
Quantum error correction on the toric code using two distinct
reinforcement learning game frameworks
Spoor, Lindsay

Citation
Spoor, L. (2024). Quantum error correction on the toric code using two distinct
reinforcement learning game frameworks.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master Thesis,
2023

Downloaded from: https://hdl.handle.net/1887/3731859

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/3731859

Quantum error correction on the
toric code using two distinct
reinforcement learning game

frameworks

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

PHYSICS

Author : Lindsay Spoor
Student ID : 1983822
Supervisor : Evert van Nieuwenburg
Second corrector : Aske Plaat

Leiden, The Netherlands, March 1, 2024

Quantum error correction on the
toric code using two distinct
reinforcement learning game

frameworks

Lindsay Spoor

Huygens-Kamerlingh Onnes Laboratory, Leiden University
P.O. Box 9500, 2300 RA Leiden, The Netherlands

March 1, 2024

Abstract

This project employs reinforcement learning techniques to explore novel
decoding strategies for quantum error correction, particularly focusing on
the toric code, to address the challenge of maintaining stable quantum
states for fault-tolerant quantum computing. Two game frameworks are
established, including a novel dynamic game framework applicable to the
training and measuring of RL agents and potential application in multi-
agent scenarios. The RL agents use Stable Baselines 3’s Proximal Policy
Optimization and show to achieve Minimum Weight Perfect Matching
performance on 3 × 3 toric code lattices in both the static and dynamic
game frameworks.

Contents

1 Introduction 1

2 Error Correction 3
2.1 Classical Error Correction 3
2.2 Quantum Error Correction 4
2.3 Toric Code 6
2.4 Minimum Weight Perfect Matching 10

3 Reinforcement Learning 13
3.1 Deep Reinforcement Learning 14
3.2 Policy-based RL 15

3.2.1 Policy Gradient Method 16
3.2.2 Actor Critic 16
3.2.3 Proximal Policy Optimization 17

3.3 Reinforcement Learning applied to QEC 18

4 Decoding Game 19
4.1 Environment 20
4.2 Static Framework 22
4.3 Dynamic Framework 27

5 Results 33
5.1 Static Framework 33

5.1.1 Training Setup 34
5.1.2 Performance Evaluation 37

5.2 Dynamic Framework 40
5.2.1 Training Setup 40
5.2.2 Performance Evaluation 44

Version of March 1, 2024– Created March 1, 2024 - 18:58

v

vi CONTENTS

6 Discussion and Outlook 47

Acknowledgements 49

Bibliography 54

A Static Framework 55
A.1 Hyperparameter Settings 55
A.2 Experiments on PPO 59
A.3 Examples of failed decoding cases 62

B Dynamic Framework 67
B.1 Hyperparameter Settings 67
B.2 Experiments on different values of N, Nnew, k 69

C Code 71
C.1 Description 71

vi

Version of March 1, 2024– Created March 1, 2024 - 18:58

Chapter 1
Introduction

The realm of quantum computing has expanded into various specialized
areas of research. Whether it is quantum algorithms, hardware advance-
ments, or quantum error correction, researchers are met with distinct chal-
lenges in their fields. Nonetheless, they share a common obstacle: the re-
quirement to maintain stable quantum states to effectively execute quan-
tum computations. Addressing this challenge, particularly in reducing
errors due to state decoherence, remains central to the progress of quan-
tum computing. Unlike classical computers, quantum computers rely on
the delicate rules of quantum mechanics. The fragile nature of quantum
states necessitates robustness in order to preserve the integrity of infor-
mation. Obstacles being faced in preserving state stability are due to im-
perfect control mechanisms, environmental instability and the quantum
systems inherently being subject to noise. Being able to sustainably exe-
cute large-scale quantum computations, requiring quantum states that can
persist for long enough and are robust to the described obstacles, is called
fault-tolerant quantum computing. Mitigation of errors arising from state
decoherence is one of the biggest challenges being faced in this field of
research [1].

One of the most prominent approaches to achieve this fault-tolerance is
quantum error correction (QEC). This approach involves encoding quan-
tum information redundantly across multiple qubits, enabling the detec-
tion and correction of errors without disturbing the encoded information.
However, QEC frameworks can not be set-up as straightforward as for
classical error correction. QEC is subject to constraints imposed by quan-
tum information theory, necessitating clever and sophisticated protocols
for the encoding and decoding of information [1, 2]. One of the most pop-
ular frameworks that fulfil these constraints are topological error correct-

Version of March 1, 2024– Created March 1, 2024 - 18:58

1

2 Introduction

ing codes, from which Kitaev’s toric code is a subset [3]. The toric code
exhibits robustness against local errors and provides a foundation for the
exploration of error correcting strategies. The standard error decoder for
the toric code is the Minimum Weight Perfect Matching (MWPM) algo-
rithm [4, 5], although this algorithm has inherent limitations and may not
generalize well to real-world scenarios.

In recent years, machine learning techniques have gained prominence
in diverse fields of research, offering novel approaches to complex physics
problems which were otherwise oftentimes tackled by deterministic and
statistical models. Machine learning is capable of capturing structures
and learn strategies autonomously, either via i) supervised learning or ii)
unsupervised learning, where information can be derived from provided
datasets, or iii) reinforcement learning (RL), presenting a dynamic learn-
ing setup in which the learner is able to interact with the problem and
receives feedback on its applied strategy. Moreover, the field of deep re-
inforcement learning (DRL) leverages on deep neural networks, and has
recently demonstrated remarkable milestones in achieving super-human
performance, especially on board games [6]. Treating a QEC problem on
the toric code as a strategic interactive board game offers the possibility
to explore novel decoding strategies tailored to real-world quantum error
scenarios.

This research introduces two distinct frameworks for the training and
evaluation of RL agents on the toric code: i) a static game scenario, whereby
the sequence of decoding actions does not affect the end result, offering the
ability to benchmark the performance against the prominent single-shot
MWPM decoder, and ii) a dynamic game scenario similar to a survival-
type game called Decodoku, allowing the RL agent to learn a strategy that
involves sequential decision-making [7]. The latter framework aims to
mimic a scenario for real-time error correction in a quantum computer.
Furthermore, it aims to lay out the groundwork for future investigations
into multi-agent RL frameworks, allowing for further exploration of novel
RL-driven decoding strategies, which will ultimately deepen our under-
standing of QEC.

In Chapter 2, a theoretical background on error correction is outlined,
necessary for understanding the remainder of this research. Chapter 3
provides a general overview of RL and delves deeper into the algorithms
applied in this study. Chapter 4 introduces the decoding game tailored for
the RL agents, in which both the environment and the two distinct frame-
works are explained. Chapter 5 presents the results for both frameworks.
Chapter 6 concludes the thesis by providing a summary and discussion of
the results presented, alongside offering an outlook for future research.

2

Version of March 1, 2024– Created March 1, 2024 - 18:58

Chapter 2
Error Correction

2.1 Classical Error Correction

Classical information sciences rely on binary representations, where data
is expressed as sequences of bits with values of ’0’ or ’1’. In order to meet
the demands on high-performance communication networks such as tele-
phone networks and the internet, it was necessary for classical computer
computations to be performed consistently and reliably [8]. Therefore,
classical error correction theory was established. The fundamental idea
behind error correction is to add redundancy to the system, i.e. increas-
ing the number of bits used to represent a given amount of information,
which can be achieved by employing a set of instructions. This is called an
error correction code. The simplest example of such a code is the three-bit
repetition code, which maps each bit value:

{0, 1} → {000, 111}, (2.1)

in which ’000’ and ’111’ represent the logical codewords. For example, if
a message would be transmitted including a single bit ’0’ → ’000’ and a
single bit-flip error occurs during transmission, yielding the received mes-
sage to be ’010’, the recipient can deduce the initial message by looking at
the majority vote of the codeword. However, this reasoning does not hold
for cases in which more than one bit-flip error occurs. In the two bit-flip
error case, the majority vote will lead to an incorrect message deduction,
and in the case of three bit-flip errors this may even yield a valid code-
word in which it is impossible to detect the presence of an error. Referring
to this last case, the code distance d is defined by the number of errors it can
correct t,

Version of March 1, 2024– Created March 1, 2024 - 18:58

3

4 Error Correction

d = 2t + 1. (2.2)

For example, following Eq. 2.2, the three-bit repetition code thus has d = 3
and t = 1 [2]. Adding more redundancy to the system by enlarging the
code distance therefore provides a way to construct a more robust error
correction protocol.

2.2 Quantum Error Correction

Transferring the classical information system into a quantum information
system, the classical bit is replaced by the qubit and can be written in its
general form as

|ψ⟩ = α |0⟩+ β |1⟩ , (2.3)

where α and β are the probability amplitudes represented as complex
numbers and are constrained to the normalization condition |α|2 + |β|2 =
1. Here,

|0⟩ =
(

1
0

)
, |1⟩ =

(
0
1

)
(2.4)

are the orthonormal basis states in which a qubit can be represented. Re-
ferring to Eq. 2.3, information encoded by qubits can therefore be situated
in a superposition of those basis states. Thereby the quantum computa-
tional space scales as 2n, where n is the total number of qubits of the sys-
tem. The general form from Eq. 2.3 can be written in a geometric repre-
sentation as

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ , (2.5)

such that | cos θ
2 |2 + |eiϕ sin θ

2 |2 = 1 still holds. Qubit states can then, using
this representation, be projected onto the surface of the Bloch sphere, as
shown in Fig. 2.1.

