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Abstract

Survival analysis deals with the study of the time until an event of interest occurs. The Cox
Proportional Hazards model (Cox model) is commonly used to model the relationship between
a survival outcome and a set of cross-sectional covariates, but it cannot handle longitudinal co-
variates, i.e. covariates that are repeatedly measured over time. Traditional ways to deal with
longitudinal covariates include joint modelling, landmarking and the time-dependent Cox model,
but to date their applicability has mostly been restricted to problems with a small number of
longitudinal covariates.

Recently, the increasing availability of repeated measurements in biomedical studies has mo-
tivated the development of statistical methods specifically designed to predict survival from a
large (potentially high-dimensional) number of longitudinal covariates. Due to the fact that such
methods are still quite new, little is known about how these methods may perform in practice.

The aim of this thesis is to compare the performance of various statistical methods to predict
survival on a real dataset where many longitudinal covariates are available as predictors. Four
methods were chosen for comparison, including two novel methods employing different techniques
to harness the longitudinal information, Penalized Regression Calibration (PRC) and Multivari-
ate Functional Principal Component Cox (MFPCCox) model, and penalized Cox models using
landmarking (last observation carried forward method) and baseline measurements respectively.

These methods were applied to the data from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) study in the context of dynamic prediction of time to develop dementia. The ADNI
study monitored the development of dementia in cohort of elderly individuals, and collected an
extensive, heterogeneous set of markers over multiple years of follow-ups. Predictions were com-
puted using a total of 26 covariates, of which 21 were longitudinal. The predictive performance
of the models was evaluated considering three performance measures (time-dependent AUC, C
index, and Brier score).

The results showed that the best performing method depended on the choice of performance
measure, landmark time, and prediction time. Landmarking was the best performing method
when looking at the time-dependent AUC and C index, whereas PRC was the best performing
method in terms of Brier score. Landmarking, PRC, and MFPCCox outperformed the baseline
model that ignored the follow-up information, suggesting that the longitudinal information in
the ADNI data can be used to improve predictions for dementia. Overall, our results seem to
indicate that for the ADNI data a simple approach such as landmarking may be enough to deliver
accurate predictions, when compared to more sophisticated approaches (PRC and MFPCCox)
that model the trajectories of longitudinal covariates.
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Chapter 1

Introduction

Survival analysis deals with the study of the time until an event of interest occurs, which we refer
to as time to event or survival time. Examples of events that can be studied through survival
analysis are death, developing a certain disease, marriage, failure of a mechanical component,
etc. A common trait of survival data is censoring, which occurs when the actual survival time
cannot be observed. Censoring may be due to different reasons, such as the fact that a subject
does not experience an event before the end of the study, or he/she is lost to follow-up during
study, or he/she is withdrawn from study. A fundamental task in survival analysis is to estimate
the survival or hazard function from data. Typically, statistical modelling of survival relates the
survival outcome to cross-sectional covariates that are independent of time. The Cox Propor-
tional Hazards model (Cox model) (Cox, 1972) is one of the most popular methods for this task.

However, this is not the case in longitudinal studies where interest lies in the relation between
the survival outcome and repeated measurements of certain variable over the course of the study,
which we refer to as longitudinal covariate or time-dependent covariate. For example, Tsiatis
et al. (1995) evaluated the potential of CD4-lymphocyte counts as a marker for human immune
virus (HIV) trials by analyzing its trajectory with the clinical progression. The problem that
the Cox model cannot naturally handle the longitudinal covariate has led to the development of
various methods to deal with such information in survival analysis:

• the time-dependent Cox model (Fisher and Lin, 1999) is an extension to the Cox model
where the hazard function is coupled with a longitudinal covariate whose value is assumed
to be constant in the time interval that occurs between two subsequent repeated measure-
ments. It has limitations that the longitudinal covariate should be exogenous, and using
step function to model the longitudinal covariate could become highly unrealistic in some
circumstances. Along with landmarking introduced below, time-dependent Cox model are
two most commonly used approaches for survival analysis involving longitudinal covariates
(Putter and van Houwelingen, 2016);

• landmarking (or landmark approach) (Anderson et al., 1983) is a simpler approach than
the time-dependent Cox model. It involves first setting a landmark time tl, then using
the last observation (or temporal aggregation such as the average measurements within an
observation window) prior to the landmark time of the longitudinal covariate as predictor
in a Cox model. The landmarking model is estimated based on the landmark dataset
which only considers individuals still at risk at the landmark time. The performance of
landmarking depends on the landmark choice: a landmark time too early is more likely
to have more imbalanced data, leading to misclassification at longer follow-up, whereas a
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landmark time too late will omit a high proportion of events, hence reducing the power
(Dafni, 2011). Landmarking may lead to bias when last observations are carried forward for
a longitudinal covariate of which the last observed value is remote from the true underlying
value. Comprehensive comparisons between landmarking and time-dependent Cox model
can be found in (Dafni, 2011; Putter and van Houwelingen, 2016; Bull et al., 2020);

• joint modelling (Rizopoulos, 2011) is a modelling approach that jointly estimates two sub-
models: one for the longitudinal covariates, and one for the survival outcome. The linear
mixed model is a popular choice for the first submodel of the trajectories of longitudi-
nal covariates. The second submodel is a Cox model depending on the same longitudinal
covariates. Despite the advantages of being more data efficient than landmarking and of
modelling the joint distribution of longitudinal data and survival data, estimation of joint
model is computationally intensive; to date, its estimation remains computationally pro-
hibitive when there are more than a few (e.g., 5) longitudinal covariates (Hickey et al.,
2016; Mauff et al., 2020). Moreover, it can be quite sensitive to misspecification of the
longitudinal trajectory (Putter and Houwelingen, 2022).

The aforementioned models were developed having in mind prediction problems that would in-
volve a limited number of longitudinal covariates. Nowadays, technological and methodological
advances in biomedical studies have made it more common for longitudinal studies to measure
many longitudinal covariates. Recently, three novel methods have been proposed to address this
challenge:

• Multivariate Functional Principal Component Cox model (MFPCCox) (Li and Luo, 2019)
carries out dimension reduction and feature extraction on longitudinal covariates by mul-
tivariate functional principal component analysis (MFPCA) and uses the resultant MFPC
scores as predictors in a Cox model;

• Penalized Regression Calibration (PRC) (Signorelli et al., 2021) involves a three-step ap-
proach: first, the longitudinal covariates are modelled using mixed effect models; then,
subject-specific summaries of the longitudinal trajectories are derived from the fitted mixed
models; lastly, the summaries of the trajectories are used to predict survival using a penal-
ized Cox model;

• Functional Ensemble Survival Tree (Jiang et al., 2021) is similar to MFPCCox but the
MFPC scores are used as predictors in an ensemble survival tree (random survival forest)
(Ishwaran et al., 2008) instead of a Cox model for estimating the survival outcome.

These novel methods employed different techniques to handle the complexity arising from hav-
ing numerous longitudinal covariates. Since these methods were developed very recently, little is
known about their performance on real data. This thesis represents a first attempt to compare
these methods with each other, and to simpler prediction approaches that may not properly
handle many longitudinal covariates.



8 CHAPTER 1. INTRODUCTION

1.1 Research question

The aim of this study is to compare the predictive performance of various statistical methods
for the dynamic prediction of survival in the presence of many longitudinal covariates using real
data. We will compare a total of four different methods, two methods (PRC and MFPCCox)
that use sophisticated statistical methods to summarize the longitudinal covariates; a simpler
approach (landmarking) that uses the last observation available from each longitudinal covariate
for prediction; and a penalized Cox model that ignores the repeated measurements, using only
baseline measurements for prediction. A concise summary of these methods is presented in Table
1.1. Some of the aforementioned methods were excluded from comparison for various reasons:

• the time-dependent Cox model was excluded as its assumption would be violated by the
endogeneity of the longitudinal covariates;

• joint modelling was excluded as its estimation was computationally prohibitive for this
thesis (using > 20 longitudinal covariates);

• functional ensemble survival tree was excluded as the package funest did not work with
the ADNI data successfully due to data compatibility issue.

The predictive performance of the methods will be evaluated in the context of dynamic predic-
tion of developing dementia, using data from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) study (Weiner et al., 2010). Dementia is a general term of syndrome corresponding to
the deterioration in cognitive function which is different from normal biological aging process
(WHO, 2021). It is one of the most common neurological disorders, and the seventh leading
cause of death as of 2019 according to estimates from the World Health Organization. As de-
mentia usually displays chronic or progressive nature over several years, dementia risk models
are often developed with the goal of quantifying the probability that an individual may develop
dementia to facilitate the decision on personalized intervention for individuals from either gen-
eral population or specific subpopulation (Tang et al., 2015, 2017; Hou et al., 2018; Licher et al.,
2019). In this regard, dynamic prediction enables these predictions to be updated when more
biomarker data have been collected from new follow-up visits. The ADNI study provides an
extensive set of heterogeneous and longitudinal dementia-related markers repeatedly measured
over a long follow-up period.
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Table 1.1: Applicability of prediction methods to high-dimensional data and longitudinal data for survival
prediction

Method Suitable for Reference
high-dimensional
covariates

longitudinal
covariates

Penalized Cox model Yes No Hastie and Tibshirani (2004)

Landmarking Yes Yes Anderson et al. (1983); Putter
and van Houwelingen (2016)

Penalized regression calibration Yes Yes Signorelli et al. (2021)

Multivariate functional principal com-
ponent and Cox model

Yes Yes Li and Luo (2019)

Time-dependent Cox model No Yes Fisher and Lin (1999)

Joint modelling No Yes Rizopoulos (2011); Hickey
et al. (2016); Mauff et al.
(2020)

Functional ensemble survival tree Yes Yes Jiang et al. (2021)

1.2 Structure

The remainder of this thesis is organized as follow:

• in Chapter 2 we describe the statistical methods that we consider in our comparison;

• in Chapter 3 we introduce the ADNI study and its study characteristics. We also provide
an overview of the ADNI data, and describe the procedure of data preparation and data
transformation;

• in Chapter 4 we describe the experimental setup used to compare the different methods,
including model specification, candidate covariates, model development, validation and
performance measures;

• in Chapter 5 we present the results of this study, comparing the predictive performance of
the different methods;

• in Chapter 6 we interpret the results, conclude the findings and discuss the limitations of
our study.



Chapter 2

Methods for the prediction of survival
outcomes with longitudinal covariates

This Chapter contains an overview of various statistical methods to predict survival using lon-
gitudinal covariates that will be compared in this thesis. We start by introducing the notation
and the problem framework in Section 2.1. Then we describe the penalized Cox model in Section
2.2, followed by landmarking in Section 2.3. For novel methods, we describe Penalized Regres-
sion Calibration in Section 2.4 and Multivariate Functional Principal Component Cox model in
Section 2.5 respectively.

2.1 Notation, data structure and problem definition

We consider a longitudinal study involving n subjects. For subject i ∈ {1, . . . , n}, an event of
interest can either be observed or not observed throughout the period of observation. The latter
case is called censoring which may occur when the subject :

• does not experience an event before the study ends;

• is lost to follow-up;

• is withdrawn from study.

