
Hierarchical multi-class classification of imbalanced product
descriptions using Support Vector Machines and BERT
Meulen, M.J.E. van der

Citation
Meulen, M. J. E. van der. (2022). Hierarchical multi-class classification of imbalanced product
descriptions using Support Vector Machines and BERT.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in the
Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3676804

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3676804

Hierarchical multi-class classification of
imbalanced product descriptions using
Support Vector Machines and BERT

Melle van der Meulen

A thesis presented for the degree of
Master of Science

Leiden Institute of Advanced Computer Science (LIACS)
&

Mathematical Institute (MI)
Leiden University

Supervisor I: Dr. Suzan Verberne
Supervisor II: Dr. Julian Karch

External supervisor: Ben van den Burgh

Acknowledgements
First of all, I would like to thank Suzan Verberne for being such a great supervisor during
the thesis project. She have guided and helped me trough this journey. We had nice
conversations, productive meetings and she triggered my enthusiasm for Natural Language
Processing. It would be great to work with her again. Second, I would like to thank Julian
Karch and Ben van den Burgh for supporting me with constructive feedback and their time
for guiding me in this project. Furthermore, I want to thank Sarah Coombs. Sarah was of
great importance of helping me with my academic writing and have given me great feedback.
Finally, I want to thank my parents and my girlfriend for given me the support I needed
trough thesis project.

Abstract

Product data can be useful to perform environmental impact assessments of prod-
uct life-cycles. In order to automatize such assessments, this research is examining
methodologies that encounter the challenges with the processing and classification of
product data. We consider a large imbalanced and multilingual dataset with short and
noisy product descriptions that have been labeled by human annotators. The product
classes are hierarchically ordered and characterized by two levels. To treat the class im-
balance we proposed two data enrichment methods on the training data. Oversampling
and a web scraping method with a prior-filtering. The web scraper was parsing web
data using a search engine and used Sentence-BERT with cosine-similarity to assess
semantic relevant information. In addition, we proposed two classification methods,
Support Vector Machines (SVM) and BERT. Both models were evaluated according to
several experiments considering a flattened- and hierarchical classification approach of
the products. In addition, we perform an extensive error analysis on the model results
considering the SVM feature importance and the BERT attention weights.
The results showed that both models show similar flattened classification performance
using the normal data, i.e. no data enrichment. SVM show better flattened classi-
fication performance after treated the class imbalance with data enrichment. BERT
show poor performance using data enrichment and is overfitting the training data.
Hierarchical classification improved the classification performance of BERT using over-
sampling. SVM did not benefit from the hierarchical classification approach and show
better classification performance using flattened classification. As last, the error anal-
ysis have showed that the data consist of incorrect or subjective manual labeling.
The SVM feature importance and BERT attention weights results suggest that non-
representative tokens or out-of-vocabulary tokens have the tendency to decrease the
classification performance.

Contents
1 Introduction 1

1.1 Motivation and problem definition . 1
1.2 Contributions . 2
1.3 Structure of this paper . 2

2 Background and related work 3
2.1 NLP paradigm . 3

2.1.1 Word features . 3
2.1.2 Word embeddings . 4
2.1.3 BERT . 4

2.2 Text classification . 5
2.2.1 Support Vector Machines . 5
2.2.2 Fine-tuning BERT . 6

2.3 Hierarchical Classification . 7
2.4 Related work . 8

2.4.1 Short text data . 8
2.4.2 Classification . 9

3 Data 9
3.1 Descriptive statistics . 10
3.2 Hierarchical structure of labels . 10
3.3 Data imbalance . 10

4 Methods 14
4.1 Data preprocessing . 14
4.2 Data enrichment . 14

4.2.1 Oversampling . 15
4.2.2 Web scraping . 15

4.3 Classification . 16
4.3.1 Support Vector Machines . 16
4.3.2 BERT . 17
4.3.3 Hierarchical classification . 18

4.4 Experimental setup . 18
4.4.1 Data and hyperparameters . 19
4.4.2 Baseline classifications . 20
4.4.3 Hierarchical classifications . 20
4.4.4 Data enriched classifications . 20
4.4.5 Generalization on LOO samples . 20
4.4.6 Evaluation metrics . 20

5 Results 22
5.1 Data Enrichment . 22

5.1.1 Web scraping . 22
5.1.2 Descriptives . 23

5.2 Classification results . 24
5.2.1 Flattened classification . 24
5.2.2 Comparing data enrichment methods 27

5.2.3 Hierarchical classification . 28
5.2.4 Generalization LOO set . 29

5.3 Error Analysis . 31
5.3.1 Model misclassifications . 31
5.3.2 Feature importance and attention . 31

6 Discussion 33
6.1 Interpretations . 33
6.2 Limitations . 35

7 Conclusion 36
7.1 Future work . 37

References 38

Appendix 42
A BERT Results . 42

A.1 Flattened classification . 42
B Hierarchical classification . 44

1 Introduction
1.1 Motivation and problem definition
Transgressions of planetary boundaries have become central issues for policy-making. The
growing population and wealth intensifies the environmental pressures and trigger the degra-
dation of global ecosystems. The Intergovernmental Panel on Climate Change emphasising
the degeneration of ecosystems and the need for structural change and action to reduce cli-
mate change (Pörtner et al., 2022). Scientific assessments have accelerated policymakers to
submit legally agreements with targets to reduce climate change. These targets are putting
increasing pressure on organizations to set ambitious goals in line with the policymakers
and scientific assessments.

Metabolic is a consulting and research firm that is focusing on environmental develop-
ment and tackling global sustainability challenges. They advise governments, businesses
and NGOs on how to adapt to these environmental and strategic challenges (Metabolic,
2022). As part of Metabolic, the software department is working on a software solution
to monitor environmental impacts associated with all stages of life cycles of a commercial
product, process, or service (Ghoroghi, Rezgui, Petri, & Beach, 2022). In order to perform
such impact assessments, Metabolic is required to process an organization’s data contain-
ing product descriptions and map these with an Life Cycle Inventory database to assess
their impacts (Wernet et al., 2016). The complexity for Metabolic lies in identifying the
informative semantic features and classifying the product descriptions to perform impact
assessments. The scope of their software solution is to automate this process with the use
of machine learning methods.

To automatize such impact assessments, this research is examining methodologies that
encounter the challenges with the processing and classification of product descriptions. We
consider a labeled dataset with short and noisy product descriptions. The classes are imbal-
anced and hierarchically ordered. We propose two classification methods, Support Vector
Machines and BERT, a deep learning model. The challenges cause by this data structure
are: the identification of semantically informative features in short product descriptions,
class imbalance and classifying hierarchically ordered labels. Consequently, we seek to an-
swer the following research questions:

How can product data with hierarchically ordered and imbalanced classes be effectively
classified?

This main research questions can be answered by examining the following subquestions:

1. How can we treat data imbalance to increase the quality of classifications?

2. How can we address the hierarchically oriented product classes?

3. How do deep learning methods differ from conventional learning methods for text
classification?

4. What makes the learning methods effectively classify the product descriptions and
what not?

1

1.2 Contributions
This research facilitates methods for the impact assessment of products and contributes to
the automation of processing- and classification methods for imbalanced- and hierarchically
oriented products descriptions. Additionally, we developed an API1 which makes it possible
to reproduce our methods and can be used for different product related classification tasks.

• All prior work appears to assesses different domains. This paper focuses specifically
on the classification of product descriptions.

• We address the multilingualism in product descriptions.

• We propose a data enrichment method using publicly available data. We have de-
veloped a web scraper that uses web search results to enrich the imbalanced dataset.
Additionally, we incorporate a quality measure that assesses the degree of similarity
between the product descriptions and search results to increase the overall quality of
data enrichment.

• We introduce a hierarchical classification framework to address imbalanced- and hier-
archically ordered classes.

• Most researchers focused on the accuracy and correctness of classifications, while not
addressing the imperfections. We evaluate the classification performances and we ad-
dress the imperfections by analyzing the misclassifications considering an error anal-
ysis.

1.3 Structure of this paper
For the remainder of this paper, the report is structured into seven chapters: Background,
Data, Methods, Results, Discussion, and Conclusion:

• Chapter 2. Background and related work provides the essential background in-
formation and key concepts to read through this report.

• Chapter 3. Data introduces and describes the dataset used for the experiments in the
chapters that follow.

• Chapter 4. Methods describes the data preprocessing, data enrichment techniques
and learning methods used for the experiments.

• Chapter 5. Results describes all experimental results.

• Chapter 6. Discussion evaluates the experiments and reflection on the error analysis.

• Chapter 7. Conclusion summarises all results and proposing future work for im-
provements.

1API: Application Programming Interface is a software tool and interface that facilitates the use of
services between users and computers.

2

2 Background and related work
In this chapter we describe essential background information and key concepts required to
read this paper. In addition, we outline related work concerning the challenges with short
text data and text classification tasks with hierarchically ordered- or imbalanced class labels.

2.1 NLP paradigm
Natural Language Processing (NLP) refers to a domain of Artificial Intelligence that consid-
ers classification or extracting structural information from unstructured texts. NLP strives
to give computers the ability to syntactic and semantic understanding of the complex and
diverse nature of human language (IBM, 2020). The complexity lies in the challenging as-
pects of language such as multilingualism, the diverse forms of grammar or the ambiguity of
words. NLP involves tasks such as Machine Translation, Named Entity Recognition, Text
Classification and Sentiment Analysis, to name a few. In this research the main focus will
consider text classification of product descriptions.

2.1.1 Word features

To process natural language, text data needs to be transformed into numerical representa-
tions in order to use machine learning methods. A simple and commonly used method is the
Bag-of-Words (BOW) model. This method consider all the unique words in a collection of
documents. Each document is represented as a vector with the number of dimensions equal
to the number of unique words in the collection. Documents often contains a small part of
the unique words present in the collection. As a result, most vectors consist of zero values
and creates a sparse representation of the data. Sparse data increase the feature space and
time complexity of models, resulting in inefficient and inaccurate computations (Jurafsky
& Martin, 2021).

In addition, BOW representations can be used with methods that enhance the represen-
tations. Term frequency-inverse document frequency (TD-IDF) is a commonly used method
for penalizing words that tend to be less relevant for the representation of documents. TF-
IDF emphasizes word relevance by adding a weighting factor to words that appear more
often in a document. This is counterbalanced by the number of documents in the corpus
that contain these words (Qaiser & Ali, 2018; Jurafsky & Martin, 2021). The intuition is
that frequently occurring words are often less relevant, e.g. stop-words. Furthermore, BOW
representations can be enriched by using a combination of consecutive words to increase the
feature space of the representations. N-grams conducts a sequence of n-consecutive words
for creating a set of co-occurring words within a given window. This method can be useful
for the presence of interrelated words, e.g. hard disk drive. In case of the latter, the BOW
representation can be improved by incorporating 2- or 3-consecutive words as additional
features, i.e. bigrams or trigrams.

BOW representations result in sparse vectors and ignores the syntactic and seman-
tic relations between words. The distributional hypothesis emphasizes the role of context
and suggest that words appearing in same contexts tend to have similar meaning (Huang,
Hussain, Wang, & Zhang, 2019). Vector semantics utilize this principle by learning the
representations of the meaning of words using word embeddings (Jurafsky & Martin, 2021).

3

2.1.2 Word embeddings

Word embeddings defines innovative methods that use self-supervision to map words into a
continuous, dense- and low-dimensional vector space. A word embedding is a function that
learns the context window of words to predict a target word, or vice versa. Using a simple
neural network, the vectors are learned to represent the semantic relations between words
to create low-dimensional vectors.

There are different techniques to construct word embeddings. We briefly discuss the most
important methods. Commonly used methods, Word2Vec, GloVe and FastText are trained
on a large text corpus with a fixed vocabulary and map each word to a fixed embedding
(Mikolov, Chen, Corrado, & Dean, 2013; Pennington, Socher, & Manning, 2014; Bojanowski,
Grave, Joulin, & Mikolov, 2016). Word2Vec consider two possible models, Continuous BOW
(CBOW) and Skip-gram. The models use a simple neural network with different network
architectures. CBOW trains a word vector by predicting a target word given its context,
Skip-gram predicts the context given the target word (Mikolov et al., 2013). Instead of
considering local properties, i.e. local context windows, GloVe encounter the ratio of global
word-word co-occurrences probabilities to express the word relationship. The co-occurence
matrix is factorized by minimizing a weighting function using least-squares. This results in
weights corresponding to the word embedding (Pennington et al., 2014). Lastly, Word2Vec
and GloVe fail to represent words that are out-of-vocabulary, i.e. rare words that have not
been trained on. FastText uses a similar network architecture as Skip-gram, but encounters
words as an n-gram of characters. Therefore, FastText is able to learn rare combinations
of characters and words, making it possible to break down words into trained sub-words or
characters to construct embeddings.

The discussed word embedding methods are commonly described as static word em-
beddings. Static word embeddings map semantic relations into a fixed embedding, e.g.
apple-tree or grape-vine, but ignores word ambiguity and word order (Jurafsky & Martin,
2021). A commonly used example of word ambiguity is the following:

Open a bank account
On the river bank

This example emphasizes the limitations of static word embeddings with the occurrence
of polsemy or ambiguous words (Devlin, 2021).