4

Version of March 1, 2024– Created March 1, 2024 - 18:58

2.2 Quantum Error Correction 5

| ⟩𝜓

#𝑦

#𝑥

𝑧̂ = | ⟩0

Typ	

hier	

uw	
vergelijking. 𝜃

𝜙

Figure 2.1: The geometrical representation of a qubit state can be represented as
a point on the surface on the Bloch sphere.

Any point on the Bloch sphere represents a quantum state, automat-
ically implying that the qubit is susceptible to infinitely many possible
errors. This makes the construction of error correcting codes challenging.
However, this infinite set of errors can be digitised in such a way that one
can sufficiently correct for a finite set of errors [9]. Designing error cor-
recting codes must therefore be done by encoding quantum information
redundantly and in a clever way, as quantum error correction is not as
straight-forward as classical error correction. Quantum error correction
brings complications that need to be taken into account when designing a
valid error correction code:

• No-cloning theorem [10]: Qubits are subject to the so-called no-
cloning theorem, stating that it is impossible for a qubit state |ψ⟩
to be cloned by performing a unitary operation on it which would
allow for

Uclone(|ψ⟩ ⊗ |0⟩)→ |ψ⟩ ⊗ |ψ⟩ . (2.6)

• Bit-flips and phase-flips: Not only must one account for bit-flip er-
rors on the quantum code; one must also consider the possibility of
phase-flip errors, in contrast to the classical case in which only bit-
flips are possible.

Version of March 1, 2024– Created March 1, 2024 - 18:58

5

6 Error Correction

• Wavefunction collapse: Measuring a qubit results in a collapsing
wavefunction. Therefore, measurements necessary to carry out an
error correction procedure must be chosen cleverly and carefully to
prevent encoded information from being inadvertently erased.

Adding redundancy to the system therefore needs to be done according
to the principles from above. The logical qubit can be introduced as the
piece of quantum information one wants to encode and protect. The log-
ical qubits can be represented in a k-dimensional subspace, and its basis
states can be mapped onto a larger n-dimensional Hilbert space, allowing
for error detection and correction [9]. Once an error occurs on the logical
qubit, this means the information encoded in this space has been compro-
mised, which is defined as a logical error.

2.3 Toric Code

One of the most popular classes of quantum error correcting codes rely on
the principle of topological error correction. These types of codes are com-
posed of qubits placed on a lattice structure, such that only interactions
with nearby qubits are possible. This gives topological quantum codes
the characteristic to be intrinsically local. Information is encoded in logi-
cal qubits, across multiple physical qubits in a non-local collective manner
by forming non-trivial closed loops on the topological structure. Non-
triviality here means that a closed loop is not contractible on the surface,
and therefore could not enclose a homologically trivial subset of the sur-
face, as shown in Fig. 2.2. This means that information is stored in global
degrees of freedom, rather than being localized on the individual physical
qubits. Once an error is introduced on a physical qubit, this does not imply
that there is also a logical error. Therefore, logical operations can still be
done if the code is robust to logical errors [11]. This locality characteristic
makes topological quantum codes naturally protective against quantum
states suffering from decoherence, possibly achieving the desirable fault-
tolerance for quantum computing [12].

One of the most basic types of topological error correcting codes is the
surface code. The surface code represents code states as logical qubit val-
ues encoded across the entire code distance d, which are constructed out
of 2d× d physical qubits placed on a two-dimensional lattice.

6

Version of March 1, 2024– Created March 1, 2024 - 18:58

2.3 Toric Code 7

b

c

a

Figure 2.2: Examples of several closed loops on a surface wrapped around a torus.
Loop a is a curve enclosing a homologically trivial surface, whereas loops b and c
are homologically non-trivial loops as they are not contractible on the surface.

Surface codes under the constraint of periodic boundary conditions, as
a square lattice drawn on a torus like the shape of the object in Fig. 2.2,
can be identified as the toric code [3]. Toric codes are characterised by two
types of stabilizer operators: plaquettes and stars. These stabilizers can be
viewed as mutually commuting check operators, which are constructed
out of the products of the adjacent 4 Pauli Z (plaquette) or X (star) oper-
ators. Fig. 2.3 shows a visualisation of a toric code. The system can be
described by the Hamiltonian from Eq. 2.7:

H = − ∑
plaquette

P−∑
star

S = − ∑
plaquette

∏
i

Zi −∑
star

∏
i

Xi, (2.7)

where i sums over all edges adjacent to the plaquettes and stars. The
groundstate is spanned by the space for which all stabilizers have eigen-
value +1 [13]. One can check that this groundstate is 4-fold degenerate,
resulting in 4 classes of loops that can not be deformed into each other as
shown in Fig. 2.4 [14].

Bit-flip and phase-flip errors can occur on one of the physical qubits in
the form of Pauli X and Pauli Z operations respectively. If an odd number
of qubits adjacent to their plaquettes and stars have an error, the eigen-
values of those stabilizers will be −1, and, once measured, this will result
in a so-called syndrome [1]. As shown in Fig. 2.3a, syndrome endpoints

Version of March 1, 2024– Created March 1, 2024 - 18:58

7

8 Error Correction

appear at plaquettes or stars if their eigenvalues are −1 due to bit-flip or
phase-flip errors respectively, and are attached to each other through an
error string. Errors adjacent to the same plaquette or star can move syn-
drome points across the lattice and the error string can become longer, as
shown in Fig. 2.3b. When an error string forms a contractible loop on the
lattice, the syndrome endpoints will then vanish and the system is brought
back to the ground state energy. The decoding problem therefore has as
its main goal to bring back the system to its ground state space without
forming non-contractible loops on the toric code, so that the logical qubits
can be protected from errors. A decoder could therefore successfully re-
move syndromes only by undoing all original errors, or closing the errors
strings into trivial loops.

bitflip
error

error
string

syndrome
point

plaquette

star

phaseflip
error

(a) (b)

Figure 2.3: Toric code (d = 3). 2.3a) Plaquette and star operators are formed by
qubits located on the vertices of the thereby enclosed squares. The dotted lines
on the right and top edges of the lattice indicate the periodic nature of the toric
code. Bit-flip and phase-flip operations indicated by the red X and Z respectively
on one of the vertices induces a bit-flip and phase-flip errors leaving behind error
strings with at its ends syndrome points. Syndrome points introduced by bit-
flip or phase-flip errors occur at plaquettes or stars respectively. 2.3b) Two bit-
flip operations happening on vertices adjacent to the same plaquette can connect
syndrome points through an error string.

8

Version of March 1, 2024– Created March 1, 2024 - 18:58

2.3 Toric Code 9

(a) (b)

(c) (d)

Figure 2.4: Examples of 4 classes of non-trivial loops that span the basis of the 4-
fold degenerate ground state Hamiltonian of the toric code. Each of these classes
can not be deformed into each other.

The physical qubit error rate perror denotes the probability of a physi-
cal qubit encountering an error. On small lattice sizes, equivalent to small
code distances d in the toric code, the number of errors on qubits in-
creases with perror. Consequently, the code’s robustness improves with
larger lattice sizes at low error rates [15]. However, as error rates rise,
scaling to larger system sizes becomes less robust. An error threshold pth,
analogous to the order-disorder phase transition in the random-bond Ising
model [12], defines this transition behavior. Consequently, error decoders
on topological quantum codes are typically assessed based on this error
threshold, which sets the upper limit for perror necessary for achieving
fault-tolerant quantum computing across larger system sizes.

Version of March 1, 2024– Created March 1, 2024 - 18:58

9

10 Error Correction

2.4 Minimum Weight Perfect Matching

A prominent decoding algorithm in quantum error correction is the Min-
imum Weight Perfect Matching (MWPM) decoder. MWPM is oftentimes
used as a benchmark to assess performance of a decoder in quantum er-
ror correction, specifically for decoding problems on toric codes. The four
stages of MWPM are visualized in Fig. 2.5. The algorithm operates by
finding the minimum weight perfect matching in a graph representation
of the board with syndrome points. Weights are assessed to the given
matching graph representation of the syndrome by identifying all possi-
ble error configurations. This is done by finding all possible error strings
from one syndrome point to another, for all syndrome points in the graph.
A minimum weight perfect matching is then established by selecting the
matching with the minimum weight, that is, selecting the paths on the
graph with the shortest error strings [4, 16, 17].

(a) Matching graph (b) Error

(c) Assess weights (d) Minimum-weight perfect matching

Figure 2.5: Stages of MWPM decoding algorithm for a 5x5 surface code. Vertices
correspond to the check operators/stabilizer operators.

10

Version of March 1, 2024– Created March 1, 2024 - 18:58

2.4 Minimum Weight Perfect Matching 11

It is important to note that the MWPM decoder represents the optimal
decoding solution for quantum error correction only under the assump-
tion of uncorrelated noise, where only Pauli X operators are applied to the
qubits with a probability of perror. For depolarizing noise, not only Pauli
X or Z are possible operations, but also Y operators can be applied on the
qubits with error rate perror, for which MWPM fails to have an optimal de-
coding strategy. Errors can in this case arise on two distinct lattices, one ac-
counting for the plaquettes, and one for the stars. Y-errors are constructed
on the combination of both lattices, making it therefore impossible to iden-
tify the origin of syndromes arising on either the stars or plaquettes. Er-
rors therefore must be assumed to be bit-flip only and independent from
each other in order for MWPM to succeed, whereas it is unlikely that in
real-world scenarios noise is uncorrelated. Furthermore, the existence of
multiple error paths with the same weight can inadvertently lead to logi-
cal errors, like the scenario in Fig. 2.6. Due to the statistical properties of
the noise and the underlying physics of the toric code described in section
2.3, the MWPM decoder achieves a performance limit of pth ≈ 0.11 for
bit-flip noise and pth ≈ 0.15 for depolarizing noise [4, 12, 18].