When the subject is censored, the true survival time cannot be determined. Depending on the
way the true survival time is being cut off by the observation interval, the censoring can be
classified as:

• right-censoring: true survival time is equal to or greater than the observed time;

• interval-censoring: true survival time is within a known time interval;

• left-censoring: true survival time is less than or equal to the observed time.

In this chapter we will focus on situations with right-censoring. Let T ∗
i denote the true survival

time of subject i, and TC
i the censored time in the case of right-censoring. The observed survival

time is equal to Ti = min(T ∗
i , T

C
i ). We denote the status indicator by δi = 1 when an event is

observed at Ti and δi = 0 in case of censoring.

10



2.1. NOTATION, DATA STRUCTURE AND PROBLEM DEFINITION 11

Next, we introduce two basic quantities essential to the survival analysis, the survival function
and hazard function.

2.1.1 Survival function and hazard function

The survival function S(t) measures the probability that a subject will survive beyond some
specified time t:

S(t) = P (T > t). (2.1)

The survival function is a decreasing function over time. It can be estimated using the Kaplan-
Meier estimator (Kaplan and Meier, 1958), which is a nonparametric method using the product
limit formula.

The hazard function h(t) measures the instantaneous chance that an individual will experience
the event of interest, given that the event has not occurred until time t:

h(t) = lim
∆t→0

P (t ≤ T < t+∆t|T ≥ t)

∆t
. (2.2)

The hazard function is non-negative and does not have an upper bound.

The relation between the survival function and the hazard function can be derived by substitut-
ing:

P (t ≤ T < t+∆t|T ≥ t) = 1− P (T ≥ t+∆t|T ≥ t)

= 1− P (T ≥ t+∆t)

P (T ≥ t)

= 1− S(t+∆t)

S(t)

into (2.2):

h(t) = lim
∆t→0

1− S(t+∆t)
S(t)

∆t

= lim
∆t→0

S(t)− S(t+∆t)

∆t S(t)

=
−1

S(t)
lim

∆t→0

S(t)− S(t+∆t)

∆t

=
−dS(t)/dt

S(t)

= − d

dt
logS(t)

By considering the cumulative hazard function:
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LONGITUDINAL COVARIATES

H(t) =

∫ t

0

h(u)du, (2.3)

the relation between S(t) and H(t) can then be expressed as:

S(t) = exp(−H(t)), (2.4)

and

H(t) = − logS(t). (2.5)

The cumulative hazard function can be estimated using the Nelson-Aalen estimator (Nelson,
1969, 1972; Aalen, 1978).

2.1.2 Predictors of survival

Next, we consider two groups of variables that will be used to predict survival: a vector of r
baseline covariates ai and a matrix of p longitudinal covariates yi (indexed by s ∈ {1, . . . , p})
that are observed repeatedly after the baseline. A baseline covariate is time-independent vari-
able within the analysis context, for example, subject background characteristics such as gender,
ethnicity, education, etc. A longitudinal covariate could be a marker measured repeatedly that
is directly or indirectly associated with the event of interest.

In a longitudinal study, the longitudinal covariates are measured repeatedly from baseline until
an observed survival outcome, following either a balanced or an unbalanced design, such that
for each subject i ∈ {1, . . . , n}, mi ≥ 1 repeated measurements are taken at random times tij
for j ∈ {1, . . . ,mi} where tij ≤ Ti. Correspondingly, we denote ysij as the value of the s the
longitudinal covariate that is measured on subject i at the j-th repeated measurement, where
j ∈ {1, . . . ,mi}. From above, yi = {y1i1, . . . , ysimi

} is the matrix containing all mi repeated
measurements of all items observed for subject i from baseline to survival outcome.

The goal of the survival prediction problem is to predict the (conditional) survival probability
for subject i given a set of covariates ai and yi.

2.2 Penalized Cox Proportional Hazards model

The Cox Proportional Hazards model (Cox model or Cox PH model) (Cox, 1972) is a common
method to model the effect of baseline covariates ai on the survival time T . The Cox model
models the hazard for subject i as:

h(t|ai) = h0(t) exp{aTi β}, (2.6)

where h0(t) is the baseline hazard rate, and β = {β1, . . . , βp} is a vector of regression coefficients.

The Cox model can be estimated by maximizing the partial likelihood in low-dimensional setting
(p < n), but this is not possible in high-dimensional setting (p > n). Verweij and Houwelingen
(1994) proposed the approach to add a penalty function of the regression coefficients to the partial
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likelihood to overcome this limitation. Below we present three commonly used penalty functions.

The lasso penalty (Tibshirani, 1996), also known as l1 penalty, is defined as:

p(β;λ) = λ

p∑
s=1

|βs|, (2.7)

where λ is a tuning parameter. The lasso penalty leads to both shrinkage and variable selection
when fitting a regression model, which may result in a sparse solution i.e. some or many zero’s
in the estimated regression parameters. The effect of variable selection is a desirable one when
it comes to inference problems because a more parsimonious model is usually preferred to model
the relationship between the dependent variable and the predictor(s). However, its benefit does
not extend to prediction problems because the variable selection unnecessarily disregard covari-
ates that are potentially predictive. Moreover, the non-uniqueness of lasso estimator will lead
to unstable solutions in the case of collinear covariates. Since in this thesis we are interested in
prediction models, we will not consider the lasso penalty.

The ridge penalty (Hoerl and Kennard, 1970), also known as l2 penalty, is defined as:

p(β;λ) = λ

p∑
s=1

β2
s , (2.8)

where λ is a tuning parameter. The ridge penalty leads to shrinkage: ridge estimators shrink
regression parameters towards zero (but not exactly zero i.e. no variable selection effect). This
property makes ridge penalty usually preferable over lasso penalty for prediction tasks, especially
in the presence of many correlated covariates.

The elasticnet penalty (Park and Hastie, 2007; Simon et al., 2011) is a linear combination of the
lasso penalty and ridge penalty. It is defined as:

p(β;λ, α) = λ

(
α

p∑
s=1

|βs|+ (1− α)

p∑
s=1

β2
s

)
, (2.9)

where α ∈ [0, 1] is a tuning parameter determining the relative weights of the lasso penalty and
ridge penalty. The elasticnet penalty is equivalent to the lasso penalty when α = 1, and the ridge
penalty when α = 0. The elasticnet penalty combines the characteristics of lasso penalty for
favoring a sparse solution and characteristics of ridge penalty for scaling all regression coefficients
towards zero but not exactly zero which handles correlated covariates better. As prediction is
the focus in this thesis, elasticnet penalty will not be considered as the inclusion of lasso penalty
term does not seem to offer any conceivable benefit over the ridge penalty solely.

The penalized Cox model can be estimated by penalized maximum likelihood using the R pack-
age glmnet. The optimal value of tuning parameter λ for the lasso or ridge penalty can be
determined by cross validation, whereas the (λ, α) for the elasticnet penalty can be determined
by nested cross validation.
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LONGITUDINAL COVARIATES

2.3 Landmarking

The idea of landmarking in prediction context is to reduce the complexity in longitudinal co-
variate by fixing its values based on a given landmark time tl. The trajectory of such covariate
is represented by the last observation before the landmark time (also known as last observation
carried forward, LOCF) or some summary derived from repeated observations before the land-
mark time (for example, the average of all observations gathered until the landmark time). The
summary of the longitudinal covariates can then be used in a Cox model in time-independent
fashion to estimate the hazard function conditioned on the landmark dataset which only con-
siders considering subjects at risk at the landmark time. Landmarking does not require the
modelling of the longitudinal covariate, so it has the advantage of simple implementation. The
estimation of landmarking model is identical to that in Section 2.2 as the survival outcome is
modelled using a Cox model or penalized Cox model.

2.4 Penalized Regression Calibration

The penalized calibration regression (PRC) method proposed by Signorelli et al. (2021) models
the survival function through a penalized Cox model, using as predictors subject-specific sum-
maries of the longitudinal covariates. It offers two variants called PRC-LMM and PRC-MLPMM
that differ in the modelling techniques (univariate linear mixed models and multivariate latent
process mixed models respectively) used to model the longitudinal covariates. As we only applied
the PRC-LMM in this study, below we describe the three modelling steps of PRC based on the
PRC-LMM formulation.

First, each longitudinal covariate ysi is modelled using a linear mixed model (LMM) with corre-
lated random intercept and random slope specified as:

ysij = βs0 + bs0i + (βs1 + bs1i)aij + ϵsij , (2.10)

where aij denotes the age of i-th subject at the j-th visit, bsi = (bs0i, bs1i) ∽ N2(0, Ds) comprises
the random intercept bs0i and random slope bs1i respectively, and ϵsi ∽ Nmi

(0, σ2
ϵsImi

).

Equation (2.10) can also be expressed in matrix notation as follows:

ysi = Xiβs + Zibsi + ϵsi, (2.11)

where Xi and Zi are design matrices that correspond to the fixed effects coefficients βs and the
random effects bsi ∽ N(0, Ds), and ϵsi ∽ N(0, σ2

sImi) is a Gaussian error term.

Second, the predicted random effects b̂si are computed as summary measures of ysi:

b̂si = E(bsi|Ysi = ysi) = D̂sz
T
i V̂

−1
si (ysi −Xiβ̂s), (2.12)

where Vsi = ZiDsZ
T
i + σ2

ϵsImi
is the marginal covariance matrix of subject i. The random

intercept represents the subject-specific variability around βs0i and the random slope represents
the subject-specific variability in terms of rate of progression of ysi.
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Finally, the predicted random effects are included as predictors in a penalized Cox model along-
side with relevant baseline covariates:

h(ti|ai, b̂0i, b̂1i) = h0(ti) exp

(
r∑

k=1

τkaki +

p∑
s=1

γsb̂s0i +

p∑
s=1

δsb̂s1i

)
, (2.13)

where h0(t) is the baseline hazard function, τ , γ, and δ are vectors of regression coefficients
corresponding to baseline covariates ai, predicted random effects b̂0i and b̂1i respectively.

If there are r baseline covariates and p longitudinal covariates, model (2.13) will comprise r+2p
covariates, which is generally a high number and potentially leads to high-dimensionality. Simi-
lar to the penalized Cox regression in Section 2.2, PRC employs penalized likelihood estimation
to overcome this problem. Signorelli et al. (2021) compared PRC models using lasso penalty,
ridge penalty and elasticnet penalty (see Section 2.2 for details of each penalty type), reporting
that the ridge penalty and the elasticnet penalty led to similar predictive performance and out-
performed the lasso penalty. The ridge penalty yielded more stable solutions over the elasticnet
penalty.

The elasticnet penalty in PRC is defined as:

p(γ, δ;λ, α) = λ

[
α

(
p∑

s=1

|γs|+
p∑

s=1

|δs|

)
+ (1− α)

(
p∑

s=1

γ2s +

p∑
s=1

δ2s

)]
. (2.14)

PRC can be estimated using the R package pencal.

2.5 Multivariate Functional Principal Component Cox model

The Multivariate Functional Principal Component Cox (MFPCCox) model is a two-stage ap-
proach proposed by Li and Luo (2019) that predicts survival with a Cox model using as predictors
features extracted from longitudinal covariates through Multivariate Functional Principal Com-
ponent Analysis (MFPCA).