2.1.3 BERT

Recently, researchers in the field of deep learning have proposed innovative learning meth-
ods that attempt to solve the limitations experienced with static word embeddings and the
improvement on modeling long-dependencies (Jurafsky & Martin, 2021). One of these meth-
ods is BERT, a deep transformer based model that learns bidirectional representations and
long-dependencies from unlabeled text. Transformer models were originally proposed by
Vaswani et al. in 2017. These models introduced an improvement on recurrent and convo-
lutional architectures for addressing machine translation; translating text from one language
to another. Two key innovations introduced trough transformers are the self-attention mech-
anism and positional encoding. Self-attention mechanism makes it possible to model word
dependencies from an input sentence bidirectionally and simultaneously, thereby altering

4

the conventional recursively modeling from left-to-right. The attention function map word
relevance with respect to other words in the sentence and creates an contextualized word
embedding for each word. Additionally, the combination of multiple attention layers, i.e.
multi-headed attention, makes it possible to learn the network different meanings of at-
tention, e.g. grammar, vocabulary and conjugation. The encoder layer includes positional
encoding, which makes it possible to learn positional differences of words. It adds additional
positional encoding to the word embedding and allows the model to reason about the rela-
tive positions of any word. As a result, the model is able to capture different word senses:
“work to live” and “live to work”.

BERT consist of multiple encoders with 12 attention layers each. BERT-base has 12
encoders and BERT-large has 24 encoders, resulting in 144 and 288 attention heads, respec-
tively (Devlin, Chang, Lee, & Toutanova, 2018). This illustrates the depth and complexity
of each BERT model. Because of the computational complexity, BERT takes a maximum
sentence length of 512 tokens as input and uses WordPiece tokenization to improve the
handling of rare words (Wu et al., 2016). BERT operates in a transfer learning setting by
pre-training a model on a large collection with self-supervision and subsequent fine-tuning
on a particular task (Devlin et al., 2018). The original BERT authors proposed pre-training
using a BookCorpus (800M words) and English Wikipedia (2500M words). Additionally,
there are many variants that are pre-trained using multilingual or domain-specific data. At
this moment, there are more than 2300 ready-to-use pre-trained BERT models available on
Huggingface, a repository that offer such models (Wolf et al., 2019). This models can be
used in a transfer learning setting and fine-tuned for downstream tasks, e.g. classification
tasks.

2.2 Text classification
The goal of text classification is deciding what document can be assigned to an input or
a fixed number of predefined labels. It involves the process of training a learning method,
i.e. classifier 𝑓 using labeled text data 𝑋 and performing prediction tasks on a unseen
dataset. A well known text classification problem is the detection of spam, which involves
a binary classification task of assigning an email to one of the two classes: spam or not-
spam (Jurafsky & Martin, 2021). In the case of multiple labels this task is considered as
a multiclass classification task; classifying text data and supervising the learning method
with 𝑛 > 2 labels. This study focus on the latter and proposes classification methods for
multiclass classification tasks. We will now discuss the employed methods.

2.2.1 Support Vector Machines

Support Vector Machines (SVM) is a non-probabilistic supervised learning method that
uses a separating decision boundary. The optimal decision boundary corresponds to a line
or hyperplane that separates training instances of either class, and is constructed using a
margin that defines the largest distance between the hyperplane and training observations
(Hastie, Tibshirani, & Friedman, 2009). The training observations that are closest between
either class determines the margin and are often described as the supporting vectors. In
practice, training observations are often not perfectly linear separable. Using a straight line
or hyperplane may cause overfitting the training data, i.e. hard-margin method. To avoid
overfitting, it can be advantageous to use a regularization term to penalize the classifier

5

and allow for some observations to be on the wrong side of the decision boundary, i.e. soft-
margin (Hastie et al., 2009). This penalization exploit the trade-off between the margin
width and the number of misclassifications to construct a better generalizing model.

To assess the best separating hyperplane and generalizing model, we optimize the hinge
loss function with respect to the model parameters (eq.1). The hinge loss function is specif-
ically useful for constrained optimization tasks such as SVM and seek to maximize the
margins while allow for some misclassifications. This task can be described with the follow-
ing optimization problem:

arg min
𝛽∈ℛ𝑑

1
2 ||𝛽||2𝐶 + 1

𝑁
𝑁

∑
𝑖=1

ℒ(𝑦𝑖, ̂𝑦𝑖) (1)

where ||𝛽|| is the scaling parameter for the margins, C adds the regularizing term that
allows for misclassifications, ̂𝑦𝑖 is the decision boundary for class 𝑖 and the hinge loss ℒ
corresponds to max(0, 1 − 𝛼) and N corresponds to the number of training samples.

Regularization is key to find the optimal trade-off between the model complexity and
the ability to generalize with unseen data. This is often described as the bias-variance
trade-off (Hastie et al., 2009). Two regularization methods are commonly used: L1- and
L2-regularization. The intention of both methods is similar, regularizing less predictive fea-
tures by shrinking the coefficients to zero or discarding them from the model. This decreases
the model complexity by reducing the model variance in return for some bias to create a
model that is less likely to overfit the training dataset. L1-regularization improves gener-
alization by shrinking the sum of the absolute values of the model coefficients, ∑𝑝

𝑗=1 |𝛽|.
L2-regularization uses a penalty function based on the sum of squares of the model coef-
ficients, ∑𝑝

𝑗=1 𝛽2. Following the properties of both constraints, L1 regularized coefficients
are more likely to become zeros than L2 coefficients. As a result, the L1 penalty can lead
to sparser models, whereas L2 penalty shrink the coefficients to become small and lead to
non-sparse models.

One drawback to SVM with L1 regularization is the number of selected features 𝑝 is
bounded by the number of samples. Additionally, using this regularization method for
sparse data, the L1 penalty seems to fail there is a strong correlation between features
(Sharma, Verlekar, Ashary, & Zhiquan, 2017).

2.2.2 Fine-tuning BERT

The power of pre-trained BERT models is their ability to extract the rich word represen-
tations for downstream tasks. Fine-tuning BERT facilitates this by make it possible to use
labeled data to train application specific parameters (Jurafsky & Martin, 2021). During fine-
tuning, BERT captures all sentence information in a special embedding of [CLS] token that
is specifically useful for sentence classification tasks. The final hidden state corresponding
to this embedding is used as the aggregate sequence representation for classification tasks
(Devlin et al., 2018). In addition, it is common to train a neural network by adding a linear
classification layer on top of a pre-trained BERT model. This classification layer consist of
a feedforward network with a Softmax layer to normalize the output nodes into a vector of

6

probabilities with size equal to 𝑛 categories.

To find a set of parameters that maximizes the number of correct classifications, we
optimize a loss function with respect to the model parameters. We use the categorical
cross-entropy loss function (eq. 2). This loss function is stochastic and is specifically useful
for this multiclass classification task. Cross-entropy quantify the differences between the
probability distributions of class labels and makes a probabilistic decision. We use this loss
function on a training set and minimize this function in order to improve the performance
on the validation set.

ℒ(̂𝑦, 𝑦) = −
𝑁

∑
𝑛=1

𝐶
∑
𝑐=1

𝑦𝑐
𝑛 log ̂𝑦𝑐

𝑛 (2)

Where 𝐶 denotes the number of class labels, ̂𝑦𝑐
𝑛 denotes the predicted probabilities from

the Softmax output, 𝑦𝑐
𝑛 is the truth class label and the total number of training samples are

denoted by 𝑁 .

To optimize this loss function with respect to the model parameters we propose Adam.
Adam is an innovative Stochastic Gradient Descent method that optimizes model param-
eters individually by using adaptive learning rates. This innovation makes Adam highly
effective for high-dimensional data tasks and deep learning models (Kingma & Ba, 2014).
As a result, Adam is a commonly used optimization algorithm for text classification tasks
and is recommended for fine-tuning BERT models (Devlin et al., 2018; Vaswani et al., 2017;
Sun, Qiu, Xu, & Huang, 2019).

Finally, we address the bias-variance trade-off using dropout regularization. BERT con-
sist of large network with many parameters that easily overfit with limited training data
(Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). Dropout is a stochas-
tic regularization method that randomly drops sets of nodes in the network and creates a
smaller, simpler model to reduce overfitting. Additionally, dropout creates different network
architectures and combines the optimal sets of nodes to construct a network with the lowest
generalization error.

2.3 Hierarchical Classification
Most research in the field of data science is focused on classification tasks that consider
a flattened structure of labels (Silla & Freitas, 2010). Flat classification assumes that the
labels has no hierarchical structure and all classes are mutually independent. However, most
product related data can be categorized to a mutual parent class. Ontologies such as the
International Patent Classification system (IPC) (D’hondt, Verberne, Oostdijk, & Boves,
2017) or eCommerce databases are hierarchically ordered and consist of a pre-defined class
hierarchy (Jahanshahi et al., 2021). This hierarchical structure is useful to structure large
amount of data where instances can be assigned to multiple levels of categories. Conventional
classification methods such as binary and multiclass classifiers cannot directly cope with the
hierarchically ordered labels and often ignore the class hierarchy by predicting the classes
by using a flat structure. The disadvantage to this is that these classifiers often need to
discriminate between a large number of classes whenever a large hierarchical structure of
labels is flattened. In order to address the class hierarchy, we proposed two approaches
according to Silla and Freitas (2010):

7

1. Conventional multiclass classification and ignoring the class hierarchy by using flat-
tened labels. This approach is used as a baseline.

2. Local classification or a top-down classification approach. We perform multiclass clas-
sification using local information. We train a classifier for the first-level or parent
(most generic) class and training multiple classifiers at the second level or child (more
specific) class. As a result, we can recursively predict the most generic class and uses
this predicted class to narrow down the number of labels to be predicted for the child
class. Because of the large set of labels, this approach is advantageous as it reduces
the large set of labels into several small sets. Also, the classifier does not have to
discriminate between a large set of labels.

2.4 Related work
2.4.1 Short text data

Challenges with short text data are expressed by Martinez-Gomez, Papachristoudis, Blau-
velt, Rachlin, and Simhon (2021) using short product descriptions in the e-commerce do-
main. Most product names consist of abbreviations, non-homogeneous elements and mul-
tilingualism. More (2016) proposes sequence labeling models for detecting the features in
product titles of e-commerce retailers. Noisy elements, ambiguous- or unrelated context
words form major parts of each product title. For example, brand names may contain
varying spellings of the same brand name or use abbreviations for a selection of products.
Additionally, ambiguous words pose a key challenge for classifying product title.

Short text sentences are often characterized by a lack of contextual information. Chen,
Hu, Liu, Xiao, and Jiang (2019) propose to integrate context using BOW and static word
embedding representations for short sentences using a unified deep neural network model.
This model incorporates additional contextual information from a Knowledge Base to enrich
the semantic representations. Additionally, they propose two attention mechanisms that
learns the importance of related concepts and quantify the similarities with the short text
sentences. Finally, the authors demonstrate the effectiveness of integrating context infor-
mation with different learning tasks for short text sentences.

In addition, Rued, Ciaramita, Mueller, and Schuetze (2011) enrich ambiguous words in
news texts for Named Entity Recognition tasks with contextual information using a search
engine. The authors emphasize the ability of search engines to make optimal use of the
context information and use short text sentences as query to find relevant information.
They demonstrated that search engines are effective for enriching ambiguous words to build
robust Named Entity Recognition models in the domain of news data.

Oksanen, Cocarascu, and Toni (2021) describes the informative aspects in short product
reviews for automatically extracting ontologies and meronomies using BERT. BERT is fine-
tuned for aspect- and relation extraction tasks by processing product reviews from Amazon
and utilizing domain-specific terms. The proposed model is evaluated by its annotating
performance using a large movie recommendation dataset. The proposed method generalises
well and outperforms the existing movie ontologies. Additionally, the authors emphasize the
potential of meronomies to be specialised forms of ontologies.

8

2.4.2 Classification

One of the early text classification propositions discusses the linear separability of text cat-
egorization problems using BOW (Joachims, 1998). Text data is often high-dimensional
and dichotomous which can be easily separated using a linear classifier according to Cover’s
theorem (Cover, 1965). The authors propose SVM with BOW and show that linear SVM
are well suited for text classification problems.
In addition, Yu, Ho, Arunachalam, Somaiya, and Lin (2012) propose to use of SVM with
BOW variations for classification using short product descriptions. The authors describes
the limitations using conventional word features for the classification of product descrip-
tions. In short text sentences, features such as stemming, stop-word removal or the use of
weighting terms such as TF-IDF, may not be effective and affect classification performance.
Contrarily, BOW with n-gram representations are predominantly effective for short product
titles.

Linear classifiers appear to be effective for classifying product descriptions. However,
product data often exhibit a hierarchically ordered data structure. In addition, patent data,
medical records or web directories are typical examples of large hierarchical text repositories.
These repositories consist of a large number of closely related classes that are often hierar-
chically ordered. Gao, Zhao, Ma, Tanvir, and Jin (2022) describe the challenging aspects
for classification of such repositories and emphasize the effectiveness of integrating parent-
child class relationships into classification models. The authors propose a LSTM-network
that incorporates the semantic parent-child relationships as a joint embedding and use a
multilayer perceptron with cross-entropy to train the network parameters. Their results
demonstrated that incorporating the hierarchical class structure show better classification
performance than using a flattened classification approach with, e.g. BERT.

The hierarchical nature of large text repositories often consist of long-tailed class dis-
tributions inherently. Class imbalance occurs when the majority of the class labels have
only a few instances and are positioned in the tail of the class distribution. Feng, Fu, and
Zheng (2018) illustrates the latter within the biochemical domain and describes the chal-
lenges with gene function prediction as a classification task. The authors consider the class
imbalance and the hierarchical orientation of labels using a Gene Ontology. They propose a
hierarchical multi-label classification method that encounter the hierarchical gene functions
(class labels) as an local approach by training a multilayer perceptron classifier for each
class independently with local information. Additionally, the class imbalance is treated us-
ing an oversampling method to increase the minority class instances for each training data
set. As a result, the local classification approach outperform other hierarchical multi-label
classification methods for classifying gene functions.

3 Data
The dataset consists of a collection of datasets from six mutually independent companies.
These companies were selected to represent a variety of product classes, both food and non-
food related. The data contains short product descriptions that are Dutch and English.
The product descriptions were manually labelled by consultants from Metabolic. The labels
corresponds to two predefined classes wich are included as two variables in the dataset.
We processed the data by removing the missing values and incorrect product classes. In

9

addition, the data contains duplicate products. Companies can share a common product or
valuable products can occur more often in the dataset. We emphasized the effect of identical
products in the dataset, i.e. duplicates by using two datasets for our experiments. We used
the true data set with duplicate products and a dataset without the duplicates.

