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Abstract 

Statistical matching is a technique which can be applied when one wants to investigate the joint 

relationship between two variables that are observed in different datasets, using one or more variables 

that overlap in both datasets. This joint relationship cannot be estimated without relying on assumptions 

or additional data. Classically, statistical matching is based on the Conditional Independence 

Assumption (CIA) which asserts the non-overlapping variables to be independent given the overlapping 

variable. This assumption is inflexible, untestable and often does not hold. The current project proposes 

to use an approach based on the Instrumental Variable Assumption (IVA).  

An instrumental variable is a variable that, given the value of some mediating variable, has no 

effect on some outcome variable. In the context of statistical matching this gives rise to three scenarios: 

the mediating variable overlaps, the outcome variable overlaps, or the instrumental variable overlaps. 

The IVA approach is more flexible than the CIA approach. This is because the IVA approach does not 

make any assumptions on which variable is the overlapping variable, whereas the CIA always conditions 

on the overlapping variable. The aims of the current study were twofold: 1) how does the IVA approach 

perform when the assumption is violated to various degrees and 2) how does the IVA approach compare 

to the CIA approach. To answer these questions, a simulation study was performed. For each scenario, 

joint probabilities of the non-overlapping variables were estimated under both the IVA and the CIA in 

populations which violate the IVA to various degrees. Measures for the bias, accuracy and precision 

were estimated and compared.  

 The results indicate that the IVA approach is moderately robust against slight violations of the 

assumption. When the IVA is not violated, estimations are unbiased and for all matching scenarios the 

method outperforms the CIA. When the IVA is violated it is advisable to rely on the CIA, since results 

of the current simulation study suggest the CIA to be more robust against violations in general.  
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Chapter 1  

Introduction 

 
National Statistical Institutes (NSIs) such as Statistics Netherlands (CBS) have the responsibility of 

providing society with correct and extensive statistics. For this reason NSIs have access to a wide variety 

of data sources, from survey data to administrative data. CBS alone has over 4600 datasets published 

for public use (CBS, 2023). In general, CBS tries to minimize the burden on citizens which means they 

do not invite citizens to answer questions too often. Social surveys are designed such that the overlap 

between the units in different samples is minimized. A consequence of this policy is that two variables 

of interest might not be observed in the same dataset. Combining survey and selective administrative 

datasets may be another reason why two variables are not observed in the same dataset. In this situation 

it is (or seems) impossible to infer the relationship between these variables, as they have not been 

measured for the same units, which is where the technique of statistical matching comes in. 

Statistical matching is a method where two (or more) disjoint datasets with overlapping and 

non-overlapping variables are integrated (D’Orazio et al., 2006). The main goal is to estimate the 

relationship between the variables which have been observed independent of each other. For example, 

consider one dataset where health outcomes and tax rate are observed together and a second dataset 

where tax rate and smoking are observed together. Through statistical matching one can use the 

information on tax rate to investigate the relationship between health outcomes and smoking even 

though these variables were not observed for the same persons.   

An integral assumption for many statistical matching methods is the Conditional Independence 

Assumption (CIA). The CIA contends that, given the overlapping variables, the non-overlapping 

variables are independent (D’Orazio et al., 2006). In practice it is not possible to test whether this 

assumption holds using the data available and the assumption is often violated (Leulescu & Agafitei, 

2013). The CIA is usually reasonable when the overlapping variable is a proxy for one of the target 

variables (D’Orazio et al., 2024). Violating the CIA results in an incorrectly specified model, causing 

biased outcomes. When the CIA  is violated there are two commonly proposed options; 1) one can opt 

to use auxiliary information, such as a third dataset where all variables are jointly observed or 2) one 

can use some plausible value for the unknown parameters e.g. based on literature or on past data 

(D’Orazio et al., 2006). This project proposes a third option: making use of an instrumental variable 

(IV). 

An IV is often used in linear regression to account for confounding variables (Newhouse & 

McClellan, 1998). This variable has no direct effect on the outcome variable but does have an effect on 
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one of the regressors. In essence, the regressor serves as the mediating variable between the instrumental 

and the outcome variable. An illuminating example can be found on Wikipedia: suppose a researcher 

wishes to estimate the effect of smoking on health and knows that the correlation between smoking and 

health does not imply smoking to cause bad health. The researcher can opt to use tax on tobacco as an 

instrument, assuming tax on tobacco affects health only through smoking. Any correlation found 

between tax and health can then be attributed to smoking (“Instrumental variables estimation”, 2024, 

Example).   

The use of IVs is well-documented in several research fields, however it has been scarcely 

utilized in statistical matching. In fact, only one publication was identified where the researchers made 

use of an IV in a statistical matching setting (Kim et al., 2016). In this study fractional imputation was 

used to statistically match continuous variables. To make their model identifiable, instead of relying on 

the CIA, the researchers included an IV in their model. This IV was also the overlapping variable 

between the to be matched datasets.  

The study by Kim et al. (2016) uses continuous variables and does not directly assess the 

performance of using an IV compared to using the CIA. Additionally, they only assess the situation 

where the IV is the overlapping variable. The use of IVs in statistical matching might be a viable 

alternative to relying on the CIA, since the latter is often violated. The aim of this project is then to 

estimate the bias, accuracy and precision of statistical matching using the Instrumental Variable 

Assumption (IVA) and compare it to the bias, accuracy and precision when using the CIA. This is done 

for three possible matching situations; where the instrumental, mediator or outcome variable overlaps 

in the data. Since data at CBS is often in categorical form and analyses are frequently done on 

contingency tables and the IVA approach has only been used with continuous data before, this project 

focusses on categorical data. 
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Chapter 2 

Background 

 

2.1   Statistical Matching 

As mentioned, statistical matching is concerned with estimating the joint distribution of variables that 

have not been observed in the same dataset using information from variables that were observed in both 

datasets. In this section the statistical matching problem is explained in detail, and a working example 

will be provided and used throughout the thesis. 

 

2.1.1  The statistical matching problem 

The statistical matching technique can be seen as a missing data problem where each dataset has all 

values from one variable missing (Kim et al., 2016). Consider two samples A and B with 𝑛𝐴 and 𝑛𝐵 i.i.d. 

observations. Also consider the categorical random variables X, Y and Z with categories 𝑥 = 1, … , 𝐶𝑥, 

𝑦 = 1, … , 𝐶𝑦 and 𝑧 = 1, … , 𝐶𝑧, with joint probability distribution P(X, Y, Z). Sample A includes 

variables X and Y and has variable Z missing. Sample B includes variables X and Z and has variable Y 

missing. The goal of statistical matching is to use the information from both samples 𝐴 and 𝐵 to estimate 

the joint distribution of the two non-overlapping variables; P(Z,Y). 𝑝𝑧𝑦 will be used to denote the 

probability of variable Z taking value 𝑧 and variable Y taking value 𝑦. Figure 2.1 depicts a schematic 

overview of these two datasets.  

 

2.1.1a A working example 

The following is an example that will be used throughout this thesis: suppose an NSI has data on tobacco 

tax (T 𝑤𝑖𝑡ℎ 𝑡 = ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤), smoking (S 𝑤𝑖𝑡ℎ 𝑠 = 𝑦𝑒𝑠, 𝑛𝑜) and health outcomes (H 𝑤𝑖𝑡ℎ ℎ =

𝑎𝑑𝑣𝑒𝑟𝑠𝑒, 𝑔𝑜𝑜𝑑) and a researcher is interested in the relationship between smoking and health outcomes. 

They have access to two samples; one where tobacco tax and smoking are observed together, and one 

where tobacco tax and health outcomes are observed together. The common variable is tobacco tax and 

the researcher is then interested in the distribution 𝑃(S, H). 

 

2.1.2  Approaches to statistical matching  

Broadly speaking, there are two approaches to statistical matching; the macro and the micro approach. 

The macro approach is concerned with estimating the joint distribution of variables that do not overlap 

in the data. The micro approach goes a step further, creating a synthetic dataset that includes all 



BACKGROUND 

 
4 

variables. The micro approach uses the estimated joint distribution and is therefore an extension to the 

macro approach (D’Orazio et al., 2006).   

Approaches to statistical matching can further be divided into parametric and non-parametric 

approaches. Parametric methods are based on the assumption that the unknown joint distribution comes 

from a specific model (e.g. conditional mean matching). Non-parametric methods do not make such 

model assumptions (e.g. hot deck methods). For an extensive overview of statistical matching methods, 

the reader is referred to D’Orazio et al. (2006).   

 

2.1.3 The Conditional Independence Assumption 

The main problem in statistical matching is that there is no sufficient information in 𝐴 ⋃ 𝐵 to construct 

an identifiable model for (X, Y, Z) and consequently to estimate 𝑃(Z, Y) (Conti et al., 2017). The 

assumption that is generally made in statistical matching for the model to be identifiable is the CIA. 

This assumption asserts that the two non-overlapping variables Z and Y are independent given the value 

of the overlapping variable X. Formally this means that under the CIA 𝑃(Z, Y) can be written as 

 

 𝑃(Z, Y) =  ∑ 𝑃(Z | X = 𝑥)𝑃(Y| X = 𝑥)𝑃(X = 𝑥)

𝑥

 
(1) 

 

Applying this idea to the working example: to statistically match the samples, the researcher at the NSI 

assumes that smoking is independent of health outcomes, given the tobacco tax (the overlapping 

variable), meaning: 𝑃(S, H ) =  ∑ 𝑃(S | T = 𝑡)𝑃(H | T = 𝑡)𝑃(T = 𝑡)𝑡 . 

In practice, this assumption often does not strictly hold and cannot be tested from 𝐴 ⋃ 𝐵 because 

there is no information on the joint distribution of the non-overlapping variables in the samples 

(D’Orazio et al., 2006; Conti et al., 2017). The consequence of using a wrong assumption is that the 

Figure 2.1 

Schematic overview of two datasets suitable for statistical matching 
 

      Variables 

 

Dataset A 

𝑦1
(𝐴)  

𝑥1
(𝐴) 

 

𝑦2
(𝐴) 𝑥2

(𝐴)
 

𝑦𝑛𝐴
(𝐴) 𝑥𝑛𝐴

(𝐴) 

 

Dataset B 

 
𝑥1

(𝐵) 
𝑧1

(𝐵) 

𝑥2
(𝐵)

 𝑧2
(𝐵)

 

𝑥𝑛𝐵
(𝐵) 𝑧𝑛𝐵

(𝐵) 
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model used for matching is incorrectly specified and the result does not reflect the true underlying 

model, but instead the model assumption which causes biased results (D’Orazio et al., 2006).   

 

2.2 The Instrumental Variable approach 

Another approach to statistical matching rather than relying on the CIA is proposed: making use of an 

IV. The following section outlines what IVs are and how they can be used in statistical matching. 

 

2.2.1 Instrumental variables 

IVs are used to indirectly measure the effect of a regressor on an outcome variable, where the regressor 

serves as a mediator (Newhouse & McClellan, 1998). Figure 2.2a depicts a schematic overview of the 

relationship between instrumental (I with 𝑖 = 1 . . , 𝐶𝑖), mediating (M with 𝑚 = 1, … , 𝐶𝑚) and outcome 

(O with 𝑜 = 1, … , 𝐶𝑜) variables.  

