
Evaluating the robustness of permutation-based multiple testing
methods
Kisoentewari, A.M.K.

Citation
Kisoentewari, A. M. K. (2022). Evaluating the robustness of permutation-based multiple
testing methods.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in the
Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3676814

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3676814

Master Thesis Statistics & Data Science

Universiteit Leiden

Evaluating the robustness of
permutation-based multiple testing

methods

Author
A.M.K. (Anish) Kisoentewari

Advisor
dr. JBA (Jesse) Hemerik, Wageningen University & Research

Defended on 23-08, 2022

Abstract

Statistical hypothesis testing is central to many scientific fields. Testing many hypothe-
ses simultaneously is called multiple testing. The main concern in multiple testing, is to
ensure that most of the rejected null hypotheses are indeed false, i.e., that the number
of incorrect rejections remains low. A major challenge in multiple testing is to account
for the complex dependencies in the data. A powerful approach in this regard, are
permutation-based multiple testing methods. These methods make few distributional
assumptions. In fact, they often make only one assumption, called joint exchangeabil-
ity. In this thesis we investigate the robustness of the methods to violations of this
assumption. We do this by means of simulations, where we focus on case-control data.
We find that, while the theoretical literature always makes the mentioned assumption,
it is often not necessary in practice. Thus, this thesis provides further evidence for the
validity of these powerful methods in practice.

Keywords: Multiple testing; Permutation; High-dimensional; maxT; SAM; Robustness;
Heteroscedasticity

ii

Foreword

First and foremost I would like to express my gratitude for the excellent guidance and su-
pervision provided by dr. Hemerik. He was always available to answer any of my questions
and provided me with constructive and critical feedback throughout the entire process.
I would also like to thank Leiden University and Wageningen University & Research for
providing me with the thesis opportunity, although the general idea of the thesis subject
came from dr. Hemerik himself. Further decision making, writing and scripting was done
by myself. No confidential data or restricted sources were used.

iii

Contents

1 Introduction 5

2 Permutation Tests 8
2.1 Permutation example . 8
2.2 Types of permutation tests . 10

3 Multiple Testing 13
3.1 Error metrics . 13
3.2 FWER controlling procedures . 15
3.3 FDP estimation through SAM . 19

4 Simulations 20
4.1 Base settings . 20
4.2 Simulation setup and results . 22

4.2.1 maxT: Heterogeneous dependence 22
4.2.2 maxT: Heteroscedasticity . 25
4.2.3 maxT: Heteroscedasticity (Welch) 26
4.2.4 maxT: Different distributions . 28
4.2.5 SAM: Heterogeneous dependence . 29
4.2.6 SAM: Heteroscedasticity . 30

5 Data Illustration 31
5.1 Analysis of heteroscedasticity . 31
5.2 Application to the data . 32

6 Discussion 35

7 References 37

iv

1 Introduction

In modern hypothesis testing, multiple testing settings arise more and more frequently.
With the advent of big data sets, hundreds if not thousands of statistical inferences are to
be made simultaneously. A common field of study where multiple testing problems occur
is biomedical sciences. With the possibility of extraction of gene expressions from DNA,
RNA and several other sources, genetic profiles containing information on a large number of
genes may be constructed. This information may be used to examine associations between
the extracted gene expressions and a measured phenotype (Menyhart, Weltz, & Győrffy,
2021). In order to present found associations as conclusive, some sort of hypothesis test is
required. However, hypothesis testing is subject to errors, especially in the multiple testing
setting.

The outcomes of hypothesis tests are displayed in Table 1. Two types of errors may
be discerned. The first error is the type I error. This happens when one rejects a null
hypothesis H0, which happens to be true. This is also called a false discovery, or false
positive. The acceptance rate of a false positive is expressed by the significance level
(α), which is by convention often set to 0.05. Hence the control of the type I error may
be managed by α. However, lowering α to prevent Type I errors indirectly causes fewer
rejections, including fewer rejections for the group of false null hypotheses, hence lowering
the power (1−β) of a hypothesis test, and increasing the probability of a type II error (β),
assuming there are false null hypotheses (Park, 2008).

Table 1: Hypothesis testing conclusions

True H0 False H0

Reject H0 Type I error (α) Correct decision (1 − β)
Fail to reject H0 Correct decision Type II error (β)

Mitigation of Type I errors is generally considered more important than mitigation of
Type II errors. Failing to reject a false H0 means a finding is overlooked, but may be found
in another research or experiment. Rejecting a true H0 means a novel finding is presented,
which is not valid at all, possibly causing misconceptions or even contradicting scientific
evidence (Goeman, 2017). For a relatively small amount of hypotheses being tested simul-
taneously, Type I error rate control through the use of α is historically considered sufficient
by the scientific community. An expansion of the problem of Type I errors occurs when
a large number of hypotheses need to be inferred simultaneously. Multiple Type I errors
may now occur. We denote the total number of Type I errors among all inferences as V .
In this case, among the count of all true hypotheses (m0), the probability of at least one
false discovery, under independence of the hypotheses, may be expressed as:

P (V > 0) = 1− (1− α)m0 (1)

5

For only one true hypothesis, the probability of at least one false discovery reduces to
α. However, for more true hypotheses, the probability of at least one type I error among
all inferences increases drastically, as shown in Figure 1. P (V > 0) is also known as the
Family-wise error rate (FWER).

Figure 1: FWER as function of m0 under independence. The red line depicts the level of
significance α = 0.05.

In order to control the FWER, several procedures exist. A property of multiple testing
settings is that in many cases, the covariates correlate with each other. Think for instance
of neighbouring pixels in the field of neuroimaging, or genes which are very closely related
in the biology setting. In order to keep FWER control stringent without losing much
power, the capture of the dependence structure within the covariates is key. Permutation
based multiple testing methods takes such dependencies into account. Generally considered
the most prominent permutation based multiple testing method for FWER control is the
maxT method devised by Westfall and Young (1993). While the maxT method offers good
FWER control, there is a downside. The downside to this more complex method is that
an additional assumption has to be made. In case of a simple case-control study, this
additional assumption is that the joint distribution of the data corresponding to the true
hypotheses is the same for cases and controls. In case this assumption is violated (e.g. by

6

heteroscedasticity), what are the consequences for the FWER control offered by the maxT
method? This is a question which remains partly unanswered.

Significance Analysis of Microarrays (SAM) is a different permutation-based multiple
testing method which estimates a different error metric than the FWER, namely the False
Discovery Proportion (FDP). The FDP is the fraction of false discoveries amongst all
rejections. Hemerik and Goeman (2018b) extended SAM by providing a (1−α)-confidence
upper bound for the estimated FDP. Conveniently, SAM makes the exact same assumption
about the data as the maxT method. Hence we may pose a similar unanswered question
as we did for maxT: In case this assumption is violated, what are the consequences for the
robustness of the (1− α)-confidence upper bound estimation?

The main aim of this research is to answer the posed research questions by using
simulations in R, providing an indication of how robust the methods are.

Before addressing the simulations, some theoretical background knowledge is required.
This includes theory on permutation testing; why it is useful, how is it done and which
assumptions are made? This will be discussed in Section 2. Building on this in Section
3, theory of multiple testing is discussed. First the multiple testing framework will be
discussed, after which the methods and concepts building upon this framework are intro-
duced. This includes the FWER, but also its alternatives such as the False Discovery
Rate (FDR) and the False Discovery Proportion (FDP). Multiple testing methodes such as
Bonferroni and Holm are also discussed. Afterwards, the more complex permutation-based
multiple testing methods maxT and SAM are explained. The main benefits, but also the
assumptions and expectation of performance of these methods will be discussed. Section
4 introduces the main novel component to this thesis, namely the setup of the simulations
regarding the robustness of the considered methods, and their results.

In Section 5, a data analysis is used to illustrate how the maxT and SAM work in
practice on a real data example. The maxT and SAM methods will be applied to a dataset
used by Golub et al. (1999) containing gene expressions of two groups of people suffering
from different forms of leukemia. Gene expressions could be linked to the difference in
leukemia.

Finally, Section 6 is concerned with discussion, and some limitations restricting the
study.

7

2 Permutation Tests

Permutation testing is a non parametric approach to hypothesis testing in which permu-
tations of the observed sample are made in order to construct a permutation distribution
of a test statistic assuming the null hypothesis to be true. Based on the permutation
distribution and the chosen level of significance, p-values are computed, allowing for the
assumed null hypothesis to be either rejected, or not rejected. In the section we go into
detail on how permutation testing works using an example, after which we will describe
different types of permutation tests. Strictly speaking, the example which will be shown is
a randomization test due to the use of randomized treatments (Hemerik & Goeman, 2021).
However, this does not matter for the workings of the test itself.

2.1 Permutation example

Suppose a new durable composition of fertilizer has been developed which in theory is
designed to increase crop yield. To verify whether or not the fertilizer actually works,
a statistical test may be performed. For this test, we assume a controlled environment
wherein a single crop grows in a single pot. There are n pots. Some randomly selected
pots receive the new fertilizer, whilst others do not. By comparing the crop yield of the
two groups of pots, we may assess whether or not the new fertilizer improves crop yield.
To formalize this test, we will construct two hypotheses; either the mean crop yield is the
same for both groups, or alternatively, the group with the fertilizer has a higher crop yield.
These hypotheses are the null hypothesis and the alternative hypothesis respectively, and
may be formalised in the following manner:

H0 : µA = µB Ha : µA > µB (2)

Here group A consists of the pots which received the fertilizer, whilst group B consists
of the pots which did not. To keep the example straightforward, the amount of pots within
the groups is equal, so n

2 pots per group. After having received the yield results for each pot,
the difference in mean yield produced by pots between the two groups is to be quantified.
This quantification comes in the form of a test statistic, in this case the following statistic
seems appropriate:

T =
n∑

i=1

1A(yi)xi −
n∑

i=1

1B(yi)xi (3)

Here xi represent the crop yield of pot i, where i = 1, . . . , n. 1A(yi) is an indicator
function, which takes the value of 1 when pot i is fertilized, otherwise 0. The opposite
holds for pots from group B. After defining the test statistic, we may begin to randomly
permute group labels to the recorded yields of pots, and recompute the test statistic after

8

applying a random permutation π ∈
∏
, where

∏
is the set of all permutations, including

those which may be applied to the vector of group labels Y .
Lets say we pick a random subset of permutations (π1, . . . , πB) ⊂

∏
and compute the

test statistic for each permuted data set. Since we have assumed H0 to be true, we expect
to see no difference between group means under permutation. Therefore, under H0, it
should not matter which label is assigned to which pot. Instead of permuting labels, yields
could also instead have been permuted. Hence we need to make an assumption on the
data.

Assumption A. π(X)
d
= X, for all π ∈

∏
.

This somewhat simplified assumption is known as the assumption of exchangeability
(Johnson, 1924), which is the prime assumption made in permutation testing. With the
B test statistics computed, we may construct the approximate test statistic permutation
distribution, which approximates the test statistic values we could have seen under H0.
By observing where our original test statistic falls within this ’null’ distribution, we may
obtain an indication of the probability of obtaining a similar, or more extreme mean crop
yield difference between groups when repeating the experiment, a.k.a. the p-value. The
p-value is computed as follows:

p =
#{k : T k ≥ T 0}

B
(4)

Here T 0 is the test statistic derived from the unpermuted sample. The p-value is then
compared to a predefined level of significance α in order to either reject H0, or not reject
H0. Because we compare the crop yield means of two independent groups, we assume the
variance of the response between the groups to be homogeneous. This independent two
sample permutation test is analogous to the independent parametric two samples t-test.

Now the question may arise as to why we would bother following this permutation
procedure instead of simply using a independent two samples t-test. The main reason
for this is that permuting rows, or labels assigned to rows, maintains the dependence
structure within the data, if it is present (Dickhaus, 2014). This is a useful property when
data are high-dimensional, and there is some form of dependence between covariates. The
importance of this property will become clear in Section 3, when we consider multiple
testing settings.

9

2.2 Types of permutation tests

With a basic example of a permutation test established, we may delve deeper into the
types of permutation tests which are available. Berry, Johnston, and Mielke Jr (2014) dis-
tinguish three types of permutation tests; the ’complete’ permutation test, the resampling-
approximation permutation test, and the moment-approximation permutation test.

The first approach is the ’complete’ permutation test. It is a permutation test where
all of the permutations π ∈

∏
, where |

∏
| = n!, are used to to construct the test statistic

permutation distribution. For medium to large sample sizes, the cardinality of
∏

becomes
too large to evaluate, hence this version of the permutation test is often not feasible to
perform. On the other hand, with the advent of high speed computing, the ’complete’ test
slowly becomes a more realistic option (Berry et al., 2014).

The second approach, a more computationally lenient alternative to the previously
mentioned permutation test, is the resampling-approximation to the permutation test.
The resampling-approximation randomly selects a few permutations from all the possible
permutations

∏
. This approach is also used in the example in Section 2.1, as B < n!. The

main benefit is that the permutation distribution under the null is obtained with far less
computational demands. In case of a valid exchangeability assumption, and

∏
maintaining

a group structure as defined by Hoeffding (1952), we may state the permutation distribution
to be exact for a large enough, finite B (Hemerik & Goeman, 2018a). Hence this is the
most prominently used type of permutation test.

The third approach to permutation testing constitutes of the set of statistical tests
which approximate the permutation distribution under the null by using a parametric dis-
tribution. One of these tests mentioned by Berry et al. (2014) is the moment-approximation
permutation test. This approach requires computation of an arbitrary amount of moments
of the test statistic. Using these found moments, a parametric distribution may be selected
which approximates the underlying permutation distribution under the null. This approach
was mostly used before the widespread use of the resampling-approximation, but still has
its merits in case the probability of the observed test statistic is very small. This is because
for the resampling-approximation method, the smallest obtainable p-value is limited to 1

B .
P-values of 0 are prevented by always adding the identity permutation to the randomly
selected subset of permutations. For permutation tests done in this simulation study, only
the resampling-approximation will be used.

10

When considering settings deviating from the independent samples setting, in particular
paired data, adjustments need to be made to make the procedure sketched in Section 2.1
work. To this end we introduce a new experiment. Fisher (1949) analyzed and discussed an
experiment designed and conducted by Charles Darwin. Darwin compared the height of two
different groups of plants. The first group consisted of plants which fertilized themselves.
The second group consisted of plants which required other plants to fertilize them, the so
called crossed plants. Each group has n plants. The n plants from each group are paired
in this setting due to two plants from differing groups sharing the same pot, watering
amount, location etc. Hence some dependence is expected. In order to account for this
dependence, the test statistic requires adjusting. The hypotheses in equation (2) still hold
in this context if we interpret µA as the population mean of the self-fertilizing plant height,
and µB as the population mean of the crossed plant height. The test statistic is adjusted
to this experiment in the following manner:

Z = YA − YB, Z∗ = Zg (5)

T =

∑n
i=1 Z

∗
i

n
(6)

Z is a vector containing the pairwise differences in height between the groups. The test
statistic T now represents the pairwise mean difference between the groups. In order to
permute in case of paired data, we can not simply permute the rows of the data, as the
dependence between pairs will still remain. The purpose of the permutation is to swap
the type of plant the height was measured of, as under H0, it should not matter if the
plant is self-fertilizing or crossed. We can manage this by naturally extending the set of
permutations

∏
to also include transformations other than solely permutations. The set

G also encompasses sign-flipping. A transformation g ∈ G may be applied similarly to
a permutation π ∈

∏
. Now we may randomly select a sign-flipping transformation g,

which is in essence a vector of length n, where (g1, . . . , gn) ∈ {−1, 1}n. By multiplying the
vector containing the random transformation g with the vector of differences Z, we obtain
a new vector Z∗ over which the test statistic is computed. We repeat this process B times,
with B different transformations g ∈ G to again construct the permutation distribution
under the null. To compute T 0, the original test statistic, we leave Z untransformed. The
remainder of the process is similar to the example sketched in Section 2.1. This completes
the permutation equivalent of the paired t-test.

A minor difference in assumptions compared to the independent setting is present.
For the paired setting, we assume a symmetric distribution of the entries of Z (due to
sign-flipping transformations) centered around 0 under the null.

11

A third scenario may present itself in which we have a continuous response and a
continuous set of covariate(s). Take for instance the dataset used by Causeur, Friguet,
Houee-Bigot, and Kloareg (2011) containing gene expressions of male chickens and their
abdominal fatness measured in grams. Some gene expressions are expected to be linked to
abdominal fatness. In other words, we wish to verify whether or not there is dependence
(̸⊥⊥) between certain gene expressions and the abdominal fatness. For illustration purposes
we only zoom in on the relation between a single covariate and the response. To formalize
this in hypotheses:

H0 : X⊥⊥ Y Ha : X ̸⊥⊥ Y (7)

Here X is a vector containing a single gene expression, and Y a vector of abdominal
fatness measurements. In order to quantify the dependence between X and Y , we use the
absolute value of the basic correlation coefficient metric as our test statistic. To get our
permutation distribution under the null, we again permute. In this setting we permute
the response Y for B amount of times using random permutations π ∈

∏
. For each

permutation π, we recompute the correlation coefficient. With this we again construct
the permutation distribution under the null and determine the p-value using equation (4),
in which now T 0 = |ρ(X,Y 0)|, where Y 0 is the unpermuted measurement of abdominal
fatness. With this procedure we may determine if abdominal fatness Y is dependent on
gene expression X.