3.1 Descriptive statistics
Table 1 show the dataset with the variables and descriptions. The dataset consist of 36, 165
product descriptions of which 24, 715 are unique. There are two product classes AnalyseCat-
egorie and MAIA KeyProduct with 22 and 952 class labels, respectively. AnalyseCategorie
class consider Dutch class labels, while MAIA KeyProduct class labels are English. Figure
1 show the distribution of tokens in the product descriptions. On average the commodities
consist of 4.5 tokens per description.

Table 1
Description of the variables in the product dataset. Type indicates the data types for each
variable in the dataset; integer (int) and string (str). The dataset consist of 36, 165 samples.

Variable Type Description
Bron int Describes the data source. The data consist of a col-

lection of datasets from six mutually independent com-
panies. The companies are anonymized using random
company IDs, i.e. Bron.

Omschrijving str product descriptions; sentences with the semantic
information that describes the commodities (24,715
unique product descriptions).

AnalyseCategorie str Product class with (n=22) labels in Dutch.
MAIA KeyProduct str Product class with (n=952) labels in English.
AC int Encoded AnalyseCategorie class
MAIA int Encoded MAIA KeyProduct class

3.2 Hierarchical structure of labels
The variable AnalyseCategorie, i.e. AC describes the generic product labels which corre-
sponds to the first-level or parent class. Additionally, the variable MAIA KeyProduct, i.e.
MAIA describes a large set of more specific product labels that are interrelated with the
parent class labels. Figure 2 illustrates the parent- and child class relations for a random
selection of labels and with the unprocessed product descriptions.

3.3 Data imbalance
Figure 3 shows the class distribution for both product classes. This figure illustrates the
class imbalance and the class labels that can be considered as the majority classes, i.e.
over-represented classes in the data or minority classes, i.e. under-represented classes in
the data. The class imbalance is characterized by a long-tailed distribution of class labels.
Class imbalance could affect the discriminating ability of the minority classes. In addition,

10

0 10 20 30 40 50
Number of tokens

0

1000

2000

3000

4000

5000

6000

7000

8000

Co
un

t
Distribution of tokens in product descriptions

count: 36165
mean: 4.5
std: 2.6
min: 1
max: 54

Figure 1. Distribution of tokens in the product descriptions including descriptive statistics.
The mean number of tokens per product description of 4.5 emphasizes the small size of the
product descriptions.

learning methods have the tendency to be biased towards the majority classes and often de-
crease the predicting performance (Weiss, 2004). Most learning methods have an accuracy
oriented design, which are naturally more biased towards the majority classes (Fernández
et al., 2018). Moreover, noisy data tends to have a greater effect on the minority classes,
making it more difficult to discriminate between the classes (Weiss, 2004).

11

Figure 2. Tree structure to illustrate to hierarchical product classes. The top-level nodes
(blue) describes the parent class AC for a selection of labels. The recursive leave nodes
(gray) describes the related child class MAIA labels with a selection of unprocessed product
descriptions.

12

0 2000 4000 6000 8000 10000 12000
Number of samples

Voedsel en dranken

Kleding

Kantoorartikelen

ICT

Papier

Huishoudelijke apparaten

Meubilair

Sanitair & Hygiene

Persoonlijke uitrusting

Wegwerpartikelen

Top 10 products in parent class: AC

0 2000 4000 6000 8000 10000 12000
Number of samples

Working boots, steel nose

Cheese (cow)

Notepads

Chicken

Toners and cartridges

Bread loaf

Vegetables

Cotton t shirt

Overall

Milk

Top 10 products in child class: MAIA

Figure 3. Bar plot with the 10 most frequent labels in the parent class AC and child class
MAIA. The length of the bar represents the number of samples in each class label.

13

4 Methods
This chapter will describe the details of the proposed methods and experiments. We describe
the data preprocessing, data enrichment, the classification methods and the experimental
setup to illustrate the training aspects.

4.1 Data preprocessing
We preprocessed the data by removing all empty product descriptions, and all non-labeled
products. Subsequently, preprocessing the product descriptions is advantageous to retain
most informative features, while removing noisy elements that have no informative property.
Table 2 shows the product descriptions before- and after data preprocessing.

The following preprocessing steps have been taken:

• Case folding: mapping all characters to lower case. The product descriptions show
capitalized sentences or a combination of lower- and uppercase words and charac-
ters. Due to this unstructured use of capitalization it provides little to no valuable
information.

• Remove punctuation.

• Remove special characters.

• Remove tokens with length 𝑛 = 1.

• Remove tokens containing only digits.

In addition, we examined options to normalize words by using a standard root form;
lemmatization or stemming (Jurafsky & Martin, 2021). However, in case of small text
descriptions, using normalization may result in incorrect semantic forms. Yu et al. (2012)
have shown that normalization of small (products) descriptions results in disambiguation
problems. For example, using stemming, products containing the word: “recorder” from
the category consumer electronics change into “record” which corresponds to the product
category music. Because product descriptions are short, normalization seems to remove
essential information that make some words less discriminating for the related category.

4.2 Data enrichment
The data imbalance was treated according to a data level approach (Fernández et al., 2018).
This approach aims to rebalance the class distribution or is incorporating new data. Both
results are useful treat treating skewed label distributions. Therefore, two methods were
proposed. Oversampling, and a data enrichment method. This method used web scraping
to collect new product descriptions from existing ones using information from the world-
wide-web.

14

Table 2
Sample of the dataset illustrating the product descriptions before- and
after preprocessing the data. AC and MAIA show the encoded product
classes.

Description AC MAIA
KRUIDEN BASILICUM 18 53
Smitvis haring+uitjes 5 st msc 18 406
Snelheidsmeter V-MAXX - inclusief adapter en statief 4 801
110389 - Lipton feel good select.bosvruch.ht 25s 18 422
Broek, Waterproof, Olive-Drab, Mt m 7 430
kruiden basilicum 18 53
smitvis haring uitjes st msc 18 406
snelheidsmeter maxx inclusief adapter en statief 4 801
lipton feel good select bosvruch ht 25s 18 422
broek waterproof olive drab mt 7 430
- Encoded AC categories: 4, 7 and 18. These encoded labels correspond to:
ICT, Kleding and Voedsel en Dranken, respectively.
- Encoded MAIA categories: 53, 406, 422, 430, 801. These encoded labels
correspond to: Basil, Herring, Icetea, Jeans JRC BOP, and Speaker stand
large (6m height), respectively.

4.2.1 Oversampling

Oversampling increases the number of samples in the the minority classes and resamples the
data to create a more balanced distribution of class labels. We used oversampling on the
training set after splitting the data into a train- and test set. Oversampling on the complete
dataset would result in identical observations to be present in both the train and test sets.
This allows learning methods to simply memorize observations and result in a poor ability
to generalize. We performed oversampling on class labels when the size ≤ average class size.
Oversampling was proposed for both parent- and child classes with a resampling size of 10%
of the maximum class label size.

Oversampling makes it possible to resample existing observations, but is not able to
enrich the data with new information. Moreover, resampling existing observations can en-
hance overfitting problems since learning methods may focus too heavily on oversampled
class labels (Fernández et al., 2018; Chawla, Bowyer, Hall, & Kegelmeyer, 2002). There-
fore, we proposed an additional data enrichment method that incorporates new informative
samples using Google search results and makes it possible to enrich our data with public
available data.

4.2.2 Web scraping

To enrich the training data we proposed a web scraping method that exhibits semantic re-
lated product data using a search engine and process the data into qualitative new features.
We used the Google search API to utilize our web scraper and parse HTML data from
the headings in the first page with BeautifulSoup (Richardson, 2007). We proposed web

15

scraping when class label size < average class size.

As discussed in Section 2.4, web search engines exhibit large margins of error when in-
sufficient context is provided. Therefore, we enriched the queries using a combination of
product descriptions and related child class labels. The child class labels consists of detailed
product information and provide additional context. We combined each combination to a
single sequence and used it as input query for the search engine.

Furthermore, search engines like Google, have the drawback they are limited to a fixed
amount of rate requests in a given amount of time before a CAPTCHA2 protocol intervenes
in the search operation. As a result, it was not possible to automatically perform a large
number of search requests and it was not possible to enrich the complete set of categories
when this sample size exceeds the rate request limit. To comply with this rate request pro-
tocol, we used a time-out moment after every search operation to simulate more human-like
search behavior. The time-out was randomly chosen using a uniform distribution of values
between 1 and 5 seconds.

In addition, search results are at times noisy with irrelevant results that need to be
addressed using a post-filtering method. We used sentence-BERT with cosine similarity to
measure the semantic similarity between the product descriptions and the processed web
results. Sentence-BERT is a modification of BERT that uses a different network structure
to derive semantically relevant sentence embeddings that can be compared using cosine-
similarity (Reimers & Gurevych, 2019). We evaluated to what degree the search results are
similar to the product descriptions using this similarity score and set the semantic similarity
threshold at 𝜖 ≥ 0.8 following (Jinfeng, Shouling, Tianyu, Bo, & Ting, 2019)

4.3 Classification
All non-hierarchical classifiers addressed the classifications tasks as a flattened multiclass
classification task and ignored the hierarchical structure. The classifiers were trained on
both product classes to construct two distinctive classifiers for each of the classes.

4.3.1 Support Vector Machines

We used SVM as a baseline to compare the classification experiments. We used linear SVM
with BOW including the option for Bigrams and TF-IDF. In addition, we experimented
with L1- and L2-regularization using a wide range of parameter values. We use Stochas-
tic Gradient Descent for optimizing the hinge loss function and we used a one-versus-rest
training method to address the multiple classes. The reasoning for the one-versus-rest
method enables multiclass data into one binary dataset for each class and train each classi-
fier as a binary task (Bishop, 2006). We performed all our experiments using Scikit-learn
(Pedregosa et al., 2011).

2Security measure that prevent automated programs from abusing online services (Ahn, Blum, Hopper,
& Langford, 2003).

16

Table 3
Overview of proposed BERT models with the corpora that
have been used for pre-training.

Model Corpus
bert-base-uncased BookCorpus, Wikipedia (EN)
bert-multilingual-uncased Wikipedia (102 languages)
bertje 5 different corpora (Dutch)∗

distilbert-base BookCorpus, Wikipedia (EN)
∗ These corpora include: Collection of contemporary and historical
fiction novels, a Dutch news corpus, a multi-genre reference corpus,
articles of 4 Dutch news websites (2015-2019) and DutchWikipedia
(2019).

4.3.2 BERT

To fine-tune BERT with our data, we selected pre-trained models from the Huggingface
repository. In order to experiment with our multilingual product data, we used an English
and multilingual model (Devlin et al., 2018), a Dutch model (de Vries et al., 2019) and a
distilled version of BERT to study the effect of a smaller BERT model on the fine-tuning
performance (Sanh, Debut, Chaumond, & Wolf, 2019). All models with corresponding
pre-training corpera are shown in Table 3.

The product descriptions were tokenized using the pre-trained BERT models with the
maximum length set to 64. WordPiece tokenization was used for out-of-vocabulary tokens
by splitting words into subwords or characters to match the input tokens with the BERT
vocabulary (Wu et al., 2016). The sub-words or characters were added using the identifying
prefix: “##”, e.g. “playing” can be split into “play” and “ing”.

Lastly, the classification layer take the embedding of the [CLS] token from the last en-
coding layer as input and transforms into a vector with the size of the number of class labels
prior to applying Softmax (Devlin et al., 2018).

Parameter settings

We optimized the training parameters by experimenting with different learning rates for
the Adam optimizer. The learning rate is often the single most important hyperparameter
to increase the model performance, since it controls the weights adjustments of the network
and enhances convergence towards an optimal set of parameters (Bengio, 2012). Over a
large number of epochs3, a small learning rate may overfit the data, while a large learning
rate may underfit the data (Smith, 2018). We used a learning rate warmup over the first 2
epochs and a linear decay of the learning rate according to Devlin et al. (2018). In addition,
we used early stopping to regularize the loss function whenever the validation loss tended
to increase and model start overfitting the data. We used the principle of early stopping
after 5 consecutive epochs of increasing validation loss. We set the number of epochs to 30
as default.

3One cycle through the full training set to train the internal parameters of the network.

17

Second, we experimented with the dropout parameters within the BERT model architec-
ture. We performed dropout regularization on both the hidden- and the classification layers.

Lastly, we experimented with different batch sizes. Batch size defines the number of
samples to be propagated through the network in each batch and is related to the total
number iterations per epoch. Batch size is sensitive to class imbalance. Small batch size
may cause bias towards the majority class, while a size that is too large result in poorer
generalization (Keskar, Mudigere, Nocedal, Smelyanskiy, & Tang, 2016). Moreover, batch
size must also be adapted for hierarchical classification. The parent class labels are imbal-
anced and minority classes show a small number of training samples. Because the batch
size cannot exceed the number of training samples, it must be adjusted for the training
size. We used a batch size that corresponded to a minimum of 30 iterations per epoch and a
maximum batch size of 128. Using this setting, the minority classes have an suitable number
of iterations per epoch and the majority classes can be trained more computational efficient
using a large batch size of 128.

The experiments were configured and conducted using Tensorflow and Keras (Abadi et
al., 2015). Each were run on a TPU machine to increase modeling efficiency and computation
time (Jouppi et al., 2017).

4.3.3 Hierarchical classification

To address the hierarchical class structure we trained the classifiers in a top-down matter
as discussed in Section 2.3. We recursively trained each classifier using the predictions from
the parent class to narrow down the number of labels to be predicted for the child class in
a top-down matter. Therefore, we first trained a generic classifier using the parent class as
root model. In addition, we train classifiers for each of the parent class labels (n=22) and
conditioned the model on the related subset of child class labels (eq. 3).