By the law of total probability, the conditional probability 𝑃(O | I = 𝑖) can be written as 

 

𝑃(O | I = 𝑖) = ∑ 𝑃(O, M = 𝑚 | I = 𝑖)

𝑚

= ∑ 𝑃(O | M = 𝑚, I = 𝑖)𝑃(M = 𝑚 | I = 𝑖)

𝑚

 

 

An IV is said to be independent of the outcome variable, given the value of the mediating variable, so 

under the IVA the term 𝑃(O | M = 𝑚, I = 𝑖) reduces to 𝑃(O | M = 𝑚), giving 

 

 𝑃(O | I = 𝑖) =  ∑ 𝑃(O | M = 𝑚)𝑃(M = 𝑚 | I = 𝑖)

𝑚

 
(2) 

 

Extending this to the working example; suppose the researcher knows from the literature that 

tobacco tax is an instrumental variable for health outcomes, implying health outcomes to be independent 

of tobacco tax, given smoking. In this case it holds that 𝑃(H | T = 𝑡) =  ∑ 𝑃(H | S = 𝑠)𝑃(S = 𝑠 | T =𝑠

𝑡). Figure 2.2b shows a schematic overview of this situation. 

Figure 2.2 

Schematic overview of the Instrumental Variable mechanism in general (a) and for a specific example (b) 

Note: I, M, and O denote the instrumental, mediator and outcome variables. X, Y and Z denote the overlapping 

(X) and non-overlapping variables (Y, Z) 

Mediating 

variable (M)  
Outcome 

variable (O) 

a 
Instrumental 

variable (I) 

Smoking  

(Y) (M)  
Health outcomes 

(Z) (O) 

b 
Tobacco tax 

(X) (I) 
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2.2.2 An instrumental variable approach to statistical matching  

In the context of statistical matching the IVA might be more appropriate than the CIA. The advantage 

of the IVA, as opposed to the CIA, is that no assumptions are made regarding which variables overlap 

in samples A and B. Therefore, the overlapping variable can be either the mediating, outcome or 

instrumental variable. This leads to three separate matching scenario’s, outlined in Table 2.1. In 

scenario’s two and three, a set of equations must be solved to estimate the target distribution, which is 

specified in Appendix A.  

The idea of estimating the target distribution using a set of equations can be illustrated using the 

working example. The instrumental variable, tobacco tax, is overlapping so the researcher is concerned 

with scenario three. Table 2.2 describes example conditional probabilities the researcher estimates from 

their data. Using Equation (2), the following four equations can be used to estimate 𝑃(H = ℎ | S = 𝑠 ), 

(ℎ = 𝑎𝑑𝑣𝑒𝑟𝑠𝑒, 𝑔𝑜𝑜𝑑 ; 𝑠 = 𝑦𝑒𝑠, 𝑛𝑜): 

 

𝑃(H = 𝑎𝑑𝑣𝑒𝑟𝑠𝑒 | T = ℎ𝑖𝑔ℎ) = 𝑃(S = 𝑦𝑒𝑠 | T = ℎ𝑖𝑔ℎ)𝑃(H = 𝑎𝑑𝑣𝑒𝑟𝑠𝑒 | S = 𝑦𝑒𝑠 )  +

𝑃(S = 𝑛𝑜 | T = ℎ𝑖𝑔ℎ)𝑃(H = 𝑎𝑑𝑣𝑒𝑟𝑠𝑒 | S = 𝑛𝑜 )  

𝑃(H = 𝑔𝑜𝑜𝑑 | T = ℎ𝑖𝑔ℎ) = 𝑃(S = 𝑦𝑒𝑠 | T = ℎ𝑖𝑔ℎ)𝑃(H = 𝑔𝑜𝑜𝑑 | S = 𝑦𝑒𝑠 )  +

𝑃(S = 𝑛𝑜 | T = ℎ𝑖𝑔ℎ)𝑃(H = 𝑔𝑜𝑜𝑑 | S = 𝑛𝑜 )  

𝑃(H = 𝑎𝑑𝑣𝑒𝑟𝑠𝑒 | T = 𝑙𝑜𝑤) = 𝑃(S = 𝑦𝑒𝑠 | T = 𝑙𝑜𝑤)𝑃(H = 𝑎𝑑𝑣𝑒𝑟𝑠𝑒 | S = 𝑦𝑒𝑠 )  +

𝑃(S = 𝑛𝑜 | T = 𝑙𝑜𝑤)𝑃(H = 𝑎𝑑𝑣𝑒𝑟𝑠𝑒 | S = 𝑛𝑜 )  

𝑃(H = 𝑔𝑜𝑜𝑑 | T = 𝑙𝑜𝑤) = 𝑃(S = 𝑦𝑒𝑠 | T = 𝑙𝑜𝑤)𝑃(H = 𝑔𝑜𝑜𝑑 | S = 𝑦𝑒𝑠 )  +

𝑃(S = 𝑛𝑜 | T = 𝑙𝑜𝑤)𝑃(H = 𝑔𝑜𝑜𝑑 | S = 𝑛𝑜 )  

 

 

Table 2.1 

Statistical matching scenario’s that are possible when using the IVA 

Note: M, I, and O represent the mediator, instrumental and outcome variables. 

 

Scenario  Overlapping 

variable 

Probabilities 

estimated from data 

Target distribution Direct estimation using 

Equation (2) 

1 Mediator 𝑃(M | I = 𝑖) and  

𝑃(O | M = 𝑚) 

𝑃(O | I = 𝑖) Yes  

2 Outcome 𝑃(O | I = 𝑖) and  

𝑃(O | M = 𝑚) 

𝑃(M | I = 𝑖) No, equations need to be 

solved (appendix A) 

3 Instrumental 𝑃(O | I = 𝑖) and  

𝑃(M | I = 𝑖) 

𝑃(O | M = 𝑚) No, equations need to be 

solved (appendix A) 
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Filling in the values from Table 2.2: 

 

. 64 = .8 ×  𝑃(H = 𝑎𝑑𝑣𝑒𝑟𝑠𝑒 | S = 𝑦𝑒𝑠 ) + .2 × 𝑃(H = 𝑎𝑑𝑣𝑒𝑟𝑠𝑒 | S = 𝑛𝑜 ) 

. 36 = .8 ×  𝑃(H = 𝑔𝑜𝑜𝑑 | S = 𝑦𝑒𝑠 ) + .2 × 𝑃(H = 𝑔𝑜𝑜𝑑 | S = 𝑛𝑜 ) 

. 25 = .3 ×  𝑃(H = 𝑎𝑑𝑣𝑒𝑟𝑠𝑒 | S = 𝑦𝑒𝑠 ) + .7 × 𝑃(H = 𝑎𝑑𝑣𝑒𝑟𝑠𝑒 | S = 𝑛𝑜 ) 

. 75 = .3 ×  𝑃(H = 𝑔𝑜𝑜𝑑 | S = 𝑦𝑒𝑠 ) + .7 × 𝑃(H = 𝑔𝑜𝑜𝑑 | S = 𝑛𝑜 ) 

 

Solving this set of equations gives the conditional distribution of health outcomes and smoking:  

 

𝑃(H = 𝑎𝑑𝑣𝑒𝑟𝑠𝑒 | S = 𝑦𝑒𝑠) = 0.796 

𝑃(H = 𝑎𝑑𝑣𝑒𝑟𝑠𝑒 | S = 𝑛𝑜) = .016 

𝑃(H = 𝑔𝑜𝑜𝑑 | S = 𝑦𝑒𝑠) = .204 

𝑃(H = 𝑔𝑜𝑜𝑑 | S = 𝑛𝑜) = .984. 

 

2.2.2a CIA versus IVA 

If the overlapping variable (X) is the mediator and the non-overlapping variables (Y and Z) are the 

instrumental and outcome variables, the expression under the IVA for the conditional distribution 

Table 2.2 

Example estimated conditional probabilities for health outcomes given tobacco tax and smoking given 

tobacco tax 

Note: health outcomes given tobacco tax probabilities are estimated from sample A, smoking given tobacco tax 

probabilities are estimated from sample B. 

 

Sample A 

𝑃(H = 𝑎𝑑𝑣𝑒𝑟𝑠𝑒 | T = ℎ𝑖𝑔ℎ) .64 

𝑃(H = 𝑔𝑜𝑜𝑑 | T = ℎ𝑖𝑔ℎ) .36 

𝑃(H = 𝑎𝑑𝑣𝑒𝑟𝑠𝑒 | T = 𝑙𝑜𝑤) .25 

𝑃(H = 𝑔𝑜𝑜𝑑 | T = 𝑙𝑜𝑤) .75 

Sample B 

𝑃(S = 𝑦𝑒𝑠 | T = ℎ𝑖𝑔ℎ) .80 

𝑃(S = 𝑛𝑜 | T = ℎ𝑖𝑔ℎ) .20 

𝑃(S = 𝑦𝑒𝑠 | T = 𝑙𝑜𝑤) .30 

𝑃(S = 𝑛𝑜 | T = 𝑙𝑜𝑤) .70 
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𝑃(O | I = 𝑖) (Equation 2)  is equivalent to the expression for the joint distribution 𝑃(Z, Y) (Equation 1) 

under the CIA with X being the common variable. This can be shown by assigning variable X the role 

of mediator, variable Y the role of instrumental and variable Z the role of outcome variable (scenario 1). 

It is then possible to rewrite 𝑃(Z, Y) as follows 

 

𝑃(Z, Y) =  𝑃(Z = 𝑧 | Y = 𝑦)𝑃(Y = 𝑦) = 

∑ 𝑃(Z = 𝑧 | Y = 𝑦, X = 𝑥)𝑃(X = 𝑥 | Y = 𝑦)𝑃(Y = 𝑦) 

𝑥

= 

∑ 𝑃(Z = 𝑧 | X = 𝑥)𝑃(X = 𝑥 | Y = 𝑦)𝑃(Y = 𝑦) 

𝑥

= 

∑ 𝑃(Z = 𝑧 | X = 𝑥)𝑃(Y = 𝑦| X = 𝑥)𝑃(X = 𝑥)

𝑥

 

 

In the third line the IVA is applied and in the final line the expression under the CIA is given. The last 

step emerges from 𝑃(X = 𝑥 | Y = 𝑦)𝑃(Y = 𝑦) = 𝑃(Y = 𝑦, X = 𝑥) = 𝑃(Y = 𝑦 | X = 𝑥)𝑃(X = 𝑥).   

In general, the procedures for estimating the unknown distribution 𝑃(Z, Y) under the IVA and 

the CIA are the same. The crucial difference is that the CIA always conditions on the overlapping 

variable X, whereas the IVA always conditions on the mediating variable, irrespective of which variable 

is commonly observed in the data. This difference between the two assumptions can be illustrated using 

the working example of tobacco tax, smoking and health outcomes. Under the IVA, the relationship 

between smoking and health outcomes would be estimated using 

 

𝑃(H | T = 𝑡) =  ∑ 𝑃(H | S = 𝑠)𝑃(S = s | T = 𝑡

𝑠

) 

 

While under the CIA the same relationship would be estimated using 

 

𝑃(S, H ) =  ∑ 𝑃(S | T = 𝑡)𝑃(H | T = 𝑡)𝑃(T = 𝑡)

𝑡

 

 

This last expression is evidently incorrect since it is known that tobacco tax is independent of health 

outcomes given smoking, rather than smoking being independent of health outcomes given tobacco tax.  

