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Abstract

Quantum computing stands at the forefront of modern science, where
understanding quantum states is crucial for progress. This thesis

introduces the Classical Shadow Transformer (CST), an AI model crafted
to reconstruct quantum states from classical data. Trained on GHZ, W,

and Zero states, each with unique entanglement levels, the CST employs
shadow tomography and a transformer architecture with a variational

bottleneck to interpret measurement outcomes. The CST shines in
decoding less entangled states and is challenged by the intricacies of
maximally entangled states, particularly the W state. This contrast in
learning efficiency reveals key differences in entanglement types. The

investigation into the CST’s latent space provides insights into the
interpretability of quantum states, showcasing how AI can unravel

quantum complexity. These insights pave the way for future quantum
computing advancements, positioning AI as a tool for demystifying

quantum phenomena.
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Chapter 1
Introduction

1.1 Context and Motivation

Quantum computing, heralding a new era in technological advancement,
offers unparalleled computational capabilities. Central to this field are
further understanding of quantum states, which embody the capabilities
and dynamics of quantum systems. Despite their importance, the high-
dimensional and probabilistic nature of these states poses significant chal-
lenges in their interpretation and analysis[1] [2][3].

Traditionally, quantum state tomography [4]has been the mainstay in
analyzing these states. However, as quantum systems grow in size, tra-
ditional methods face scalability issues[5], presenting a major barrier to
harnessing the full potential of quantum computing. In response, the field
of machine learning, particularly representation learning, emerges as a
promising solution. It aims to develop interpretable representations of
complex data, offering new avenues for quantum state analysis.

A notable development in this context is the Classical Shadow Trans-
former (CST), inspired by Yi Zhuang’s work [6]. The CST innovatively
combines quantum physics and machine learning techniques to interpret
quantum information through classical data. This approach addresses
scalability issues and provides fresh insights into quantum state inter-
pretability.

A key aspect of quantum computing that poses a particular challenge
is the complex entanglement in quantum states, especially notable in GHZ
and W states. Numerous debates and analyses focus on the extent of en-
tanglement in these two states[7] [8] [9], despite being termed ’maximally
entangled states’ in a 3-qubit case. [10] Understanding these entangled
states’ properties and their implications for quantum computing is cru-
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2 Introduction

cial. Additionally, the CST’s ability to analyze and represent these states
in its latent space further underscores the importance of machine learning
in quantum state analysis.

1.2 Research Objectives and Structure

This research aims to evaluate the effectiveness of the Classical Shadow
Transformer in understanding and representing quantum states. The study
focuses on applying CST to various quantum states, such as GHZ and W
states, to explore their entanglement properties and learnability. A signif-
icant component of the research is analyzing the CST’s latent space repre-
sentations to understand how these representations capture the complex-
ities of different quantum states.

The thesis is organized as follows:

• Introduction to key concepts in quantum information science, in-
cluding the fundamentals of quantum states and their entanglement
characteristics.

• Detailed exploration of the Classical Shadow Transformer, inspired
by YiZhuang’s work, and its application in quantum state analysis.

• Experimental analysis of CST’s performance in representing various
quantum states, with a focus on GHZ and W states.

• Interpretation of latent space representations within the CST and
their implications for understanding quantum states.

• Concluding remarks discussing the implications of the findings and
directions for future research in quantum computing and machine
learning.

This thesis, situated at the intersection of quantum information science
and machine learning, makes a substantial contribution to our compre-
hension of quantum states. By integrating machine learning techniques
in the analysis of quantum states, this work not only deepens our under-
standing in this field but also paves the way for novel developments in
quantum computing and information processing.

2
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Chapter 2
Preliminaries

2.1 Basic Concepts

Quantum information science is a field of study based on the principles
of quantum mechanics. It encompasses quantum computing, quantum
communication, and quantum cryptography, among others. At the heart
of quantum information science are the concepts of quantum states, quan-
tum gates, Pauli operations, measurement bases, and various metrics such
as fidelity and entropy.

2.1.1 Quantum States

A quantum state represents the state of a quantum system and is typically
denoted by the ket notation |ψ⟩. The state |ψ⟩ is a vector in a Hilbert space,
and for a qubit, the simplest quantum system, it can be represented as a
linear combination of the basis states |0⟩ and |1⟩:

|ψ⟩ = α|0⟩+ β|1⟩, (2.1)

where α and β are complex numbers that satisfy the normalization condi-
tion |α|2 + |β|2 = 1.

2.1.2 Quantum Gates

Quantum gates are operations that change the state of qubits. They are the
quantum analogue of classical logic gates and are represented by unitary
matrices. A unitary operation U that acts on a state |ψ⟩ transforms it to
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4 Preliminaries

a new state U|ψ⟩.Some common quantum gates and their corresponding
matrix representation can be seen in Table2.1

Figure 2.1: Common Quantum Logic Gates (Source: Wikipedia)

4
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2.1 Basic Concepts 5

2.1.3 Pauli Operators and Measurement Bases

Pauli operators are a set of matrices that form a basis for the space of 2 × 2
Hermitian matrices. They are defined as:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.2)

Measurement in quantum mechanics is the process of determining the
state of a qubit. The measurement basis typically refers to the eigenbasis
of the Pauli operators.

2.1.4 Fidelity

Fidelity is a measure of similarity between two quantum states, which can
be either pure or mixed states represented by density matrices.

For two mixed states described by density matrices ρ and σ, the fidelity
F(ρ, σ) is defined as:

F(ρ, σ) =

(
tr
√√

ρσ
√

ρ

)2

. (2.3)

If at least one of the states (say ρ) is pure, the fidelity simplifies to:

F(ρ, σ) = tr(σρ). (2.4)

And if both states are pure, the fidelity further simplifies to the square of
the modulus of the inner product of the two state vectors. Fidelity is sym-
metric and bounded between 0 and 1. It is unitarily invariant, meaning it
remains unchanged under unitary transformations of the quantum states.

2.1.5 Entropy

Entropy, in the context of quantum information, is a measure of uncer-
tainty or disorder within a quantum system. The von Neumann entropy
of a quantum state ρ is defined as:

S(ρ) = −Tr(ρ log2 ρ). (2.5)

2.1.6 Quantum Entanglement

Introduction

Quantum entanglement is a remarkable phenomenon where the quantum
states of two or more particles become intertwined in such a way that
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6 Preliminaries

the state of each particle cannot be described independently of the others,
regardless of the distance separating them. This counterintuitive aspect
challenges classical intuitions about separability and locality. Entangle-
ment was first critically discussed in the context of the Einstein-Podolsky-
Rosen (EPR) paradox in 1935 [11], questioning the completeness of quan-
tum mechanics. John Bell, in 1964, introduced inequalities [12] that ex-
perimentally distinguished between quantum entanglement and classical
correlations, further illuminating the peculiar nature of quantum entan-
glement.

2.1.7 Characterizing Quantum Entanglement

Quantum entanglement is characterized by specific criteria that distin-
guish entangled states from separable ones. Two primary criteria are the
Peres-Horodecki (PPT) criterion and the inseparability of product states.

Peres-Horodecki (PPT) Criterion

The Peres-Horodecki, or Positive Partial Transpose (PPT), criterion pro-
vides a necessary condition for a bipartite state to be separable. Introduced
by Asher Peres and refined by MichaÅ and Ryszard Horodecki, the crite-
rion asserts that if the partial transpose of a density matrix of a separable
state has non-negative eigenvalues, then the state is considered separable.
Mathematically, for a bipartite system described by a density matrix ρAB,
the PPT criterion is expressed as:

if ρTB
AB has negative eigenvalues, then ρAB is entangled (2.6)

where ρTB
AB denotes the partial transpose of ρAB with respect to subsystem

B. The partial transpose is defined by the operation:

ρTB
AB = (I ⊗ T)(ρAB) = ∑

ijkl
pij

kl|i⟩⟨j| ⊗ (|k⟩⟨l|)T (2.7)

This can be visualized more clearly when ρAB is represented as a block ma-
trix, and the partial transpose with respect to subsystem B is taken across
these blocks. If the resulting matrix ρTB

AB has any negative eigenvalues, it
indicates that ρAB is entangled.