𝑓(𝑋𝑖) = 𝑦(𝑐ℎ𝑖𝑙𝑑|𝑖) (3)

Where 𝑋 is the training data that corresponds to parent class label 𝑖. The response
variable 𝑦 consist of all labels in the child class conditioned on parent class label 𝑖.

4.4 Experimental setup
The experimental setup consisted of the following parts:

• Data and hyperparameters

• Baseline classifications

• Hierarchical classifications

• Data enriched classifications

• Generalization on LOO samples between clients

18

4.4.1 Data and hyperparameters

The dataset corresponded to the collection of datasets from different companies. Because
of this the data is naturally sorted by company and consisted of several rows with mutually
dependent products. If we train the data in batches, e.g. classification with BERT, some
batches will not be representative for the overall dataset since it may contain only products
related to some company. Therefore, we shuffled the data to reduce the variance and to
decrease the chance of overfitting the data.

Furthermore, we split our dataset into a training and test set using a split proportion of
90% and 10%. Splitting the data makes it possible to train and optimize the models using
most of the data, while evaluating the models on a unseen test set. Training the BERT
models uses an additional validation set to provide an unbiased evaluation of training the
model while optimizing the model hyperparameters. Therefore, we split the train set to cre-
ate an additional validation set. We used 80% of the data for training, 10% for validation,
and 10% for testing.

Because we used the true dataset that containing identical products, the test data may
include some products that are also present in the training data. Therefore, we evaluated
model performance for the baseline SVM classification model on data with- and without
the occurrences of duplicate products. Using this evaluation we were able to emphasize
the difference in classification performance between a realistic data set including duplicate
products and a modified dataset that excludes all duplicates. We expected that including
duplicates would result in the overestimations of the model performance, as the models
simply recognize products in the test set that have been trained on. For the rest of the
experiments we used the true data set that consist of the true product data which include
duplicate products.

Support Vector Machines The optimal hyperparameters for Support Vector Machines
classifiers were determined using GridSearchCV with 5-fold cross-validation from the scikit-learn
library. Table 4 shows the hyperparameters to be optimized and the corresponding search
grid.

Table 4
Hyperparameters grid for the SVM classifier and grid search range. Word features describes
the selection of BOW representations. The regularization terms relate to the L1- and L2-
penalty. Penalty strength describes the degree of regularization using a range of values,
where a larger value specify stronger regularization.

Word features Penalty Penalty strength (C)
CountVectorizer, Bigram, TF-IDF L1, L2 (9e-9, 9e-4)

BERT The optimal hyperparameter settings for fine-tuning BERT are estimated using a
grid search on predefined set of hyperparameter values. Table 5 show the hyperparameters
to be optimized and the corresponding search grid.

19

Table 5
Hyperparameters grid for the BERT classifier and grid search range. Model describes the
pre-trained BERT models that have been utilized. DO describes the dropout regularization
with a range of values that indicates the proportion of nodes that is omitted during training.
Optimizer corresponds to the proposed optimization algorithm Adam and LR described the
range of learning rate values.

Model DO BS Optimizer LR
bert-base, bert-multilingual 0, 0.1, 8, 16, 32, Adam (5e-5,1e-5)
bertje, distilbert-base 0.2, 0.3 64, 128

4.4.2 Baseline classifications

The baseline classification corresponds to the classification models using the flattened labels
of the separate product classes. This results in two different classifiers, both supervised
using only one of the classes and the corresponding labels. This baseline classification is
required for examining the overall performance of each model, and the relation to each of
the class related categories. Consequently, these results give a deeper insight in the effect
of the class size, and the model performance.

4.4.3 Hierarchical classifications

We used hierarchical classification as a top-down approach according to Section 4.4.3.

4.4.4 Data enriched classifications

All models were compared for differences in model performance before- and after the data
enrichment on the train set. The test set was untouched to enhance unbiased results and
evaluation of the classification performance between the proposed models.

4.4.5 Generalization on LOO samples

Taking the leave-one-out samples into consideration, we trained a model using a subset of
companies and tested model performance using an unseen data set corresponding to a held-
out company during training. By consequently leaving distinctive companies out of training,
we examined the model generalizing ability for new data sets and unseen commodities that
are company specific.

4.4.6 Evaluation metrics

In order to address the classification performance we used a selection of classification met-
rics that encounter the class imbalance. As mentioned in 3.3, classification accuracy place
more weight on the majority classes than on the minority classes, which makes it difficult
to have an unbiased, and objective view on the model performance. Moreover, accuracy
does not account for any False Positives (FP) or False Negative (FN) predictions, which are
equivalent to, respectively, Type-I and Type-II errors in hypothesis testing. Therefore, it is
advantageous to measure the classification performance using a more strategic set of scoring

20

metrics. We used the following scoring metrics to evaluate our classifiers and construct a
more robust evaluation of our classification performances:

Precision Proportion of assigned labels that are correct; True Positives (TP) to all the
predicted positive (TP + FP).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 = 𝑇 𝑃𝑖
𝑇 𝑃𝑖 + 𝐹𝑃𝑖

(4)

Recall Proportion of the relevant labels that were assigned; True Positives (TP) to all
positives in the data (TP + FN).

𝑅𝑒𝑐𝑎𝑙𝑙𝑖 = 𝑇 𝑃𝑖
𝑇 𝑃𝑖 + 𝐹𝑁𝑖

(5)

F1-score Harmonic mean of Precision and Recall, which give a balanced score for the ratio
of True Positives (TP) to all predicted- and true positives in the data (TP + FP + FN).

𝐹1𝑖 = 2 ⋅ 𝑇 𝑃𝑖
𝑇 𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖

(6)

Evaluation hierarchical classification To evaluate our hierarchical classification, we used
a modified version of the precision, recall and f1-scores that incorporates the predictions of
all hierarchical classifiers in a top-down matter. First, we treat the root model 𝑅 as a
flattened classifier. The performance was assessed using the conventional evaluation metrics
in equation 4, 5 6. Second, to evaluate a local classifiers 𝐿𝑛 we used a modified version
from Kiritchenko and Famili (2005) to incorporate all classifications per parent class label.

𝑃𝐿𝑖
= ∑𝑖 | ̂𝑃𝑖 ∩ ̂𝑇𝑖|

∑𝑖 | ̂𝑃𝑖|
(7)

𝑅𝐿𝑖
= ∑𝑖 | ̂𝑃𝑖 ∩ ̂𝑇𝑖|

∑𝑖 | ̂𝑇𝑖|
(8)

𝐹1𝐿𝑖
= 2 ⋅ 𝐿𝑖𝑃 ⋅ 𝐿𝑖𝑅

𝐿𝑖𝑃 + 𝐿𝑖𝑅
(9)

As last, we assess the hierarchical performance per parent class label 𝑖 by addition of the
root- and local results and using the average score. Consequently, we are able to evaluate
the top-down approach to assess hierarchical classification; combining the predictions at
root level 𝑅 and narrow down using the predictions at lower level 𝐿𝑛.

ℎ𝑃𝑖 =
𝑃𝑅 + 𝑃𝐿𝑖

2 (10)

ℎ𝑅𝑖 =
𝑅𝑅 + 𝑅𝐿𝑖

2 (11)

ℎ𝐹1𝑖 =
𝐹1𝑅 + 𝐹1𝐿𝑖

2 (12)

21

Macro scores Because the product classes were imbalanced, scores tended to be more
biased towards the majority classes. This was exhibit using Macro-averaging. Each class
contributed equally to the performance score and created an unbiased view on the general
model performance. Consequently, we used macro scores as default for all experiments if
not stated otherwise.

Weighted scores Weighted-average scores emphasizes the class size and consider an av-
erage score with respect to the actual occurrences of the class labels in the dataset. Using
weighted-averaging, we emphasized the class support and put more weight on the majority
class labels.

Deterministic- and stochastic methods The proposed classification models use different
loss functions. SVM is deterministic, while BERT is stochastic and consists of random
processes. Therefore, we used 5 repeated runs for the BERT models and used average scores
with confident intervals to construct unbiased estimates on classification performance.

5 Results
In this chapter we will discuss our findings from the data enrichment and classification
experiments. First, the data enrichment results are discussed and evaluated using the clas-
sification models for both flattened- and hierarchical classification. Secondly, the best per-
forming combination between the data enrichment and classification models are compared
using their generalizing ability using a LOO set. Lastly, we conduct an error analysis on
the best performing models and examine their limitations according to the number of mis-
classifications and feature importance or attention assessment.

5.1 Data Enrichment
5.1.1 Web scraping

To demonstrate the web scraping results Table 6 show a selection of product descriptions
that satisfy the condition for web scraping.

Table 6
Sample of products that are used as input for data enrichment using web scraping method.

Omschrijving AnalyseCategorie MAIA KeyProduct
1. zwarte kip advocaat Voedsel en dranken Advocaat
2. eliterna boerenjongens op brandewijn Voedsel en dranken Advocaat
3. aperol Voedsel en dranken Advocaat
4. de kuyper tokkelroom original Voedsel en dranken Advocaat

This sample illustrates the challenge of collecting qualitative data using web scraping.
First, the term “Advocaat” is polysemous; in this example it refer to a beverage, but without
context it could refer to a lawyer. Second, brand names are ambiguous, e.g. “zwarte kip”
could refer to chicken while in this example it is a beverage brand. Third, the sample

22

contained incorrect labels, “boerenjongens op brandewijn” and “aperol” are beverages but
not related to Advocaat. To account for these semantic challenges, we utilized the proposed
methods in Section 4.2.2. Table 7 show the web scraping results for the data sample and
the following queries:

1. Query: “zwarte kip Advocaat”

2. Query: “eliterna boerenjongens op brandewijn Advocaat”

3. Query: “aperol Advocaat”

4. Query: “de kuyper tokkelroom original Advocaat”

Table 7
Selection of processed web scraping results with the sentence-BERT cosine similarity scores.
Results with scores > 0.8 are highlighted and satisfy the condition for data enrichment. The
index numbers correspond to the queries.

Results CS
1. zwarte kip advocaat cl dirckiii 0.911
1. zwarte kip advocaat 50cl voordelig kopen drankdozijn nl 0.685
1. richard korver advocaten 0.745
2. achtigen vruchten op brandewijn boerenjongens eliterna 0.959
2. eliterna boerenjongens youtube 0.709
2. schwartz advocaten 0.730
3. aperol bidfood 0.883
3. aperol spritz simone kitchen 0.529
4. de kuyper tokkelroom fles cl bidfood 0.881
4. de kuyper gedistilleerd mitra drankenspeciaalzaken 0.657
4. advocatenkantoor de baarsjes 0.472

The results show two scraped sequences per query. The cosine similarity scores quantify
the semantic similarity with the product descriptions using sentence-BERT embeddings. We
see notable differences according to the cosine similarity scores. Web results corresponding
to a cosine similarity score > 0.8 show semantic related descriptions. We observe that
Sentence-BERT with cosine similarity threshold enhances the quality and is discriminating
polysemy and ambiguous words, e.g. Advocaat in context of law is excluded from the data
set. Furthermore, the web scraper enriches the product descriptions with new semantic
similar variations for both correct- and incorrect class labels.

5.1.2 Descriptives

Table 8 show the data enrichment effects on the train set. We observe that the web scraping
results do not differ between the parent class and the child class. As mentioned in 4.2.2
the web scraping utilizing the imbalance within the child class labels and enrich the data
by using the deepest level of class labels. Furthermore, we observe that the combined data
enrichment does not result in the largest data set. The oversampling is used after the data
has been enriched using web scraping results, which resulted in less imbalanced class labels

23

to be oversampled. Lastly, we observe a large difference between the training size of both
product classes using oversampling. The child class corresponds to a training size of almost
three times larger than the parent class. This difference suggest that the child class consisted
more imbalanced class labels and resulting in heavier oversampling of products.

Table 8
Effect of data enrichment on train set for both classes using the true dataset. Comparison
of the enrichment methods: Normal, Oversampling, Webscraping and a combination of
both, respectively. The results are describing the number of training samples after data
enrichtment for both product classes.

Train size
Class Normal Oversampling Web scraping Combination
AC 32,548 63,328 40,880 78,284
MAIA 32,548 155,326 40,880 153,941

5.2 Classification results
5.2.1 Flattened classification

Support Vector Machines The first objective was to construct a baseline SVM model
that was trained and optimized using a range of hyperparameter settings. We first illus-
trate the classification results for the models using default hyperparameter settings. Table 9
shows the classification results using default settings and the use of data with- and without
identical products, i.e. duplicates. According classification metrics, the parent class model
show significant better performance with respect to the child class model. First, considering
the parent class model without duplicates we see that the precision score outperforms the
recall score. This high precision score indicates that the false positive rate is low and the
model is able to correctly classify the assigned labels. However, the relatively poor recall
score indicates that there are many false negatives and suggest the model is unable to cor-
rectly classify the total number of assigned labels. Second, considering the child class, the
results show poor scores on all classification metrics. The child class is characterized by its
large set of imbalanced class labels and suffer from insufficient training samples.

In addition, the results show that including duplicates improves overall classification
performance principally because of the increasing recall scores. The improvement of the
recall score indicates that including duplicates decreases the number of false negatives and
enhance the ability to correctly classify the assigned labels. If we compare the models with
respect to data without duplicates, we observe that including duplicates result in a better
performing SVM model by approximately 10% and 15% of the parent class and child class,
respectively. However, including duplicates in the data may cause overestimation of the
models performances since the test set may contain similar observations.

Table 10 illustrates the results of the SVM models with optimized hyperparameters.
The optimization results disclose an optimal word representation for the parent class using
BOW with TF-IDF and suggest that weighting the terms increase generalizing performance

24

Table 9
Performance SVM classification on test set using default hyperparameter settings and BOW.
The results show the performance of both classification models for the parent- and child class.
We emphasize the effect of identical products by training and testing the models on data
with- and without duplicates. The scores consider the macro-averaging scores.

