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Abstract

Using individual participant data (IPD) has many advantages over using aggregate data (AD) in
clinical meta-analysis. However, access to the IPD is often limited, yet the aggregate data is available
from most clinical trials. Papadimitropoulou’s et al. [4] propose a method for studies with continuous
outcomes at baseline and follow-up measurement to generate pseudo-IPD from the aggregate data,
which can be analyzed as IPD, using analysis of covariance (ANCOVA) models and linear mixed mod-
els. The pseudo-IPD is generated based on the mean, standard deviation at baseline and follow-up, and
the correlation between baseline and follow-up, which are sufficient statistics of the linear mixed model.
This thesis exemplified the pseudo-IPD models, standard meta-analysis models, and a Trowman meta-
regression model on Obstructive Sleep Apnea Data with 2 treatment groups. We further explored
the performance of the models under different conditions by a simulation study. The estimates of the
Trowman meta-regression suffered from significant variance, and the standard AD models provided
bias estimation when baseline imbalance exists. The ANCOVA models for pseudo-IPD and AD offered
more accurate and stable results. The pseudo-IPD ANCOVA model is the most preferred since it can
account for baseline difference and interaction between treatment and baseline, and different residual
structures can be used.

KEYWORDS:
Meta-analysis, pseudo individual participant data, aggregate data, analysis of covariance, simula-

tion study,
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Chapter 1

Introduction

The effect of a treatment or a drug can be studied by an experiment with multiple measurements,
which is common in randomized controlled trials. Researchers can compare the measurements among
the time points and the treatment groups to find their difference. For most treatments or drugs, many
studies are performed in different places. And the results may be different in studies for many reasons,
for instance, ethnic differences or some local restriction of the participants. Hence, researchers prefer
synthesizing or comparing findings from multiple studies to acquire better results. The technic to
combine results of multiple studies is called Meta-Analysis. In this thesis, we will discuss Meta-
Analysis methods for randomized clinical trials, with two treatment groups, continuous outcomes, and
two measurements of the outcomes at baseline and follow-up. We illustrate the details of the theories
of the methods and compare their performance under different conditions with a simulation study.

1.1 Individual Participant Data and Aggregate Data

In the clinic trials, researchers record the information, e.g., the ages, symptom severity, sex of the
patients, treatment received, and outcomes which are termed as Individual Participant Data. For
instance, in a study of an Alzheimer’s Disease treatment, the individual participant data is composed
of the pre-treatment, and post-treatment measurements using the Alzheimer’s Disease Assessment
Scale(ADAS)[2], and the essential characteristics such as the treatments, ages, IQ, and sex of the
patients.

The Aggregate data (AD) is composed of the summary statistics for each arm in each study, which
can be obtained from publications or requested from the authors[5]. In the same Alzheimer’s disease
example, the AD could include the mean and standard deviation of the ADAS at baseline and follow-
up, the mean change from baseline, the proportion of males, the mean and standard deviation of ages,
and IQ in each treatment arm of each study. All the information can be derived from the IPD. Hence,
the AD is the ’summary data’ of the IPD.

Aggregate data suffers from problems such as a different representation in different studies(e.g.,
risk ratio verse odd ratio) and missing data. More importantly, the analysis of AD is difficult to
detect how the individual covariates can modify the effect of our interest. Lacking information and an
incorrect summary can cause poor estimation in the analysis of AD. The IPD is more reliable since
the individual participant data can be analyzed across all studies.

1.2 Meta-analysis of Clinic Trials

Meta-analysis is the method to synthesize the results of several studies or publications, which is widely
used in clinical research. Meta-analysis offers a summary result to describe the effect of the treatment
or drugs used in the studies. When a narrative review of studies is conducted, many problems may
emerge since the narrative review takes no consistency of the studies into account. For instance, the
p-value of 0.0001 can either imply a significant effect or a small effect for a large sample size. That is,
without considering the size of the study, the p-value can ’cheat’ us. In the meta-analysis, researchers
analyze the effect size directly instead of p-values. The primary interest of the meta-analysts is whether
the studies are consistent in the estimation of the effect size.
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In randomized clinical studies, the core is to compare outcomes between the treatment groups. For
a continuous outcome, the patients are often measured at both baseline (pre-treatment) and follow-up
(post-treatment), especially in the study of chronic conditions. Many statistics comparisons can be
applied to assess the effects of the treatments in this situation. For example, the follow-up scores can
reflect the condition of the patients in each group after the treatment. Therefore, the difference in the
mean follow-up scores between the treatment group and the control group can measure the treatment
effect. Additionally, the ’change score’ calculated by subtracting the follow-up score and baseline score
can represent the outcome change during the study time. Hence, the change score can compare the
treatment effects between the groups. An alternative method is to perform an analysis of covariance to
estimate the treatment effect, which can adjust the baseline imbalance and other patients’ characters.

If the IPD is available, researchers can perform the meta-analysis using the complete data of all
studies. The data can be analyzed using the family of linear mixed models, which has a lot of modeling
flexibility in statistics software. For instance, Various stratified models can be applied to perform the
analysis. There are two main approaches for the meta-analysis on the IPD, the one-stage approach,
and the two-stage approach. All the participant-level data from all studies are analyzed simultaneously
for the one-stage method. In contrast, the two-stage method conducts the process in two steps. First,
estimate each study separately with linear regression. The second step is to apply a suitable standard
meta-analysis method to synthesize the results acquired from the first step. The two-stage approach is
considered a solid method since the standard meta-analysis in the second step is stable. However, the
one-stage method has the advantage that it can model the impact of within-study variation. Most of
the time, although they use different methods to estimate the summary effect, the estimation results
are similar.[1]

When meta-analysts plan a meta-analysis to study the impact of drugs or treatments, they prefer
IPD. However, often the access of IPD is not available. Instead, access to the aggregate data (AD) of
a study is easier.

To be able to use the linear mixed model framework, when only aggregate data are available,
Papadimitropoulou’s et al. [4] propose a new method by generating a pseudo-IPD from the sufficient
statistics of the linear mixed model. The AD should include all the sufficient statistics (The means,
standard deviations, Correlations, and sample sizes). In this way, we can apply the IPD meta-analysis
methods by using only the AD following two steps. First generating a pseudo-IPD and then applying
IPD meta-analysis methods on the pseudo data. The relationship of the data and the methods is
summarised in figure 1.1. However, the estimation process of the methods are various, especially the
estimation of the random effects. Since various approaches recovered different information of the data,
the conditions of which methods can produce a better estimation need to be explored further. The
aim of this paper is to compare these methods on different conditions, and assess the performance of
the pseudo-IPD approaches and standard meta-analysis approaches, and conclude which methods can
be used in each condition.

1.3 Outline Structure of the Thesis

In Chapter 2, we will discuss the various meta-analysis models for studies with continuous outcomes
measured at two time points and the background knowledge, such as the assumption of the models, the
definitions and formulas of the parameters and statistics. In Chapter 3, an application of the models
on a dataset, the Obstructive Sleep Apnea data is demonstrated. In Chapter 4, a simulation study
of the models is produced. We assess the performance of the models under the conditions of various
random structures, and parameter settings. In the Chapter 5, the results of the simulation study will
be concluded. And also the findings and the connection of the models will be explained.
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Figure 1.1: The relationship of various methods and data
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Chapter 2

Models Explanation and
Methodology

2.1 Definitions and Notations

We assume that there are n studies. In each study, two treatments are compared. We denote them
with treatment 1 and 2. One of them is the treatment group which received the treatment of our
interest. The other group received the standard or no treatment, with other conditions identical with
the treatment group. We use the term ’control group’ for this group The sample size two groups are
n1 and n2, respectively. We assume that Y is the continuous outcome. It is measured at two time
points, the baseline and Follow-up. We use the following notation YBij , for the j-th person, in study
i at baseline, and YFij for the j-th person in study i, at follow up.

We assume that the following aggregate data is available: ȲFTi, SFTi are the mean, and standard
deviation at follow up, in the treatment group in study i. ȲFCi, SFCi are the mean, and standard
deviation at follow up, in the control group in study i. ȲBTi, SBTi are the mean, and standard
deviation at baseline, in the treatment group in study i. ȲBCi, SBCi are the mean, and standard
deviation at baseline, in control group in study i, the riT and riC are the correlation between the
baseline and follow-up in study i in treatment group and control group respectively.

For convenience, we define the indicator variable Xij that:{
Xij = 1, if the patient j in study i is in the treatment group
Xij = 0, if the patient j in study i is in the control group

(2.1)

Then the mean of the outcome can be calculated as:

ȲFTi =

∑
j,Xij=1 YFij

n1

and

ȲFCi =

∑
j,Xij=0 YFij

n2

where YFij denotes the outcome of patient j at the follow-up measure in study i.
In the clinical trials, we expect to compare the treatment or drug effect in different groups. This

is often done by using an overall summary measure of effect, the effect size. In the terminology, the
effect size is a metric quantifying the relationship between the outcome and treatment groups. The
relationship can be expressed by a mean difference, a ratio, a log-ratio, or for a binary outcome an odd-
ratio among the groups. The effect size we choose should be comparable, computable, interpretable,
and with good statistics properties.