Inseparability of Product States

Another fundamental aspect of characterizing entangled states is their
non-decomposability into direct product states. A bipartite quantum state

6
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2.1 Basic Concepts 7

|ψ⟩ is entangled if it cannot be represented as a product of individual states
of its subsystems, mathematically expressed as:

|ψ⟩ ̸= |ϕA⟩ ⊗ |ϕB⟩ (2.8)

for any |ϕA⟩ in the state space of subsystem A and |ϕB⟩ in the state space of
subsystem B. This inseparability criterion is fundamental to the definition
of entanglement, implying that the properties of the whole system cannot
be described merely by its parts [13].

Concurrence

Concurrence is a quantitative measure of entanglement for a pair of qubits.
For a mixed state ρ, concurrence C(ρ) is defined as:

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4} (2.9)

where λi (with i = 1, 2, 3, 4) are the eigenvalues, in decreasing order, of the
matrix

√√
ρρ̃

√
ρ, and ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy) [14].

Negativity

Negativity, another entanglement measure, is applicable to mixed states
of any dimension. It quantifies the degree to which the PPT criterion is
violated. Negativity is defined as the sum of the negative eigenvalues of
the partial transpose ρTB of the density matrix ρ:

N (ρ) =
||ρTB ||1 − 1

2
(2.10)

where || · ||1 denotes the trace norm [15].

Schmidt Number

The Schmidt number is a basis-independent measure of entanglement for
bipartite pure states. It is defined by the number of non-zero terms in the
Schmidt decomposition:

|ψ⟩ = ∑
i

√
λi|ui⟩|vi⟩ (2.11)

where λi are the Schmidt coefficients [16]. The Schmidt number gives the
minimum number of product states needed to express the entangled state,
with higher numbers indicating stronger entanglement.
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8 Preliminaries

2.2 Shadow Tomography

In quantum physics, there are multiple "languages" to describe a quantum
system, such as wave functions and density matrices. These descriptions
are uniquely quantum, not directly observable or intuitively understand-
able in classical terms, and their complexity grows exponentially with the
size of the system. The concept of "classical Shadow" emerges from the
idea of describing quantum systems using classical information. It lever-
ages the act of observation, which, under the Copenhagen interpretation,
collapses the wave function to a specific value. Classical Shadowã[4] refers
to using the outcomes of certain measurements and their probability dis-
tributions to characterize a quantum state, thereby forming a ’classical lan-
guage’ for describing quantum phenomena.

Figure 2.2: A figure from[4] that represents the procedure of shadow tomogra-
phy which means predicting the properties of a quantum system from random-
ized measurements. First, we apply a set of Unitary transformations and random
measurements on copies of a n-qubit system to obtain the classical shadow data
set. Then we get the prediction of the system using median-of-means protocol on
these datasets

The concept of "classical shadow" in quantum physics offers a novel
approach to tackling the complexity of large-scale quantum systems. It
bypasses the limitations of traditional prediction methods like quantum
state tomography, which suffers from the exponential growth of parame-
ters with system size. Shadow tomography enables efficient predictions of

8
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2.2 Shadow Tomography 9

various quantum properties, requiring significantly fewer samples and re-
sources. This technique, focusing on properties that are linear functions of
the density matrix, involves applying unitary transformations and mea-
surements to form a classical representation of the quantum state. The
method is optimally efficient, adhering to quantum information theory’s
lower bounds, and is versatile enough to predict a wide range of quantum
properties effectively.

A classical shadow is generated through a repetitive process involving
unitary transformations UρU† on a quantum state ρ, followed by measur-
ing all qubits in the computational basis. The frequency of this process
determines the shadow’s size. The transformation U is randomly cho-
sen from a set of unitaries, each set offering unique strengths and limi-
tations. This method is designed to be implementable via efficient quan-
tum circuits. Notably, random n-qubit Clifford circuits and products of
single-qubit Clifford circuits are key examples, providing complementary
advantages in practical applications. Figure 2.2 demonstrates the process
and key properties we can predict from shadow tomography.

2.2.1 Procedure of Shadow Tomography

For example, if we focus on n-qubit quantum systems within a fixed state
in d = 2n dimensions. To decipher the state, we apply a random unitary
U from a predetermined set, measure in a computational basis(Pauli Basis
or Clifford gate can be a complete set which has been proved), and store
the outcome. Repeating this yields a classical snapshot of the quantum
state, which, through post-processing, can predict various properties of
the system. The ’classical shadow’ consists of these snapshots, and their
number N determines the prediction’s accuracy. This process, involving
median-of-means, is efficient and circumvents the need for full quantum
descriptions.
We consider an n-qubit quantum system with state ρ in a 2n-dimensional
space. The extraction of information from ρ is performed via a series of
measurements with random unitaries U from a predefined set, creating a
classical snapshot of the quantum state. The classical description of each
outcome is stored, and the mapping to a classical snapshot is treated as a
quantum channel:

E
[
U†|b⟩⟨b|U

]
= M(ρ) ⇒ ρ = E

[
M−1

(
U†|b⟩⟨b|U

)]
. (2.12)

The quantum channel M arises from averaging over unitary transforma-
tions and measurement outcomes. Despite M−1 not being physically real-
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10 Preliminaries

izable, it is used classically to obtain snapshots:

ρ̂ = M−1(U†|b̂⟩⟨b̂|U), (2.13)

yielding a classical snapshot from a single measurement. These snapshots
collectively form the classical shadow:

S(ρ; N) = {ρ̂1, . . . , ρ̂N}, (2.14)

allowing for efficient property prediction. This framework is compatible
with various measurement strategies, such as Clifford and Pauli-based
measurements. For random n-qubit Clifford circuits, we need n2/log(n)
entangling gates to sample from n-qubit Clifford unitaries[4], and the cor-
responding quantum channel is M−1

n (X) = (2n + 1)X − I. For random
Pauli basis, which is easier to implement in various platforms, and the
corresponding quantum channel is M−1

P =
⊗n

i=1 M−1
1 .

[Shadow Tomography Theorem] Given an unknown D-dimensional
quantum mixed state ρ, and a set of 2-outcome measurements {Ei}M

i=1,
shadow tomography enables us to estimate the probabilities Tr(Eiρ) within
an error margin ε, succeeding with probability 1 − δ. This can be achieved
using*

k = Õ

(
log1/δ

ε4 · log4 M · log D

)
copies of ρ, with Õ encompassing polylogarithmic factors in M, D, and
1/ε.

This theorem showcases the efficiency of shadow tomography, reveal-
ing that a logarithmic number of measurements relative to the system size
is sufficient. It determines the computational complexity of predicting a
quantum system’s properties and establishes the feasibility of such pre-
dictions using a surprisingly small number of quantum state copies. This
makes shadow tomography a potent tool in quantum computing, provid-
ing a pragmatic approach to the study of quantum systems.

2.2.2 Applications for Shadow Tomography

Quantum Fidelity Estimation

Classical shadows allow for efficient fidelity estimation between an exper-
imental n-qubit state and a target state, improving upon traditional meth-
ods by requiring significantly fewer samples. This approach is scalable
and can estimate multiple fidelities simultaneously.

*the provement can be seen in [5]

10
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2.3 Generative Models 11

Entanglement Verification

Fidelity measurements can also act as entanglement witnesses[17]. Clas-
sical shadows enable simultaneous verification of multiple entanglement
witnesses, providing an efficient method for confirming entanglement in
bipartite states.

Predicting Expectation Values

Classical shadows are instrumental for calculating expectation values of
local observables in quantum systems, particularly in near-term appli-
cations. They offer a highly efficient method for evaluating many-body
Hamiltonians, as an alternative to the repetitive direct measurement ap-
proach. This has significant implications for fields such as quantum chem-
istry and lattice gauge theory[18, 19].

Classical shadows prove advantageous for local observables but en-
counter challenges when applied to global observables due to scaling is-
sues. Consider a non-local observable in a spin chain, characterized by the
Pauli expectation value:

⟨Pi1 ⊗ · · · ⊗ Pin⟩ρ = tr(O1ρ), (2.15)

where the observables’ Hilbert-Schmidt norm is given by:

tr(O2
1) = 2n, (2.16)

and the locality parameter k is equal to n. For such non-local observables,
a classical shadow may require an exponentially large number of samples
for accurate prediction. In contrast, direct measurements can achieve sim-
ilar accuracy with only:

O
(

1
ε2

)
(2.17)

copies of the state ρ, where ε denotes the desired precision.

