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Abstract

Increasing the Predictive Power of the Possession Metric in Foot-

ball by Adding Spatio-temporal Context

In recent years, statistics play an increasing role in professional football. A controversial

topic inside the emerging field of football data science is the effect of ball possession on

match outcomes. We contribute to this discussion by analyzing the effect of possession on

match outcomes while controlling for match status and match-up balance. We examine

the importance of the position of possession by comparing the kernel density estimate

of winning and losing teams. Based on these findings we split the football pitch into

distinct zones using Voronoi cells based on the centroids of a k-means clustering. We fit a

multiple linear regression model that regresses a match’s final goal difference on possession

per match status per zone using a 5x5-fold nested cross-validation. The resulting model

splits the football pitch into 11 zones. Our metric holds higher predictive power than

the traditional metric. To demonstrate the potential of this work for both analysts and

journalists, we analyze a teams performance over a whole season as well as individual

match performances using the metric.

Keywords: football, soccer, possession, event data, spatio-temporal data, match status,

match-up balance, kernel density estimation, k-means clustering, voronoi cells
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Introduction

Football is the most popular sport in the world. It is also a billion dollar industry where

small edges can make the difference between winning and losing. Therefore, it does not

come as a surprise that with the emergency of more and better data, the field of football

data science has been rapidly growing. While for sports like Basketball and Baseball

so called ’advanced analytics’ to analyze and report on players and teams performances

are well established, football journalism still relies on metrics based exclusively on the

counting of events, so called ’counting stats’. Examples of these stats are the amount

of shots taken, corner kicks taken or possession per team, without any further context.

While there have been recent improvements to parts of these metrics by providing them

with context, most prominently the expected goals approach to shots taken (see [1]),

the possession metric has been reported in the same manner for the last 25 years, when

modern football data science took of, enabled by the founding of data provider Opta

Sports.

The current way of reporting on possession, expressed as a percentage share per team,

which will be referred to as raw possession from here on out, has not been without

criticism. Players, coaches and analysts alike have voiced their dissatisfaction with the

metric, going as far as calling it ’useless’. In the academic field of football data science, this

debate continues. Existing literature trying to shed more light on the effect of possession

on match outcomes shows contradicting results, partly due to the limitations imposed by

the data sets used.

The goal of this thesis is two-fold: First, we aim to contribute to the debate on the

1



Introduction 2

effect of possession on match outcome by making use of the more granular event data

available. This will be done by splitting up the event data set into subsets, allowing to

control for Match Status and Match-up Balance and its combination. Second, we aim to

improve upon raw possession, by adding spatio-temporal context to the passes played.

The spatial context will be included into the metric by splitting up the football pitch

into a number of distinct zones and weighting these zones according to their effect on

the outcome of football matches. The temporal context will be included by taking into

account the Match Status at the time a pass is played.

This thesis starts off by giving an overview on the existing literature. Then, the

methods used in this project, as well as their notation are established. Next, the two data

sets and the features relevant for this project are described. Once the data is introduced,

the effect of possession on match outcomes will be explored. To explore the temporal

context, we examine the effect of different levels of Match Status and Match-up Balance

on the relationship of possession and match outcome. Based on these finding, a controlled

subset of the data is defined. On this subset, the effect of the spatial context of passes will

be explored using kernel density estimation. Once the importance of position is identified,

ways of segmenting the football pitch into distinct zones to capture these differences are

introduced. Based on these zones, a multiple linear regression, regressing goal difference

on possession per zone, is formulated. The process of fitting the model and its hyper-

parameters using nested cross-validation is explained and the resulting model and its

coefficients are presented. Once we obtained our final model, possible applications for

analysts and journalists are presented. In the discussion section the results of my project

will be reflected upon and the results will be put into the context of the existing literature.

The current model’s limitations as well as possible further work will be discussed.



Chapter 1

Existing Literature

In this chapter, an overview over the current way of measuring possession as well as the

academic discussion surrounding it is given. Section 1.3 introduces recently developed

approaches of valuing possessions sequences using machine learning techniques.

1.1 How is Possession Currently Measured?

To improve upon anything, it is vital to understand the way that it is done currently.

Right now, there is not a uniform way that possession is measured. There are different

approaches to tracking raw possession that are being employed by the data providers in

football. Two of them will be discussed in this chapter.

The first one is to let an observer decide about the change of possession and clock the

time for which a team was in control of the ball. This method is analogous to a chess

clock used in tournament chess, just that instead of the time needed to think about a

move per player the time spent with the ball gets summed up for each team. The total

time spent with the ball per team then gets turned into a ratio by dividing it through

the sum of both clocks. This method is an intuitive way of calculating raw possession.

However, the implementation of the ’chess clock method’ requires us to make subjective

choices about the start and end of a possession. For example, it is not clear how to treat

3



Existing Literature 4

cases where the ball is temporarily out of play or cases where possession is currently being

fought over.

The second one, which has been used by the prominent football data provider Opta

Sports, is to base possession on the number of passes played per team. This method

disregards the time per possession, assuming that the average time per played pass is

equal among teams over the course of a whole match.

Both approaches have their advantages and drawbacks. In this project, possession will

be defined as the number of passes played per team. The method was chosen as it allows

to measure possession without the need for additional subjective definitions.

1.2 ’Possession - an Empty Metric?’ The Debate on

the Effect of Possession on Match Outcome

There is an ongoing debate about the impact of possession on the outcome of football

matches. Analysts and commentators are often very critical about the metric, some going

as far as calling it an ’empty metric’, implying that it holds no explanatory power at all.

The existing literature shows that these claims are not without reason.

Collet et al. [2] argue that while there is a positive effect of possession on outcomes,

this changes once you control for teams strength. They find that in a balanced match-up,

so a match between teams of equal strength, the effect of possession on outcome turns

negative. Possibly due to limitations of their data, Collet et al. [2] omit another important

factor in their analysis: Lagos et al. [3] found that the match status has a significant effect

on possession. Possession tends to lean towards the trailing team once the game is not

tied anymore, with the team in the lead showing lower possession. As time spent trailing

naturally correlates with losing a match, omitting this factor will lead to a negative bias

in the effect of possession on match outcomes.

As our data set allows controlling for both team strength and match status, both the

individual impact of Match-up Balance and Match Status as well as their combined effect
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will be analyzed and taken into account while building and validating our model.

1.3 Recent Developments

With the increasing availability of granular data, new approaches to evaluate passes and

possessions have emerged. One of them is the metric Expected Possession Value (EPV)

by Fernandez et al. [3]. EPV uses machine learning techniques to evaluate the likelihood

of a goal occurring from the current game state and to calculate the effect of events like

passes on that likelihood.

Multiple approaches to evaluate individual passes where developed by Bransen et al.

[4]. Zone-oriented Pass Value (ZPV), Pass-oriented Pass Value (PPV) and Sequence-

oriented Pass Value (SPV) use an underlying expected goals model to assign value to

individual passes. ZPV uses this expected goals model to value zones of equal size on the

pitch and uses the pass’s origin and destination to assign value to a pass. ZPV is the

approach most similar to what will be done during this thesis, but its focus is on individual

passes and weights zones based on possession outcomes, while the focus of our metric will

be on aggregated team possession values and match outcomes. PPV and SPV compare

a pass to similar passes (PPV) and possession to similar possessions (SPV) played in the

past and base their evaluation on this comparison.

While approaches like EPV, ZPV, PPV and SPV are of great use for experts in the

field (both papers are highly recommended reads for anyone interested in football data

science), they have not found acceptance in mainstream football culture yet. We argue

that this is in part due to their high complexity. Therefore, we strive to develop a metric

that extends on the familiar format of raw possession and is easy to interpret for football

fans and players alike.



Chapter 2

Methods

In this chapter, the statistical methods used during our project are introduced. For each

method, we give a brief mathematical background and introduce the notation used during

this thesis.

2.1 Kernel Density Estimation

Kernel density estimation (KDE) is a common density estimation method. It allows to

get an estimate of the probability distribution function of a given sample. In this section,

a brief introduction of the method and its notation is provided. For a more detailed

explanation see Weglarczyk [5].

Suppose we have an i.i.d. sample x1, x2, ..., xn of size n.

KDE tries to infer the density function f that generated this sample. KDE assigns each

data point xi in the sample a kernel function k.

This estimate f̂ is defined as:

f̂(x) =
1

nh

n∑
i=1

k

(
‖x− xi‖

h

)
,

6
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where h is a bandwidth parameter, and the kernel is commonly a Gaussian,

k(t) =
1√
2π

exp(−1
2
t2).

Bandwidth parameter h is central for the results of a KDE. It has a similar function

to the bin size of histrograms. If h is too large, the density estimate will be oversmoothed,

missing to pick up on variation in the data. If h is too small, the density estimate becomes

sensitive to noise in the data. There are multiple ways to tune parameter h, including

rule of thumbs like the ’Silverman’s rule’ or ’Scott’s rule’, as well as resampling methods

like bootstrapping.

2.2 K-means Clustering

The k-means algorithm is a method used to divide a given sample into a predefined

amount of k clusters. This section will give a brief introduction to the standard version

of the algorithm. For a more detailed explanation see Lloyd [6].

Suppose we have an i.i.d. sample x1, x2, ..., xn of size n. The algorithm starts with a

random assignment of k center-points (µ1, µ2, ..., µn). Now, all observations x are assigned

to the center point with the smallest distance:

S
(t)
i =

{
xp :

∥∥xp − µ(t)
i

∥∥2 ≤ ∥∥xp − µ(t)
j

∥∥2 ∀j, 1 ≤ j ≤ k
}

(2.1)

If there are multiple centers with the same distance, the center is chosen at random.

Afterwards, the center-points are re-assigned by calculating the mean of the observations

clustered to their respective center-points:

µ
(t+1)
i =

1

|S(t)
i |

∑
xj∈S

(t)
i

xj (2.2)

The steps described in Eq. 2.1 and Eq. 2.2 are repeated until all observations remain at
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the assigned center-points. As k-means is prone to get stuck in a local minimum, multiple

random starts can be used to increase the probability of finding the global minimum as a

solution.

2.3 Multiple Linear Regression

Multiple Linear Regression is a standard statistical method used across a wide range of

fields in science. It is an extension of Simple Linear Regression, allowing for more than

one predictor at the same time. In this section, a short explanation of Multiple Linear

Regression and its notation is given. For a more detailed explanation see Aiken et al. [7].