The method assumes that the observed value ysij is a noisy measurement of a latent outcome
process Xsi(t), for t ∈ [0, tl) where tl is the landmark time 1. It can be expressed as follows:

ysij = Xsi(tij) + ϵsij , (2.15)

where tij is the time at j-th visit of i-th subject, ϵsij are independent measurement errors with
mean zero and variances σ2

ϵq .

In step 1 of MFPCCox, univariate FPCA is used to extract the changing patterns in each
longitudinal covariate. First, we assume the s-th latent outcome process composes of a unknown
smoothed mean function µq(t) and covariance function Σs(t, t

′) = cov{Xsi(t), Xsi(t
′)} to model

the correlation between observations at any two time points. The spectral decomposition of the
covariance function from Mercer’s theorem (Mercer, 1909) yields:

1The original formulation in Li and Luo (2019) used a different definition: t ∈ [0, tmax] where tmax is the
latest survival time observed, implying that it would use all repeated measurements for model fitting regardless
of the landmark time. In this thesis, we only consider the repeated measurements before the landmark time to
ensure a fair and consistent comparison in the context of dynamic prediction (see Section 4.2).
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Σs(t, t
′) =

∞∑
l=1

λslϕsl(t)ϕsl(t
′), (2.16)

where λsl are nonincreasing eigenvalues, and ϕsl(t) are the corresponding orthonormal eigen-
functions.

By Karhunen-Loéve expansion, the latent outcome process introduced in (2.15) can be expressed
as follows:

Xsi(t) = µq(t) +

∞∑
l=1

ξsilϕsl(t), (2.17)

where the FPC scores ξsil ∽ N(0, λsl) are uncorrelated random variables. The eigenfunctions
ϕsl(t) represent the l-th changing pattern within the s-th longitudinal covariate; the FPC scores
ξsil measure the subject-specific association with the corresponding changing pattern.

Given a fixed proportion of variance explained (PVE) π ∈ (0, 1), the latent outcome process can
be approximated using a finite integer ls of components as follows:

Xsi(t) ≈ µq(t) +

ls∑
l=1

ξsilϕsl(t), (2.18)

where ls is a minimum positive integer such that
∑ls

l=1 λsil/
∑∞

l=1 λsil ≥ π.

The FPCA above is estimated using the principal analysis by conditional estimation (PACE)
algorithm, which produces the estimated mean function µ̂q(t), error variances σ̂ϵq , covariance

function Σ̂q(t, t
′), eigenvalues λ̂sl, and eigenfunctions ϕ̂sl(t) from a set observations for the s-th

longitudinal covariate.

The subject-specific FPC scores are obtained as:

ξ̂sil = λ̂(ϕ̂
T

silΣ̂
−1

Ysi
(Ysi − µ̂si)), (2.19)

where Σ̂Ysi is a Ji×Ji matrix with the (j, j′) entry (Σ̂Ysi)j,j′ = Σ̂q(ti, tij′)+σ̂
2
ϵqδj,j′ and δj,j′ = 1

if j = j′ and δj,j′ = 0 if j ̸= j′.

Under multivariate setting, the PACE algorithm is applied to each longitudinal covariate and
obtain the estimated eigenfunctions and estimated FPC scores respectively, at a chosen ls deter-
mined by the PVE. We denote a vector ξ̂i of length l+ =

∑p
s=1 ls to contain all FPC scores over

all p longitudinal covariates for the i-th subject.

In step 2 of the MFPCA, in order to account for the potential correlations between the longitu-
dinal covariates, we consider correlations among the FPC scores estimated in previous step as a
proxy to indirectly approximate the actual correlations and apply multivariate FPCA.

First, we denote Θn×l+ = {ξ̂
T

1 , . . . , ξ̂
T

n}. Then, the matrix eigenanalysis of the l+ × l+ matrix

H = (n − 1)−1ΘTΘ gives the estimated eigenvalues vk and orthonormal eigenvectors ck for
k = 1, . . . , l+. The estimates for the multivariate eigenfunctions for the s-th longitudinal covariate
are given by:
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ψ̂sk(t) =

ls∑
l=1

[ck]
(s)
l ϕ̂sl(t), (2.20)

where [ck]
(s)
l denote the s-th block of the orthonormal eigenvector ck. The multivariate eigen-

functions represents the k-th changing pattern in the s-th longitudinal covariate.

The subject-specific MFPC scores can be estimated by:

ρ̂ik =

p∑
s=1

ls∑
l=1

[ck]
(s)
l ξ̂sil, (2.21)

Given a fixed proportion of variance explained (PVE) denoted by π ∈ (0, 1), the p longitudinal
covariates can be approximated using the first d ≤ l+ MFPC scores ρ̂i = {ρ̂i1, . . . , ρ̂id}. The
approximate trajectory of the s-th longitudinal covariate can be computed using (2.20) and
(2.21):

E(Ysi(t)) = X̂iq(t) ≈ µ̂q(t) +

d∑
k=1

ρ̂ikψ̂sk(t). (2.22)

Finally, the survival outcome is modelled through a Cox model with the baseline covariates and
the MFPC scores ρ̂i included as predictors:

h(ti|ai, ρ̂i) = h0(ti) exp{aTi τ + ρ̂T
i β}, (2.23)

where h0(t) is the baseline hazard function, and τ and β are two parameter vectors. The Cox
model can be estimated using maximum likelihood.

The MFPCCox model can be estimated using the scripts available at https://github.com/

kan-li/MFPCCox (Li and Luo, 2019).

https://github.com/kan-li/MFPCCox
https://github.com/kan-li/MFPCCox


Chapter 3

Data description and manipulation

This Chapter comprises an overview of the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
data and a description of the data manipulation steps taken before modelling. We start by
introducing the ADNI study, especially its data collection and study characteristics, in Section
3.1. Data screening to select a subset of subjects suitable for modelling is elaborated in Section
3.2. Data preparation to arrange the ADNI data into formats suitable for modelling is described
in Section 3.3. Then, we will explore the survival data and the longitudinal data in Section 3.4
and discuss the missingness in Section 3.5. Lastly, we will describe the data transformation in
Section 3.6.

3.1 ADNI Data

Dementia is a syndrome that leads to a degeneration in cognitive function that is more severe
than the one due to mere biological ageing. Various diseases and injuries that primarily or secon-
darily affect the brain may lead to dementia, usually of a chronic and progressive nature (WHO,
2021). Alzheimer’s disease (AD) is a specific brain disease that contribute to most dementia
cases (between 60 and 70% of global dementia cases according to estimates of the World Health
Organization 1).

The ADNI study (Weiner et al., 2010) is an ongoing multi-phase prospective longitudinal study
commenced in 2004 that was designed to identify / validate biomarkers related to progression
of AD. The general goals of the ADNI study are: (i) to improve AD detection at the earliest
possible stage and identify biomarkers to track the progression of AD; (ii) to support advances in
the intervention, prevention and treatment of AD; and (iii) to continually maintain the ADNI’s
data-accessibility to facilitate scientific research.

The ADNI study consists of 4 subsequent phases of data collection, respectively called ADNI1,
ADNIGO, ADNI2 and ADNI3, which were tasked with distinct research goals regarding biomark-
ers associated with progression / prediction of AD. The first and the last phase began in 2004 and
2016 respectively; each phase typically lasted for 5 years. During the follow-up visits within each
phase, the participants were assessed on dementia along with a variety of cognitive assessments,
biospecimen sampling and/or brain imaging analysis according to the assigned data collection
protocol. The visit schedule generally adhered to the following n-month intervals: 0, 3, 6, 12, 18,

1Source: https://www.who.int/news-room/fact-sheets/detail/dementia
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24, 36, 48 and onward annually. When possible, participants who who entered the study in an
earlier phase (e.g. ADNI1) were also carried forward to later phases for continual monitoring.
Note that the exact data collection protocols differed among phases as certain month or certain
type of measurement were sometimes skipped, resulting in an unbalanced dataset with irregular
observation times when data from all phases are combined in single analysis.

Across the four phases, a total of 2,379 participants aged between 55 and 90 were recruited from
57 research centers in the USA and the Canada. They were either diagnosed as (i) cognitive
normal (CN), (ii) with mild cognitive impairment (MCI) (as early MCI or late MCI), or (iii)
with dementia in the initial assessment, representing different stages of cognitive decline.

The data collection protocol with respect to each phase is shown in Figure 3.1. Overall, the
ADNI study provides an extensive set of heterogeneous, longitudinal data on clinical, cognitive,
imaging, genetic and biochemical markers.

The ADNI repository (http://adni.loni.usc.edu/) provides various types of dataset includ-
ing case reports, biomarker lab summaries, imaging data, sequencing data etc. For this thesis,
we use the adnimerge dataframe in the R package ADNIMERGE obtained from the repository that
is merged from multiple datasets to include several key variables across all phases and all data
types. The data used in this thesis are based on the version retrieved on 30 January 2022.

In our analysis, we focus on the progression to dementia for participants initially diagnosed as CN
or MCI. The survival outcome is the time until a dementia diagnosis. The baseline visit (t = 0) is
set as the time of enrollment. In reality, the true time to dementia is likely to take place between
two consecutive visits, thus it cannot be measured exactly and results in interval censoring. But
for simplicity we treat the survival times as right censored when applying the methods in Chapter
2. The censoring may be due to not developing dementia up to last visit, loss to follow-up, or
competing risk such as death. The modelling of competing risks is beyond the scope of this thesis.

The variables with potential predictive value can be categorized into two groups, namely base-
line covariates and longitudinal covariates, depending on whether they are measured repeatedly
(values are time-dependent). The selection of candidate covariates for modelling will be reported
in Section 4.1.

3.2 Data screening

Before modelling, we applied data screening to exclude participants that are not of modelling
interest or lack sufficient information for modelling. Figure 3.2 summarizes the screening process
based on three exclusion criteria:

• participants already diagnosed with dementia at baseline are excluded because they are
not in the at-risk group;

• participants with missing values in baseline covariates are excluded for complete case anal-
ysis, as the methods to be compared here don’t automatically account for such missingness,
and imputation of missing values is beyond the goal of this thesis;

• participants without any event status (CN/MCI/dementia) available in follow-up are ex-
cluded due to lack of response value.

http://adni.loni.usc.edu/
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Figure 3.1: ADNI data collection protocol (source: https://adni.loni.usc.edu/

study-design/).

After data screening, the data eligible for modelling and analysis consists of 1,615 subjects and
9,758 unique visits. In the final data, the average follow-up period is 4.1 years, the average num-
ber of visits is 6.0 and the average event rate is 25%. The study characteristics are summarized
in Table 3.1.

https://adni.loni.usc.edu/study-design/
https://adni.loni.usc.edu/study-design/
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Figure 3.2: Eligibility for analysis. The following criteria have been applied to filter ADNI partic-
ipants before they are included in this study: (i) made more than one visit; (ii) baseline diagnosis
is available; (iii) baseline diagnosis is cognitive normal (CN) / mildly cognitively impaired (MCI),
but not dementia; (iv) diagnosis after baseline is available; (v) baseline covariates (age, gender,
education, number of APOE4 alleles) are available.