Data without duplicates
Class Precision𝑀 Recall𝑀 F1𝑀

AC 0.901 0.665 0.730
MAIA 0.599 0.590 0.573

Data with duplicates
Class Precision𝑀 Recall𝑀 F1𝑀

AC 0.897 0.739 0.795
MAIA 0.639 0.648 0.626

according to the classification metrics. The child class model appears to improve when bi-
grams are used as additional feature. Furthermore, the results show that L2-regularization
increase the overall classification performance for both models using data with- and without
duplicates. We observe that the models using data without duplicates are stronger regular-
ized. We suggest that this data set contains more imbalanced class labels which result in
stronger regularization to decrease the number of misclassification on the minority classes
(He & Ma, 2013). In addition, the increasing recall scores for all models suggest that reg-
ularization increase the overall model performance for imbalanced data by decreasing the
number of false positives and improve correct classifications for the minority classes.

Table 10
Performance SVM classification on test set using optimized hyperparameter
settings and best word representation. The results show the performance of
both classification models for the parent- and child class according to the
data with- and without duplicates. The scores consider the macro-averaging
scores.

Data without duplicates
Class Feature P C Precision𝑀 Recall𝑀 F1𝑀

AC BOW+TF-IDF L2 1e-5 0.922 0.774 0.822
MAIA BOW+Bi+TF-IDF L2 1e-5 0.602 0.603 0.580

Data with duplicates
Class Feature P C Precision𝑀 Recall𝑀 F1𝑀

AC BOW+TF-IDF L2 9e-6 0.912 0.840 0.868
MAIA BOW+Bi+TF-IDF L2 9e-6 0.699 0.691 0.679
*Bi represents Bigrams.

BERT The first objective was to find the optimal pre-trained BERT model from the Hug-
gingface repository. The models were selected by relevance, i.e. language diversity and were
fine-tuned and optimized using the hyperparameter settings in Table 5. For convenience,
the models were trained using the parent class according to the dataset with duplicates, i.e.
the true dataset, and were compared by classification performance using a macro-averaging

25

F1-score. The results of the best performing classification models are showed in Table 11.
Bert-base-multilingual-uncased show the highest proportion of corresponding tokens with
18.2% which corresponds to the best classification performance on the test set. The results
suggest that most of the product data vocabulary is unknown for the pre-trained BERT
models and will produce embeddings based on sub-tokens or characters. Moreover, we
observe that most F1-scores are quite similar which indicates that there is no significant
difference using BERT models that are pre-trained using English, Dutch or multilingual
text data.

Table 11
Classification performance of multiple pre-trained BERT models on the test set for parent
class AC using data with duplicates. Data𝑣𝑜𝑐𝑎𝑏 describes the proportion of tokens in the
dataset matching with the pre-trained BERT vocabularies. F1𝑀 describes the macro F1-
scores on the test set using the best model results from Appendix A. 𝑡(𝑠) gives an indication
of the average training time in 𝑡 seconds.

Model Data𝑣𝑜𝑐𝑎𝑏 F1𝑀 t(s)
bert-base-uncased 14.5% 0.829±0.015 471±39
bert-base-multilingual-uncased 18.2% 0.832±0.030 460±27
bertje 11.0% 0.830±0.028 473±26
distilbert-uncased 14.5% 0.815±0.028 493±14

We experimented with the model architecture by utilizing dropout regularization and the
learning rate of the Adam optimizer to assess the best possible classification model. Table
12 illustrates the results for the optimized classification models for both classes utilizing the
data with- and without duplicates. Comparing the multilingual BERT model in Table 11
with the optimized model using the data with duplicates, we found that the performance on
the F1-score increased with approximately 4%. These results suggest that optimizing the
hyperparameters does not result in a significantly better classification model. Optimization
of the parameters for a BERT model increases the training time substantially. It is ques-
tionable if optimization of these parameters give the desirable results.

Furthermore, a comparison of both class models results in BERT tending to have stronger
dropout regularization for the parent class, i.e. 30% random dropouts in the linear layer.
This regularization strength suggests that the parent class model has a tendency to overfit
the data using a small set of imbalanced labels with many samples. In addition, the lower
optimal learning rates emphasizes the model sensitivity for overfitting the data. Contrarily,
the child class models are less regularized and show higher optimal learning rates. The
results indicates that dropout regularization is not effective for imbalanced data containing
a large number of minority classes.

The model performance between the two datasets indicates that including duplicates
in the dataset increase the number of correct classifications. More concretely, the parent
class model show a significant increase in recall score with an approximate increase of 22%
in relation to the data without duplicates. This suggests that by including duplicates, the
model is able to predict more labels correctly according to the drop in false negatives. This
high recall score contributes to the overall performance, i.e. F1-score. In addition, the child

26

class model show a moderate increase in F1-score according to approximately 8%.

Table 12
Peformance BERT classification on test set using optimized hyperparameter settings. We
use a multilingual pre-trained BERT model for the fine-tuning using the data with- and
without duplicates. The results show the classification performance of both classification
models for the parent- and child class labels.

Data without duplicates
Class BS LR Dℎ D𝑙 Precision𝑀 Recall𝑀 F1𝑀

AC 128 4e-5 0.1 0.3 0.817±0.013 0.707±0.040 0.735±0.033
MAIA 128 5e-5 0.1 0.1 0.649±0.007 0.643±0.018 0.628±0.011

Data with duplicates
Class BS LR Dℎ D𝑙 Precision𝑀 Recall𝑀 F1𝑀

AC 128 4e-5 0.1 0.3 0.887±0.009 0.860±0.013 0.868±0.006
MAIA 128 5e-5 0.1 0.1 0.699±0.007 0.695±0.006 0.682±0.007

5.2.2 Comparing data enrichment methods

The flattened classification experiments show the differences between SVM- and BERT
classification models. We experimented with various datasets using data enrichment. Table
13 shows the results of the optimized SVM and BERT models utilizing the proposed data
enriched methods on the training set. The results are discussed per data enrichment method
using the normal data as baseline:

• Normal: The SVM and BERT models show similar classification performance on the
test set for classifying the class labels according to the F1-scores.

• Oversampling: Oversampling does not appear to be effective for most models. Over-
sampling affect the classification performance of both models on the parent class, i.e.
data with relatively less imbalanced classes. Moreover, we observe that oversampling
has a considerable negative effect on the classification performance of the BERT mod-
els for both classes on the test set. The results suggest that oversampling increases
the likelihood of overfitting in the training data for the parent class, but it slightly
improve the SVM model performance considering the child class.

• Web scraping: Enriching the training set with web results increases the classification
performance of the SVM models for both the parent- and child class models on the
test set. The BERT classification results suggest that both models are overfitting
the training data by incorporating new product data and increase the number of
misclassifications for both classes.

• Combination: The combination of oversampling and web scraping show good results
for the SVM child class model. We observe that this enrichment combination has
increased the recall score by approximately 16% with respect to the same model using

27

the normal data. Contrarily, BERT models show again poor results and suggest that
both BERT models are overfitting the training data using a combination of data
enrichment methods.

By observing all flattened classification results, we found that the BERT models have the
tendency for overfitting the training data after data enrichment and show poor generalizing
performance on the test set. The SVM models show overall good classification results on
the test data. Applying a combination of web scraping and oversampling to treat the class
imbalance appear to be most effective for SVM child class model resulted in a significantly
better classification performance on the test set.

Table 13
Flattened classification results for the optimized SVM- and BERT classifiers on the test set.
The classification models were trained using training data that have been treated for class
imbalance with the proposed data enrichment methods. The performance is described using
the macro scores.

Model Type Class Precision𝑀 Recall𝑀 F1𝑀

SVM Normal AC 0.912 0.840 0.868
SVM Oversampling AC 0.893 0.843 0.862
SVM Web scraping AC 0.939 0.869 0.895
SVM Combination AC 0.875 0.883 0.871
BERT Normal AC 0.887±0.009 0.860±0.013 0.868±0.006
BERT Oversampling AC 0.881±0.014 0.770±0.007 0.805±0.008
BERT Web scraping AC 0.896±0.013 0.829±0.001 0.848±0.006
BERT Combination AC 0.892±0.008 0.841±0.024 0.860±0.017
SVM Normal MAIA 0.694 0.692 0.676
SVM Oversampling MAIA 0.708 0.695 0.686
SVM Web scraping MAIA 0.795 0.786 0.777
SVM Combination MAIA 0.811 0.803 0.792
BERT Normal MAIA 0.699±0.007 0.695±0.006 0.682±0.007
BERT Oversampling MAIA 0.644±0.002 0.648±0.006 0.627±0.003
BERT Web scraping MAIA 0.644±0.005 0.650±0.004 0.634±0.005
BERT Combination MAIA 0.614±0.010 0.621±0.009 0.601±0.010

5.2.3 Hierarchical classification

The local- and hierarchical classification results for the SVM and BERT models are shown
in Table 14. The models were trained using non-enriched data, i.e. normal training data,
and training data using combined data enrichment. The classification performance was eval-
uated using macro- and weighted scores to emphasize the differences between the minority-
and majority class labels. The local classification results consider the average scores for
the local classification of the parent class labels. A detailed overview of local model per-
formances can be found in Appendix B. Considering the average local classification scores
in Table 14 we observe that both models perform similar on the local classification tasks.

28

Data enrichment has a small influence on the model performance. SVM show slightly better
performance using normal training data, while BERT show most improvement after data
enrichment. In addition, the differences between the macro and weighted scores suggest
that both models perform better on the majority classes according to the large weighted
performance scores.

Furthermore, the hierarchical results show that the models perform similar on both the
normal- and the enriched training data. By comparing the hierarchical results with the
flattened classification results for the child class in Table 14, we observe that both models
show significantly improvement using normal training data. Hierarchical classification does
not improve the classification performance of SVM using data enrichment. SVM show better
classification performance using flattened classification with data enrichment on the child
class, which is remarkable.

Table 14
Performance of the SVM and BERT models for local- and hierarchical classification on the
test set. The models are trained using non-enriched training data, i.e. Normal, and a combi-
nation of web scraping and oversampling. The local classification performance corresponds
to the average scores of the local models for the parent class labels. The hierarchical scores
corresponds to the hierarchical performance metric discussed in Section 4.4.6. The results
consider the macro- and weighted-averaging performance scores.

Local classification
Macro Weighted

Model Type P R F1 P R F1
SVM Normal 0.673 0.691 0.670 0.801 0.811 0.794
SVM Combi 0.664 0.690 0.663 0.803 0.806 0.791
BERT Normal 0.642±0.042 0.674±0.046 0.641±0.043 0.781±0.022 0.799±0.020 0.777±0.019
BERT Combi 0.676±0.027 0.702±0.037 0.675±0.029 0.796±0.016 0.804±0.014 0.790±0.014

Hierarchical classification
Macro Weighted

Model Type P R F1 P R F1
SVM Normal 0.793 0.766 0.769 0.871 0.877 0.867
SVM Combi 0.770 0.787 0.767 0.886 0.885 0.878
BERT Normal 0.765±0.003 0.766±0.003 0.755±0.002 0.854±0.016 0.862±0.017 0.851±0.013
BERT Combi 0.784±0.018 0.772±0.018 0.768±0.023 0.878±0.009 0.882±0.008 0.874±0.008

5.2.4 Generalization LOO set

Generalizing performance of the optimized SVM and BERT models was tested using a
leave-one-out (LOO) company as test set while training the models with data according to
the other companies, i.e. Client IDs. We used the data with combined data enrichment
as training data. The results are shown in Table 15. We observe a significant difference
between the macro- and weighted-averaging scores. The overall poor macro scores suggest
that most misclassifications were caused by the minority classes. In addition, we observe
that both SVM and BERT models perform well on the majority classes according to the
greater weighted performance scores. There is a company that show poor results on both

29

macro- and weighted classification scores. Client ID 2020_046 contains a company specific
product class that was not present during training. The poor performance suggest that
both SVM and BERT were not able to predict new classes in the test set that were not seen
during training.

Table 15
Performance flattened SVM and BERT classification for parent class
AC on LOO company as test set. Classifiers were trained using the
combination enriched data while leaving one client (Client ID) out
of training. The performance metrics describing both macro- and
weighted-averaging scores, M and W, respectively.

Precision Recall F1
Client ID Model M W M W M W
2021_015 SVM 0.468 0.940 0.304 0.940 0.354 0.931
2021_015 BERT 0.257 0.953 0.246 0.940 0.239 0.942
2021_016 SVM 0.351 0.896 0.339 0.893 0.317 0.889
2021_016 BERT 0.313 0.926 0.399 0.901 0.329 0.911
2020_046 SVM 0.486 0.625 0.227 0.511 0.259 0.484
2020_046 BERT 0.318 0.497 0.194 0.344 0.207 0.377
2021_062 SVM 0.385 0.874 0.231 0.886 0.272 0.868
2021_062 BERT 0.445 0.879 0.305 0.884 0.347 0.872
2020_075 SVM 0.454 0.741 0.282 0.753 0.315 0.698
2020_075 BERT 0.364 0.775 0.286 0.749 0.298 0.701
Client ID: 2020_046 contains a company specific product class, parent class
label 13, i.e. Software. This product class was only present in the test set
and was not in the training data, i.e. the data from the other companies.

30

5.3 Error Analysis
In this chapter we conduct an error analysis on the product classes that show a high number
of misclassifications according to the local classification results in Section 5.2.3. We will
illustrate incorrect predicting behavior for the classification models using an example. In
addition, we examine the most important features and attention weights for the SVM and
BERT models, respectively.