Assume we want to predict outcome y based on k predictors. Our sample contains an

outcome vector y, as well as the k predictors for all n observations in our sample in the

form of a data matrix X. The regression equation for a single observation i in our sample

is then:

yi = β0 + β1xi,1 + β2xi,2 + . . .+ βkxi,k + εi,

with β0 being the intercept, β1, β2, ..., βk being the coefficients for our parameters and εi

being a random error term following a distribution N ∼ (0, σ2), with a constant error

variance σ2, identical to Simple Linear Regression. Multiple Linear Regression searches

for a combination of the k+1 coefficients β0, β1, ..., βk that minimizes the sum of squared

errors over our whole sample. The vector B containing the least square estimate of our

coefficients β0, β1, ..., βk is obtained by calculating

B = (X
′
X)−1X

′
Y.
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2.4 Nested Cross-Validation

In this section the nested cross-validation (N-CV) technique is explained. The notation

deviates from the symbols k, l commonly used for the inner and outer folds in N-CV.

This comes from the fact that k is already used in the notation of the k-means algorithm.

To avoid confusion, the letters l,m are used instead. Cross-validation (CV) is a model

validation technique used for estimating a models performance on unseen data (see [8]).

Regular CV splits the available data into l folds and assigns one of the folds as the test

sets and the remaining l − 1 folds as the training set. The model is now trained on the

data in the training set and tested on the fold containing the test set. The procedure is

repeated for all
(

l
l−1

)
= l combinations of train and test sets (referred to as the Outer

Loop from here on) and the mean test score calculated. The resulting mean score gives

an estimate of the performance of the model on unseen data.

TRAINING SET TEST SET

Est. Test Performance

using Mean Test Error

on l = 5 Outer Folds

Figure 2.1: The Outer Loop of a Nested Cross-Validation with l = 5 Outer Folds
Visualized.

Figure 2.1 visualizes this train and test split. If the goal is to test a single model,

CV is a sufficient method to obtain unbiased estimates of the models performance on

unseen data. But what if there are choices to be made about the models parameters (so

called hyperparameters) to choose the combination of hyperparameters that maximizes

test performance? Simply comparing the results of a CV of multiple hyperparameter

combinations and picking the one that results in the highest mean test score would lead

to biased estimates, overestimating the models performance on unseen data (see [9]).

Fortunately, with N-CV there exists a method to obtain an unbiased test performance
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estimate while simultaneously tuning the hyperparameters of a model. N-CV achieves

this by ’nesting’ a second CV procedure into the standard CV method. For each of the l

train and test combinations of the Outer Loop, the train data of this combination will be

split into another m folds. Now, m−1 folds are used as training data and one fold is held

back as the Validation Set. Analogous to the Outer Loop we cycle over all
(

m
m−1

)
= m

combinations per outer fold. A full cycle over all m inner folds is referred to as an Inner

Loop. Given the l folds in the Outer Loop, a N-CV has l Inner Loops with a total of

l ×m inner folds.

TRAINING SET TEST SET

TRAINING SET VAL SET

Split off Test Set

Tune Hyperparameters

using Mean Val. Results on m = 5

Inner Folds

Train and Test with tuned Hyperparameters

on Outer Fold Data Set

Figure 2.2: An Inner Loop of a Nested Cross-Validation with m = 5 Inner Folds Visu-
alized.

Figure 2.2 shows the Inner Loop of a N-CV setup used during model selection and

fitting for m = 5. During that Inner Loop, the model with different combinations of

hyperparameters will be fit on the training set. For each combination, the mean score

will be calculated and the combination of hyperparameters with the highest mean score

will be selected.

Now, a model with these hyperparameters will be fit on the training set of the Outer

Fold and the test score on this model will be the unbiased estimate of the models perfor-

mance on unseen data. In addition to the estimate of test performance, N-CV also gives an
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estimate of the models sensitivity to the training data by comparing the hyperparameters

of the m different models resulting from the Inner Loops.



Chapter 3

Data

Data sets from two sources were used in this project. In this chapter, the two data sets and

their sources will be introduced. Additionally, we will give a description of the features

relevant for this project and the additional features constructed based on them.

3.1 The Event Data Set

The event data set contains all events of all matches of the 2017-2018 season of the top

5 leagues in Europe (Bundesliga, La Liga, Premier League, Serie A, Ligue 1), as well as

the tournaments European Championship 2016 and the World Cup 2018. As tournament

football has different rules than league play only the events of league competitions are

considered for this project. The data set was made available by Pappalardo et al. [10]

under the Creative Commons License [11].

3.2 The Bookmaker Odds Data Set

The second data set used in this project is the collection of betting odds provided by

football-data.co.uk [12]. The website collects betting odds at the point of kickoff from

various bookmakers and makes them publicly available. The bookmaker odds data set

12
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contains pre-match odds for every match played in the top 5 leagues during the 2017-

2018 season. The betting odds will be used to define Match-up Balance.

3.3 Features Relevant for this Project

The two data sets were merged during preprocessing. In this section all features of the

merged data set that were used during this project will be introduced and explained. This

will be done on the example of the match between Eintracht Frankfurt and SV Werder

Bremen on Matchday 11 of the 2017-2018 Bundesliga Season. This match will be referred

to as the sample match for the rest of this chapter. The data in the following tables show

all features of 5 selected events from the sample match.

Table 3.1: The Columns in our Data Set Containing an Event’s Identifiers. The 5
rows are 5 events of the Match between Eintracht Frankfurt and SV Werder Bremen on
Matchday 11 of the 2017-2018 Bundesliga Season.

Event ID Match ID Team ID Player ID Home ID

158037 2516834 2443 16025 2462

158365 2516834 2462 69616 2462

158430 2516834 2462 110 2462

159079 2516834 2443 55990 2462

159797 2516834 2443 82340 2462

Table 3.1 shows the columns containing an events identifiers. Event ID is a primary

key uniquely identifying every event in the data set. Match ID, Team ID, Player ID and

Home ID contain the identifiers belonging to an event’s Match, Team, player and the ID

of the home team for a given match respectively.
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Table 3.2: The Columns in our Data Set Containing Match and Event Information. The
5 rows are 5 events of the Match between Eintracht Frankfurt and SV Werder Bremen on
Matchday 11 of the 2017-2018 Bundesliga Season.

Event ID Match-up Balance Match Outcome Event Type Event Sub-Type

158037 uneven lost Pass Simple pass

158365 uneven won Shot Shot

158430 uneven won Free Kick Throw in

159079 uneven lost Pass Simple pass

159797 uneven lost Pass Simple pass

Table 3.2 shows the columns containing information about the match in which an

event happened, as well as the classification into event type and sub-types. Match-up

Balance is a categorical variable with levels [even, uneven]. A Match-up is classified as

even if it belongs to the 50% of matches with the smallest skill difference δS, which is

defined as

δS = |((Phome − µHFA)− Paway)|,

with Phome and Paway being the chance of winning implied by the betting odds for the home

and away team of a match and µHFA = 0.15 being the mean home field advantage across

the whole data set. The correction for home field advantage was taken as we are trying

to control for teams skill level and home field advantage involves other factors such as fan

support, additional travel for the away team or referee home bias (see [13]). Additionally,

it allows both subsets (even and uneven matches) to have a balanced amount of home

and away matches in them.

Match outcome is a categorical variable representing eventual outcome of the match

from the perspective of the active team. As Frankfurt won the game, it is won for all of

Eintracht Frankfurt’s events, and lost for all of Werder Bremen’s.
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Events are classified into event types, with each event types having multiple event sub-

types. They are given in the respective columns. event types and their sub-types will be

introduced in further detail in Section 3.4.

Table 3.3: The Columns in our Data Set Containing the Spatio-temporal Context. The
5 rows are 5 events of the Match between Eintracht Frankfurt and SV Werder Bremen on
Matchday 11 of the 2017-2018 Bundesliga Season.

Event ID Period Event Time Own Score Opp. Score Match Status X Y

158037 1H 2.25 0 0 drawing 49 51

158365 1H 976.74 0 0 drawing 86 25

158430 1H 1205.76 1 0 leading 26 0

159079 2H 386.18 1 1 drawing 62 80

159797 2H 2893.81 1 2 trailing 59 94

Table 3.2 shows the columns containing an events temporal and spatial context. Period

and Time contain the temporal information about an event. Own Score and Opp. Score

represent the goals scored by each them at the time of the event. Match Status is extracted

from the score at the time of the event from the perspective of the active team. In line 3

for instance, Eintracht Frankfurt takes a throw in while they are leading 1:0. Therefore,

the Match Status for that event is leading. X and Y give the position of an event in a

range of [1,2,3...,100].
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Figure 3.1: 5 Events from the Match Eintracht Frankfurt (2462) vs. SV Werder Bremen
(2443) on Matchday 11 of the 2017/2018 Bundesliga Season Visualized.

Figure 3.1 is a visualization of the five selected events from the sample match. For

instance, the event in line 2, Eintracht Frankfurt’s shot that lead to the leading goal, is

visualized as the red cross on the pitch. This visualization of the football pitch is used

repeatedly during this thesis. While speaking about certain areas of the pitch, this will

always be done from the perspective of the attacking team. This means that X describes

the position on the axis going from goal to goal and Y the position from left to right. For

Eintracht Frankfurt’s shot that means that it is in an area with high vertical progression,

close to the opponents goal and on the right side of the pitch.

3.4 Event Type Pass and its sub-types

The events in the data set are classified into different event types. Each of this event

types contains multiple sub-types.
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Table 3.4: Frequency Counts of Event Types.

Event Type Count Freq (in %)

Pass 1.565.356 50.97

Duel 832.055 27.09

Others on the ball 242.837 7.91

Free Kick 182.468 5.94

Interruption 130.096 4.24

Foul 47.955 1.56

Shot 40.461 1.32

Save attempt 16.567 0.54

Offside 7.821 0.25

Goalkeeper leaving line 5.779 0.19

Table 3.4 shows the frequency of the different event types. As the focus of this project

will be on possession which in turn will be measured on the amount of passes played,

events of the type Pass will be of central importance. Type Pass make up just over half

of all events in the data set with type Duel making up a little more than another quarter

and the rest of share split up over the remaining events.
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Table 3.5: Frequency Counts of Sub-types of Event Pass.