Figure 2.6: Toric code (d = 3). The red bit-flip operations are introduced, caus-
ing the orange syndrome endpoints attached by their error strings. The decoder
applies the blue bit-flip operations, causing to a non-trivial loop which leads to a
logical error.

Another decoding algorithm resting on the same principle as the MWPM
decoder is the Maximum Likelihood (ML) decoder [18]. This decoder
identifies the most probable error configuration given both the noise model
and the syndrome, providing a more general approach. However, this al-

Version of March 1, 2024– Created March 1, 2024 - 18:58

11

12 Error Correction

gorithm also involves more complex and intensive calculations, which is
why the MWPM decoder is preferable on error correction problems on
surface codes. Furthermore, it is only optimal on the uncorrelated noise
model like the MWPM decoder.

In cases where errors do not independently arise on the toric code,
MWPM might not be able to accurately capture the underlying error struc-
ture of syndrome points, potentially leading to sub-optimal error correc-
tion. Furthermore, because of its single-shot nature, MWPM is not suitable
for dynamic decoding scenarios. Time-evolving noise or other dynamic er-
ror situations require real-time correction strategies. Therefore, one needs
to consider other clever approaches to pursue increased decoder perfor-
mance. Reinforcement learning algorithms have the potential to capture
these complex error patterns on a time axis, possibly even for correlated
noise, and act on them in a time-dynamic playground. Framing the decod-
ing problem as a game to be solved by RL might give rise to more optimal
results and yield a more robust decoder [13].

12

Version of March 1, 2024– Created March 1, 2024 - 18:58

Chapter 3
Reinforcement Learning

Reinforcement Learning (RL) is a subset of machine learning that focuses
on training a learner to make decisions by learning from interactions with
the problem and receiving feedback from it. Unlike supervised learn-
ing, where the algorithm is provided with labeled data, and unsupervised
learning, where the algorithm discovers patterns in unlabeled data, RL in-
volves a decision-maker called an agent. The agent learns through trial
and error in a so-called environment. This environment can be thought
of as the playground the agent interacts with, representing the formulated
problem to be solved. The agent receives feedback from the environment
in the form of a positive or negative reward, allowing it to improve its
decision-making over time. Its strategy is described by a policy, which is
strongly influenced by the rewards the agent gets for different actions to
perform on the environment in a certain state. The agent will adjust the
policy according to whether it gets a (relatively) high or a low reward in re-
turn for the chosen action in a certain state. A common trade-off in RL that
has to be made is on how much the agent is allowed to explore new strate-
gies, and how much it exploits its well-known strategy over the course of
the training process. This decision making and optimization process dur-
ing training is influenced by the current state of the environment, and the
agent aims to learn the best actions to take in different states to maximize
its cumulative reward over time, i.e. finding the optimal policy [19].

A reinforcement learning agent can optimize its strategy using either
a value-based or a policy-based approach. A value-based method makes
use of a value function which determines what are the best actions to take
given a state. Values are assigned to states such that the expected return
of all future states that will likely follow up the current given state will
be maximized. Policy-based methods, on the other hand, use a so-called

Version of March 1, 2024– Created March 1, 2024 - 18:58

13

14 Reinforcement Learning

policy that determines what action should be taken at a given state. This
policy could for example be a neural network, whose parameters can be
optimized during the training process, taking the state observation of the
environment as an input and the next action as an output. The described
RL cycle is visualised in Fig. 3.1. This research uses a policy-based method
to find a decoding strategy for the toric code, which will be described more
in detail in the next sections.

environment

agent

policy
𝜋

action
𝑎

state
𝑠

reward
𝑟

Figure 3.1: Reinforcement learning cycle. The agent observes state s of the en-
vironment, and uses this as an input into its current policy π, which will then
output the action a to take. This action is performed onto the environment, which
will return a reward r.

3.1 Deep Reinforcement Learning

Deep reinforcement learning (DRL) extends traditional RL by employing
deep neural networks to approximate the agent’s strategy. This allows
DRL to handle higher-dimensional state and action spaces. However, the
use of neural networks introduces complexity and opacity to the learning
process, which makes DRL oftentimes look more like a black box com-
pared to traditional RL algorithms. This is because deep neural networks
involve many layers of interconnected neurons, making it difficult to in-
terpret how decisions are made based on input data.

In DRL, hyperparameters are parameters that are not learned during

14

Version of March 1, 2024– Created March 1, 2024 - 18:58

3.2 Policy-based RL 15

training but must be set beforehand and can significantly impact the per-
formance of the algorithm. Examples of hyperparameters include the learn-
ing rate, exploration rate, and network architecture. Tuning hyperparam-
eters involves experimenting with different values for these parameters
to find the combination that maximizes the performance of the DRL algo-
rithm on a given task.

3.2 Policy-based RL

One can define the policy π as the agent’s strategy, which determines what
action a ∈ A to take given a state s ∈ S which is observed from the envi-
ronment [19]. The policy could be deterministic, where a function can map
all possible states onto all possible actions. In this case, the policy would
be described by Eq. 3.1.

π(s) = a. (3.1)

A policy can also be non-deterministic, in this case called stochastic. A
stochastic policy determines the probability of action a given state s, using
a distribution π(a|s), described by Eq. 3.2:

πθ(a|s) = P(a|s, θ), (3.2)

θ being the set of trainable parameters that describes the probability distri-
bution in the unit interval [0, 1]. One of the primary differences between a
deterministic and a stochastic policy is that a stochastic policy may choose
different actions for the same provided state, whereas for a determinis-
tic policy it will always select the same single action for each given state.
This gives a stochastic policy the advantage that it is able to capture uncer-
tainty in the environment. Therefore, the decoding problem in this study
will involve a stochastic policy to optimize a strategy for an RL decoder.

Another distinguishment in policy-based RL can be made on the learn-
ing approach of the agent. One can sub-divide RL into model-based and
model-free approaches. Model-based RL uses a model that predicts the en-
vironment, the agent learns by predicting the consequences of its actions.
Model-free RL, however, can only learn through experience, as it does not
learn through a predictive model that describes the environment. Since
the decoding problem does not provide an accurate model for the decod-
ing strategy and the interest of this study leans more towards discovering
any novel solutions to decode syndromes, the latter approach will be used
for this study.

Version of March 1, 2024– Created March 1, 2024 - 18:58

15

16 Reinforcement Learning

3.2.1 Policy Gradient Method

There are several optimization techniques RL can use to optimize the agent’s
policy in order to find the best strategy. One of these optimization tech-
niques is called the Policy Gradient method in which the parameters of
the policy are directly being optimized to improve the agent’s policy. Op-
timization happens by following the directions of the parameter updates
that result in higher rewards, i.e. calculating the gradients of the parame-
ter updates. The parameters of the policy can be described by θ, such that
the policy can be described by a probability distribution for actions a ∈ A
given states s ∈ S, as defined in Eq 3.2 [19]. In order to do so, one must
first define an objective function to optimize. Eq. 3.3 defines this in the
form of the expected discounted return from a given initial state s0:

LPG(θ) = Eθπ

[
Gt|st = s0

]
= Eθπ

[∞

∑
t=0

γt−1rt|st = s0

]
. (3.3)

In Eq. 3.3, Gt is the discounted return, which represents the trajectory
of action at, state st and reward rt over all timesteps t for a given episode,
described in Eq. 3.4:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · . (3.4)

The discount factor γ values the worth of future rewards Rt+···, where
0 < γ < 1. If γ is close to 0, this means that future rewards are viewed
as less important than rewards more towards the present of the sequence.
In order to optimize θ, gradient ascent is performed, with the objective to
maximize the expected discounted return, which is shown by Eq. 3.5:

∇θ LPG(θ) = Eθπ

[
∇π(log (πθ(at|st))Gt

]
. (3.5)

The optimal policy πθ∗ is then found by the optimal parameters θ∗ that
maximize the expected discounter return.

3.2.2 Actor Critic

Even though policy-based RL excels in learning stochastic policies, its chal-
lenge lies in minimizing the gradient variance. However, value-based RL
offers sample efficiency and stability. A convenient method to tackle those
issues is to combine both policy-based and value-based methods. The
variance of the policy gradient can be reduced by making the discounted
return Gt smaller. Actor Critic methods do this by having an actor update
the policy distribution, and a critic suggesting the direction of the policy

16

Version of March 1, 2024– Created March 1, 2024 - 18:58

3.2 Policy-based RL 17

update, which is determined by the value function. One of the ways to do
so, is to define an estimated advantage shown by Eq. 3.6:

Â(st, at) = rt+1 + γVθ(st+1)−Vθ(st). (3.6)

Here, rt+1 is the reward of the next timestep and the advantage esti-
mate is parameterized by network parameters θ and V(st), V(st+1) are the
value functions at timesteps t and t + 1 respectively, which determine the
values of taking action s at their respective timesteps. The policy gradient
update from Eq. 3.5 can then be rewritten to Eq. 3.7:

∇θ LPG(θ) = Eθπ

[
∇π(log (πθ(at|st)Â(st, at)

]
. (3.7)

3.2.3 Proximal Policy Optimization

One of the most important trade-offs in RL is finding the right balance
between performance and algorithm complexity. Proximal Policy Opti-
mization (PPO) is a Policy Gradient Method that makes sure the policy
updates are not too large. It uses a clipping parameter that constrains the
policy in a small update range, in order to avoid large weight updates.
Eq. 3.8 describes this small update range by using a clipped surrogate
objective function in which Â(θold) is the estimated advantage using the
previous policy parameters, making this method Actor Critic.