12

3 Multiple Testing

When testing multiple hypotheses simultaneously, additional problems arise. As described
in Section 1, the probability of making type I errors increases drastically with an increasing
number of true hypotheses m0. Simultaneous inference of several covariates, for example
genes, without an exploding Type I error rate is desired. In order to reduce the inflation
of type I errors, several multiple testing procedures exist. These procedures build upon
predefined error metrics relevant for multiple testing. In this section several error metrics,
and several procedures controlling or estimating these error metrics will be discussed.

3.1 Error metrics

Suppose we wish to infer m null hypotheses Hj , where j = 1, . . . ,m, and m > 1. The set
of null hypotheses is defined by (H1, . . . ,Hm). An unknown number of these hypotheses is
true (m0), and an unknown number of these hypotheses is false (m1). We denote the set
of indices belonging to the true hypotheses with T , and the set indices of false hypotheses
with F . Clearly |T | = m0, and |F| = m1. Within {Hj : j ∈ T }, some hypotheses might
be rejected and some not. The number of rejected true hypotheses will be denoted by V .
Consequently, the number of not rejected true hypotheses evaluates to m0 − V . For the
set {Hj : j ∈ F}, a similar division may be made. The set of indices belonging to rejected
hypotheses is denoted by R = {j : pj ≤ t}, where t is some unknown cut-off, and |R| = R.
The distinction amongst sets of hypotheses, as made by Benjamini and Hochberg (1995),
is summarized in Table 2.

Table 2: Contingency table multiple hypothesis testing

Not rejected hypothesis # Rejected hypothesis
True null hypothesis m0 − V V m0

False null hypothesis m1 − U U m1

m−R R m

The variables within the first two rows of the body of Table 2 are unobserved, since
m0 and m1 are unknown. Only the variables in the bottom row of Table 2 are known. In
general, the goal is to find t such that R matches F as much as possible. However, similar
to rejecting in the single hypothesis setting, errors are bound to be made. An extension of
the Type I error to power trade-off sketched in Section 1 occurs when considering multiple
inferences. We assume 0 < m0 < m and thus 0 < m1 < m. Being conservative when
rejecting by lowering t, less hypotheses are rejected, causing the number of Type I errors
made (V) to remain low. On the other hand, the cost of being conservative is that the
number of Type II errors (m1−U) increases. Hence the off-diagonal in Table 2 displays the
number of Type I and Type II errors respectively. Thus determining R is essential. Finding
a set R whilst keeping V low and maintaining U may be done by a rejection procedure

13

which constraints itself based on an error metric. The first error metric we discuss is the
Family Wise Error Rate (FWER), which we have seen before in Section 1. The FWER is
defined as the probability of making at least one false inference.

FWER = P (V > 0) (8)

Under independence of hypotheses, the FWER among true hypotheses assumes the
form as shown in equation (1). The second error metric is the False Discovery Rate (FDR).

FDR =

{
E
(
V
R

)
when R ≥ 1

1 when R = 0
(9)

The FDR is the expectation of the False Discovery Proportion (FDP). It is a metric
which expresses the expected proportion of type I errors among all of the rejected hypothe-
ses. Both error metrics are generalizations of the Type I error. They are however not the
same.

The first, and most important distinction is that FWER protects against the risk of
incurring any Type I error at all, whilst FDR allows for some Type I errors, as long as on
average most findings are valid. This results in FWER being more conservative at the cost
of power relative to FDR, which is somewhat less conservative whilst having more power.
In the case of F = ∅, it follows that FDR = FWER = 0, because m = m0.

The second distinction considers subsets of hypotheses. For any subset of rejected
hypotheses, FDR control is no longer valid. Interpretation of FDR is hence restricted to
the context of the total set of features tested. The lack of the subsetting property for FDR
control is a product of the averaging inherent to FDR. The FWER does not suffer from
this drawback.

The third distinction considers practical uses. Take for instance an experiment where
one wishes to find deferentially expressed genes in relation to some phenotype using an FDR
controlling procedure. Benjamini, Drai, Elmer, Kafkafi, and Golani (2001) state that FDR
control in this setting is mainly useful for screening purposes, meaning that the hypotheses
rejected by the FDR controlling procedure are likely to represent deferentially expressed
genes, although with more uncertainty, due to the averaging inherent to the error metric.
FWER is preferred when the number of tests is relatively small and no further validation
of hypotheses is available.

14

3.2 FWER controlling procedures

There exist many procedures to control and/or estimate the FWER, FDP and FDR. Several
are presented in here. They differ in their assumptions and computation steps. More re-
strictive assumptions generally yield more powerful procedures but limit their applicability
to certain data configurations. The FWER controlling procedures which will be discussed
include Bonferroni, Holm and the maxT method. Comparisons between the procedures
regarding their FWER controlling capability will discussed in Section 4. FDP estimation
will only be covered by the Significance Analysis of Microarrays (SAM) estimation method
and its (1 − α)-confidence upper bound extension. FDR controlling methods will not be
discussed as they fall outside the scope of the research questions posed in Section 1.

The first, and also the most intuitive FWER controlling procedure is the Bonferroni
correction. The Bonferroni correction does not require any assumptions, but does suf-
fer from being too conservative in a number of settings. The procedure is displayed in
algorithm block 1.

Algorithm 1 Bonferroni rejection procedure

1 for j in 1, . . . ,m do
2 if pj ≤ α/m then
3 Reject Hj

4 else if pj > α/m then
5 Do not Reject Hj

6 end if
7 end for

The rejection threshold t is defined as α/m. Because Bonferroni commits a type I
error only if pj ≤ α/m, for j ∈ T , FWER control is dependent on the proportion of
true hypotheses amongst all hypotheses. Hence the FWER is not controlled at the level
α, but rather at m0

α
m , which is a stricter level than α. Therefore in case of a setting

where m1 >> m0 and one opts to control the FWER using bonferroni, FWER control will
be strict, causing only few rejections. This also happens amongst the false hypotheses,
resulting in more type II errors. Bonferroni is also conservative when many dependencies
amongst covariates are present (Abdi et al., 2007).

15

The second FWER controlling procedure is the Holm correction, wherein Holm at-
tempted to remedy the frequently occurring limited power inherent to Bonferroni (Holm,
1979). This comes at the price of a slightly more complex procedure. Similar to Bonferroni,
Holm does not require any prior assumptions to be made, and may be applied under any
dependence structure. Contrary to Bonferroni, Holm often does control FWER at a level
closer to α, causing the procedure to be less conservative than Bonferroni. Hence Holm is
almost always preferred over Bonferroni. The procedure is shown in algorithm block 2.

Algorithm 2 Holm rejection procedure

1 Sort all p-values p1 . . . pm in ascending order, where for pj , j indicates rank

2 padj1 = p1 ·m
3 for j in 2, . . . ,m do
4 padjj = max(padjj−1, pj · (m+ 1− j))

5 if padjj ≤ α then
6 Reject Hj

7 else if padjj > α then
8 Do not Reject Hj

9 end if
10 end for

Instead of adjusting the rejection threshold, this time the p-values themselves are ad-
justed. The procedure could also have been done by adjusting the rejection threshold
sequentially, but it does not make a difference for determining R. The same may also be
done for Bonferroni.

Line 4 enforces monotonicity of the sequence of the adjusted p-values, such that p-
values will never change in rank post adjusting. Since each padjj is dependent on its rank j,
which in turn is dependent on all pk<j , monotonicity amongst adjusted p-values is desired.
It would be detrimental to have a hypothesis higher in rank than Hj possibly rejected,
whilst Hj remains unrejected.

Similar to Bonferroni, Holm still suffers from being conservative when many positive
correlations are present. As mentioned before, this is undesired in neuroimaging data
(neighboring pixels may be extremely highly correlated), or DNA genomics data where gene
activity may be very similar regarding a specific phenotype. The next FWER controlling
procedure takes this dependence into account through the use of permutations.

16

The third FWER controlling procedure is the maxT procedure devised by Westfall
and Young (1993). The maxT procedure differs greatly from the previous two correction
procedures, as it is strictly permutation based. In essence the (1 − α)-quantile of the
distribution of the maximum test statistic value of the m0 true hypotheses is found through
permuting the observed data. This quantile is then used as rejection threshold t.

The use of permutations has its benefits, but also requires stricter assumptions. We
consider data of the following form, where the presence of the vector Y is optional.

Xn,m =

x1,1 x1,2 · · · x1,m
x2,1 x2,2 · · · x2,m
...

...
. . .

...
xn,1 xn,2 · · · xn,m

 , Yn =

y1
y2
...
yn

Assumption B. We assume the data matrix is of the form X = (X1, . . . , Xm), where we
assume for every 1 ≤ j ≤ m, the test statistic Tj(Xj) depends only on Xj. Then for any

nonempty set M ⊆ {1, . . . ,m}, denote XM = (Xj : j ∈ M). We assume XT
d
= πXT for

every π ∈
∏
, where T = {j ∈ M : Hj = true} and assumed nonempty. In case of presence

of the data vector Y , we assume that conditional on Y , XT
d
= πXT for every π ∈

∏
, where

Tj(Xj , Y) depends only on Xj and Y .

Recall the permutation example described in Section 2.1. In the two sample permuta-
tion example, group labels were assumed to be permutation invariant under H0 through
the exchangeability assumption. We extend this notion here. In essence we assume the
data belonging to the true hypotheses (XT) to be permutation invariant. This general
assumption may take different forms, depending on whether or not a vector Y is present
containing group labels, or a continuous outcome. Hence a small extension was required.

XT
d
= πXT indicates π is a null-invariant transformation of XT , meaning the joint

distribution of XT does not change under permutation. In a case-control setting we would
therefore have to assume that the joint distribution of the part of the data corresponding
to the true hypotheses for the cases is the same as for the controls and vice-versa, otherwise
the permutation π would in theory not be null-invariant. This holds for permutation based
multiple testing in general, and is not limited to any controlling method. However, assum-
ing identical distributions might not always be realistic. Think for instance of a different
dependence structure between the cases and controls, or heteroscedasticity (Goeman &
Solari, 2014). In Section 4 we zoom in on the robustness of FWER control offered by the
maxT procedure in case of violations of this assumption. The maxT rejection procedure is
shown in algorithm block 3.

17

Algorithm 3 maxT rejection procedure

1 T 0
1 , . . . , T

0
m are the test statistics Tj(Xj , Y) of the original observed sample.

2 for b in 1, . . . , B do
3 X = πb(X0)
4 for j in 1, . . . ,m do
5 Tb

j = Tj(Xj , Y), where T is a B ×m matrix.
6 end for
7 end for
8

9 Initialize while loop
10 while rejections are being made do
11 for b in 1, . . . , B do
12 Tmax = max(Tb

∗), where Tmax is a vector of the largest test statistics.
13 end for
14 sort Tmax in ascending order
15 define q as the (1− α) quantile corresponding to Tmax

16 for j in 1, . . . ,m do
17 if T 0

j > q then
18 Reject Hj

19 else if T 0
j ≤ q then

20 Do not Reject Hj

21 end if
22 end for
23 Update R
24 Remove columns from T corresponding to R
25 end while

The algorithm iteratively constructs a different distribution of the maximum test statis-
tics for the hypotheses still in play. In each iteration the test statistics of the original sample
are compared to the (1− α)-quantile of maximum test statistics distribution. Hypotheses
with test statistics exceeding the (1 − α)-quantile are rejected. Afterwards T is updated
according to R to remove permutation test statistics corresponding to the rejected hy-
potheses. This in turn makes the new distribution of the maximum test statistics less
wide, resulting in a lower (1−α)-quantile, allowing for new possible rejections. This causes
the rejection procedure to narrow down, and eventually subside when there are no more
outlying original test statistic relative to the distribution of the maximum test statistics.

There are several versions of the maxT procedure. A widely used version of maxT is
the single-step procedure, which is often used since it is computationally more feasible,
allows for easy adjusted p-values and in most settings the FWER control is comparable to
the FWER control provided by the iterative rejection procedure. The complete procedure
does in theory remain more powerful. The used single-step procedure is discussed more in

18

depth by Ge, Dudoit, and Speed (2003).

3.3 FDP estimation through SAM

Significance Analysis of Microarrays (SAM) is a permutation-based multiple testing method
devised by Tusher, Tibshirani, and Chu (2001) which provides and estimate for the False
Discovery Proportion (FDP). FDP is defined by the fraction of false discoveries amongst all
rejections. Contrary to Westfall & Young’ maxT method, SAM does not offer control over
any Type I error metric, but simply provides an estimate of the prevalence of Type I errors
expressed by the metric. Tusher et al. (2001) have shown that SAM may provide different
estimates for the FDP compared to conventional methods of analysis which estimate the
FDP. Hence it is a method worth considering in the context of permutation-based multiple
testing.

SAM provides the FDP estimate as follows. SAM rejects all hypotheses with test
statistics or p-values lying within a user-defined rejection region D. The number of false
positives amongst all inferences (V) is estimated through permutation of the data. For
each version of the data where permutation π is applied to the data X, rejections are made
based on the user-defined rejection region. Taking the median of the numbers of rejections
made for all (π1, . . . , πB) applied to X provides an estimate for V . Dividing this median
by the number of rejections is then an estimate of the FDP.

Hemerik and Goeman (2018b) extended SAM by providing a (1 − α)-confidence up-
per bound for the estimated FDP. The upper bound for the estimated number of false
discoveries is defined as follows. We predefine a ∧ b as the minimum between a and b.
V := Rk ∧R, where V is the upper bound for V . Rk is the (1−α)-quantile of the numbers
of rejections for the permuted versions of the data. The (1−α)-confidence upper bound for
the estimated FDP, defined as FDP , is then found by dividing V by R. The use of Rk ∧R
as an upper bound for V seems intuitive as it always holds that V ≤ R. A more formal
proof on why this definition of FDP is indeed a valid (1− α)-confidence upper bound for
the estimated FDP may be found in Hemerik and Goeman (2018b).

19

4 Simulations

With simulations we attempt to answer the two questions posed in the introduction. To
recap, the questions were:

1. In case assumption B is violated, what are the consequences for the FWER control
offered by the maxT method?

2. In case assumption B is violated, what are the consequences for the validity of the
(1− α)-confidence upper bound estimation using SAM?

Assumption B is extensively described in Section 3.2. We narrow this general assump-
tion down by only considering case-control data. Two separate settings were mentioned in
which the assumption would be violated in case of case-control data for the simulations.
The first setting which violates assumption B has to do with a different dependence struc-
ture between covariates between the cases and the controls. The second setting considers
heteroscedasticity in the data between case and control covariates. Here we add a third
setting, in which the joint distribution from which the cases are generated is a completely
different distribution from which the controls are generated (e.g. normal vs exponential).

4.1 Base settings

As mentioned, we separate the possible ways the violate assumption B for both methods
in several simulation settings. The simulation settings may be found in Table 3. Simula-
tion setting 3 attempts to remedy probable issues caused by heteroscedasticity by using a
different test statistic. Each simulation setting will be laid out individually.

Table 3: Simulation settings

No. Method description of simulated data

1 maxT Different joint distributions due to varying dependence structure
2 maxT Different joint distributions due to heteroscedasticity
3 maxT Use of Welch t-statistic in case of heteroscedasticity
4 maxT Different joint distributions due to different marginal distributions
5 SAM Different joint distributions due to varying dependence structure
6 SAM Different joint distributions due to heteroscedasticity

20

The data generating process is mostly the same in all settings, with some slight tweaks.
Figure 2 provides a visual representation on how the data are structured.

Figure 2: A simplified representation of the generated data. The data consists of two
vertically stacked matrices containing control data Xctrl, and case data Xcase. Z is a
vector added to control data to simulate dependence between covariates. fadd is a value
used to make hypotheses false by adding it to each covariate belonging to the set of false
hypotheses and case observations.

For all simulations settings, we keep the number of observations n = 20 constant, where
nctrl = ncase = n

2 . The number of hypotheses m is also being kept constant, where the
number of false hypotheses m1 = fprop ·m and the number of true hypotheses m0 = m−m1.
The proportion of false hypotheses is also set for all simulations at fprop = 0.1. Therefore
m1 = 50, and m0 = 450 are also constants across the different simulations. Assuming the
context of microarray data analysis for the simulations, for each gene j, the null hypothesis
Hj is defined as the hypothesis that gene j is not differentially expressed.

21

4.2 Simulation setup and results

In this subsection the simulation configurations are specified, after which the simulation
results are shown and briefly discussed. Each of the simulations correspond to their re-
spective R-scripts found in Appendix A.

4.2.1 maxT: Heterogeneous dependence

In the first simulation setting we attempted to examine how robust the maxT method
is when the cases and controls have non-identical dependence structures. Going back to
Figure 2 we specify the following data generating distributions for this simulation:

Xctrl ∼ N (µ, Σ), where µ is a vector of length m filled with zeros, and Σ a m × m
diagonal variance-covariance matrix, with on the diagonal σ2

ctrl = 1. Xcase ∼ N (µ, Σ),
where µ is a vector of length m filled with zeros, and Σ a m × m diagonal variance-
covariance matrix, with on the diagonal σ2

case + σ2
Z , where σ2

case = 1. We sampled nctrl

and ncase samples from their respective multivariate normal distributions to generate the
required data.