Pass Type Count Freq. (in %)

Simple pass 1.207.448 77.14

High pass 123.214 7.87

Head pass 91.194 5.83

Cross 58.634 3.75

Launch 43.303 2.77

Smart pass 28.428 1.82

Hand pass 13.135 0.84

Event Pass itself comes in seven different sub-types, as can be seen in Table 3.5. Over

three fourths of passes are of type Simple pass, with 6 other sub-types making up the

remaining share. Due to limitations imposed by sample size constraints, differentiation

between pass sub-types is not included in our final model. Additional information about

the distribution of pass sub-types on the pitch is provided in Appendix B.
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Exploratory Data Analysis

When dealing with a large granular data set like the event data used for this thesis, it is

essential to explore the available data before doing any kind of modelling. This chapter

starts off by examining the effect of raw possession on match outcomes. Then, a way

of controlling for Match Status and Match-up Balance by looking at different subgroups

of the data, is introduced and applied to the data set. All effects are tested on their

significance using random label assignment. For readability purposes, only the resulting

estimated p-values p̂ are reported in this chapter. A detailed explanation of the empirical

significance tests including histograms can be found in Appendix A. In Section 4.3, the

importance of the position of passes will be explored with the help of kernel density

estimation (KDE).

4.1 Effect of Raw Possession

As our aim for this project is to improve upon raw possession, we start off by looking at

the amount of explanatory power the raw statistic holds on the data set. This is done by

comparing the number of passes played grouped by the categorical variable outcome.

19
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Table 4.1: Number of Passes per Match Outcome.

Outcome Passes played Mean Possession

Lost 559,815 0.472

Drew 379,909 0.5

Won 625,632 0.528

Table 4.1 shows that winners have a mean possession of 52.8% in their matches. This

number is in line with the findings of Colett et al. [2]. Without controlling for Match

Status or Matchup Balance, raw possession has a small, but significant positive effect on

match outcomes (p̂ = 0.018).

4.2 Controls

Previous studies on possession were limited in their ability to control for Match Status

due to their data being aggregated on the match level. Additionally, they had to rely on

a subjective definition of Match-up Balance due to a lack of information on team strength

to base Match-up Balance on. In this section, new ways to control for both factors and

their combination are introduced. This is done by splitting the data set into different

subgroups.

4.2.1 Match Status

The work of Lago et al. [3] suggests that aggregated possession numbers can not be

interpreted without having additional information about the Match Status. This stems

from the fact that while trailing teams tend to have a higher amount of possession. And as

matches in which a team is trailing are more likely to be lost by that team, high possession

on the aggregated match level correlates with a long amount of time spent trailing and

consequently with a higher chance of losing the match.
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Table 4.2: Number of Passes per Match Status.

Status Passes played Mean Possession

Trailing 419,137 0.521

Drawing 625,632 0.5

Leading 385,920 0.479

Table 4.2 confirms the need for such a control. Trailing teams have significantly higher

possession than leading teams (p̂ < 0.001). As the match status may switch multiple times

during the same match, it is not straightforward to control for it on an aggregated match

level. With the help of the event data set, the subset of passes played while drawing can

be analyzed in isolation. As every match starts in status drawing, it is guaranteed that

every match is in Match Status drawing at least some amount of time. As drawing can

be interpreted as the ’neutral’ Match Status, this subset is not affected by the effect of

Match Status on possession.

Full Data Set Drawing

Trailing

Match status

Leading

Figure 4.1: The Subset Used to Control for Match Status Visualized.

Figure 4.1 shows the subset resulting from such a restriction. Now, that Match Status

is controlled for, the comparison of the number of passes played grouped by the categorical

variable outcome can be repeated on the Match Status controlled subset.
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Table 4.3: Number of Passes per Outcome for Match Status Drawing.

Outcome Passes played Mean Possession

Lost 213,679 0.439

Drew 272,762 0.5

Won 273,858 0.561

Table 4.3 shows that with 0.561 possession while drawing, winning teams hold a sig-

nificant (p̂ < 0.001) surplus of possession.

4.2.2 Match-up Balance

Collet et al. [2] suggest that team strength is another important factor to control for

while looking at the relation of possession to match outcomes. In their work, they control

for Match-up Balance by assigning different tiers to clubs and fitting individual linear

regressions for the different tiers. They find that the effect of possession turns negative

for match-ups between teams of even tiers.

Full Data Set

Even

Uneven

Matchup Balance

Figure 4.2: The Subset Used to Control for Match-up Balance Visualized.

Instead of a subjective classification into tiers, we will make use of the definition based

on the pre-match betting odds introduced in Chapter 3 to define even matches. Figure 4.2
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visualizes the resulting subset. Once again, the number of passes played grouped by the

categorical variable outcome are compared for the Match-up Balance controlled subset.

Table 4.4: Number of Passes per Outcome for Match-up Balance Even.

Outcome Passes played Mean Possession

Lost 272,064 0.521

Drew 223,619 0.5

Won 249,602 0.479

Table 4.4 confirms the findings from Lago et al.[3]. In matches between opponents

of even strength, without simultaneously controlling for Match Status, winners hold less

possession than losers. However, the effect is not significant at level a = 0.05 (p̂ = 0.134).

4.2.3 Combining Match Status and Match-up Balance

The results from Section 4.2.1 and Section 4.2.2 help to understand the ongoing debate

about the effect of possession on match outcomes in the field of football data science.

As the effects of controlling for one of the two controls moves the effect of possession in

opposite directions, the result will be different depending on the control applied. In this

section, both controls will be combined.
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Full Data Set

Even

Uneven

Matchup Balance

Drawing

Trailing
Match status

Leading

Figure 4.3: The Subset Used to Control for the Combination of Match-up Balance and
Match Status Visualized.

Figure 4.3 shows the subset of passes played during Match Status drawing in matches

with even Match-up Balance. This subset combining both controls, referred to simply as

the controlled subset from here on out, will be used to once more compare the number

of passes played grouped by the categorical variable outcome.

Table 4.5: Number of Passes per Outcome for Match-up Balance Even and Match Status
Drawing.

Outcome Passes played Mean Possession

Lost 110,847 0.473

Drew 162,108 0.5

Won 123,979 0.527

Table 4.5 shows the possession shares of winners and losers on the controlled subset.

On this subset of the data, winners do hold more possession than losers. However, the

effect is not significant at level a = 0.05 with p̂ = 0.114.



Exploratory Data Analysis 25

4.3 Kernel Density Estimation of Passes

The goal of this section is to identify in which parts of the pitch possession has the

biggest effect on the outcomes of football matches. A way to do this is by comparing the

distributions of the passes of winners and losers of these matches. A method that provides

an intuitive visual representation of these densities is KDE. We applied a 2-dimensional

KDE with a Gaussian Kernel and Scott’s rule for tuning bandwidth parameter h to all the

passes of winners and losers in the controlled subset and visualized the density estimates

on a football pitch. Additionally, the normalized densities were subtracted from each

other, to help visualize these differences. The same steps were taken for the different

sub-types of passes. The results can be found in Appendix A.

(a) Winners (b) Losers

Figure 4.4: Density Estimates of Winners (a) and Losers (b) in the Controlled Subset
Compared. Darker shades of green correspond to higher density estimates.

Figure 4.4 shows the KDEs of all passes played of Winners and Losers in the controlled

subset. The density estimates differ in multiple ways. Winners play a higher share of

their passes in the opponents half. They also play more passes in the centre of the pitch,

especially during build up. Losers have a higher density in front of their own goal and on

the left and right sides of the pitch. To further highlight the differences between the two

distributions, the density estimates were normalized and the estimate of the losers was

subtracted from the one of the winners.
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Figure 4.5: Difference Between the Normalized Density Estimates of Winners and Losers
in the Controlled Subset. The color scale is anchored at the color yellow for equal densities.
Green represents higher density for winners, red for losers. Darker shades of each color
correspond to larger density differences.

The picture becomes even more clear in Figure 4.5, which shows the difference in

density estimates between winners and losers. In the opponents half, winners play a

higher share of their passes in all areas except the ones on the very left and right of the

pitch. This surplus of density extends into their own half, for central areas close to the

kick off point. The biggest density surplus of winners can be found around the centre

of the pitch. Losers play a higher share of their passes in front of their own goal and in

the areas close to the left and right edges of the pitch. The biggest surplus of density for

Losers can be found in the areas deep in their own half.
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Zone Definition

Section 4.3 revealed that there are differences in the effect of outcome between passes

given their position on the pitch. From this follows a need for differentiation of passes

given their position. A way of achieving such a differentiation is by dividing the football

pitch into distinct zones. Two approaches for defining such zones and the necessary pre-

processing steps are described in this chapter. Once the reader knows how the zones are

defined, the mean possession per zone on the controlled subset will be given in Section

5.4.

5.1 Mirroring Passes along the Horizontal Axis of the

Pitch

There are various formations in football and they differ in many ways. Famous examples

are 4-4-2, 4-2-3-1, 3-5-2 or 4-3-3. What all of the above mentioned formations have in

common is that they are symmetric along the horizontal axis of the football pitch. Very

rarely one will find a team that decides to play with a left-back but no right back, or

a right winger but no left winger. This symmetry is exploited to reduce the number of

zones to define, while simultaneously increasing the number of passes available per zone.

27



Zone Definition 28

(a) Pre Mirroring (b) Post Mirroring

(c) Zones Bottom half (d) Zones Reflected

Figure 5.1: The Mirroring Process Visualized. (a) shows a sample of n = 1000 passes
in the data set plotted on the football pitch. (b) shows the same passes after mirroring
along the horizontal axis. (c) shows the Voronoi zones resulting from a k-means clustering
with k=10 on those sample passes. (d) shows the final zones after reflecting the zones
back along the horizontal axis.

Figure 5.1 visualizes this process. Through the exploitation of the symmetry of the

passes, the number of zones to define is halved while the available sample size per zone

is doubled. This way, stability of the solutions is greatly improved, both for the zone

definition based on k-means in Section 5.3 as well as the linear regression in Chapter 6.

5.2 Rectangles

A straightforward way of segmenting a football pitch into zones is by dividing it into

rectangles of equal size. This method allows for differentiation between different combi-
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nations of vertical and horizontal progression. The resulting zones of such a segmentation

are referred to as rectangular zones from here on.

(a) k = 2 (b) k = 6

(c) k = 8 (d) k = 15

Figure 5.2: Rectangular Zones Visualized. (a), (b), (c) and (d) show the resulting zones
after reflection on the x-axis for k = 2, k = 6, k = 8, and k = 15 respectively.

Figure 5.2 shows the rectangular zones resulting for different levels of k. One limitation

of this kind of zone definition is that it does not allow for differentiation of zone size.