5.3.1 Model misclassifications

Table 16 shows a selection of misclassified product classes by considering local SVM models
with macro scores < 0.75. We observed that parent class Voedsel en dranken showed the
most misclassifications with 127 classification below a macro score of 0.75. Therefore, we
decided to analyze a selection of product descriptions and related predictions for this class.

Table 16
Selection of local SVM classification results corresponding to macro scores < 0.75 using
training data with combined data enrichment. The results illustrate the product classes by
the number of miclassifications, i.e. Counts.

Parent class Counts Precision𝑀 Recall𝑀 F1𝑀

18 Voedsel en dranken 127 0.534 0.567 0.512
1 Diervoer 51 0.400 0.500 0.444
13 Software 29 0.250 0.500 0.333

Table 17 shows a sample of products for parent class Voedsel en dranken. We observed
that both classification models interpret the word ananas, i.e. pineapple differently when-
ever the context changes. Comparisons of the corresponding misclassifications show that
some incorrect predicted labels are actually correct due to subjective manual labeling. We
suggest that there were several human annotators involved, resulting from product descrip-
tions labeling with both pineapple or fruit (mixed). Moreover, we found that incorrect
classifications are caused by wrong manual labeling. Product descriptions as “minute maid
jus orange” are classified with product label “Nut”, while it is evidently considered to be
classified as Juice. Table 18 shows a selection of products descriptions that contains the
words “jus orange” and varying incorrect child class labels. The results show incorrectly
labeled product descriptions and suggest that most of these products cause incorrect clas-
sification models. To illustrate the incorrect predicting behavior we examined the SVM
features and the BERT attention weights.

5.3.2 Feature importance and attention

In order to illustrate the most important tokens for the classification of the product classes,
we have ranked the SVM features for the prediction of the product class labels using the
model coefficients. The token importance for BERT can be assessed considering the atten-
tion weights that reflects the influence of tokens on classification performance. To illustrate
the latter, we examined a selection of product classes that showed poor performance accord-
ing to the local classification models with combined data enrichment in Appendix B. Table
19 shows the most important word features according to the ten largest SVM coefficients

31

Table 17
Selection of products for parent class label Voedsel en dranken. The results show the
predicted child class labels following the local classification models using combined data
enrichment.

Omschrijving True label SVM BERT
del monte ananasschijven op sap Fruit (mixed) Fruit (mixed) Pineapple
grand gerard ananas stukjes Fruit (mixed) Pineapple Fruit (mixed)
fruitlife framboos gruis Fruit (mixed) Raspberry Raspberry
minute maid jus orange Juice Nut Nut
ananas bio Pineapple Pineapple Pineapple

Table 18
Example of incorrect child class labeling for product descriptions containing the words “jus
orange”.

Omschrijving AnalyseCcategory MAIA KeyProduct
minute maid jus orange Voedsel en dranken Juice
minute maid jus orange Voedsel en dranken Nut
jus orange liter Voedsel en dranken Orange juice
royal club jus orange Voedsel en dranken Cola

and BERT attention weights for the product classes.

Considering the SVM feature importance for the Software class, we observe that the im-
portant tokens show general words rather that ones specifically related to the classes. The
BERT results show that words with the most attention corresponds to out-of-vocabulary
words, i.e. sub-words indicated with prefix “##”. Sub-words have the tendency to be gen-
eral rather than class specific and the attention on these tokens most likely result in a poor
classification model. In addition, Figure 4 illustrates an example of a product description
and the attention weights on the sentence tokens. BERT appears to concentrate attention
to words that are non-related to software products. For example, we observe that the word
’online’ is negatively related to the software class, while this word relates the strongest pos-
itive coefficient according to the SVM classifier.

Furthermore, the results show that BERT fails in classifying product descriptions related
to the class Diervoer, i.e. Animal feed, while SVM show good classification performance
according to the weighted F1-scores. The most important tokens for the BERT model
consists mostly of out-of-vocabulary words. The results suggest that out-of-vocabulary
words have the tendency to decrease the classification performance of BERT models for
short product descriptions.

32

Table 19
Feature importance and attention weights for the local SVM and BERT models. The models
were trained using combined data enrichment. The results show the most important tokens
for the classification of the product classes. The SVM feature importance show the most
important tokens related to the largest coefficients. BERT attention is described as the
average attention for most important tokens.

Model Class F1𝑀 F1𝑊 Word features
SVM Diervoer 0.444 0.711 ’masters’, ’vlasstrooisel’, ’tarwestro’, ’wei-

dehooi’, ’pianissimo’, ’linamix’, ’lucerne’,
’elektrolytenslobber’, ’nutramon’, ’honden-
brokken’

SVM Software 0.333 0.333 ’online’, ’abonnement’, ’online abonnement’,
’online learning’, ’learning’, ’per’, ’agreement’,
’learning agreement’, ’marinetraffic’, ’sen’

SVM Voertuigen 0.633 0.818 ’vw’, ’opel’, ’renault’, ’peugeot’, ’cater-
ingtruck’, ’bmw’, ’pd’, ’volvo’, ’pb’, ’mercedes’

BERT Diervoer 0.111±0.096 0.056±0.051 ’omega’, ’gras’, ’luce’, ’##ssimo’, ’##x’,
’##elen’, ’##oi’, ’##kken’, ’##mm’, ’stan-
dard’

BERT Software 0.333±0.000 0.333±0.000 ’agreement’, ’engels’, ’services’, ’##ment’,
’##it’, ’##op’, ’premium’, ’media’, ’user’,
’gideon’

BERT Voertuigen 0.279±0.070 0.504±0.034 ’bmw’, ’pd’, ’peugeot’, ’ford’, ’black’, ’golf’,
’citroen’, ’black’, ’trail’, ’fs’

Figure 4. Illustration of the BERT attention weights considering a product description
corresponding to the parent class Software. The color intensity reflects the strength of the
attention, in which green and red colors corresponds to positive- and negative effect on
classification performance, respectively.

6 Discussion
In this section we will discuss the results of this research in the context of the research
questions. We will summarize our main findings and interpreting the results. In addition,
we will reflect on the limitations.

6.1 Interpretations
The experiments showed remarkable outcomes and unexpected classification results. Our
first experiment was considering the effects of hyperparameter optimization on the classifi-
cation performances of the SVM and BERT models. According to the SVM classification
experiments, the parent class and the child class models show significant improvement on
the classification performance after hyperparameter optimization. Both models considered
BOW and TF-IDF as optimal feature representation to improve the classification perfor-

33

mance. The child class model incorporated additional Bigrams. Because of the large set of
minority classes with a relatively small number of related product descriptions we suspect
that the child class model improved classification performance by including additional word
features. Furthermore, we observed that the optimization primarily increased the recall
scores of the parent class models. We suggest that the SVM decision boundaries are sensi-
tive to imbalanced data and have the tendency to be skewed towards the minority classes,
resulting in more false negatives. We expect that L2-regularization will overcome this prob-
lem by reducing the skewness of the decision boundaries and decreasing the number of false
negatives.

Considering the BERT models, we observed that the effect of hyperparameter optimiza-
tion on the classification performance was minimal. We used dropout regularization on
both the hidden- and the classification layers. The results suggest that employing dropout
regularization has only a small effect on imbalanced data with with a large number of mi-
nority classes that considers short product descriptions. We suggest that dropout is most
effective for the majority classes. This is because these classes contain a sufficient number
of training samples. Performing dropout regularization on minority classes caused a loss
of information in a setting where there was already insufficient training data available for
these classes. We expect that this was the result of the small increase in model performance
after hyperparameter optimization.

We trained and tested the classification models after conducted data enrichment on the
training data to tread for class imbalance. The experiment showed that the flattened clas-
sification of both models using the parent class showed minimal improvement on the model
performances, e.g. oversampling decreased the model performance. We expect that over-
sampling resulted in overfitting the training data by duplicating less representative examples
and causing a bias towards these minority classes. Contrarily, web scraping also increased
the minority classes but used new product variations from web results and increased the
classification performance for the SVM models. Furthermore, considering the child class
data, we observed that the SVM classification models show a significant improvement using
data enrichment. The results suggest that SVM performs well on imbalanced data with
a large collection of minority classes that have been treated with data enrichment. This
corresponds with prior research by Joachims (1998) and follows Cover’s theorem (Cover,
1965) that emphasized the linearly separability of such data. Contrarily, the BERT models
showed poor performance according to the child class training data with data enrichment.
We expect that the loss function puts too much weight on the minority classes and is learn-
ing from a small training set with possible non-discriminating features resulting in poor
generalizing abilities on the test set. In addition, the error analysis of the BERT models
showed that poor classification performance exhibits tokens that were out-of-vocabulary
and had the tendency to be general rather than class specific tokens. We observed that the
attention weights were focused too much on the general or nonrepresentative tokens. We
suggest that conducting data enrichment on classes containing high number of such tokens
most likely results in an increased chance for overfitting on the training data.

As last, the hierarchical classification results showed that BERT performs significantly
better by decreasing the set of (minority) classes. This is what we expected, since the flat-
ten classification results suggested that BERT loss function was biased towards the minority
classes. Decreasing the size of minority classes results in a better chance for classifying the
correct class. However, we observed that SVM showed better performance on the flattened

34

classification of the child class data using data enrichment. This result suggest that SVM
performed better using a large set of imbalanced labels rather than a smaller set of im-
balanced labels using data enrichment. The difference is that when using a large set of
classes, the vocabulary size tends to be large, resulting in a high-dimensional feature rep-
resentation. A small set of labels, consisting of a smaller vocabulary size, results in less
sparse representation of features. We suggest that SVM is better able to perform linear
classification for enriched imbalanced data in a high-dimensional feature setting rather than
a low-dimensional, i.e. less sparse representation of features. However, this is something
that is interesting to look into further.

6.2 Limitations
There were several complications to constructing an unbiased training set using the data
enrichment methods. Each classification model was trained using the enriched training set
while keeping the test set fixed. Enriching the training data during the classification exper-
iments was not efficient because of the computation time. The web scraping procedure took
approximately 6 or 7 hours to collect web data and process the results using sentence-BERT
with cosine-similarity for prior-filtering the text for semantic similarity. Therefore, we con-
sidered the web scraping prior to the classification experiments and conclude that changing
the training data during the classification experiments is not possible.

The error analysis illustrated that misclassifications can be addressed to subjective or
incorrect manual labeling. It is questionable if other product descriptions are actually mis-
classified or suffer from incorrect manual labeling. If so, the classification performances
of our experiments may be underestimated. In addition, the results have indicated that
product classes with a large number of misclassification are characterized by words that
are not related to the product class, i.e. non-discriminating tokens. The results showed
that the BERT attention weights had the tendency to focus on general words rather than
class specific. Moreover, these tokens considered out-of-vocabulary tokens corresponding to
sub-words that are less representative for the product class.

The BERT classification models were optimized using the normal training data. Op-
timization of such complex and deep models takes a substantial amount of training time.
To illustrate, training BERT on the parent class takes approximately 800 seconds using the
largest proposed learning rate of 5𝑒−5 with a TPU machine. Using a grid space of hyper-
parameters for three training- and model parameters, each considering 4 options, results in
800∗3∗4 = 9600 seconds. Due to its stochastic character, we repeated each training 5 times
to construct unbiased estimates on classification performance. As a result, optimizing a
single BERT model for the child class took 48, 000 seconds corresponding to approximately
13 hours of training. This large training time is not result in significantly better classifica-
tion performance w.r.t. the less complex and time efficient SVM classification models. In
addition, the TPU memory failed to clear memory after several runs and required a hard
reset resulting in loss of previous training data. We have not found a proper solution for this
memory problem. Moreover, long training times require a substantial amount of energy,
which makes classification with BERT highly unsustainable.

35

7 Conclusion
This research was motivated by the necessity to encounter the imbalanced- and hierarchi-
cally ordered class labels for short product descriptions to perform impact assessments. We
experimented with SVM and BERT models and utilize both models as a flattened- and a hi-
erarchical multiclass classification tasks. In addition, we used two data enrichment methods
to treat the imbalance of product classes. Consequently, after performing all experiments
and evaluating the results we answer the following research questions:

How can product data with hierarchically ordered and imbalanced classes be effectively clas-
sified?

This main research question can be answered with the following subquestions:

How can we treat data imbalance to increase the quality of classifications?
We proposed two data enrichment methods to treat the class imbalance in the training
data, oversampling and a web scraping method. The results showed that data enrichment
was not improving the BERT models for flattened classification tasks, it did improved the
hierarchical classification model. The flattened SVM models showed improved performance
after data enrichment, except for the parent class using oversampling. The hierarchical
SVM classification model show similar results with respect to training data without data
enrichment.

How can we address the hierarchically oriented product classes?
In order to address the class hierarchy we used two classification approaches. Flattened
multiclass classification and hierarchical multiclass classification. The hierarchical classi-
fication corresponded to recursively training the classification models per parent class by
using local information. This hierarchical approach reduced the large set of child labels into
several small sets. The results showed that hierarchical classification improves classification
performance for the BERT models. The SVM models show minimal improvement using the
hierarchical classification approach.

How do deep learning methods differ from conventional learning methods for
text classification?
In this research we experimented with SVM and BERT, a conventional- and a deep learning
method, respectively. SVM is a deterministic classification method that was considering a
BOW representation, a sparse representation of words. This representation method does
not account for word meaning or positioning of words in a product description. BERT
is stochastic learning method that is pre-trained using a large text corpus and learns the
meaning of words and word positions in a self-supervised way. The pre-trained models can
be used in a transfer learning setting and be used for downstream tasks. We considered a
multilingual BERT model that was fine-tuned for the classification of product descriptions
using the product data.

What makes the classification methods effectively classifying the product de-
scriptions and what not?
According to the experiments and the error analysis we observed that models with a large
number of misclassification were focused on general words rather than ones specifically

36

related to a product class. These non-discriminating features have resulted in poor gen-
eralizing abilities on the test data. Contrarily, product descriptions that contained more
product specific tokens improved the model performance.