2.3 Generative Models

To approximate the probability distributions associated with randomized
measurements and their outcomes, we employ generative models. This
is informed by the work "Explainable Representation Learning of Small
Quantum States" [1], which leverages the encoder of β-VAE as a method
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12 Preliminaries

for information scrambling to visualize the latent space of quantum en-
tanglement. Complementarily, "Observing SchrÃ¶dingerâs Cat with Ar-
tificial Intelligence: Emergent Classicality from Information Bottleneck"
[6] utilizes a transformer architecture to learn from classical data, subse-
quently reconstructing the quantum state from numerous random mea-
surements. In our work, we specifically incorporate the β-VAE and Trans-
former as our chosen models.

2.3.1 VAE and β-VAE

A Variational Autoencoder (VAE) is a powerful generative model that has
gained considerable attention in the field of deep learning and artificial
intelligence. VAEs are particularly noted for their ability to generate new
data instances that resemble a given dataset. They find applications in a
wide range of tasks, including image generation, and anomaly detection,
and as a tool for understanding and visualizing complex data distribu-
tions.

The foundational concept of a VAE was introduced in two seminal
papers: "Auto-Encoding Variational Bayes" by Diederik P. Kingma and
Max Welling[20], and "Stochastic Backpropagation and Approximate In-
ference in Deep Generative Models" by Danilo Jimenez Rezende, Shakir
Mohamed, and Daan Wierstra[21]. Both papers were published in 2014
and laid the groundwork for the development and understanding of VAEs.

VAEs are a type of autoencoder, a neural network architecture used
for unsupervised learning. However, unlike traditional autoencoders that
aim to learn a fixed representation of the input data, VAEs introduce a
probabilistic twist. They encode input data into a distribution in a latent
space, rather than a single point. This process involves learning the pa-
rameters of the distribution - typically the mean and variance. The VAE
then samples from this distribution to generate new data points.

12
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2.3 Generative Models 13

Figure 2.3: A diagrammatic representation of a Variational Autoencoder (VAE).
The left section illustrates the Encoder where the input image x is compressed
into a lower-dimensional latent space Z characterized by the learned mean µz|x
and standard deviation Σz|x. In the central section, the latent space Z serves as
a bottleneck, encapsulating the essential information required for reconstruction.
The right section depicts the Decoder, which reconstructs the original input into
the output image x̂ using the sampled latent variables. The entire process aims
to minimize a composite loss function comprised of Reconstruction Loss and the
Kullback-Leibler (KL) Divergence, ensuring a balance between accurate recon-
struction and a well-formed latent distribution.

The architecture of a VAE consists of two main components:

• Encoder: The encoder network transforms the input data into a la-
tent space representation, approximating the posterior distribution
of latent variables conditional on the input.

• Decoder: The decoder network reconstructs the input data from the
sampled latent variables, aiming to capture the conditional probabil-
ity of the data given the latent representation.

The training of a VAE involves optimizing the variational lower bound,
or evidence lower bound (ELBO), which balances two aspects: the qual-
ity of the reconstruction (how well the output matches the input) and
the regularity of the learned latent space (typically enforced through a
Kullback−Leibler divergence term).

VAEs stand out for their ability to generate new samples that are both
diverse and similar to the original data, making them particularly useful in
fields like image generation where they can produce new, plausible images
that do not appear in the training set.
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14 Preliminaries

The β-Variational Autoencoder (β-VAE), an extension of the Variational
Autoencoder (VAE) proposed by Kingma and Welling [20], introduces a
regularization hyperparameter, β, into the VAE framework [22]. This hy-
per parameter plays a pivotal role in learning disentangled representa-
tions in the latent space. Disentanglement in this context refers to the sep-
aration of the distinct, interpretable factors of variation in the data.

The architecture of a β-VAE is similar to that of a standard VAE, com-
prising an encoder and a decoder. The encoder in a β-VAE, parameterized
by ϕ, maps the input data x to a latent space representation characterized
by two parameters: the mean µ and the standard deviation σ, which are
used to define a Gaussian distribution over the latent variables z:

qϕ(z|x) = N (z; µϕ(x), σϕ(x)2 I), (2.18)

where µϕ(x) and σϕ(x) are outputs from the encoder network, and I is
the identity matrix. The specific expression for the Gaussian distribution
of the latent space in a β-VAE is given by:

qϕ(z|x) =
1√

(2π)k|Σϕ(x)|
exp

(
−1

2
(z − µϕ(x))⊤Σϕ(x)−1(z − µϕ(x))

)
,

(2.19)
where µϕ(x) is the mean vector, Σϕ(x) = σϕ(x)2 I is the covariance ma-

trix, and k is the dimensionality of the latent space vector z.
The decoder, parameterized by θ, then attempts to reconstruct the in-

put data from the latent representation:

pθ(x|z) = Decoderθ(z). (2.20)

The loss function of the β-VAE, L(x; ϕ, θ), comprises two terms: the
reconstruction loss LR and a regularization term LKL, the latter being
weighted by the hyperparameter β:

L(x; ϕ, θ) = LR(x; ϕ, θ) + β · LKL(z; ϕ). (2.21)

Here, LR(x; ϕ, θ) is typically a mean squared error or binary cross-
entropy between the input x and its reconstruction. The term LKL(z; ϕ)
is the Kullback-Leibler divergence, given by:

LKL(z; ϕ) = DKL(qϕ(z|x)∥p(z)), (2.22)

(2.23)

14

Version of January 30, 2024– Created January 30, 2024 - 17:52



2.3 Generative Models 15

which measures the difference between the encoder’s distribution qϕ(z|x)
and the prior distribution p(z), typically assumed to be a standard Gaus-
sian distribution N (0, 1). When we assume both qϕ(z|x) and p(z) are mul-
tivariate Gaussian distributions, the Kullback-Leibler divergence can be
expressed in a closed form. The encoder’s distribution is given by a mul-
tivariate Gaussian N (µϕ(x), σϕ(x)2 I), and the prior distribution is often
chosen as a standard multivariate Gaussian N (0, I).

Given these distributions, the KL divergence is calculated using the
formula:

DKL(qϕ(z|x)∥p(z)) =
1
2

(
tr(σϕ(x)2) + µϕ(x)⊤µϕ(x)− k − log

∣∣∣σϕ(x)2 I
∣∣∣) ,

(2.24)
where tr denotes the trace of a matrix, ⊤ indicates the transpose, k is

the dimensionality of the latent variable space, and | · | denotes the deter-
minant of the matrix. This expression quantifies the difference between
the encoder’s learned distribution of the latent variables z given x, and
the prior distribution of z. This divergence acts as a regularizer, encour-
aging the encoder to learn distributions of latent variables that are close to
the prior, which promotes the learning of independent and interpretable
latent representations.

2.3.2 Transformer

The Transformer architecture, introduced by Vaswani et al. [23], forms the
structural foundation of our model. Renowned for its self-attention mech-
anism, the Transformer allows for differential weighting of input data el-
ements, enhancing the model’s interpretative power. In contrast to con-
ventional sequence-to-sequence models that process data sequentially, our
implementation of the Transformer processes inputs in parallel, leading to
substantial gains in computational efficiency.

As illustrated in Figure 2.4, our model’s encoder captures the input se-
quence into a series of continuous representations. These are then utilized
by the decoder to synthesize an output sequence. Both the encoder and
decoder consist of a series of N identical layers, each designed to maintain
the integrity of sequential data.
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16 Preliminaries

Figure 2.4: The Transformer architecture as implemented in our model. The en-
coder processes the input sequence in parallel, while the decoder synthesizes the
output sequence, both employing self-attention and feedforward layers.

In our design, each encoder layer, instantiated by the EncoderLayer
class, integrates a multi-head self-attention mechanism with a position-
wise fully connected feed-forward network. This configuration enables
the simultaneous consideration of the entire input sequence, thereby pre-
serving the contextual relationships inherent within the data. The DecoderLayer
mirrors this approach while additionally incorporating cross-attention with
the encoder’s outputs, thus harmonizing the information flow between in-
put and output sequences.

16
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2.3 Generative Models 17

To ensure stability during training, we incorporate residual connec-
tions followed by layer normalization within each layer, a strategy real-
ized through the torch.nn.LayerNorm module. This approach not only
aids in training deeper networks but also enhances the model’s ability to
generalize from training data.

