing the percentage
of labels for training from 1% to 10%, which is the largest improvement
among them.

Table 4.8: The precision, recall and F1 score at epoch=500 of the classification
model trained with 10% labels based on BarlowTwins features

labels
scores precision recall F1

glomerulus 81.11% 80.43% 80.77%
vessel 84.45% 86.61% 86.02%
tubule 75.21% 73.06% 74.11%
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(a) with 1% labels (b) with 10% labels (c) with 30% labels

Figure 4.12: precision, recall and F1 score of the classification model based on
BarlowTwins features

40



Chapter 5
Discussion and Conclusion

This chapter compares the performance of the four self-supervised learn-
ing algorithms on classifying the common anatomic structures on kidney
biopsy WSI in section 5.1. Moreover, the limitations met in the experi-
ments and corresponding future improvements are also discussed in this
section. Finally, a brief summary of contribution of this study is drawn in
section 5.2.

5.1 Discussion

In this study, the applications of four common self-supervised learning
methods on kidney biopsy WSI patches classification are investigated, in-
cluding SimCLR, MoCo, SwAV and BarlowTwins. We employ a pipeline
which extracts features with self-supervised learning algorithms and eval-
uate the features with a linear classifier based on the measurement met-
rics. The self-supervised learning architectures share the same backbone
network, ResNet-50 and are initialized by the weights pre-trained on Im-
ageNet correspondingly. The linear classifiers are multinomial logistic re-
gression models trained with different percentage of labels, including 1%,
10%, 30%, 50%, 70% and 90%.

With respect to the comprehensive performance, the features extracted
by the four self-supervised learning algorithms gain sufficient accuracy
scores supervised by only 10% labels: 88.44% at epoch=100 for SimCLR,
89.14% at epoch=300 for MoCo, 91.39% at epoch=100 for SwAV and 82.46%
at epoch=500 for BarlowTwins see Table 5.1. So surprisingly, though there
is no distinct clusters in the t-SNE plot of SwAV, SwAV obtains the highest
accuracy scores. Moreover, the difference between the highest accuracy
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scores and the the accuracy scores at epoch=0 is about 3.13% for SimCLR,
0.61% for MoCo, 0.04% for SwAV, 21.54% for BarlowTwins. Except for
BarlowTwins, the small difference is not entirely unexpected, as it shows
that the self-supervised learning algorithms have learned many common
patterns in the world through training on ImageNet, and update a little
expertise patterns through training on the kidney biopsy WSI dataset.

Table 5.1: The state and accuracy of the optimal linear classifier of the four SSL
algorithms

%labels epoch accuracy
SimCLR 10% 100 88.44%

MoCo 10% 300 89.14%
SwAV 10% 100 91.39%

BarlowTwins 10% 500 82.46%

Another characteristics is about the trade-off between the precision and
recall scores. The prediction of glomerulus and vessels for SimCLR and
MoCo are particular cases: the precision scores of predicting glomerulus
are low, while that of predicting vessels are high. The recall scores of pre-
dicting glomerulus and vessels demonstrate otherwise. Nevertheless, the
inverse relationship may not seem like much when predicting glomerulus
and vessels for SwAV and BarlowTwins and predicting tubules for all the
four algorithms. It tells that SimCLR and MoCo are prone to classify some
objects as glomerulus, while failed to recognize some vessels. The four
algorithms are appropriate at classifying and recognizing tubules reckon-
ing the small number of tubule samples. Albeit having the lowest scores,
tubule prediction can be boosted by adding more tubule samples.

The four self-supervised learning algorithms could be ranked by the
measurement scores. According to F1 scores, the descending order would
be: SwAv, SimCLR, BarlowTwins, MoCo. The SwAV features outper-
form the other algorithms in the highest F1 scores of classifying the three
anatomic structures, about 91.26% for glomerulus, 92.96% for vessels and
86.83% for tubules. Additionally, as aforementioned, the precision and re-
call scores for SwAV are high and similar, which can infer that the SwAV
features recognize and classify the three anatomic structures. The second
is SimCLR, whose F1 scores are lower due to the higher difference be-
tween precision and recall scores. The BarlowTwins features and MoCo
features behave similarly on F1 scores, but the MoCo features have higher
difference between precision and recall scores. Noting that as the special-
ized kidney biopsy WSI dataset is applied, the scores of the BarlowTwins
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features are moderately improved while that of the MoCo features are
slightly deteriorated. As such, we rank BarlowTwins higher for this kid-
ney anatomic structures classification task.