For a continuous outcome, the mean outcomes difference between groups is often used. Denote the
true treatment effect in study i is θi, and denote the estimate of the effect in study i by θ̂i and its
standard error by σi.
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2.2 Standard Meta-Analysis

2.2.1 Fixed Effect Models

When the standard meta-analysis is performed, various model assumptions are made depending on
whether there is any evidence of heterogeneity in treatment effect among studies. If there is no
heterogeneity, we can assume the treatment effects are identical among all studies in the fixed-effect
model. That is,

θ̂i = θ + εi (2.2)

where θ̂i denotes the estimated treatment effect in study i. The true treatment effects are ’all
exactly the same’. We denote the true effect as θ. The εi is the residual of the estimation in each
study which has εi ∼ N

(
0, σi

2
)
. For this model, the estimation of θ is of primary interest.

2.2.2 Random Effect Model

If the heterogeneity exists, we assume that the true treatment effect is various in each study. Denote
the true treatment effect in each study as θi, where i ∈ 1, 2, ...n. We call the model with the ’non-
identical’ assumption as the random effect model. The equation expression of the random effect model
is:

θi = θ + ui

θ̂i = θi + εi
(2.3)

The θ is the fixed value which denotes the average of the true treatment effects among all studies.
The random effect model assumes that the treatment effect can vary between studies, with V ar(θi) =
τ2. We can choose between model 2.2 and model 2.3 based on the specific circumstance. (i.e., The
assumption of the treatment effect) If the treatment effect can assume to be identical among all studies,
the fixed-effect model can be used. In contrast, if the experiments used various patient groups or some
other evidence which implies heterogeneity among studies, it is more appropriate to use the random
effect model to account for the difference among studies.

2.2.3 Raw Mean Difference

For continuous outcome variables, the means and standard deviations are recorded in the AD. We
can use the difference of the mean score between the groups as the effect size to measure the effect
of the treatment. We use the term Raw Mean difference to refer to the effect size. The raw mean
difference is an intuitive way to interpret the treatment effect. To calculate the raw mean difference
of two independent groups, we can use the formula:

D = Ȳ1 − Ȳ2 (2.4)

where Ȳ1 and Ȳ2 are the sample mean of the two groups. D is the estimated effect size. Suppose
the standard deviations of the two groups are identical. That is, σ1 = σ2 = σ. Denote S1 and S2 for
the calculated standard deviation and n1 and n2 denote the sample size of each group. The variance
of the effect size can be calculated as:

VD =
n1 + n2
n1n2

× (n1 − 1)S1
2 + (n2 − 1)S2

2

n1 + n2 − 2
(2.5)

The standard error of D is
SED =

√
VD (2.6)

Without the assumption of σ1 = σ2 = σ. The variance can be calculated as:

VD =
S1

2

n1
+
S2

2

n2
(2.7)
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Final Score Model

The final score method ignores the information from the baseline. It calculates the mean difference at
follow up between the two groups. Then, we can use the model of the standard meta-analysis models.
We can construct the Final Score treatment effect by using:

θ̂FS
i = ȲFTi − ȲFCi (2.8)

where the θ̂FS
i denotes the estimated treatment effect in study i using final score. The standard

error of θ̂FS
i can be calculated using formula 2.5 and 2.6, or 2.7 and 2.6

Change Score Model

In the AD, the pre-treatment severity of the patients is recorded by the baseline score. Generally, the
patients who are more severe ill before treatment are likely to be more severe ill after the treatment.
That is, the values of the outcome before the experiment have impact on the treatment effect. For
this reason, we can adjust the impact of baseline variable. An intuitive method is to summarise the
’Change Score’ which is calculated by subtracting the baseline score from the follow-up score. Denote
ȲCTi, ȲCCi as the change score of the treatment group and control group in study i respectively. The
formulas are:

ȲCTi = ȲFTi − ȲBTi (2.9)

and
ȲCCi = ȲFCi − ȲBCi (2.10)

With the standard deviation of the Y in the treatment group and control group, and the correlation
between the baseline score and follow-up score, rTi, the standard deviation of the change score in the
treatment group can be calculated as:

SCTi =

√
SBTi

2 + SFTi
2 − 2× rTi × SBTi × SFTi (2.11)

And in the same way, the standard deviation in the control group, SCCi can be calculated as:

SCCi =

√
SBCi

2 + SFCi
2 − 2× rTi × SBCi × SFCi (2.12)

Follow the same rules as in the Final Score Model, the Change Score treatment effect is:

ˆθCS
i = ȲCTi − ȲCCi (2.13)

The notation ȲCTi and ȲCCi are as defined above. The ˆθCS
i denotes the estimated treatment effect

of the Change Score Model. The standard error of θ̂CS
i can be calculated using formula 2.5, 2.6,

and 2.7. The only change is to replace the follow-up score’s standard deviations with the standard
deviations of the change score which is calculated in formula 2.11 and 2.12.

2.3 ANCOVA

In the clinic research trials, researchers try to explain the impact of the treatment or drugs. However,
often the dependent variable is depended on one or more other variables. It is possible to control for
these variables to analysis the variation. This procedure is ANCOVA, which is the combination of
regression analysis and the ANOVA.

The ANOVA method can analyze the variation source and divide the variation and degree of
freedom to the within-group part and between-group part. Additionally, the regression analysis can
estimate the impact of the independent variables. Hence, we can employ the regression analysis to
adjust the impact of the variables in addition to our interest. We use the term ’covariates’ to refer
to these variables. We can remove the effect of the covariates by subtracting the variance from them.
When only the variation from the primarily interested variables left, the ANOVA of the modified
variation provides more reasonable results.
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Recovered ANCOVA Model

Based on the ANCOVA theories, we introduce a standard meta-analysis model with adjustment of the
baseline scores. We terms this model as Recovered ANCOVA model. The difference between the
Change Score model and the Recovered ANCOVA Model is that in the recovered ANCOVA model we
use a linear regression to adjust the baseline effect. The linear regression for study i is formulated as:

YFij = β0i + θANCOV A
i Xij + βiYBij + εij (2.14)

We assume that the variance of εij , is the same in each study and each group. Denote SFi and SBi

as the pooled standard deviations of the follow-up and baseline measurements in study i. Denote the
correlation between YFij and YBij as ri, assumed to be the same in the treatment and control group.

β̂i represents the regression coefficient for the baseline measurement, which can be calculated as:

β̂i = ri
SFi

SBi
(2.15)

The treatment effect in study i can be estimated by:

θ̂ANCOV A
i =

(
ȲFTi − ȲBTi

)
− β̂i

(
ȲFCi − ȲBCi

)
(2.16)

All the statistics can be calculated from the aggregate data. We can use standard meta-analysis
methods to estimate the overall treatment effect using the models in Chapter 2.2

2.4 Trowman Model

An alternative method to adjust for the baseline measurement is to perform meta-regression. Trow-
man[6] performs a meta-regression with the mean follow-up score per treatment group as the outcome,
the mean baseline score, and the treatment groups as the independent variables. That is, each study
provides two observations. In addition, the interaction of the baseline and treatment group can be
used for extension. We use the term Trowman Model to refer to the model. Suppose there are n
studies and 2 treatment groups. The formula of the model without interaction is:

ȲFik = β0 + β1Xik + β2ȲBik + εik (2.17)

where ȲFik denotes the mean follow-up score of study i ∈ 1, 2, ..., n and treatment k ∈ 1, 2. ȲBik

denotes the mean baseline score of study i ∈ 1, 2, ..., n and treatment k ∈ 1, 2.
Xik denotes the indicator variable with Xi1 = 1 and Xi2 = 0. εik denotes the error term. The β0,

β2, are the corresponding parameters of intercept and slopes, β1 is the treatment effect.

2.5 Methods When IPD is Available

The IPD can be modeled on the participant level. There are two popular approaches, the one-stage
method, and the two-stage method. The logic of the methods is to apply linear mixed model to the
IPD.

2.5.1 One-stage Analysis IPD with LMM

The simplest one-stage model is to fit the linear mixed model with only the treatment effect. The
Base Model can be written as:

YFij = β0i + (β1 + b1i)Xij + εij (2.18)

where b1i denotes the random effect of the treatment effect on the study level. We assume b1i follows
a normal distribution with mean 0 and standard deviation τ . β0i, is the study-specific intercept, β1 is
the overall treatment effect. We can remove the random treatment effect by constraining the standard
deviation τ = 0.

The εij denotes the within-study individual variation which follows a normal distribution with
mean 0 and standard deviation σik. We can specify that the within-study variance depends on the
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study by assuming σik = σi.. Similarly, the variance can depend on the treatment group by σik = σ.k.
Also, we can assume the simplest structure that all within-study variance is equal. That is, σik = σ.

The baseline imbalance can be adjusted by introducing the baseline effect into the model. Hence,
we can fit a ANCOVA model with stratified intercept and slope, which can be written as:

YFij = β0i + (β1 + b1i)Xij + β2i(YBij − ȲBi) + εij (2.19)

where ȲBi denotes the mean of the baseline score in study i. Hence, (YBij − ȲBi) denotes the
centered baseline score.