Table 3.1: Study characteristics in final data. Subjects are grouped by their original data collection protocol
i.e. phase. Statistics are computed based on data after cleaning and screening, and only consider subjects
diagnosed as CN or MCI at baseline.

ADNI1 ADNIGO ADNI2 ADNI3 Combined
n = 600 n = 114 n = 603 n = 298 n = 1615

Start date Oct 2004 Sep 2009 Sep 2011 Sep 2016 -
Duration (years) 5 2 5 5 -
Follow-up period (years)

Mean 4.6 5.4 4.4 2.1 4.1
SD 3.9 2.9 2.8 0.8 3.2
Median 3.0 5.0 4.0 2.0 3.0
Range 0.5-15.7 0.5-11.2 0.4-10.5 0.9-4.3 0.4-15.7
Number of visits

Mean 7.5 8.5 6.2 1.9 6.0
SD 5.5 3.2 2.8 0.7 4.4
Median 6 9 6 2 5
Range 1-22 2-14 1-13 1-4 1-22
Event rate 0.40 0.18 0.20 0.06 0.25
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3.3 Data preparation

Before proceeding to modelling the data from the ADNI study, we need to arrange the data from
the ADNIMERGE package in a format that is suitable for our analyses. This requires the creation
of two datasets from the ADNI data:

• surv dataset: a dataset in wide format that contains the diagnosis (event status) and sur-
vival time of each subject in each row, accompanied with a set of baseline/time-independent
covariates;

• long dataset: a dataset in long format that contains the measurements of longitudinal/time-
dependent covariates from a single visit of a subject in each row, up to the last visit before
a survival outcome (dementia/censoring) is determined.

The preparation of the raw adnimerge data into formatted surv and long datasets are il-
lustrated in the examples for two example subjects with different outcomes (identified by the
subject identifiers RID=5 and RID=41) presented in Tables 3.2, 3.3 and 3.4 respectively. Note
that only repeated measurements before the diagnosis of dementia are retained in the longi-
tudinal data for the participant with RID=41. In the adnimerge data, each row represents a
single visit that is uniquely identified by the date of visit (EXAMDATE) and contains the corre-
sponding baseline covariates e.g. age (AGE) and gender (PTGENDER) and longitudinal covariates
e.g. cognitive assessment (ADAS13). Besides the exact date, the time of visit is also represented
in visit code (VISCODE) with respect to the study schedule and in a continuous time variable
years since baseline (Years.bl). The DX.bl and DX records the diagnosis result at baseline and
subsequent visits. To prepare the surv dataset, the survival time time and survival outcome
event are obtained by finding the earliest time to dementia (encoded as event=1) or the latest
time without dementia (i.e. censored, encoded as event=0) in a subject. For the long dataset,
it is essential to keep the subject identifier RID, observation time Years.bl, baseline covariates
and longitudinal covariates e.g. ADAS13. The observations made at or after the survival time
is excluded. Note that the long dataset will be further formatted into a 3-dimensional array
{number of subjects× observation times× number of longitudinal covariates} for the application
of MFPCCox described in Section 2.5.
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Table 3.2: Example of raw data from the ADNI study. The first participant (RID = 5) entered
the study as cognitively normal (DX=CN) and became censored at the 7th visits. The second
participant (RID = 41) entered the study as mildly cognitively impaired (DX=MCI) and was
diagnosed with dementia at the 4th visit.

id RID VISCODE EXAMDATE Years.bl DX.bl DX AGE PTGENDER ADAS13 MMSE

1 5 bl 09/07/2005 0.000 CN CN 73.7 Male 14.7 29
1 5 m06 03/09/2006 0.501 CN CN 73.7 Male 15.0 29
1 5 m12 09/05/2006 0.994 CN CN 73.7 Male NA 30
1 5 m18 03/09/2007 1.500 CN NA 73.7 Male NA NA
1 5 m24 09/07/2007 1.999 CN CN 73.7 Male 11.0 29
1 5 m30 05/02/2008 2.650 CN NA 73.7 Male NA NA
1 5 m36 09/10/2008 3.009 CN CN 73.7 Male 11.7 30
2 41 bl 11/14/2005 0.000 LMCI MCI 70.9 Female 28.3 25
2 41 m06 05/15/2006 0.498 LMCI MCI 70.9 Female 25.7 25
2 41 m12 11/13/2006 0.997 LMCI MCI 70.9 Female 27.0 24
2 41 m18 05/14/2007 1.495 LMCI Dementia 70.9 Female 32.3 24
2 41 m24 11/07/2007 1.979 LMCI Dementia 70.9 Female 30.0 24
2 41 m30 05/12/2008 2.491 LMCI NA 70.9 Female NA NA
2 41 m36 11/12/2008 2.995 LMCI Dementia 70.9 Female 35.3 23
2 41 m48 01/14/2010 4.167 LMCI Dementia 70.9 Female 41.7 17

Table 3.3: surv dataset derived from Table 3.2

id RID time event status.bl AGE PTGENDER ADAS13 MMSE

1 5 3.01 0 CN 73.7 Male 14.7 29
2 41 1.49 1 MCI 70.9 Female 28.3 25

Table 3.4: long dataset derived from Table 3.2. Note that some measurements of ADAS13 and
MMSE are missing for the first participant.

id RID VISCODE Years.bl status.bl AGE PTGENDER ADAS13 MMSE

1 5 bl 0.000 CN 73.7 Male 14.7 29
1 5 m06 0.501 CN 73.7 Male 15.0 29
1 5 m12 0.994 CN 73.7 Male NA 30
1 5 m18 1.500 CN 73.7 Male NA NA
1 5 m24 1.999 CN 73.7 Male 11.0 29
1 5 m30 2.650 CN 73.7 Male NA NA
2 41 bl 0.000 MCI 70.9 Female 28.3 25
2 41 m06 0.498 MCI 70.9 Female 25.7 25
2 41 m12 0.997 MCI 70.9 Female 27.0 24
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3.4 Data exploration

In this section, we provide some descriptive summaries to explore the final data after data screen-
ing.

As described in Section 3.2, our analysis focuses on 1,615 individuals who were dementia free
upon enrollment (participants diagnosed with dementia at enrollment were excluded during the
data screening and are not described here). There were 398 participants diagnosed with dementia
in follow-up visits and 1,217 participants censored. The overall incidence rate of dementia was
25%. Figure 3.3 shows the the cumulative number of events and censored observations, and the
number of subjects still at risk at every year after baseline. The number of subjects still at risk
drops from 1,615 at baseline to less than 500 in the fifth year from baseline.

Figure 3.3: Panel A (left) shows the cumulative number of events and censored observations
observed during the study. The overall incidence rate of dementia was approximately 25%.
Panel B (right) shows the number of subjects still at risk after 0, 1, 2, ..., 15 years from baseline.

The age at enrollment ranged from 55.0 to 91.4 years, with an average of 73.2 years. For sub-
jects diagnosed with dementia, the mean time to a dementia diagnosis was 3 years, whereas for
censored subjects, the mean censoring time was 4.5 years. The age at which dementia diagnosis
were made was 77.0 years on average. The eldest subject with dementia was diagnosed with
dementia at 94.7 years old, after entering the study at 84.7 years old.
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3.4.1 Baseline covariates

Based on the previous literature on dementia risk modelling, we consider the age, gender, base-
line diagnosis, number of apolipoprotein ε4 (APOE e4) allele and education received as baseline
covariates to stratify the population. The summary of baseline characteristics of the subjects
is tabulated in Table 3.5. Among the combined cohort from all ADNI phases consisting of 865
males and 750 females; 237 (27%) males and 161 (21%) females developed dementia.

At the time of enrollment i.e. baseline, there were 922 subjects diagnosed as mild cognitively
impaired (MCI) and 693 subjects diagnosed as cognitively normal (CN). The former subgroup
showed a higher incidence rate of dementia (39%) than the latter subgroup (5%). This difference
is in line with our expectations, since the MCI is an intermediate / transitional stage between
the cognitive decline of normal aging and the more severe cognitive decline in dementia.

The ϵ4 allele of the apolipoprotein gene is regarded as a strong genetic risk factor for the develop-
ment of AD: the possession of one or two ϵ4 alleles is estimated to increase the risk of developing
AD by 3 and more than 10 folds respectively (Suzuki et al., 2020). The ADNI study measured
the number (either 0, 1, or 2) of ϵ4 allele possessed by a subject. A remarkable difference in
incidence rate can be observed in the ADNI data:

• incidence rate for subjects without ϵ4 allele (n = 941) = 16%;

• incidence rate for subjects with one ϵ4 allele (n = 552) = 35%;

• incidence rate for subjects with two ϵ4 alleles (n = 122) = 44%.

The cumulative events and cumulative hazards estimated by Kaplan-Meier estimator stratified
by gender, baseline diagnosis and number of APOE e4 allele are illustrated in Figure 3.4.

It should be noted that the race and ethnicity in the study population are predominantly white
(93%), therefore the models developed based on the ADNI data should be externally validated
first to truly evaluate its generalizability.
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Table 3.5: Descriptive Statistics of baseline characteristics (N = 1615)

ADNI1 ADNIGO ADNI2 ADNI3 Combined
N = 600 N = 114 N = 603 N = 298 N = 1615

Diagnosis : CN 37% (220) 1% ( 1) 47% (282) 64% (190) 43% (693)

MCI 63% (380) 99% (113) 53% (321) 36% (108) 57% (922)

Age1 (Years) 71.3 75.4 79.8 67.1 71.7 77.5 67.5 72.1 77.1 66.7 70.5 75.9 68.3 73.2 78.0

Sex : Male 60% (361) 54% ( 61) 51% (310) 45% (133) 54% (865)

Education 14 16 18 14 16 18 14 16 18 16 16 18 14 16 18

Ethnicity : Unknown 0% ( 0) 0% ( 0) 0% ( 0) 0% ( 0) 0% ( 0)

Not Hisp/Latino 98% ( 586) 95% ( 108) 97% ( 583) 96% ( 286) 97% (1563)

Hisp/Latino 2% ( 14) 5% ( 6) 3% ( 20) 4% ( 12) 3% ( 52)

Race : Am Indian/Alaskan 0% ( 1) 1% ( 1) 0% ( 1) 0% ( 0) 0% ( 3)

Asian 2% ( 12) 1% ( 1) 1% ( 9) 1% ( 3) 2% ( 25)

Hawaiian/Other PI 0% ( 0) 0% ( 0) 0% ( 1) 0% ( 0) 0% ( 1)

Black 5% ( 29) 1% ( 1) 4% ( 26) 4% ( 11) 4% ( 67)

White 93% ( 557) 94% ( 107) 93% ( 559) 93% ( 276) 93% (1499)

More than one 0% ( 1) 4% ( 4) 1% ( 7) 3% ( 8) 1% ( 20)

Unknown 0% ( 0) 0% ( 0) 0% ( 0) 0% ( 0) 0% ( 0)

Marital : Divorced 7% ( 41) 11% ( 13) 12% ( 73) 10% ( 30) 10% ( 157)

Married 76% ( 457) 77% ( 88) 72% ( 436) 80% ( 238) 75% (1219)

Never married 3% ( 17) 3% ( 3) 4% ( 27) 2% ( 7) 3% ( 54)

Widowed 14% ( 85) 9% ( 10) 11% ( 67) 8% ( 23) 11% ( 185)

Number of APOEe4 alleles : 0 56% (335) 58% ( 66) 59% (357) 61% (183) 58% (941)

1 36% (214) 35% ( 40) 33% (202) 32% ( 96) 34% (552)

2 8% ( 51) 7% ( 8) 7% ( 44) 6% ( 19) 8% (122)

1 a b c represent the lower quartile a, the median b, and the upper quartile c for continuous variables. Numbers after proportions
are frequencies.
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Figure 3.4: Cumulative hazard of dementia derived from the Kaplan–Meier method by gender
(top right), baseline diagnosis (top right), and APOE e4 (bottom left).
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3.4.2 Longitudinal covariates

The adnimerge dataset contains a large number of variables with repeated measurements: after
screening, we identified 41 candidate longitudinal covariates. They comprise a wide variety of
repeated measurements of cognitive, imaging, and biochemical markers. We will further discuss
the final inclusion of these covariates in Section 3.5 as its missingness has an implication on the
model estimation.