In order to mimic dependence, we row-wise added a random vector Z of size nctrl to
the controls, where Z ∼ N (µ = 0, σ2

Z). This means that the value z1 was added to all
covariates of the first observation, z2 to all covariates of the second observation etc. The
strength of the dependence between the covariates of the control group was measured using
the correlation coefficient:

ρctrl =
σ2
Z

σ2
Z + σ2

ctrl

(10)

There was no dependence simulated between the covariates of the cases. A minor oddity
is that for the cases the variance-covariance matrix does not have σ2

case on the diagonal,
but rather σ2

case + σ2
Z . This was done to keep the variances of the cases and controls

identical. In this way we may discern the dependence setting from the heteroscedasticity
setting without confounding them.

Next we needed to make the false hypotheses actually false. This was done by adding
a value fadd to the data corresponding to the first m0 hypotheses marked as false, but only
for the cases. fadd is defined as a product comprising of two parts. The first factor is a
simple effect size, denoted by ϕ, which is set as a constant throughout all simulations at

ϕ =
√
2. The second factor is a scalar. This scalar is defined as

√
σ2
ctrl + σ2

case + 2σ2
Z . The

purpose of this scalar is to keep the signal proportional to the noise. Hence:

fadd = ϕ
√
σ2
ctrl + σ2

case + 2σ2
Z (11)

To keep signal-to-noise ratio constant, we took the effect size proportional to the stan-
dard deviations of the observations. If fadd would not scale appropriately with σ2

Z , the

22

signal would be drowned out for larger simulated values of σ2
Z , resulting in a confounded

depiction of statistical power. With a constant signal-to-noise ratio, we may observe the
effects of different dependence structures on power in a more objective manner.

With the simulated data in place, we applied the single-step maxT, sequential maxT and
Holm procedures to the data. For the single-step maxT procedure the R package multtest
by Pollard, Dudoit, and van der Laan (2005) was used. For this procedure and Holm, the
number of permutations was set to B = 20000. For the sequential maxT procedure based
on algorithm 3, only B = 20 permutations were used due to computational constraints. The
test statistic which was used is the independent two samples t-test statistic for two-sided
tests:

T =

∣∣∣∣∣∣ Xctrl −Xcase

Sp

√
1

nctrl
+ 1

ncase

∣∣∣∣∣∣ where Sp =

√
(nctrl − 1)S2

Xctrl
+ (ncase − 1)S2

Xcase

ncrtl + ncase − 2
(12)

The degrees of freedom of the tests was set to df = nctrl + ncase − 2, and the signifi-
cance level to α = 0.05. Eventually, the single-step maxT and Holm adjust p-values were
estimated by their respective procedures, after which we compared each adjusted p-value
to the threshold α. For the sequential method, rejections were made without p-values as
depicted in algorithm block 3. Since we know which hypotheses belonged to the set of false
hypotheses {Hj : j ∈ F}, we computed how many false positives were produced by the
procedures. The number of Type II errors was computed in a similar fashion.

Starting from generating the data to computing the number of Type I and Type II
errors computed by each procedure was considered a single iteration. We repeated this
sequence of steps r = 5000 times, for six different values of σ2

Z = (0, 0.4, 0.8, 1.2, 1.6, 2).
The correlations ρctrl = (0.00, 0.29, 0.44, 0.55, 0.62, 0.67) between the hypotheses of the
controls correspond to the different variance values σ2

Z took.
In order to obtain an estimate for FWER control offered by maxT and Holm in these

different dependence settings, we used the following:

̂FWER =
#{k : Vk > 0}

r
(13)

We denote Vk as the number of false positives in iteration k. Since #{k : Vk > 0} ∼
Bin(̂FWER, r), and r = 5000, we used the normal-approximation to the binomial in order
to produce a (1− α)-confidence interval for the FWER estimates.

The type II error rate (β̂) was estimated by dividing the count of all Type II errors
committed across all r iterations by the count of all hypotheses within those r iterations
for which a Type II error could have been committed. The estimated, and also reported
power is defined by 1− β̂. The results are shown in Table 4.

23

Table 4: Estimates as function of different dependence

ρctrl ̂FWER single 1− β̂ single
̂FWER seq

̂FWERHolm 1− β̂Holm

0.000 0.047± 0.006 0.380 0.047± 0.006 0.049± 0.006 0.314
0.286 0.042± 0.006 0.386 0.046± 0.006 0.046± 0.006 0.315
0.444 0.044± 0.006 0.392 0.047± 0.006 0.043± 0.006 0.316
0.545 0.044± 0.006 0.401 0.049± 0.006 0.044± 0.006 0.315
0.615 0.044± 0.006 0.408 0.054± 0.006 0.042± 0.006 0.315
0.667 0.043± 0.006 0.416 0.057± 0.006 0.040± 0.005 0.315

The Bonferroni correction was omitted due to Holm being uniformly more powerful than
Bonferroni. Eestimates for which ̂FWER > α are boldfaced.

The Holm correction was done on raw p-values. Raw p-values are simply permutation
p-values obtained from the procedure in Section 2.1 applied to all covariates j, using a
two-sided test and the test statistic specified in equation (12). Going back to algorithm
block 2, line 2, we can see that the Holm correction has its smallest adjusted p-value set to
padj1 = p1 ·m. Since the identity permutation is always included in the set of permutations,
the smallest possible raw p-value is 1

B , hence the smallest possible Holm adjusted p-value
is m

B . Therefore it was of importance to not take B too low, as Holm would break down in
our current simulation setting if B < 10000.

What becomes apparent from Table 4 is that FWER-control offered by the single-step
maxT procedure does not suffer from cases and control having a different dependence
structure, as ̂FWER < α holds under increasingly correlated covariates for controls. The
same could be said for FWER-control offered by Holm, but this was expected as Holm does
not make any assumptions on the dependence structure of the data. Statistical power also
seems relatively unfazed. When comparing the performance of the two methods we can see
relatively similar results, however the single-step maxT method does appear to be more
powerful than Holm, as was expected. Remarkable is the discrepancy in power between
maxT and Holm when considering no dependence, as we would expect the methods to
behave similar in this situation. This discrepancy in power could be attributed to the
limited amount of permutations relative to the number of hypotheses.

The large difference in the number of permutations forms a problem when comparing the
sequential maxT’ power performance to the other methods. Hence we leave this comparison
out. Even though ̂FWER > α strictly no longer holds for stronger correlations for the
sequential method, the FWER is still close to α. Contrary to single-step maxT, the
sequential maxT FWER increases with an increasing correlation. This could be due to
the iterative nature of the method, causing more false positives in a second or third rejection
iteration.

We also simulated increasing correlation under sample size imbalance and found sample
size imbalance to not cause ̂FWER > α to be violated for Holm and the single-step
approach. For the sequential method it did, similar to the results shown in Table 4.

24

4.2.2 maxT: Heteroscedasticity

In the second simulation setting we attempted to examine how robust the maxT method
is under heteroscedasticity. Several simulation settings differ from the previous simulation.
For the cases, Σ now has σ2

case = 1 on the diagonal. For the controls, σ2
ctrl is no longer

constant. The variance of the controls takes the values σ2
ctrl = (1, 1.8, 2.6, 3.4, 4.2, 5.0).

Moreover, we omitted any form of dependence to keep the two settings separate as much
as possible. Hence the dependence-inducing vector Z was no longer required. This means

that the scalar factor of fadd had to be adjusted into
√

σ2
ctrl + σ2

case. The effects of het-

eroscedasticity are displayed in table 5.

Table 5: Estimates as function of increasing heteroscedasticity

σ2
ctrl

̂FWER single 1− β̂ single
̂FWER seq

̂FWERHolm 1− β̂Holm

1.0 0.047± 0.006 0.380 0.047± 0.006 0.049± 0.006 0.314
1.8 0.064± 0.007 0.398 0.060± 0.007 0.058± 0.006 0.325
2.6 0.086± 0.008 0.427 0.085± 0.008 0.072± 0.007 0.341
3.4 0.119± 0.009 0.453 0.110± 0.009 0.086± 0.008 0.356
4.2 0.154± 0.010 0.476 0.139± 0.010 0.104± 0.008 0.369
5.0 0.187± 0.011 0.495 0.173± 0.010 0.121± 0.009 0.380

Clearly under increasing heteroscedasticity ̂FWER < α is no longer valid, and all
methods become very anti-conservative. As expected, due to violation of assumption B,
FWER control provided by maxT is no longer reliable. Holm also breaks down. This is
the case due to the use of permutations assuming exchangeability, which is not longer valid
due to heteroscedasticity. Hence even though the Holm procedure is assumption-free, the
procedure by which the permutation p-values were obtained is not. If p-values we computed
using a parametric test allowing for heteroscedasticity, the Holm procedure would likely
not produce results as anti-conservative as displayed in Table 5.

Even though the FWER is not the same as the Type I error rate, the Trade-off between
Type I and Type II errors sketched in Section 1 is clearly displayed in Table 5. Since the
FWER increases due to increasing heteroscedasticity, the power of the test increases as
well.

25

4.2.3 maxT: Heteroscedasticity (Welch)

Heteroscedasticity has proven to be detrimental for FWER control. A possible solution
worth exploring was the Welch’s t-test statistic devised by Welch (1947) in order to have
the Student’s t-test adapt to unequal variances and/or unequal sample sizes. It also serves
as an approximate solution to the famous Behrens-Fisher problem.

For this third simulation setting we kept most settings similar to the previous simula-
tion. We did however swap the conventional two-sample t-test statistic for Welch’s t-test
statistic which is defined as follows:

T =

∣∣∣∣Xctrl −Xcase

S∆̄

∣∣∣∣ where S∆̄ =

√
S2
Xctrl

nctrl
+

S2
Xcase

ncase
(14)

The degrees of freedom also varies from the conventional two-sample t-test statistic.
Most notable is that the Welch’s t-test statistic does not depend on a pooled variance
estimate, allowing for different variances between populations. Since the Welch’s t-test
statistic and the conventional two-sample t-test produce identical test statistics under
equal sample sizes, we introduced some skew in sample size between the cases and controls
to properly gauge the effectiveness of the Welch’s t-test statistic . We set nctrl = 8 and
ncase = 12, instead of having equal sample sizes.

Table 6: Single-step maxT estimates as function of increasing
heteroscedasticity and different test statistics

σ2
ctrl

̂FWER T 1− β̂ T
̂FWERWelch 1− β̂Welch

1.0 0.044± 0.006 0.356 0.041± 0.005 0.330
1.8 0.101± 0.008 0.420 0.073± 0.007 0.329
2.6 0.193± 0.011 0.474 0.130± 0.009 0.345
3.4 0.306± 0.013 0.515 0.195± 0.011 0.364
4.2 0.407± 0.014 0.546 0.257± 0.012 0.381
5.0 0.504± 0.014 0.572 0.322± 0.013 0.397

From Table 6 it becomes apparent that the Welch’s t-test statistic did not solve the
problems heteroscedasticity causes for the FWER control of the single-step maxT method.
maxT still becomes very anti-conservative. However, when comparing the FWER estimates
using the conventional t-test statistic and Welch’s test statistic, the Welch test statistic did
seem to be a bit less liberal than its counterpart. When we compared FWER estimates
of Table 6 to those of Table 5, it became clear that the difference in sample size between
the cases and controls had caused a substantial increase in the estimated FWER. This was
expected as according to Lehmann, Romano, and Casella (2005), the two-sample t-test
performs relatively well under heteroscedasticity, as long as the samplesizes are balanced.

26

Table 7: Sequential maxT estimates as
function of increasing heteroscedasticity
and different test statistics

σ2
ctrl

̂FWER T
̂FWERWelch

1.0 0.045± 0.006 0.046± 0.006
1.8 0.103± 0.008 0.079± 0.007
2.6 0.202± 0.011 0.131± 0.009
3.4 0.328± 0.013 0.201± 0.011
4.2 0.484± 0.014 0.273± 0.012
5.0 0.655± 0.013 0.351± 0.013

Table 7 tells a story for the sequential maxT procedure akin to Table 6 for the single-
step maxT procedure. We again see Welch’s t-test statistic did not solve the problems
heteroscedasticity causes for FWER control, but did somewhat improve on using the two
sample t-test statistic.

Table 8: Holm estimates as function of increasing heteroscedas-
ticity and different test statistics

σ2
ctrl

̂FWER T 1− β̂ T
̂FWERWelch 1− β̂Welch

1.0 0.053± 0.006 0.314 0.048± 0.006 0.291
1.8 0.115± 0.009 0.383 0.082± 0.008 0.313
2.6 0.191± 0.011 0.426 0.122± 0.009 0.338
3.4 0.265± 0.012 0.453 0.162± 0.010 0.361
4.2 0.342± 0.013 0.474 0.202± 0.011 0.381
5.0 0.409± 0.014 0.489 0.245± 0.012 0.398

Table 8 shows Holm did not maintain FWER control either, even though Welch’s test
statistic was used. This was unexpected as Janssen (1997) has shown permutation tests
based on studentized statistics to be asymptotically exact at the level α = 0.05. However,
Janssen (1997) did not take the multiple testing setting into account, wherein Holm rejects
hypotheses at a far more conservative level than α. Though both methods failed here,
it is noteworthy that Holm has outperformed maxT in terms of FWER in almost all
heteroscedasticity settings.

27

4.2.4 maxT: Different distributions

In the fourth simulation setting we attempted to gauge the FWER control offered by maxT
when the joint distributions of the cases and controls vary completely. No dependence,
heteroscedasticity or sample size differences were simulated. There are however differences
between the cases and controls. Xctrl ∼ N (µ, Σ), where µ is a vector of length m filled
with zeros, and Σ a m × m diagonal variance-covariance matrix, with on the diagonal
σ2
ctrl = 1. We drew nctrl random samples from the multivariate normal to generate control

data. Xcase ∼ Exp(λ), where λ = 1. We drew m · nctrl random samples from the defined
exponential distribution to generate the data for the cases. In order to maintain E(Xctrl) =
E(Xcase), we zero centered the cases by subtracting E(Xcase) from each entry of Xcase.

The scalar factor of fadd was also altered into
√

σ2
ctrl +

1
λ2 to keep the signal-to-noise ratio

constant.
Since we did not vary any correlation or variance, we only have singular estimates.̂FWER single = 0.237 ± 0.014. From this we may conclude that the single-step maxT

becomes anti-conservative, similar to the heteroscedasticity setting. 1 − β̂ single = 0.453

also reflects this. For the sequential method ̂FWER seq = 0.231 ± 0.012. For Holm̂FWERHolm = 0.165± 0.010. Again Holm also becomes anti-conservative, and yet again
less so than maxT. Unexpected was that the power 1 − β̂Holm = 0.498 was higher than
that of the maxT method. Hence in this specific setting Holm seems superior in terms of
a lower FWER as well as a higher power. This is the case due to the lack of correlation in
the data.

28

4.2.5 SAM: Heterogeneous dependence

In the fifth simulation setting we attempted to examine the robustness of the (1 − α)-
confidence upper bound estimation using SAM under different dependence structures. We
express this robustness through P (FDP < FDP).

The generated data was exactly the same as in the first simulation setting. Similar to
step 5 in algorithm block 3, a matrix of permutation test statistics using (12) as the test
statistic was constructed. Since the test statistics follow a T distribution, they were easily
converted into p-values. We call this matrix of p-values P. This was done so P could be
used as input for the SAM procedure. The SAM procedure and the (1 − α)-confidence
upper bound estimation was done using the R package confSAM by Hemerik and Goeman
(2018b). For each hypothesis the rejection region D was of the the form (0, c), where
c = 0.01 was set to be constant. α = 0.05 was set such that (1 − α) was the desired
confidence level. Therefore we require P (FDP < FDP) ≤ α.

Since Holm was no longer included in the simulations, we were able to use fewer per-
mutations to speed up computation. We set the number of permutations to B = 100. For
a larger amount of permutations results are very similar (Marriott, 1979). Similar to the
previous simulations, each iteration of a single simulation includes generating the data and
estimating the desired metrics, which in this case are FDP and FDP . FDP was estimated
using confSAM, whereas the FDP was found using the first row of p-values from P. This
first row contained the p-values of all j hypotheses of the identity permutation. Since we
knew which hypotheses were actually false, and which hypotheses remained true, we could
compute the FDP using D. This process was again repeated for r = 5000 for each of the
different values of σ2

Z . The estimate for P (FDP < FDP) was computed as follows:

̂P (FDP < FDP) =
#{k : FDPk < FDPk}

r
(15)

Here k indicates iteration k. Since #{k : FDPk < FDPk} ∼ Bin(P (FDP < FDP), r),
we may again use the normal approximation to the binomial to construct confidence inter-
vals for the estimate. The results are shown below in Table 9.

Table 9: Estimates as func-
tion of different dependece

ρctrl
̂P (FDP < FDP)

0.000 0.010± 0.003
0.286 0.029± 0.005
0.444 0.036± 0.005
0.545 0.038± 0.005
0.615 0.041± 0.005
0.667 0.043± 0.006

29

Clearly P (FDP < FDP) < α still holds. Hence it may be concluded the (1 − α)-
confidence upper bound estimation seems to be robust against heterogeneous dependece
between cases and controls. Perhaps for extremely high levels of correlation between the
covariates of the controls, P (FDP < FDP) would slightly exceed α. Yet it is reasonable to
assume such extremely different correlations between groups would typically not be found
in practice.