We acknowledge that several limitations in this study and anticipate
to provide useful experience for future improvements. First of all, the
ResNet-50 backbone can be replaced by the state-of-the art architecture:
vision transformer, which is introduced for computer vision tasks in 2020
and demonstrated better performance and greater efficiency on image clas-
sification. Second, the number and the distributions of the samples of each
classes definitely effect self-supervised learning. We did experiments with
smaller kidney biopsy WSI dataset before, which contains 204 glomerulus,
359 vessels and 359 tubules. Aside from the lower scores, the performance
of the features is best on tubules while worst on vessels, which is oppo-
site to the results in this thesis. However, in practice the distributions of
the unlabelled samples are unknown, so increasing the amount of data
might help assure reliability. Furthermore, customized augmentation for
kidney WSI might be useful for self-supervised learning, other than the
default augmentation for object-centric natural images. Clinicians always
pay special attention to kidney WSI, like magnification, density, shape of
a tissue.

So long as self-supervised learning performs well on this classification
task, evaluation of the experiments could be advanced by fine-tunning on
a more specific task, for example, lesion object detection. It might be inter-
esting to explore whether self-supervised learning can leverage the large
amount of unlabelled data in actual medical imaging tasks, although it
also might be challenging due to subtle difference between diverse pat-
terns as well as the rigorous demands of precision and robustness in the
tasks related to clinical diagnosis tasks.

5.2 Conclusion

This thesis examined if self-supervised learning based methods can im-
prove the classification tasks on kidney biopsy WSI, in order to train with
fewer labels while maintain good accuracy and other measurement met-
rics. The evaluation protocol is a linear classifier implemented through
multinomial logistic regression with the features extracted by self-supervised
learning. Its results of the experiments suggest that yes, it could generate
features that learned from data itself without labels. In the linear classifier,
the features extracted by the four algorithms all achieve good accuracy
scores, higher than 85% with only 10% labels. Among the four algorithms,
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SwAv performs best, not only on the overall accuracy but also the scores
of every class. Then the second is SimCLR. MoCo and BarlowTwins be-
have similarly, yet BarlowTwins gains more improvement from learning
the kidney biopsy WSI dataset. Generally, the thesis confirms the feasi-
bility of self-supervised learning for computer vision tasks about kidney
WSI, with saving the high cost of manual annotation on a large scale med-
ical image dataset.
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Appendix

The training loss of the linear classifier is not discussed in the body para-
graphs because training with low percentage of labels could easily lead to
overfitting. However, it has little effect on the conclusions drawn above
since the comparisons of the four self-supervised learning algorithms fo-
cus on the results on test set but not the fine-tuning on training set. For
integrity, the training accuracy scores of the multi-nomial logistic regres-
sion trained with 1%, 10%, and 30% labels is supplemented here respec-
tively. The row is indexed by epochs and the column is indexed by the
percentage of labels.

Table 5.2: With SimCLR features, the training accuracy scores of multi-nomial
logistic regression trained with 1%, 10%, and 30% labels

0 100 200 300 400 500
1% 92.84% 96.92% 96.94% 97.23% 98.07% 98.46%

10% 90.66% 93.93% 94.03% 94.34% 94.24% 94.65%
30% 91.82% 94.36% 94.65% 94.79% 94.82% 94.74%

Table 5.3: With MoCo features, the training accuracy scores of multi-nomial lo-
gistic regression trained with 1%, 10%, and 30% labels

0 100 200 300 400 500
1% 89.23% 83.08% 84.10% 86.58% 85.12% 84.10%

10% 87.69% 84.08% 84.61% 85.10% 85.29% 85.15%
30% 89.41% 89.41% 89.67% 89.51% 88.95% 88.48%

Table 5.4: With SwAV features, the training accuracy scores of multi-nomial lo-
gistic regression trained with 1%, 10%, and 30% labels

0 100 200 300 400 500
1% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

10% 99.79% 99.43% 98.92% 98.76% 98.45% 98.66%
30% 99.44% 99.31% 98.92% 98.01% 97.75% 97.15%
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Table 5.5: With BarlowTwins features, the training accuracy scores of multi-
nomial logistic regression trained with 1%, 10%, and 30% labels

0 100 200 300 400 500
1% 99.96% 100.00% 100.00% 100.00% 100.00% 100.00%

10% 85.76% 98.51% 100.00% 100.00% 100.00% 100.00%
30% 77.02% 85.51% 98.28% 99.62% 99.76% 99.82%
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