LCLIP(θ) = Eθπ

[
min

(
r(θ)Â(θold), clip(r(θ), 1− ϵ, 1 + ϵ)Â(θold)

)]
. (3.8)

The ratio function r(θ) describes the probability of taking action a at
state s using the current parameters, as compared to the policy using the
previous parameters, as defined in Eq. 3.9.

r(θ) =
πθ(a|s)

πθold(a|s) . (3.9)

If r(θ) > 1, the action a at state s is more likely in the current pol-
icy’s parameters than in the old policy. If 0 < r(θ) < 1, the action was
more likely for the old policy’s parameters than for the current one. This
way, r(θ) describes the divergence between the old and the current policy,
which can be clipped between 1 ± ϵ, with ϵ being the clipping parame-
ter. This ensures the policy update to not be too large [20]. The RL agents
trained on the decoding problem in this research use PPO to find the opti-
mal set of parameters.

Version of March 1, 2024– Created March 1, 2024 - 18:58

17

18 Reinforcement Learning

3.3 Reinforcement Learning applied to QEC

Recently, researchers have turned to reinforcement learning (RL) as a promis-
ing approach to tackle the complexities of QEC. Several publications have
explored the applications of RL techniques applied to QEC, offering in-
sights into the potential of these methods [21]. For example, training
an agent to find optimal error correction paths using deep Q-networks
achieved accuracy close to that of MWPM decoders [22, 23]. Other ap-
proaches use evolutionary algorithms and have shown to generate a pol-
icy network with decoding performance comparable to other RL approaches,
including Q-learning [13]. Furthermore, Graph Neural Networks have
shown promising results on stabilizer codes. Each of these publications
contributes valuable insights into the application of reinforcement learn-
ing techniques for quantum error correction, paving the way for more ef-
ficient and reliable quantum computing systems.

18

Version of March 1, 2024– Created March 1, 2024 - 18:58

Chapter 4
Decoding Game

The primary objective of this research is to develop an RL agent tailored to
address the decoding problem associated with the toric code. This prob-
lem can be framed as a game wherein the RL agent undertakes the role of
decoding errors on a toric code lattice. The toric code can be represented
as a board, which is initialized in its ground state, characterized by a code
distance d, equivalent to the lattice size, and subsequently subjected to
errors on qubits. The RL agent receives state observations in the form of
syndrome endpoints resulting from syndrome measurements. The agent’s
task involves manipulating the qubits strategically to eliminate the syn-
drome and restore the system to its ground state, thereby rectifying any
introduced errors by undoing the initial bit-flips or forming trivial closed
loops of error strings on the board. The rules and rewards governing this
decoding game must be chosen carefully, as they significantly influence
the agent’s policy optimization during training, which can consequently
impact the performance results during evaluation. An important aspect
of this study involves comparing the RL agent’s performance with the
MWPM decoder, offering insights into the viability of RL as a decoder. Be-
cause of the single-shot nature of MWPM, first, a static framework is con-
structed such that the RL decoder’s strategy is similar to that of a MWPM
decoder. Subsequently, the framework is extended to a dynamic setting,
necessitating adjustments to the game rules, allowing the RL decoder to
endure on the board for prolonged periods without encountering logical
errors. For simplicity, this research mainly focuses on uncorrelated bit-flip
noise only, although the constructed environment allows for translation
to correlated bit-flip noise. The following sections will delve deeper into
the environment construction and the choice of rules for each of the game
frameworks.

Version of March 1, 2024– Created March 1, 2024 - 18:58

19

20 Decoding Game

4.1 Environment

The environment describing the toric code decoding problem utilizes the
OpenAI Gym [24] framework and was originally constructed for the Neuro
Evolution of Augmenting Topologies (NEAT) algorithm [13]. The environ-
ment is tailored to the purpose of this research, such that it is compatible
with Gym’s observation space and action space implementations.

The toric code lattice is defined on a square board of dimensions d× d,
with d being the code distance. This lattice contains 2d × d qubits and
features d × d plaquette and star operators. The periodic boundaries are
defined at initialization to account for the periodic nature of the toric code,
crucial for defining the logical qubit over which the information is stored.
Each qubit in the toric code lattice is susceptible to errors, specifically un-
correlated bit-flip operations in the case of this research, with a probability
denoted as perror. The generation of these errors by the environment leads
to the occurrence of syndrome endpoints at the corresponding plaquette
locations on the board, and the measurement of the board syndrome is fed
to the agent as a state observation s. Therefore, the observation space is of
size d× d, corresponding to the d× d plaquettes on the defined toric code.
The agent can, in turn, select an action a to perform a bit-flip operation
in order to clear the board from syndrome endpoints. The action space of
the agent is designed to address the task of clearing the board from syn-
drome endpoints. Therefore, the total action space is of size 2d× d, with
each action corresponding to a qubit location to perform a bit-flip on. It
is important to note that, in order to reduce the size of the action space,
the agent is only allowed to choose actions that flip qubits adjacent to syn-
drome endpoints. Thus, an action mask is applied to all actions that are not
allowed, as visualized in Fig. 4.1 [25]. This decision is grounded in the phi-
losophy that actions on qubits non-adjacent to the plaquettes of syndrome
endpoints may only introduce additional errors, rather than shifting or
removing the already existing syndrome endpoints. Besides, training con-
vergence will happen faster as the chance of choosing the right action will
be higher when the action space becomes smaller.

Another important aspect of the game setup is that the environment
has access to all information about which qubits are subject to an error,
whereas the agent only has access to information about the locations of
syndrome endpoints and the locations of the qubits it has flipped itself.
Therefore, the qubits flipped by the environment are stored in a so-called
hidden state, which remains secret to the RL agent. The RL agent does
not have access to this information during training. To assess the perfor-
mance of the decoding game, the board’s logical error is evaluated, there-

20

Version of March 1, 2024– Created March 1, 2024 - 18:58

4.1 Environment 21

fore the access to this hidden state is necessary to the environment. This
assessment involves checking for logical errors based on a specific crite-
rion, which is detailed in Algorithm 1.

[𝑞!, 𝑞", … , 𝑞#, 𝑞$, 𝑞%, 𝑞&, 𝑞"!, 𝑞"", 𝑞"', 𝑞"(,…, 𝑞"$]

⨂
[𝑞!, 𝑞", … , 𝑞#, 𝑞$, 𝑞%, 𝑞&, 𝑞"!, 𝑞"", 𝑞"', 𝑞"(,…, 𝑞"$]

… …

… …

Figure 4.1: Action mask procedure. Only qubits adjacent to plaquettes indicating
a syndrome endpoint in orange are allowed actions to select for the agent, indi-
cated by the blue locations. The probability distribution over the entire action
space is masked to 0 on qubit locations not adjacent to the syndrome endpoints.

In Algorithm 1, Nx and Ny count the total number of logical errors
present on the board across the horizontal and vertical code distances of
the board, respectively. In theory, it could be that there is more than one
logical error present on the toric code, and in that case, multiples of two
logical errors would cancel each other out, as this is equivalent to remov-
ing an already existing error from the logical qubit. Therefore, this check
will indicate a logical error when either Nx or Ny counts an odd number.
For each qubit defined on the boundary, the algorithm checks whether it
is flipped. This is because if there would be a non-trivial loop present on
the board, this loop should, by definition, cross the boundary, since the
logical qubit is encoded across the whole code distance in either the hor-
izontal or the vertical direction. From a flipped qubit on the boundary,
all possible error strings are computed by evaluating possible error string
attachments between all flipped qubits, including the hidden state qubits,
on the board. When, during this error string calculation, a syndrome end-
point is encountered, this instantly means that there is no loop since loops

Version of March 1, 2024– Created March 1, 2024 - 18:58

21

22 Decoding Game

would erase syndrome endpoints. Therefore, only when an error string
is closed, i.e., the error string starts at the same qubit as where it ends its
path, must the algorithm check how many times the string has crossed the
boundary. Referring back to Fig. 2.2, only if the loop crosses the boundary
an odd number of times does this imply a logical error, as these types of
loops are non-contractible on the surface at the boundary.

Algorithm 1 Check Logical Errors

1: Nx, Ny ← 0
2: for each q in boundary qubits do
3: if q is flipped then
4: find error string
5: if string is closed then
6: nx, ny ← #times string crosses x or y boundary
7: Nx+ = nx, Ny+ = ny
8: end if
9: end if

10: end for
11: if Nx or Ny is odd then
12: Logical error
13: else
14: No logical error
15: end if

The selection of timestep rewards and the moments at which the board
is assessed for logical errors vary across different frameworks, as elabo-
rated in the subsequent sections.