4.2.6 SAM: Heteroscedasticity

In the sixth and final simulation setting we attempted to examine the robustness of the
(1− α)-confidence upper bound estimation using SAM under heteroscedasticity. We used
the same procedure as in the previous simulation setting to compute the required metrics.
The data generating process was identical to that of the second simulation setting. The
results are shown in Table 10.

Table 10: Estimates as
function of increasing het-
eroscedasticity

σ2
ctrl

̂P (FDP < FDP)

1.0 0.011± 0.003
1.8 0.019± 0.004
2.6 0.040± 0.005
3.4 0.055± 0.006
4.2 0.072± 0.007
5.0 0.099± 0.008

P (FDP < FDP) < α is no longer valid for higher values of σ2
ctrl. Hence it may be

concluded the (1 − α)- confidence upper bound estimation does not seem to be robust in
case of heteroscedasticity between cases and controls.

30

5 Data Illustration

We apply the methods on real data to further illustrate the performance of the methods. We
consider the widely used leukemia gene expression dataset from Golub et al. (1999). This
dataset contains the expression of 3051 genes on 38 patient samples. The patient samples
are divided over two groups. The first group of patients suffer from acute lymphoblastic
leukemia (ALL), whereas the second group has acute myeloid leukemia (AML). The groups
are not balanced, as nALL = 27, and nAML = 11.

5.1 Analysis of heteroscedasticity

Before applying maxT and SAM to the data, we consider potential different variance
structures in the data between the groups. Since the simulations showed that dependence
is of little concern to FWER control offered maxT and FDP estimation by SAM, we
disregard an analysis on potential dependence between genes within groups. On the other
hand, the simulations clearly showed heteroscedasticity to be a problem for the considered
methods (see Tables 5, 6, 7, 8 and 10).

Figure 3: Scatterplot of within group standard deviations of all genes. Dotted red line shows
exact diagonal.

31

Figure 3 shows a scatterplot of the standard deviation separated by group of all m
gene expressions. The more the points are centered around the red diagonal line, the more
individual genes are similar in terms of variance separated by group.

Clearly the AML group has a few dozen more outlying genes compared to the ALL
group. This can be attributed to the low sample size of nAML = 11, which is not a lot
to estimate the standard deviation of a gene with. Nevertheless the bulk of the genes are
centered round the diagonal. Thus there might be some very minor heteroscedasticity, but
we expect this not to have severe consequences when applying the methods on the data.

5.2 Application to the data

We computed the raw p-values for the leukemia data again using a simple permutation
test per hypothesis, as explained in Section 2.1, using the test statistic defined in equation
(12). We again set the level of significance to α = 0.05. The number of permutations was
set to B = 305100 in order to keep FWER control by Holm valid. Remarkably R = 1061
using the test statistic shown in (12). Considering m = 3051, there appears to be a lot
of signal in the data. In order to correct for the inevitable presence of Type I errors, we
apply maxT, Holm and SAM to the data, and compare the methods. Using the same test
statistic, Rsingle = 94, Rseq = 98 and RHolm = 90. As expected the number of rejected
hypotheses is drastically reduced. Holm and maxT reject a relatively similar amount of
hypotheses, as also reflected by their respective FWER estimates seen in almost all of the
simulations. Using the Welch t-test statistic, we compute R = 1052 using raw p-values,
RWelch

single = 92, RWelch
seq = 98 and RWelch

Holm = 80. Welch being less liberal for some procedures
may be attributed to the skew in sample size, and slight heteroscedasticity as seen in
Figure 3, causing the test statistic to be more appropriate for the data compared to the
two-sample t-test statistic.

Recall that SAM rejects hypotheses based on rejection region D, where D is of the the
form (0, c). For the simulations we kept c = 0.01 constant. When applying SAM to the
data example, we vary c to better compare the number of rejections with maxT and Holm.
At their most conservative, maxT and Holm reject at the level α

m . Therefore we lower c to
this level to compare, and observe how the estimate for the FDP, the (1 − α)-confidence
upper bound and R behave as function of an increasingly more liberal cutoff c. This is
displayed in Figure 4.

32

Figure 4: Points show the SAM estimates of the FDP as function of increasing cutoff
(c). Error bars show the estimated 95% upper bound for the FDP estimate. Numeric
counts above error bars represent the number of rejections R. The test statistic in (12)
was used, and the number of permutations set to B = 100. The confidence bounds are not
simultaneously valid.

The first blue dot in Figure 4 represents the FDP estimate produced by SAM at the
level α

m . Even though the rejection threshold for maxT and Holm presumably does not
reach this most conservative level, SAM still rejects a very similar amount hypotheses
compared to the previously mentioned methods. The number of rejections by SAM at the
Bonferroni level exceeds the number of rejections by Holm due to Holm being based on
permutation p-values, whereas the number of rejections for SAM is based on t-test p-values
taking into account only the observed data.

Figure 4 shows the number of rejections R increase monotonically with c. A clear trend
may also be observed where the (1 − α)-confidence upper bound increases with a more
liberal cutoff. However when looking at the y-axis, it becomes clear the SAM estimate for
the FDP is either 0 or close to it, and the (1 − α)-confidence upper bound for the FDP
remains relatively narrow. This practically translates to the following.

Say we were to reject at the level c = 0.001, which is the cutoff of the final data point in
Figure 4. Here R = 332, F̂DP = 0.006 and FDP = 0.042. Then with 95% confidence we
may conclude the true FDP to lie below 0.042, meaning the true number of false positives
is with 95% confidence at most 332 · 0.042 ≈ 14, which is remarkably low compared to
the total number of rejections made. Naturally this is only the case granted there is no

33

heteroscedasticity, or another unobserved feature of the data violating assumption B.

34

6 Discussion

In this thesis we attempted to assess the robustness of two permutation-based multiple test-
ing methods, namely maxT and extension of SAM from Hemerik and Goeman (2018b).
This assessment was done by means of simulating case-control specific data configurations,
to which the methods were applied. Robustness was gauged through departure (or not) of
FWER and FDP estimates from the expected error rates in these particular data configu-
rations. The data configurations in particular violated the prime assumption B underlying
both permutation-based multiple testing methods.

To briefly reiterate, according to assumption B we would have to assume that the joint
distribution of the part of the data corresponding to the true hypotheses for the cases
is the same as for the controls and vice-verse in a case-control setting. In all simulation
settings this assumption was violated through either different dependence structures, het-
eroscedasticity between joint distributions or different marginal distributions. Sometimes
this caused the method(s) to break down.

First, we have found evidence that different dependence structures between cases and
controls largely do not seem to impact FWER control offered by maxT, nor (1−α)-bound
estimation for the FDP through SAM, as shown in Tables 4 and 9. However, this was only
evaluated for the setting of largest dependence contrast in which all data corresponding
to the control group was correlated, whilst keeping all data corresponding to the cases
uncorrelated. Even though this could be interpreted as a ’worst case’ setting, another less
black-and-white dependence structure might result in a different outcome for the robustness
of the methods.

Second, it seems conclusive heteroscedasticity between joint distributions causes both
maxT and SAM to break down (see Tables 5 and 10). For maxT, the ̂FWER < α is no

longer valid as ̂FWER increases dramatically with increasing heteroscedasticity. For SAM
the same happens to the required P (FDP < FDP) < α. Particularly for maxT, slight
heteroscedasticity already forms a problem for FWER control. Similar to the dependence
setting, this was only evaluated for the setting of largest contrast in variance, where all
genes in the control group have a larger variance than all genes in the case group. This
structured setting need not be the case as seen in the data example. The methods might
be less sensitive to heteroscedasticity under a less black-and-white variance structure.

Third, in an attempt to remedy the problems caused by heteroscedasticity, the use of
Welch’s t-test statistic did not cause ̂FWER < α to hold. Moreover, differences in sample
size between the cases and controls had caused a substantial increase in the estimated
FWER (see Tables 5 and 6). Nevertheless the use of Welch’s t-test statistic did somewhat
reduce the the FWER estimate (see Table 6). Since some heteroscedasticity and sample
skew is more conceivable in practice, Welch’s t-test statistic almost always seems to be the
better choice of test statistic in the context of permutation-based multiple testing.

Fourth, whilst evaluating the performance of FWER control by maxT, the performance
of FWER control by the Holm correction was evaluated simultaneously to serve as refer-

35

ence. In the setting of heteroscedasticity and the use of Welch’s t-test statistic, FWER
control offered by Holm also broke down. This was unexpected as Janssen (1997) shows
permutation tests based on studentized statistics to be asymptotically exact at the level
α = 0.05. However, Janssen (1997) does not take the multiple testing setting into account.
At its most conservative, Holm rejects at the level α

m , which is a rejection threshold far
deeper into the tail of the null distribution than the considered level of significance. This
causes problems for p-value estimation. However, this remains to be evaluated more in
depth.

Fifth, different marginal distributions between cases and controls also seems to neg-
atively impact FWER control by maxT, as ̂FWER < α again did not hold. Only the
normal-exponential pair was considered. Other combinations of marginals, whilst keep-
ing the first and second moments similar between distributions, might lead to a different
conclusion.

To get to these results, some scripting and implementation of algorithms was required.
Statistical software in R for maxT is quite limited. For the single-step approach to maxT,
the multtest package by Pollard et al. (2005) is sufficient. However, this package only
accounts for a case-control setting. For the complete sequential maxT procedure the flip
package by Finos, Finos, and Rcpp (2011) is available in all data settings, but unfortu-
nately it turned out too slow for large simulation studies as it not compiled and additionally
computes adjusted p-values instead of solely rejecting hypotheses. Therefore the sequential
maxT procedure was manually implemented in R utilizing the pseudocode found in algo-
rithm block 3. Because this was also not optimized, fewer permutations were used to ease
computational demands.

Computational demands overall were a bottleneck in the study, as computation times
for individual tables found in Section 4 sometimes spanned more than 24 hours on a 8.00 GB
RAM device. In particular, repeatedly computing the B×m matrix of test statistics, which
include a standardization component, required a lot of time. Therefore for future simulation
studies regarding this topic, using a higher end device, GPU or server is recommended in
order to speed up the simulation process.

Studies potentially building upon the conclusions tied to this thesis could look into the
performance of the methods under less black-and-white dependence and heteroscedasticity
data configurations. This could also be looked into under different data settings, such as a
continuous outcome Y , or paired data instead of case-control data. Additionally, the role
of sample sizes, skew in sample sizes, the number of hypotheses and the proportion of true
hypotheses could be included as variable parameters in a more extensive study.

36

7 References

Abdi, H., et al. (2007). Bonferroni and šidák corrections for multiple comparisons. Ency-
clopedia of measurement and statistics, 3 , 103–107.

Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N., & Golani, I. (2001). Controlling the false
discovery rate in behavior genetics research. Behavioural brain research, 125 (1-2),
279–284.

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical
and powerful approach to multiple testing. Journal of the Royal statistical society:
series B (Methodological), 57 (1), 289–300.

Berry, K. J., Johnston, J. E., & Mielke Jr, P. W. (2014). A chronicle of permutation
statistical methods. Cham: Springer .

Causeur, D., Friguet, C., Houee-Bigot, M., & Kloareg, M. (2011). Factor analysis for multi-
ple testing (famt): an r package for large-scale significance testing under dependence.
Journal of statistical software, 40 , 1–19.

Dickhaus, T. (2014). Simultaneous statistical inference. In With applications in the life
sciences. Springer.

Finos, L., Finos, M. L., & Rcpp, I. (2011). Package ‘flip’. https://cran.r-project.org/
web/packages/flip/index.html.

Fisher, R. A. (1949). The design of experiments.
Ge, Y., Dudoit, S., & Speed, T. P. (2003). Resampling-based multiple testing for microarray

data analysis. Test , 12 (1), 1–77.
Goeman, J. J. (2017). De zoekende onderzoeker. Inaugural lecture.
Goeman, J. J., & Solari, A. (2014). Multiple hypothesis testing in genomics. Statistics in

medicine, 33 (11), 1946–1978.
Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., . . .

others (1999). Molecular classification of cancer: class discovery and class prediction
by gene expression monitoring. science, 286 (5439), 531–537.

Hemerik, J., & Goeman, J. (2018a). Exact testing with random permutations. Test , 27 (4),
811–825.

Hemerik, J., & Goeman, J. J. (2018b). False discovery proportion estimation by per-
mutations: confidence for significance analysis of microarrays. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 80 (1), 137–155. https://

cran.r-project.org/web/packages/confSAM/index.html.
Hemerik, J., & Goeman, J. J. (2021). Another look at the lady tasting tea and differences

between permutation tests and randomisation tests. International Statistical Review ,
89 (2), 367–381.

Hoeffding, W. (1952). The large-sample power of tests based on permutations of observa-
tions. The Annals of Mathematical Statistics, 169–192.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian
journal of statistics, 65–70.

37

https://cran.r-project.org/web/packages/flip/index.html
https://cran.r-project.org/web/packages/flip/index.html
https://cran.r-project.org/web/packages/confSAM/index.html
https://cran.r-project.org/web/packages/confSAM/index.html

Janssen, A. (1997). Studentized permutation tests for non-iid hypotheses and the gener-
alized behrens-fisher problem. Statistics & probability letters, 36 (1), 9–21.

Johnson, W. E. (1924). Logic part I. CUP Archive.
Lehmann, E. L., Romano, J. P., & Casella, G. (2005). Testing statistical hypotheses

(Vol. 3). Springer.
Marriott, F. H. (1979). Barnard’s monte carlo tests: How many simulations? Journal of

the Royal Statistical Society: Series C (Applied Statistics), 28 (1), 75–77.
Menyhart, O., Weltz, B., & Győrffy, B. (2021). Multipletesting. com: a tool for life science

researchers for multiple hypothesis testing correction. PloS one, 16 (6), e0245824.
Park, H. M. (2008). Hypothesis testing and statistical power of a test. working paper.

http://www.indiana.edu/~statmath/stat/all/power/index.html.
Pollard, K. S., Dudoit, S., & van der Laan, M. J. (2005). Multiple testing procedures:

the multtest package and applications to genomics. in bioinformatics and computa-
tional biology solutions using r and bioconductor. https://www.bioconductor.org/
packages/release/bioc/html/multtest.html.

Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis of microarrays
applied to the ionizing radiation response. Proceedings of the National Academy of
Sciences, 98 (9), 5116–5121.

Welch, B. L. (1947). The generalization of ‘student’s’problem when several different pop-
ulation varlances are involved. Biometrika, 34 (1-2), 28–35.

Westfall, P. H., & Young, S. S. (1993). Resampling-based multiple testing: Examples and
methods for p-value adjustment (Vol. 279). John Wiley & Sons.

38

http://www.indiana.edu/~statmath/stat/all/power/index.html
https://www.bioconductor.org/packages/release/bioc/html/multtest.html
https://www.bioconductor.org/packages/release/bioc/html/multtest.html

Appendix A. Simulation scripts

A.1 maxT: Heterogeneous dependence

1 Load packages

2 ‘‘‘{r}

3 library(multtest)

4 library(MASS)

5 library(ggplot2)

6 library(reshape2)

7 ‘‘‘

8
9 Basic case control simulation for varying dependence (single -step)

10 ‘‘‘{r}

11 simulate <- function(n, ctrl_prop , m, sd_controls , sd_cases , sd_Z, f_prop ,

f_add , B, test , alpha){

12
13 # Define the number of false hypotheses

14 f <- f_prop*m

15
16 # Define groupsizes

17 n_ctrl <- n * ctrl_prop

18 n_case <- n - n_ctrl

19
20 # Simulate group indicator for all entries (0 = control , 1 = case)

21 indicator <- c(rep(0, n_ctrl), rep(1, n_case))

22
23 # Simulate data for cases and controls

24 controls <- mvrnorm(n = n_ctrl , mu = rep(0, m), Sigma = diag(m) * (sd_

controls)^2, empirical = FALSE)

25 cases <- mvrnorm(n = n_case , mu = rep(0, m), Sigma = diag(m) * ((sd_cases

^2) + (sd_Z^2)), empirical = FALSE)

26
27 # Simulate dependency vector or matrix to add to data

28 Z <- rnorm(n_ctrl , mean = 0, sd = sd_Z) # Simulate dependency vector to

add to data matrix row -wise

29
30 # Add dependency between columns through Z

31 controls <- controls + Z

32
33 # Merge cases and controls

34 data <- rbind(controls , cases)

35
36 # Check average correlation between columns of only the controls. Cases

assumed to have 0 correlation.

37 cor <- ((sd_Z)^2)/(sd_controls + (sd_Z)^2)

38
39 # Create f ’false ’ hypotheses by adding f_add to cases in certain columns

40 # mean shift all cases of only false hypotheses , scale with sd_Z

39

41 data[(n_ctrl +1):n, 1:f] <- data[(n_ctrl +1):n, 1:f] + ((f_add/(sqrt (2))) *

sqrt(sd_controls + ((sd_Z)^2) + sd_cases + ((sd_Z)^2)))

42
43 # Perform MaxT method

44 resT <- mt.maxT(X = t(data), classlabel = indicator , test = test , side =

"abs", B = B)

45 rawp <- resT$rawp[order(resT$index)]
46
47 # Perform bonferroni and Holm corrections

48 bonf <- p.adjust(rawp , method = "bonferroni")

49 holm <- p.adjust(rawp , method = "holm")

50
51 # Create matrix of Type I and Type II errors for each method

52 error_mat <- matrix(nrow = 2, ncol = 3)

53
54 error_mat[1,1] <- sum(bonf[(f+1):m] <= 0.05)

55 error_mat[2,1] <- sum(bonf [1:f] > 0.05)

56
57 error_mat[1,2] <- sum(holm[(f+1):m] <= 0.05)

58 error_mat[2,2] <- sum(holm [1:f] > 0.05)

59
60 error_mat[1,3] <- sum(resT$index > f & resT$adjp <= 0.05)

61 error_mat[2,3] <- sum(resT$index <= f & resT$adjp > 0.05)

62
63 # Return these values

64 return(list(error_mat , cor))

65 }

66
67 # Set basic simulation values

68 seed <- 425

69 r <- 1000

70 ‘‘‘

71
72 Simulate different dependence structure between cases and controls.