 

2.3 Aim of the project 

The IVA approach to statistical matching could be a viable alternative to relying on the CIA, therefore 

the current project’s aims are two-fold: 
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1) Evaluate the IVA approach to statistical matching by assessing its bias, root mean squared error 

(RMSE) and standard deviation when the IVA is violated to various degrees  

2) Compare the performances of the IVA approach and CIA approach to statistical matching by 

comparing the biases, RMSEs and standard deviations of both methods  
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Chapter 3 

Methods 

 

3.1 Estimators 

The goal is to estimate the joint distribution 𝑃(Z, Y) using the information available in the two disjoint 

samples. To be able to contrast the CIA and the IVA, this was done using both methods. Under the CIA, 

𝑃(Z, Y) can be estimated using Equation (1) where the probabilities on the right hand side are estimated 

from the data, formally 

 

 �̂�(Z, Y) = ∑ �̂�(Z | X = 𝑥)(𝐵) �̂�(Y | X = 𝑥)(𝐴)�̂�(X = 𝑥)(𝐴𝐵)

𝑥

 
(3) 

 

where X denotes the overlapping variable, �̂�(𝐴) denotes probabilities estimated from sample 𝐴, �̂�(𝐵) 

denotes probabilities estimated from sample 𝐵 and �̂�(𝐴𝐵) denotes probabilities estimated from both 

samples. 𝑃(X = 𝑥) was estimated using both samples for a more precise estimate (see section 2.1 of 

D’Orazio et al. (2006)). 

 Under the IVA, the conditional probability of the outcome and instrumental variables can be 

estimated using Equation (2) where the probabilities are estimated from the data, formally 

 

 �̂�(O | I = 𝑖) = ∑ �̂�(O | M = 𝑚)

𝑚

�̂�(M = 𝑚 | I = 𝑖) 
(4) 

 

where M denotes the mediating variable, I denotes the instrumental variable and O denotes the outcome 

variable. Which term in Equation (4) can be denoted �̂�(Z | Y = 𝑦) and which probabilities can be 

estimated from what dataset (𝐴 or 𝐵) depends on which of the three variables overlaps in the data (see 

Table 2.1).  

 One of the research aims was to contrast the CIA and IVA approaches, so it was useful to convert 

the estimated conditional probability under the IVA, �̂�(Z | Y = 𝑦), to an estimated joint probability 

�̂�(Z, Y). This is possible by multiplying the estimated conditional probability �̂�(Z | Y = 𝑦) by the 

marginal probability �̂�(Y). However, since �̂�(Y) is a non-overlapping variable it can only be estimated 

from one of the datasets. A more accurate estimate might be �̂�𝑐𝑜𝑚𝑏(Y), which can be estimated using 

data from both datasets 
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�̂�𝑐𝑜𝑚𝑏(Y) = ∑ �̂�(Y | X = 𝑥)(𝐴)�̂�(X = 𝑥)(𝐴𝐵)

𝑥

 

 

This measure �̂�𝑐𝑜𝑚𝑏(Y) was then used to get an estimate for the joint probability �̂�(Z, Y) 

 

�̂�(Z, Y) =  �̂�(Z | Y = 𝑦)�̂�𝑐𝑜𝑚𝑏(Y) 

 

3.2 Simulation study 

To assess how the IVA performs and how it compares to using the CIA in statistical matching, a 

simulation study was performed. This section discusses the data generation procedure and the design of 

the study. All analyses were performed using R Statistical Software (v4.2.3; R Core Team 2023).  

 

3.2.1  Data generation 

Populations of the three variables – mediator, outcome and instrumental – were generated. Each variable 

in the simulation study had two categories.  

 

3.2.1a  Populations from which to sample 

The first research aim was to evaluate the bias and variance of the statistical matching procedure when 

the IVA is violated. The IVA is based on two premises: 1) the instrumental and outcome variables are 

independent given the mediating variable, and 2) the association between the instrumental and mediating 

variables is substantial (Newhouse & McClellan, 2010). When the former is violated this is expected to 

result in a biased estimate of 𝑃(Z, Y). A weak association between the instrumental and mediating 

variables is not strictly a violation and will probably not result in large biases, however the use of the 

IVA is expected to work less well under such a condition. In that sense, a population where the 

association is strong would be more favorable for the use of the IVA approach to statistical matching. 

In the rest of this thesis a violation with respect to the association between instrumental and outcome 

variables will be called a type A violation. An unfavorable population where the association between 

instrumental and mediating variables is weak, will be called a type B violation.  

To quantify the association between the different variables, odds ratios (OR) were used. Chen 

et al. (2010) linked different OR levels to Cohen’s d measure of effect size, which were used as a 

reference. In the current project the ORs used were 1 (independence), 2 (weak association), 4 (moderate 

association) and 7 (strong association). Table 3.1 shows the population distributions that were used to 

sample from in the simulation study. 

The first population shown in Table 3.1 represents the “ideal” situation in which the IVA holds 

perfectly. The results are expected to be unbiased. In the second population there is only a type B 

violation of the IVA. The matching procedure is expected to be robust against this type of violation 
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because the main assumption on which the calculations are based, conditional independence of the 

outcome and the instrumental variables, still holds. In the third population, the IVA is slightly violated 

(type A) and in the fourth population the IVA is severely violated (type A). The statistical matching 

procedure is expected to be biased in these situations. The last population includes both types of 

violation, where the procedure is expected to be biased.  

 

Violation of the CIA 

In order to fully be able to assess the difference between the IVA and CIA approaches it is useful to 

quantify the degree of violation of the CIA in the used populations as well. Under the CIA the odds ratio 

between the non-overlapping variables Z and Y, given the value of overlapping variable X is assumed to 

be 1. Table 3.1 includes these odds ratios in the population for the various matching scenarios. These 

odds ratios were obtained using the Fisher’s Exact Test function from the stats package in R (v4.2.3; R 

Core Team 2023).  

 

3.2.1b Data generation procedure 

Populations were generated using the settings outlined in Table 3.1. In the first step of generating the 

data, the marginal distributions, 𝑃(M = 1), 𝑃(O = 1) and 𝑃(I = 1), were specified. These probabilities 

were randomly chosen from a uniform distribution between .25 and .75. Additionally, the association 

between the instrumental and mediator, 𝑂𝑅(I, M), and the mediator and outcome variables, 𝑂𝑅(O, M), 

were defined. In the next step, the joint distributions 𝑃(I, M) and 𝑃(O, M) were calculated by solving 

for the defined odds ratios (see intermezzo).  

 

Intermezzo: Solving for an odds ratio 

In order to set the association between the variables in the population, odds ratios were used. The 

formula for the odds ratio is 𝑂𝑅 =
𝑎𝑑

𝑏𝑐
  for the contingency table: 

 

  Y  

  1 2  

X 1 a b  x1 

2 c d x2 

  y1 y2  

 

where 𝑥1 and 𝑥2 are the row totals for variable X and 𝑦1 and 𝑦2 are the column totals for variable Y. 

When the row and column totals are known, it is possible to rewrite the odds ratio equation in terms of 

one of the cells in the contingency table, for instance in terms of 𝑎: 
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𝑂𝑅 =
𝑎 ∗ (𝑥2 − (𝑦1 − 𝑎))

(𝑥1 − 𝑎) ∗ (𝑦1 − 𝑎)
 

 

where 𝑏 is substituted by 𝑥1 − 𝑎, 𝑐 is substituted by 𝑦1 − 𝑎 and 𝑑 is substituted by 𝑥2 − (𝑦1 − 𝑎). The 

desired odds ratio and the row and column totals are known, so it is possible to solve for 𝑎. Then 𝑎 can 

be used to derive 𝑏, 𝑐 and 𝑑. The result is the full contingency table of variables X and Y for a given 

association as measured by the odds ratio.  

 

3.2.1b Data generation procedure (continued) 

The row and column totals of the variables were obtained by multiplying the population size (1,000,000 

in each population) by the marginal distributions of the variables. The resulting contingency table 

contained counts, which were transformed to proportions again by dividing by the population size. After 

obtaining joint distributions 𝑃(I, M) and 𝑃(O, M), the conditional distribution 𝑃(O | M = 𝑚) was 

calculated using the property 𝑃(O | M = 𝑚) =
𝑃(O,M)

𝑃(M)
.  

 

Table 3.1 

Population settings in the simulation study evaluating the IVA approach to statistical matching and 

to what degree the IVA and CIA are violated.    

General settings N 𝑃(M = 1) 𝑃(O = 1) 𝑃(I = 1) 𝑂𝑑𝑑𝑠𝑅𝑎𝑡𝑖𝑜(O, M) 

 1 000 000 .615 .652 .429 4 

Specific settings Population – IVA violation 

 1 – no 

violation 

2 – type B 

violation 

3 – slight 

type A 

violation 

4 – severe 

type A 

violation 

5 – type B and 

slight type A 

violation 

OddsRatio(I, M) 7    2 7 7  2***. 

OddsRatio(O, I |M = 𝑚)  1    1 2 4 2***. 

Overlapping variable 

(scenario) 
OddsRatio(Z, Y |X = 𝑥) 

X =  M (scenario 1) 1.0** 1.0** 2.0** 4.0** 2.0** 

X =  O (scenario 2) 7.0** 2.0** 5.9** 5.4** 1.6** 

X =  I (scenario 3) 4.0** 4.0** 3.1** 2.5** 3.7** 

 
Note: IVA denotes the Instrumental Variable Assumption, CIA denotes the Conditional Independence Assumption. 

M ,O, and I denote the mediator, outcome and instrumental variables. X denotes the overlapping variable and Z,Y 

denote the non-overlapping variables. * indicates a slight violation of the CIA. ** indicates a severe violation of 

the CIA. A type A violation of the IVA happens when the outcome and instrumental are not independent, a type B 

violation denotes the situation where the association between the instrumental and the mediator is weak. 
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The final step was calculating 𝑃(I, M, O). In general it holds that  

 

𝑃(I, M, O) = 𝑃(O | M = 𝑚 , I = 𝑖)𝑃(I, M) 

 

Since under the IVA the instrumental and the outcome variables are independent the above equation can 

be reduced to 

𝑃𝐼𝑉𝐴(I , M, O) = 𝑃(𝑂 | M = 𝑚) 𝑃(I, M) 

 

For populations where the odds ratio between the instrumental and outcome variables was equal to 1, 

𝑃𝐼𝑉𝐴(I, M, O) could be used for sampling. 

To generate a population with a type A violation, some additional steps were required. Under 

the IVA, independence exists conditional on the mediator. In order to use the odds ratio to capture this 

independence in a population, the joint probability needs to be split according to the levels of the 

mediator. Then it is possible to define an odds ratio (unequal to 1) and calculate a joint distribution for 

each of the levels of the mediator. Specifically, 𝑃𝐼𝑉𝐴(I, M, O) was adjusted to get a joint distribution with 

a type A violation: 𝑃𝑛𝑜𝑡𝐼𝑉𝐴(I, M, O).  

First, 𝑃𝐼𝑉𝐴(I, M, O) was split according to the two levels of 𝑀; 𝑃𝐼𝑉𝐴(I, O, M = 𝑚) (𝑚 =  1,2) . 

The odds ratio 𝑂𝑅(I, O | M = 𝑚) was specified, which was the same for each level of M. The next step 

was adjusting 𝑃𝐼𝑉𝐴(I, O, M = 𝑚) to get 𝑃𝑛𝑜𝑡𝐼𝑉𝐴(I, O, M = 𝑚) by solving for the defined odds ratio using 

𝑂𝑅(I, O | M = 𝑚). Finally, 𝑃𝑛𝑜𝑡𝐼𝑉𝐴(I, M, O) was obtained by combining 𝑃𝑛𝑜𝑡𝐼𝑉𝐴(I, O, M = 𝑚) for each 

level of M. A schematic overview of the procedure is outlined in Figure 3.1. 

 

3.2.2  Design of the study 

A Monte Carlo simulation study was performed with 𝑅 = 500 replications for each population (see 

Appendix B for a justification of the number of simulations). Within each replication 𝑟 (𝑟 = 1, … , 𝑅), 

two samples of 𝑛 = 2000 were drawn for each of the three matching scenarios, resulting in 500 × 3 

sample pairs. All variables were drawn from the population for each sample pair, but estimation was 

performed as if one variable was missing in each sample. For instance, in the first scenario, where the 

mediating variable is overlapping, both samples (𝑛 = 2000) were drawn with all variables present but 

estimation proceeded as if one sample had a missing outcome and the other a missing instrumental 

variable. The same was done for the other scenarios in the same replication. For each of these sample 

pairs, the joint distribution of the non-overlapping variables was estimated under the IVA and the CIA. 