The optimization of our model is centred around a composite loss func-
tion, characteristic of the Transformer-based VAE. This function amalga-
mates a reconstruction loss component with a Kullback−Leibler diver-
gence term, fostering a latent space that adheres to a predefined distribu-
tion while also promoting accurate reconstruction of the input sequence.
The Transformer class encapsulates this optimization process, with the
Randomizer module effectuating the reparameterization step, thereby im-
posing an information bottleneck vital for the extraction of salient features.

Through the integration of the Transformer architecture within the VAE
framework, our model emerges as a potent tool for generative modelling,
adept at learning and replicating complex data patterns. To have a deeper
understanding of the model we use for the whole work, the hyper-parameters
which are possible to be tuned are listed in the following table: 2.1

Hyperparameter Description
vocab_size Number of tokens in the vocabulary
outtk_size Number of tokens valid for output
n_tokens_max Maximum number of tokens
n_layers Number of layers in the transformer
embed_dim Dimensionality of the embeddings
num_heads Number of attention heads
dropout Probability of dropout after applying the MLP
symmetric Boolean to respect permutation symmetry

Table 2.1: Transformers’ Hyper-parameters in implementation of Classical
Shadow Transformer
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Chapter 3
Implementing the Classical
shadow Transformer

To adhere to the principles of Shadow Tomography and integrate them
with Machine Learning methodologies, we use the generative model termed
the "Classical Shadow Transformer." This model is specifically designed to
evaluate the efficacy of reconstructing quantum states from classical data,
thereby establishing a benchmark for the capacity of artificial intelligence
to understand and interpret quantum phenomena. Our training regimen
incorporates three distinct yet archetypal quantum states: the GHZ state,
the W state, and a separable state (All-Zero state), to probe the intricate re-
lationship between entangled and non-entangled states, with a particular
focus on the variances between maximally entangled states (W-like and
GHZ-like).

Our research is driven by several pivotal inquiries:

• How proficiently can an artificial intelligence agent assimilate knowl-
edge from a quantum environment and effectively translate this ’quan-
tum language’ into a comprehensible format within the constraints
of information processing limitations?

• What delineates the threshold between the quantum and classical
realms, particularly in the context of system size and information
processing capabilities?

• From the vantage point of language modelling, what are the dis-
cernible distinctions between entangled and non-entangled states,
and furthermore, what are the specific differences between various
forms of maximal entanglement (W-like versus GHZ-like)?
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20 Implementing the Classical shadow Transformer

Figure 3.1: A schema for the classical shadow. The quantum Circuits were
built up to prepare the quantum state(we select GHZ-state, W-state and a non-
entangled state(ALL zero-state). Randomized Pauli Measurements was applied
to the pre-prepared stated to generate the shadow data-set (x, y). Then the gen-
erative model, classical shadow transformer(transformer-based β -VAE architec-
ture) is trained to learn the distribution of p(y|x). As a result, we follow the
specific quantum channel M for Random Pauli Measurement to reconstruct the
original state and extract related quantum information from classical data. [6]

These questions aim to deepen our understanding of the interplay be-
tween quantum mechanics and artificial intelligence, shedding light on
the potential and limitations of AI in interpreting and utilizing quantum
information.

3.1 State Preparation and Measurement Simula-
tion

The working mechanism of the Classical Shadow Transformer (CST) is
elaborated in Figure3.1. The initial phase of this procedure involves the
construction of a quantum circuit to prepare three specific types of quan-
tum states: the GHZ state, the W state, and the Zero state. For the imple-
mentation of our experiment, we employ the qiskit package, a renowned
quantum computing software development framework. The detailed cir-
cuit structures for each state are outlined as follows:

3.1.1 Zero-state and GHZ state

The Zero state, or a separable state, is the simplest among the three. This
circuit typically involves initializing all qubits in their ground state |0⟩ and

20
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3.1 State Preparation and Measurement Simulation 21

does not require entangling operations.

|Zero⟩ = |0⟩⊗N

The Greenberger-Horne-Zeilinger (GHZ) state represents a prominent ex-
ample of a multi-partite entangled state in quantum computing and quan-
tum information theory. It is particularly notable for its applications in
tests of quantum nonlocality and quantum teleportation. A GHZ state of
N qubits is defined as:

|GHZ⟩ = 1√
2

(
|0⟩⊗N + |1⟩⊗N

)
, (3.1)

where |0⟩⊗N and |1⟩⊗N denote the tensor product of N qubits all in
the state |0⟩ or |1⟩, respectively. This state exhibits maximal entanglement
among the qubits, making it a subject of extensive study in the field of
quantum mechanics [24].

Figure 3.2: An example diagram for a 5-qubit GHZ-state Circuit

Creating a GHZ (Greenberger-Horne-Zeilinger) state in a quantum cir-
cuit is a fundamental operation in quantum computing, crucial for demon-
strating quantum entanglement and quantum teleportation. The proce-
dure begins with initializing qubits in the ground state, |0⟩. A Hadamard
gate is then applied to the first qubit to generate a superposition of |0⟩
and |1⟩. This is followed by applying Controlled-NOT (CNOT) gates be-
tween the first qubit and the subsequent ones. For instance, in a five-qubit
system, a CNOT gate is applied from the first to the other 4 qubit, as the
Figure 3.2shows. These operations entangle the qubits, resulting in the

Version of January 30, 2024– Created January 30, 2024 - 17:52

21



22 Implementing the Classical shadow Transformer

GHZ state, 1√
2
(|000⟩+ |111⟩), which is a superposition of all qubits being

either in the 0 or 1 state. This state exemplifies the essence of quantum
entanglement.

3.1.2 W-state

The W state is another important class of entangled states in quantum
computing, distinct from the GHZ state. It is particularly notable for its
robustness against qubit loss, retaining entanglement even when a part of
the system is discarded. A W state for a system of N qubits is defined as:

|W⟩ = 1√
N
(|100 . . . 0⟩+ |010 . . . 0⟩+ . . . + |000 . . . 1⟩), (3.2)

where each term in the superposition involves exactly one qubit in the
state |1⟩ and the rest in the state |0⟩. This state is a symmetric superpo-
sition of all possible states with exactly one qubit in the |1⟩ state and the
rest in the |0⟩ state, making it fundamentally different from the GHZ state.
The W state has been studied extensively for its applications in quantum
information processes [25].

The circuit designed to generate a n-qubit W-state is more complex
than the GHZ state circuit, involving a combination of Hadamard gates,
CNOT gates, and other quantum gates to achieve the required superpo-
sition and entanglement. The paper "Deterministic construction of arbi-
trary W states with quadratically increasing number of two-qubit gates"
[26] presents a method for creating W states in a quantum system. The
construction of W states is achieved through quantum circuits that use a
specific number of two-qubit gates, with the number of gates increasing
quadratically with the number of qubits in the system.

To implement the algorithm of constructing a quantum circuit that can
generate a n-qubit W-state, referenced by the paper by Firat Diker in 2016
[26]. We First need to define a F Gate.

The F Gate is a kind of control Operation which involves a control qubit
qk and target qubit qk+1, here k represents the specific wire the qubit is
located and we can denote such an operation qk apply to qk+1 as Fk,k+1.
The equivalent combined Operation of F can be regarded as the following:

• First a rotation round Y-axis Ry(−θk) applied on qk+1

• Then a controlled Z-gate cZ in any direction between the two qubits
qk and qk+1

• Finally a rotation round Y-axis Ry(θk) applied on qk+1

22
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3.1 State Preparation and Measurement Simulation 23

The matrix representations of a Ry(θ) is :

Ry(θ) =

(
cos( θ

2) − sin( θ
2)

sin( θ
2) cos( θ

2)

)
(3.3)

And CZ (control-Z) gate is given as:

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


The value of θk depends on n and k following the relationship:

θk = arccos

(√
1

n − k + 1

)
where n represents the number of qubits for the system size and k rep-

resents the order of the wire since the lowest significant bit (LSB). To have
a better understanding, the F gate has the same function as the circuit in
Figure3.3

Figure 3.3: equvivalent diagram for a F01 Gate for 2-qubit W-state

We have already defined a Fk,k+1 gate for an n-qubit circuit between
the wires k and k + 1. The procedure to obtain the circuit for an n-qubit
W-state is as follows:

1. Initially, the qubits are set in the state |φ0⟩ = |10 . . . 0⟩.
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24 Implementing the Classical shadow Transformer

2. This is followed by the application of n − 1 successive F gates:

|φ1⟩ = Fn−1, n ... Fk, k+1 ... F2, 3 F1, 2 |φ0⟩ =

√
1
n
( |10...0⟩ + |11...0⟩ + ...+ |11...1⟩ )

(3.4)

3. Then, n − 1 CNOT gates are applied, leading to the final circuit:

|Wn⟩ = CNOTn,n−1CNOTn−1,n−2 . . . CNOTk,k−1 . . . CNOT2,1|φ1⟩

Takes a circuit for a 4-qubit W-state for instance, follow the rules we intro-
duce, just as Figure 3.4 shows. It is composed of 3 F gates and 5 CNOT
gates. The entire circuit corresponds to:

|W4⟩ = cNOT4,3 cNOT3,2 cNOT2,1 F3,4 F2,3 F1,2 |φ0⟩

Figure 3.4: The circuit used for creating a four-qubit W state.