73 ‘‘‘{r}

74 set.seed(seed)

75 sd_vec <- sqrt(seq(0, 2, 0.4))

76 sim_list_1 <- vector("list", length(sd_vec))

77 fwer_sim1_bonf <- vector(mode = "numeric", length = length(sd_vec))

78 type_2_sim1_bonf <- vector(mode = "numeric", length = length(sd_vec))

79 fwer_sim1_holm <- vector(mode = "numeric", length = length(sd_vec))

80 type_2_sim1_holm <- vector(mode = "numeric", length = length(sd_vec))

81 fwer_sim1_maxT <- vector(mode = "numeric", length = length(sd_vec))

82 type_2_sim1_maxT <- vector(mode = "numeric", length = length(sd_vec))

83 mean_cor <- vector(mode = "numeric", length = length(sd_vec))

84
85 # Simulate with different sd_Z for two sample t-statistic

86 for(i in 1: length(sd_vec)){

87 set.seed(seed)

40

88 sim_list_1[[i]] <- replicate(r, simulate(n = 20, ctrl_prop = 0.5, m =

500, sd_controls = 1, sd_cases = 1, sd_Z = sd_vec[i], f_prop = 0.1, f_

add = 2, B = 20000, test = "t.equalvar", alpha = 0.05))

89 }

90
91 # Compute FWER estimate , type 2 errors and (empirical) correlation

92 for(i in 1: length(sd_vec)){

93 for(j in 1:r){

94 fwer_sim1_bonf[i] <- fwer_sim1_bonf[i] + (sim_list_1[[i]][c(TRUE , FALSE

)][[j]][1, 1] >= 1)

95 type_2_sim1_bonf[i] <- type_2_sim1_bonf[i] + sim_list_1[[i]][c(TRUE ,

FALSE)][[j]][2, 1]

96 fwer_sim1_holm[i] <- fwer_sim1_holm[i] + (sim_list_1[[i]][c(TRUE , FALSE

)][[j]][1, 2] >= 1)

97 type_2_sim1_holm[i] <- type_2_sim1_holm[i] + sim_list_1[[i]][c(TRUE ,

FALSE)][[j]][2, 2]

98 fwer_sim1_maxT[i] <- fwer_sim1_maxT[i] + (sim_list_1[[i]][c(TRUE , FALSE

)][[j]][1, 3] >= 1)

99 type_2_sim1_maxT[i] <- type_2_sim1_maxT[i] + sim_list_1[[i]][c(TRUE ,

FALSE)][[j]][2, 3]

100 mean_cor[i] <- mean_cor[i] + sim_list_1[[i]][c(FALSE , TRUE)][[j]]

101 }

102 }

103
104 fwer_bonf <- fwer_sim1_bonf/r

105 type_2_bonf <- type_2_sim1_bonf/(r*50)

106 fwer_holm <- fwer_sim1_holm/r

107 type_2_holm <- type_2_sim1_holm/(r*50)

108 fwer_maxT <- fwer_sim1_maxT/r

109 type_2_maxT <- type_2_sim1_maxT/(r*50)

110 mean_cor <- mean_cor/r

111
112 fwer_bonf

113 type_2_bonf

114 fwer_holm

115 type_2_holm

116 fwer_maxT

117 type_2_maxT

118 mean_cor

119 ‘‘‘

120
121 Basic case control simulation for varying dependence (sequential)

122 ‘‘‘{r}

123 simulate_seq <- function(n, ctrl_prop , m, sd_controls , sd_cases , sd_Z, f_

prop , f_add , B, alpha){

124
125 # Define the number of false hypotheses

126 f <- f_prop*m

127
128 # Define groupsizes

41

129 n_ctrl <- n * ctrl_prop

130 n_case <- n - n_ctrl

131
132 # Simulate group indicator for all entries (0 = control , 1 = case)

133 indicator <- c(rep(0, n_ctrl), rep(1, n_case))

134
135 # Simulate data for cases and controls

136 controls <- mvrnorm(n = n_ctrl , mu = rep(0, m), Sigma = diag(m) * (sd_

controls)^2, empirical = FALSE)

137 cases <- mvrnorm(n = n_case , mu = rep(0, m), Sigma = diag(m) * ((sd_cases

^2) + (sd_Z^2)), empirical = FALSE)

138
139 # Simulate dependency vector or matrix to add to data

140 Z <- rnorm(n_ctrl , mean = 0, sd = sd_Z) # Simulate dependency vector to

add to data matrix row -wise

141
142 # Add dependency between columns through Z

143 controls <- controls + Z

144
145 # Merge cases and controls

146 data <- rbind(controls , cases)

147
148 # Check average correlation between columns of only the controls. Cases

assumed to have 0 correlation.

149 cor <- ((sd_Z)^2)/(sd_controls + (sd_Z)^2)

150
151 # Create f ’false ’ hypotheses by adding f_add to cases in certain columns

152 # mean shift all cases of only false hypotheses , scale with sd_Z

153 data[(n_ctrl +1):n, 1:f] <- data[(n_ctrl +1):n, 1:f] + ((f_add/(sqrt (2))) *

sqrt(sd_controls + ((sd_Z)^2) + sd_cases + ((sd_Z)^2)))

154
155 # Create indicator for each permutation

156 y <- t(replicate(B, sample(indicator , size = n, replace = FALSE)))

157 y[1,] <- indicator #add identity permutation

158
159 # Permutation matrix of test statistics

160 t_mat <- matrix(nrow = B, ncol = m)

161 for(b in 1:B){

162 for(j in 1:m){

163 x1 <- data[y[b,] == 0, j]

164 x2 <- data[y[b,] == 1, j]

165 n1 <- n_ctrl

166 n2 <- n_case

167 m1 <- mean(x1)

168 m2 <- mean(x2)

169
170 va1 <- ((n1 - 1) * var(x1))

171 va2 <- ((n2 - 1) * var(x2))

172 sp <- sqrt((va1 + va2)/(n1 + n2 - 2))

173

42

174 t_mat[b,j] <- abs((m1 - m2)/(sp * sqrt ((1/n1) + (1/n2))))

175 }

176 }

177
178 # Initialize rejection vectors

179 R <- 1

180 R_new <- vector(length = 0)

181
182 # Start sequential rejection procedure

183 while(setequal(R, R_new) == FALSE){

184
185 # Update rejection vector

186 R <- R_new

187
188 # Get rejection quantile

189 Tmax <- apply(t_mat , 1, max , na.rm = TRUE)

190 q <- sort(Tmax)[(1 - alpha) * B]

191
192 # Select set of hypotheses to consider

193 hypotheses <- 1:m

194 if(length(R) > 0){

195 hypotheses <- hypotheses[-R]

196 }

197
198 # Reject hypotheses based on quantile

199 for(j in hypotheses){

200 if(t_mat[1, j] > q){

201 t_mat[, j] <- NA

202 R_new <- c(R_new , j)

203 }

204 }

205 }

206
207 # Return rejections relative to index

208 error_vec <- vector(length = 2)

209
210 error_vec[1] <- sum(R > f)

211 error_vec[2] <- f - sum(R <= f)

212
213 # Return these values

214 return(list(error_vec))

215 }

216
217 # Set basic simulation values

218 seed <- 425

219 r <- 5000

220 ‘‘‘

221
222 Simulate different dependence structure between cases and controls.

223 ‘‘‘{r}

43

224 set.seed(seed)

225 sd_vec <- sqrt(seq(0, 2, 0.4))

226 sim_list_1_seq <- vector("list", length(sd_vec))

227 type_1 <- vector(mode = "numeric", length = length(sd_vec))

228 type_2 <- vector(mode = "numeric", length = length(sd_vec))

229
230 # Simulate with different sd_Z for two sample t-statistic

231 set.seed(seed)

232 for(i in 1: length(sd_vec)){

233 set.seed(seed)

234 sim_list_1_seq[[i]] <- replicate(r, simulate_seq(n = 20, ctrl_prop = 0.5,

m = 500, sd_controls = 1, sd_cases = 1, sd_Z = sd_vec[i], f_prop =

0.1, f_add = 2, B = 20, alpha = 0.05))

235 }

236
237 # Compute FWER estimate and type 2 errors

238 for(i in 1: length(sd_vec)){

239 for(j in 1:r){

240 type_1[i] <- type_1[i] + sim_list_1_seq[[i]][[j]][1]

241 type_2[i] <- type_2[i] + sim_list_1_seq[[i]][[j]][2]

242 }

243 }

244
245 fwer <- type_1/r

246 power <- 1 - type_2/(r*50)

247
248 fwer

249 power

250
251 # Get confidence bounds for sequential maxT

252 1.96*sqrt (((fwer*(1-fwer))/r))

253 ‘‘‘

44

A.2 maxT: Heteroscedasticity

1 Load packages

2 ‘‘‘{r}

3 library(multtest)

4 library(MASS)

5 library(ggplot2)

6 library(reshape2)

7 ‘‘‘

8
9 Basic case control simulation single -step for heteroscedasticity

10 ‘‘‘{r}

11 simulate <- function(n, ctrl_prop , m, sd_controls , sd_cases , f_prop , f_add ,

B, test , alpha){

12
13 # Define the number of false hypotheses

14 f <- f_prop*m

15
16 # Define groupsizes

17 n_ctrl <- n * ctrl_prop

18 n_case <- n - n_ctrl

19
20 # Simulate group indicator for all entries (0 = control , 1 = case)

21 indicator <- c(rep(0, n_ctrl), rep(1, n_case))

22
23 # Simulate data for cases and controls

24 controls <- mvrnorm(n = n_ctrl , mu = rep(0, m), Sigma = diag(m) * (sd_

controls)^2, empirical = FALSE)

25 cases <- mvrnorm(n = n_case , mu = rep(0, m), Sigma = diag(m) * (sd_cases)

^2, empirical = FALSE)

26
27 # Merge cases and controls

28 data <- rbind(controls , cases)

29
30 # Check average correlation between columns

31 cor <- cor(data [1:n_ctrl ,])

32 mean_cor <- mean(cor)

33
34 # Create f ’false ’ hypotheses by adding f_add to cases in certain columns

35 # mean shift all cases of only false hypotheses

36 data[(n_ctrl +1):n, 1:f] <- data[(n_ctrl +1):n, 1:f] + ((f_add/sqrt (2)) *

sqrt((sd_cases)^2 + (sd_controls)^2))

37
38 # Perform MaxT method

39 resT <- mt.maxT(X = t(data), classlabel = indicator , test = test , side =

"abs", B = B)

40 rawp <- resT$rawp[order(resT$index)]
41
42 # Perform bonferroni and Holm corrections

43 bonf <- p.adjust(rawp , method = "bonferroni")

45

44 holm <- p.adjust(rawp , method = "holm")

45
46 # Create matrix of Type I and Type II errors for each method

47 error_mat <- matrix(nrow = 2, ncol = 3)

48
49 error_mat[1,1] <- sum(bonf[(f+1):m] <= 0.05)

50 error_mat[2,1] <- sum(bonf [1:f] > 0.05)

51
52 error_mat[1,2] <- sum(holm[(f+1):m] <= 0.05)

53 error_mat[2,2] <- sum(holm [1:f] > 0.05)

54
55 error_mat[1,3] <- sum(resT$index > f & resT$adjp <= 0.05)

56 error_mat[2,3] <- sum(resT$index <= f & resT$adjp > 0.05)

57
58 # Return these values

59 return(list(error_mat , mean_cor))

60 }

61
62 # Set basic simulation values

63 seed <- 425

64 r <- 5000

65 ‘‘‘

66
67 Simulate heteroscedasticity setting , higher variance for controls

68 ‘‘‘{r}

69 set.seed(seed)

70 sd_vec <- sqrt(seq(1, 5, 0.8))

71 sim_list_1 <- vector("list", length(sd_vec))

72 fwer_sim1_bonf <- vector(mode = "numeric", length = length(sd_vec))

73 type_2_sim1_bonf <- vector(mode = "numeric", length = length(sd_vec))

74 fwer_sim1_holm <- vector(mode = "numeric", length = length(sd_vec))

75 type_2_sim1_holm <- vector(mode = "numeric", length = length(sd_vec))

76 fwer_sim1_maxT <- vector(mode = "numeric", length = length(sd_vec))

77 type_2_sim1_maxT <- vector(mode = "numeric", length = length(sd_vec))

78 mean_cor <- vector(mode = "numeric", length = length(sd_vec))

79
80 # Simulate with different heteroscedasticity for two sample t statistic

81 for(i in 1: length(sd_vec)){

82 set.seed(seed)

83 sim_list_1[[i]] <- replicate(r, simulate(n = 20, ctrl_prop = 0.5, m =

500, sd_controls = sd_vec[i], sd_cases = 1, f_prop = 0.1, f_add = 2, B

= 20000 , test = "t.equalvar", alpha = 0.05))

84 }

85
86 # compute FWER estimate , type 2 errors and empirical correlation

87 for(i in 1: length(sd_vec)){

88 for(j in 1:r){

89 fwer_sim1_bonf[i] <- fwer_sim1_bonf[i] + (sim_list_1[[i]][c(TRUE , FALSE

)][[j]][1, 1] >= 1)

46

90 type_2_sim1_bonf[i] <- type_2_sim1_bonf[i] + sim_list_1[[i]][c(TRUE ,

FALSE)][[j]][2, 1]

91 fwer_sim1_holm[i] <- fwer_sim1_holm[i] + (sim_list_1[[i]][c(TRUE , FALSE

)][[j]][1, 2] >= 1)

92 type_2_sim1_holm[i] <- type_2_sim1_holm[i] + sim_list_1[[i]][c(TRUE ,

FALSE)][[j]][2, 2]

93 fwer_sim1_maxT[i] <- fwer_sim1_maxT[i] + (sim_list_1[[i]][c(TRUE , FALSE

)][[j]][1, 3] >= 1)

94 type_2_sim1_maxT[i] <- type_2_sim1_maxT[i] + sim_list_1[[i]][c(TRUE ,

FALSE)][[j]][2, 3]

95 mean_cor[i] <- mean_cor[i] + sim_list_1[[i]][c(FALSE , TRUE)][[j]]

96 }

97 }

98
99 fwer_bonf <- fwer_sim1_bonf/r

100 type_2_bonf <- type_2_sim1_bonf/(r*50)

101 fwer_holm <- fwer_sim1_holm/r

102 type_2_holm <- type_2_sim1_holm/(r*50)

103 fwer_maxT <- fwer_sim1_maxT/r

104 type_2_maxT <- type_2_sim1_maxT/(r*50)

105 mean_cor <- mean_cor/r

106
107 fwer_bonf

108 type_2_bonf

109 fwer_holm

110 type_2_holm

111 fwer_maxT

112 type_2_maxT

113 mean_cor

114 ‘‘‘

115
116 Display fwer with confidence bounds and power estimates

117 ‘‘‘{r}

118 fwer_maxT

119 fwer_holm

120 1.96*sqrt (((fwer_maxT*(1-fwer_maxT))/r))

121 1.96*sqrt (((fwer_holm*(1-fwer_holm))/r))

122 1 - type_2_maxT

123 1 - type_2_holm

124 ‘‘‘

125
126 Basic case control simulation for varying heteroscedasticity (sequential)

127 ‘‘‘{r}

128 simulate_seq <- function(n, ctrl_prop , m, sd_controls , sd_cases , f_prop , f_

add , B, alpha){

129
130 # Define the number of false hypotheses

131 f <- f_prop*m

132
133 # Define groupsizes

47

134 n_ctrl <- n * ctrl_prop

135 n_case <- n - n_ctrl

136
137 # Simulate group indicator for all entries (0 = control , 1 = case)

138 indicator <- c(rep(0, n_ctrl), rep(1, n_case))

139
140 # Simulate data for cases and controls

141 controls <- mvrnorm(n = n_ctrl , mu = rep(0, m), Sigma = diag(m) * (sd_

controls)^2, empirical = FALSE)

142 cases <- mvrnorm(n = n_case , mu = rep(0, m), Sigma = diag(m) * (sd_cases)

^2, empirical = FALSE)

143
144 # Merge cases and controls

145 data <- rbind(controls , cases)

146
147 # Create f ’false ’ hypotheses by adding f_add to cases in certain columns

148 # mean shift all cases of only false hypotheses

149 data[(n_ctrl +1):n, 1:f] <- data[(n_ctrl +1):n, 1:f] + ((f_add/sqrt (2)) *

sqrt((sd_cases)^2 + (sd_controls)^2))

150
151 # Create indicator for each permutation

152 y <- t(replicate(B, sample(indicator , size = n, replace = FALSE)))

153 y[1,] <- indicator #add identity permutation

154
155 # Permutation matrix of test statistics

156 t_mat <- matrix(nrow = B, ncol = m)

157 for(b in 1:B){

158 for(j in 1:m){

159 x1 <- data[y[b,] == 0, j]

160 x2 <- data[y[b,] == 1, j]

161 n1 <- n_ctrl

162 n2 <- n_case

163 m1 <- mean(x1)

164 m2 <- mean(x2)

165
166 va1 <- ((n1 - 1) * var(x1))

167 va2 <- ((n2 - 1) * var(x2))

168 sp <- sqrt((va1 + va2)/(n1 + n2 - 2))

169
170 t_mat[b,j] <- abs((m1 - m2)/(sp * sqrt ((1/n1) + (1/n2))))

171 }

172 }

173
174 # Initialize rejection vectors

175 R <- 1

176 R_new <- vector(length = 0)

177
178 # Start sequential rejection procedure

179 while(setequal(R, R_new) == FALSE){

180

48

181 # Update rejection vector

182 R <- R_new

183
184 # Get rejection quantile

185 Tmax <- apply(t_mat , 1, max , na.rm = TRUE)

186 q <- sort(Tmax)[(1 - alpha) * B]

187
188 # Select set of hypotheses to consider

189 hypotheses <- 1:m

190 if(length(R) > 0){

191 hypotheses <- hypotheses[-R]

192 }

193
194 # Reject hypotheses based on quantile

195 for(j in hypotheses){

196 if(t_mat[1, j] > q){

197 t_mat[, j] <- NA

198 R_new <- c(R_new , j)

199 }

200 }

201 }

202 R

203
204 # Return rejections relative to index

205 error_vec <- vector(length = 2)

206
207 error_vec[1] <- sum(R > f)

208 error_vec[2] <- f - sum(R <= f)

209
210 # Return these values

211 return(list(error_vec))

212 }

213
214 # Set basic simulation values

215 seed <- 425

216 r <- 5000

217 ‘‘‘

218
219 Simulate different dependence structure between cases and controls.