In addition, we observed that SVM classification models had the tendency to perform
well on data containing a large set of imbalanced classes, i.e. many minority classes. BERT
show better classification performance by using a hierarchical classification approach and
reducing the number of (imbalanced) labels. We suggest that the different classification
behavior with presence of many minority classes is related to the differences in the loss
function characteristics of the classification models.

7.1 Future work
The error analysis showed that the misclassified product classes considered model features
that were related to out-of-vocabulary tokens. We observed that most of these product
descriptions considered sub-words rather than product specific words. To improve classifi-
cation performance it would be advantageous to pre-train BERT models on domain specific
data related to products. Furthermore, it would be interesting to further develop our pro-
posed web scraping method. The search space could be extended with different data sources,
e.g. e-commerce websites or databases. In addition, the web scraping method can be used
to incorporate new product classes or to construct complete new datasets.

37

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., … Zheng, X. (2015).

TensorFlow: Large-scale machine learning on heterogeneous systems. Retrieved from
http://tensorflow.org/

Ahn, L., Blum, M., Hopper, N., & Langford, J. (2003). Captcha: using hard AI problems
for security. Advances in Cryptology, 2656, 294-311. doi: 10.1007/3-540-39200-9_18

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep ar-
chitectures. Retrieved from https://arxiv.org/abs/1206.5533 doi: 10.48550/
ARXIV.1206.5533

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer-Verlag. doi:
10.5555/1162264

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching word vectors with
subword information. Retrieved from https://arxiv.org/abs/1607.04606 doi:
10.48550/ARXIV.1607.04606

Chawla, N., Bowyer, K., Hall, L., & Kegelmeyer, W. (2002). SMOTE: Synthetic minority
over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357. doi:
10.1613/jair.953

Chen, J., Hu, Y., Liu, J., Xiao, Y., & Jiang, H. (2019). Deep short text classification with
knowledge powered attention. Retrieved from https://arxiv.org/abs/1902.08050
doi: 10.48550/ARXIV.1902.08050

Cover, T. M. (1965). Geometrical and statistical properties of systems of linear inequalities
with applications in pattern recognition. IEEE Transactions on Electronic Computers,
EC-14(3), 326-334. doi: 10.1109/PGEC.1965.264137

Devlin, J. (2021). Stanford cs224n: Nlp with deep learning | winter 2020 | bert and other
pre-trained language models. Retrieved from https://www.youtube.com/watch?v=
knTc-NQSjKA&t=1546s&ab_channel=StanfordOnline

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep
bidirectional transformers for language understanding. Retrieved from https://arxiv
.org/abs/1810.04805 doi: 10.48550/ARXIV.1810.04805

de Vries, W., van Cranenburgh, A., Bisazza, A., Caselli, T., van Noord, G., & Nissim,
M. (2019). Bertje: A dutch bert model. Retrieved from https://arxiv.org/abs/
1912.09582 doi: 10.48550/ARXIV.1912.09582

D’hondt, E., Verberne, S., Oostdijk, N., & Boves, L. (2017). Patent classification on
subgroup level using balanced winnow. , 299-324. doi: 10.1007/978-3-662-53817-3_11

Feng, S., Fu, P., & Zheng, W. (2018). A hierarchical multi-label classification method based
on neural networks for gene function prediction. Biotechnology & Biotechnological
Equipment, 32(6), 1613-1621. Retrieved from https://doi.org/10.1080/13102818
.2018.1521302 doi: 10.1080/13102818.2018.1521302

Fernández, A., García, S., Galar, M., Prati, R., Krawczyk, B., & Herrera, F. (2018).
Learning from imbalanced data sets. doi: 10.1007/978-3-319-98074-4

Gao, P., Zhao, J., Ma, Y., Tanvir, A., & Jin, B. (2022). Hft-onlstm: Hierarchical and
fine-tuning multi-label text classification. Retrieved from https://arxiv.org/abs/
2204.08115 doi: 10.48550/ARXIV.2204.08115

Ghoroghi, A., Rezgui, Y., Petri, I., & Beach, T. (2022). Advances in application of machine
learning to life cycle assessment: a literature review. The International Journal of
Life Cycle Assessment, 27 , 1-24. doi: 10.1007/s11367-022-02030-3

38

http://tensorflow.org/
https://arxiv.org/abs/1206.5533
https://arxiv.org/abs/1607.04606
https://arxiv.org/abs/1902.08050
https://www.youtube.com/watch?v=knTc-NQSjKA&t=1546s&ab_channel=StanfordOnline
https://www.youtube.com/watch?v=knTc-NQSjKA&t=1546s&ab_channel=StanfordOnline
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1912.09582
https://arxiv.org/abs/1912.09582
https://doi.org/10.1080/13102818.2018.1521302
https://doi.org/10.1080/13102818.2018.1521302
https://arxiv.org/abs/2204.08115
https://arxiv.org/abs/2204.08115

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning. New
York, NY, USA: Springer New York Inc.

He, H., & Ma, Y. (2013). Class imbalance learning methods for support vector machines.
In Imbalanced learning: Foundations, algorithms, and applications (p. 83-99). doi:
10.1002/9781118646106.ch5

Huang, K., Hussain, A., Wang, Q., & Zhang, R. (2019). Deep learning: Fundamentals,
theory and applications. Springer. Retrieved from https://books.google.nl/books
?id=IA4mxQEACAAJ

IBM. (2020). Natural language processing (nlp). Retrieved 2022-07-21, from https://
www.ibm.com/cloud/learn/natural-language-processing

Jahanshahi, H., Ozyegen, O., Cevik, M., Bulut, B., Yiğit, D., Gonen, F. F., & Basar,
A. (2021). Text classification for predicting multi-level product categories. ArXiv,
abs/2109.01084.

Jinfeng, L., Shouling, J., Tianyu, D., Bo, L., & Ting, W. (2019). TextBugger: Generating
adversarial text against real-world applications.
doi: 10.14722/ndss.2019.23138

Joachims, T. (1998). Text categorization with support vector machines. Proc. European
Conf. Machine Learning (ECML’98). doi: 10.17877/DE290R-5097

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., … Yoon, D. H.
(2017). In-datacenter performance analysis of a tensor processing unit. Retrieved from
https://arxiv.org/abs/1704.04760 doi: 10.48550/ARXIV.1704.04760

Jurafsky, D., & Martin, J. H. (2021). Speech and language processing: An introduction
to natural language processing, computational linguistics, and speech recognition (1st
ed.). USA: Prentice Hall PTR.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T. P. (2016). On large-
batch training for deep learning: Generalization gap and sharp minima. Retrieved from
https://arxiv.org/abs/1609.04836 doi: 10.48550/ARXIV.1609.04836

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. Retrieved
from https://arxiv.org/abs/1412.6980 doi: 10.48550/ARXIV.1412.6980

Kiritchenko, S., & Famili, F. (2005). Functional annotation of genes using hierarchical
text categorization. Proceedings of BioLink SIG, ISMB. Retrieved from https://
www.site.uottawa.ca/~stan/papers/2004/p15.pdf

Martinez-Gomez, P., Papachristoudis, G., Blauvelt, J., Rachlin, E., & Simhon,
S. (2021). Enhancement and analysis of tars few-shot learning model
for product attribute extraction from unstructured text. Retrieved from
https://assets.amazon.science/10/72/e3dcf5174fcdb724a51b492c1fc4/
enhancement-and-analysis-of-tars-few-show-learning-model-for-product
-attribute-extraction-from-unstructured-texts.pdf

Metabolic. (2022). Metabolic company profile. Retrieved 2022-07-18, from https://www
.metabolic.nl/about

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word
representations in vector space. Retrieved from https://arxiv.org/abs/1301.3781
doi: 10.48550/ARXIV.1301.3781

More, A. (2016). Attribute extraction from product titles in ecommerce. Retrieved from
https://arxiv.org/abs/1608.04670 doi: 10.48550/arXiv.1608.04670

Oksanen, J., Cocarascu, O., & Toni, F. (2021). Automatic product ontology extraction
from textual reviews. Retrieved from https://arxiv.org/abs/2105.10966 doi:
10.48550/ARXIV.2105.10966

39

https://books.google.nl/books?id=IA4mxQEACAAJ
https://books.google.nl/books?id=IA4mxQEACAAJ
https://www.ibm.com/cloud/learn/natural-language-processing
https://www.ibm.com/cloud/learn/natural-language-processing
https://arxiv.org/abs/1704.04760
https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1412.6980
https://www.site.uottawa.ca/~stan/papers/2004/p15.pdf
https://www.site.uottawa.ca/~stan/papers/2004/p15.pdf
https://assets.amazon.science/10/72/e3dcf5174fcdb724a51b492c1fc4/enhancement-and-analysis-of-tars-few-show-learning-model-for-product-attribute-extraction-from-unstructured-texts.pdf
https://assets.amazon.science/10/72/e3dcf5174fcdb724a51b492c1fc4/enhancement-and-analysis-of-tars-few-show-learning-model-for-product-attribute-extraction-from-unstructured-texts.pdf
https://assets.amazon.science/10/72/e3dcf5174fcdb724a51b492c1fc4/enhancement-and-analysis-of-tars-few-show-learning-model-for-product-attribute-extraction-from-unstructured-texts.pdf
https://www.metabolic.nl/about
https://www.metabolic.nl/about
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1608.04670
https://arxiv.org/abs/2105.10966

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … Duch-
esnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12, 2825–2830. doi: 10.5555/1953048.2078195

Pennington, J., Socher, R., & Manning, C. (2014, October). GloVe: Global vectors for word
representation. , 1532–1543. Retrieved from https://aclanthology.org/D14-1162
doi: 10.3115/v1/D14-1162

Pörtner, H.-O., Roberts, D., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A.,
… Rama, B. (2022). Climate change 2022: Impacts, adaptation, and vulnerability.
Retrieved from https://www.ipcc.ch/report/ar6/wg2/

Qaiser, S., & Ali, R. (2018, 07). Text mining: Use of tf-idf to examine the relevance
of words to documents. International Journal of Computer Applications, 181. doi:
10.5120/ijca2018917395

Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese
bert-networks. Retrieved from https://arxiv.org/abs/1908.10084

Richardson, L. (2007). Beautiful soup documentation. Retrieved from https://beautiful
-soup-4.readthedocs.io/en

Rued, S., Ciaramita, M., Mueller, J., & Schuetze, H. (2011). Piggyback: Using search
engines for robust cross-domain named entity recognition. , 965–975. Retrieved from
http://www.aclweb.org/anthology/P/P11/P11-1097.pdf

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. Retrieved from https://arxiv.org/abs/
1910.01108 doi: 10.48550/ARXIV.1910.01108

Sharma, N., Verlekar, P., Ashary, R., & Zhiquan, S. (2017). Regularization and feature
selection for large dimensional data. Retrieved from https://arxiv.org/abs/1712
.01975 doi: 10.48550/ARXIV.1712.01975

Silla, C. N., & Freitas, A. A. (2010). A survey of hierarchical classification across different
application domains. Data Mining and Knowledge Discovery, 22, 31-72.

Smith, L. N. (2018). A disciplined approach to neural network hyper-parameters: Part 1
– learning rate, batch size, momentum, and weight decay. Retrieved from https://
arxiv.org/abs/1803.09820 doi: 10.48550/ARXIV.1803.09820

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(56), 1929–1958. Retrieved from http://jmlr.org/
papers/v15/srivastava14a.html

Sun, C., Qiu, X., Xu, Y., & Huang, X. (2019). How to fine-tune bert for text classification?
Retrieved from https://arxiv.org/abs/1905.05583 doi: 10.48550/ARXIV.1905
.05583

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … Polosukhin,
I. (2017). Attention is all you need. Retrieved from https://arxiv.org/abs/1706
.03762 doi: 10.48550/ARXIV.1706.03762

Weiss, G. (2004). Mining with rarity: A unifying framework. SIGKDD Explorations, 6,
7-19. doi: 10.1145/1007730.1007734

Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2016,
April 21). The ecoinvent database version 3 (part i): overview and methodology.
International Journal of Life Cycle Assessment, 21(9), 1218–1230. doi: 10.1007/
s11367-016-1087-8

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., … Rush, A. M. (2019).

40

https://aclanthology.org/D14-1162
https://www.ipcc.ch/report/ar6/wg2/
https://arxiv.org/abs/1908.10084
https://beautiful-soup-4.readthedocs.io/en
https://beautiful-soup-4.readthedocs.io/en
http://www.aclweb.org/anthology/P/P11/P11-1097.pdf
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1712.01975
https://arxiv.org/abs/1712.01975
https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1803.09820
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1905.05583
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Huggingface’s transformers: State-of-the-art natural language processing. Retrieved
from https://arxiv.org/abs/1910.03771 doi: 10.48550/ARXIV.1910.03771

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., … Dean, J. (2016).
Google’s neural machine translation system: Bridging the gap between human and
machine translation. Retrieved from https://arxiv.org/abs/1609.08144 doi: 10
.48550/ARXIV.1609.08144

Yu, H.-F., Ho, C.-H., Arunachalam, P., Somaiya, M., & Lin, C.-J. (2012). Product title
classification versus text classification. Retrieved from https://www.csie.ntu.edu
.tw/~cjlin/papers/title.pdf

41

https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1609.08144
https://www.csie.ntu.edu.tw/~cjlin/papers/title.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/title.pdf

Appendix
A BERT Results
A.1 Flattened classification

Table 20
Grid search on different Learning Rates. Model: bert-base-uncased (bert-base). Response:
parent class AC.