4.2 Static Framework

In the static game framework, the agent aims to reach the terminal board
state, defined as the ground state of the system. This terminal state can be
achieved when all syndrome endpoints are removed, rendering the board
empty. The agent’s objective is to reach this terminal board state without
resulting in a logical error. To accomplish this, the agent is permitted to
perform as many actions as necessary to achieve its goal. Only at the con-
clusion of the game, when no syndrome endpoints remain for decoding,
will the board be evaluated for logical errors using Algorithm 1. In this
manner, the agent’s performance can be compared to that of the MWPM

22

Version of March 1, 2024– Created March 1, 2024 - 18:58

4.2 Static Framework 23

decoder. The reward system should be designed to enable the agent to
learn a strategy similar to the MWPM algorithm while also allowing flex-
ibility in the agent’s strategy. Therefore, three different timestep rewards,
rc, rl, and rs, can be defined for different game situations. The agent re-
ceives a continuing reward rc for each action performed on the environment
that does not result in a terminal board state. If an action leads to a termi-
nal board state with a logical error, the agent receives a logical error reward
rl. Conversely, if the terminal board state is reached without a logical er-
ror, the agent receives a success reward rs. Fig. 4.2 and 4.3 illustrate two
different game scenarios the agent may encounter during a single game
episode, one involving a logical error and the other resulting in success,
respectively. Although each game episode consists of multiple timesteps,
this game framework can be considered a single-shot game because the
board is evaluated only at its terminal state, rendering the order in which
the agent performs actions irrelevant to the agent’s policy. Algorithm 2
provides an overview of the static game framework.

Version of March 1, 2024– Created March 1, 2024 - 18:58

23

24 Decoding Game

(a)

→ 𝑠!

(b)

→ 𝑟!
→ 𝑠"

𝑎# 	→

(c)

→ 𝑟!
→ 𝑠"

𝑎# 	→

(d)

𝑎! 	→
No

syndrome
endpoints
→ 𝑠"

(e)

Logical
error!
→ 𝑟!

(f)

Figure 4.2: Static framework scenario that results in a logical error. 4.2a) Initial
errors generated by the environment in red. 4.2b) Syndrome measurement in-
dicated by the orange plaquettes, board state s0 fed as input to agent. The red
striped qubits indicate that these flips are a secret to the agent. 4.2c, 4.2d, 4.2e)
Agent performs action a0, a1, a2 in blue on environment subsequently, syndromes
are measured and agent receives subsequent board states s1, s2, s3 with for s1 and
s2 their corresponding timestep rewards rc. 4.2f) Empty board, logical error check
results in termination step reward rl .

24

Version of March 1, 2024– Created March 1, 2024 - 18:58

4.2 Static Framework 25

(a)

→ 𝑠!

(b)

𝑎! 	→ → 𝑟"
→ 𝑠#

(c)

𝑎! 	→
No

syndrome
endpoints
→ 𝑠"

(d)

No logical
error
→ 𝑟!

(e)

Figure 4.3: Static framework scenario that results in a successful decoding se-
quence. 4.2a) Initial errors generated by the environment in red. 4.2b) Syndrome
measurement indicated by the orange plaquettes, board state s0 fed as input to
agent. The red striped qubits indicate that these flips are a secret to the agent.
4.3c, 4.3d) Agent performs action a0, a1 in blue on environment subsequently, syn-
dromes are measured and agent receives subsequent board states s1, s2 with for
s1 its timestep reward rc. 4.3e) Empty board, logical error check results in termi-
nation step reward rs.

Version of March 1, 2024– Created March 1, 2024 - 18:58

25

26 Decoding Game

Algorithm 2 Static Game Framework

1: Initialize: Environment, perror, board of size d × d, max moves, re-
wards rc, rs, rl, Done← False

2: n← 0
3: Generate initial errors on board with error rate perror
4: Measure syndrome
5: while n < max moves do
6: while not Done do
7: Agent← state observation s
8: Policy π→ action a (flip qubit on location a)
9: Measure syndrome

10: if board has syndrome endpoints then
11: Agent← rc
12: Done← False
13: else
14: Check for logical errors (Algorithm 1)
15: if logical error then
16: Agent← rl
17: Done← True
18: else
19: Agent← rs
20: Done← True
21: end if
22: end if
23: n+ = 1
24: end while
25: end while

26

Version of March 1, 2024– Created March 1, 2024 - 18:58

4.3 Dynamic Framework 27

4.3 Dynamic Framework

For the dynamic game framework, the game rules need adjustment to al-
low the agent to decode syndrome endpoints on the board for as long as it
can survive, that is, without encountering a logical error. The goal of intro-
ducing this framework is to build an agent that can endure on the board
for prolonged periods, ultimately contributing to fault-tolerant quantum
computing where the quantum code needs consistent protection against
errors to ensure large quantum computations. Unlike the static frame-
work, where the board is evaluated for logical errors only when brought
back to the ground state, the dynamic framework performs this check after
each bit-flip operation on the board.

A timestep counter n and an iteration step parameter k are introduced
so that new errors are introduced on the board every kth timestep. Note
that in this framework, described by Algorithm 3, errors generated by the
environment are not dependent on a physical qubit error rate perror as in
the static framework. Here, a discrete number of randomly selected qubits
are flipped when it is the environment’s turn to generate errors, simplify-
ing the training setup and providing a clearer grasp of the agent’s strategy.
This is done because the agent’s performance and policy optimization de-
pend on numerous parameters. For example, as k increases, the agent is
allowed to ’survive’ on the board for more timesteps automatically. At
initialization, N qubits are flipped, and every kth timestep, Nnew qubits
are flipped by the environment, adding complexity to the game setup and
influencing the agent’s policy. If necessary, however, this framework is
suitable for translation to perror. Another rule added to the environment is
an extra action in the action space, which for this framework will therefore
be of size (2d× d) + 1. The extra action corresponds with the action to be
selected when there are no syndrome endpoints present on the board. In
this case, and in the absence of a logical error, the agent needs to perform
no bit-flip on any of the qubits, as it would only introduce extra unneces-
sary syndrome endpoints. Therefore, following this rule, the only possible
action for the agent when the board is empty is to do nothing. Furthermore,
the agent can receive three types of timestep rewards, rc, rl, and re. Like
in the static framework, rc and rl are the continuing reward and logical error
reward, respectively. If, after performing action a on the board, no logical
error occurs, the agent receives rc. If, however, a bit-flip at qubit location
a results in a logical error, the game terminates, and the agent receives rl.
The agent receives an empty board reward re when the board indicates no
syndrome endpoints, and the agent needs to do nothing. This distinction
between rc and re ensures that the agent understands the difference be-

Version of March 1, 2024– Created March 1, 2024 - 18:58

27

28 Decoding Game

tween an empty board and a board with remaining syndrome points. Just
as we, as humans, are able to live in a messy room, we would, however,
have a much clearer mind when we keep our room tidy and remove all
the trash. Fig. 4.4 and 4.5 illustrate two dynamic game scenarios. In Fig.
4.4, the agent fails to keep the board clean, resulting in a messy scenario at
future timesteps, increasing the likelihood of encountering a logical error
when a new error is introduced. Conversely, in Fig. 4.5, the agent keeps
the board clean, receives reward re for an empty board state, and has less
difficulty keeping track of all syndrome endpoints it needs to decode. One
of the rules of the environment for reaching an empty board state is that
in this case, the flipped qubit information in both the hidden state and
the qubit states known to the agent is reset back to 0. This ensures that
when the next error is introduced by the environment, the ’old’ memory
does not interfere with the agent’s ability to decode future problems when
performing the check on logical errors.

28

Version of March 1, 2024– Created March 1, 2024 - 18:58

4.3 Dynamic Framework 29

Algorithm 3 Dynamic Game Framework

1: Initialize: Environment, N, k, Nnew, board of size d × d, max moves,
rewards rc, re, rl, Done← False

2: n← 0
3: Generate N randomly selected initial errors on board
4: Measure syndrome
5: Check for logical errors (Algorithm 1)
6: while n < max moves do
7: while not Done do
8: if (n mod k) == 0 then
9: Generate Nnew new randomly selected errors on board

10: Measure syndrome
11: Check for logical errors (Algorithm 1)
12: if logical error then
13: Agent← rl
14: Done← True
15: end if
16: end if
17: if not Done then
18: Agent← state observation s
19: Policy π→ action a (flip qubit on location a)
20: if a == ’do nothing’ then
21: Agent← re
22: Done← False
23: else
24: Measure syndrome
25: Check for logical errors (Algorithm 1)
26: if logical error then
27: Agent← rl
28: Done← True
29: else
30: Agent← rc
31: Done← False
32: end if
33: end if
34: n+ = 1
35: end if
36: end while
37: end while
38: Done← True

Version of March 1, 2024– Created March 1, 2024 - 18:58

29

30 Decoding Game

→ 𝑠!
→ no
logical
error

𝑛 = 0

(a)

→ 𝑟!

→ 𝑠"
𝑎# → → no

logical
error

𝑛 = 1

(b)

→ 𝑟!

→ 𝑠"
𝑎# → → no

logical
error

𝑛 = 2

(c)

→ 𝑟!

→ 𝑠"
𝑎# → → no

logical
error

𝑛 = 3

(d)

𝑛 = 3
→ new
error!

→ no
logical
error

→ 𝑠!

(e)

𝑛 = 4

𝑎! →
→ logical
error!