220 ‘‘‘{r}

221 set.seed(seed)

222 sd_vec <- sqrt(seq(1, 5, 0.8))

223 sim_list_1_seq <- vector("list", length(sd_vec))

224 type_1 <- vector(mode = "numeric", length = length(sd_vec))

225 type_2 <- vector(mode = "numeric", length = length(sd_vec))

226
227 # Simulate with different heteroscedasticity for two sample t statistic

228 set.seed(seed)

229 for(i in 1: length(sd_vec)){

230 set.seed(seed)

49

231 sim_list_1_seq[[i]] <- replicate(r, simulate_seq(n = 20, ctrl_prop = 0.5,

m = 500, sd_controls = sd_vec[i], sd_cases = 1, f_prop = 0.1, f_add =

2, B = 20, alpha = 0.05))

232 }

233
234 # Compute FWER estimate and count type 2 errors

235 for(i in 1: length(sd_vec)){

236 for(j in 1:r){

237 type_1[i] <- type_1[i] + sim_list_1_seq[[i]][[j]][1]

238 type_2[i] <- type_2[i] + sim_list_1_seq[[i]][[j]][2]

239 }

240 }

241
242 fwer <- type_1/r

243 power <- 1 - type_2/(r*50)

244
245 fwer

246 power

247
248 # Get confidence bounds for sequential maxT

249 1.96*sqrt (((fwer*(1-fwer))/r))

250 ‘‘‘

50

A.3 maxT: Heteroscedasticity (Welch)

1 Load packages

2 ‘‘‘{r}

3 library(multtest)

4 library(MASS)

5 library(ggplot2)

6 library(reshape2)

7 ‘‘‘

8
9 Basic case control simulation for single -step under heteroscedasticity

10 ‘‘‘{r}

11 simulate <- function(n, ctrl_prop , m, sd_controls , sd_cases , f_prop , f_add ,

B, test , alpha){

12
13 # Define the number of false hypotheses

14 f <- f_prop*m

15
16 # Define groupsizes

17 n_ctrl <- n * ctrl_prop

18 n_case <- n - n_ctrl

19
20 # Simulate group indicator for all entries (0 = control , 1 = case)

21 indicator <- c(rep(0, n_ctrl), rep(1, n_case))

22
23 # Simulate data for cases and controls

24 controls <- mvrnorm(n = n_ctrl , mu = rep(0, m), Sigma = diag(m) * (sd_

controls)^2, empirical = FALSE)

25 cases <- mvrnorm(n = n_case , mu = rep(0, m), Sigma = diag(m) * (sd_cases)

^2, empirical = FALSE)

26
27 # Merge cases and controls

28 data <- rbind(controls , cases)

29
30 # Check average correlation between columns

31 cor <- cor(data [1:n_ctrl ,])

32 mean_cor <- mean(cor)

33
34 # Create f ’false ’ hypotheses by adding f_add to cases in certain columns

35 # mean shift all cases of only false hypotheses

36 data[(n_ctrl +1):n, 1:f] <- data[(n_ctrl +1):n, 1:f] + ((f_add/sqrt (2)) *

sqrt((sd_cases)^2 + (sd_controls)^2))

37
38 # Perform MaxT method

39 resT <- mt.maxT(X = t(data), classlabel = indicator , test = test , side =

"abs", B = B)

40 rawp <- resT$rawp[order(resT$index)]
41
42 # Perform bonferroni and Holm corrections

43 bonf <- p.adjust(rawp , method = "bonferroni")

51

44 holm <- p.adjust(rawp , method = "holm")

45
46 # Create matrix of Type I and Type II errors for each method

47 error_mat <- matrix(nrow = 2, ncol = 3)

48
49 error_mat[1,1] <- sum(bonf[(f+1):m] <= 0.05)

50 error_mat[2,1] <- sum(bonf [1:f] > 0.05)

51
52 error_mat[1,2] <- sum(holm[(f+1):m] <= 0.05)

53 error_mat[2,2] <- sum(holm [1:f] > 0.05)

54
55 error_mat[1,3] <- sum(resT$index > f & resT$adjp <= 0.05)

56 error_mat[2,3] <- sum(resT$index <= f & resT$adjp > 0.05)

57
58 # Return these values

59 return(list(error_mat , mean_cor))

60 }

61
62 # Set basic simulation values

63 seed <- 425

64 r <- 5000

65 ‘‘‘

66
67 Simulate heteroscedasticity setting , higher variance for controls (Welch)

68 ‘‘‘{r}

69 set.seed(seed)

70 sd_vec <- sqrt(seq(1, 5, 0.8))

71 sim_list_1 <- vector("list", length(sd_vec))

72 fwer_sim1_bonf <- vector(mode = "numeric", length = length(sd_vec))

73 type_2_sim1_bonf <- vector(mode = "numeric", length = length(sd_vec))

74 fwer_sim1_holm <- vector(mode = "numeric", length = length(sd_vec))

75 type_2_sim1_holm <- vector(mode = "numeric", length = length(sd_vec))

76 fwer_sim1_maxT <- vector(mode = "numeric", length = length(sd_vec))

77 type_2_sim1_maxT <- vector(mode = "numeric", length = length(sd_vec))

78 mean_cor <- vector(mode = "numeric", length = length(sd_vec))

79
80 # Simulate with increasing heteroscedasticity with Welch t statistic

81 for(i in 1: length(sd_vec)){

82 set.seed(seed)

83 sim_list_1[[i]] <- replicate(r, simulate(n = 20, ctrl_prop = 0.4, m =

500, sd_controls = sd_vec[i], sd_cases = 1, f_prop = 0.1, f_add = 2, B

= 20000 , test = "t", alpha = 0.05))

84 }

85
86 # Compute FWER estimate , type 2 error count and empirical correlation

87 for(i in 1: length(sd_vec)){

88 for(j in 1:r){

89 fwer_sim1_bonf[i] <- fwer_sim1_bonf[i] + (sim_list_1[[i]][c(TRUE , FALSE

)][[j]][1, 1] >= 1)

52

90 type_2_sim1_bonf[i] <- type_2_sim1_bonf[i] + sim_list_1[[i]][c(TRUE ,

FALSE)][[j]][2, 1]

91 fwer_sim1_holm[i] <- fwer_sim1_holm[i] + (sim_list_1[[i]][c(TRUE , FALSE

)][[j]][1, 2] >= 1)

92 type_2_sim1_holm[i] <- type_2_sim1_holm[i] + sim_list_1[[i]][c(TRUE ,

FALSE)][[j]][2, 2]

93 fwer_sim1_maxT[i] <- fwer_sim1_maxT[i] + (sim_list_1[[i]][c(TRUE , FALSE

)][[j]][1, 3] >= 1)

94 type_2_sim1_maxT[i] <- type_2_sim1_maxT[i] + sim_list_1[[i]][c(TRUE ,

FALSE)][[j]][2, 3]

95 mean_cor[i] <- mean_cor[i] + sim_list_1[[i]][c(FALSE , TRUE)][[j]]

96 }

97 }

98
99 fwer_bonf <- fwer_sim1_bonf/r

100 type_2_bonf <- type_2_sim1_bonf/(r*50)

101 fwer_holm <- fwer_sim1_holm/r

102 type_2_holm <- type_2_sim1_holm/(r*50)

103 fwer_maxT <- fwer_sim1_maxT/r

104 type_2_maxT <- type_2_sim1_maxT/(r*50)

105 mean_cor <- mean_cor/r

106
107 fwer_bonf

108 type_2_bonf

109 fwer_holm

110 type_2_holm

111 fwer_maxT

112 type_2_maxT

113 mean_cor

114 ‘‘‘

115
116 Simulate heteroscedasticity setting , higher variance for controls (normal

two sample t-test)

117 ‘‘‘{r}

118 set.seed(seed)

119 sd_vec <- sqrt(seq(1, 5, 0.8))

120 sim_list_2 <- vector("list", length(sd_vec))

121 fwer_sim2_bonf <- vector(mode = "numeric", length = length(sd_vec))

122 type_2_sim2_bonf <- vector(mode = "numeric", length = length(sd_vec))

123 fwer_sim2_holm <- vector(mode = "numeric", length = length(sd_vec))

124 type_2_sim2_holm <- vector(mode = "numeric", length = length(sd_vec))

125 fwer_sim2_maxT <- vector(mode = "numeric", length = length(sd_vec))

126 type_2_sim2_maxT <- vector(mode = "numeric", length = length(sd_vec))

127 mean_cor <- vector(mode = "numeric", length = length(sd_vec))

128
129 # # Simulate with increasing heteroscedasticity with two sample t-statistic

130 for(i in 1: length(sd_vec)){

131 set.seed(seed)

132 sim_list_2[[i]] <- replicate(r, simulate(n = 20, ctrl_prop = 0.4, m =

500, sd_controls = sd_vec[i], sd_cases = 1, f_prop = 0.1, f_add = 2, B

53

= 20000 , test = "t.equalvar", alpha = 0.05))

133 }

134
135 # Compute FWER estimate , type 2 error count and empirical correlation

136 for(i in 1: length(sd_vec)){

137 for(j in 1:r){

138 fwer_sim2_bonf[i] <- fwer_sim2_bonf[i] + (sim_list_2[[i]][c(TRUE , FALSE

)][[j]][1, 1] >= 1)

139 type_2_sim2_bonf[i] <- type_2_sim2_bonf[i] + sim_list_2[[i]][c(TRUE ,

FALSE)][[j]][2, 1]

140 fwer_sim2_holm[i] <- fwer_sim2_holm[i] + (sim_list_2[[i]][c(TRUE , FALSE

)][[j]][1, 2] >= 1)

141 type_2_sim2_holm[i] <- type_2_sim2_holm[i] + sim_list_2[[i]][c(TRUE ,

FALSE)][[j]][2, 2]

142 fwer_sim2_maxT[i] <- fwer_sim2_maxT[i] + (sim_list_2[[i]][c(TRUE , FALSE

)][[j]][1, 3] >= 1)

143 type_2_sim2_maxT[i] <- type_2_sim2_maxT[i] + sim_list_2[[i]][c(TRUE ,

FALSE)][[j]][2, 3]

144 mean_cor[i] <- mean_cor[i] + sim_list_2[[i]][c(FALSE , TRUE)][[j]]

145 }

146 }

147
148 fwer_bonf_sim2 <- fwer_sim2_bonf/r

149 type_2_bonf_sim2 <- type_2_sim2_bonf/(r*50)

150 fwer_holm_sim2 <- fwer_sim2_holm/r

151 type_2_holm_sim2 <- type_2_sim2_holm/(r*50)

152 fwer_maxT_sim2 <- fwer_sim2_maxT/r

153 type_2_maxT_sim2 <- type_2_sim2_maxT/(r*50)

154 mean_cor_sim2 <- mean_cor/r

155
156 fwer_bonf_sim2

157 type_2_bonf_sim2

158 fwer_holm_sim2

159 type_2_holm_sim2

160 fwer_maxT_sim2

161 type_2_maxT_sim2

162 mean_cor_sim2

163 ‘‘‘

164
165 Display fwer with confidence bounds and power estimates

166 ‘‘‘{r}

167 #MaxT single -step

168
169 fwer_maxT_sim2

170 fwer_maxT

171 1.96*sqrt (((fwer_maxT_sim2*(1-fwer_maxT_sim2))/r))

172 1.96*sqrt (((fwer_maxT*(1-fwer_maxT))/r))

173 1 - type_2_maxT_sim2

174 1 - type_2_maxT

175

54

176 #Holm

177
178 fwer_holm_sim2

179 fwer_holm

180 1.96*sqrt (((fwer_holm_sim2*(1-fwer_holm_sim2))/r))

181 1.96*sqrt (((fwer_holm*(1-fwer_holm))/r))

182 1 - type_2_holm_sim2

183 1 - type_2_holm

184 ‘‘‘

185
186 Basic case control simulation for varying heteroscedasticity , normal t-test

(sequential)

187 ‘‘‘{r}

188 simulate_seq <- function(n, ctrl_prop , m, sd_controls , sd_cases , f_prop , f_

add , B, alpha){

189
190 # Define the number of false hypotheses

191 f <- f_prop*m

192
193 # Define groupsizes

194 n_ctrl <- n * ctrl_prop

195 n_case <- n - n_ctrl

196
197 # Simulate group indicator for all entries (0 = control , 1 = case)

198 indicator <- c(rep(0, n_ctrl), rep(1, n_case))

199
200 # Simulate data for cases and controls

201 controls <- mvrnorm(n = n_ctrl , mu = rep(0, m), Sigma = diag(m) * (sd_

controls)^2, empirical = FALSE)

202 cases <- mvrnorm(n = n_case , mu = rep(0, m), Sigma = diag(m) * (sd_cases)

^2, empirical = FALSE)

203
204 # Merge cases and controls

205 data <- rbind(controls , cases)

206
207 # Create f ’false ’ hypotheses by adding f_add to cases in certain columns

208 # mean shift all cases of only false hypotheses

209 data[(n_ctrl +1):n, 1:f] <- data[(n_ctrl +1):n, 1:f] + ((f_add/sqrt (2)) *

sqrt((sd_cases)^2 + (sd_controls)^2))

210
211 # Create indicator for each permutation

212 y <- t(replicate(B, sample(indicator , size = n, replace = FALSE)))

213 y[1,] <- indicator #add identity permutation

214
215 # Permutation matrix of test statistics

216 t_mat <- matrix(nrow = B, ncol = m)

217 for(b in 1:B){

218 for(j in 1:m){

219 x1 <- data[y[b,] == 0, j]

220 x2 <- data[y[b,] == 1, j]

55

221 n1 <- n_ctrl

222 n2 <- n_case

223 m1 <- mean(x1)

224 m2 <- mean(x2)

225
226 va1 <- ((n1 - 1) * var(x1))

227 va2 <- ((n2 - 1) * var(x2))

228 sp <- sqrt((va1 + va2)/(n1 + n2 - 2))

229
230 t_mat[b,j] <- abs((m1 - m2)/(sp * sqrt ((1/n1) + (1/n2))))

231 }

232 }

233
234 # Initialize rejection vectors

235 R <- 1

236 R_new <- vector(length = 0)

237
238 # Start sequential rejection procedure

239 while(setequal(R, R_new) == FALSE){

240
241 # Update rejection vector

242 R <- R_new

243
244 # Get rejection quantile

245 Tmax <- apply(t_mat , 1, max , na.rm = TRUE)

246 q <- sort(Tmax)[(1 - alpha) * B]

247
248 # Select set of hypotheses to consider

249 hypotheses <- 1:m

250 if(length(R) > 0){

251 hypotheses <- hypotheses[-R]

252 }

253
254 # Reject hypotheses based on quantile

255 for(j in hypotheses){

256 if(t_mat[1, j] > q){

257 t_mat[, j] <- NA

258 R_new <- c(R_new , j)

259 }

260 }

261 }

262 R

263
264 # Return rejections relative to index

265 error_vec <- vector(length = 2)

266
267 error_vec[1] <- sum(R > f)

268 error_vec[2] <- f - sum(R <= f)

269
270 # Return these values

56

271 return(list(error_vec))

272 }

273
274 # Set basic simulation values

275 seed <- 425

276 r <- 5000

277 ‘‘‘

278
279 Simulate different dependence structure between cases and controls.