Figure 3.5 shows a qiskit version of visualization of the same circuit
only in the Rotation Y(Ry)gate, Control Z(CZ) gate and Hadamard (H)
gate

Figure 3.5: qiskit visualization for a four-qubit W state circuit

24
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3.2 Classical Shadow Data Structure 25

3.1.3 Measurement

In a quantum circuit, measurements in the Pauli bases can be performed
as follows:

• Pauli X Basis: Apply a Hadamard gate H before measurement:

Measure in X = H

• Pauli Y Basis: Apply a sequence of S† (S-dagger) and H gates:

Measure in Y = S†H

• Pauli Z Basis: Measure directly in the standard computational basis
(Z basis):

Measure in Z

These operations transform the state to the Z basis, where a standard
measurement can be performed. Figure3.6 shows the diagram of a quan-
tum circuit for Pauli XYZ measurement

Figure 3.6: Quantum circuit used to transform Pauli Basis to Z basis.The order
from left to right is corresponding to Pauli X,Y,Z. The plot is cited from "Quantum
Algorithm Implementations for Beginners"[27]

3.2 Classical Shadow Data Structure

After we can generate the quantum circuit for corresponding state and
their measurements, we now have the ability to get the data-set (x, y),
where x represents the Pauli list of observables x ∈ {X, Y, Z}×N and y
represents the measurement outcomes of corresponding measurement for
each qubit y ∈ {±1}×N.
First, we need to derive the probability distribution of outcomes y when
observable x is given, denoted as P(y|X). According to the reference [28],
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26 Implementing the Classical shadow Transformer

the quantum-mechanical state of any two-level system can be expressed
as a 2 × 2 density matrix:

ρ̂ =
1
2
(
1 + xσ̂x + yσ̂y + zσ̂z

)
=

1
2
(1 + r · σ̂) (3.5)

where r = (x, y, z) ∈ R3 and σ̂ = (σ̂x, σ̂y, σ̂z). The Bloch vector only
represents a physical state if r2 < 1 and it represents a pure state when
r2 = 1. Consider the relationship of Kronecker product for Pauli operators:

tr(σα) = 2δ0α

tr(σασβ) = 2δαβ

The identity matrix will have a trace of 2 while the identity has a trace of 0,
the product of any two different Pauli matrices is also 0, and the product
of any Pauli matrix with itself is 2. Thus, we can derive that:

⟨σx⟩ = tr
(

1
2
(I + rxσx + ryσy + rzσz)σx

)
=

1
2

tr(Iσx + rxσxσx + ryσyσx + rzσzσx)

=
1
2
(
tr(Iσx) + rxtr(σxσx) + rytr(σyσx) + rztr(σzσx)

)
=

1
2
(rx · 2) = rx

According to Born’s rules, the probability that the result of the measure-
ment lies in a measurable set M for a certain projection-valued measure Q
is given by ⟨ψ|Q(M)|ψ⟩. Thus, we can derive that the probability distribu-
tion P(y|x) for the outcomes of a certain Pauli measurement x ∈ {X, Y, Z}
is given by:

p(y|x) =
〈

ψ

∣∣∣∣⊗
i

(
1 + yi x̂i

2

) ∣∣∣∣ψ
〉

(3.6)

We’ve designed a classical simulator capable of generating pairs of
sequences (x, y) according to the probability distribution P(y|x) when
prompted. This essentially replicates the cyclical procedure of generating
the quantum state, allowing it to undergo decoherence, and then recording
the classical data it imparts to the surroundings. Instances of (x, y) pairs
are accessible in the Supplementary Information. These pairs, termed the
classical shadows of the quantum state, represent stochastic projections of
the quantum state on a random measurement basis, similar to how a three-
dimensional object casts a shadow onto a two-dimensional plane. The

26
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3.3 Train The Generative Model 27

method of classical shadow tomography provides a structured approach
for inferring the quantum state from its classical shadows through clas-
sical post-processing. Given the random Pauli measurement framework
described earlier[29][30], the state reconstruction is denoted by:

ρψ = E(x,y)∼pdat

⊗
i

(
1 + 3yixi

2

)
. (3.7)

where pdat(x, y) represent the certain probability a (x,y) pair may occur.
this equation illustrates that with ample classical information regarding
multiple instances of a quantum state, one can theoretically reconstruct
the complete quantum entity with precision.

3.3 Train The Generative Model

The first 2 sections above introduce how a classical shadow tomography
works. First, we need to initialize the system to prepare the required state
and randomly sample sufficient Paulilist as our measurements to get the
classical data pair (x,y). After that, with the equation3.6, and equation
3.7. We can reconstruct the original quantum state by purely classical data
(x,y) and underlying distribution pdat(x, y) . To integrate shadow tomog-
raphy with artificial intelligence, our goal is to train a generative model
that approximates the distribution pdat(x, y). This approach aims to ex-
tract relevant information from the quantum state, a process we refer to as
the ’Classical Shadow Transformer’."

In formulating the probabilistic model pmdl(x, y) = pθ(y|x)p(x), we
concentrate on the conditional distribution p(y|x) parameterized by θ.
Given that p(x) = 3−N is a simple uniform distribution, it necessitates no
further modelling. Envisioning the observable sequence x as a question,
and the measurement outcome sequence y as its answer from a quantum
experiment, the modelling of p(y|x) can be likened to a conversation com-
pletion task in natural language processing. This analogy indicates that
a generative language model would be an intuitive approach. Once ade-
quately trained, the language model is capable of replacing the quantum
experiment to provide responses about the quantum state |ψ⟩, effectively
“speaking” the language of quantum mechanics. The learning process
emulates how an intelligent agent acquires knowledge by observing its
surroundings. The transformer architecture, introduced in Chapter 2, is
notably suited for modelling p(y|x), with a slight modification in its latent
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28 Implementing the Classical shadow Transformer

space to include a variational information bottleneck, derived from the β-
VAE model, which enables tuning of the model’s information processing
capacity for our subsequent research.

Our Classical Shadow Transformer consists of two probabilistic mod-
els: an encoder pθ(z|x) that deduces latent variables z from the input se-
quence x, and a decoder pθ(y|z) that constructs the output sequence y
predicated on z. Hence, we define

pθ(y|x) = ∑
z

pθ(y|z)pθ(z|x). (3.8)

A thorough explication of the architecture is available in Chapter 2.3. The
objective is to converge p(y|x) in Eq3.8 through the optimization of the
model parameters θ. Training the model involves minimizing the β-VAE
loss function

L = E(x,y)∼pdat
[L(x, y)] (3.9)

on the training dataset composed of classical shadows from the quantum
state, where the loss function for each shadow (x, y) is

L(x, y) = −Ez∼pθ(z|x)[log pθ(y|z)] + βDKL[pθ(z|x)∥pN(z)]. (3.10)

The first term corresponds to the negative log-likelihood, and the sec-
ond term is a Kullback-Leibler (KL) divergence regularization, with pN(z)
symbolizing the normal distribution. The hyperparameter β allows for the
adjustment of the variational bottleneck within the transformer. A larger
β coerces pθ(z|x) to resemble pN(z) irrespective of x, thereby constraining
the model’s aptitude to encode details about x within the latent variables
z. Thus, an increment in β enforces a more robust information bottleneck,
concomitantly reducing the model’s information processing capability.