5.3 Voronoi Cells

A popular approach to segment the football pitch into zones is by using Voronoi cells

based on the centroids of a K-means clustering. For k clusters, the Voronoi cell of each

cluster k is defined as the area for which the euclidean distance to k is smaller than to

any other cluster. This approach has the advantage of creating zones of different shapes
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and sizes, grouping similar passes together.

(a) k = 5 (b) k = 10

(c) k = 15 (d) k = 20

Figure 5.3: Voronoi Zones Visualized. (a), (b), (c) and (d) show the resulting zones
after reflection on the x-axis for k = 5, k = 10, k = 15, and k = 20 respectively.

Figure 5.3 shows the zones based on the Voronoi cells resulting from the cluster centers

of a k-means algorithm for different levels of k. From here on, these zones will be referred

to as the Voronoi zones. Contrary to the rectangular zones, they vary in shape and size

for each level of k. For lower levels of k, the Voronoi zones differ significantly from the

rectangular ones. For higher levels of k, Voronoi zones in the middle of the pitch are close

to the rectangular zones, but the zones close to both goals are still significantly different

between both methods.
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5.4 Possession per Zone

Now that two methods of segmenting the pitch into zones are established, in this section,

these two methods are applied to explore how the possession values per outcome from

Section 4.2.3 are distributed among the resulting zones.

(a) Voronoi, k = 10 (b) Rectangular, k = 8

Figure 5.4: The Mean Possession Per Zone in the Controlled Subset. (a) shows a Voronoi
zone definition with 10 zones and (b) a rectangular zone definition with 8 zones. The color
scale is anchored at the color yellow for a weight of 0. Green represents a zone with higher
possession for winners, red a zone with higher possession for losers. Darker shades of each
color correspond to larger possession differences.

In Figure 5.4, the possession of winners for the controlled subset is visualized. The

figure confirms the findings from Figure 4.5, showing that winners play a higher share of

their passes in the zones in the opponents half. Note that while Figure 5.4 and Figure 4.5

allow for the same conclusions, they represent different things. Figure 4.5 visualized the

difference in densities between the passes played per outcome. As winners hold higher

possession in general (0.527), they might play more passes in a given zones than losers,

even if they play a lower share of their passes in this zone. This can be observed in most

of the zones in the attacking teams own half. While winners have possession less than

0.527, they still hold higher or equal possession than losers. An exception to this are the

zones right in front of their own goal. Here, winners hold lower possession than losers.
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Comparing the two approaches for zone definition, small differences can be observed,

especially in the opponent half. During the hyper-parameter tuning in the inner loops of

N-CV in Chapter 7.1, both approaches will be compared and the best performing one will

be selected for our final model.



Chapter 6

The Model

The goal of this thesis is to develop a new possession metric that makes use of the

additional predictive power given by the spatio-temporal context, where spatial context

is given by the position of the possession and temporal context is given by the current

Match Status at time of the possession.

The importance of spatial context becomes apparent in Section 4.3, from the differ-

ences in density estimates per outcome. To incorporate spatial context, we can make

use of the methods for the separation of the football pitch into distinct zones introduced

in Chapter 5. The importance of temporal context is established in Section 4.2, which

shows the effect of Match Status on possession. Temporal context can be included into

the model by splitting the possession per Match Status, similar to what has been done in

Section 4.2.1. The importance of Match-up Balance as an additional factor to control for

is revealed in Section 4.2.2. As incorporating Match-up Balance into the model based on

our categorical definition would result in a restriction of the training data of our model

to a non-representative subset of matches, we incorporate Match-up Balance solely in the

evaluation of the model.

Therefore, we need a model that can include both spatial and temporal context, while

allowing for evaluation on subsets of the test data. A model that satisfies all these

conditions is a multiple linear regression model. By making the possession, held in each
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zone during each possible Match Status, a separate independent variable, the model is

able to assign weights representing the effect of possession on match outcomes given its

context. In this chapter, our new metric and the underlying multiple linear regression

model with its notation will be introduced in further detail.

6.1 Model Design

Our data set contains information about n football matches between two teams. Each

row i = 1, 2, ..., n contains information about home team h and away team a.

Let yi be defined as the goal difference from the perspective of the home team,

yi = Gi,h −Gi,a,

with Gi,h and Gi,a being the number of goals scored per team.

Let Xi be a vector of size k, with k being a number of separated zones on the football

pitch and NPi,h,k and NPi,a,k be the number of passes played per team in each of these k

zones. The possession for match i of home team h per zone k is then defined as:

Pi,h,k =
NPi,h,k

NPi,h,k +NPi,a,k
− µ(Ph,k).

Then Xi,k will contain the mean centred possession surplus per zone of home team h,

defined as:

Xi,k = Pi,h,k − µ(Ph,k), (6.1)

with µ(Ph,k) being the mean possession of home teams in that zone over all n matches.
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Our linear regression equation for one match i now is:

yi = β0 + β1Xi,1 + β2Xi,2 + . . .+ βkXi,k + εi,

with β0, β1, ..., βk being the intercept and the coefficients for our parameters and εi being

the random error term with distribution N ∼ (0, σ2).

− =

Pi,h µ(Ph) Xi,h

Figure 6.1: The Composition of Xi for the Basic Version of the Model with k = 10

Voronoi Zones Visualized. The color scale is anchored at the color yellow for a mean-
centred possession value of the home team of 0. Green represents a zone with a possession
surplus for the home team, red a zone with a surplus for the away team. Darker shades
of each color correspond with a larger absolute size of possession differences.

Figure 6.1 visualizes Eq. 6.1 for a sample match for a model with k = 10 and Voronoi

zone definition. As our model is defined from the home teams perspective and mean

centred by the mean home possession per zone, intercept β0 can be interpreted as the

home field advantage. In its simplest form of k = 1, this model resembles a regression of

raw possession on goal difference, taking home field advantage into account.

6.1.1 Controlling for Match Status

As outlined during this thesis, Match Status has an effect on expected possession and

therefore needs to be considered. Therefore we extend our model the following way:

Define match status s ∈ [l, d, w] as a dummy variable indicating the three possible

Match Statuses.

Let Xi be a vector of size k × 3, with k being the number of zones on the football
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pitch. The possession for match i of home team h per zone k, per status s is then defined

as:

Pi,h,k,s =
NPi,h,k,s

NPi,h,k,s +NPi,a,k,s
− µ(Ph,k,s).

Xi,k,s will now contain the mean centred possession for match i, for zone k, for status

s defined as

Xi,k,s = Pi,h,k,s − µ(Ph,k,s), (6.2)

with µ(Ph,k,s) being the mean possession of home teams h, for zone k, during status s,

over all n matches. The linear regression equation now becomes:

yi = β0 + β1,lXi,1,l + β1,dXi,1,d + β1,wXi,1,w

+ β2,lXi,2,l + β2,dXi,2,d + β2,wXi,2,w

+ . . .

+ βk,lXi,k,l + βk,dXi,k,d + βk,wXi,k,w + εi.
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− =

Pi,h,l µ(Ph,l) Xi,l

− =

Pi,h,d µ(Ph,d) Xi,d

− =

Pi,h,w µ(Ph,w) Xi,w

Figure 6.2: The Composition of Xi for the Match Status Controlled Version of the
Model with k = 10 Voronoi Zones Visualized. The color scale is anchored at the color
yellow for a mean-centred possession value of the home team of 0. Green represents a
zone with a possession surplus for the home team, red a zone with a surplus for the away
team. Darker shades of each color correspond with a larger absolute size of possession
differences.

Figure 6.2 visualizes Eq. 6.2 for a sample match for a status controlled model with

k = 10 and Voronoi zone definition.

6.1.2 Dealing with Missing Values

While all matches are drawn for at least some amount of time, the Match Statuses trailing

and leading are not guaranteed to happen and are therefore not always available. There-

fore, for the status controlled version of the model, missing values will be imputed by

Pi,h,d, the mean centred possession per zone k, during status d.
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Results

In this chapter, we will show the results of the nested cross-validation used to fit the

model and its hyper-parameters. The results will be compared to multiple baselines, both

for the full test sets as well as a subset of even matches. Once the final model is selected,

we will visualize its weights.

7.1 Results of Nested Cross-Validation

In this section, the results of the Nested Cross-validation (N-CV) are presented. The

Inner Loops of the N-CV will serve as a method for model selection, choosing the best

performing combination of zone type (Voronoi or rectangular) and number of zones k.

The Outer Loop of the N-CV will allow us to estimate the stability of our model as well

as its test performance. For readability purposes, only aggregated results are displayed

in this chapter. The full results for all l ×m = 25 folds can be found in Appendix C.

7.1.1 Results Inner Loops

For each of the l = 5 folds in each fold of each Inner Loop, the model was fit for k in

the range of [1, 2, ..., 20] for the Voronoi zones. For the rectangular zones, all values in

the range [1, 2, ..., 20] that allowed for a separation of the pitch into squares of equal size

38
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post-mirroring were chosen, resulting in values of k of [1, 2, 6, 8, 15, 18].

For each of the 5 inner loops, the R2 on the validation set was recorded, and the model

with the highest mean score on all 5 folds was chosen to be tested in the respective fold

in the Outer Loop.

(a) Inner Loop 1 (b) Inner Loop 2

(c) Inner Loop 4 (d) Inner Loop 4

(e) Inner Loop 5

Figure 7.1: Mean Score per k curing the l = 5 Folds of each Inner Loop. (a), (b), (c)
and (d) and (e) show the mean score aggregated over the m = 5 folds, for each of the
l = 5 Inner Loops.
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Figure 7.1 shows the mean score per k over the 5 folds of the Inner Loop, for all 5

folds of the Outer Loop. Starting off at k = 1 we see an increase in validation scores until

a inflection point is hit, from which the validation score decreases. This general trend

holds across all inner loops, but inflection points and steepness of increase and decreases

differ. The two zone definitions perform similar inside each inner loop. For each of the

two definitions, the k resulting in the highest score is selected for the respective inner

loop.

Table 7.1: Test Scores and Chosen Hyper-parameter k for Inner Loops.

Inner 1 Inner 2 Inner 3 Inner 4 Inner 5

Zone Type k Score k Score k Score k Score k Score

Rectangular 8 0.218 6 0.192 8 0.215 8 0.193 15 0.187

Voronoi 11 0.212 11 0.206 5 0.2111 12 0.2 11 0.191

Table 7.1 shows the chosen model configurations and the mean validation score for

that configuration per Inner Loop. Both methods of zone definition perform on a similar

level, with validation scores of around 0.2. For both methods, the Inner Loops agree on

k for 3 of the 5 loops.