Alternatively, the intercept β0i and baseline effect β2i can be assumed to be random variables.
Then the model 2.19 will become:

YFij = (β0 + b0i) + (β1 + b1i)Xij + (β2 + b2i)
(
YBij − ȲBi

)
+ εij (2.20)

where the assumption of the random effects are: b0i
b1i
b2i

 ∼MVN

 0
0
0

 ,
 τ20 τ01 τ02
τ01 τ21 τ12
τ02 τ12 τ22

 (2.21)

In linear regression, the covariates can affect the variable of primary interest. For instance, the
treatment may perform better on the more severe patients. To explore the relationship between the
treatment effect and the baseline score in this case, we take the interaction into account. Hence, we
can extend equation 2.20 to:

YFij = β0i + (β1 + b1i)Xij + β2i
(
YBij − ȲBi

)
+ β3i

[(
YBij − ȲBi

)
Xij

]
+ εij (2.22)

where, the β3 denotes the increase of treatment effect for a one-unit increase of the baseline score
in the treatment group. And b3i is the random effect of the treatment-baseline interaction.

(
ȲBiXij

)
is the interaction of the study-specific mean baseline values and the treatment group.

Similar with the equation 2.20, we can introduce random intercept and random slope to extend the
model 2.19 as:

YFij = (β0 + b0i) + (β1 + b1i)Xij + (β2 + b2i)
(
YBij − ȲBi

)
+ (β3 + b3i)

[(
YBij − ȲBi

)
Xij

]
+ β4i

(
ȲBiXij

)
+ εij

(2.23)

where β4i denotes the increase of the treatment effect for a one-unit increase in the study-specific
mean baseline score in the treatment group. There are many model specifications available. We can
apply various combinations of covariates, fixed and random effects for the intercept and slopes, and
whether the interaction is specified. In this thesis, we mainly consider model 2.18 and 2.19.

2.5.2 Two-stage Meta-Analysis With LMM

Another popular approach is the two-stage meta-analysis of the IPD. In the first-step, the ANCOVA
model is fitted with respect to each study from 1 to n. Inherit the notation of the one-stage model,
the model for study i ∈ 1, 2, ..., n can be written as:

YFij = β0i + β1iXij + β2iYBij + εij (2.24)

The β0i is the intercept of study i, β1i and β2i are the treatment effect and baseline effect in study
i, respectively. The εij is the residual.

The second-step is to synthesis the results of each study with the standard meta-analysis methods.
The fixed effect model 2.2 and random effect model 2.3 can be used to estimate the summary treatment
effect.

The one-stage and two-stage methods will acquire similar results if the model’s assumptions are
identical. For instance, if σij = σi. and no interaction is involved, equation 2.19 and the two-stage
model 2.24 apply the same treatment variance structure and exclude interaction variables. Hence, in
this case, we expect the estimated results from these models to be similar.
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2.6 Pseudo-IPD Methods

The meta-analysis of IPD is flexible since we can apply LMM using various residual structures. In
addition, Modeling options are much fewer in a standard meta-analysis of the AD. Therefore, Papadim-
itropoulou et al. [4] propose the Pseudo-IPD method to overcome these challenges. The idea of the
method is based on the properties of sufficient statistics. In the likelihood linear mixed model, the
mean, standard deviation, and correlation of the baseline and follow-up variables are sufficient statis-
tics since they are sufficient to calculate all the estimated results. More specifically, if the original IPD
is available, we can summarize the identical aggregate data from the pseudo-IPD as the original IPD.
Hence, we can improve the flexibility of the analysis when there is only access to the AD. Based on the
sufficient statistics property, the estimation of the pseudo-IPD should be identical with the estimation
of the original IPD. We can use a simple algorithm to implement the IPD-generation process:

1. Generate two random samples from the standard normal distribution with the size equal to n,
the size for each measure in each study. Denote them Y ∗i 1 (i = 1, ..., n) and Y ∗i 2 (i = 1, ..., n)

2. Standardize the samples and calculate the correlation r∗ of the two samples.
3. Fit the linear regression model by setting the Y ∗i2 as the dependent variable and Y ∗i1 as the

independent variable. Denote the coefficients and residual as β̂ and ε̂ respectively.

4. Create a new variable Y ∗i3 = Y ∗i1r+ ε̂i
√

1− r2
[√

1− r∗2
]−1

, where r denotes the true correlation
in the studies.

5. Generate YBi = Y ∗i1SdB + ȲB and YFi = Y ∗i1SdF + ȲF . YBi and YFi are the pseudo-IPD we
need.

The pseudo-IPD comprises the study, treatment group, baseline score, and follow-up score for each
subject. We can apply the linear mixed model tools to estimate the treatment effect and specify various
variance structures.
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Chapter 3

Example: Meta-analysis of
obstructive sleep apnea data

In this chapter, we will apply the standard meta-analysis methods and the pseudo-IPD methods to
the aggregate data of obstructive sleep apnea. Obstructive Sleep Apnea is characterized by recurring
episodes of cessation (apnea) or reduction (hypopnea) in airflow during sleep caused by obstruction
of the upper airway [3]. In Canada, the moderate and severe prevalence of disease ranges from 3% to
50% depending on sex and age. The typical symptoms of OSA are daytime sleepiness, unrefreshing
sleep or fatigue, poor concentration, etc. Researchers use the frequency of apnea-hypeapnea events
per hour in the total sleep time (AHI) to measure the severity. A common standard is:

1. Mild OSA: AHI ≥ 5 and < 15 events per hour
2. Moderate OSA: AHI ≥ 15 and < 30 events per hour
3. Severe OSA: AHI ≥ 30 events per hour

A positive treatment for symptomatic patients is the continuous positive airway pressure (CPAP)
[3] which can release sleepiness and reduce AHI. The main task of the meta-analysis is to analyze the
treatment effect of a CPAP treatment device. In each study, one of the patient groups receives an
active CPAP, and the control group patients are treated with a sham CPAP device. The methods
model from chapter 2 will be applied to the data.

3.1 The Aggregate Obstructive Sleep Apnea Data

We perform the meta-analysis methods on the aggregate Obstructive Sleep Apnea data. The outcome
measure is the apnea-hypopnea index(AHI) which indicates the ratio of the number of apnea or hy-
popnea events per hour in the total hours of sleep. In all studies, the AHI score was measured at
the baseline (pre-treatment) and follow-up (post-treatment) time point for each patient. The mean,
standard deviation, correlation, and sample size of the active CPAP group (Treatment group) and
sham CPAP group (Control group) are provided in the aggregate data. The aim is to estimate the
treatment effect of the CPAP device. The full dataset is comprised in table 3.1.

We first perform the standard meta-analysis models 2.8, 2.13, 2.16. Next, we apply the Trowman
method, the formula 2.17 to the aggregate data. Then we generate pseudo-IPD data and fit model
2.18 and model 2.19 to the pseudo-IPD data. Finally, we apply the two-stage model (formula 2.24)
to estimate the treatment effect. In this way, we reproduce analysis of the pseudo-IPD experiments in
the paper of Papadimitropoulou’s[4].

We apply the model fitting functions in the ’metafor’ package in R for the standard meta-analysis.
The random effect meta-analysis model on the final scores and change scores are fitted with the
estimation method ’REML’. We use the forest plot to show the estimates of the treatment effect in
each trial and use the ’summary’ function to acquire the essential information of the estimation, and
we extract the estimated treatment effect, estimated standard error, and confidence interval.

The idea of the Trowman method is straightforward. We apply linear regression on the aggregate
data with the follow-up score as the dependent variable and the treatment group and baseline score
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Table 3.1: The final Dataset used in Papadimitropoulou’s meta-analysis
ID Study MB sdB MPB sdPB NFB Cor group
1 Egea 43.1 22.9 10.8 11.4 27 0.4979 1
2 Haensel 65.9 28.6 3.5 3.4 25 0.4981 1
3 Loredo99 56.4 24.1 3.3 3.8 23 0.4442 1
4 Mills 65 34 2.56 2.4 17 0.4969 1
5 Loredo06 65.9 28.6 3.0 4.7 22 0.5704 1
6 Norman 66.1 29.1 3.4 3.0 18 0.4967 1
7 Becker 62.5 17.8 3.4 3.1 16 0.5025 1
8 Spicuzza 55.3 11.9 2.1 0.3 15 0.5052 1
1 Egea 35.3 16.7 28.0 24.8 29 0.4979 0
2 Haensel 57.5 32.1 53.4 32.9 25 0.4981 0
3 Loredo99 44.2 25.3 28.3 22.7 18 0.4442 0
4 Mills 61.2 41.0 57.3 41.0 16 0.4969 0
5 Loredo06 57.5 32.1 52.5 37.5 19 0.5704 0
6 Norman 53.9 29.8 50.1 32.1 15 0.4967 0
7 Becker 65.0 26.7 33.4 29.2 16 0.5025 0
8 Spicuzza 59.2 17.3 57.0 8.6 10 0.5052 0

Abbreviations: NFB denotes the sample size of each group in each study;
MB and sdB denote the mean and standard deviation of Apnea scores among patients at the baseline;
The MPB and sdPB denote the mean and standard deviation of Follow-up measurement;
The number represents the apnea/hypopnea events happened per hour;
Cor denotes the correlation between the baseline and follow-up. Group 1 and group 0 denote the
treatment group and control group respectively.

as independent variables, which is written as formula 2.17.
The final method is based on the pseudo Individual participant data(IPD). We generate the pseudo-

IPD from the aggregate data such that the mean, standard deviation, correlation, and sample size are
identical with the aggregate data. That is, we can summarise the same aggregate data as table 3.1
from the pseudo-IPD. Then we apply meta-analysis on the pseudo-IPD directly by fitting the linear
mixed model with various variance structures with function ’lme’ in package ’nlme’ in R.