280 ‘‘‘{r}

281 set.seed(seed)

282 sd_vec <- sqrt(seq(1, 5, 0.8))

283 sim_list_1_seq <- vector("list", length(sd_vec))

284 type_1 <- vector(mode = "numeric", length = length(sd_vec))

285 type_2 <- vector(mode = "numeric", length = length(sd_vec))

286
287 # Simulate with different heteroscedascitiy for two sample t-test statistic

288 set.seed(seed)

289 for(i in 1: length(sd_vec)){

290 set.seed(seed)

291 sim_list_1_seq[[i]] <- replicate(r, simulate_seq(n = 20, ctrl_prop = 0.4,

m = 500, sd_controls = sd_vec[i], sd_cases = 1, f_prop = 0.1, f_add =

2, B = 20, alpha = 0.05))

292 }

293
294 # Compute FWER estimate and Type 2 error count

295 for(i in 1: length(sd_vec)){

296 for(j in 1:r){

297 type_1[i] <- type_1[i] + sim_list_1_seq[[i]][[j]][1]

298 type_2[i] <- type_2[i] + sim_list_1_seq[[i]][[j]][2]

299 }

300 }

301
302 fwer <- type_1/r

303 power <- 1 - type_2/(r*50)

304
305 fwer

306 power

307
308 # Get confidence bounds for sequential maxT

309 1.96*sqrt (((fwer*(1-fwer))/r))

310 ‘‘‘

57

A.4 maxT: Different distributions

1 Load packages

2 ‘‘‘{r}

3 library(multtest)

4 library(MASS)

5 library(ggplot2)

6 library(reshape2)

7 ‘‘‘

8
9 Basic case control simulation for different marginal distributions (

exponential - normal)

10 ‘‘‘{r}

11 simulate_distr <- function(n, ctrl_prop , m, sd_controls , lambda , f_prop , f_

add , B, test , alpha){

12
13 # Define the number of false hypotheses

14 f <- f_prop*m

15
16 # Define standard deviation of cases

17 sd_cases <- sqrt(1/(lambda ^2))

18
19 # Define groupsizes

20 n_ctrl <- n * ctrl_prop

21 n_case <- n - n_ctrl

22
23 # Simulate group indicator for all entries (0 = control , 1 = case)

24 indicator <- c(rep(0, n_ctrl), rep(1, n_case))

25
26 # Simulate data for cases and controls

27 controls <- mvrnorm(n = n_ctrl , mu = rep(0, m), Sigma = diag(m) * (sd_

controls)^2, empirical = FALSE)

28 cases <- matrix(rexp((n_case)*m, rate = lambda), nrow = n_case , ncol = m)

- (1/lambda)

29
30 # Merge cases and controls

31 data <- rbind(controls , cases)

32
33 # Create f ’false ’ hypotheses by adding f_add to cases in certain columns

34 # mean shift all cases of only false hypotheses

35 data[(n_ctrl +1):n, 1:f] <- data[(n_ctrl +1):n, 1:f] + ((f_add/sqrt (2)) *

sqrt((sd_cases)^2 + (sd_controls)^2))

36
37
38 # Perform MaxT method

39 resT <- mt.maxT(X = t(data), classlabel = indicator , test = test , side =

"abs", B = B)

40 rawp <- resT$rawp[order(resT$index)]
41
42 # Perform bonferroni and Holm corrections

58

43 bonf <- p.adjust(rawp , method = "bonferroni")

44 holm <- p.adjust(rawp , method = "holm")

45
46 # Create matrix of Type I and Type II errors for each method

47 error_mat <- matrix(nrow = 2, ncol = 3)

48
49 error_mat[1,1] <- sum(bonf[(f+1):m] <= 0.05)

50 error_mat[2,1] <- sum(bonf [1:f] > 0.05)

51
52 error_mat[1,2] <- sum(holm[(f+1):m] <= 0.05)

53 error_mat[2,2] <- sum(holm [1:f] > 0.05)

54
55 error_mat[1,3] <- sum(resT$index > f & resT$adjp <= 0.05)

56 error_mat[2,3] <- sum(resT$index <= f & resT$adjp > 0.05)

57
58 # Return these values

59 return(error_mat)

60 }

61
62 # Set basic simulation values

63 seed <- 425

64 r <- 5000

65 ‘‘‘

66
67 Simulate for different marginals

68 ‘‘‘{r}

69 fwer_sim1_holm <- vector("numeric", length = 1)

70 type_2_sim1_holm <- vector("numeric", length = 1)

71 fwer_sim1_maxT <- vector("numeric", length = 1)

72 type_2_sim1_maxT <- vector("numeric", length = 1)

73
74 # Controls are exp , cases are normal

75 set.seed(seed)

76 sim_1 <- replicate(r, simulate_distr(n = 20, ctrl_prop = 0.5, m = 500, sd_

controls = 1, lambda = 1, f_prop = 0.1, f_add = 2, B = 20000 , test = "t.

equalvar", alpha = 0.05))

77
78 # Compute FWER estimate and type 2 error count

79 for(j in 1:r){

80 fwer_sim1_holm <- fwer_sim1_holm + (sim_1[1, 2, j] >= 1)

81 type_2_sim1_holm <- type_2_sim1_holm + sim_1[2, 2, j]

82 fwer_sim1_maxT <- fwer_sim1_maxT + (sim_1[1, 3, j] >= 1)

83 type_2_sim1_maxT <- type_2_sim1_maxT + sim_1[2, 3, j]

84 }

85
86 fwer_sim1_holm <- fwer_sim1_holm/r

87 fwer_sim1_maxT <- fwer_sim1_maxT/r

88 type_2_sim1_holm <- type_2_sim1_holm/(r*50)

89 type_2_sim1_maxT <- type_2_sim1_maxT/(r*50)

90

59

91 fwer_sim1_holm

92 fwer_sim1_maxT

93 type_2_sim1_holm

94 type_2_sim1_maxT

95
96 1.96*sqrt (((fwer_sim1_holm*(1-fwer_sim1_holm))/r))

97 1.96*sqrt (((type_2_sim1_maxT*(1-type_2_sim1_maxT))/r))

98 1 - type_2_sim1_holm

99 1 - type_2_sim1_maxT

100 ‘‘‘

101
102 Basic case control simulation for different marginal distributions (

sequential)

103 ‘‘‘{r}

104 simulate_seq_w <- function(n, ctrl_prop , m, sd_controls , lambda , f_prop , f_

add , B, alpha){

105
106 # Define the number of false hypotheses

107 f <- f_prop*m

108
109 # Define standard deviation of cases

110 sd_cases <- sqrt(1/(lambda ^2))

111
112 # Define groupsizes

113 n_ctrl <- n * ctrl_prop

114 n_case <- n - n_ctrl

115
116 # Simulate group indicator for all entries (0 = control , 1 = case)

117 indicator <- c(rep(0, n_ctrl), rep(1, n_case))

118
119 # Simulate data for cases and controls

120 controls <- mvrnorm(n = n_ctrl , mu = rep(0, m), Sigma = diag(m) * (sd_

controls)^2, empirical = FALSE)

121 cases <- matrix(rexp((n_case)*m, rate = lambda), nrow = n_case , ncol = m)

- (1/lambda)

122
123 # Merge cases and controls

124 data <- rbind(controls , cases)

125
126 # Create f ’false ’ hypotheses by adding f_add to cases in certain columns

127 # mean shift all cases of only false hypotheses

128 data[(n_ctrl +1):n, 1:f] <- data[(n_ctrl +1):n, 1:f] + ((f_add/sqrt (2)) *

sqrt((sd_cases)^2 + (sd_controls)^2))

129
130 # Create indicator for each permutation

131 y <- t(replicate(B, sample(indicator , size = n, replace = FALSE)))

132 y[1,] <- indicator #add identity permutation

133
134 # Permutation matrix of test statistics

135 t_mat <- matrix(nrow = B, ncol = m)

60

136 for(b in 1:B){

137 for(j in 1:m){

138 x1 <- data[y[b,] == 0, j]

139 x2 <- data[y[b,] == 1, j]

140 n1 <- n_ctrl

141 n2 <- n_case

142 m1 <- mean(x1)

143 m2 <- mean(x2)

144
145 sd1 <- sd(x1)

146 sd2 <- sd(x2)

147 sdx1 <- sd1/sqrt(n1)

148 sdx2 <- sd2/sqrt(n2)

149
150 t_mat[b,j] <- abs((m1 - m2)/(sqrt((sdx1 ^2) + (sdx2 ^2))))

151 }

152 }

153
154 # Initialize rejection vectors

155 R <- 1

156 R_new <- vector(length = 0)

157
158 # Start sequential rejection procedure

159 while(setequal(R, R_new) == FALSE){

160
161 # Update rejection vector

162 R <- R_new

163
164 # Get rejection quantile

165 Tmax <- apply(t_mat , 1, max , na.rm = TRUE)

166 q <- sort(Tmax)[(1 - alpha) * B]

167
168 # Select set of hypotheses to consider

169 hypotheses <- 1:m

170 if(length(R) > 0){

171 hypotheses <- hypotheses[-R]

172 }

173
174 # Reject hypotheses based on quantile

175 for(j in hypotheses){

176 if(t_mat[1, j] > q){

177 t_mat[, j] <- NA

178 R_new <- c(R_new , j)

179 }

180 }

181 }

182 R

183
184 # Return rejections relative to index

185 error_vec <- vector(length = 2)

61

186
187 error_vec[1] <- sum(R > f)

188 error_vec[2] <- f - sum(R <= f)

189
190 # Return these values

191 return(list(error_vec))

192 }

193
194 # Set basic simulation values

195 seed <- 425

196 r <- 5000

197 ‘‘‘

198
199 Simulate for different marginals

200 ‘‘‘{r}

201 type_1_w <- vector("numeric", length = 1)

202 type_2_w <- vector("numeric", length = 1)

203
204 # Simulate

205 set.seed(seed)

206 sim_1_seq_w <- replicate(r, simulate_seq_w(n = 20, ctrl_prop = 0.5, m =

500, sd_controls = 1, lambda = 1, f_prop = 0.1, f_add = 2, B = 20, alpha

= 0.05))

207
208 # Compute FWER estimate and type 2 error count

209 for(j in 1:r){

210 type_1_w <- type_1_w + sim_1_seq_w[[j]][1]

211 type_2_w <- type_2_w + sim_1_seq_w[[j]][2]

212 }

213
214 fwer_w <- type_1_w/r

215 power_w <- 1 - type_2_w/(r*50)

216
217 fwer_w

218 power_w

219
220 # Get confidence bounds for sequential maxT

221 1.96*sqrt (((fwer_w*(1-fwer_w))/r))

222 ‘‘‘

62

A.5 SAM: Heterogeneous dependence

1 ‘‘‘{r}

2 library(MASS)

3 library(confSAM)

4 ‘‘‘

5
6 Case control simulation variable correlation structure

7 ‘‘‘{r}

8 simulate <- function(n, ctrl_prop , m, sd_controls , sd_cases , sd_Z, f_prop ,

f_add , B, cutoff , alpha){

9
10 # Define the number of false hypotheses

11 f <- f_prop*m

12
13 # Define groupsizes

14 n_ctrl <- n * ctrl_prop

15 n_case <- n - n_ctrl

16
17 # Simulate group indicator for all entries (0 = control , 1 = case)

18 indicator <- c(rep(0, n_ctrl), rep(1, n_case))

19
20 # Simulate data for cases and controls

21 controls <- mvrnorm(n = n_ctrl , mu = rep(0, m), Sigma = diag(m) * (sd_

controls)^2, empirical = FALSE)

22 cases <- mvrnorm(n = n_case , mu = rep(0, m), Sigma = diag(m) * ((sd_cases

^2) + (sd_Z^2)), empirical = FALSE)

23
24 # Simulate dependency vector or matrix to add to data

25 Z <- rnorm(n_ctrl , mean = 0, sd = sd_Z) # Simulate dependency vector to

add to data matrix row -wise

26
27 # Add dependency between columns through Z

28 controls <- controls + Z

29
30 # Merge cases and controls

31 data <- rbind(controls , cases)

32
33 # Check average correlation between columns of only the controls. Cases

assumed to have 0 correlation.

34 # cor <- ((sd_Z)^2)/(sd_controls + (sd_Z)^2)

35
36 # Create f ’false ’ hypotheses by adding f_add to cases in certain columns

37 # mean shift all cases of only false hypotheses , scale with sd_Z

38 data[(n_ctrl +1):n, 1:f] <- data[(n_ctrl +1):n, 1:f] + ((f_add/(sqrt (2))) *

sqrt(sd_controls + ((sd_Z)^2) + sd_cases + ((sd_Z)^2)))

39
40 # Create indicator for each permutation

41 y <- t(replicate(B, sample(indicator , size = n, replace = FALSE)))

42 y[1,] <- indicator #add identity permutation

63

43
44 # Permutation p-values

45 p_mat <- matrix(nrow = B, ncol = m)

46 for(b in 1:B){

47 for(j in 1:m){

48 x1 <- data[y[b,] == 0, j]

49 x2 <- data[y[b,] == 1, j]

50 n1 <- n_ctrl

51 n2 <- n_case

52 m1 <- mean(x1)

53 m2 <- mean(x2)

54
55 va1 <- ((n1 - 1) * var(x1))

56 va2 <- ((n2 - 1) * var(x2))

57 sp <- sqrt((va1 + va2)/(n1 + n2 - 2))

58
59 teststat <- abs((m1 - m2)/(sp * sqrt ((1/n1) + (1/n2))))

60 p_mat[b,j] <- 2 * pt(teststat , n1 + n2 - 2, lower = FALSE)

61 }

62 }

63
64 # Permutation p-values

65 # p_mat <- matrix(nrow = B, ncol = m)

66 # for(b in 1:B){

67 # for(j in 1:m){

68 # p_mat[b,j] <- t.test(data[y[b,] == 1, j], data[y[b,] == 0, j],

alternative = "two.sided")$p.value
69 # }

70 # }

71
72 # Sample pvalues using permutation t-test

73 # p_0 <- vector(length = 0)

74 # for(j in 1:m){

75 # p_0[j] <- (sum(p_mat[1, j] >= p_mat[2:B, j])+1)/B

76 # }

77
78 # Sample pvalues using t-test

79 # p_0 <- vector(length = m)

80 # for(j in 1:m){

81 # p_0[j] <- t.test(data [1:n_ctrl , j], data[(n_ctrl +1):n, j],

alternative = "two.sided", var.equal = TRUE)$p.value
82 # }

83
84 # True FDP

85 V <- sum(p_mat[1, (f+1):m] <= cutoff)

86 R <- sum(p_mat[1, 1:m] <= cutoff)

87 FDP <- V/R

88 FDP[is.nan(FDP)] <- 0

89

64

90 SAM <- confSAM(p = p_mat[1,], PM = p_mat , cutoff = cutoff , alpha = alpha

, method = "simple")

91 FDP_SAM <- SAM [3]/SAM [1]

92
93 return(c(FDP , FDP_SAM))

94 }

95
96 # Set basic simulation values

97 seed <- 425

98 r <- 5000

99 ‘‘‘

100
101 Simulate different dependence structures between cases and controls.