In situations where the assumptions are violated it can happen that the estimated probabilities are 

negative or larger than one. This is evidently impossible so if a negative probability was estimated it 

was coerced to zero, when a probability was estimated to be larger than one it was coerced to one. This 

was done for both the estimated conditional probabilities and the estimated joint probabilities.  
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Figure 3.1 

Schematic overview of the data generation procedure used to generate populations under the IVA and for 

various violations of the IVA 

Settings

•Define 𝑃 I = 1 , 𝑃 M = 1 , 𝑃(O = 1)
•Define 𝑂𝑅 I, M , 𝑂𝑅(O, M)

Reverse odds 
ratios

•Calculate 𝑃 I, M , 𝑃(O, M) solving for the defined odds ratios

•Calculate 𝑃 O M = 𝑚) using 
𝑃 O,M

𝑃(M)

Joint 
distribution

•Using the IVA calculate

•𝑃𝐼𝑉𝐴 I, M, O = 𝑃 O M = 𝑚)𝑃(I, M)

if  IVA holds  

stop  Use 𝑃𝐼𝑉𝐴(I, M, O) to sample from 

else  

 continue  

10 

Settings

•Split 𝑃𝐼𝑉𝐴(I, M, O) into 𝑃𝐼𝑉𝐴 I, O, M = 𝑚
•Define 𝑂𝑅 I, O M = 𝑚)

Reverse odds 
ratios

•For each 𝑚, calculate 𝑃𝑛𝑜𝑡𝐼𝑉𝐴(I, O, M = 𝑚) by solving for the 
defined odds ratios

Joint 
distribution

•Combine 𝑃𝑛𝑜𝑡𝐼𝑉𝐴(I, O, M = 𝑚) for each 𝑚, to get 𝑃𝑛𝑜𝑡𝐼𝑉𝐴(I, M, O)

Note: M denotes the mediator variable, O the outcome variable and I the instrumental variable. In the current 

project, 𝑂𝑅(I, O | M = 𝑚) was the same for each of the two levels 𝑚 (𝑚 = 1,2) of M 
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3.2.3 Simulated parameters 

For all 𝑅 sample pairs, the probability �̂�𝑧𝑦 for all four category combinations of the non-overlapping 

variables is estimated. The population mean is estimated by �̂̅�𝑧𝑦 =
1

𝑅
∑ �̂�𝑧𝑦𝑟𝑟  and the standard deviation 

by √𝑉𝑎𝑟(�̂�𝑧𝑦) = √
1

𝑅−1
 ∑ (�̂�𝑧𝑦𝑟 − �̂̅�𝑧𝑦)

2
 𝑟  for each category combination. Table 3.2 shows a simplified 

example of how the statistics are calculated. Confidence intervals around the estimates were derived by 

ordering all 𝑅 �̂�𝑧𝑦’s and taking the 2.5th and 97.5th percentiles as lower and upper bounds respectively. 

 

3.2.4  Quality of the simulated parameter estimators 

The accuracy of an estimator can be assessed using the bias and the Root Mean Squared Error (RMSE). 

The bias of an estimator 𝜃  is quantified as the expected difference between the estimated and the true 

value of a parameter 

 

𝐵𝑖𝑎𝑠(𝜃) = 𝐸(𝜃) − 𝜃 

 

where 𝜃 is the population parameter. The RMSE of an estimator 𝜃 is calculated as  

 

𝑅𝑀𝑆𝐸(𝜃) = √𝐸 [ (𝜃 − 𝜃)
2

] = √𝐸 [ (𝜃 − 𝐸(𝜃))
2

] + [𝐸(�̂�) − 𝜃]
2

= √𝑉𝑎𝑟(𝜃) + [𝐵𝑖𝑎𝑠(𝜃)]
2
  

 

If we take 𝜃 =  𝑝𝑧𝑦 and 𝜃 =  �̂�𝑧𝑦, the bias and RMSE can be approximated for R sample pairs from the 

population according to the following recipe: 

1. Generate two disjoint samples with one overlapping variable from a given distribution. 

2. Estimate the four 𝑝𝑧𝑦’s, for each sample pair 𝑟. 

3. Calculate �̂�𝑧𝑦𝑟 − 𝑝𝑧𝑦 and  (�̂�𝑧𝑦𝑟 −  𝑝𝑧𝑦)
2
 for each of the four estimates, for each sample pair 

𝑟. 

4. Estimate the bias by 𝐵𝑖𝑎𝑠(�̂�𝑧𝑦) =
1

𝑅
 ∑ (�̂�𝑧𝑦𝑟 −  𝑝𝑧𝑦) 𝑟  and the RMSE by 𝑅𝑀𝑆𝐸(�̂�𝑧𝑦) =

√
1

𝑅
 ∑ (�̂�𝑧𝑦𝑟 −  𝑝𝑧𝑦)

2
 𝑟   

To get one measure of the bias and RMSE (instead of four for each category combination), the RMSE 

and absolute value of the bias were averaged over the category combinations. The bias and RMSE were 

used to assess the accuracy of the statistical matching procedures using the IVA or the CIA. 

In principle it is sufficient to evaluate the quality of the statistical matching by using these bias, 

RMSE and variance estimates using a large set of simulated, drawn samples. Still, it might be interesting  
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to study how close bootstrap estimates of the bias, RMSE and variance based on a single sample 𝑟 come 

to the estimates based on a large set of samples.  

 

3.2.5 Bootstrap  

Bootstrap analyses were performed in order to study how close bootstrap estimates of the bias, RMSE 

and variance of  a single sample come to estimates based on a large set of samples. Samples from 𝑆 =

 10 simulated sample pairs were saved and used for bootstrapping. For each of these  sample pairs, 𝐵 =

 100 bootstrap samples were drawn and the mean, standard deviation, confidence interval, bias and 

RMSE were derived according to the following recipe: 

For each sample 𝑠, with 𝑠 = 1, … , 𝑆: 

1. Let 𝑏 denote a bootstrap sample, with 𝑏 = 1, … , 𝐵. Further let  �̂̅�𝑧𝑦𝑠
(𝐵)

=
1

𝐵
∑ �̂�𝑧𝑦𝑠𝑏𝑏  denote the 

mean over B bootstraps of sample 𝑠. Let 𝑝𝑧𝑦𝑠 be the true proportion in cell 𝑧, 𝑦 for sample 𝑠.  

2. Estimate the standard deviation by  

√𝑉𝑎�̂�(�̂�𝑧𝑦𝑠) = √
1

𝐵 − 1
 ∑ (�̂�𝑧𝑦𝑠𝑏 − �̂̅�𝑧𝑦𝑠

(𝐵)
)

2
 

𝑏

 

 and average over category combinations. 

3. the bias by 

𝐵𝑖𝑎�̂�(�̂�𝑧𝑦𝑠) =
1

𝐵
 ∑ �̂�𝑧𝑦𝑠𝑏 − 𝑝𝑧𝑦𝑠  

𝑏

 

Table 3.2 

Simplified example of how the true parameters would be estimated from three simulations 

Note: 𝑟 denotes the simulation replication,  �̂�𝑧𝑦 denotes the estimated probability for a given category 

combination, �̂̅�𝑧𝑦 the estimated population mean for a given category combination and √𝑉(�̂�𝑧𝑦) the standard 

deviation for a given category combination. 

 

Y Z 𝑟 = 1 𝑟 = 2 𝑟 = 3 Parameters 

  �̂�𝑧𝑦 �̂�𝑧𝑦 �̂�𝑧𝑦 �̂̅�𝑧𝑦 √𝑉(�̂�𝑧𝑦) 

1 1 .30 .25 .31 .287 .032 

1 2 .03 .04 .04 .037 .006 

2 1 .09 .11 .07 .090 .020 

2 2 .58 .60 .58 .587 .012 
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 and average the absolute value over category combinations.  

4. the RMSE by 

𝑅𝑀𝑆�̂�(�̂�𝑧𝑦𝑠) = √
1

𝐵
 ∑(�̂�𝑧𝑦𝑠𝑏 − 𝑝𝑧𝑦𝑠)

2
 

𝑏

 

 and average over category combinations 

5. derive the 95% confidence interval by ordering all �̂�𝑧𝑦𝑠𝑏 and taking the 2.5th and 97.5th 

percentiles as lower and upper limits, respectively 

This procedure resulted in 𝑆 = 10 estimates of the bootstrap means, standard deviations, bias and 

RMSE, which were averaged. These bootstrap estimates should be close to the estimates based on the 

𝑅 simulated samples. Appendix B includes a justification for the number of bootstraps. 

 

3.2.6 Assessing uncertainty 

In statistical matching it is possible to use the Fréchet property to provide absolute limits on the range 

of possible probabilities within a joint distribution. This will result in lower and upper bounds that can 

be used to assess the uncertainty of a statistical matching procedure (D’Orazio, 2019). The Fréchet 

property can be used to identify the following interval: 

 

max(0; 𝑃(Y = 𝑦) + 𝑃(Z = 𝑧) − 1) ≤ 𝑃(Y = 𝑦 , Z = 𝑧) ≤ min(𝑃(Y = 𝑦); 𝑃(Z = 𝑧)) 

 

 𝑦 = 1, … , 𝑌; 𝑧 = 1, … , 𝑍 

 

where 𝑦 and 𝑧 are the categories of non-overlapping variables Y and Z, respectively. 

A numerical example: say variable Y takes value 𝑦 =  1 with a probability of .429 and variable 

Z takes value 𝑧 = 1 with a probability of .652. The joint probability 𝑝1,1 would then be within the limits 

 

max(0; .429 + .652 − 1) ≤  𝑃(Y = 1, Z = 1) ≤ min(. 429; .652) , i. e. 

. 081 ≤ 𝑃(Y = 1, Z = 1) ≤  .429 

 

In other words, the joint probability 𝑃(Y = 1, Z = 1) is bounded from below by .081 and bounded from 

above by .429.  

 Calculating conditional bounds, i.e. conditioning variables Y and Z on another variable, has 

been shown to result in tighter intervals (Conti et al., 2012). Formally, it entails taking the expectation 

of the conditional bounds 

 

𝑃(Y = 𝑦, Z = 𝑧) ≤ 𝑃(Y = 𝑦, 𝑍 = 𝑧) ≤  𝑃(Y = 𝑦, Z = 𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
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where 

𝑃(Y = 𝑦, Z = 𝑧) =  ∑ max(0, 𝑃(Y = 𝑦 | X = 𝑥) +  𝑃(Z = 𝑧 | X = 𝑥) −  1) 𝑃(X = 𝑥)

𝑥

 

 𝑃(Y = 𝑦, Z = 𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  ∑ min(𝑃(Y = 𝑦 | X = 𝑥); 𝑃(Z = 𝑧 | X = 𝑥)) 𝑃(X = 𝑥)

𝑥

 

 

with X representing the overlapping variable(s) in the data used for matching and 𝑥 being the categories 

of X. When there are several overlapping variables, a single variable X can be constructed by crossing 

the overlapping variables (D’Orazio, 2019).  

 In this project, marginal and conditional Fréchet bounds were calculated for all sample pairs, in 

each situation, for each population. Conditional bounds were used to assess the magnitude of the bias 

and to assess the uncertainty around the estimates, in the form of confidence intervals.  