3.2 Results

3.2.1 Results for each methods

All the forest plots are provided in the Appendix. The estimation values of the Final Score Model are
shown in figure A.1

The lines with black points at the center are the description of the estimated effect size with the
95% confidence interval. The size of the black points denotes the weight of the studies. The line at
the bottom is the scale of all the measures in the plot. In the ’Study’ column, the Studies’ names are
listed respectively.

On the right side, the first column is the exact weight of each study. The second column is the
estimated treatment effect for each study. And the last column is composed of the confidence interval
of the estimates. The last row is the summary effect of primary interest.

Similarly, the forest plot of the change score model and recovered ANCOVA model are shown in
figure A.2 and A.3.

We report the estimated results of all the meta-analysis models in table 3.2.
Based on the standard methods, the pseudo-IPD methods, and the Trowman method, the estima-

tions of the treatment effect are ranging from −40.43 to −45.52 events per hour, which are relatively
stable. Therefore, the pseudo-IPD method can provide a reasonable estimation of the effect size. The
range of the standard deviations of the methods is from 4.67 to 5.46. And the random effect variance
is various from 152.6 to 190.6.

From the standard meta-analysis methods, the random effect model of the change scores acquires a
smaller standard error and random effect than the final score model. Since we take the Baseline score

14



Table 3.2: The summary results of various meta-analysis models
Models Estimate SE CI Random Effect
Change Score Model (Formula 2.13) -45.52 5.29 [-55.89, -35.16] 152.65
Final Score Model (Formula 2.8) -40.43 5.46 [-51.13,-29.73] 190.57
Recovered ANCOVA Model (Formula 2.16) -42.41 5.22 [-52.65, -32.18] 181.79
Trowman Model (Formula 2.17) -41.74 4.76 [-51.06, -32.42] NA
Simplest Pseudo-IPD Model (Formula 2.18) -40.64 5.20 [-50.87,-30.40] 170.78
Full Pseudo-IPD Model (Formula 2.19) -42.41 5.23 [-52.70,-32.12] 180.36
Two-stage Model (Formula 2.24) -42.41 5.23 [-52.66,-32.16] 180.44

The negative estimated values mean that the treatment effect can reduce the times of breathing
difficulty.

Table 3.3: The summary results of various residual structure

Residual Structure Estimate SE CI Random Effect
All-equal -42.61 5.18 [-52.81, -32.40 ] 171.50

Study-specific -42.41 5.23 [-52.70, 32.12 ] 180.36
Group-specific -41.18 5.16 [-51.34, -31.02] 162.36

Study and Arm-specific -41.07 5.25 [-51.40, -30.74] 176.15

into the change score model analysis and acquire a better performance, we conclude that the Baseline
value has an impact on the treatment effect estimation.

The Trowman method is based on the linear model without random effect. And the Trowman
model acquires the smallest standard error (4.76) among all methods.

The Recovered ANCOVA model, the Full Pseudo-IPD Model, and the two-stage pseudo-IPD model
produce very similar estimates and performance. The relationship of the methods will be explored in
the simulation study.

3.2.2 Results for different Residual structure

For the Full Pseudo-IPD Model, we explore further on the various residual structures. With fixed
predictors, we vary the residuals as all-equal (σik = σ where i is the study and k denotes the groups),
study-specific (σik = σi.), group-specific (σik = σ.k), and arm-specific (σik = σik). The estimation
results are shown in table 3.3.

For different residual structures, the estimates are range in [41.07, 42.61]. However, the estimated
random effects vary significantly, ranging from 162.36 to 180.36. Compared with the results in table
3.2, the study-specific model acquired almost identical results with the recovered ANCOVA model and
the two-stage model and the estimated results of the other residual structures are slightly different.
We will use the simulation study to further assess the performance of residual structures.

3.2.3 Results for within-study interaction

An extension of the full pseudo-IPD model is to include interaction terms in the model. We fitted the
model with a within-study interaction term (the model 2.22). The results are shown in table 3.4

The baseline score in the pseudo-IPD we used is centered to 0. We can interpret the results as:

Table 3.4: The results of the model with interaction

Estimation Standard Error DF t-value p-value
Treatment -42.63 5.14 293 -8.29 0.00

Within-study interaction -0.40 0.07 293 -5.41 0.00
Baseline 0.53 0.15 293 3.75 0.00
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1. The treatment effect for the patient with a centered baseline score 0 has an average treatment
effect −42.63. That is, the active CPAP can reduce breathing difficulty for approximately average 42
times per hour. The active CPAP treatment is significantly better than the sham CPAP.

2. The interaction term is significant that the baseline effects in the treatment group and control
group are different. For a one-unit increase in the baseline score, the mean increase of the treatment
effect of the active CPAP will be 0.40. E.g., a patient with a centered baseline score 10 received the
active CPAP treatment, his or her treatment effect can reduce approximately −42.63 − 0.40 × 10 =
−46.63 times of breathing difficulty per hour.
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Chapter 4

Simulation Process

4.1 Notation

The notations used in this chapter are listed in table 4.1

4.2 Aim

To assess the performance of an estimation method, we mainly consider two measurement, the bias
and variance. The bias is a systematic tendency to cause a difference between the true value of a
parameter and the mean estimated value. An unbiased estimation satisfies that

lim
N→+∞

∑N
i=1 θ̂i
N

− θ = 0 (4.1)

In addition, the variance of the estimation should be taken into account. Imagine an unbiased
estimation where the result of each estimation varies widely. Such an estimation will be a disaster for
researcher. Therefore, a biased estimation with much smaller variance is not entirely undesirable.

When we assess the performance of the methods of chapter 2 in chapter 3. We cannot measure
the bias and error since the true treatment effect is unknown. Therefore, we desire a experiment with
known treatment effect to assess the estimation models. In general, the methods with small MSE is
preferred. The MSE is equal to the sum of bias and variance which can be regarded as a measure of
the difference between the estimated values and true values. We can calculate the MSE by formula 4.2

MSE =

∑nsim

i=1 (θ − θ̂i)2

nsim
(4.2)

Additionally, in the obstructive sleep apnea example, the baseline imbalance exists in each study
which can lead to bias and Type 1 error if no reasonable adjustment is specified[7]. The baseline
imbalance between treatment groups is common in small trials and can confound the inference of the
treatment effect. In general, the ANCOVA model with baseline as a covariate accounts better for the
baseline imbalance. However, which method in chapter 2 provides the best estimation under different
conditions is unknown. To assess the bias and error of each method, we use a simulation study for
further exploration.

4.3 Data-generation machine

The simulation study generated individual participant data for a meta-analysis with nstudy studies,
with an equal number of subjects within each arm of the study. Baseline values were drawn from a
normal distribution with study and arm-specific mean, µ̂Bik for study i with k = 1 for the treatment
group and k = 2 for the control group, and standard deviation of the baseline, σY B , was constant in
all studies and all groups.
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Table 4.1: Frequently used Notations

Symbol Description

Change The Change score model.
Final The final score model
RA The recovered ANCOVA model.
Trowman The Trowman model
PB The pseudo base model with the only predictor, the treatment group
PF The pseudo full model is the one-stage method with the treatment effect, study-

specific baseline effects and intercept.
PTS The pseudo Two-stage model with baseline, treatment effect as predictors.

Treatment effect,
β1

The true treatment effect we set in the simulation.

Baseline effect, β2 The true baseline treatment effect we set in the simulation.
Random effect, τ The true standard deviation of the random treatment effect.
σY B The true standard deviation of the values at baseline.
Residual, σik The true standard deviation of the experiment error in study i.
nstudy The total number of studies in the simulated dataset.
n1 and n2 The number of patients for the treatment group and control group.
imbalance The quantity of imbalance between the mean baseline of the treatment group

and control group.

β̂1 The mean of the estimated treatment effect value in all the simulation experi-
ments.

standard error The mean of the standard error of the estimated treatment effects in the output
of the simulation experiments.

tau The mean of the estimated random effect standard deviation in all the simula-
tion experiments.