Here we present two examples of longitudinal covariates: (i) ADAS13, one of the cognitive assess-
ments, and (ii) volume of middle temporal gyrus, one of the neuroimaging biomarkers, in Figure
3.5 to illustrate the different characteristics in the heterogeneous ADNI data. In general, we
found the longitudinal data to be highly unbalanced, which requires flexibility when considering
the modelling approach.

The Alzheimer’s Disease Assessment Scale (ADAS) (Mohs et al., 1997; Kueper et al., 2018) was
used to evaluate cognitive impairment in the assessment of AD. ADAS13 refers to the 13-items
version of the ADAS cognitive subscale, which range from 0 to 85 and a higher score correspond to
a worse performance. It involves both subject-completed tests and observer-based assessments to
assess the cognitive domains of multiple cognitive domains including memory, language, praxis,
orientation, executive functioning, and functional ability. The spaghetti plot of ADAS13 in Fig-
ure 3.5 highlights the repeated observation of ADAS13 in follow-up visits for a random subset
of subjects. The subjects eventually developed into dementia tend to display higher ADAS13
scores at baseline and increased in follow-ups.

As one of the neuroimaging biomarkers in ADNI, the volume of middle temporal gyrus (MidTemp),
which is a gyrus located on the temporal lobe of the brain and associated with certain cognitive
domains, is measured by structural magnetic resonance imaging (sMRI). Some differences can
be observed in the spaghetti plot of MidTemp when compared with that of ADAS13 (Figure
3.5): first, fewer repeated observations and trajectories could be seen in MidTemp; second, the
difference between subjects with and without dementia in MidTemp is not pronounced as in
ADAS13; last, the scale of measurement is 100 times greater in MidTemp than ADAS13, which
suggests scaling of covariates might bring numerical stability to computation.
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Figure 3.5: Spaghetti charts of longitudinal covariates ADAS13 (top) and middle temporal gyrus
(MidTemp) (bottom) from 50 random subjects, grouped by baseline status CN (left) and MCI
(right). Subjects with dementia are highlighted in blue; subjects with censoring are highlighted
in red. Trajectories of remaining subjects are displayed in grey.
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3.5 Missing data

Due to the data screening in Section 3.2, there is no missingness in the surv dataset that contains
the survival time, the censoring status and the baseline covariates. On the other hand, the long
dataset displays missingness patterns that differ across the longitudinal covariates as shown in
Figure 3.6. This is mainly due to the difference in data collection protocols from different ADNI
phases (see Figure 3.1).

Table 3.6 shows the the proportion of subjects without any observations for each of the 41 lon-
gitudinal covariates. We observe that the proportion ranges from 0 to 0.95. We exclude 20
covariates for which no information was available for more than 10% of the subjects. Only 14
covariates have at least one observation per subject. For the 21 longitudinal variables selected
for modelling, the average number of observations per subject ranged between 2.88 and 3.35.

Figure 3.6: The missing values in longitudinal covariates at each visit from the long dataset
are indicated in black. The overall percentage of missing values per covariate are displayed in
brackets. 21 out of 41 longitudinal covariates have less than 50% missing values across all visits.
The covariates PIB and FBB have the least measurements (98% missing values).
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Table 3.6: Proportion of missing information in long dataset. Longitudinal covariates with
up to 10% missingness were selected to be used as predictors of survival alongside the baseline
covariates described in Section 4.1.

Covariate Proportion of sub-
jects without any
measurement

Average number of
observation per sub-
ject

Included in model?

1 CDRSB 0.00 3.10 Yes
2 ADAS11 0.00 3.11 Yes
3 ADASQ4 0.00 3.11 Yes
4 MMSE 0.00 3.11 Yes
5 RAVLT.immediate 0.00 3.11 Yes
6 RAVLT.learning 0.00 3.11 Yes
7 RAVLT.forgetting 0.00 3.11 Yes
8 RAVLT.perc.forgetting 0.00 3.11 Yes
9 LDELTOTAL 0.00 2.13 Yes
10 FAQ 0.00 3.10 Yes
11 mPACCdigit 0.00 3.11 Yes
12 mPACCtrailsB 0.00 3.11 Yes
13 ADAS13 0.00 3.10 Yes
14 TRABSCOR 0.00 3.09 Yes
15 ICV 0.01 3.35 Yes
16 WholeBrain 0.02 3.27 Yes
17 Ventricles 0.02 3.18 Yes
18 Hippocampus 0.04 2.96 Yes
19 Entorhinal 0.05 2.88 Yes
20 Fusiform 0.05 2.88 Yes
21 MidTemp 0.05 2.88 Yes
22 FDG 0.29 1.29 No
23 EcogPtPlan 0.35 1.78 No
24 EcogPtOrgan 0.35 1.76 No
25 EcogPtTotal 0.35 1.78 No
26 MOCA 0.36 1.77 No
27 EcogPtMem 0.36 1.78 No
28 EcogPtLang 0.36 1.78 No
29 EcogPtVisspat 0.36 1.77 No
30 EcogPtDivatt 0.36 1.77 No
31 EcogSPLang 0.36 1.76 No
32 EcogSPMem 0.36 1.75 No
33 EcogSPPlan 0.36 1.74 No
34 EcogSPTotal 0.36 1.76 No
35 EcogSPDivatt 0.36 1.72 No
36 EcogSPVisspat 0.36 1.73 No
37 EcogSPOrgan 0.36 1.69 No
38 AV45 0.45 0.70 No
39 DIGITSCOR 0.65 1.33 No
40 FBB 0.91 0.10 No
41 PIB 0.95 0.07 No
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3.6 Data transformation

As PRC rely on LMMs that assume normality and several longitudinal covariates are highly
skewed, appropriate transformation was applied to reduce the skewness of these covariates. As
shown in Table 3.7, the skewness ranged from −10.7 to 2.5. We transformed the covariates with
skewness < −0.5 using cubic transformations and transform the covariates with skewness > 0.5
using log10 function. Finally, we scale the covariates to zero mean and unit variance to improve
numerical stability in computation.

Table 3.7: Transformation of the longitudinal covariates, and skewness before and after the
transformation

Covariate Skewness Transformation Skewness

1 RAVLT.perc.forgetting −10.671 (RAVLT.perc.forgetting+1650)3 -1.297
2 MMSE −1.781 (MMSE)3 -0.999
3 mPACCtrailsB −0.728 (mPACCtrailsB+31)3 0.041
4 mPACCdigit −0.688 (mPACCdigit+29)3 0.151
5 RAVLT.forgetting −0.347 - -
6 Hippocampus −0.127 - -
7 LDELTOTAL −0.124 - -
8 Entorhinal 0.009 - -
9 MidTemp 0.075 - -
10 RAVLT.learning 0.093 - -
11 WholeBrain 0.113 - -
12 Fusiform 0.193 - -
13 RAVLT.immediate 0.330 - -
14 ADASQ4 0.442 - -
15 ICV 0.556 log10(ICV) -0.061
16 ADAS13 0.772 log10(ADAS13+1) -0.685
17 ADAS11 1.072 log10(ADAS11+1) -0.487
18 Ventricles 1.292 log10(Ventricles) -0.139
19 CDRSB 1.364 log10(CDRSB+1) 0.524
20 TRABSCOR 1.970 log10(TRABSCOR+1) -0.25
21 FAQ 2.515 log10(FAQ+1) 1.058



Chapter 4

Statistical modelling

In this Chapter, we describe several aspects involved in the implementation of the different
prediction approaches compared in our study. First, in Section 4.1 we elaborate on the model
building procedures including the model specification and model hyperparameters. Second, in
Section 4.2 we describe the problem of dynamic prediction of survival. Then, we describe the
interval validation procedure in Section 4.3 and specify performance measures for evaluation in
Section 4.4. Lastly, in Section 4.5 we provide information on the implementation of the different
methods using R.

4.1 Model development

Initially, we identified 46 candidate predictors, of which 5 are time-independent (Section 3.4.1)
and 41 are longitudinal (Section 3.5) in the ADNI data. As discussed in Section 3.5 and shown
in Table 3.6, we decided to retain as predictors 21 longitudinal covariates for which at least one
measurement is available for 90% or more of the individuals, removing the remaining 20 covari-
ates with more missingness and less repeated measurements.

This preliminary screening led to the selection of 26 variables, listed in Table 4.1, to be used as
predictors of time to dementia. Steyerberg (2009) recommended that clinical prediction models
for survival outcomes should be developed bearing in mind two rules of thumb: (i) at least 100
events; (ii) at least 10 events per variable (EPV) and preferably 20 if the event rate is lower than
20%. Under 10-fold cross validation and without landmarking, the training sets will contain
1615 × 90% × 25% ≈ 363 events on average, resulting in approximately 14 EPV. Note that the
EPV is not a constant value in this study for two reasons: (i) the EPV decreases as the landmark
time is increased; (ii) the EPV also depends on the methods used, for instance the MFPCCox
could reduce the number of covariates fed to the Cox model and the PRC could roughly double
the number covariates fed to the penalized Cox model, resulting in upward and downward ad-
justment to the EPV. As pointed out in Steyerberg (2009), medical prediction models that are
constructed with EPV < 10 are commonly overfitted. But provided that the PRC already em-
ploys regularization and that all models were internally validated using repeated cross-validation,
the risk of overfitting in lower EPV is probably alleviated.

Hereafter we describe some relevant implementation details for the four methods included in our
comparison.