Table 7.2: Aggregated Results Inner Loops.

Zone Type Mode k Mean Score

Rectangular 8 0.201

Voronoi 11 0.204

Table 7.2 shows the mode of hyperparameter k and the mean score aggregated over

all l = 5 inner folds. Both types of zone definitions perform on a similar level. As the

zone definition based on Voronoi cells achieved the higher mean score, we will proceed to

the outer folds with the Voronoi zones.
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7.1.2 Results Outer Loop

In this section, the results on the test sets of the m = 5 folds in the outer loop are

discussed. In addition to the full model resulting from the hyper-parameters chosen in

each inner loop, the results of two baseline models will be tested. The first baseline,

referred to as the raw model from here on, is a model with k = 1 and no control for

Match Status. This model is equivalent to linear regression model with an intercept and

one parameter for the raw possession value of the home team.

The second baseline, referred to as the status model from here on, is a model with k = 1

and control for Match Status. This model is equivalent to linear regression model with

an intercept and three parameters for the possession value of the home team during the

three possible Match Statuses.

Table 7.3: Results Outer Loop

Model Outer 1 Outer 2 Outer 3 Outer 4 Outer 5 Mean Score

Raw 0.017 0.056 0.025 0.038 0.084 0.044

Status 0.148 0.185 0.129 0.172 0.244 0.175

Full 0.204 0.239 0.155 0.196 0.247 0.208

Table 7.3 shows that the full model outperforms both baselines in each of the 5 outer

folds. The difference in results between the 3 model types shows a similar pattern across

outer folds, with the status model outperforming the raw model in test score by approxi-

mately 0.13 and the full model by approximately 0.16. When comparing the results of the

full model on the test set to the ones on the validation sets in Table 7.1, similar results

can be observed, with the score on the test set being slightly higher. Therefore, the model

does not show signs of overfitting.
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7.1.3 Results on Subset of Matches with Match Status Even

As a way to control for Match-up Balance, the testing of the outer folds of the Nested CV

was repeated on the subset containing only the matches with Match-up Balance ’even’

per fold. Once again, the same is done for the baselines raw model and status model. The

results are presented in this subsection.

Table 7.4: Results Outer Loop on Even Match-up Balance Subset

Model Outer 1 Outer 2 Outer 3 Outer 4 Outer 5 Mean Score

Raw -0.183 -0.145 -0.158 -0.170 -0.049 -0.141

Status -0.033 -0.002 -0.160 -0.008 0.131 -0.014

Full 0.049 0.020 0.064 0.037 0.173 0.069

Table 7.4 shows the test results on the even subset. Once again, the full model scores

highest on all folds. On the even subset, the test score for the raw model turns negative

for all folds. The status model only manages to achieve a positive score on outer fold 5.

The full model is the only model achieving positive scores on all 5 folds. Similar to the

results in Table 7.3, the status model outperforms the raw model by approximately 0.13.

The out-performance of the full model increased to approximately 0.2.

7.2 Final Model

After tuning the hyper-parameters through N-CV it is now time to fit the final model

on the full data set. While the 5 values of k resulting from the N-CV are to be treated

equally, a decision on which one to choose for the final model fit has to be made. We

choose k = 11, as 3 of the 5 inner loops agreed on this value of k.
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(a) Trailing

(b) Drawing

(c) Leading

Figure 7.2: The Weights per Zone of the Final Model Visualized. (a), (b) and (c) show
the weights per zone for match status trailing, drawing and leading respectively.
The intercept, representing the home field advantage, is β0 = 0.32. The color scale is
anchored at the color yellow for a weight of 0. Green represents a zone with positive
weights, red a zone with negative weights. Darker shades of each color correspond with a
larger absolute size of weights.
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Figure 7.2 visualizes the coefficients of the final model on the football pitch. The

weights have been reflected back along the horizontal axis to aid visualization.

It can be observed that the absolute size of weights is biggest for possession while

drawing. The zones with the biggest positive effect for match status drawing are the

centre left and centre right zones in a teams own half, followed by the zones deep inside

the opponents half. Above average possession in the zones in front of a teams own goal

and on the left and right edges of the pitch has a small negative effect on goal difference.

For match statuses trailing and leading, the average absolute size of weights is much

smaller.

For trailing teams, above average possession in the zones in front of their own goal and

on the left and right edges of the pitch, have a slight positive effect on goal difference.

Possession in the centre of the pitch holds negative weights for trailing teams. Leading

teams have small positive weights for passes in front of their own goal as well as deep

inside the opponents half.

The intercept β0 of the final model equals 0.32. As the outcome of our model is goal

difference, this means that home teams score 0.32 goals more than away teams across

the whole data set. The weights per zone can be interpreted as follows: As Xi is a

mean centred vector with the possession per zone, the weights will be multiplied with the

deviation of a teams possession in a given match to the mean possession of all teams for

the same zone and status. E.g. if a team holds 20% higher possession than the average

team in the two central zones in front of the opponents goal in sub-figure (b), the model

predicts this surplus in possession to lead to a 0.2× 1.6 = 0.32 surplus of goals scored by

that team.
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Applications

At this point we have obtained our final model and it is time to showcase its potential

in practice. In this chapter, we will transform the output of our model into ratio format

familiar with raw possession. Once the transformation is done we will show how my

metric can be used to analyze teams playing styles on the aggregated season level, on

the example of the 2017-2018 La Liga season. Then, we will show how our metric can

be applied on the individual match level, showing its full potential over multiple match

statuses.

8.1 Transformation

In its current form, our model predicts the goal difference from the perspective of the

home team. Theoretically, this prediction can span anywhere on the range of [−∞,∞].

Raw possession is usually reported as a fraction on the range [0, 1]. In this section we will

propose a method to transform our models prediction into a range of [0, 1].

This transformation has two advantages. First, it will be easier to report our metric

to the casual audience when it comes in a format familiar to them. Second, it will aid the

comparison between our metric and raw possession in the rest of this chapter.

A common way to transform a number in the range of [−∞,∞] to a range of [0, 1] is
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by using a sigmoid function. A member of the family of sigmoid functions is any function

that is a bounded, differentiable, real and defined for all real input values and has a non-

negative derivative at each point and exactly one inflection point (see [14]). We will make

use of one of those members in the form of the logistic function

f(p) =
1

1 + e−s(p)
,

with p being our model’s prediction and s being a scaling parameter. The scaling param-

eter s will be chosen by minimizing the distances between the empirical distributions of

our transformed metric and raw possession. This is done by minimizing the F-Statistic of

the Kolmogorov-Smirnov test for goodness of fit as described in Massey et al. [15].

Figure 8.1: Comparison of Cumulative Distribution Functions of Raw Possession and
our Transformed Model Prediction. Our models predictions were transformed through a
logistic function with scale parameters s = 0.455.

Figure 8.1 compares the empirical cumulative density functions of our transformed

metric and raw possession. As a result of the minimization, scaling parameter s was set

at 0.455. We observe that the distribution of our transformed metric is less wide than

raw possession, with less density at the extreme possession values.
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8.2 Application on Aggregated Team Level

Now that our metric and raw possession are on the same scale, it is time to compare the

two in practice. We start off by looking at the final standing of the 2017-2018 La Liga

season with the mean levels for both raw possession and our transformed metric.

Table 8.1: Final Table of La Liga for the 2017-2018 Season. The dotted lines indicate
the cutoffs for Champions League qualification and relegation. The teams in bold will be
used for further analysis in this Section.

Position Club Name Goal Diff. Points Raw Poss. Trans. Pred.

1 Barcelona 70 93 0.64 0.60

2 Atlético Madrid 36 79 0.47 0.52

3 Real Madrid 50 76 0.61 0.60

4 Valencia 27 73 0.49 0.52

5 Villarreal 7 61 0.51 0.49

6 Real Betis -1 60 0.58 0.54

7 Sevilla -9 58 0.55 0.53

8 Getafe 9 55 0.39 0.45

9 Eibar -6 51 0.52 0.55

10 Girona -9 51 0.46 0.49

11 Espanyol -6 49 0.46 0.47

12 Real Sociedad 7 49 0.57 0.53

13 Celta de Vigo -1 49 0.57 0.51

14 Deportivo Alavés -10 47 0.39 0.44

15 Levante -14 46 0.42 0.44

16 Athletic Club -8 43 0.49 0.51

17 Leganés -17 43 0.42 0.46

18 La Coruña -38 29 0.46 0.46

19 Las Palmas -50 22 0.55 0.48

20 Málaga -37 20 0.44 0.43
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Table 8.1 shows the final table of the 2017-2018 La Liga Season. We can observe that

while raw possession correlates with a high amount of points and a positive goal difference

for some teams, there are notable exceptions. Atlético Madrid as well as Valencia finished

in the top 4 with a clearly positive goal difference while having less mean possession than

their opponents over the course of the season.

The same phenomenon can be found on the other end of the table. Las Palmas finished

the season in second to last place with only 20 points and the worst goal difference in the

whole league of -50. Nonetheless, they hold significantly more raw possession than their

opponents on average. Our metric comes to a different conclusion for these outliers, more

in line with the final standings. In the upcoming subsections we will show the reasons

for the higher predictive power of our metric on the example of Atlético Madrid and Las

Palmas.

8.2.1 Atlético Madrid

Atlético Madrid is well known for its unique play style under their coach Diego Simeone.

While most top teams usually play an attacking style with high possession over the whole

course of the match, Diego Simeone’s Atlético Madrid became famous for a play style

relying on efficient offensive and world class team-wide defense. This style is so successful

that Atlético is the only team in the last 15 years that managed to beat the giants Real

Madrid and FC Barcelona over the course of a whole season, by winning the Spanish title

in 2014 as well as 2021 (see [16]).

In this section we will analyze this play style using our metric and showcase why raw

possession is not fit well to describe it.
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Figure 8.2: Our Final Models Prediction for Atlético Madrid’s Performance for Status
Drawing in the 2017-2018 La Liga Season. The color scale is anchored at the color yellow
for a prediction of 0. Green represents a zone with a positive prediction, red a zone with
a negative prediction. Darker shades of each color correspond with a larger absolute size
of the prediction.