→ 𝑠"

→ 𝑟#

(f)

Figure 4.4: Dynamic framework scenario resulting in a logical error, where N = 2,
k = 3, Nnew = 1. 4.4a) Environment introduces errors. Syndrome measurement
indicated by the orange plaquettes, board is checked on logical errors, board state
s0 fed as input to agent. The red striped qubits indicate that these flips are a secret
to the agent. 4.4b, 4.4c, 4.4d) Agent performs actions a0, a1, a2 in blue on environ-
ment subsequently, board is checked on logical errors, and agent receives subse-
quent board states s1, s2, s3 with their timestep rewards rc. 4.4e (n mod k) = 0,
new error introduced by the environment and board is checked on logical errors,
agent receives board state s4. 4.4f) Agent performs action a3 on the board, result-
ing in a logical error, agent receives reward rl .

30

Version of March 1, 2024– Created March 1, 2024 - 18:58

4.3 Dynamic Framework 31

→ 𝑠!
→ no
logical
error

𝑛 = 0

(a)

𝑎! →

𝑛 = 1

→ 𝑟"

→ 𝑠#
→ no
logical
error

(b)

𝑎! →

𝑛 = 2

→ 𝑟"

→ 𝑠#
→ no
logical
error

→ no
syndrome
endpoints

(c)

𝑎! →

𝑛 = 3

→ 𝑟"

→ 𝑠#
Do

nothing!

(d)

𝑛 = 3
→ new
error!

→ no
logical
error

→ 𝑠!

(e)

Figure 4.5: Dynamic framework scenario where agent survives on the board for
the shown timesteps, where N = 2, k = 3, Nnew = 1. 4.5a) Environment intro-
duces errors, board state s0 fed as input to agent. The red striped qubits indicate
that these flips are a secret to the agent. 4.5b, 4.5c) Agent performs action a0, a1 in
blue on environment subsequently, board is checked on logical errors, and agent
receives subsequent board states s1, s2 with their timestep rewards rc. 4.5d) Board
is empty, agent does nothing and receives state s3 with reward re. The blue striped
qubits indicate that the board is completely ’clean’ and ready for the next error to
be introduced by the environment. 4.5e (n mod k) = 0, new error introduced by
the environment and board is checked on logical errors.

Version of March 1, 2024– Created March 1, 2024 - 18:58

31

Chapter 5
Results

The PPO algorithm within the Stable Baselines 3 library will be used as
the agent to be trained on the problem [20, 26]. The agent’s policies are
described by a neural network with a multi-layer perceptron architecture,
whose network parameters are to be optimized in order to find the optimal
decoding strategy.

5.1 Static Framework

In the static framework training procedure, the agent’s primary goal is
to decode the board syndromes in the most efficient manner possible. It
achieves this by removing all syndrome endpoints in as few moves as pos-
sible. Additionally, since the agent must reach the terminal board state,
which is the empty board, it should be rewarded upon reaching this state.
First, the agent’s hyperparameters and the reward scheme of the environ-
ment need to be tuned. Afterwards, three different PPO agents are trained
on a fixed error rate perror for board examples of sizes d = 3, 5, 7. The
agents are evaluated and their performances are measured by their suc-
cess rate ps, which is defined as the number of cases in which the agent had
successfully decoded the syndromes divided by the total number of eval-
uation examples. The performance of the MWPM decoder on the same set
of evaluation examples is measured and used as a benchmark.

Version of March 1, 2024– Created March 1, 2024 - 18:58

33

34 Results

5.1.1 Training Setup

The primary goal is to find an agent that removes all syndrome endpoints
by flipping as few qubits as possible without encountering a logical error.
The agent should receive positive rewards for rl and rs upon reaching the
terminal board state and should be penalized for each timestep it takes
to achieve this state, aiming to align its strategy more closely with that of
the MWPM decoder. Therefore, the training convergence and evaluation
performance of four different reward schemes are compared with each
other in order to find the best settings. Fig. 5.1 shows this training conver-
gence for the first 10.000 training iterations. Note that one training itera-
tion is not the same as one training timestep; the latter corresponds with
the environment advancing with one timestep*, whereas one iteration cor-
responds to the completion of one single game episode, that is, when the
agent has reached the terminal board state. The rewards are normalized
such that a valid comparison can be made, since otherwise these different
reward schemes will result in different orders of magnitude for their max-
imum rewards. Fig. 5.1 and 5.2 show small differences in reward schemes
(rc, rl, rs) = (−1, 5, 10) and (rc, rl, rs) = (−1, 1, 10) for both the training
convergence and evaluation performance, and both converge faster than
reward schemes (rc, rl, rs) = (−10, 10, 100) and (rc, rl, rs) = (−1, 1, 2).
The latter two show a slower convergence, this could be due to the fact
that rc

rl
= −1. Therefore, the agent will receive a negative reward at the

end of earlier game episodes because it takes many actions to solve the
syndrome problem and reach a terminal board state. However, reward
scheme (rc, rl, rs) = (−1, 1, 10) also has this ratio rc

rl
= −1, but because

rs is a higher positive number, the few successes in early training stages
result in parameter optimization of the agent such that convergence hap-
pens faster. Together with (rc, rl, rs) = (−1, 1, 2), (rc, rl, rs) = (−1, 5, 10)
shows highest performance after 300.000 training timesteps, but the lat-
ter converges fastest compared to the other reward schemes. Therefore,
this reward scheme will be set as default for the rest of this study and for
training and evaluation on all other board sizes.

*The environment calls env.step() and returns a timestep reward and board state
observation to the agent.

34

Version of March 1, 2024– Created March 1, 2024 - 18:58

5.1 Static Framework 35

0 2000 4000 6000 8000 10000
Number of training iterations

60

50

40

30

20

10

0

No
rm

al
ize

d
Re

wa
rd

rc = 1, rl = 5, rs = 10
rc = 10, rl = 10, rs = 100
rc = 1, rl = 1, rs = 2
rc = 1, rl = 1, rs = 10

Figure 5.1: Early training convergence
of PPO agents trained on different
reward schemes on a d = 5 board with
error rate perror = 0.1 for the first 10.000
training iterations.

0.02 0.04 0.06 0.08 0.10 0.12 0.14
perror

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p s

d=5 MWPM
rc = 1, rl = 5, rs = 10
rc = 10, rl = 10, rs = 100
rc = 1, rl = 1, rs = 2
rc = 1, rl = 1, rs = 10

Figure 5.2: Performance as success rate
ps after 300.000 training timesteps of
PPO agents trained on different reward
schemes on a d = 5 board, compared
to a d = 5 MWPM decoder, evaluated
over 10.000 games.

The network architecture of the MLP, the learning rate and the entropy
coefficient (the clipping parameter ϵ in Eq. 3.8) are tuned. The conver-
gence at early training stages and performance evaluation of each of these
hyperparameters can be found in Fig. A.1 - A.6 in the Appendix. The
performance after 300.000 training timesteps is the highest for a network
with 2 layers, each consisting of 64 nodes. The more complex network ar-
chitectures consisting of 3 layers, i.e. 64× 64× 64 and 20× 20× 20, result
in a lower success rate during evaluation, indicating that these networks
might be overfitting. Furthermore, the learning rate convergence shows
slow and unstable convergence for a learning rate of 0.01, resulting in a
success rate much lower than for learning rates of 0.0001 and 0.001, shown
in Fig. 5.3. From Fig. 5.4 it can be seen that the learning rate of 0.01 results
in a very inefficient decoder, having to take many actions to reach the ter-
minal state, and for cases of perror above 0.1 it even reaches the maximum
amount of steps allowed to clear a syndrome.

Version of March 1, 2024– Created March 1, 2024 - 18:58

35

36 Results

0.02 0.04 0.06 0.08 0.10 0.12 0.14
perror

0.0

0.2

0.4

0.6

0.8

1.0

p s

d=5 MWPM
lr=0.0001
lr.0.001
lr=0.01

Figure 5.3: Performance as success rate
ps after 300.000 training timesteps of
PPO agents trained on different learn-
ing rate values on a d = 5 board, com-
pared to a d = 5 MWPM decoder, eval-
uated over 10.000 games.

0.02 0.04 0.06 0.08 0.10 0.12 0.14
perror

0

25

50

75

100

125

150

175

200

M
ea

n
nu

m
be

r o
f m

ov
es

 p
er

 g
am

e

d=5 PPO, lr=0.0001
d=5 PPO, lr=0.001
d=5 PPO, lr=0.01

Figure 5.4: Mean number of moves per
evaluation game after 300.000 training
timesteps of PPO agents trained on
different learning rate values on a d = 5
board.

The settings used to produce each of the figures referenced in this sec-
tion can be found in Tab. A.1 - A.4 in the Appendix. The hyperparameters
for the remainder of the training process can be found in Tab. 5.1.

Parameter Value

Max steps per syndrome 200
Entropy coefficient 0.01
Clipping parameter 0.1
Learning rate 0.001
rc, rl , rs -1,5,10
Network Layers 2
Network Nodes 64 per layer
Batch Size 64
γ 0.99

Table 5.1: Hyperparameter settings used for training and evaluation of the PPO
agents on board sizes d = 3, 5, 7 on a static game framework.