In this chapter, we introduce how to build up our machine learning
model "classical shadow transformer" and why we select certain tricks
and architecture. In the following chapter, we will test how well it works
and compare the model performance for different quantum states(GHZ,
W, Separable) to analyse different extents of entanglement from the per-
spective of states’ Learnability

28
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Chapter 4
Representation Learning for
Quantum Entanglement

In the preceding chapter, we laid the groundwork for implementing the
Classical Shadow Transformer by delving into essential concepts of quan-
tum information. This foundation included a detailed examination of the
generative architecture employed in our approach. We paid special atten-
tion to the process of reconstructing a density matrix via Pauli measure-
ments, a critical aspect of shadow tomography. Furthermore, we explored
the interaction between the Classical Shadow dataset and the transformer,
highlighting how these elements integrate to achieve our objectives in
quantum information processing. In this chapter, we delve into the exper-
imental results obtained for three distinct quantum states: GHZ, W, and
Zero. These states are chosen for their varying extents and types of en-
tanglement, providing a comprehensive basis for analysis. Our primary
objective is to evaluate the effectiveness of our reconstruction method.
This assessment considers various constraints, including the limitations
imposed by the system size, the information bottleneck, and the structural
design of our model.

We will conduct a comparative analysis of the results to uncover spe-
cific learnability attributes associated with each of these quantum states.
This comparison aims to identify any unique or shared properties that
emerge from the learning process applied to these states.

Towards the end of the chapter, we engage in a thorough discussion
about the observed differences among these states. Our goal is to of-
fer plausible explanations for these variations, thereby contributing to a
deeper understanding of their underlying characteristics.

This exploration is pivotal as it attempts to unveil the secrets of the
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30 Representation Learning for Quantum Entanglement

quantum realm through classical data and measurements. By interpreting
these findings through the lens of what we term a "quantum large lan-
guage model," we endeavour to decipher the complex language of quan-
tum mechanics using classical methodologies. This approach not only
bridges the gap between classical and quantum information theory but
also paves the way for future advancements in quantum computing and
information processing.

4.1 Model performance

We prepare three distinct quantum states: GHZ, W, and the Zero state. For
each of these states, a dedicated Classical Shadow Transformer is trained.
The training dataset consists of 400 groups of classical shadow data(x, y),
each tailored for this purpose.

Each dataset comprises two main components:

1. PauliList: This serves as the measurement basisx ∈ {X, Y, Z}×N,
containing 200 different Pauli operators, essential for acquiring a di-
verse range of measurement outcomes.

2. Measurement Outcomes: For each Pauli operator, the measurement
outcomesy ∈ {±1}×N for a specific qubit are recorded.

The training process is designed to be comprehensive and adaptive,
taking into account:

• The system size n, denoted by the number of qubits(0 < n < 6).

• Different levels of information processing strength, parameterized
by β in the encoder of our model(−6 < log β < 6).

• The dimensionality of the latent space within the Classical Shadow
Transformer, adjusted as a key architectural parameter
(dim ∈ [128, 64, 32, 16]).

For each combination of system size, β level, and latent space dimen-
sion, the model is trained separately. This approach allows for a precise
assessment of the impact of each variable on the model’s performance and
the optimization of the model architecture for each specific scenario. We
record the loss history for each model, and we firstly take an over look at
the learning curve for 3 states as Figure 4.1 and Figure 4.2

Observing the loss history from the Classical Shadow Transformer, we
note that upon convergence, the final loss values are ordered as LW >

30
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4.1 Model performance 31

Figure 4.1: The loss history for 3 states in the last 200 training epoch, the model
parameters: n-qubits = 4, log β = −6, dim for latent space = 64

Figure 4.2: The loss history for 3 states in all 4000 training epochs, the model
parameters: n-qubits = 4,log β = −6 dim for latent space = 64, we apply the
Moving Average Filter to the curve and window_size = 15
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32 Representation Learning for Quantum Entanglement

Lghz > LZero. This suggests that the transformer achieves better learn-
ing performance with the non-entangled Zero state than with the entan-
gled GHZ and W states. Furthermore, it appears that the model finds the
W state more challenging to learn and reconstruct compared to the GHZ
state.

Besides, we can compare the learning rates of the three quantum states:
GHZ, W, and Zero state. In the early stages of training, the loss for all states
drops sharply, indicating that the model is rapidly learning and gaining an
initial understanding of each quantum state. Specifically, in Figure 4.2, the
GHZ and Zero states exhibit a quicker decline in loss, showing a higher
learning rate, while the W state’s loss decreases more slowly, suggesting
that the model may require more time to learn this state. In the later stages
of training, the losses for all three states stabilize, but the loss for the W
state remains relatively higher, indicating that despite the slowdown in
learning rate, the model’s final performance on learning the W state is not
as effective as for the other two states.

To have a better visualization of the model’s performance. We can also
draw the phase diagram for the three states in terms of Quantum fidelity
(Figure4.3) and Von Neumann entropy(Figure4.4), they are defined as fol-
lows:

Quantum Fidelity (F) between two quantum states represented by den-
sity matrices ρ and σ is defined as:

F(ρ, σ) =

(
Tr
√√

ρσ
√

ρ

)2

= ⟨ψ|ρ|ψ⟩

ρ here stands for the density matrix reconstructed by our CST(classical
shadow transformer) and ψ is the state vector for the original state. The
F ranges from 0 to 1, with 1 indicating identical states and 0 indicating
orthogonal states.

Von Neumann Entropy (S) for a quantum state with density matrix ρ is
defined as:

S(ρ) = −Tr(ρ log2 ρ)

This entropy measures the disorder or uncertainty of the quantum state,
with higher values indicating more disorder and potentially greater en-
tanglement.

32
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Figure 4.3: Dependence of Quantum Fidelity on Information Bottleneck and Sys-
tem Size for GHZ, W, and Zero States. The x-axis quantifies the information bot-
tleneck strength with log2 β ranging from -6 to 6, where a higher value indicates a
more pronounced limitation on information processing. The y-axis corresponds
to the number of qubits, n, with the CST trained on systems such that 0 < n < 6.
Throughout, the generative model’s dimension is held constant at dim = 64.
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Figure 4.4: Dependence of Von Neumann Entropy on Information Bottleneck and
System Size for different states. The x-axis quantifies the information bottleneck
strength with log2 β ranging from -6 to 6, where a higher value indicates a more
pronounced limitation on information processing. The y-axis corresponds to the
number of qubits, n, with the CST trained on systems such that 0 < n < 6.
Throughout, the generative model’s dimensionality is held constant at dim = 64.
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4.1 Model performance 35

Firstly, from a global perspective, an overarching trend can be observed
across the GHZ, W, and Zero states: as the system size increases and the
information processing capability decreases, there is a general decline in
fidelity and an increase in entropy. This pattern can be interpreted as a
gradual loss of our decoding capabilities of the quantum world. This ob-
servation might provide an insight that, although the principles of quan-
tum mechanics are typically observable at the microscopic level and elu-
sive at the macroscopic scale, the limitations are not solely due to the scale
of observation. Our capacity to decode information also plays a crucial
role. Both factors contribute to the limitations of our understanding of
the language of the quantum world. It may be posited that if we possess
sufficiently advanced quantum information processing and decoding ca-
pabilities, we could gain a better understanding of quantum phenomena
on a larger scale, potentially blurring the boundary between quantum and
classical realms.