Figure 8.2 shows the mean untransformed model predictions for status drawing per

zone for all of Atlético Madrid matches over the course of the 2017-2018 season. We see

that the model predicts a positive goal difference based on Atlético’s possession while

drawing. As explained in Chapter 6, the model prediction seen in Figure 8.2 is the result

of the multiplication of two components.
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×

Mean Centred Possession for Drawing Final Model Coefficients for Drawing

Figure 8.3: The Two Components of Atlético Madrid’s Possession in the 2017-2018
La Liga Season. The left side shows the possession values mean centred per zone while
drawing. The right side shows our final models weights for status drawing. Color scales are
anchored at 0 with green colors representing positive and red colors representing negative
values. Darker shades of each color correspond with larger absolute values.

Figure 8.3 shows these two components for Atlético Madrid aggregated over all matches

of the season. The left side shows the mean centred possession per zone during status

drawing. It can be interpreted the following way: The 0.07 in the most advanced cen-

tral zones means that Atlético held 7% higher possession than the average team in our

data set in this zone during status drawing. On the contrary, Atlético Madrid held 8%

lower possession in the outer zones in front of their own goal. The right side shows the

coefficients the final version of our model gives to possession in each zone during status

drawing.

These two components help us explain why raw possession is not suited to explain

Atlético’s play style. Atlético’s possession is highly concentrated in areas around the

opponents goal, which our model weights as favorable. In front of their own goal, they

hold possession much lower than the average team. As our model gives possession in these

zones a negative or only slightly positive weight, it manages to pick up on this unique

distribution of possession. A simple aggregation of possession, without taking spatial

context into account does not do Atlético’s performance justice.
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8.2.2 Las Palmas

Las Palmas played a disastrous 2017-2018 season resulting in the teams relegation. They

finished the season with the second to worst goal difference across all La Liga teams in

the last 10 years of the competition (see [17]).

The team employed three different coaches during the season, with none of them being

able to avoid the eventual relegation (see [18]). They have not been able to return to the

first Spanish division ever since. Even though the season was a huge disappointment for

the club, the club ranked tied 6th in mean raw possession over the 2017-2018 season. In

this section we will show that the high possession of Las Palmas was not the sign of a

dominant play style, but rather the opposite and explain how our metric manages to pick

up on the low quality of the possession Las Palmas held all season long.

Figure 8.4: Our Final Models Prediction for Las Palmas’ Performance for Status Draw-
ing in the 2017-2018 La Liga Season. The color scale is anchored at the color yellow for
a prediction of 0. Green represents a zone with a positive prediction, red a zone with a
negative prediction. Darker shades of each color correspond with a larger absolute size of
the prediction.

Figure 8.4 shows the mean untransformed model predictions for status drawing per

zone for all of Las Palmas matches over the course of the 2017-2018 season. In contrast to

Atlético’s prediction, we see that our model predicts a negative goal difference based on
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Las Palmas’ possession while drawing. Once again, we will look at the two components

of which this prediction is a product of.

×

Mean Centred Possession for Drawing Final Model Coefficients for Drawing

Figure 8.5: The Two Components of Las Palmas’ Possession in the 2017-2018 La Liga
Season. The left side shows the possession values mean centred per zone while drawing.
The right side shows our final models weights for status drawing. Color scales are anchored
at 0 with green colors representing positive and red colors representing negative values.
Darker shades of each color correspond with larger absolute values.

Figure 8.5 shows these two components for Las Palmas aggregated over all matches

of the season. We observe that Las Palmas holds a big surplus of possession compared

to the average team in the zones with little to no vertical progression. On the contrary,

Las Palmas hold 10% lower possession that the average team in the outer zones with

the highest vertical progression. Once again, a simple aggregation of possession without

spatial context is not fit well to describe Las Palmas problems. While they do hold a lot

of possession, they hold it in zones of the field that do not correlate with winning football

matches.

8.3 Application on Individual Match Level

Now, that we have shown how to apply our metric to describe and analyze a teams play

style on the aggregated level, we will show how to use it to analyze single matches. First,

we will look at the 20 matches for which raw possession and our transformed model
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prediction had the biggest disagreement. Then, we will pick an especially interesting

example among those matches and will analyze the performance per match status for the

teams involved.

Table 8.2: The 20 Matches during the 2017-2018 Season across the Top 5 Leagues with
the Biggest Absolute Difference Between Raw Possession and our Models Transformed
Prediction. Raw possession and the transformed model prediction are stated from the
perspective of the home team. The table is sorted by absolute difference.

Match-up Match-day Result Raw Poss. Trans. Pred. Diff.

Las Palmas - Atlético Madrid 2 1 - 5 0.64 0.24 -0.39

Arsenal - Man. United 15 1 - 3 0.78 0.40 -0.38

Girona - Athletic Club 22 2 - 0 0.37 0.75 0.37

Málaga - Espanyol 18 0 - 1 0.61 0.24 -0.37

Saint-Étienne - Nice 1 1 - 0 0.40 0.76 0.36

Getafe - Las Palmas 17 2 - 0 0.32 0.67 0.35

Bologna - Sampdoria 14 3 - 0 0.31 0.65 0.34

Crotone - Sassuolo 35 4 - 1 0.40 0.74 0.34

Olymp. Marseille - Rennes 5 1 - 3 0.68 0.34 -0.34

Eintr. Frankfurt - Schalke 04 17 2 - 2 0.34 0.68 0.34

Stuttgart - M’gladbach 22 1 - 0 0.32 0.65 0.33

Levante - Athletic Club 15 1 - 2 0.61 0.28 -0.33

Udinese - Juventus 9 2 - 6 0.58 0.26 -0.32

M’gladbach - Eintr. Frankfurt 3 0 - 1 0.73 0.42 -0.32

Girona - Eibar 36 1 - 4 0.60 0.29 -0.31

Lille - Olymp. Marseille 11 0 - 1 0.66 0.35 -0.31

Torino - Napoli 17 1 - 3 0.38 0.69 0.31

Olymp. Marseille - Nantes 28 1 - 1 0.82 0.51 -0.31

Schalke 04 - Stuttgart 3 3 - 1 0.37 0.67 0.29

Real Betis - Real Madrid 24 3 - 5 0.58 0.29 0.28
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Table 8.2 shows the 20 matches in the data set with the biggest difference between

raw possession and the transformed model prediction. The possession values and results

are given from the home teams perspective. We can observe that our metric shows much

higher correlation with the final results. The biggest difference occurred during a match

between Las Palmas and Atlético Madrid, the two teams analyzed in Section 8.2.

Many of the matches in this table have the winning team getting ahead very early in

the match and holding on to the lead over the whole course of the match. This is expected,

as trailing teams have significantly higher raw possession as outlined in Chapter 4. Raw

possession has no way to account for this fact. Our model takes into account Match

Status and is therefore able to differentiate between possession caused simply by trailing

and possession caused by a dominant play style. A match with a particular interesting

game history, including multiple Match Status switches and many goals is the match

between Real Betis Sevilla and Real Madrid on match-day 24 of the 2017-2018 La Liga

season. This match will serve as the example match to show off individual match analysis

with out metric in the rest of this chapter.

8.3.1 Real Betis - Real Madrid

On the 18th of February 2018 Real Betis Sevilla hosted Real Madrid for a spectactular

match featuring 8 goals. Real Madrid just came off a crucial home win against Paris

Saint Germain in the Champions League that same week, with two late goals of Cristiano

Ronaldo and Marcelo netting them a 3-1 win and a great position for the second tie. Real

Betis Sevilla came into the match with confidence themselves, coming of a 0:1 away win

against Deportivo La Coruna on the previous matchday. In this section we will analyze

the match by looking at our models prediction for the different Match Statuses.
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Figure 8.6: Timeline of the Match Real Betis Sevilla - Real Madrid on Matchday 24 of
the 2017-2018 La Liga Season.

Figure 8.6 shows the timeline of the match. Real Madrid got an early lead through

a header by Marco Asensio in the 11th minute, but Real Betis managed to return the

favor, equalizing with a Mandi header in the 33th minute. An unfortunate own goal by

Nacho caused by a reflection in the 37th minute meant that Real Betis went into half

time with a lead. Real Madrid came out of the half time break with full force, managing

to equalize in the 50th minute through another header, this time by Sergio Ramos. They

kept dominating the match, taking the lead with goals by Asensio (59’) and Ronaldo (65’).

But Real Betis was not ready to go down without a fight, bringing their deficit down to

one through a goal by Sergio Leon in the 85th minute. Their hopes of a second comeback

in this match were stopped by Karim Benzema scoring the final goal of the match in a

counter in stoppage time (90+2’).

Given that the match featured all three Match Statuses it is a perfect example to

show the full potential of our metric for match analysis. All predictions are shown from

the perspective of the home team Real Betis. During the course of the match Real Betis

held 58% raw possession. Our model predicts a goal difference of −1.98 resulting in a

transformed prediction of 29%. We will go through our models prediction for each Match

Status and explain why our model correctly picked up on a dominant performance by

Real Madrid and why raw possession failed to do the same.

In this Section, we will focus only on the models final prediction. If the reader is

interested in a decomposition similar to the one in Section 8.2, it can be done with the

help of the weights per Match Status in Section 7.2.
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Trailing
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Figure 8.7: Model Prediction for Match Status Trailing for the Match Real Betis Sevilla
- Real Madrid on Matchday 24 of the 2017-2018 La Liga Season. The prediction is from
the perspective of the home team. On the timeline below the periods for which the match
is in the away teams favor are highlighted. The color scale is anchored at the color yellow
for a prediction of 0. Green represents a zone with a positive prediction, red a zone with
a negative prediction. Darker shades of each color correspond with a larger absolute size
of the prediction.

Real Betis was trailing for a total of 53 minutes during the matches regular time and

for another 4 minutes of stoppage time. Figure 8.7 shows the untransformed model

predictions per zone for this period. The prediction summed up over all zones for status

Trailing is equal to −0.39. This means that our model rates the possession held by Real

Betis while trailing as unfavorable, predicting a negative goal difference for the possession

in the majority of the zones. Especially for the possession in the central zones in front of

the opponents goal, our model heavily favors Real Madrid.
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Drawing
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Figure 8.8: Model Prediction for Match Status Leading for the Match Real Betis Sevilla
- Real Madrid on Matchday 24 of the 2017-2018 La Liga Season. The prediction is from
the perspective of the home team. On the timeline below the periods for which the match
is drawn are highlighted. The color scale is anchored at the color yellow for a prediction
of 0. Green represents a zone with a positive prediction, red a zone with a negative
prediction. Darker shades of each color correspond with a larger absolute size of the
prediction.