 

3.2.7 IVA versus CIA 

To assess whether the IVA is a viable alternative to using the CIA in statistical matching scenarios, all 

analyses were done using both approaches. The bias and RMSE of both approaches were compared to 

assess accuracy of both methods. Confidence intervals (and Fréchet bounds) and standard deviations 

were compared to assess uncertainty and precision.  
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Chapter 4 

Results 

 

4.1 Evaluation IVA 

To evaluate whether the IVA is a suitable assumption to use in a statistical matching context, the RMSE, 

bias and standard deviation calculated from the simulation were assessed. These measures were 

compared over the three matching scenarios for each of the five populations where the IVA is violated 

to varying degrees. In Figure 4.1 the bias, RMSE and standard deviations for all situations are shown. 

In this section the notation 𝐵𝑖𝑎𝑠𝑘𝑗, 𝑅𝑀𝑆𝐸𝑘𝑗 and 𝑆𝐷𝑘𝑗 is used where 𝑘 = 1, … 5 and 𝑗 = 1, … ,3 indicate 

the five populations and three matching scenarios (see Table 3.1). A measure of uncertainty is the 95% 

confidence interval around the estimates for the category combinations. These intervals are assessed in 

contrast to the conditional Fréchet bounds. For a full overview of all point estimates, standard deviations, 

confidence intervals, bias estimates and RMSEs, the reader is referred to Appendix C.  

 

4.1.1 Bias 

The bias was used to assess the systemic error in the estimation in the various simulated situations. Bias 

for all populations and scenarios can be found in Figure 4.1a. The grey bars in Figure 4.1a represent the 

width of the conditional Fréchet bounds for that specific situation. These bounds give an indication of 

the magnitude of the realized bias as they represent the maximum amount of bias possible. The biases 

will be compared to the conditional Fréchet bounds by reporting the proportion of the bounds that is 

covered by the bias. 

In general, the bias increases with more violation of the IVA except when there is solely a type 

B violation, where the bias is almost non-existent for all scenarios. When the IVA exactly holds or when 

there is solely a type B violation, the IVA approach to statistical matching is unbiased. Overall, the bias 

is smallest when the mediator is the overlapping variable (scenario 1). 

With a slight type A violation (population 3), the bias for scenario one is not very large, 

𝐵𝑖𝑎𝑠31 =  .0278 taking up 13.5% of the Fréchet bound. A more severe type A violation (population 4) 

results in a larger but still moderate bias, 𝐵𝑖𝑎𝑠41 =  .0537 covering 26.1% of the Fréchet bound. For 

both degrees of type A violation, the bias for scenarios two and three is comparable in absolute sense, 

𝐵𝑖𝑎𝑠32 =  .0767 versus 𝐵𝑖𝑎𝑠33 =  .0664 ; 𝐵𝑖𝑎𝑠42 =  .1198 versus 𝐵𝑖𝑎𝑠43 =  .1272. However, if the 

bias is taken relative to the conditional Fréchet bound, it is larger when the outcome variable overlaps,  
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where the bias covers 28.7% and 49.7% of the bound. When the instrumental variable overlaps the bias 

covers 20.9% and 40.3% of the bound.  

In the case of both a type A and type B violation (population 5), the bias for scenario one, 

𝐵𝑖𝑎𝑠51 =  .0328, in absolute sense is larger compared to only a type A violation (population 3) (where 

both type A violations were of the same magnitude, see Table 3.1). Taking the bias relative to the Fréchet 

bound indicates it to be smaller, covering 12.3% of the bound. For the other two scenarios, the biases 

are larger when both a type A and type B violation occur (population 5) relative to only a type A violation 

occurring (population 3). This difference was observed in both the absolute and relative sense. The 

highest absolute bias observed overall is found in scenario three, 𝐵𝑖𝑎𝑠53 =  .1543 which covers 44.3% 

of the Fréchet bound.  

 

Figure 4.1 

Simulated bias, RMSE and standard deviation of five populations using the instrumental variable 

approach to statistical matching 

Note: Grey areas in plot a indicate conditional Fréchet bounds for that specific scenario. 
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4.1.2 RMSE 

The RMSE was used to assess the accuracy of the estimation in the various simulated situations. Figure 

4.1b shows the RMSE for each population and matching scenario. In general, the estimation becomes 

less precise as the IVA is violated, particularly when there is a type A violation. When the mediator 

overlaps accuracy is generally highest.  

When the IVA is not violated at all, the RMSE is highest for scenario two, 𝑅𝑀𝑆𝐸12 =  .030. 

Overall, when the IVA is not violated, accuracy of the statistical matching is high for all scenarios. 

When there is solely a type B violation (population 2), the RMSE for scenarios one and two is 

comparable to the situation where the IVA is not violated. The RMSE for scenario three doubles in 

magnitude, 𝑅𝑀𝑆𝐸23 =  .036 versus 𝑅𝑀𝑆𝐸13 =  .015. Taken together, the overall accuracy for a type 

B violation is high for all scenarios.  

When there is solely a type A violation, the RMSE for scenarios two and three are comparable. 

A slight violation (population 3) results in a higher RMSE for scenario two compared to scenario three, 

𝑅𝑀𝑆𝐸32 =  .081 versus 𝑅𝑀𝑆𝐸33 =  .068. A severe violation (population 4) results in a slightly higher 

RMSE for scenario three compared to two, 𝑅𝑀𝑆𝐸43 =  .128 versus 𝑅𝑀𝑆𝐸42 =  .122. Overall, a severe 

type A violation results in low accuracy of the estimation where a slight violation results in a moderate 

accuracy of the estimation. When both types of violation are present (population 5) the RMSE is higher 

compared to only a slight type A violation, for all scenarios. The highest RMSE is observed in scenario 

three, 𝑅𝑀𝑆𝐸53 =  .155. Overall accuracy of the estimation for both types of violation is low.  

 

4.1.3 Precision and uncertainty 

4.1.3a Standard deviation 

The standard deviation was used as a measure of precision of the estimations in the various simulated 

situations. In Figure 4.1c the standard deviations for each population and scenario are shown. In general, 

the estimates are quite precise as none of the measures exceed .036. For scenario one (mediator as 

overlapping variable), precision is highest and constant over populations with all standard deviations 

hovering around .008.  

 Scenario two has the lowest precision compared to the other scenarios, except for the situation 

with two types of violation. When there is a type A violation, precision increases. Standard deviations 

are constant for no violation (𝑆𝐷12 =  .030), type B violation (𝑆𝐷22 =  .030) and both violations 

(𝑆𝐷52 =  .028). Precision of the estimates for scenario three are constant for no violation (𝑆𝐷13 =

 .015), type A violation (slight: 𝑆𝐷33 =  .015; severe: 𝑆𝐷43 =  .015) and both types of violation 

(𝑆𝐷53 =  .012). The exception is the precision in the case of only a type B violation (population 2), 

which is also the overall highest standard deviation with 𝑆𝐷23 =  .036. 
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4.1.3b Confidence intervals 

95% confidence intervals were used to assess uncertainty around the estimates. Figure 4.2 shows the 

true population value and the estimates and their confidence intervals. For the populations where the 

IVA is not violated or only a type B violation is present, the population value lies within the confidence 

interval (as expected since the bias was virtually zero). For populations where the IVA is violated, the 

true value often lies outside of the confidence intervals. Confidence intervals for scenario one are narrow 

and never fall outside the conditional Fréchet bounds. For scenario two and three the confidence 

intervals are generally much wider and also differ per category combination.  In populations where a 

slight or severe type A violation of the IVA is present, the confidence intervals are partly or fully outside 

of the Fréchet bounds.  

  

4.1.4 Bootstrap 

To assess how close bootstrap estimation comes to simulation results in the IV approach to statistical 

matching, the RMSE, bias and standard deviation bootstrap estimates were compared to the simulation 

results. Figure 4.3 displays the results for all three measures side by side. Overall, no large deviations 

were observed between the bootstrap and simulation estimates.   
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Figure 4.2 

Simulated estimated probabilities and their 95% confidence intervals for each category combination for all populations, each method and scenario 

Note: A type B violation indicates the IVA to be violated with respect to the relationship between the instrumental and mediator variable, a type A violation indicates the IVA to be violated with respect to 

the relationship between the instrumental and outcome variables. Along the x-axes the category combinations can be found, here I stands for the instrumental variable, O for the outcome variable and M for 

the mediating variable. Numbers indicate the value of that variable, for instance if the category combination is I2O1, the instrumental variable has value 2 and the outcome variable has value 1. Grey areas 

indicate the conditional Fréchet bounds for that specific category combination. Black diamonds demarcate the population value for that specific category combination. 
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4.2 IVA versus CIA 

To evaluate whether the IVA is a viable alternative to the CIA, the estimation results for both methods 

are compared with regards to bias, RMSE, standard deviations and confidence intervals.  

 

4.2.1 Bias 

The bias was used to compare the systematic error between the IVA and CIA approaches to statistical 

matching. In Figure 4.4a both methods’ bias is contrasted. For scenario one, where the mediator is the 

overlapping variable, all values align because in that situation both approaches give the exact same 

answer.  

 

Figure 4.3 

Simulated and bootstrapped bias, RMSE and standard deviation of five populations using the 

instrumental variable approach to statistical matching 

Note: A type B violation indicates the IVA to be violated with respect to the relationship between the 

instrumental and mediator variable, a type A violation indicates the IVA to be violated with respect to the 

relationship between the instrumental and outcome variables.  
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For the other scenarios results are quite different since the CIA is violated to different degrees 

compared to the IVA. Table 4.1 shows to what extent the CIA is violated in the different populations 

for scenarios two and three. For instance, when the IVA is not violated, the CIA is severely violated in 

both scenarios. Table 4.1 also contrasts the bias and its magnitude (as measured by the proportion of the 

conditional Fréchet bound covered by the bias) observed under the IVA and the CIA. Of note is the fact 

that for severe violations of the CIA, the bias is smaller compared to severe violations of the IVA. For 

instance, when the IVA is severely violated the bias under the IVA is .1198. In the same situation the 

CIA is also severely violated with a bias .0718.  

 

Table 4.1 

Violation of the CIA when the IVA is violated to different degrees and the observed bias and RMSE, 

for two statistical matching scenarios. 

Note: - indicates no violation, + indicates a weak association between the instrumental and mediator variables, * 

indicates a slight violation, ** indicates a severe violation and +* indicates a weak association between the 

instrumental and mediator variables combined with a slight violation. O and I represent the outcome and 

instrumental variables. X represents the overlapping variable, Y and Z represent the non-overlapping variables. 

CIA represents the Conditional Independence Assumption, IVA the Instrumental Variable Assumption. 

 

 Overlapping variable 

 X = O (scenario 2) X = I (scenario 3) 

IVA violation - + * ** +* - + * ** +* 

CIA violation ** * ** ** * ** ** * * *  

𝑂𝑅(Z, Y |X = 𝑥)  7 2 5.9 5.4 1.6 4 4 3.1 2.5 3.7 

  

Bias 

 

CIA .0892 .0353 .0801 .0718 .0245 .0616 .0724 .0501 .0398 .0670 

IVA .0013 .0014 .0767 .1198 .1025 .0004 .0010 .0664 .1272 .1543 

  

% conditional Fréchet bound covered by bias 

 

CIA 30.2 11.3 30.0 29.8 8.7 20.8 21.5 15.8 12.6 19.3 

IVA 0.4 0.45 28.7 49.7 36.5 0.1 0.3 20.9 40.3 44.3 

  

RMSE 

 

CIA .089 .036 .080 .072 .026 .062 .073 .051 .041 .067 

IVA .030 .030 .081 .122 .106 .015 .036 .068 .128 .155 
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4.2.2 RMSE 

The RMSE was used to compare the accuracy of the estimation between the IVA and the CIA 

approaches to statistical matching. Figure 4.4b shows the RMSEs of both methods side by side. As with 

the bias, the RMSEs for scenario one are identical since estimation is exactly the same. For the other 

scenarios the conclusions are similar to the conclusions for the bias, since low variance accounts for the 

bias to be very close to the RMSE. Overall, when the IVA is violated, accuracy is higher when using 

the CIA irrespective of to what degree the CIA is violated. When the IVA is not violated, accuracy is 

higher when using the IVA for estimation. 