Furthermore, a horizontal comparison of the measurement results for
the three states reveals that the Zero state exhibits the best reconstruction
outcomes. For most conditions where log2 β < 2, regardless of system
size, the Zero state maintains a fidelity close to 1 and a Von Neumann
entropy approaching 0. This indicates that our Classical Shadow Trans-
former (CST) has nearly perfectly learned the characteristics of the Zero
state, fully decoding its quantum information. However, for the GHZ and
W states, we observe a heightened sensitivity to both the system size and
the information bottleneck, making them more susceptible to these fac-
tors’ limitations. These findings are consistent with those observed in the
loss history, which may be attributable to the more complex information
structures of entangled states compared to non-entangled states. Indeed,
entangled states exhibit more complex and unpredictable probability dis-
tributions in measurement outcomes. Consequently, the degree of entan-
glement appears to correlate positively with the difficulty of performing
state tomography via CST in terms of learnability. Beyond the distinction
between entangled and non-entangled states, we are more concerned with
the differences between various types of entangled states, such as W and
GHZ states. In the following section, we will attempt to discuss the dif-
ferences between these two so-called maximally entangled states and en-
deavour to provide explanations. Furthermore, we will explore the data
structure within the CST’s latent space to discern what characteristics can
be revealed between different types of quantum states and what conclu-
sions can be drawn from these observations.
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36 Representation Learning for Quantum Entanglement

4.2 Representation learning and latent dimension
analysis

If we look more thoroughly at the phase diagram of Figure4.3 and 4.4. We
can observe subtle yet discernible distinctions in the phase diagrams be-
tween the W and GHZ states. Specifically, as the system size increases (n
> 2), the W state consistently exhibits lower fidelity and higher entropy
across various values of β compared to the GHZ state, indicating a greater
discrepancy between the reconstructed state and the true state. This sug-
gests, to a certain degree, that the W state presents a higher learning diffi-
culty and greater informational complexity than the GHZ state. However,
here we ignore one important hyper-parameter, the dimension of the la-
tent space of the transformer. To have a further understanding, we also
take a look of the model’s performance in terms of Fidelity and Entropy
under the effect of different dimensions of latent space as Figure 4.5 and
Figure4.6 show

Figure 4.5: Fidelity heatmap for reconstructed W-state from CST in higher latent
dimension(the left one is 256 and the right one is 128)

Figure 4.6: Fidelity heatmap for reconstructed ghz-state from CST in higher latent
dimension(the left one is 256 and the right one is 128)

We discovered that as the dimension of the latent space increases, the
model’s performance in reconstructing the quantum density matrix of W-
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4.2 Representation learning and latent dimension analysis 37

states surpasses that of GHZ-states. This implies that machine learning
models with more complex structures and a greater number of parame-
ters are seemingly more adept at learning W-states than GHZ-states. This
finding is in stark contrast to conclusions drawn from models with smaller
latent spaces and fewer parameters. It suggests that a model’s ability to
handle the complexity of quantum states varies with its structural and
parametric complexity, highlighting a nuanced aspect of quantum state
machine learning.

Given our experiments and analysis, the latent space plays a crucial
role in our Classical Shadow Transformer (CST). In related research, at-
tempts have been made to use the shape of latent space data as an entan-
glement classifier[31], to learn global quantum properties[2], or to assign
interpretability to the shape of the latent space[1]. Consequently, we also
focus on the latent space of our CST. It is essential to clarify that our CST
learns from the Classical Shadow dataset (x, y), which represents the joint
probability distribution of the observation basis and the results for a spe-
cific quantum state. Thus, the parameters of our different CSTs should
encode the probability characteristics of the quantum state under Pauli
measurements.

Specifically, we first divide the model into three regions: ‘quantum’,
‘classical’, and ‘thermal’, corresponding to different information processing
capabilities, with log2 β = [-5, -1, 6]. Since the model learns the proba-
bility distribution of the observed results under a given Pauli measure-
ment basis, for the 5-qubit case, we generate {x, y, z}×5, which amounts to
35 = 243 combinations of all Pauli measurement bases. We observe the be-
haviour of the model’s latent space. To project it onto a two-dimensional
plane, we employ the T-SNE(t-distributed Stochastic Neighbor Embed-
ding) method for dimensionality reduction.

To have a comparison both on the inherent information processing abil-
ity of the model(different β value) and the states the model is trained on,
we draw the plot as Figure4.7, which show 3 different regions (‘quantum’,
‘classical’, and ‘thermal’) in each subplot for 3 different states and also draw
the plot as Figure 4.8, which show all 3 states(GHz,w zero) in each subplot
for different information bottleneck.
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38 Representation Learning for Quantum Entanglement

(a) GHZ-state (b) W-state

(c) Zero-state

Figure 4.7: T-sne plot of the latent space of all possible observables
for CST trained on different states, each dot represents a Pauli sequence
and model with different information bottleneck are labelled in a differ-
ent colour of Green(thermal,log2 β = 6), Orange(classical,log2 β=-1) and
Blue(quantum,log2 β=-5), all model is trained on a 5-qubit system and dimen-
sion of latent space is 64

According to Figure 4.7, We observe that for the t-SNE latent images
of the three states, when in the thermal region, where the model’s infor-
mation processing capability is at its weakest, the clusters tend to be dis-
tributed towards the periphery of the plane. Conversely, as the decoding
ability of the CST (Classical Shadow Transformer) is enhanced, situated
in the quantum and classical regions, the clusters corresponding to these
observed sequences become more centralized in the plane
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4.2 Representation learning and latent dimension analysis 39

(a) Quantum (b) Classical

(c) thermal

Figure 4.8: T-sne plot of the latent space of all possible observables of three states
for different information bottleneck regions, each dot represents a Pauli sequence
and model are labelled in different color of blue(GHZ-state). orange (W-state).
and green (Zero-state), all model is trained on a 5-qubit system and the dimension
of latent space is 64

If we focus on the behaviour for different states but in the same infor-
mation bottleneck as Figure 4.8 shows. We can find that when the model
has the highest limitation on decoding information as the thermal region,
all three states tend to cluster more closely together, indicating a dimin-
ished capacity for state discrimination. This is in stark contrast to the
quantum and classical regions, where the clusters corresponding to each
state are more spread out and distinct. In the quantum region, this spread
is indicative of a superior ability to differentiate between states, likely due
to the higher information processing capabilities of the model. Moving
to the classical region, while the differentiation between states is still ap-
parent, it is less pronounced than in the quantum region, suggesting a
moderate level of information processing capability. The thermal region’s
tight clustering underscores the challenges the model faces when informa-
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40 Representation Learning for Quantum Entanglement

tion processing is highly constrained, leading to a potential overlap in the
representation of different quantum states within the latent space.

Moreover, consistent with the model’s loss history and the phase di-
agrams depicted for the reconstruction of the density matrix, the differ-
ence between entangled states (W, GHZ) and separable states (Zero) is
significant, yet the distinction between W and GHZ states remains elu-
sive. Finally, providing a quantitative and deeper interpretation of the
t-sne images is challenging; the preceding analysis offers only a prelimi-
nary and intuitive understanding. The interpretability of the latent space’s
morphology is also a direction for our future research.

4.3 Discussion and analysis

In light of our discussions and the outcomes observed from the Classical
Shadow Transformer (CST), we initially explored the fundamental concept
of shadow tomography and implemented it using a transformer-incorporated
Variational Autoencoder (VAE) model with an information bottleneck pa-
rameter, β. It was observed that learning entangled quantum states poses
a greater challenge than their non-entangled counterparts, which aligns
with intuition. This is attributed to the complex correlations between mea-
surements across qubits in entangled states, compared to non-entangled
states.

Moreover, discerning the degree of entanglement between GHZ and W
states does not lend itself to a straightforward conclusion. Typically, when
the number of copies of the original state for measurement is limited-a
scenario analogous to restricted sample sizes and training durations-the
W state appears more difficult to learn than the GHZ state. However, ex-
panding the dimensionality of the latent space within the CST, thereby
increasing the model’s parameters, results in an improved reconstruction
performance for the W-state CST. In contrast, the performance of the GHZ-
state CST does not exhibit a significant enhancement with an increase in
parameters. We want to give some possible explanations and analysis on
such phenomena and first, we just take a look at the structure of each
state’s density matrix as Figure 4.9 and Figure 4.10
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4.3 Discussion and analysis 41

Figure 4.9: Density Matrix Structure for a 3-qubit ghz-state

Figure 4.10: Density Matrix Structure for a 3-qubit w-state

Upon initial examination of the density matrices, it is evident that the
W-state possesses a more intricate structure with less symmetry compared
to the GHZ-state. This complexity arises irrespective of dimensionality, as
the GHZ-state consistently displays only four non-zero elements located
at the matrix’s corners. Such a sparse and symmetric distribution inherent
to the GHZ-state contributes to its relatively simpler characterization.
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42 Representation Learning for Quantum Entanglement

However, for the phemona, the w-state will be more easily learned
with the increase of the number of parameters for the model and a longer
training time, while ghz-state behaves less sensitive to the increasing of
complexity of the model. It’s quite intriguing but hard to give an overall
conclusion on it. According to recent research, the W-state may not have
received as much attention as other entangled states, but its unique char-
acteristics are noteworthy. For instance, its entanglement is exceptionally
resilient- more so than GHZ states, as it typically necessitates a greater
number of measurements to disentangle the system.[8] [7]. Another prop-
erty for the w-like entanglement we can conclude is that the W-state is
known for its robustness of entanglement; even if one of the three qubits
is lost, the remaining two-qubit system is still entangled. This is a stark
contrast to the GHZ state, which becomes completely separable upon the
loss of one qubit[3]. They represent two distinctly different kinds of en-
tanglement and cannot be transformed into each other[10], even proba-
bilistically, via local quantum operations. So, we can draw a conclusion,
from the persistence perspective, the W-state is more entangled than the
GHZ-state [9].