MSE The mean square of error among all the simulation experiments.
Observed standard
deviation of β̂1

The standard deviation of the estimated value in all simulation.

nsim The number of experiments in the simulation study. We generate nsim = 200
data sets and apply all the models nsim times and summary the results.
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We kept the baseline outcome balance in the generated data (µ̂Bi2 = µ̂Bi1) for all studies in most
of the experiments. In addition, we also generated the data in one study where the baseline outcome
was not balanced (µ̂Bi2 = µ̂Bi1 + imbalance) to check the performance.

After the baseline score was determined, we generated the follow-up values based on the baseline
values using the stratified model of formula 4.3

YFij = β0i + (β1 + b1i)Xij + β2YBij + εij (4.3)

with β0i = 40 in all studies and simulations. b1i denotes the random effect following a normal
distribution with mean 0 and standard deviation τ . εij follows a normal distribution with mean 0 and
standard deviation σik (i and k represent the study and group respectively). We used the fixed mean
treatment effect β1 = 50 in all experiments. We did not vary the treatment effect since the performance
of the models (MSE, standard error, and bias) would not react to the change of the treatment effect.

The parameters and designs were varied as follows:
1. Number of Studies nstudy = 4, 8, 16
2. Number of patients in each arm n1 = n2 = 10, 20, 30
3. σik = 4, 8, 32 for all i, k.
4. The study-specific, group-specific, all-equal, and arm-specific residual structures in the pseudo

full model.
5. σY B = 10, 20, 30. We use the same values for all studies and all groups.
6. Imbalance = 0, 5. We compare the conditions with and without baseline imbalance.
7. β2 = 0.2, 0.5, 0.8. We compare the estimation under different baseline effect.
8. τ = 6, 13, 20. The MSE and bias under different random effect will be assessed.
For each parameter, we performed nsim = 200 simulations. We regarded imbalance = 0, N = 8,

n1 = n2 = 20, σik = 4, σY B = 20, β1 = 50, β2 = 0.5, τ = 13 as the standard case. In each simulation
experiment we varied one of the parameters, and compare as standard values for the other parameters.

For each simulated dataset, we aggregated the data by study and arm and then performed the
meta-analysis methods 2.8, 2.13, 2.16, 2.17, 2.18, 2.19, and 2.24, like what we did in the obstructive
sleep apnea case. We referred them to the terms as following:

• Final Score Model: the model 2.8, the standard meta-analysis method with follow-up score
as the outcome

• Change Score Model: the model 2.13, the standard meta-analysis method with change score
as the outcome

• Recovered ANCOVA Model: the model 2.16, standard meta-analysis method with the ad-
justed outcome

• Trowman Method: the model 2.17, meta-regression with mean baseline effect, and treatment
as predictors

• Pseudo Base Model: pseudo-IPD is generated and the model 2.18, linear mixed model with
treatment group as the predictor is used

• Pseudo Full Model: pseudo-IPD is generated and the model 2.19, a linear mixed model
with study-specific baseline effects and intercept, treatment group as the predictors is used. In
most simulations, we used a study-specific residual error structure, except for the simulation
experiment of Table 4.5.

• Pseudo Two-stage Model: Using the pseudo-IPD, a linear model was fitted in each study,
using baseline values and treatment as covariates, and a synthesis standard meta-analysis was
performed.

In every simulation, we recorded the estimated treatment value, standard error, and estimated
random effect τ , and we calculated the bias (β̂1−β1), where β1 denotes the true treatment effect, and

θ̂ denotes the mean estimation of all repetition.
Finally, We calculated over all simulation:

• Mean bias : (β̂1 − β1)
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• Mean estimated standard error : (se(β1))

• Mean estimated random effect : (τ̂)

• The MSE

The results of the simulation are summarised in Tables and shown by boxplots. The whole exper-
iment was implemented by R (version 4.0.3). Linear model were fitted using the package nlme. We
applied the control of maxiter = 1000 times to the linear mixed model to prevent convergence issues.

Standard meta-analysis were performed using the package ’metafor’. The flow graph of the simu-
lation is given in figure 4.1

Figure 4.1: The logic of the simulation experiment

4.4 Results

In this section, we provide the results of the simulation study. We compared the performance for
different parameters. First of all, we show the results of the standard case in table 4.2.

Regarding the bias, all the methods provide an unbiased estimation. However, a much higher MSE
was detected in the Trowman method. Moreover, the estimated τ of the pseudo base model is smaller
than the true value. In addition the pseudo full model, recovered ANCOVA model, and pseudo Two-
stage model provided almost identical results, and acquired the lowest MSE. The Trowman model
acquired the largest MSE. We found that the estimated random effects for all models on average were
somewhat lower than the true value. The mean standard errors reported in the output were smaller
than the observed standard deviation of the estimated treatment effect.

Figure B.1 is the boxplot with the distribution of the estimated treatment effect. The top line
and bottom line of each box are the Q1 = 25% and Q3 = 75% quantiles, respectively. The black
line in the middle is the median Q2 = 50%. The range from 25% to 75% is termed as Interquartile
Range, and the abbreviation is IQR = Q3−Q1. The top short line and bottom short line are equal
to Q3 + 1.5 ∗ IQR and Q1− 1.5 ∗ IQR.

To assess the performance of the methods under various conditions, we varied one parameter each
time to compare with the standard case as we previously mentioned. We measured the stability and
accuracy of the method by the bias and MSE. First, we checked the performance for various σik.
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Table 4.2: The results of standard case

Model Estimation Standard error tau MSE Observed standard deviation of β1 Bias

Change 49.79 4.54 12.34 23.32 4.84 0.21
Final 49.77 4.47 12.12 22.54 4.75 0.23
RA 49.79 4.38 12.33 21.77 4.67 0.21
Trowman 49.73 4.53 NA 24.42 4.95 0.27
PB 49.74 4.33 11.55 22.58 4.76 0.26
PF 49.79 4.38 12.32 21.77 4.67 0.21
PTS 49.79 4.38 12.32 21.77 4.67 0.21

The standard parameters are 1. β1 = 50
2. β2 = 0.5
3. σik = 4
4. σY B = 20
5. nstudy = 8
6. n1 = n2 = 20
7. τ = 13
8. Without imbalance

4.4.1 Performance of different values for σik

Table 4.3 and Figure B.2, Figure B.3 show the results of σik = 8, and σik = 32 with the same values in
all studies, respectively. All methods provide unbiased estimates in both experiments. The standard
error, observed standard deviation of β1, and the MSE of the standard case (Table 4.2) are slightly
lower than the case when σik = 8. However, the error parts are much larger when σik = 32.

For standard case (σik = 4) and the σik = 8 case, the Recovered ANCOVA model, pseudo full
model, and pseudo two-stage model provide smaller MSE compared to other methods. Similar with
the standard case, the Trowman model acquires the largest MSE.

For the case when σik = 32, we observed similar pattern. In the real clinic trials, the residual should
not reach such a large number. Here, the large value is used to assess the impact of the residual on
the performance. Figure B.2 and B.3 show the overall distribution of the estimated values for σik = 8,
and σik = 32, respectively. The box of σik = 32 is larger than the standard case and σik = 8, which
indicates a more unstable estimate.

In clinical trials, we apply different treatments to different groups. It is common that the residual
variance in different treatment groups is different. Table 4.4 and figure B.4 show the results of an
experiment where the two groups have different residual standard deviations with σi1 = 8 and σi2 = 4.
We observed that the MSEs in table 4.4 are slightly larger than the MSEs in Table 4.2, where σi1 =
σi2 = 4, but lower than in Table 4.3 where σi1 = σi2 = 8. This was what we expected.

Similar to the Apnea example in chapter 3, we fitted pseudo IPD models with different residual
structures. In this experiment, we used σi1 = 16, and σi2 = 4. Table 4.5 shows the results of different
models. The results of both the estimations and the performance are similar for the different residual
structures. This was different from what we observed in table 3.3 in the Apnea example, where we
found some difference among the different models.

In addition, for each simulation, we regarded the dataset which is generated from formula 4.3 as the
’original data’. We applied the same linear mixed model to both the ’original data’ and the pseudo-
IPD. For all simulation, all models with different residual structures did provided identical results for
both datasets. That is, the pseudo-IPD can recover all the information of the original data.