Figure 4.4 

Bias, RMSE and standard deviation of five populations using the Instrumental Variable and 

Conditional Independence approaches to statistical matching 

Note: A type B violation indicates the IVA to be violated with respect to the relationship between the 

instrumental and mediator variable, a type A violation indicates the IVA to be violated with respect to the 

relationship between the instrumental and outcome variables.  
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4.3.3 Precision and uncertainty 

4.1.3a Standard deviation 

To compare precision of the estimates for various situations, the standard deviations for the IVA and 

CIA approach to statistical matching were compared. Figure 4.4c shows these standard deviations side 

by side. The standard deviations when estimating under the CIA are constant across populations and 

matching scenarios. Consequently, they all align with the standard deviations of scenario one when 

statistically matching under the IVA.  

 

4.1.3b Confidence intervals 

In addition to 95% confidence intervals for the IVA estimates, Figure 4.2 also includes these intervals 

for the CIA estimates. The confidence intervals for all scenarios and populations under the CIA coincide 

with the confidence intervals for scenario one under the IVA. This can be directly related to the similar 

standard deviations. The estimations and their confidence intervals under the CIA also never venture 

outside the conditional Fréchet bounds.  
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Chapter 5 

Discussion 

 

This project aimed to evaluate a new assumption – the IVA – as the basis for statistical matching and 

compare it to the classically used CIA. The main difference between these methods is that the CIA 

always assumes the non-overlapping variables to be independent given the overlapping variable, while 

the IVA always assumes the instrumental and outcome variables to be independent given the mediating 

variable, irrespective of which of these variables overlaps in the data. As such, the methods were 

compared for scenarios where either the mediating, the instrumental, or the outcome variable was the 

overlapping variable. This was done for situations where the IVA was violated to various degrees. The 

bias, accuracy, precision, and uncertainty were assessed and compared for both methods.   

The results indicate that a slight violation of the IVA results in bias and moderate loss of accuracy, 

while a severe violation of the IVA results in a substantial bias and loss of accuracy. This effect is 

strongest when the outcome variable is also the overlapping variable. Having a strong relationship 

between the instrumental and mediating variables is a protective factor against a slight violation of the 

IVA. Additionally, the results show that when the IVA is not violated, the IVA outperforms the CIA 

when the outcome or instrumental variable is the overlapping variable. When the mediator is the 

overlapping variable, either the IVA or the CIA can be used as they give identical results. Interestingly, 

in this specific study, the CIA seems to be more robust against any type of violation, particularly a severe 

violation. Overall, the CIA seems to be a good method that is quite robust against violations of the 

assumption.  

The study by Kim et al. (2016) also found a small violation of the IVA to not result in large 

biases. This is the only study that was found that uses an IVA approach to statistical matching. However, 

it is hard to compare the current study to theirs since they used a vastly different method for continuous 

data and only assessed the situation where the instrumental variable overlaps in the data. The importance 

of further exploration of the IVA approach has recently been emphasized by D’Orazio (2024).  

The current study highlights that, in some situations, the IVA approach might be more 

appropriate than relying on the CIA, particularly when the IVA is expected to hold well. Expert 

knowledge in the area of the variables under investigation can indicate whether this expectation is 

justified. In their 2017 paper, D’Orazio et al. highlighted the importance of using expert knowledge 

when selecting matching variables. In the context of the IVA approach to statistical matching, this can 

be crucial.  

This study provides a clear and direct comparison between the IVA and the CIA approach to 

statistical matching in identical situations. This way, insight is gained into which method is most suited 
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for which conditions. Furthermore, this study highlights to what degree the CIA is violated for different 

violations of the IVA. This offers a deeper understanding of the limitations but also of the strengths of 

both methods. Comparison of the approaches is more straightforward when one knows the exact 

violation of the assumptions. An additional strength of this study is the use of odds ratios. By defining 

the population distribution according to a certain odds ratio, total control over the associations between 

the variables is possible. This level of control enhances reliability and validity of the analysis because it 

is possible to have exact control over the degree to which the assumption is violated.  

A number of potential points of improvement can be identified. The confidence intervals and 

estimates obtained using the IVA approach sometimes exceed the conditional Fréchet bounds, which in 

principle should be impossible. This might be the case because conditional Fréchet bounds are calculated 

conditioning on the overlapping variable, while the IVA approach always conditions on the mediating 

variable. In scenarios two and three, the mediating variable is not the overlapping variable. In the 

simulation study the Fréchet bounds were only exceeded in populations where the IVA was violated. 

Finding a way to calculate Fréchet bounds specifically for the IVA approach might be valuable in future 

research as they can then be used as a diagnostic tool to see whether the IVA is violated in a given 

sample. An additional cause for exceeding Fréchet bounds might be that the probabilities are not 

restricted to these bounds during estimation. In future simulations this might be valuable to get a more 

accurate estimate of the bias.  

In addition, this study only considered categorical variables with two categories, which may 

limit generalizability of the results. Exploring situations with more categories could provide a more 

comprehensive understanding of the IVA approach to statistical matching. For the situation where the 

mediator is the overlapping variable, this is not a problem since all probabilities can be directly 

estimated. For the other two scenarios, this is less straightforward.  

Say the instrumental, mediating and outcome variables have 𝐶𝐼, 𝐶𝑀, and 𝐶𝑂 categories, 

respectively. When the mediating variable overlaps, it is always possible to directly calculate estimates 

for 𝑃(𝑂 = 𝑜 | 𝐼 = 𝑖), (𝑜 = 1, … , 𝐶𝑂; 𝑖 = 1, … , 𝐶𝐼). When the outcome variable overlaps, there are 𝐶𝐼𝐶𝑂 

equations in the form of Equation (2) and 𝐶𝐼 equations of the form ∑ 𝑃(𝑀 = 𝑚 | 𝐼 = 𝑖)
𝐶𝑀
𝑚=1 = 1. In total 

that gives 𝐶𝐼𝐶𝑂 + 𝐶𝐼 equations (of which some might be redundant) and 𝐶𝐼𝐶𝑀 unknowns. Similarly, 

when the instrumental variable overlaps, there is a total of 𝐶𝐼𝐶𝑂 + 𝐶𝑀 equations and 𝐶𝑂𝐶𝑀 unknowns. 

If the number of (non-redundant) equations exceeds the number of unknowns, the system of equations 

is overdetermined and has no exact solution. If the number of unknowns exceeds the number of (non-

redundant) equations the system is underdetermined and has several solutions.  

An example of a situation where the system is underdetermined is when the instrumental and 

outcome variables have two categories but the mediating variable has three categories. In that case there 

are six equations when the outcome variable overlaps and seven equations when the instrumental 

variable overlaps. In both situations there are two redundant equations (for the same reason mentioned 
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in Appendix A), and six unknowns. It is then impossible to find a unique solution for 𝑃(𝑂 = 𝑜 |𝑀 =

 𝑚) (if the instrumental variable overlaps) or 𝑃(𝑀 = 𝑚 |𝐼 = 𝑖) (if the outcome variable overlaps). A 

unique solution exists if and only if the number of unknowns is equal to the number of non-redundant 

equations. This poses an extra challenge when studying variables with more than two categories. 

 Future endeavors into the use of the IVA for statistical matching can explore several different 

aspects. It would be worthwhile to study the accuracy and precision of statistical matching under the 

IVA and the CIA when the distribution of one or more of the variables in the population is more extreme. 

An interesting question here would be whether the CIA would still result in an overall lower bias 

compared to the IVA approach. Studying situations where one or more variables have a highly skewed 

distribution could provide further insights into the robustness and real-world applicability of the IVA 

method and how it compares to the CIA. Moreover, studying the IVA approach when there are more 

categories or when one or more variables are continuous might be valuable. Investigating different 

variable types can deepen understanding of the IVA approach and shine a light on the specific situations 

where the IVA might be more suitable than the CIA. Finally, the current study assessed how the CIA 

performs under different IVA violations. It would also be interesting to assess how the IVA performs 

under different violations of the CIA.  

 In conclusion, the IVA approach to statistical matching might be a good alternative in certain 

situations since it offers more flexibility with regard to the overlapping variable. When a researcher is 

certain about an IV mechanism being present, the IVA approach, rather than the CIA approach, can be 

especially useful when a variable other than the mediator overlaps. When the IVA holds, the IVA 

approach provides more accurate results in situations where the mediator is not the overlapping variable 

compared to the CIA approach. It might also be useful when there are a number of overlapping variables, 

with one variable possibly being part of an IV mechanism with the non-overlapping variables. The 

researcher can then choose to use these variables for the statistical matching procedure. When it is 

uncertain whether an IV mechanism exists in the population, using the CIA might be more advisable as 

it is more robust against violations in general. All in all, this research offers a first insight into a new 

approach to statistical matching and can serve as a stepping stone for future endeavors.  
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Appendix 

Appendix A 

 

Equations to be solved when the mediator is not the overlapping variable 

Below the equations are given for calculating the conditional probabilities in an IV situation where each 

variable has two categories. In the second scenario where the outcome variable is overlapping in both 

datasets, this entails solving the equations for 𝑃(𝑀 = 𝑚 | 𝐼 = 𝑖). In the third scenario where the 

instrumental variable is overlapping in both datasets, this entails solving the equations for 

𝑃(𝑂 = 𝑜 | 𝑀 = 𝑚).  

 

𝑃(𝑂 = 1 | 𝐼 = 1) =

= 𝑃(𝑂 = 1 | 𝑀 = 1)𝑃(𝑀 = 1 | 𝐼 = 1) +  𝑃(𝑂 = 1 | 𝑀 = 2)𝑃(𝑀 = 2 | 𝐼 = 1) 

 

𝑃(𝑂 = 2 | 𝐼 = 1) =

= 𝑃(𝑂 = 2 | 𝑀 = 1)𝑃(𝑀 = 1 | 𝐼 = 1) +  𝑃(𝑂 = 2 | 𝑀 = 2)𝑃(𝑀 = 2 | 𝐼 = 1) 

 

𝑃(𝑂 = 1 | 𝐼 = 2) =

= 𝑃(𝑂 = 1 | 𝑀 = 1)𝑃(𝑀 = 1 | 𝐼 = 2) +  𝑃(𝑂 = 1 | 𝑀 = 2)𝑃(𝑀 = 2 | 𝐼 = 2) 

 

𝑃(𝑂 = 2 | 𝐼 = 2) =

= 𝑃(𝑂 = 2 | 𝑀 = 1)𝑃(𝑀 = 1 | 𝐼 = 2) +  𝑃(𝑂 = 2 | 𝑀 = 2)𝑃(𝑀 = 2 | 𝐼 = 2) 

 

Two of these equations are in fact redundant since 

 

𝑃(𝑂 =  1 | 𝐼 = 1) + 𝑃(𝑂 = 2 | 𝐼 = 1) = 1 

and 

𝑃(𝑂 = 1 | 𝐼 = 2) + 𝑃(𝑂 = 2 | 𝐼 = 2) = 1  
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Appendix B 
 

Determining the number of simulations and bootstrap samples 

To determine how many simulation replications (𝑅) and bootstrap samples (𝐵) were necessary, one 

population was used to run a test simulation and subsequent bootstrap analysis. From the test simulation, 

ten sample pairs of 𝑛 = 2000 were saved and used for the bootstrap analysis. The simulated and 

bootstrapped bias was calculated in the same way as described in Chapter 3 of this thesis. Table B.1 

describes the settings used to generate the population to sample from. 