33
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Table 4.1: List of covariates

Baseline covariate Description Format Type

AGE Age Continuous Background
APOE4 Number of APOEe4 alleles Categorical Genetic
PTEDUCAT Education Discrete Background
PTGENDER Sex Categorical Background
status.bl Diagnosis at baseline Categorical Background

Longitudinal covariate Description Format Type

ADAS11 ADAS111 Continuous Cognitive
ADAS13 ADAS113 (including Delayed Word Re-

call and Number Cancellation)
Continuous Cognitive

ADASQ4 ADAS1Delayed Word Recall Discrete Cognitive
CDRSB CDR-SB2 Discrete Cognitive
Entorhinal UCSF3Entorhinal Continuous Imaging
FAQ FAQ Discrete Cognitive
Fusiform UCSF Fusiform Continuous Imaging
Hippocampus UCSF Hippocampus Continuous Imaging
ICV UCSF ICV Continuous Imaging
LDELTOTAL Logical Memory - Delayed Recall Discrete Cognitive
MidTemp UCSF Middle temporal gyrus Continuous Imaging
MMSE MMSE Discrete Cognitive
mPACCdigit ADNI modified Preclinical Alzheimer’s

Cognitive Composite (PACC) with
Digit Symbol Substitution

Continuous Cognitive

mPACCtrailsB ADNI modified Preclinical Alzheimer’s
Cognitive Composite (PACC) with
Trails B

Continuous Cognitive

RAVLT.forgetting RAVLT Forgetting (trial 5 - delayed) Discrete Cognitive
RAVLT.immediate RAVLT Immediate (sum of 5 trials) Discrete Cognitive
RAVLT.learning RAVLT Learning (trial 5 - trial 1) Continuous Cognitive
RAVLT.perc.forgetting RAVLT Percent Forgetting Continuous Cognitive
TRABSCOR Trails B Continuous Cognitive
Ventricles UCSF Ventricles Continuous Imaging
WholeBrain UCSF WholeBrain Continuous Imaging

1 ADAS: Alzheimer’s Disease Assessment Scale
2 CDR-SB: Clinical Dementia Rating scale Sum of Boxes
3 UCSF: University of California, San Francisco
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4.1.1 Penalized Cox model (with baseline measurements)

We specified a penalized Cox model as the baseline model (pCox-baseline) by simply using
measurements at the baseline. In addition to the baseline covariates, we also included the
baseline values of the longitudinal covariates to ensure fair comparison across methods. Under
the assumption of missing at random, we employed mean imputation to impute missing values.
The model was specified with 26 candidate predictors and regularized using the ridge penalty
(2.2). The optimal ridge penalty was determined based on the λmin i.e. the optimal value
of penalty parameter λ giving minimum mean CV error under the inner cross validation (CV)
procedure during model fitting.

4.1.2 Landmarking

The landmarking model (pCox-landmarking) was implemented using a penalized Cox model that
included the same 26 variables as pCox-baseline. However, instead of using the baseline values,
we employed the LOCF method for the 21 longitudinal covariates, using the last observation
available before the landmark time.

4.1.3 Penalized Regression Calibration

The step 1 of the PRC involved fitting a LMM with random slope and intercept on baseline age
for each of the 21 longitudinal covariates. The summaries of these trajectories were extracted in
step 2 and used as predictors along with the 5 baseline covariates to fit the penalized Cox model
in step 3. All predictors except baseline age were regularized with ridge penalty determined by
the λmin.

4.1.4 Multivariate Functional Principal Component Cox model

Differently from the other models, it was not possible to estimate MFPCCox using all 21 longi-
tudinal covariates due to estimation problems caused by the following 7 variables: ICV, Whole-
Brain, Ventricles, Hippocampus, Entorhinal, Fusiform, and MidTemp. For this reason, such
variables were not included as covariates, and MFPCCox was estimated using a total of 19 pre-
dictors (5 baseline and 14 longitudinal). Percentage of variation explained (PVE) to select the
number principal components was set to 0.9. A higher PVE may lead to estimation problem,
and a lower PVE may be too ineffective in approximating the trajectories in the longitudinal
covariates.

4.2 Dynamic prediction of survival

In the context of dynamic prediction of survival, we are interested in the conditional survival prob-
ability S(T > tl +∆t | T > tl) at given landmark time tl over a prediction window (tl, tl +∆t]
where tl + ∆t < tmax, and tmax is the latest observation time in the data. Only (repeated)
measurements before the landmark time are used to predict survival. As the landmark time
progresses over time, more up to date information can be used for model fitting and to update
predictions on survival. During model development and evaluation, the observations at or after
the landmark time will be disregarded to avoid use of information obtained after the landmark
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time, and the survival model is estimated using only the subjects at risk at the landmark time.

Since all models in comparison employ Cox model to estimate the survival outcome, their pre-
dicted survival probabilities expressed in the general form:

Ŝi(t|tl) = exp

(
−
∫ t

0

ĥ0(z)e
η̂ijdz

)
, (4.1)

where ĥ0(z) is a nonparametric estimate of the baseline hazard function, and η̂ij denotes the
linear predictor of the model of which its composition depends on the method used.

For the comparison in this thesis, we choose to evaluate the models using landmark times
tl = 2, 3, 4, 5, 6 and prediction times t′ = tl + 1, . . . , tmax − 1, tmax. Note that as the land-
mark time increases, the models will be trained using more repeated measurements, but number
of subjects (at risk) in the data will decrease, as discussed in Figure 3.3.

4.3 Internal validation

Validation is the important process of evaluating the performance of a prediction model. Ac-
cording to the general framework for validation described by Steyerberg (2009), validation can
be distinguished into three types:

• apparent validation is the evaluation when using the training data for testing. It leads to
optimistically biased estimates of performance;

• internal validation determines the reproducibility of a prediction model for the setting of
the underlying population for the data used for model development;

• external validation determines the generalizability of a prediction model for the populations
that are plausibly related.

As we only considered the ADNI dataset in the scope, only internal validation will be carried
out for this thesis.

There are two families of resampling validation techniques that can be used for internal validation:
cross validation (CV) methods and bootstrap methods. Talyigás (2021) showed that repeated
CV (RCV) and bootstrap methods generally perform better than simple CV and pooled CV in
estimating the performance of prediction models. Hence, here we use RCV for internal validation.

We first describe the procedure of k-fold CV which the RCV is based on. In a k-fold CV, the
full data will first be partitioned into k approximately equal subsets. Then, in each i = 1, . . . , k
fold, the k − 1 subsets are used as training set and the remaining subset is used as testing set.
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The estimated performance for k-fold CV is computed by averaging the performance evaluated
on the k test sets. Given a data (X, y) of size n that are partitioned into k approximately equal
disjoint sets s1, s2, . . . , sk and a performance measure M, we define the k-fold CV estimated
performance as follows:

ÊPCV =
1

k

k∑
u=1

M(ysu , r−su(Xsu)), (4.2)

where r−su denotes the predictive function trained on all data except in subset su, and ysu and
Xsu denote all the data in subset si. As CV performance can heavily dependent on the random
partitioning of data, RCV can be employed to reduce the effect of such randomness.

The procedure of RCV is to repeat k-fold CV for l times, using a different random partitioning
of data each time, as it is more robust to base a conclusion on multiple random partitioning than
not. The estimated performance for RCV is computed by averaging the k-fold CV estimated

performance ÊPCV described above over all repetitions, which is defined as follows:

ÊPRCV =
1

lk

l∑
u=1

k∑
v=1

M(ysuv , r−suv (Xsuv )), (4.3)

where r−suv denotes the predictive function trained on all data except in subset suv, and ysuv

and Xsuv
denote all the data in subset suv.

Besides, as random partitioning in RCV method may lead to very different proportion of events
and censoring, we apply stratification to ensure such proportion is approximately equal between
the training set and testing set.

To summarize, stratified 10-fold RCV with 10 repetitions is adopted for internal validation in
this study. Within each fold, the training set and the testing set contains approximately 1, 041
and 116 non-overlapping subjects respectively. An identical set of random seeds is used for par-
titioning across all models to ensure fair comparison and reproducibility.

4.4 Performance measures

Under a validation process, the quality of the prediction model is quantified by one or more
performance measures. A performance measure is also called the conditional expected error or
accuracy in Hastie et al. (2009), considering that the expected performance is conditioned on a
given training set consisting of a set of responses and covariates. The predictive performance
of a risk prediction model can be considered in two important aspects (Steyerberg, 2009): first,
discrimination to measure the model’s ability to discriminate subjects between those who experi-
enced the event of interest and those who did not; second, calibration to measure the agreement
between the predicted and observed risks. Because good discrimination does not always imply
good calibration, we are interested in assessing a model’s predictive performance in both aspects.
In the context of survival prediction, the common performance measures are either extensions
of the proportion of variation explained R2 (as in continuous response models) or extensions of
sensitivity and specificity (as in binary response models).
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We employ three methods to quantify predictive performance, namely the time-dependent area
under the receiver operating characteristic (ROC) curve (tdAUC) (Heagerty et al., 2000), the
concordance index (C index) (Harrell et al., 1996; Pencina and D'Agostino, 2004), and the Brier
score (Graf et al., 1999; Schoop et al., 2008). The Brier score is an overall measure that considers
both the discrimination and calibration of a model. The tdAUC and C index assess the discrim-
inative ability in particular. While the Brier score and tdAUC depends on the prediction time,
the C index only offers a single measure regardless of prediction time and is linked to the integral
of tdAUC (Pencina and D'Agostino, 2004). Blanche et al. (2014) remarked that both AUC and
Brier score complement each other for evaluating prediction performance. AUC has a convenient
and easily understandable scaling as it does not depend on the cumulative incidence rate but
only considers discrimination. Brier score is able to consider both calibration and discrimination
(Steyerberg, 2009; Blanche et al., 2014) but the interpretation tends to be less direct as its scaling
depends on the cumulative incidence rate. We introduce the formulations and properties of these
performance measures below.

4.4.1 Time-dependent AUC

The area under the ROC curve (AUC) is a popular method in statistics and machine learning
to quantify the discrimination ability of a model in binary classification context. It is based on
sensitivity defined as P (p̂i > c|Yi = 1) and specificity P (p̂i ≤ c|Yi = 0) where p̂i is the estimated
probability that Yi = 1 according to a given model, and c ∈ [0, 1] is a threshold for classifying
the binary predicted outcome. The ROC curve represents the sensitivity and 1-specificity for all
c ∈ [0, 1].

In the context of survival prediction, Heagerty and Zheng (2005) proposed the time-dependent
AUC as prediction accuracy summary for ROC curves based on extensions called time-specific
incident sensitivity and dynamic specificity. We consider the survival time a time-varying binary
outcome using the counting process representation N∗

i (t) = 1(Ti ≤ t). For incident sensitivity,
the cases are said to be incident when Ti = t i.e. N∗

i (t) = 1. For dynamic specificity, the controls
are said to be dynamic as it considers subjects with Ti > t. The incident sensitivity and dynamic
specificity are defined as follows:

sensitivityI(c, t) = P (ηi > c | Ti = t) = P (ηi > c | dN∗
i (t) = 1), (4.4)

and

specificityD(c, t) = P (ηi ≤ c | Ti > t) = P (ηi > c | N∗
i (t) = 0), (4.5)

where ηi is the linear predictor.

The subjects at risk at time t are divided into two subsets with and without observed an event.
The incident sensitivity measures the expected proportion of subjects with a marker greater than
criterion c among the subset observed with event at time t. The dynamic specificity measures
the expected proportion of subjects with a marker less than or equal to criterion c among the
subset without observed an event before time t.
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The incident/dynamic ROC curves can be defined as follows:

ROC
I/D
t (p) = TP I

t {[FPD
t ]−1(p)}, (4.6)

where p ∈ [0, 1] is the dynamic false-positive rate, cp is the corresponding criterion that p =

1 − specificityD(cp, t), true-positive rate function TP I
t = sensitivityI(c, t), false-positive rate

function FPD
t (c) = 1− specificityD(c, t) = p.