Model Batch size Learning rate Precision𝑚𝑎𝑐𝑟𝑜 Recall𝑚𝑎𝑐𝑟𝑜 F1-score𝑚𝑎𝑐𝑟𝑜 t(s)
bert-base 128 1e-5 0.907±0.027 0.761±0.055 0.809±0.046 671±64
bert-base 128 2e-5 0.885±0.036 0.755±0.008 0.795±0.018 485±33
bert-base 128 3e-5 0.837±0.016 0.762±0.023 0.789±0.020 466±28
bert-base 128 4e-5 0.901±0.018 0.796±0.022 0.829±0.015 461±39
bert-base 128 5e-5 0.878±0.027 0.788±0.021 0.815±0.014 437±21

Table 21
Grid search on different Learning Rates. Model: bert-base-multilingual (bert-multi). Re-
sponse: parent class AC.

Model Batch size Learning rate Precision𝑚𝑎𝑐𝑟𝑜 Recall𝑚𝑎𝑐𝑟𝑜 F1-score𝑚𝑎𝑐𝑟𝑜 t(s)
bert-multi 128 1e-5 0.872±0.043 0.736±0.073 0.773±0.066 534±54
bert-multi 128 2e-5 0.895±0.027 0.774±0.045 0.809±0.042 519±27
bert-multi 128 3e-5 0.893±0.020 0.776±0.021 0.813±0.015 475±10
bert-multi 128 4e-5 0.890±0.024 0.812±0.030 0.832±0.030 460±27
bert-multi 128 5e-5 0.894±0.040 0.757±0.031 0.801±0.034 439±16

Table 22
Grid search on different Learning Rates. Model: bertje. Response: parent class AC.

Model Batch size Learning rate Precision𝑚𝑎𝑐𝑟𝑜 Recall𝑚𝑎𝑐𝑟𝑜 F1-score𝑚𝑎𝑐𝑟𝑜 t(s)
bertje 128 1e-5 0.888±0.040 0.743±0.036 0.789±0.040 612±88
bertje 128 2e-5 0.912±0.020 0.786±0.032 0.828±0.026 504±7
bertje 128 3e-5 0.908±0.034 0.799±0.022 0.830±0.028 473±26
bertje 128 4e-5 0.901±0.029 0.782±0.013 0.822±0.008 434±13
bertje 128 5e-5 0.885±0.040 0.769±0.040 0.804±0.040 455±18

42

Table 23
Grid search on different Learning Rates. Model: distilbert. Response: parent class AC.

Model Batch size Learning rate Precision𝑚𝑎𝑐𝑟𝑜 Recall𝑚𝑎𝑐𝑟𝑜 F1-score𝑚𝑎𝑐𝑟𝑜 t(s)
distilbert 128 1e-5 0.876±0.036 0.759±0.031 0.796±0.029 720±53
distilbert 128 2e-5 0.876±0.029 0.773±0.031 0.807±0.025 526±17
distilbert 128 3e-5 0.901±0.037 0.776±0.034 0.815±0.028 493±14
distilbert 128 4e-5 0.865±0.022 0.773±0.026 0.784±0.026 429±14
distilbert 128 5e-5 0.851±0.038 0.773±0.034 0.795±0.020 439±19

Table 24
Grid search on different Learning Rates. Model: bert-base-multilingual (bert-multi). Re-
sponse: child class MAIA.

Model Batch size Learning rate Precision𝑚𝑎𝑐𝑟𝑜 Recall𝑚𝑎𝑐𝑟𝑜 F1-score𝑚𝑎𝑐𝑟𝑜 t(s)
bert-multi 128 1e-5 0.611±0.019 0.605±0.016 0.592±0.018 811±28
bert-multi 128 2e-5 0.677±0.012 0.681±0.015 0.664±0.014 819±23
bert-multi 128 3e-5 0.695±0.010 0.702±0.006 0.682±0.007 812±25
bert-multi 128 4e-5 0.693±0.018 0.698±0.019 0.680±0.019 815±38
bert-multi 128 5e-5 0.696±0.022 0.705±0.024 0.685±0.021 804±33

43

B Hierarchical classification

44

Table 25
Results local classification by the optimized SVM and BERT models on test set using the normal training data. Models were trained
using local information per parent class C𝑝 with the corresponding child class labels. The classification performance is described
using both macro- and weighted-averaging scores to illustrate the difference between minority- and majority class predictions. The
number of training samples per parent class are illustrated by N.

SVM BERT
Weighted Macro Weighted Macro

C𝑝 N P R F1 P R F1 P R F1 P R F1
0 441 0.884 0.940 0.911 0.387 0.400 0.393 0.931±0.018 0.924±0.030 0.926±0.016 0.388±0.000 0.435±0.000 0.399±0.000
1 39 0.640 0.800 0.711 0.400 0.500 0.444 0.640±0.000 0.800±0.000 0.711±0.000 0.400±0.079 0.500±0.148 0.444±0.098
2 258 0.948 0.931 0.931 0.833 0.833 0.822 0.769±0.028 0.828±0.024 0.791±0.015 0.634±0.028 0.685±0.060 0.654±0.040
3 1,025 0.827 0.833 0.824 0.631 0.679 0.646 0.816±0.028 0.826±0.022 0.814±0.025 0.572±0.069 0.610±0.061 0.580±0.064
4 2,038 0.933 0.921 0.919 0.890 0.874 0.868 0.916±0.005 0.914±0.007 0.908±0.005 0.830±0.023 0.810±0.013 0.806±0.016
5 1,916 0.917 0.915 0.910 0.858 0.871 0.857 0.882±0.008 0.885±0.007 0.877±0.008 0.768±0.016 0.790±0.009 0.763±0.010
6 244 0.750 0.750 0.750 0.559 0.559 0.559 0.730±0.045 0.814±0.030 0.759±0.036 0.581±0.037 0.672±0.039 0.611±0.040
7 4,531 0.993 0.992 0.992 0.984 0.984 0.982 0.993±0.002 0.993±0.001 0.993±0.002 0.989±0.018 0.976±0.016 0.981±0.017
8 112 1.000 1.000 1.000 1.000 1.000 1.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
9 975 0.883 0.862 0.857 0.652 0.673 0.644 0.892±0.012 0.861±0.014 0.861±0.013 0.681±0.042 0.701±0.046 0.673±0.041
10 909 0.883 0.901 0.885 0.690 0.657 0.655 0.913±0.012 0.921±0.000 0.907±0.004 0.732±0.045 0.690±0.033 0.685±0.033
11 733 0.977 0.988 0.982 0.945 0.950 0.948 0.973±0.007 0.978±0.005 0.975±0.006 0.865±0.035 0.884±0.041 0.871±0.036
12 913 0.944 0.922 0.927 0.770 0.769 0.763 0.928±0.008 0.910±0.011 0.907±0.009 0.799±0.040 0.770±0.041 0.773±0.041
13 29 0.250 0.500 0.333 0.250 0.500 0.333 0.250±0.000 0.500±0.000 0.333±0.000 0.250±0.000 0.500±0.000 0.333±0.000
14 198 0.859 0.870 0.856 0.854 0.861 0.852 0.946±0.017 0.904±0.036 0.913±0.032 0.910±0.053 0.896±0.059 0.894±0.062
15 338 0.790 0.842 0.809 0.652 0.688 0.661 0.841±0.038 0.895±0.046 0.859±0.049 0.659±0.057 0.699±0.092 0.668±0.078
16 22 0.000 0.000 0.000 0.000 0.000 0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000
17 137 0.938 0.812 0.865 0.714 0.638 0.670 0.706±0.162 0.700±0.120 0.670±0.126 0.604±0.268 0.649±0.199 0.588±0.226
18 17,128 0.772 0.747 0.747 0.674 0.674 0.655 0.746±0.008 0.748±0.005 0.737±0.006 0.627±0.009 0.648±0.004 0.620±0.005
19 93 0.818 0.818 0.818 0.633 0.633 0.633 0.585±0.038 0.509±0.050 0.504±0.034 0.328±0.046 0.289±0.091 0.279±0.070
20 54 0.857 0.714 0.690 0.875 0.833 0.792 0.905±0.000 0.857±0.000 0.857±0.000 0.917±0.000 0.917±0.000 0.900±0.000
21 404 0.755 0.778 0.748 0.557 0.629 0.559 0.816±0.045 0.818±0.040 0.800±0.042 0.581±0.067 0.657±0.053 0.588±0.058

Average 0.801 0.811 0.794 0.673 0.691 0.670 0.781±0.022 0.799±0.020 0.777±0.019 0.642±0.042 0.672±0.046 0.641±0.043

Table 26
Results local classification by the optimized SVM and BERT models on test set using the combined data enrichment on the training
data. Models were trained using local information per parent class C𝑝 with corresponding related child class labels. The classification
performance is described using both macro- and weighted-averaging scores to illustrate the difference between minority- and majority
class predictions. The number of training samples per parent class are illustrated by N.

SVM BERT
Weighted Macro Weighted Macro

C𝑝 N P R F1 P R F1 P R F1 P R F1
0 1,144 0.920 0.940 0.930 0.330 0.333 0.331 0.927±0.030 0.933±0.012 0.930±0.020 0.328±0.046 0.329±0.043 0.328±0.045
1 51 0.640 0.800 0.711 0.400 0.500 0.444 0.036±0.034 0.133±0.115 0.056±0.051 0.070±0.061 0.278±0.255 0.111±0.096
2 469 0.948 0.931 0.931 0.833 0.833 0.822 0.866±0.002 0.897±0.000 0.868±0.001 0.778±0.003 0.821±0.000 0.784±0.002
3 1,743 0.862 0.868 0.861 0.744 0.779 0.754 0.877±0.012 0.868±0.018 0.864±0.014 0.750±0.080 0.761±0.073 0.746±0.077
4 3,920 0.919 0.899 0.896 0.835 0.789 0.790 0.939±0.002 0.934±0.000 0.930±0.003 0.868±0.001 0.872±0.011 0.855±0.001
5 3,029 0.865 0.864 0.859 0.733 0.756 0.735 0.899±0.014 0.905±0.010 0.895±0.011 0.816±0.018 0.836±0.018 0.812±0.017
6 485 0.839 0.857 0.830 0.767 0.817 0.771 0.889±0.003 0.929±0.000 0.903±0.001 0.807±0.006 0.867±0.000 0.828±0.005
7 9,410 0.991 0.990 0.990 0.984 0.972 0.975 0.994±0.000 0.994±0.000 0.994±0.000 0.998±0.000 0.986±0.000 0.991±0.000
8 145 1.000 1.000 1.000 1.000 1.000 1.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
9 1,462 0.907 0.890 0.885 0.717 0.749 0.713 0.917±0.006 0.887±0.014 0.890±0.011 0.716±0.032 0.726±0.046 0.704±0.036
10 2,101 0.894 0.891 0.882 0.554 0.512 0.505 0.942±0.019 0.937±0.015 0.929±0.018 0.773±0.035 0.706±0.043 0.712±0.038
11 1,300 0.977 0.988 0.982 0.945 0.950 0.948 0.986±0.004 0.988±0.000 0.986±0.002 0.912±0.012 0.920±0.026 0.914±0.016
12 1,785 0.919 0.892 0.898 0.712 0.702 0.700 0.953±0.010 0.935±0.006 0.940±0.007 0.803±0.024 0.793±0.018 0.794±0.021
13 32 0.250 0.500 0.333 0.250 0.500 0.333 0.250±0.000 0.500±0.000 0.333±0.000 0.250±0.000 0.500±0.000 0.333±0.000
14 279 0.880 0.870 0.868 0.801 0.795 0.794 0.967±0.029 0.942±0.050 0.948±0.045 0.945±0.052 0.939±0.064 0.936±0.060
15 624 0.790 0.842 0.809 0.652 0.688 0.661 0.833±0.026 0.868±0.026 0.843±0.028 0.636±0.012 0.666±0.047 0.639±0.034
16 29 0.000 0.000 0.000 0.000 0.000 0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000
17 213 0.896 0.812 0.834 0.619 0.638 0.598 0.920±0.030 0.875±0.000 0.891±0.016 0.647±0.038 0.611±0.048 0.624±0.042
18 45,003 0.756 0.738 0.735 0.624 0.654 0.618 0.783±0.004 0.752±0.002 0.753±0.003 0.677±0.003 0.706±0.002 0.670±0.002
19 141 0.818 0.818 0.818 0.633 0.633 0.633 0.765±0.092 0.727±0.000 0.739±0.043 0.564±0.120 0.541±0.064 0.548±0.091
20 81 0.929 0.857 0.867 0.875 0.917 0.867 0.905±0.000 0.857±0.000 0.857±0.000 0.917±0.000 0.917±0.000 0.900±0.000
21 689 0.802 0.800 0.780 0.596 0.653 0.593 0.863±0.030 0.837±0.034 0.832±0.036 0.606±0.055 0.679±0.046 0.612±0.055

Average 0.809 0.820 0.804 0.664 0.690 0.663 0.796±0.016 0.804±0.014 0.790±0.014 0.676±0.027 0.702±0.037 0.675±0.029

	Introduction
	Motivation and problem definition
	Contributions
	Structure of this paper

	Background and related work
	NLP paradigm
	Word features
	Word embeddings
	BERT

	Text classification
	Support Vector Machines
	Fine-tuning BERT

	Hierarchical Classification
	Related work
	Short text data
	Classification

	Data
	Descriptive statistics
	Hierarchical structure of labels
	Data imbalance

	Methods
	Data preprocessing
	Data enrichment
	Oversampling
	Web scraping

	Classification
	Support Vector Machines
	BERT
	Hierarchical classification

	Experimental setup
	Data and hyperparameters
	Baseline classifications
	Hierarchical classifications
	Data enriched classifications
	Generalization on LOO samples
	Evaluation metrics

	Results
	Data Enrichment
	Web scraping
	Descriptives

	Classification results
	Flattened classification
	Comparing data enrichment methods
	Hierarchical classification
	Generalization LOO set

	Error Analysis
	Model misclassifications
	Feature importance and attention

	Discussion
	Interpretations
	Limitations

	Conclusion
	Future work

	References
	Appendix
	BERT Results
	Flattened classification

	Hierarchical classification