36

Version of March 1, 2024– Created March 1, 2024 - 18:58

5.1 Static Framework 37

Using these settings, PPO agents are trained on examples of perror for
board sizes d = 3, 5, 7. Each agent will train for 106 timesteps and show to
converge, as is shown in Fig. A.7 - A.9 in the Appendix. It is important to
note that, if cases of empty boards or boards with already existing logical
errors would be fed to the agent during training, the agent gets rewarded
incorrectly. The already existing non-trivial loop is not visible because a
logical error has no syndrome endpoints. The agent might reason that
it will do a good job by removing the syndrome endpoints, since in all
other training examples it was rewarded positively for doing so and it up-
dated its parameters accordingly. However, in these exceptional cases, the
agent is going to receive reward rl instead of rs, resulting in sub-optimal
parameter optimization. Therefore, during the training process, the agent
will only be shown game examples that always have syndrome endpoints
present on the board, and do not already have a non-trivial error loop
when fed to the agent as the initial board state.

5.1.2 Performance Evaluation

After training, the agents are evaluated on 10.000 game examples for each
board size, and the success rate ps is used as a performance measure and is
benchmarked against the success rate of the MWPM decoders on the same
game examples for each board size. In contrast to the training examples
excluding boards without syndrome endpoints or having logical errors,
the set of evaluation examples includes these cases, since it is important
to evaluate the agent’s strategy on those cases as well. Fig. 5.5 shows the
success rate ps for all PPO agents against bit-flip error rates perror between
0.01 and 0.15. For d = 3 the PPO agent’s success rate corresponds with that
of the d = 3 MWPM decoder. For the larger board sizes d = 5, 7 this is no
longer the case and these PPO agents show a success rate far below that of
the MWPM decoder. No error threshold is identifiable from these results,
whereas the error threshold for the MWPM lies at pth ≈ 0.11, correspond-
ing with literature [12]. However, the learning curves from Fig. A.7 - A.9 in
the Appendix do show that these agents all have converged during train-
ing. Especially for small error rates the MWPM decoders show almost
perfect decoding, with success rates approaching or even being equal to 1.

Some of the most frequent cases of syndromes the agent fails to decode,
but the MWPM decoder successfully decodes for d = 5 are shown in Fig.
A.18-A.27 in the Appendix. In most of these cases, the agent chooses to
perform more bit-flips than initially arose on the board and more than the
MWPM selects as its solution. This contradicts the fact that the reward for

Version of March 1, 2024– Created March 1, 2024 - 18:58

37

38 Results

performing an action rc is set to -1. Although this framework lends itself
to a single-shot decoding strategy, in some cases, the first action the agent
performs on the board results in the wrong solution, requiring it to correct
for its own mistake. This eventually leads to a logical error, causing the
agent to take more actions to decode than it could and should have.

0.02 0.04 0.06 0.08 0.10 0.12 0.14
perror

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p s d=3 MWPM
d=3 PPO agent
d=5 MWPM
d=5 PPO agent
d=7 MWPM
d=7 PPO agent
d=15 MWPM

Figure 5.5: Performance as success rate ps after 106 training timesteps of con-
verged PPO agents for board sizes d = 3, 5, 7 versus bit-flip error rate perror. The
results are compared to the corresponding MWPM performances. The d = 15
MWPM performance shows the approach to larger system sizes.

Moreover, it is important to mention that for all three board sizes, the
agents shown in Fig. 5.5 were trained on a fixed error rate of perror = 0.1.
The average number of bit-flip errors introduced by the environment dur-
ing training are 1.8, 5 and 9.8 for d = 3, 5, 7 respectively. This means that
for d = 5, 7 agents, significantly fewer training examples have been en-
countered where only 1 or 2 bit-flip errors are introduced, which can re-
sult in an unrepresentative training set, potentially leading to decreased
performance. Different sets of bit-flip errors on the board can lead to the
same syndrome. For the d = 5 case for example, some syndromes can ei-
ther be caused by 2 bit-flips, or by 3 bit-flips. If the agent has seen more 3
bit-flip scenarios, it will have optimized its policy parameters for 3 bit-flip

38

Version of March 1, 2024– Created March 1, 2024 - 18:58

5.1 Static Framework 39

scenarios. Choosing to remove the syndrome by flipping 2 qubits on the
board will actually result in a logical error, even though this would take
less actions to decode. This scenario is shown in Fig. A.18 in the Appendix.
Nevertheless, an agent trained using curriculum learning, where training
has been done on instances of perror = [0.01, 0.038, 0.066, 0.094, 0.122, 0.15],
each for 106 timesteps and using the updated set of parameters from the
previous instance, does not show higher performance, as shown in Fig.
A.13 in the Appendix. The training process takes six times longer com-
pared to training on a fixed error rate.

Contrary to the result outcomes shown in this section, former studies
have shown to succeed in training RL agents up to MWPM performance
for the toric code with uncorrelated bit-flip noise using deep Q-learning
with the network architecture of a CNN, identifying an error threshold
corresponding with that of MWPM [22]. These agents were trained on
a timestep reward of −1 until the terminal state was reached, regardless
of whether the terminal state had led to a logical error or not. The result
for an agent trained on this reward setup of (rc, rl, rs) = (−1,−1,−1) is
shown for a d = 5 case in Fig. A.12 in the Appendix and does not reach
MWPM performance using a MLP architecture with the PPO algorithm
from Stable Baselines 3.

A comparison between the results from Andreasson et al. [22] and
this research would have been ideal for translating the PPO algorithm to a
DQN, preferably also replacing the MLP architecture with a CNN to assess
whether the network used in this research might not be feasible to achieve
optimal results, or Stable Baselines 3 rendering inaccurately trained poli-
cies. However, although Stable Baselines 3 provides a perfect platform
for evaluating RL algorithms for customizable problems, translating from
PPO to DQN is not straightforward. While the library easily allows for
the implementation of an action mask for PPO, which masks out all in-
valid actions as described by Fig. 4.1 in Chapter 4, the implementation of
DQN does not support this method. As a workaround, one could assign a
reward with a very large negative value to all actions considered invalid.
However, this approach results in a very large search space for the agent
during training, where one of the sub-goals becomes learning to avoid
choosing an invalid action, thereby slowing down training convergence,
especially for larger system sizes [25].

Whereas the main focus of this study lies on finding the performance
of PPO agents on uncorrelated bit-flip noise, where the MWPM decoder
shows optimal performance for the decoding of uncorrelated bit-flip er-
rors, the results for correlated bit-flip noise are shown in Fig. A.17 in the
Appendix. Both MWPM and the PPO agents fail to show a proper er-

Version of March 1, 2024– Created March 1, 2024 - 18:58

39

40 Results

ror threshold for correlated bit-flip noise. For d = 3, the agent perfectly
matches the MWPM decoding performance. For d = 5, 7 this is no longer
the case.

5.2 Dynamic Framework

The agents to be trained on the dynamic framework have as their goal
to maximize their score when playing the decoding game. The score is
defined as the number of timesteps it can endure on the board without
encountering a logical error. One of the sub-goals for the agents is to learn
a strategy such that it knows when to perform no action on any of the
qubits when the board is empty. For this framework the agents will only
be trained on a d = 3 board. First, the scores for different reward scheme
setups are evaluated for d = 3 and are benchmarked against a non-trained
agent, which will indicate a random action selection. Next, the effect of
different values for the learning rate are evaluated and the effect of in-
creasing the iteration step parameter k and the amount of (new) errors on
the board, N and Nnew are evaluated and compared with each other, as
well as compared with the MWPM decoder.

5.2.1 Training Setup

Since the goal for the agent is to survive for as long as possible on a
board that introduces new errors every k timesteps, the rewards should
not be negative for any of the actions the agent chooses to perform on the
board. The agent will therefore be trained on one of the most basic re-
ward schemes, which is (rc, re, rl) = (1, 1, 1), implying that it gets +1 on
its score for each timestep it manages to survive. However, since this re-
ward setup might not effectively steer the agent towards its sub-goal of
learning to keep the board clean and knowing when to ’do nothing’, other
reward schemes which reward the empty board state higher than other
board states are evaluated as well. The agent’s scores after playing 10.000
games for evaluation are shown in Fig. 5.6. The training convergence,
in which the reward is normalized in order to make a valid comparison
between all agents, is shown in Fig. B.1 in the Appendix. In Fig. 5.6, the
maximum amount of timesteps the agents can reach per game during both
training and evaluation is set to 300. It is visible that the reward scheme
(rc, re, rl) = (1, 1, 1) does not seem to reach performance slightly higher
than random action selection. The other reward schemes reach higher
scores. With (N, Nnew, k) = (1, 1, 2), the agent should be able to decode

40

Version of March 1, 2024– Created March 1, 2024 - 18:58

5.2 Dynamic Framework 41

the presented syndromes by flipping only one qubit in order to reach an
empty board state. The next action it should select is then to ’do nothing’.
Higher scores indicate that the agent has managed to learn this sub-goal.

Random (rc, re, rl)
 =(1,1,1)

(rc, re, rl)
 =(0,1,0)

(rc, re, rl)
 =(1,10,1)

0

50

100

150

200

250

300

Sc
or

e

Figure 5.6: Performance as score after 106 training timesteps of PPO agents
trained on different reward schemes on a d = 3 board with (N, Nnew, k) =
(1, 1, 2), evaluated over 10.000 games.