4.4.2 Performance of different values for nstudy

Table 4.6, figure B.6, and figure B.5 show the results of nstudy = 4 and nstudy = 16. The nstudy = 16
case provides a much lower reported standard error, observed standard deviation of β1, and MSE than
the standard case in table 4.2. And the nstudy = 4 experiment provides exact opposite results. Similar
to the standard case, the recovered ANCOVA model, pseudo full model, and the pseudo two-stage
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Table 4.3: The results of different residual

Model Estimation Standard error tau

σik = 8 σik = 32 σik = 8 σik = 32 σik = 8 σik = 32

Change 49.76 49.62 4.59 5.63 12.26 11.19

Final 49.73 49.56 4.52 5.62 12.04 11.07

RA 49.75 49.59 4.44 5.57 12.28 11.60

Trowman 49.70 49.53 4.58 5.71 NA NA

PB 49.70 49.55 4.38 5.52 11.47 10.45

PF 49.75 49.60 4.44 5.54 12.27 11.21

PTS 49.75 49.60 4.44 5.52 12.27 11.35

MSE Observed standard deviation of β1 Bias

σik = 8 σik = 32 σik = 8 σik = 32 σik = 8 σik = 32

Change 24.36 41.93 4.94 6.48 0.24 0.38

Final 23.31 38.50 4.83 6.20 0.27 0.44

RA 22.64 39.06 4.76 6.25 0.25 0.41

Trowman 25.55 43.70 5.06 6.61 0.30 0.47

PB 23.41 39.01 4.84 6.25 0.30 0.45

PF 22.63 39.63 4.76 6.30 0.25 0.40

PTS 22.63 39.40 4.76 6.28 0.25 0.40

The parameters are as follows 1. β1 = 50
2. β2 = 0.5
3. σik = 8 and σik = 32
4. σY B = 20
5. nstudy = 8
6. n1 = n2 = 20
7. τ = 13
8. Without imbalance
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Table 4.4: The results of the study and arm-specific residual

Model Estimation Standard error tau MSE Observed standard deviation Bias

Change 49.80 4.56 12.28 23.79 4.89 0.20

Final 49.78 4.49 12.08 22.91 4.79 0.22

RA 49.79 4.41 12.29 22.16 4.71 0.21

Trowman 49.75 4.55 NA 24.93 5.00 0.25

PB 49.75 4.35 11.50 23.00 4.80 0.25

PF 49.80 4.41 12.28 22.16 4.72 0.20

PTS 49.80 4.41 12.28 22.16 4.72 0.20

In this case, we generate the data with group-specific residual setting. The parameters are as follows:
1. β1 = 50
2. β2 = 0.5
3. σi1 = 8 and σi2 = 4
4. σY B = 20
5. nstudy = 8
6. n1 = n2 = 20
7. τ = 13
8. Without imbalance

Table 4.5: The results of different residual structures

Residual Structure Estimation Standard Error tau MSE Observed Standard Deviation Bias

All-equal 49.81 4.52 12.17 23.53 4.86 0.19

Study-specific 49.82 4.51 12.16 23.65 4.87 0.18

Group-specific 49.82 4.50 12.13 23.60 4.87 0.18

Study and Arm-specific 49.83 4.50 12.13 23.74 4.88 0.17

In this experiment, we generate the data with σi1 = 16, σi2 = 4. And we fit the pseudo full model
with 4 different residual structures like we did to the Apnea data in Chapter 3. The parameters are:
1. β1 = 50
2. β2 = 0.5
3. σi1 = 16 and σi2 = 4
4. σY B = 20
5. nstudy = 8
6. n1 = n2 = 20
7. τ = 13
8. Without imbalance

23



Table 4.6: The results of different nstudy

Model Estimation Standard error tau

nstudy = 4 nstudy = 16 nstudy = 4 nstudy = 16 nstudy = 4 nstudy = 16

Change 50.02 49.85 6.50 3.23 12.40 12.43

Final 50.14 49.86 6.35 3.21 12.06 12.35

RA 50.10 49.86 6.25 3.12 12.42 12.43

Trowman 49.85 49.84 6.74 3.17 NA NA

PB 50.15 49.86 6.23 3.09 11.70 11.72

PF 50.10 49.86 6.25 3.12 12.42 12.43

PTS 50.10 49.86 6.25 3.12 12.42 12.43

MSE Observed standard deviation of β1 Bias

nstudy = 4 nstudy = 16 nstudy = 4 nstudy = 16 nstudy = 4 nstudy = 16

Change 47.93 11.61 6.94 3.41 0.02 0.15

Final 50.71 11.61 7.14 3.41 0.14 0.14

RA 46.89 10.90 6.86 3.31 0.10 0.14

Trowman 56.34 10.84 7.52 3.30 0.15 0.16

PB 50.97 11.54 7.16 3.40 0.15 0.14

PF 46.89 10.90 6.86 3.31 0.10 0.14

PTS 46.89 10.90 6.86 3.31 0.10 0.14

The parameters are: 1. β1 = 50
2. β2 = 0.5
3. σi2 = 4
4. σY B = 20
5. nstudy = 4, 16
6. n1 = n2 = 20
7. τ = 13
8. Without imbalance

model acquire almost identical results. In addition, their performance is more solid than the others
regarding the MSE.

When only a small number of studies is available in the meta-analysis, the estimation will be
unstable. Although all the model provide unbiased estimation, the standard deviation of the estimated
β1 is large. Hence, we prefer as much available studies as possible to guarantee the accuracy and
stability of the meta-analysis.

4.4.3 Performance of different values for σY B

Table 4.7, figure B.7, and figure B.8 show the results of the cases when σY B = 10 and σY B = 30. For
the Trowman model, recovered ANCOVA model, pseudo full model, and the pseudo two-stage model,
the results are identical among σY B = 10, the standard case, and σY B = 30. That is, the impact of
different σY B is adjusted perfectly in these models. In clinical trials, the treatment effect is of our
primary interest. The standard deviation of the baseline score, and the imbalance between the baseline
score are the noise that should be removed. These methods can successfully achieve the goal. For the
other methods, the estimated results are slightly different for different σY B ’s, which means the change
score model, final score model, and the pseudo base model are unstable for various standard deviations
of the baseline.
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Table 4.7: The results of different σY B

Model Estimation Standard Error tau
σY B = 10 σY B = 30 σY B = 10 σY B = 30 σY B = 10 σY B = 30

Change 49.79 49.78 4.43 4.71 12.35 12.27
Final 49.78 49.76 4.39 4.60 12.24 11.91
RA 49.79 49.79 4.38 4.38 12.33 12.33

Trowman 49.73 49.73 4.53 4.53 NA NA
PB 49.75 49.73 4.24 4.47 11.67 11.33
PF 49.79 49.79 4.38 4.38 12.32 12.32

PTS 49.79 49.79 4.38 4.38 12.32 12.32
MSE Observed standard deviation of β1 Bias

σY B = 10 σY B = 30 σY B = 10 σY B = 30 σY B = 10 σY B = 30
Change 22.29 24.89 4.73 5.00 0.21 0.21
Final 21.89 23.73 4.69 4.88 0.22 0.22
RA 21.77 21.77 4.67 4.67 0.21 0.21

Trowman 24.42 24.42 4.95 4.95 0.27 0.27
PB 21.93 23.79 4.69 4.88 0.25 0.27
PF 21.77 21.77 4.67 4.67 0.21 0.21

PTS 21.77 21.77 4.67 4.67 0.21 0.21

The parameters are: 1. β1 = 50
2. β2 = 0.5
3. σi2 = 4
4. σY B = 10, 30
5. nstudy = 8
6. n1 = n2 = 20
7. τ = 13
8. Without imbalance
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Table 4.8: The results of different ngroup

Model Estimation Standard error tau

ngroup = 10 ngroup = 30 ngroup = 10 ngroup = 30 ngroup = 10 ngroup = 30

Change 50.24 49.95 4.63 4.62 12.12 12.74

Final 50.38 50.04 4.69 4.63 12.30 12.78

RA 50.30 49.99 4.40 4.54 12.32 12.79

Trowman 50.23 49.89 4.56 4.72 NA NA

PB 50.36 50.05 4.39 4.54 11.01 12.41

PF 50.30 49.99 4.40 4.54 12.31 12.79

PTS 50.30 49.99 4.40 4.54 12.31 12.79

MSE Observed standard deviation of β1 Bias

ngroup = 10 ngroup = 30 ngroup = 10 ngroup = 30 ngroup = 10 ngroup = 30

Change 24.01 19.02 4.91 4.37 0.24 0.05

Final 23.34 20.00 4.83 4.48 0.38 0.04

RA 20.91 18.66 4.57 4.33 0.30 0.01

Trowman 21.19 22.91 4.61 4.80 0.23 0.11

PB 23.89 19.89 4.89 4.47 0.36 0.05

PF 20.91 18.66 4.57 4.33 0.30 0.01

PTS 20.91 18.66 4.57 4.33 0.30 0.01

The parameters are: 1. β1 = 50
2. β2 = 0.5
3. σi2 = 4
4. σY B = 20
5. nstudy = 8
6. n1 = n2 = 10, 30
7. τ = 13
8. Without imbalance

4.4.4 Performance of different values for ngroup

Table 4.8, figure B.9, and figure B.10 show the results for ngroup = 10 and ngroup = 30. Compare the
results of table 4.8 and table 4.2, we can conclude that the larger group size, the smaller the bias is.
We also see that the reported standard errors are very similar, but that the standard deviation of β1
is decreasing somewhat smaller. However, no significant relationship between the standard error and
the ngroup values. In addition, the estimated variance of the random effect approach the true value if
ngroup increases, and the bias of the estimated treatment effect decreases when the ngroup increases.