Above all, the characteristics of the W-state in terms of its persistence
and robustness reflect its complex internal structure. This persistence is
evident as the W-state maintains entanglement even after the loss of a
qubit, demonstrating a stronger resistance to environmental disturbances.
Therefore, when using the Classical Shadow Transformer (CST) to decode
information from the W-state, this process can be viewed as a response to
external information leakage or environmental interference.

In this context, compared to the GHZ-state, the W-state indeed requires
a higher number of observations and a more complex model structure for
effective decoding and learning. While it’s not straightforward to define
which state, W or GHZ, is more entangled, we can infer from the analysis
of the properties of the W-state that it is more complex in terms of quantum
information decoding.

This understanding helps in delving deeper into the applications and
potential of different quantum states in quantum information processing.
Each state has its unique properties and advantages, which are crucial con-
siderations in the design of quantum algorithms and communication pro-
tocols.
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Chapter 5
Conclusion

Bridging Quantum and Classical Worlds through Machine Learning We
successfully demonstrate the potential of machine learning models, par-
ticularly the Classical Shadow Transformer, in interpreting and decoding
quantum information. The study reveals that the boundary between the
quantum and classical worlds is not absolute. This distinction hinges not
only on the scale of the quantum system but also on our ability to pro-
cess information and the complexity of our computational agent. Conse-
quently, if equipped with a sufficiently powerful AI agent with advanced
computational capabilities, it may become possible to perfectly decode
quantum information, regardless of the system size.

Entanglement Complexity and Learnability Our experiments with dif-
ferent quantum states indicate that the complexity and type of entangle-
ment significantly influence the model’s learning and reconstruction abili-
ties. Notably, the W state, characterized by its robust entanglement, presents
more challenges in learning and reconstruction compared to the GHZ and
Zero states. This finding suggests a direct correlation between the degree
of entanglement in a quantum state and its learnability in quantum state
tomography.

The Role of Latent Space in Quantum State Analysis The research un-
derscores the crucial role of the latent space in the transformer model, pro-
viding valuable insights into the distinct characteristics of various quan-
tum states. The exploration of latent space morphology through T-SNE
plots further emphasizes the potential of machine learning in quantum in-
formation science. This exploration not only enhances our understanding
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of quantum states but also points to the significance of latent features in
advancing the applications of quantum computing.
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Chapter 6
Future Direction

Exploring Alternative Measurement Bases Having successfully trained
our Classical Shadow Transformer (CST) using the Pauli measurement ba-
sis, we now consider exploring other groups of measurement bases and
corresponding quantum channels. An immediate approach is to replace
the Pauli basis with Clifford gates to examine their efficacy in shadow to-
mography.

Deeper Analysis of Quantum Entanglement Our attempt to character-
ize W-like versus GHZ-like entanglement from a learning ability perspec-
tive is intriguing. However, providing a universal statement about which
form of entanglement is more complex remains challenging. The W-state,
noted for its persistence, demands more observations for accurate infor-
mation extraction. A more precise and quantitative analysis is needed to
make definitive statements about these types of entanglement.

Insights into Latent Structure The visualization of the latent structure
for different states and varying levels of information processing reveals
complexity. However, the representations are not immediately interpretable.
To gain a deeper understanding of the underlying physics, we may con-
sider clustering analysis or alternate methods of dimensionality reduction
on the latent structures.

Inherent Limitations of Shadow Tomography A common issue in the
generative modelling of quantum states is the potential creation of non-
physical states, characterized by non-positive semi-definiteness and neg-
ative eigenvalues. This inherent limitation in shadow tomography arises
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from the inability to perfectly learn the real distribution of observables and
measurements. Current solutions, such as forcing negative eigenvalues to
zero or employing Generative Adversarial Networks (GANs) to filter out
non-physical states, can disrupt the density matrix structure and poten-
tially lead to information loss about the quantum state.

Scaling Up the Quantum Language Model The primary goal of this re-
search is to develop an artificial intelligence that can comprehend ’quan-
tum language’. However, the scope of our current model is somewhat lim-
ited and does not demonstrate a clear superiority over traditional meth-
ods. A potential extension could involve applying the model to larger
quantum systems without performing full-state tomography. By extract-
ing only partial information from the quantum system, we aim to enhance
the efficiency of our learning process.
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multipartite states: a brief survey, in Journal of Physics: Conference Series,
volume 698, page 012003, IOP Publishing, 2016.

[10] W. DÃŒr, G. Vidal, and J. I. Cirac, Three qubits can be entangled in two
inequivalent ways, Physical Review A 62 (2000).

Version of January 30, 2024– Created January 30, 2024 - 17:52

49



50 BIBLIOGRAPHY

[11] A. Einstein, B. Podolsky, and N. Rosen, Can Quantum-Mechanical De-
scription of Physical Reality Be Considered Complete?, Phys. Rev. 47, 777
(1935).

[12] J. S. Bell, On the Einstein Podolsky Rosen paradox, Physics Physique
Fizika 1, 195 (1964).

[13] R. F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations
admitting a hidden-variable model, Phys. Rev. A 40, 4277 (1989).

[14] W. K. Wootters, Entanglement of Formation of an Arbitrary State of Two
Qubits, Phys. Rev. Lett. 80, 2245 (1998).

[15] G. Vidal and R. F. Werner, Computable measure of entanglement, Phys.
Rev. A 65, 032314 (2002).

[16] E. I. G. Schmidt, Zur Theorie der linearen und nichtlinearen Integralgle-
ichungen, Mathematische Annalen 63, 433 (1907).

[17] O. Gühne and G. Tóth, Entanglement detection, Physics Reports 474,
1â75 (2009).

[18] C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M. K. Joshi, P. Jurcevic,
C. A. Muschik, P. Silvi, R. Blatt, C. F. Roos, and P. Zoller, Self-verifying
variational quantum simulation of lattice models, Nature 569, 355â360
(2019).

[19] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M.
Chow, and J. M. Gambetta, Hardware-efficient variational quantum
eigensolver for small molecules and quantum magnets, Nature 549,
242â246 (2017).

[20] D. P. Kingma and M. Welling, Auto-Encoding Variational Bayes, 2022.

[21] D. J. Rezende, S. Mohamed, and D. Wierstra, Stochastic Backpropaga-
tion and Approximate Inference in Deep Generative Models, 2014.

[22] I. Higgins, L. Matthey, A. Pal, C. P. Burgess, X. Glorot, M. M.
Botvinick, S. Mohamed, and A. Lerchner, beta-VAE: Learning Basic Vi-
sual Concepts with a Constrained Variational Framework, in International
Conference on Learning Representations, 2016.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, Attention Is All You Need, 2023.

50

Version of January 30, 2024– Created January 30, 2024 - 17:52



BIBLIOGRAPHY 51

[24] D. M. Greenberger, M. A. Horne, and A. Zeilinger, Going beyond Bellâs
theorem, in Bellâs theorem, quantum theory and conceptions of the universe,
pages 69–72, Springer, 1989.

[25] W. DÃŒr, G. Vidal, and J. I. Cirac, Three qubits can be entangled in two
inequivalent ways, Physical Review A 62 (2000).

[26] F. Diker, Deterministic construction of arbitrary W states with quadrati-
cally increasing number of two-qubit gates, 2022.

[27] A. J. et al., Quantum AlgorithmÂ Implementations for Beginners, ACM
Transactions on Quantum Computing 3, 1â92 (2022).

[28] R. Schmied, Quantum state tomography of a single qubit: comparison of
methods, Journal of Modern Optics 63, 1744â1758 (2016).
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