102 ‘‘‘{r}

103 set.seed(seed)

104 sd_vec <- sqrt(seq(0, 2, 0.4))

105 sim_list_1 <- vector("list", length(sd_vec))

106 FDP_err_rate <- vector(mode = "numeric", length = length(sd_vec))

107
108 # Simulate with different correlation for two sample t-statistic

109 for(i in 1: length(sd_vec)){

110 set.seed(seed)

111 sim_list_1[[i]] <- replicate(r, simulate(n = 20, ctrl_prop = 0.5, m =

500, sd_controls = 1, sd_cases = 1, sd_Z = sd_vec[i], f_prop = 0.1, f_

add = 2, B = 100, cutoff = 0.01, alpha = 0.05))

112 }

113
114 for(i in 1: length(sd_vec)){

115 greater <- sum(na.omit(sim_list_1[[i]][c(TRUE , FALSE)] > sim_list_1[[i]][

c(FALSE , TRUE)]))

116 total <- length(na.omit(sim_list_1[[i]][c(TRUE , FALSE)] > sim_list_1[[i

]][c(FALSE , TRUE)]))

117 FDP_err_rate[i] <- greater/total

118 }

119
120 # Estimate for P(FDP > Upper_bound)

121 FDP_err_rate

122 1.96*sqrt (((FDP_err_rate*(1 - FDP_err_rate))/r))

123 ‘‘‘

65

A.6 SAM: Heteroscedasticity

1 ‘‘‘{r}

2 library(MASS)

3 library(confSAM)

4 ‘‘‘

5
6 Case control simulation variable variance structure

7 ‘‘‘{r}

8 simulate <- function(n, ctrl_prop , m, sd_controls , sd_cases , f_prop , f_add ,

B, cutoff , alpha){

9
10 # Define the number of false hypotheses

11 f <- f_prop*m

12
13 # Define groupsizes

14 n_ctrl <- n * ctrl_prop

15 n_case <- n - n_ctrl

16
17 # Simulate group indicator for all entries (0 = control , 1 = case)

18 indicator <- c(rep(0, n_ctrl), rep(1, n_case))

19
20 # Simulate data for cases and controls

21 controls <- mvrnorm(n = n_ctrl , mu = rep(0, m), Sigma = diag(m) * ((sd_

controls)^2), empirical = FALSE)

22 cases <- mvrnorm(n = n_case , mu = rep(0, m), Sigma = diag(m) * ((sd_cases

)^2), empirical = FALSE)

23
24 # Merge cases and controls

25 data <- rbind(controls , cases)

26
27 # Create f ’false ’ hypotheses by adding f_add to cases in certain columns

28 # mean shift all cases of only false hypotheses

29 data[(n_ctrl +1):n, 1:f] <- data[(n_ctrl +1):n, 1:f] + (f_add * sqrt((sd_

cases)^2 + (sd_controls)^2))

30
31 # Create indicator for each permutation

32 y <- t(replicate(B, sample(indicator , size = n, replace = FALSE)))

33 y[1,] <- indicator #add identity permutation

34
35 # Permutation p-values

36 p_mat <- matrix(nrow = B, ncol = m)

37 for(b in 1:B){

38 for(j in 1:m){

39 x1 <- data[y[b,] == 0, j]

40 x2 <- data[y[b,] == 1, j]

41 n1 <- n_ctrl

42 n2 <- n_case

43 m1 <- mean(x1)

44 m2 <- mean(x2)

66

45
46 va1 <- ((n1 - 1) * var(x1))

47 va2 <- ((n2 - 1) * var(x2))

48 sp <- sqrt((va1 + va2)/(n1 + n2 - 2))

49
50 teststat <- abs((m1 - m2)/(sp * sqrt ((1/n1) + (1/n2))))

51 p_mat[b,j] <- 2 * pt(teststat , n1 + n2 - 2, lower = FALSE)

52 }

53 }

54
55 # Permutation p-values

56 # p_mat <- matrix(nrow = B, ncol = m)

57 # for(b in 1:B){

58 # for(j in 1:m){

59 # p_mat[b,j] <- t.test(data[y[b,] == 1, j], data[y[b,] == 0, j],

alternative = "two.sided")$p.value
60 # }

61 # }

62
63 # Sample pvalues using permutation t-test

64 # p_0 <- vector(length = 0)

65 # for(j in 1:m){

66 # p_0[j] <- (sum(p_mat[1, j] >= p_mat[2:B, j])+1)/B

67 # }

68
69 # Sample pvalues using t-test

70 # p_0 <- vector(length = m)

71 # for(j in 1:m){

72 # p_0[j] <- t.test(data [1:n_ctrl , j], data[(n_ctrl +1):n, j],

alternative = "two.sided", var.equal = TRUE)$p.value
73 # }

74
75 # True FDP

76 V <- sum(p_mat[1, (f+1):m] <= cutoff)

77 R <- sum(p_mat[1, 1:m] <= cutoff)

78 FDP <- V/R

79 FDP[is.nan(FDP)] <- 0

80
81 SAM <- confSAM(p = p_mat[1,], PM = p_mat , cutoff = cutoff , alpha = alpha

, method = "simple")

82 FDP_SAM <- SAM[3]/SAM [1]

83
84 return(c(FDP , FDP_SAM))

85 }

86
87 # Set basic simulation values

88 seed <- 425

89 r <- 5000

90 ‘‘‘

91

67

92 Simulate different variance structures between cases and controls.

93 ‘‘‘{r}

94 set.seed(seed)

95 sd_vec <- sqrt(seq(1, 5, 0.8))

96 sim_list_1 <- vector("list", length(sd_vec))

97 FDP_err_rate <- vector(mode = "numeric", length = length(sd_vec))

98
99 # Simulate with different variance for two sample t-statistic

100 for(i in 1: length(sd_vec)){

101 set.seed(seed)

102 sim_list_1[[i]] <- replicate(r, simulate(n = 20, ctrl_prop = 0.5, m =

500, sd_controls = sd_vec[i], sd_cases = 1, f_prop = 0.1, f_add = 2, B

= 100, cutoff = 0.01, alpha = 0.05))

103 }

104
105 for(i in 1: length(sd_vec)){

106 greater <- sum(na.omit(sim_list_1[[i]][c(TRUE , FALSE)] > sim_list_1[[i]][

c(FALSE , TRUE)]))

107 total <- length(na.omit(sim_list_1[[i]][c(TRUE , FALSE)] > sim_list_1[[i

]][c(FALSE , TRUE)]))

108 FDP_err_rate[i] <- greater/total

109 }

110
111 # Estimate for P(FDP > Upper_bound)

112 FDP_err_rate

113 1.96*sqrt (((FDP_err_rate*(1 - FDP_err_rate))/r))

114 ‘‘‘

68

A.7 Data Illustration

1 Load packages

2 ‘‘‘{r}

3 library(confSAM)

4 library(cancerdata)

5 library(multtest)

6 library(reshape2)

7 library(ggplot2)

8 library(scales)

9 library(MASS)

10 ‘‘‘

11
12 Golub - read in the data

13 ‘‘‘{r}

14 data(golub)

15 X <- t(golub)

16 Y <- golub.cl

17 ‘‘‘

18
19 Golub - IDA

20 ‘‘‘{r}

21 # #Check correlations within groups compare

22 # cors_ctrl <- (cor(X[1:27 ,]))

23 # cors_ctrl_up <- cors_ctrl[upper.tri(cors_ctrl , diag = FALSE)]

24 # cors_ctrl_vec <- as.vector(cors_ctrl_up)

25 #

26 # ncol(golub)

27 #

28 # cors_case <- (cor(X[1:38 ,]))

29 # cors_case_up <- cors_case[upper.tri(cors_case , diag = FALSE)]

30 # cors_case_vec <- as.vector(cors_case_up)

31 #

32 # # Plot correlation density of each group

33 # df_cor <- data.frame(values = c(cors_ctrl_vec ,

34 # cors_case_vec),

35 # Groups = c(rep("ALL", length(cors_ctrl_vec)),

36 # rep("AML", length(cors_case_vec))))

37 #

38 # ggplot(df_cor , aes(x = values , fill = Groups)) +

39 # geom_histogram(position = "identity", alpha = 0.5, bins = 100) +

40 # scale_x_continuous(breaks = seq(-1, 1, 0.5)) +

41 # scale_y_continuous(breaks = seq(0, 160000 , 40000)) +

42 # labs(x = "Correlation (\ u03c1)", y = "Count") +

43 # theme_minimal(base_size = 13) +

44 # scale_fill_manual(values = c("#21918c", "#3 b528b "))

45 #

46 # # mean and sd of cor distributions

47 # mean(cors_ctrl)

48 # mean(cors_case)

69

49 # sd(cors_ctrl)

50 # sd(cors_case)

51
52 #Check heteroscedasticity within groups and compare

53 sds_ctrl <- apply(X[1:27,], 2, sd)

54 sds_case <- apply(X[1:38,], 2, sd)

55
56 # Plot sd density of each group

57 # df_sd <- data.frame(values = c(sds_ctrl ,

58 # sds_case),

59 # Groups = c(rep("ALL", length(sds_ctrl)),

60 # rep("AML", length(sds_case))))

61 #

62 # ggplot(df_sd, aes(x = values , fill = Groups)) +

63 # geom_histogram(position = "identity", alpha = 0.5, bins = 50) +

64 # scale_x_continuous(breaks = seq(0, 2, 0.5)) +

65 # scale_y_continuous(breaks = seq(0, 400, 100)) +

66 # labs(x = "Standard deviation (\ U03c3)", y = "Count") +

67 # theme_minimal(base_size = 13) +

68 # scale_fill_manual(values = c("#21918c", "#3 b528b "))

69
70 mean(sds_ctrl)

71 mean(sds_cases)

72
73 sd(sds_ctrl)

74 sd(sds_cases)

75
76 df_sd_scat <- data.frame(ALL = sds_ctrl ,

77 AML = sds_case)

78
79 ggplot(df_sd_scat , aes(x = ALL , y = AML)) +

80 geom_point(pch = 1, color = "#3b528b") +

81 geom_abline(intercept = 0, slope = 1, color = "#EF4444", linetype = "

dashed", size = 1.05) +

82 scale_x_continuous(breaks = seq(0, 2.5, 0.5), expand = c(0.01 , 0.01)) +

83 scale_y_continuous(breaks = seq(0, 2.5, 0.5), expand = c(0.01 , 0.01)) +

84 labs(x = expression(sigma[ALL]), y = expression(sigma[AML])) +

85 theme_minimal(base_size = 13)

86 ‘‘‘

87
88 Golub - maxT single -step

89 ‘‘‘{r}

90 B <- 305100

91
92 # Perform MaxT and Holm

93 set.seed (425)

94 resT <- mt.maxT(X = t(X), classlabel = Y, test = "t.equalvar", side = "abs"

, B = B)

95 rawp <- resT$rawp[order(resT$index)]
96 holm <- p.adjust(rawp , method = "holm")

70

97
98 sum(rawp < 0.05)

99 sum(sort(holm) < 0.05)

100 sum(resT$adjp < 0.05)

101
102 # Perform MaxT and Holm for Welch

103 set.seed (425)

104 resT_w <- mt.maxT(X = t(X), classlabel = Y, test = "t", side = "abs", B = B

)

105 rawp_w <- resT_w$rawp[order(resT_w$index)]
106 holm_w <- p.adjust(rawp_w, method = "holm")

107
108 sum(rawp_w < 0.05)

109 sum(sort(holm_w) < 0.05)

110 sum(resT_w$adjp < 0.05)

111 ‘‘‘

112
113 Golub - SAM

114 ‘‘‘{r}

115 data_ex_SAM <- function(X, Y, B, cutoff , alpha){

116
117 # Create indicator for each permutation

118 m <- ncol(X)

119 n <- nrow(X)

120 n_ctrl <- sum(Y == 0)

121 n_case <- sum(Y == 1)

122
123 y <- t(replicate(B, sample(Y, size = n, replace = FALSE)))

124 y[1,] <- Y #add identity permutation

125
126 # Permutation p-values

127 p_mat <- matrix(nrow = B, ncol = m)

128 for(b in 1:B){

129 for(j in 1:m){

130 x1 <- X[y[b,] == 0, j]

131 x2 <- X[y[b,] == 1, j]

132 n1 <- n_ctrl

133 n2 <- n_case

134 m1 <- mean(x1)

135 m2 <- mean(x2)

136
137 va1 <- ((n1 - 1) * var(x1))

138 va2 <- ((n2 - 1) * var(x2))

139 sp <- sqrt((va1 + va2)/(n1 + n2 - 2))

140
141 teststat <- abs((m1 - m2)/(sp * sqrt ((1/n1) + (1/n2))))

142 p_mat[b,j] <- 2 * pt(teststat , n1 + n2 - 2, lower = FALSE)

143 }

144 }

145

71

146 # Perform SAM

147 SAM <- confSAM(p = p_mat[1,], PM = p_mat , cutoff = cutoff , alpha = alpha

, method = "simple")

148
149 return(SAM)

150 }

151
152 seed <- 425

153 cutoff <- c(0.05/ncol(X), seq (0.00005 , 0.001, 0.00005))

154 SAM_results <- matrix(nrow = length(cutoff), ncol = 3)

155
156 for(i in 1: length(cutoff)){

157 set.seed(seed)

158 SAM_results[i,] <- data_ex_SAM(X = X, Y = Y, B = 100, cutoff = cutoff[i],

alpha = 0.05)

159 }

160
161 # SAM metrics

162 FDP_SAM <- SAM_results[, 2]/SAM_results[, 1]

163 FDP_SAM_upper <- SAM_results[, 3]/SAM_results[, 1]

164 R <- SAM_results[, 1]

165 FDP_SAM

166 FDP_SAM_upper

167 R

168
169 df_SAM <- data.frame(FDP = FDP_SAM ,

170 FDP_up = FDP_SAM_upper ,

171 c = cutoff)

172
173 ggplot(df_SAM , aes(x = c, y = FDP)) +

174 geom_errorbar(aes(ymin = 0, ymax = FDP_up), width = 0.00002) +

175 annotate("text", x = cutoff , y = FDP_SAM_upper + 0.002 , label = R) +

176 geom_point(color = "#3b528b", size = 2) +

177 scale_x_continuous(labels = scales :: scientific) +

178 # scale_y_continuous(breaks = seq(0, 0.015 , 0.045)) +

179 labs(x = "c", y = expression(bar("FDP"))) +

180 theme_minimal(base_size = 13)

181
182 ‘‘‘

183
184 Golub - Sequential maxT

185 ‘‘‘{r}

186 B <- 100

187 n <- length(Y)

188 n_ctrl <- sum(Y == 0)

189 n_case <- sum(Y == 1)

190 m <- ncol(X)

191 alpha <- 0.05

192 # Create indicator for each permutation

193 y <- t(replicate(B, sample(Y, size = n, replace = FALSE)))

72

194 y[1,] <- Y #add identity permutation

195
196
197 # Permutation matrix of test statistics

198 t_mat <- matrix(nrow = B, ncol = m)

199 for(b in 1:B){

200 for(j in 1:m){

201 x1 <- X[y[b,] == 0, j]

202 x2 <- X[y[b,] == 1, j]

203 n1 <- n_ctrl

204 n2 <- n_case

205 m1 <- mean(x1)

206 m2 <- mean(x2)

207
208 va1 <- ((n1 - 1) * var(x1))

209 va2 <- ((n2 - 1) * var(x2))

210 sp <- sqrt((va1 + va2)/(n1 + n2 - 2))

211
212 t_mat[b,j] <- abs((m1 - m2)/(sp * sqrt ((1/n1) + (1/n2))))

213 }

214 }

215
216 t_mat[1,1]

217
218 # Initialize rejection vectors

219 R <- 1

220 R_new <- vector(length = 0)

221
222 # Start sequential rejection procedure

223 while(setequal(R, R_new) == FALSE){

224
225 # Update rejection vector

226 R <- R_new

227
228 # Get rejection quantile

229 Tmax <- apply(t_mat , 1, max , na.rm = TRUE)

230 q <- sort(Tmax)[(1 - alpha) * B]

231
232 # Select set of hypotheses to consider

233 hypotheses <- 1:m

234 if(length(R) > 0){

235 hypotheses <- hypotheses[-R]

236 }

237
238 # Reject hypotheses based on quantile

239 for(j in hypotheses){

240 if(t_mat[1, j] > q){

241 t_mat[, j] <- NA

242 R_new <- c(R_new , j)

243 }

73

244 }

245 }

246
247 length(R)

248
249
250 # Welch version

251 # Create indicator for each permutation

252 y <- t(replicate(B, sample(Y, size = n, replace = FALSE)))

253 y[1,] <- Y #add identity permutation

254
255
256 # Permutation matrix of test statistics (Welch)

257 t_mat <- matrix(nrow = B, ncol = m)

258 for(b in 1:B){

259 for(j in 1:m){

260 x1 <- X[y[b,] == 0, j]

261 x2 <- X[y[b,] == 1, j]

262 n1 <- n_ctrl

263 n2 <- n_case

264 m1 <- mean(x1)

265 m2 <- mean(x2)

266
267 sd1 <- sd(x1)

268 sd2 <- sd(x2)

269 sdx1 <- sd1/sqrt(n1)

270 sdx2 <- sd2/sqrt(n2)

271
272 t_mat[b,j] <- abs((m1 - m2)/(sqrt((sdx1 ^2) + (sdx2 ^2))))

273 }

274 }

275
276 t_mat[1,1]

277
278 # Initialize rejection vectors

279 R_w <- 1

280 R_new <- vector(length = 0)

281
282 # Start sequential rejection procedure

283 while(setequal(R_w, R_new) == FALSE){

284
285 # Update rejection vector

286 R_w <- R_new

287
288 # Get rejection quantile

289 Tmax <- apply(t_mat , 1, max , na.rm = TRUE)

290 q <- sort(Tmax)[(1 - alpha) * B]

291
292 # Select set of hypotheses to consider

293 hypotheses <- 1:m

74

294 if(length(R) > 0){

295 hypotheses <- hypotheses[-R_w]

296 }

297
298 # Reject hypotheses based on quantile

299 for(j in hypotheses){

300 if(t_mat[1, j] > q){

301 t_mat[, j] <- NA

302 R_new <- c(R_new , j)

303 }

304 }

305 }

306
307 length(R)

308 ‘‘‘

309
310 Introduction - Plot of FWER as function of m0 under independence

311 ‘‘‘{r}

312 m0 <- seq(0, 100, 5)

313 alpha <- 0.05

314 fwer <- 1 - (1 - alpha)^(m0)

315 fwer_df <- data.frame(fwer = fwer ,

316 m0 = m0)

317
318 ggplot(data = fwer_df, aes(x = m0, y = fwer)) +

319 geom_line(aes(y = fwer), color = "blue") +

320 geom_point(aes(y = fwer), size = 2) +

321 geom_hline(yintercept = alpha , linetype = "dashed", color = "red") +

322 labs(x = expression(’m’[0]), y = "F␣W␣E␣R") +

323 theme_minimal(base_size = 13)

324 ‘‘‘

75

	Introduction
	Permutation Tests
	Permutation example
	Types of permutation tests

	Multiple Testing
	Error metrics
	FWER controlling procedures
	FDP estimation through SAM

	Simulations
	Base settings
	Simulation setup and results
	maxT: Heterogeneous dependence
	maxT: Heteroscedasticity
	maxT: Heteroscedasticity (Welch)
	maxT: Different distributions
	SAM: Heterogeneous dependence
	SAM: Heteroscedasticity

	Data Illustration
	Analysis of heteroscedasticity
	Application to the data

	Discussion
	References