4.4.5 Performance of different values for β2

Table 4.9 and figure B.11, B.13 show the results of the cases where the baseline effect, β2 = 0.2 and
β2 = 0.8, respectively. If β2 = 0, model 4.3 becomes YFij = β0i + (β1 + b1i)Xij + εij . This is a final
score model , with θi = β1 + b1i. In the same way if β2 = 1, model 4.3 becomes (YFij − YBij) =
β0i + (β1 + b1i)Xij + εij . This is a change score model, with θi = β1 + b1i. Hence, for small baseline
effect, e.g., β = 0.2, the final score model performs better. Conversely, change score model is better
for the large baseline effect, e.g., β = 0.8. That is, we can choose the standard meta-analysis method
based on the developmental features of the disease. If the disease severity grows more rapidly for the
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Table 4.9: The results of different β2

Model Estimation Standard error tau

β2 = 0.2 β2 = 0.8 β2 = 0.2 β2 = 0.8 β2 = 0.2 β2 = 0.8

Change 49.93 50.14 4.94 4.41 12.84 12.32

Final 49.99 50.17 4.63 4.64 12.95 11.88

RA 49.98 50.15 4.61 4.38 12.98 12.31

Trowman 49.92 50.13 4.85 4.52 NA NA

PB 50.02 50.18 4.45 4.50 12.30 11.29

PF 49.98 50.15 4.61 4.38 12.97 12.31

PTS 49.98 50.15 4.61 4.38 12.97 12.31

MSE Observed standard deviation of β1 Bias

β2 = 0.2 β2 = 0.8 β2 = 0.2 β2 = 0.8 β2 = 0.2 β2 = 0.8

Change 28.22 24.44 5.33 4.95 0.07 0.14

Final 24.17 29.98 4.93 5.49 0.01 0.17

RA 23.91 24.87 4.90 5.00 0.02 0.15

Trowman 26.18 27.13 5.13 5.22 0.08 0.13

PB 24.31 29.82 4.94 5.47 0.02 0.18

PF 23.91 24.87 4.90 5.00 0.02 0.15

PTS 23.91 24.87 4.90 5.00 0.02 0.15

The parameters are: 1. β1 = 50
2. β2 = 0.2, 0.8
3. σi2 = 4
4. σY B = 20
5. nstudy = 8
6. n1 = n2 = 20
7. τ = 13
8. Without imbalance

patients with worse base, we can choose the change score model to estimate the treatment effect. For
the disease with approximate equal effect for the patients with different baseline values, the final score
model can provide a solid estimation.

For any value of β2, all the models provide an unbiased estimation since the assumption that there
is no baseline imbalance between groups is always satisfied.

4.4.6 Performance when baseline imbalance exists

Table 4.10 and figure B.14, B.15, B.16 show the performance of different baseline effect β2 when
baseline imbalance exists. Unlike the experiments before, the change score model, final score model,
and the pseudo base model provide biased estimation, which means that the imbalance between the
baseline is the source of the bias. The recovered ANCOVA method, pseudo full model, and pseudo
two-stage model succeed in adjusting for the imbalance and recovering the true treatment effect.

In addition, the bias of the change score model decreases for the increasing of the β2 (β2 = 0.2,
bias = 4.14; β2 = 0.8, bias = 1.45). For the final score model and the pseudo base model, the bias
grows for the increasing β2. (β2 = 0.2, bias = 1.07; β2 = 0.8, bias = 3.61)

For the Trowman method, the standard error and the MSE are much larger than the experiment
without imbalance, which indicates that the Trowman method performs unstable for the case with
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baseline imbalance.
One thing to note is that the difference between the estimated effect from the change score model

and the estimated effect from the final score model is approximately equal to the baseline imbalance.
For example, when we set the baseline imbalance to 5, the mean difference between the estimated
values of the change score model and the final score model will be approximately 5.

4.4.7 Performance of different values for random effect τ

Table 4.11 and figure B.17, B.18 show the results of the simulation experiment with τ = 6 and τ = 20.
A large random effect τ indicates that the treatment effect has a large difference among studies. Hence,
it is natural to acquire results with large variations in the simulation study. For the τ = 20 case, we
only use 8 studies, and the minimum MSE reaches 51.12 (The MSE of all the adjusted methods). For
the τ = 6 case, the maximum MSE is 6.25, which is much smaller than the standard case and the
τ = 20 case. For the estimated random effect variance, the estimated τ was smaller than the real
values. In addition, the bias was larger for the larger random effect.
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Table 4.10: The results when baseline imbalance exists

Model Estimation Standard error

β2 = 0.2 β2 = 0.5 β2 = 0.8 β2 = 0.2 β2 = 0.5 β2 = 0.8

Change 54.14 52.37 51.45 4.64 4.46 4.56

Final 48.93 47.26 46.39 4.42 4.47 4.77

RA 49.97 49.83 50.44 4.41 4.39 4.55

Trowman 50.17 49.53 50.25 5.72 5.70 5.80

PB 49.03 47.20 46.18 4.45 4.32 4.50

PF 49.97 49.83 50.44 4.41 4.39 4.55

PTS 49.97 49.83 50.44 4.41 4.39 4.55

tau MSE

β2 = 0.2 β2 = 0.5 β2 = 0.8 β2 = 0.2 β2 = 0.5 β2 = 0.8

Change 12.32 12.28 12.82 36.41 24.92 25.12

Final 12.41 12.31 12.75 20.27 29.28 37.33

RA 12.42 12.36 12.84 18.62 19.96 23.01

Trowman NA NA NA 38.28 34.83 43.80

PB 12.30 11.54 11.29 25.26 31.70 44.40

PF 12.42 12.36 12.84 18.62 19.96 23.01

PTS 12.42 12.36 12.84 18.62 19.96 23.01

Observed standard deviation of β1 Bias

β2 = 0.2 β2 = 0.5 β2 = 0.8 β2 = 0.2 β2 = 0.5 β2 = 0.8

Change 4.40 4.40 4.81 4.14 2.37 1.45

Final 4.38 4.68 4.94 1.07 2.74 3.61

RA 4.33 4.48 4.79 0.03 0.17 0.44

Trowman 6.20 5.90 6.63 0.17 0.47 0.25

PB 4.94 4.90 5.47 0.97 2.80 3.82

PF 4.33 4.47 4.79 0.03 0.17 0.44

PTS 4.33 4.47 4.79 0.03 0.17 0.44

The parameters are: 1. β1 = 50
2. β2 = 0.2, 0.5, 0.8
3. σi2 = 4
4. σY B = 20
5. nstudy = 8
6. n1 = n2 = 20
7. τ = 13
8. imbalance = 5
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Table 4.11: The results of different random effects

Model Estimation Standard error tau
τ = 6 τ = 20 τ = 6 τ = 20 τ = 6 τ = 20

Change 49.88 49.69 2.33 6.85 5.52 19.04
Final 49.86 49.68 2.29 6.77 5.30 18.81
RA 49.88 49.69 2.05 6.73 5.66 18.99

Trowman 49.86 49.60 2.12 6.95 NA NA
PB 49.85 49.63 2.34 6.54 5.03 17.92
PF 49.88 49.69 2.05 6.73 5.65 18.98

PTS 49.88 49.69 2.05 6.73 5.65 18.98
MSE Observed standard deviation of β1 Bias

τ = 6 τ = 20 τ = 6 τ = 20 τ = 6 τ = 20
Change 6.25 52.82 2.50 7.28 0.12 0.31
Final 5.74 51.74 2.40 7.20 0.14 0.32
RA 4.86 51.12 2.21 7.16 0.12 0.31

Trowman 5.49 57.17 2.35 7.57 0.14 0.40
PB 5.75 51.83 2.40 7.21 0.15 0.37
PF 4.86 51.12 2.21 7.16 0.12 0.31

PTS 4.86 51.12 2.21 7.16 0.12 0.31

The parameters are: 1. β1 = 50
2. β2 = 0.5
3. σi2 = 4
4. σY B = 20
5. nstudy = 8
6. n1 = n2 = 20
7. τ = 6, 13, 20
8. Without imbalance
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Chapter 5

Conclusion and Discussion

5.1 Discussion of the findings

In the thesis, we considered the standard meta-analysis methods, the Trowman method, and the
pseudo-IPD methods for meta-analysis with continuous outcomes measured at two time points. We
first fitted the different models on the apnea data. The results from the methods were somewhat
different in estimated treatment effect and estimated random effects yet similar in the standard errors.
The methods which use only the final score, such as the Final score model (Formula 2.8) and the
Simplest pseudo-IPD model (Formula 2.18) which has the treatment group as the only predictor are
similar. The adjusted models, like Recovered ANCOVA model, Full Pseudo-IPD Model, and the
Two-stage model also yielded similar results. The estimated treatment effect of these models were in
between the results of the Change Score model and the Final Score model results.

In the simulation studies, we designed various scenarios to test bias and MSE. Considering each
experiment independently, the MSE of the Trowman method was larger than the others, which indicates
the instability of this meta-regression method. Apart from that, the estimated variance of the random
effects were always smaller than the true values, especially in the pseudo base model. Having more
studies, more samples in each arm, and smaller variations (residual variances or tau) did generally
increase the performance of all the methods according to the bias of the estimated values and estimated
random effects, and the standard errors.

Increasing the standard deviation of the baseline measurement did not change any of the results.
The recovered ANCOVA model, the pseudo full model, pseudo two-stage model, acquired identical
results for all standard deviations of the baseline measurement. That is, these methods completely
adjust the difference of the baseline variations. However, the change score model, final score model,
and the pseudo base model performed worse as the baseline standard deviation increased.