Real Betis was drawing for a total of 25 minutes during the matches regular time. Figure

8.8 shows the untransformed model predictions per zone for this period. The prediction

summed up over all zones for status Drawing is equal to −1.86 goals. That means that

our model rates Real Madrid as the clearly dominant team for these periods. Especially

in the zones close to the opponents goal, both central and towards the edges of the pitch,

our model strongly favors the possession of Real Madrid.
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Leading
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Figure 8.9: Model Prediction for Match Status Leading for the Match Real Betis Sevilla
- Real Madrid on Matchday 24 of the 2017-2018 La Liga Season. The prediction is from
the perspective of the home team. On the timeline below the period for which the match
is in the home teams favor are highlighted. The color scale is anchored at the color yellow
for a prediction of 0. Green represents a zone with a positive prediction, red a zone with
a negative prediction. Darker shades of each color correspond with a larger absolute size
of the prediction.

Real Betis was leading for a total of 13 minutes during the matches regular time. Figure

8.8 shows the untransformed model predictions per zone for this period. The prediction

summed up over all zones for status Leading is equal to −0.05. That means that our

model sees a slight disadvantage for Real Betis during the period in which they were

leading the game. Once again, our model prefers Real Madrid’s possession in front of the

opponents goal. But Real’s dominance in these zones is much smaller than for the other

two statuses and it gets partly offset by a slight advantage for Las Palmas in the zones in

front of their own goal as well as the zones on the edges of the pitch at the start of the

opponents third.



Discussion

Conclusion

This thesis project aimed at improving the existing raw possession metric by adding

spatio-temporal context to it with the help of event data. By using subsets of the data we

managed to examine the effect of possession controlled for Match Status and Match-up

Balance.

We found that Match Status has a significant effect on mean possession, with trailing

teams holding 52.1% on average. On the subset of passes played during Match Status

drawing we found that with 56.1%, eventual winners of matches hold significantly more

possession than losers. This indicates that Match Status needs to be considered while

looking at the effect of possession on the outcome of football matches.

Additionally, we explored controlling for Match-up Balance by joining match-day bet-

ting odds indicating the balance of a given match-up. With the help of these odds the

data set was split in half and the effect of possession on match outcome was analyzed on

the half containing the most even matches. This analysis showed that in even matches,

without also controlling for Match Status, the effect of possession turns significantly neg-

ative with eventual winners only holding 47,9% of possession. Therefore, also Match-up

Balance is considered during the evaluation of our metric.

Combining both controls by restricting the analysis to a subset containing only the

passes of the even half of matches during status drawing, we find that the combined effect

is positive with eventual winners holding 0.521% of possession. Existing studies on the
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effect of possession like Collet et al. [2] and Fernandez et al. [3] on match outcomes have

only controlled for one of the two factors at a time. As controlling for each of these factors

in isolation moves the effect of possession on outcome into opposite directions, this thesis

provides an explanation for these contradicting results.

The need for spatial context was proven by comparing the kernel density estimates

of pass coordinates between winners and losers. These density estimates revealed that

winners play a higher share of their passes in the opponents half and around the centre

of the pitch. Given this need for spatial context, two ways of separating the football

pitch into distinct zones were introduced. One approach simply splits the pitch into

rectangular zones of equal size. The other uses k-means clustering to define zones based

on the resulting Voronoi cells.

Using a multiple linear regression model we combined our findings to create a new

possession metric with improved predictive power. This model regresses a matches final

goal difference on the possession per zone per match status. The model was fit using a 5x5

nested cross-validation setup, to allow for exploration of the two different zone types as

well as the number of zones. The resulting model features 11 Voronoi zones. The results

on the test sets of each of the 5 outer folds were compared to two baselines. One baseline

being raw possession, the second one being match status controlled possession without

spatial distinction. The raw possession baseline shows by far the worst results, with the

status controlled baseline in second place. Our model outperforms both baselines on each

of the outer folds.

This also holds for testing on the subset of even matches. Here, raw possession achieves

a negative test score. This is caused by the fact that the aggregated effect on raw pos-

session is positive, but the effect of raw possession on the even subset is negative. The

second baseline taking into account match status improves upon the performance of the

raw possession baseline, but is not able to reliable predict match outcomes either. Only

our model including spatial context through zones manages to achieve a positive test score

on all outer folds. The improvement in test score by adding these zone gets larger on the
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even subset.

Combining these results, we can conclude the following. Good teams tend to play

with high raw possession, but having high raw possession does not necessarily make you

a good team. For even match-ups, what matters most is the spatial distribution of your

possession in those match-ups. In general, quality of possession is more important than

quantity.

We proposed a way of transforming our models output into the familiar format of raw

possession by minimizing the F-Statistic of the Kolmogorov-Smirnov test using a sigmoid

function. This transformation allows the statistic to be more accessible for the football

audience outside of the academic world. It also allows for a easier comparison between

raw possession and our metric.

We showed two real-life applications of our model. In the first one we gave a breakdown

of the distribution of possession for Atletico Madrid and Las Palmas in the 2017-2018 La

Liga season. This analysis showed that our model is able to distinguish the higher quality

of possession of Atletico Madrid from the low quality possession of Las Palmas. The second

one was an in-depth analysis of a match between Real Betis Sevilla and Real Madrid. The

match featured multiple lead switches and goals and ended up with Real Madrid winning

3-5. We showcased how our metric is able to differentiate between the possession profiles

per Match Status and how it correctly identifies Real Madrid’s dominance over the course

of the game.

Both applications clearly show how and why our metric holds higher predictive power

than raw possession. Raw possession is not able to distinguish possession per Match

Status, which leads to biased raw possession values. Additionally, raw possession ignores

the spatial distribution of possession. Our model manages to take both of these into

account.

Our model setup allows a flexible use of our metric. In its aggregated and transformed

form it can be used by sports journalists as a match statistic which is easy to interpret

and report on. Simultaneously, coaching staff can use our metric for an in-depth analysis
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of a teams play style using the untransformed possession profiles per zone and status.

Limitations and Further Work

During zone definition, we decided to mirror the passes along the horizontal axis of the

pitch. This mirroring allowed for increased stability of our model, by increasing the

sample size per zone while simultaneously decreasing the amount of zones to fit. This

mirroring imposes the assumption that football is a symmetric game along the horizontal

axis and differentiation between the left and right side of the pitch can be neglected. Our

available data set showed that this assumption might be overly simplistic, as there seems

to be a slight skew towards the right side of the pitch, potentially caused by the higher

share of right footed players. This asymmetry itself might be an interesting topic for an

independent study. If this analysis was repeated on a larger sample size, the mirroring

assumption could be lifted, potentially revealing interesting insights about the impact of

asymmetric play on match outcomes.

Currently, zones are defined through the Voronoi cells based on the centroids of a

k-means clustering. The method was chosen as it narrowly beat out the rectangular zone

definition in test score during nested cross-validation. But the two methods are very close

in performance and it is plausible that the performance of the model could be further

improved by finding alternative methods of defining zones. Such methods could feature a

higher share of zones in the important zones in front of the opponents goal or an iterative

adjustment of zone borders based on the achieved test during model fitting.

Our model splits possession per match status and mean centres all possession value

by the mean possession per zone per status. While this approach is a big improvement

compared to ignoring match status all together, it is by no means perfect. A team

trailing by multiple goals might have a different mean possession per zone than a team

trailing by only one goal. Currently, our model does not differentiate between different

scenarios inside each match status. Further versions of the model could incorporate this
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heterogeneity inside match statuses.

With the current definition of Match-up balance as a categorical variable, it is not

possible to include it into our model without restricting our training data to an unrepre-

sentative subset. Therefore, we currently only take Match-up balance into account during

testing by restricting the test set to the subset of even matches. There is potential to

explore alternative ways of taking Match-up balance into account, for example by formu-

lating a model based on a continuous definition of the variable.

On the basis of a larger sample size we propose experimentation with the inclusion

of additional features into the model. The model could be enhanced by adding more

context to passes themselves in the form of pass accuracy or pass sub-types. An inclusion

of features based on different event types might be another promising approach. For

example, event type Duel could be incorporated into the model by adding the ratio of

duels won and lost per zone.
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Appendix A

Significance Tests

The number of passes per match are not independent and in the case of the subgroup

controlled for match status. time spent per status varies from match to match. Therefore,

assumptions of standard parametric approaches are violated and these approaches are not

suited well to obtain significance levels of the mean possession per subgroup.

Instead, significance levels for the mean possession values per subgroup were obtained

by applying Monte Carlo permutation tests to the data. The non-parametric Monte Carlo

permutation test will allow us to obtain a asymptotically exact sample of the distribution

under H0, based on which we can obtain the estimated p-values p̂.

Under H0 : Pwon = Plost = 0.5, a random assignment of outcome labels should result

in a mean possession of 0.5. N = 10000 permutations of the data were generated by

randomly assigning outcome labels per team to each of the M matches.

For each of those permutations, the sum of passes per outcome or match status

NPoutcome =
M∑

m=1

NPm,outcome,

was calculated to obtain possession values

Pwon =
NPwon

NPwon +NPlost
and Plost = 1− Pwon.
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A.1 Possession per Outcome

Figure A.1: Outcome: Histogram of the Mean Possession of Winners under H0. Based
on the distribution of possession values shown in this histogram, p̂ for H1 : Pwon > Plost >

0.5 was obtained.

A.2 Possession per Outcome Match Status

Figure A.2: Possession per Match Status: Histogram of the Mean Possession of Trailing
Teams under H0. Based on the distribution of possession values shown in this histogram,
p̂ for H1 : Ptrailing > Pleading > 0.5 was obtained.
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A.3 Possession per Outcome - Match Status

Figure A.3: Possession on Outcome for Match Status drawing: Histogram of the Mean
Possession of Winners under H0. Based on the distribution of possession values shown in
this histogram, p̂ for H1 : Pwon > Plost > 0.5 was obtained.

A.4 Possession per Outcome - Match-up Balance

Figure A.4: Possession on Outcome for Match-up Balance even: Histogram of the Mean
Possession of Winners under H0. Based on the distribution of possession values shown in
this histogram, p̂ for H1 : Plost > Pwon > 0.5 was obtained.
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A.5 Possession per Outcome - Match Status andMatch-

up Balance.