From above, the tdAUC based on incident sensitivity and dynamic specificity can be obtained
as:

AUC(t) = P (ηj > ηk | Tj = t, Tk > t). (4.7)

By Heagerty and Zheng (2005), the estimator for true-positive function and false positive function
are as follows:

T̂P
I

t (c) = P̂ (ηi > c | Ti = t) =
∑
k

1(ηk > c) · πk(β, t), (4.8)

and

F̂P
D

t (c) = P̂ (ηi > c | Ti > t) =
∑
k

1(ηk > c) ·Rk(t+)/WR(t+), (4.9)

where β is the parameters estimated in Cox model, Rk(t+) = 1(Xi ≥ t+) = limδ→0Rk(t+ |δ|) is
the at-risk indicator, WR(t+) =

∑
k Rk(t+) refers to the size of control set at time t i.e. subjects

at risk excluding those who observe event at time t.

With the estimates ˆTP
I

t (c) and F̂P
D

t (c), the tdAUC can be estimated as follows:

ÂUC(t) =

∫
R̂OC

I/D

t (p) dp. (4.10)

The tdAUC ranges from 0 to 1; higher values of tdAUC correspond to discrimination. A tdAUC
of 0.5 indicates that the model discriminates no better than a random prediction rule.

4.4.2 C index

Harrell et al. (1996) defines the concordance index, or C index, as the proportion of concordant
pairs, based on the intuition that for a model that has good discrimination ability, the order in
observed survival times between any two subjects should be in concordance with their predicted
survival probabilities. The C index can be estimated using various approaches; in this thesis we
follow the approach proposed by Pencina and D'Agostino (2004) below.

First, we denote Xi : i = 1, 2, . . . , n and Yi : i = 1, 2, . . . , n as the observed survival time and
the predicted survival probability for any subject. Considering any two pairs of observations
Xi, Xj : i ̸= j and predictions Yi, Yj : i ̸= j, a concordant pair means that Xi < Xj and Yi < Yj ,
and a discordant pair means thatXi < Xj and Yi > Yj . The predicted survival probability is used
interchangeably with the predicted survival times as they remain a one-to-one correspondence
(Harrell et al., 1996). The censoring in survival data also requires any two subjects to be first
distinguished as an usable pair (i.e. either event vs event, or event vs non-event) and otherwise an
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unusable pair for comparison. The unconditional probability of concordance πc and discordance
πd are defined as:

πc = P (Xi < Xj and Yi < Yj) + P (Xi > Xj and Yi > Yj), (4.11)

and

πd = P (Xi < Xj and Yi > Yj) + P (Xi > Xj and Yi < Yj). (4.12)

Then the probability of concordance is given by:

C = P ((Xi < Xj and Yi < Yj) or (Xi > Xj and Yi > Yj) | Xi ̸= Xj) =
πc

1− πt
=

πc
πc + πd

,

(4.13)
where πt = 1− πc − πd is the probability of unusable pairs that cannot be compared as none of
the subjects experienced any event.

Pencina and D'Agostino (2004) showed that if i, j above are interchangeable and {Yi} comes
from a continuous distribution, then the expression in (4.13) can be simplified as:

C =
P (Xi < Xj and Yi < Yj)

P (Xi < Xj)
= P (Yi < Yj |Xi < Xj). (4.14)

To estimate the C index in a sample of subjects i : 1, 2, . . . , n, we define ch and dh the number
of concordant pairs and discordant pairs with respect to h-th subject as follows:

ch =
∑
h̸=j

chj , (4.15)

and

dh =
∑
h̸=j

dhj , (4.16)

where cij is an indicator function when the i-j pair is concordant cij = 1 and otherwise cij = 0,
similarly, dij is an indicator function when the i-j pair is discordant dij = 1 and otherwise dij = 0.
Then the unbiased estimates of πc and πd are given by:

pc =
1

n(n− 1)

∑
h

ch, (4.17)

and

pd =
1

n(n− 1)

∑
h

dh. (4.18)

Hence, the C index is estimated as:

Ĉ =
pc

pc + pd
. (4.19)

The C index ranges from 0 to 1, which a higher score represents better discrimination. C ≤ 0.5
indicate that the model discriminates no better than a random prediction rule. Heagerty and
Zheng (2005) demonstrated the connection between Harrell’s C index introduced in Section 4.4.2
which the concordance is an integral of tdAUC over time t.



4.4. PERFORMANCE MEASURES 41

4.4.3 Brier score

Explained variation is a popular and simple direct measure to quantify the variability (infor-
mation) in the data that can be explained by a model and can be used for continuous and
binary outcomes. A model with better prediction accuracy results in smaller distances between
predicted and observed outcomes. For binary outcomes, the Brier score is defined as the mean
squared error between true outcomes Yi and predictions Pi. Consider the dynamic survival pre-
diction for landmark time s and prediction window t, Schoop et al. (2008); Blanche et al. (2014)
defined the Brier score as:

BS(s, t) = E

[(
(D(s, t)− Ŝ(t|s)

)2
| T > s

]
, (4.20)

where D̃i(s, t) = 1s<T̃i≤s+t is an indicator function that equals to 1 when subject i experiences

the event in (s, s + t] and equals to 0 otherwise, Ŝ(t|s) is the survival prediction for landmark
time s and prediction window t.

In practice, computation of the Brier score for survival data is more complex than this due to
the presence of censoring. With censored data, the value of the Brier score cannot be directly
computed, but it needs to be estimated. Graf et al. (1999) and Gerds and Schumacher (2006)
proposed to use the inverse probability of censoring weight (IPCW) method, which involves the
computation of subject-specific weight Ŵi(s, t), to account for the conditional probability that
subject i is not censored in the interval (s, t):

Ŵi(s, t) =
1T̃i>s+t

Ĝ(s+ t|s)
+
1s<T̃i≤s+t ∆i

Ĝ(T̃i|s)
, (4.21)

where

• 1T̃i>s+t and 1s<T̃i≤s+t are indicator functions equal to 1 when the event is observed in the
interval (s, t) and is 0 otherwise,

• ∆i = 1T≤C is the indicator function which equals to 1 when the event happens before
censoring C,

• Ĝ(u) is the censoring distribution estimated by the Kaplan-Meier estimator, and

• Ĝ(u|s) = Ĝ(u)

Ĝ(s)
∀u > s estimates the conditional probability of not being censored at time

u given that not being censored up to time s.

As such, the first component of 4.21 assigns a weight of 1
Ĝ(s+t|s) for events with survival time

T̃i > s + t, and the second component assigns a weight of 1
Ĝ(T̃i|s)

for events with survival time

s < T̃i ≤ s+ t.

Once the weights in 4.21 have been computed, the Brier score can be estimated as:

B̂S(s, t) =
1

nĤT̃ (s)

n∑
i=1

Ŵi(s, t)(D̃i(s, t)− Ŝ(t|s))2, (4.22)

where ĤT̃ (s) =
1
n

∑n
i=1 1T̃i>s estimates the probability of observing a subject at risk at s.
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The Brier score ranges from 0 to 1, which a lower score represents better predictive performance.
A Brier score of 0.25 indicate that the model predicts no better than a random prediction rule.

4.5 R packages and code

Computations in this study were performed using R version 4.1.3 (R Core Team, 2021). The R
packages used to estimate the models considered in this thesis were:

• glmnet (available from CRAN) for the penalized Cox models that respectively use baseline
covariates and the last observation before the landmark time as predictors;

• pencal (available from CRAN) for penalized regression calibration;

• the estimation of MFPCCox was based on the R scripts using simulated data available at
https://github.com/kan-li/MFPCCox. Such scripts were developed for simulated data,
and they had to be adapted so that they could be used on the ADNI data. The original func-
tions that were reused without adaptations can be found in the script function MFPCCox.R,
whereas the adapted/additional scripts relevant to application to ADNI data can be found
in function MFPCCox exp.R and run repCV MFPCCox.R.

The following packages were used to evaluate predictive performance:

• survROC (available from CRAN) for the tdAUC;

• survcomp (available from Bioconductor) for the C index;

• pec (available from CRAN) for the Brier score.

The R scripts implemented for this thesis are available at https://github.com/freddy-feng/
thesis_CompareSurvivalModels. The model fitting and performance evaluation were per-
formed using the Academic Leiden Interdisciplinary Cluster Environment (ALICE) of Leiden
University.

https://github.com/kan-li/MFPCCox
https://github.com/freddy-feng/thesis_CompareSurvivalModels
https://github.com/freddy-feng/thesis_CompareSurvivalModels


Chapter 5

Results

In this Chapter, we report the results of the application of the 4 models described in Section
4.1 to the problem of predicting time to to dementia on the ADNI data for different landmark
times. Table 5.1 shows a brief overview of the aforementioned methods.

The predictive performance of each model was evaluated considering 5 different landmark times
tl ∈ {2, 3, 4, 5, 6}; the optimism-corrected values of the performance measures, i.e. the tdAUC,
the C index, and the Brier score, were estimated through a repeated 10-fold cross-validation with
10 repetitions. The tdAUC and the Brier score were evaluated every year after each landmark
time, up to the 15 years from baseline. Table 5.2 shows how the number of subjects at risk and
the event rate change with the landmark time. As the landmark time varies from 2 to 6 years
after baseline, the number of subjects at risk reduce from 1,157 to 397 due to the progressive
removal of subjects censored or diagnosed with dementia at or before the landmark times. More-
over, the event rate decreases from 18.6% to 13.6%.

The average number of repeated measurements for each longitudinal covariate at different land-
mark times are illustrated in Figure 5.1. After excluding measurements at or after the landmark
times, most longitudinal covariates have at least 3 repeated measurements per subject on aver-
age. As the landmark time varies from 2 to 6, more repeated measurements could be utilized by
PRC-LMM and MFPCCox, and pCox-landmarking would use the most updated measurements
available before the landmark time.

Table 5.1: Overview of the models included in the comparison

No. of covariates Uses repeated
Model name Baseline Longitudinal measurements for prediction

pCox-baseline1 5 21 No
pCox-landmarking1 5 21 No
PRC-LMM 5 21 Yes
MFPCCox 5 14 Yes

1 pCox: penalized Cox model.
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Table 5.2: Summary of observed events at different landmark times

Landmark
time

Number of sub-
jects at risk

Number of events Event rate Average time to dementia
after landmark time

2 1157 215 0.186 3.3
3 842 146 0.173 3.4
4 634 100 0.158 3.4
5 494 72 0.146 3.3
6 397 54 0.136 3.0

Figure 5.1: Average number of repeated measurements per subject at different landmark times.
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5.1 Time-dependent AUC

The optimism-corrected estimates of the tdAUC at different landmark times are shown in Figure
5.2. We observe that the values of the tdAUC typically decrease with the landmark time, irre-
spective of the prediction method. pCox-landmarking is the best performing model according
to this metric, as it outperforms other models at most prediction times and landmark times. It
is followed by PRC-LMM, whose performance is rather similar to that of pCox-landmarking at
landmark times 2, 3 and 6, and a bit more different at landmark times 4 and 5. MFPCCox ranks
third and its performance dropped substantially as the landmark time increased. pCox-baseline
consistently shows the worst performance at all landmark times, and its performance also wors-
ens as the landmark time increased.