Additionally, We found that the performance of all the methods are sensitive to the baseline effect
(β2) and the baseline imbalance. For the experiment without baseline imbalance, all the methods
provide the unbiased estimation. When baseline imbalance exists, the bias merges only in the change
score model, final score model, and the pseudo base model. And the difference between the estimated
values of the final score model and the change score model is approximately equal to the mean baseline
imbalance. We also found that the performance of the final score model will be better if the baseline
score has a small impact on the follow-up score. Similarly, the change score model will be closer to
the true conditions if the baseline effect approaches to 1 (s,one follow-up score increase associated
with one-unit increase of the baseline score). In addition, the Trowman method acquired an unbiased
estimation yet with a much larger standard error in the experiment with imbalance.

Comparing the results of various baseline effect with and without imbalance experiments, the
performance of the adjusted methods had no significant difference for all baseline effects. That is,
the recovered ANCOVA model, pseudo full model, and pseudo two-stage model all can eliminate the
impact of the baseline to the estimation.
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5.2 Advantages of the way we performed the simulation

The Simulation process in this thesis has advantages in data-generation machine, performance measure,
and model fitting. We will discuss as following.

1. Data-generation Machine. In this thesis, we assess the performance of the pseudo-IPD mod-
els. The pseudo-IPD is generated from the aggregate data. And the aggregate data is the
summary of the original IPD which is not available for most of clinical trials. Based on the
relationship between the datasets. There are two ways to perform the simulation. The first
approach is to generate the aggregate data directly and then fitting all the models as we did in
Chapter 3. The second method is to generate the original IPD and aggregate the IPD to acquire
the AD. Then fitting the models as in the first approach. Comparing the two potential methods,
we select the second method since that

• We can compare the results of the pseudo-IPD and the original IPD to check whether the
linear mixed model can acquire identical results on these two datasets.

• The means and standard deviations of the change score can be calculated directly from the
original IPD, which is more convenient than calculating from aggregate data.

In addition, the data-generation formula 4.3 provides flexibility to vary each parameters sepa-
rately, which allows us to analyze how each parameter affects the performance of the models.

2. Performance Measure. We use the MSE and bias to assess the performance of each method.
Moreover, we calculated the standard deviation of the estimated values and compared it with
the standard error in the output. Combining the results with the boxplots can provide a clear
view of the performance.

3. Model Fitting In the model fitting process, we applied identical fitting control to the standard
meta-analysis models and linear regression models to avoid convergence error. The control of
the iteration times and convergence tolerance can reduce the time-cost of the simulation, which
is a crucial challenge for many simulation studies.

5.3 Limitations of the Simulation

Although the simulation can generate suitable dataset to check the performance of the models, the
flexibility and reliability have some limitations.

• In the generated data, there are many negative values. In some clinical trials (e.g. the Obstructive
Sleep Apnea Data we used in Chapter 3), negative values will not appear. The negative values
will not affect the methodology study. However, if we want to generate data which is very similar
to a specific trials where all the values are positive, we have to add restriction to the simulation
process.

• In the real trials, studies with larger scores also had larger standard deviations. In our simulation,
the relationship between the mean scores and standard deviations is not taken into account.

• We only tried limited number of studies and number of patients in each arm. That is, we did not
check the asymptotic properties of the methods. For instance, we did not use a extremely large
number of patients in each arm (E.g. 1000) to the simulation. Hence, we do not know whether
the negative bias of the estimated random effects exists when ngroup → +∞

• In the generation process, we only tried the all-equal residual and the group-specific residual.
The study-specific and arm-specific structures worth further exploration.

• We average the results of each model based on 200 simulated dataset. However, 200 times
repetition may not enough. We can set the repetition time to e.g. 500 times to acquire a more
reliable assessment.

For improvement, we can increase the number of repetition and assess the performance of the
models on more circumstance. E.g. We can adjust the data-generation machine so that a larger mean
corresponds to a larger standard deviation.
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5.4 Comments of the methods

From the results of the simulation, the pseudo full model which has the study-specific baseline
score and intercept, treatment group as the predictors can provide unbiased, solid estimation. For any
parameters, the pseudo full model can estimate the treatment effect without bias and with a relatively
small standard error.

The pseudo two-stage model with the baseline score, treatment group as predictors can acquire
similar results as the pseudo full model. Pseudo two-stage model uses both linear model and standard
meta-analysis, which is flexible to satisfy different assumptions.

For the standard meta-analysis models, the Recovered ANCOVA model can acquire stable and
unbiased estimation in any conditions. The estimation result is similar with the pseudo full model and
the pseudo two-stage model.

The Trowman model is a meta-regression model. It uses the aggregate data to fit a linear model
directly. In the aggregate data, there are 2 treatment groups in each study and totally 2 × nstudy
observations in the data. Since the number of observations is small, the standard error of the estimation
is large. For the data with baseline imbalance, the performance of Trowman method is much worse
than the other methods which adjust for the baseline imbalance.

The Final Score Model and the Change Score Model are the commonly used standard meta-
analysis models since statistician can program without complex adjustment to the aggregate data.
However, the performance of the methods are highly depends on the baseline effect. And most of
time, the baseline effect is unknown before the clinic trials. Moreover, the baseline imbalance between
treatment groups can cause bias to the methods.

5.5 Conclusion

In this thesis, we studied the performance of the standard meta-analysis methods, Trowman method,
and pseudo-IPD methods. We checked the performance in scenarios with various residual variances,
number of study, sample sizes in each group, standard deviations of the baseline scores, baseline effects,
random effects, and the existence of baseline imbalance. Following findings are concluded from the
simulation study.

• The Pseudo Full Model, Pseudo Two-stage Model, and the Recovered ANCOVA
Model are stable unbiased methods. For all conditions, they provide almost equal results and
the best performance among all models.

• The estimated variance of the random effects have negative bias compared to the true values.
The larger sample sizes in each arm can reduce the bias.

• Without baseline imbalance, all the methods provide unbiased estimation. That is, the baseline
imbalance is the only source of bias.

• All pseudo-IPD models can acquire identical results on the original data and the pseudo-IPD.
Hence, the pseudo-IPD recovered all the information of the original IPD.

Based on the findings in the simulation, we recommend the improvements as following.

• For the future meta-analysis with continuous outcomes and a baseline and follow-up measure-
ment, we recommend to use the Pseudo Full Model, Pseudo Two-stage Model, and the
Recovered ANCOVA Model based on the aggregate data.

• Since the standard deviation of the adjusted score in the Recover ANCOVA model and change
score in the Change Score Model are calculated from the correlation value of the baseline and
follow-up, researchers can improve the quality of aggregate data, by reporting the correlation
between baseline and follow up measurement in each group, or report the results of an adjusted
ANCOVA analysis in the aggregate data.
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5.6 Future Work

In this thesis, we assessed the pseudo base model with only treatment groups as predictor, pseudo full
model with study-specific baseline effect and intercepts, treatment groups as predictors, and pseudo
two-stage model. However, as we mentioned in Chapter 2, there are many other options for the pseudo
full model. They should be studies and extended further. For the standard meta-analysis model, we
only assessed the performance of the meta-analysis with raw mean difference measure. Some other
effect sizes for the continuous outcome (e.g. the standard mean difference) worth exploration as well.

For both the Obstructive Apnea data and the simulated data in our study, only the baseline scores
and treatment groups variables are included. For more complicated clinical trials, more variables like
the sex, ages, smoking frequency of the patients may be provided. If the mean score, standard deviation
of other continuous variables, and their correlation with the baseline and follow-up are provided in the
aggregate data, how to adjust the effect of the other covariates is a potential topic for future study.
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Appendix A

Results of Obstructive Sleep Apnea
Case

Figure A.1: Final Score Model Curve
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Figure A.2: Change Score Model Curve
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Figure A.3: Recovered ANCOVA Model Curve
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Appendix B

Results of Simulation Study

Figure B.1: The result of the standard case
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Figure B.2: The result of the case when σik = 8

Figure B.3: The result of the case when σik = 32
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Figure B.4: The result of the arm-specific residual case

Figure B.5: The result for nstudy = 16
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Figure B.6: The result for nstudy = 4

Figure B.7: The result for σY B = 10
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Figure B.8: The result for σY B = 30

Figure B.9: The result for ngroup = 10
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Figure B.10: The result for ngroup = 30

Figure B.11: The result for β2 = 0.2 without imbalance
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Figure B.12: The result for β2 = 0.5 without imbalance

Figure B.13: The result for β2 = 0.8 without imbalance
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Figure B.14: The result for β2 = 0.2 with imbalance

Figure B.15: The result for β2 = 0.5 with imbalance
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Figure B.16: The result for β2 = 0.8 with imbalance

Figure B.17: The result for τ = 6
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Figure B.18: The result for τ = 20
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Appendix C

R Code for this thesis

Researcher can access the R code of chapter 3 and chapter 4 for reproducing the results or further
research need.
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