Figure A.5: Possession on Outcome for Match Status drawing and Match-up Balance
even: Histogram of the Mean Possession of Winners under H0. Based on the distribution
of possession values shown in this histogram, p̂ for H1 : Pwon > Plost > 0.5 was obtained.



Appendix B

KDE of Sub-events of Event Type Pass

Event type pass contains multiple sub-events. Each of this sub-type comes with their own

spatial distribution on the football pitch. This allows us to compare the distribution of

winners and losers, analogously to what has been done for all passes combined in Chapter

4. In this appendix we show the distribution per sub-event of event type pass per outcome,

as well as the differnce between both distributions.

B.1 Simple Pass

− =

Winners, n = 0000 Losers, n = 0000 Diff. of Norm. Density Estimates

Figure B.1: KDE of Pass Sub-type Simple Pass. The left figure shows the KDE of
outcome Winner, the centre figure of outcome Loser and the right figure the difference
between the two.
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B.2 High pass

− =

Winners, n = 0000 Losers, n = 0000 Diff. of Norm. Density Estimates

Figure B.2: KDE of Pass Sub-type High Pass. The left figure shows the KDE of outcome
Winner, the centre figure of outcome Loser and the right figure the difference between the
two.

B.3 Head pass

− =

Winners, n = 0000 Losers, n = 0000 Diff. of Norm. Density Estimates

Figure B.3: KDE of Pass Sub-type Head Pass. The left figure shows the KDE of
outcome Winner, the centre figure of outcome Loser and the right figure the difference
between the two.
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B.4 Cross

− =

Winners, n = 0000 Losers, n = 0000 Diff. of Norm. Density Estimates

Figure B.4: KDE of Pass Sub-type Cross. The left figure shows the KDE of outcome
Winner, the centre figure of outcome Loser and the right figure the difference between the
two.

B.5 Launch

− =

Winners, n = 0000 Losers, n = 0000 Diff. of Norm. Density Estimates

Figure B.5: KDE of Pass Sub-type Launch. The left figure shows the KDE of outcome
Winner, the centre figure of outcome Loser and the right figure the difference between the
two.
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B.6 Smart Pass

− =

Winners, n = 0000 Losers, n = 0000 Diff. of Norm. Density Estimates

Figure B.6: KDE of Pass Sub-type Smart Pass. The left figure shows the KDE of
outcome Winner, the centre figure of outcome Loser and the right figure the difference
between the two.

B.7 Hand Pass

− =

Winners, n = 0000 Losers, n = 0000 Diff. of Norm. Density Estimates

Figure B.7: KDE of Pass Sub-type Hand Pass. The left figure shows the KDE of
outcome Winner, the centre figure of outcome Loser and the right figure the difference
between the two.



Appendix C

Nested Cross Validation Results

In this Appendix the full results of all l × m = 25 Inner Folds of the nested cross-

validation can be found. They are displayed separately per zone definition type Voronoi

and rectangular. For zone definition type Voronoi k was tested on the range [1, 2, ..., 20].

For zone definition type rectangular all values in the range [1, 2, ..., 20] that allowed for a

separation of the pitch into squares of equal size post-mirroring were chosen, resulting in

values of k of [1, 2, 6, 8, 15, 18].
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C.1 Full Results Voronoi Zones

Table C.1: Full Results of all 25 Inner Folds of the Nested Cross-Validation for Zone Type Voronoi

k/

Fold 1.1 1.2 1.3 1.4 1.5 2.1 2.2 2.3 2.4 2.5 3.1 3.2 3.3 3.4 3.5 4.1 4.2 4.3 4.4 4.5 5.1 5.2 5.3 5.4 5.5

1 0.15 0.15 0.21 0.19 0.18 0.11 0.13 0.13 0.23 0.23 0.16 0.20 0.26 0.16 0.13 0.16 0.24 0.18 0.13 0.11 0.14 0.13 0.20 0.12 0.18

2 0.15 0.16 0.22 0.21 0.18 0.13 0.11 0.16 0.26 0.23 0.20 0.18 0.30 0.15 0.13 0.18 0.20 0.22 0.17 0.10 0.16 0.16 0.15 0.15 0.20

3 0.15 0.17 0.23 0.21 0.17 0.14 0.11 0.16 0.25 0.24 0.20 0.18 0.31 0.13 0.12 0.18 0.19 0.23 0.16 0.10 0.16 0.15 0.15 0.15 0.21

4 0.16 0.14 0.24 0.23 0.16 0.14 0.11 0.18 0.26 0.25 0.22 0.19 0.30 0.13 0.14 0.16 0.21 0.22 0.16 0.13 0.19 0.14 0.16 0.15 0.21

5 0.16 0.16 0.26 0.26 0.18 0.15 0.15 0.20 0.26 0.25 0.24 0.22 0.30 0.15 0.14 0.20 0.24 0.21 0.16 0.15 0.19 0.13 0.21 0.22 0.20

6 0.18 0.18 0.24 0.26 0.18 0.14 0.10 0.18 0.27 0.25 0.21 0.22 0.30 0.14 0.16 0.19 0.23 0.24 0.14 0.13 0.17 0.13 0.21 0.19 0.19

7 0.16 0.18 0.26 0.26 0.18 0.14 0.11 0.20 0.26 0.24 0.22 0.23 0.30 0.15 0.16 0.21 0.24 0.22 0.16 0.11 0.15 0.11 0.21 0.21 0.21

8 0.15 0.14 0.25 0.25 0.22 0.14 0.14 0.20 0.27 0.24 0.23 0.20 0.30 0.15 0.14 0.21 0.23 0.23 0.16 0.11 0.16 0.08 0.21 0.21 0.21

9 0.16 0.17 0.25 0.26 0.17 0.12 0.13 0.21 0.29 0.23 0.23 0.20 0.29 0.16 0.10 0.21 0.25 0.20 0.18 0.10 0.18 0.10 0.20 0.21 0.21

10 0.18 0.15 0.26 0.25 0.18 0.14 0.11 0.19 0.29 0.23 0.23 0.20 0.29 0.15 0.13 0.22 0.24 0.23 0.17 0.09 0.18 0.09 0.18 0.21 0.21

11 0.20 0.17 0.26 0.26 0.17 0.15 0.14 0.23 0.30 0.21 0.23 0.18 0.29 0.14 0.14 0.23 0.24 0.24 0.21 0.08 0.20 0.12 0.20 0.22 0.22

12 0.19 0.15 0.25 0.26 0.15 0.13 0.11 0.21 0.28 0.22 0.23 0.18 0.29 0.13 0.13 0.24 0.23 0.24 0.20 0.08 0.19 0.13 0.18 0.22 0.21

13 0.19 0.15 0.26 0.23 0.15 0.12 0.11 0.21 0.27 0.22 0.22 0.19 0.28 0.12 0.13 0.24 0.24 0.22 0.19 0.09 0.19 0.12 0.18 0.18 0.19

14 0.23 0.16 0.25 0.24 0.14 0.11 0.12 0.19 0.27 0.21 0.23 0.18 0.27 0.12 0.13 0.24 0.24 0.21 0.16 0.09 0.19 0.13 0.17 0.18 0.22

15 0.21 0.17 0.27 0.22 0.13 0.15 0.10 0.16 0.27 0.20 0.22 0.20 0.25 0.14 0.14 0.26 0.26 0.22 0.17 0.04 0.16 0.11 0.19 0.19 0.22

16 0.20 0.19 0.27 0.23 0.15 0.16 0.10 0.17 0.25 0.21 0.22 0.21 0.26 0.13 0.12 0.25 0.26 0.22 0.18 0.04 0.16 0.08 0.19 0.19 0.21

17 0.23 0.15 0.27 0.22 0.11 0.17 0.08 0.17 0.25 0.20 0.19 0.19 0.25 0.13 0.12 0.24 0.27 0.22 0.17 0.06 0.18 0.10 0.19 0.20 0.20

18 0.19 0.13 0.27 0.21 0.10 0.13 0.08 0.18 0.22 0.21 0.20 0.16 0.25 0.14 0.11 0.23 0.26 0.18 0.18 0.03 0.18 0.14 0.16 0.20 0.21

19 0.20 0.12 0.27 0.23 0.10 0.16 0.08 0.18 0.24 0.19 0.19 0.17 0.26 0.13 0.10 0.24 0.26 0.20 0.19 0.02 0.16 0.11 0.17 0.21 0.21

20 0.19 0.10 0.26 0.21 0.12 0.12 0.07 0.16 0.24 0.21 0.22 0.15 0.26 0.15 0.11 0.21 0.24 0.18 0.19 0.04 0.15 0.12 0.15 0.18 0.22



C.2 Full Results Rectangular Zones

Table C.2: Full Results of all 25 Inner Folds of the Nested Cross-Validation for Zone Type Rectangular

k/

Fold 1.1 1.2 1.3 1.4 1.5 2.1 2.2 2.3 2.4 2.5 3.1 3.2 3.3 3.4 3.5 4.1 4.2 4.3 4.4 4.5 5.1 5.2 5.3 5.4 5.5

1 0.15 0.15 0.21 0.19 0.18 0.11 0.13 0.13 0.23 0.23 0.16 0.20 0.26 0.16 0.13 0.16 0.24 0.18 0.13 0.11 0.14 0.13 0.20 0.12 0.18

2 0.17 0.16 0.23 0.21 0.19 0.15 0.10 0.15 0.26 0.23 0.19 0.18 0.30 0.14 0.14 0.18 0.22 0.22 0.18 0.10 0.16 0.15 0.18 0.15 0.20

6 0.15 0.17 0.23 0.25 0.17 0.18 0.10 0.18 0.28 0.23 0.23 0.22 0.30 0.15 0.13 0.20 0.24 0.23 0.17 0.10 0.16 0.15 0.20 0.20 0.21

8 0.18 0.20 0.30 0.27 0.15 0.15 0.11 0.18 0.25 0.23 0.22 0.25 0.28 0.16 0.17 0.24 0.26 0.23 0.17 0.07 0.16 0.14 0.19 0.21 0.22

15 0.23 0.14 0.28 0.25 0.15 0.17 0.11 0.18 0.25 0.23 0.25 0.19 0.26 0.14 0.13 0.23 0.23 0.18 0.18 0.05 0.20 0.13 0.19 0.20 0.21

18 0.18 0.15 0.28 0.25 0.10 0.15 0.10 0.17 0.25 0.21 0.20 0.16 0.28 0.12 0.12 0.24 0.22 0.17 0.19 0.07 0.16 0.09 0.14 0.21 0.19
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