Figure 5.2: Cross-validated tdAUC estimates for the prediction of time to dementia at landmark
times 2 to 6.
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5.2 C index

The optimism-corrected estimates of the C index, averaged over 10 cross-validation replications,
are compared in Table 5.3. pCox-landmark has the highest C index at all landmark times except
at landmark time 6, where it is slightly below PRC-LMM. The performance of PRC-LMM is
generally close to that of pCox-landmark. MFPCCox and pCox-baseline are slightly behind
the best model at landmark time 2, where the difference is no greater than 0.025. Shifting the
landmark time from 2 to 6, the performance of all models are generally reduced, but at a different
rate. This effect is more pronounced in the pCox-baseline and MFPCCox. At landmark time 6,
the difference between the pCox-baseline and the best model widens to 0.142, and the difference
between the MFPCCox and the best model widens to 0.06. Figure 5.3 shows the distribution
of the cross-validated C index as evaluated on each fold (i.e., before averaging over folds and
replications). The box plots are grouped by models and arranged by ascending landmark times.
We can observe that while the performance of pCox-landmarking and PRC-LMM does not vary
a lot with the landmark time, the performance of MFPCCox and pCox-baseline clearly decreases
as the landmark time increases. Moreover, for pCox-baseline and MFPCCox, the variance of the
C index estimates clearly increases with the landmark time.

Table 5.3: Cross-validated C index at different landmark times

Landmark time
Method 2 3 4 5 6

MFPCCox 0.897 0.877 0.866 0.847 0.828
pCox-baseline 0.881 0.854 0.814 0.760 0.746
pCox-landmarking 0.905 0.893 0.887 0.885 0.884
PRC-LMM 0.901 0.881 0.872 0.867 0.888

Figure 5.3: Distribution of the C index as evaluated on each CV fold, before aggregation over
the 10 folds and the 10 replications of CV. The grouped box plots show the estimated C index
evaluated at landmark time 2 (left) to 6 (right) for each method under 10-fold CV repeated for
10 times. The performance of pCox-landmarking appears to be the best at most landmark times,
and is closely followed by the PRC-LMM. These two models clearly outperformed MFPCCox and
pCox-baseline, especially at later landmark times. The decline in the C index with the landmark
time is more severe in pCox-baseline and MFPCCox.
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5.3 Brier score

Figure 5.4 shows the optimism-corrected estimates of the Brier score at the different landmark
times. Displaying a different pattern from above results, the estimated Brier scores among pCox-
landmarking, PRC, and MFPCCox model are very close at the first two landmark times. At
landmark times 4, 5 and 6, the Brier score curves for these three models are very similar up until
t = 10. On the other hand, the difference becomes more pronounced for prediction times beyond
t = 10, when PRC outperforms pCox-landmarking and MFPCCox. pCox-baseline exhibits the
worst Brier scores across all landmark times.

Figure 5.4: Cross-validated Brier score estimates for the prediction of time to dementia at land-
mark times 2 to 6.
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5.4 Summary

When we look jointly at the results presented in Sections 5.1, 5.2 and 5.3, we can conclude that:

• pCox-landmarking is the best performing method when looking at the tdAUC and C index,
and the second best method with respect to the Brier score;

• PRC-LMM is the second best performing method in terms of the tdAUC and C index, and
the best method according to the Brier score;

• MFPCCox performed worse than pCox-landmarking and PRC-LMM irrespective of the
performance measure considered;

• pCox-baseline was the worst performing method with respect to all metrics.

The difference in ranking between tdAUC / C index and Brier score may be due to the different
aspect of prediction that the measure is evaluating, i.e. discrimination versus calibration.



Chapter 6

Discussion

6.1 Conclusions

The goal of this thesis was to perform an empirical comparison of four different statistical mod-
elling methods that can be used to predict a survival outcome given numerous longitudinal
covariates. These methods included (i) two novel methods, PRC and MFPCCox, developed to
fully utilize the longitudinal data using different techniques (mixed models and MFPCA respec-
tively), (ii) landmarking - a conventional approach that uses the last observations until landmark
time, and (iii) the penalized Cox model only using the baseline measurements. We evaluated
their predictive performance in the context of dynamic prediction of time to dementia using the
ADNI data, which comprises a heterogeneous set of variables measured longitudinally.

In Chapter 2 we provided an overview on these modelling methods, highlighting their differences
and similarities. In Chapter 3 we summarized the most important features of the ADNI data,
and described practical issues such as data preprocessing and dealing with missing values. In
Chapter 4 we elaborated on the modelling process and the comparison framework. We have
chosen 5 baseline covariates and 21 longitudinal covariates as the candidate predictors. The
developed models were evaluated based on the dynamic prediction of survival, where the pre-
dicted survival probabilities to develop dementia were evaluated conditionally on survival until
a given landmark time. Three different performance measures, namely tdAUC, C index, and
Brier score, were employed to assess the predictive performance of the different methods. We
employed repeated cross-validation, stratified by event status (dementia and censoring), to com-
pute optimism-corrected estimates of the tdAUC, C index and Brier score.

In Chapter 5 we compared the performance of the different models in predicting P (T > t | T >
tl), where tl ∈ {2, 3, 4, 5, 6} and t ∈ {tl + 1, tl + 2, ..., 15}. The choice of the landmark time
has some important implications: first, increasing the landmark time increases the number of
available measurements that can be used to model the trajectories described by the longitudinal
covariates in PRC and MFPCCox (Figure 5.1); similarly, this allows the landmark model to use
more update measurements; second, increasing the landmark time effectively reduces the sample
size available for model development and validation, due to the fact that as the landmark time
is increased, more and more subjects will either be censored or have developed dementia before
the landmark time (Table 3.3). To balance these two opposite effects, here we have considered a
range of five landmark times.

The results of our comparison showed that the landmarking approach achieved the best perfor-
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mance in terms of tdAUC and C index, and it was closely followed by PRC (Figure 5.2 and
Table 5.3). When looking at the Brier score, landmarking and PRC performed similarly for
predictions up until t = 10, whereas for predictions after t = 10 PRC outperformed landmarking
(Figure 5.4). MFPCCox was outperformed by landmarking and PRC with respect to all three
performance measures. Lastly, the penalized Cox which only used the baseline measurements
was the worst performing method according to all performance measures.

Overall, these results show that the first three models were all able to improve the prediction
of time to dementia by exploiting the longitudinal information gathered at visits after baseline,
thus showing the importance of collecting longitudinal measurements to improve the accuracy
of risk predictions. The result also seemed to indicate that for the ADNI data a simpler ap-
proach such as landmarking may be enough to deliver accurate predictions, as we observed that
more sophisticated approaches that model the evolution of the longitudinal covariates over time
achieved only marginal (Brier score for PRC) or no improvement (MFPCCox) over landmarking.

On the discrimination performance (measured using the tdAUC and C index) we observed that
as the landmark time increased, the performance of pCox-baseline and MFPCCox decreased no-
ticeably, whereas the performance of landmarking and PRC decreased only slightly. A possible
explanation for this result is the aforementioned availability of more repeated measurements for
PRC and of more up to date measurements for landmarking for later landmark times.

On the calibration performance (measured using the Brier score) the penalized Cox model was
once again the worst performing method; the results were less clear cut for other three meth-
ods. The performances of the landmarking, PRC, and MFPCCox were not so distinguishable at
smaller landmark times or at prediction times up to t = 10. However, when the landmark time
increased, PRC gradually outperformed landmarking and MFPCCox with for predictions from
t = 10 onward. This may indicate that the rate of progression in the longitudinal covariates may
improve the accuracy of long-term predictions.

Overall, the performance of PRC was quite close to that of the landmarking. PRC benefited
from having more repeated measurements in the longitudinal covariates as seen in the Brier score.
This result is in line with the expectation that more repeated measurements can improve the es-
timation of the LMMs and help to derive more accurate summaries of the longitudinal covariates.

On the contrary, MFPCCox performed worse than landmarking and PRC, which could be due
to various reasons:

• due to estimation problems, MFPCCox was specified with 14 instead of 21 longitudinal
covariates as other models, possibly losing part of the predictive information;

• MFPCCox models the trajectories of the longitudinal covariates with respect to follow-up
time. Considering the fact that each subject entered the study at a different age, such
specification seems arbitrary and could impair predictive patterns in the original data. In
our opinion, a more reasonable choice would be to use the subjects’ age as the time scale
like in step 1 of PRC, however for MFPCCox this is problematic when baseline age differs
across patients, because that would lead to estimation problems due to the presence of
highly sparse matrices;

Despite these concerns, our results at least showed that the MFPCCox method could improve
the predictive performance for dementia risk over a model that only uses baseline information.
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Better tdAUC and Brier score were observed in this thesis when compared to the application
of MFPCCox to the ADNI data presented in Li and Luo (2019), however the results are not
comparable due to following reasons: (i) only data from the first phase of ADNI study (ADNI1)
were used in the previous study, resulting in a much smaller dataset, (ii) only 6 longitudinal co-
variates were used in Li and Luo (2019), (iii) the MFPCCox in the previous study was developed
based on repeated measurements before and after the landmark time, which is different from the
dynamic prediction formulated in Section 4.2.

6.2 Limitations

A first limitation of the present study is that its results may not generalize to other datasets.
To ensure a fairer comparison of prediction models, Boulesteix et al. (2008) recommended that
the comparison should be based on at least two datasets. Due to data availability and time
constraints, the methods were only compared on a single dataset. The conclusions of this thesis
should thus be interpreted with caution, as it is solely based on the ADNI data and the perfor-
mance between some models were really close. The so-called best method might be very sensitive
to the characteristics of the dataset and the covariates used as predictors.

A subject that was not explored in this thesis is the use of different strategies to account for
missing data in the ADNI dataset. As illustrated in Section 4.1, we chose to use complete case
for baseline covariates in data screening which led to slightly loss of information. We used mean
imputation for missing values when extracting cross-sectional measurements from the longitu-
dinal covariates when they were used in the penalized Cox model and the landmarking model.
Alternative approaches such as multiple imputation might be better to account for the data
uncertainty.

In principle, patients may develop dementia between two visits, meaning that the survival out-
come should be treated as interval-censored. The problem was simplified to be right-censoring in
this thesis to ensure the problem formulation is compatible with the methods for comparison. As
such, the predicted survival probabilities computed here should be considered as a upper bound
estimate.

Studies involving an elder population group often comprise drop outs due to death, so ideally
the competing risk should be taken into account in the risk modelling in these contexts. In the
ADNI data, death contributed to a small portion of drop outs (< 10% of the subjects). Since
the methods compared in this thesis do not account for competing risks, we treated deaths as
censored observations.

Lastly, we should be cautious when interpreting the models’ predicting ability reported in this
thesis because they were developed based on data sampled from subpopulation that was pre-
dominantly white. The generalizability to underrepresented ethnic groups, is not known without
proper external validation. But as our goal was methodological comparison instead of develop-
ment of a clinical prediction model, this issue was not considered in this thesis.
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