 In Figure B.1 the bias for the test simulation for several 𝑅 replications is shown. The differences 

in the bias are not very large in general. With computational time and efficiency in mind it was decided 

that 𝑅 = 500 would be sufficient. Figure B.2 depicts the bias for the test bootstrap for several 𝐵 

bootstrap samples. The differences here are small and again with computation time in mind, it was 

determined that 𝐵 = 100 bootstrap samples (per simulated sample) would be sufficient. The results 

highlighted in Chapter 4 confirm that 100 bootstrap samples was sufficient.  

 

Table B.1 

Population used to do a test simulation in order to determine the number of simulation replications and 

bootstrap samples 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Test population 

N 1 000 000 

P(Mediator = 1) .850 

P(Outcome = 1) .652 

P(Instrumental = 1) .900 

OR(Mediator, Outcome) 4 

OR(Instrumental, Mediator) 7 

OR(Outcome, Instrumental | 

Mediator)  

1 
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Note: bootstrap analysis is based on ten simulated samples, number of bootstraps indicate the number of bootstrap 

samples taken from each simulated sample. 

Figure B.1 

Development of the estimated simulated bias in a statistical matching procedure using the IVA 

approach, for an increasing number of Monte Carlo simulations 

 

Figure B.2 

Development of the estimated bootstrap bias in a statistical matching procedure using the IVA 

approach, for an increasing number of Bootstrap samples 
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Appendix C 

 

Estimates of the simulation study with bootstrap analysis 

 

Table C.1  

Population value, marginal and conditional Fréchet bounds, simulated and bootstrap estimates, standard deviations and 95% confidence intervals for the IVA 

and CIA approach to statistical matching, for five populations, three scenarios and four category combinations 

      
IVA CIA 

      
Simulation Bootstrap Simulation Bootstrap 

Population - 

IVA 

violation 

Overlapping 

variable 

Category 

combination 

Population 

value 

Marginal 

Frechet 

bounds 

Conditional 

Frechet 

bounds 

Estimate 

(SD) 
95% CI 

Estimate 

(SD) 
95% CI 

Estimate 

(SD) 
95% CI 

Estimate 

(SD) 
95% CI 

1 - no 

violation 

Mediator  I1O1 .31 [.08, .43] [.22, .43] 
.31 

(.009) 
[.29, .33] 

.31 

(.009) 
[.29, .33] 

.31 

(.009) 
[.29, .33] 

0.31 

(.009) 
[.29, .33] 

 I2O1 .34 [.22, .57] [.22, .43] 
.34 

(.010) 
[.32, .36] 

.35 

(.010) 
[.33, .36] 

.34 

(.010) 
[.32, .36] 

0.34 

(.010) 
[.33, .36] 

  I1O2 .12 [.00, .35] [.00, .21] 
.12 

(.006) 
[.11, .13] 

.12 

(.005) 
[.11, .13] 

.12 

(.006) 
[.11, .13] 

0.12 

(.005) 
[.11, .13] 

  I2O2 .23 [.00, .35] [.14, .35] 
.23 

(.008) 
[.22, .25] 

.23 

(.008) 
[.21, .24] 

.23 

(.008) 
[.22, .25] 

0.23 

(.008) 
[.22, .24] 

 Outcome  I1M1 .36 [.04, .43] [.13, .43] 
.36 

(.027) 
[.32, .42] 

.37 

(.024) 
[.32, .41] 

.27 

(.009) 
[.26, .29] 

0.28 

(.009) 
[.26, .29] 

  I1M2 .07 [.00, .39] [.00, .29] 
.07 

(.026) 
[.01, .11] 

.06 

(.023) 
[.02, .11] 

.16 

(.006) 
[.14, .17] 

0.34 

(.009) 
[.32, .36] 
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IVA CIA 

      
Simulation Bootstrap Simulation Bootstrap 

Population - 

IVA 

violation 

Overlapping 

variable 

Category 

combination 

Population 

value 

Marginal 

Frechet 

bounds 

Conditional 

Frechet 

bounds 

Estimate 

(SD) 
95% CI 

Estimate 

(SD) 
95% CI 

Estimate 

(SD) 
95% CI 

Estimate 

(SD) 
95% CI 

  I2M1 .25 [.19, .57] [.19, .48] 
.25 

(.035) 
[.18, .31] 

.26 

(.035) 
[.19, .32] 

.34 

(.009) 
[.32, .36] 

0.16 

(.006) 
[.14, .17] 

  I2M2 .32 [.00, .39] [.09, .39] 
.32 

(.033) 
[.26, .39] 

.31 

(.034) 
[.25, .38] 

.23 

(.007) 
[.22, .25] 

0.23 

(.008) 
[.22, .25] 

 Instrumental M1O1 .48 [.27, .61] [.27, .56] 
.47 

(.016) 
[.45, .51] 

.47 

(.016) 
[.44, .50] 

.41 

(.010) 
[.39, .43] 

0.42 

(.010) 
[.40, .43] 

  M2O1 .18 [.04, .39] [.09, .39] 
.18 

(.016) 
[.15, .21] 

.18 

(.016) 
[.15, .21] 

.24 

(.009) 
[.22, .26] 

0.24 

(.008) 
[.22, .25] 

  M1O2 .14 [.00, .35] [.05, .35] 
.14 

(.014) 
[.11, .17] 

.14 

(.015) 
[.12, .17] 

.20 

(.008) 
[.19, .22] 

0.20 

(.008) 
[.19, .22] 

  M2O2 .21 [.00, .35] [.00, .30] 
.21 

(.014) 
[.18, .24] 

.20 

(.015) 
[.17, .23] 

.15 

(.006) 
[.14, .16] 

0.14 

(.006) 
[.13, .15] 

2 – type B 

violation 

Mediator I1O1 .29 [.08, .43] [.16, .43] 
.29 

(.008) 
[.28, .31] 

.29 

(.009) 
[.28, .31] 

.29 

(.008) 
[.28, .31] 

0.29 

(.009) 
[.28, .31] 

 I2O1 .36 [.22, .57] [.22, .49] 
.36 

(.010) 
[.34, .38] 

.36 

(.010) 
[.34, .37] 

.36 

(.010) 
[.34, .38] 

0.36 

(.010) 
[.34, .37] 

  I1O2 .14 [.00, .35] [.00, .27] 
.14 

(.006) 
[.13, .15] 

.14 

(.006) 
[.13, .15] 

.14 

(.006) 
[.13, .15] 

0.14 

(.006) 
[.13, .15] 

  I2O2 .21 [.00, .35] [.08, .35] 
.21 

(.007) 
[.20, .22] 

.21 

(.007) 
[.20, .23] 

.21 

(.007) 
[.20, .22] 

0.21 

(.007) 
[.20, .23] 

 Outcome I1M1 .30 [.04, .43] [.12, .43] 
.30 

(.027) 
[.25, .35] 

.30 

(.027) 
[.25, .35] 

.27 

(.008) 
[.25, .28] 

0.26 

(.009) 
[.25, .28] 
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IVA CIA 

      
Simulation Bootstrap Simulation Bootstrap 

Population - 

IVA 

violation 

Overlapping 

variable 

Category 

combination 

Population 

value 

Marginal 

Frechet 

bounds 

Conditional 

Frechet 

bounds 

Estimate 

(SD) 
95% CI 

Estimate 

(SD) 
95% CI 

Estimate 

(SD) 
95% CI 

Estimate 

(SD) 
95% CI 

  I1M2 .13 [.00, .38] [.00, .31] 
.13 

(.027) 
[.08, .18] 

.13 

(.026) 
[.08, .18] 

.16 

(.007) 
[.15, .17] 

0.35 

(.009) 
[.33, .36] 

  I2M1 .31 [.19, .57] [.19, .50] 
.31 

(.032) 
[.25, .38] 

.33 

(.034) 
[.26, .39] 

.35 

(.010) 
[.33, .37] 

0.16 

(.006) 
[.15, .17] 

  I2M2 .26 [.00, .38] [.07, .38] 
.26 

(.032) 
[.19, .32] 

.25 

(.033) 
[.18, .31] 

.22 

(.008) 
[.21, .24] 

0.23 

(.008) 
[.21, .24] 

 Instrumental M1O1 .48 [.27, .62] [.27, .60] 
.48 

(.035) 
[.41, .54] 

.48 

(.034) 
[.42, .55] 

.40 

(.009) 
[.39, .42] 

0.41 

(.009) 
[.39, .42] 

  M2O1 .18 [.04, .38] [.05, .38] 
.18 

(.035) 
[.10, .24] 

.18 

(.035) 
[.11, .24] 

.25 

(.008) 
[.23, .27] 

0.25 

(.008) 
[.23, .26] 

  M1O2 .14 [.00, .35] [.01, .35] 
.14 

(.036) 
[.07, .21] 

.14 

(.033) 
[.07, .20] 

.21 

(.008) 
[.20, .23] 

0.21 

(.007) 
[.20, .23] 

  M2O2 .21 [.00, .35] [.00, .34] 
.21 

(.036) 
[.14, .28] 

.21 

(.034) 
[.15, .28] 

.14 

(.005) 
[.12, .15] 

0.13 

(.005) 
[.12, .14] 

3 – slight 

type A 

violation 

Mediator I1O1 .34 [.08, .43] [.22, .43] 
.31 

(.009) 
[.29, .33] 

.31 

(.009) 
[.29, .33] 

.31 

(.009) 
[.29, .33] 

0.31 

(.009) 
[.29, .33] 

 I2O1 .31 [.22, .57] [.22, .43] 
.34 

(.010) 
[.32, .36] 

.34 

(.010) 
[.32, .36] 

.34 

(.010) 
[.32, .36] 

0.34 

(.009) 
[.32, .36] 

  I1O2 .09 [.00, .35] [.00, .21] 
.12 

(.006) 
[.11, .13] 

.12 

(.006) 
[.11, .13] 

.12 

(.006) 
[.11, .13] 

0.12 

(.006) 
[.11, .13] 

  I2O2 .26 [.00, .35] [.14, .35] 
.23 

(.008) 
[.21, .25] 

.23 

(.008) 
[.22, .24] 

.23 

(.008) 
[.21, .24] 

0.23 

(.008) 
[.22, .25] 
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IVA CIA 

      
Simulation Bootstrap Simulation Bootstrap 

Population - 

IVA 

violation 

Overlapping 

variable 

Category 

combination 

Population 

value 

Marginal 

Frechet 

bounds 

Conditional 

Frechet 

bounds 

Estimate 

(SD) 
95% CI 

Estimate 

(SD) 
95% CI 

Estimate 

(SD) 
95% CI 

Estimate 

(SD) 
95% CI 

 Outcome  I1M1 .36 [.04, .43] [.16, .43] 
.43 

(.012) 
[.40, .45] 

.42 

(.015) 
[.39, .45] 

.28 

(.008) 
[.27, .30] 

0.28 

(.009) 
[.27, .30] 

  I1M2 .07 [.00, .39] [.00, .27] 
.00 

(.006) 
[.00, .02] 

.01 

(.010) 
[.00, .03] 

.15 

(.006) 
[.13, .16] 

0.33 

(.009) 
[.32, .35] 

  I2M1 .25 [.19, .57] [.19, .45] 
.16 

(.038) 
[.09, .23] 

.15 

(.039) 
[.08, .22] 

.33 

(.009) 
[.31, .35] 

0.15 

(.006) 
[.14, .16] 

  I2M2 .32 [.00, .39] [.12, .39] 
.41 

(.037) 
[.34, .48] 

.42 

(.038) 
[.35, .49] 

.24 

(.008) 
[.22, .25] 

0.24 

(.008) 
[.22, .25] 

 Instrumental M1O1 .48 [.27, .61] [.27, .59] 
.54 

(.016) 
[.51, .58] 

.54 

(.016) 
[.51, .57] 

.43 

(.010) 
[.41, .44] 

0.43 

(.009) 
[.41, .44] 

  M2O1 .18 [.04, .39] [.06, .38] 
.11 

(.016) 
[.08, .14] 

.11 

(.016) 
[.08, .14] 

.23 

(.008) 
[.21, .24] 

0.23 

(.008) 
[.21, .24] 

  M1O2 .14 [.00, .35] [.02, .34] 
.07 

(.014) 
[.04, .10] 

.07 

(.014) 
[.05, .10] 

.19 

(.007) 
[.18, .20] 

0.19 

(.007) 
[.18, .20] 

  M2O2 .21 [.00, .35] [.01, .32] 
.27 

(.015) 
[.24, .30] 

.28 

(.015) 
[.25, .31] 

.16 

(.006) 
[.15, .17] 

0.16 

(.006) 
[.15, .17] 

4 – severe 

type A 

violation 

Mediator I1O1 .36 [.08, .43] [.22, .43] 
.31 

(.008) 
[.30, .33] 

.31 

(.009) 
[.29, .33] 

.31 

(.008) 
[.30, .33] 

0.31 

(.009) 
[.29, .33] 

 I2O1 .29 [.22, .57] [.22, .43] 
.34 

(.010) 
[.32, .36] 

.34 

(.010) 
[.33, .36] 

.34 

(.010) 
[.32, .36] 

0.34 

(.009) 
[.33, .36] 

  I1O2 .06 [.00, .35] [.00, .21] 
.12 

(.006) 
[.11, .13] 

.12 

(.006) 
[.11, .13] 

.12 

(.006) 
[.11, .13] 

0.12 

(.006) 
[.11, .13] 



APPENDIX 

 
40 

      
IVA CIA 

      
Simulation Bootstrap Simulation Bootstrap 

Population - 

IVA 

violation 

Overlapping 

variable 

Category 

combination 

Population 

value 

Marginal 

Frechet 

bounds 

Conditional 

Frechet 

bounds 

Estimate 

(SD) 
95% CI 

Estimate 

(SD) 
95% CI 

Estimate 

(SD) 
95% CI 

Estimate 

(SD) 
95% CI 

  I2O2 .28 [.00, .35] [.14, .35] 
.23 

(.008) 
[.21, .24] 

.23 

(.008) 
[.21, .24] 

.23 

(.008) 
[.21, .24] 

0.23 

(.008) 
[.22, .24] 

 Outcome I1M1 .36 [.04, .43] [.19, .43] 
.43 

(.011) 
[.41, .45] 

.42 

(.011) 
[.40, .45] 

.29 

(.009) 
[.27, .31] 

0.29 

(.009) 
[.27, .31] 

  I1M2 .07 [.00, .38] [.00, .24] 
.00 

(.000) 
[.00, .00] 

.00 

(.000) 
[.00, .00] 

.14 

(.006) 
[.13, .15] 

0.33 

(.009) 
[.31, .34] 

  I2M1 .25 [.19, .57] [.19, .43] 
.08 

(.040) 
[.00, .16] 

.08 

(.037) 
[.02, .15] 

.32 

(.010) 
[.31, .34] 

0.14 

(.006) 
[.12, .15] 

  I2M2 .32 [.00, .38] [.14, .39] 
.49 

(.038) 
[.42, .57] 

.49 

(.036) 
[.42, .56] 

.25 

(.008) 
[.23, .26] 

0.25 

(.008) 
[.23, .26] 

 Instrumental M1O1 .48 [.27, .62] [.30, .62] 
.60 

(.014) 
[.57, .62] 

.60 

(.014) 
[.57, .62] 

.44 

(.009) 
[.42, .45] 

0.43 

(.009) 
[.42, .45] 

  M2O1 .18 [.04, .38] [.04, .35] 
.05 

(.017) 
[.01, .08] 

.05 

(.016) 
[.02, .08] 

.22 

(.008) 
[.20, .23] 

0.22 

(.008) 
[.20, .23] 

  M1O2 .14 [.00, .35] [.00, .32] 
.01 

(.011) 
[.00, .04] 

.01 

(.010) 
[.00, .04] 

.18 

(.007) 
[.17, .19] 

0.18 

(.007) 
[.17, .19] 

  M2O2 .21 [.00, .35] [.03, .35] 
.34 

(.016) 
[.31, .37] 

.34 

(.015) 
[.31, .37] 

.17 

(.007) 
[.16, .18] 

0.17 

(.007) 
[.16, .18] 

5 – type A 

and type B 

violation  

Mediator I1O1 .32 [.08, .43] [.16, .43] 
.29 

(.008) 
[.27, .31] 

.29 

(.009) 
[.27, .31] 

.29 

(.008) 
[.28, .31] 

0.29 

(.009) 
[.27, .31] 

 I2O1 .33 [.22, .57] [.22, .49] 
.36 

(.010) 
[.34, .38] 

.36 

(.010) 
[.34, .38] 

.36 

(.010) 
[.34, .38] 

0.36 

(.010) 
[.34, .38] 
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Note: numbers between brackets denote the standard deviation of the estimate. Category combinations are coded, here I stands for the instrumental variable, O for the 

outcome variable and M for the mediating variable. Numbers indicate the value of that variable, for instance if the category combination is I2O1, the instrumental variable 

has value 2 and the outcome variable has value 1. 

      
IVA CIA 

      
Simulation Bootstrap Simulation Bootstrap 

Population - 

IVA 

violation 

Overlapping 

variable 

Category 

combination 

Population 

value 

Marginal 

Frechet 

bounds 

Conditional 

Frechet 

bounds 

Estimate 

(SD) 
95% CI 

Estimate 

(SD) 
95% CI 

Estimate 

(SD) 
95% CI 

Estimate 

(SD) 
95% CI 

  I1O2 .10 [.00, .35] [.00, .27] 
.14 

(.006) 
[.13, .15] 

.14 

(.006) 
[.13, .15] 

.14 

(.006) 
[.13, .15] 

0.14 

(.006) 
[.13, .15] 

  I2O2 .24 [.00, .35] [.08, .35] 
.21 

(.007) 
[.20, .22] 

.21 

(.008) 
[.20, .23] 

.21 

(.007) 
[.20, .23] 

0.21 

(.008) 
[.20, .23] 

 Outcome I1M1 .30 [.04, .43] [.15, .43] 
.41 

(.022) 
[.36, .44] 

.41 

(.020) 
[.36, .44] 

.28 

(.008) 
[.26, .30] 

0.28 

(.009) 
[.26, .29] 

  I1M2 .13 [.00, .38] [.00, .28] 
.02 

(.021) 
[.00, .07] 

.02 

(.017) 
[.00, .06] 

.15 

(.006) 
[.14, .16] 

0.34 

(.009) 
[.32, .36] 

  I2M1 .31 [.19, .57] [.19, .47] 
.21 

(.034) 
[.14, .27] 

.21 

(.037) 
[.13, .27] 

.34 

(.009) 
[.32, .36] 

0.15 

(.006) 
[.14, .16] 

  I2M2 .26 [.00, .38] [.10, .38] 
.36 

(.034) 
[.30, .43] 

.37 

(.036) 
[.30, .43] 

.23 

(.008) 
[.22, .25] 

0.23 

(.008) 
[.22, .25] 

 Instrumental M1O1 .48 [.27, .62] [.27, .62] 
.61 

(.011) 
[.59, .64] 

.61 

(.013) 
[.58, .63] 

.41 

(.009) 
[.39, .43] 

0.40 

(.010) 
[.39, .42] 

  M2O1 .18 [.04, .38] [.04, .38] 
.01 

(.015) 
[.00, .05] 

.01 

(.014) 
[.00, .04] 

.24 

(.009) 
[.23, .26] 

0.25 

(.008) 
[.23, .26] 

  M1O2 .14 [.00, .35] [.00, .35] 
.00 

(.004) 
[.00, .01] 

.00 

(.004) 
[.00, .01] 

.21 

(.008) 
[.19, .22] 

0.21 

(.007) 
[.19, .22] 

  M2O2 .21 [.00, .35] [.00, .35] 
.38 

(.017) 
[.34, .40] 

.38 

(.017) 
[.34, .41] 

.14 

(.006) 
[.13, .15] 

0.14 

(.006) 
[.13, .16] 
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Table C.2 

Marginal and conditional Fréchet bound widths, simulated and bootstrap bias, RMSE and standard deviation estimates for the IVA and CIA approaches to 

statistical matching, for five populations and three scenarios 

    IVA CIA 

    Simulation Bootstrap Simulation Bootstrap 

Population 
Overlapping 

variable 

Width marginal 

Fréchet bound 

Width conditional 

Fréchet bound 
Bias RMSE SD Bias RMSE SD Bias RMSE SD Bias RMSE SD 

1 Instrumental .348 .298 .0004 .015 .015 .0059 .019 .015 .0616 .062 .008 .0629 .063 .008 

  Mediator .350 .210 .0002 .008 .008 .0012 .010 .008 .0002 .008 .008 .0011 .010 .008 

  Outcome .388 .295 .0013 .030 .030 .0059 .038 .029 .0892 .089 .008 .0886 .089 .008 

2 Instrumental .348 .318 .0664 .068 .015 .0660 .068 .015 .0501 .051 .008 .0510 .052 .008 

  Mediator .350 .210 .0278 .029 .008 .0267 .028 .008 .0278 .029 .008 .0264 .028 .008 

  Outcome .388 .268 .0767 .081 .023 .0796 .084 .026 .0801 .080 .008 .0801 .080 .008 

3 Instrumental .348 .318 .1272 .128 .015 .1244 .125 .014 .0398 .041 .008 .0424 .043 .008 

  Mediator .350 .210 .0537 .054 .008 .0561 .057 .008 .0537 .054 .008 .0560 .057 .008 

  Outcome .382 .242 .1198 .122 .022 .1203 .123 .021 .0718 .072 .008 .0692 .070 .008 
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    IVA CIA 

    Simulation Bootstrap Simulation Bootstrap 

Population 
Overlapping 

variable 

Width marginal 

Fréchet bound 

Width conditional 

Fréchet bound 
Bias RMSE SD Bias RMSE SD Bias RMSE SD Bias RMSE SD 

4 Instrumental .348 .335 .0010 .036 .036 .0015 .053 .034 .0724 .073 .008 .0714 .072 .008 

  Mediator .350 .270 .0003 .008 .008 .0025 .010 .008 .0003 .008 .008 .0026 .010 .008 

  Outcome .382 .310 .0014 .030 .030 .0092 .039 .030 .0353 .036 .008 .0331 .034 .008 

5 Instrumental .348 .348 .1543 .155 .012 .1520 .153 .012 .0670 .067 .008 .0690 .069 .008 

  Mediator .350 .270 .0328 .034 .008 .0321 .033 .008 .0328 .034 .008 .0322 .033 .008 

  Outcome .382 .280 .1025 .106 .028 .1054 .110 .028 .0245 .026 .008 .0247 .026 .008 
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Appendix D 

 

Reference to online repository  

 

https://github.com/avdmerbel/AEvdMerbel_Thesis_StatisticalMatching 