The learning rate is investigated for (rc, re, rl) = (1, 10, 1) and is eval-
uated for 0.0001, 0.001 and 0.01, as well as learning rate annealing from
0.001 to 0.0001. Fig. 5.7 shows training convergence for each of the learn-
ing rate settings over a training period of 3 · 106 training timesteps, where
each plotted training iteration corresponds with one game episode reach-
ing the terminal board state. This is why not all learning curves have the
same length; the agents that do well and reach a higher score can play
the game for longer and thus include more training timesteps per itera-
tion. For learning rate annealing, the agent reaches highest performance
and fastest convergence, which corresponds with it having the shortest
learning curve. It is notable that for a learning rate of 0.01 the reward first
goes up, and then goes back down again after roughly the 7500th training
iteration. This behaviour might be due to the fact that this learning rate
is too big to find an optimal solution for the decoder, causing the weight
updates to be too large, which results in a decrease in performance. There-
fore, learning rate annealing will only be done between 0.001 and 0.0001.
Fig. 5.8 shows the scores for each of the agents and shows that learning

Version of March 1, 2024– Created March 1, 2024 - 18:58

41

42 Results

rate annealing in this range results in the highest score as compared to
training only on fixed learning rate values. The settings used to produce
each of the figures referenced in this section can be found in Tab. B.1 - B.2
in the Appendix. The hyperparameters for the remainder of the training
process are shown in Tab. 5.2.

Changes in N, Nnew, k can influence the score in general, and this can
be used as a measure to assess the capability of and RL agent to solve the
decoding game in the dynamic framework. The RL agents are trained on
N, Nnew ∈ [1, 2], whereby k ∈ [N + 1, N + 2]. Because k introduces a mea-
sure on how much the agent is allowed to correct for its own mistakes, the
agent’s performance is investigated both for scenarios where it is allowed
to make a mistake and still will be able to fully resolve the syndrome in the
next timestep (k = (N + 2)), and for scenarios in which it is not allowed
to do so before new errors are introduced (k = (N + 1)). Their scores are
visualised in Fig. 5.9 for comparison. The training convergence for each
of the agents can be found in Fig. B.3 - B.6 in the Appendix.

0 5000 10000 15000 20000 25000 30000 35000 40000
Number of training iterations

102

103

Re
wa

rd

lr=0.0001
lr=0.001
lr=0.01
lr annealing

Figure 5.7: Early training convergence of PPO agents trained on different learning
rates on a d = 3 board with error rate (N, Nnew, k) = (1, 1, 2) for the first 10.000
training iterations.

42

Version of March 1, 2024– Created March 1, 2024 - 18:58

5.2 Dynamic Framework 43

Random lr=0.001 lr=0.0001 annealing
0

50

100

150

200

250

300

Sc
or

e

Figure 5.8: Performance as score after 3 · 106 training timesteps of PPO agents
trained on different learning rates on a d = 3 board with (N, Nnew, k) = (1, 1, 2),
evaluated over 10.000 games.

Parameter Value

Max steps per game 300
Entropy coefficient 0.05
Clipping parameter 0.1
Learning rate annealing from 0.001 to 0.0001
rc, re, rl 1,10,1
Network Layers 2
Network Nodes 64 per layer
Batch Size 64
γ 0.99

Table 5.2: Hyperparameter settings used for training and evaluation of the PPO
agents on board sizes d = 3 on a dynamic game framework.

Fig. 5.9 visualizes that for d = 3 all agents except for (N, Nnew, k) =
(2, 2, 3) show to on average reach the maximum score of 300. The agent
fails to find an optimal decoding strategy when N, Nnew gets larger, but k
does not allow for correction of mistakes during training. In this case, the
agent fails to escape from following a nearly random strategy as can be
seen in Fig. B.5 in the Appendix, probably because it makes too many mis-

Version of March 1, 2024– Created March 1, 2024 - 18:58

43

44 Results

takes at the beginning of each game, and the game terminates too quickly
for it to escape from those situations.

(N, Nnew, k)
 =(1,1,2)

(N, Nnew, k)
 =(1,1,3)

(N, Nnew, k)
 =(2,2,3)

(N, Nnew, k)
 =(2,2,4)

0

50

100

150

200

250

300

Sc
or

e

Figure 5.9: Performance as score of converged PPO agents trained for different
settings of (N, Nnew, k) on a d = 3 board, evaluated over 10.000 games.

5.2.2 Performance Evaluation

For the three agents that reached training convergence and the maximum
possible game score of 300, their trained models are evaluated on exam-
ples using the static game environment in order to benchmark their per-
formances against MWPM. Note that in order to carry out this type of
evaluation, the action space from the dynamic environment, which is of
size (2d × d) + 1, is first translated to the action space of size 2d × d for
the static environment. This is done by removing the option for the agent
to do nothing; it must therefore always choose a qubit to flip as its action.
The results are shown in Fig. 5.10. This plot shows that for (N, Nnew, k) =
(2, 2, 4) the agent is able to reach MWPM performance. Referring to the
learning curve in Fig. B.6, this agent encountered two performance jumps
during training. The first jump probably accounts for the agent learn-
ing how to survive on the board in general, and the second jump for
the fact that it discovers it gets a higher reward for keeping the board as
empty as possible. This agent shows to find a strategy similar to that of
MWPM, where it decodes syndromes as efficiently as possible. The other
two agents do not reach performance up to MWPM as they are trained on
single bit-flip cases only, and therefore these examples do not provide the

44

Version of March 1, 2024– Created March 1, 2024 - 18:58

5.2 Dynamic Framework 45

agent with enough training information about how syndrome endpoints
will shift across the board when more than one error has occurred.

0.02 0.04 0.06 0.08 0.10 0.12 0.14
perror

0.5

0.6

0.7

0.8

0.9

1.0

p s

d=3 MWPM
(N, Nnew, k) = (1, 1, 2)
(N, Nnew, k) = (1, 1, 3)
(N, Nnew, k) = (2, 2, 4)

Figure 5.10: Performance converged PPO agents trained for different settings of
(N, Nnew, k) on a d = 3 board, evaluated over 10.000 games on the static game
framework, and benchmarked against a d = 3 MWPM decoder.

Version of March 1, 2024– Created March 1, 2024 - 18:58

45

Chapter 6
Discussion and Outlook

This research investigated the performance of RL agents using Stable Base-
lines 3’s PPO algorithm with an MLP network architecture. Each agent
was trained on toric code decoding problems in order to find an optimal
error correcting strategy. Two game frameworks are distinguished from
each other, whereby this study provides the implementation of a novel
dynamic game framework, for which the RL performance can be mea-
sured with a survival score and which can eventually be translated to a
multi-agent game framework. An implementation for a check on logical
errors for the toric code is constructed such that it works for both frame-
works, and can be directly used for the training and evaluation of decod-
ing agents.

For the static game framework the trained RL agents reach MWPM
performance on a d = 3 board with uncorrelated bit-flip noise, but for
larger system sizes d = 5, 7 the agents do not reach this performance. No
error threshold could be identified for the PPO decoding agents, whereas
other studies show proof of concept that RL is capable of finding an er-
ror threshold on this framework [13, 22, 23]. Moreover, Andreasson et al.
[22] demonstrate, using more sophisticated network architectures includ-
ing a CNN and other RL techniques such as deep Q-learning, that RL is
able to achieve MWPM performance for uncorrelated bit-flip noise, which
indicates that the results presented in this thesis could be successfully im-
proved. However, Stable Baselines 3 does not allow for straightforward
translation from PPO to DQN due to differences in the implementation of
an action mask. Other libraries should be assayed for this purpose in or-
der to avoid a workaround. Furthermore, both Andreasson et al. [22] and
Theveniaut et al. [13] use the relative positions of all syndrome endpoints
of a given state observation as an input, called perspectives, in order to

Version of March 1, 2024– Created March 1, 2024 - 18:58

47

48 Discussion and Outlook

build in rotation invariance. This allows for a decoder trained on a small
lattice to transfer to a larger lattice and update weight parameters based
on these perspectives rather than all different rotational examples of the
same syndrome. Implementing these perspectives into the current train-
ing setup for the static framework could therefore be interesting to eval-
uate. Beyond the scope of this project, but worthwhile to investigate in
further research, is the performance of RL agents trained on depolarizing
noise.

For the dynamic game framework the RL agents show proof of concept
that they are able to learn using the setup of a survival-like game. The
agents were trained and evaluated on a d = 3 board for different settings
of N, Nnew, k and show that for agent trained on (N, Nnew, k) = (2, 2, 4) it
was able to reach MWPM performance. Improvements upon this study
for the dynamic framework can be done by adjusting the network archi-
tecture, training and evaluating on larger system sizes, and tuning other
hyperparameters such as the gamma factor; since the sequence of actions
is more important in this framework than it is for the static framework,
this factor is important to be tuned in order to increase the performance.
Furthermore, one could implement frame stacking such that former state
observations on a sequence of decoding steps are stored and the agent has
access to those former frames when optimizing its policy. This is especially
important when extending this framework towards a multi-agent frame-
work, where one agent has to introduce errors on the board, and another
agent’s goal is to decode the presented syndromes.

48

Version of March 1, 2024– Created March 1, 2024 - 18:58

49

Acknowledgements

Being able to familiarize myself with doing research and working on this
subject, which struck my interest from the very beginning, has been a
real pleasure and therefore I would like to give special thanks Evert van
Nieuwenburg for being a very helpful, thoughtful and inspiring super-
visor. I really appreciate the effort and guidance he offered me during
our meetings, as well as driving me to discuss my project and findings
with my peers in our research group. Furthermore, I would like to thank
Aske Plaat for being my second supervisor and providing me with fresh
insights and motivating discussions. I would also like to express my grati-
tude towards all members from the Condensed-AI department at the aQa
research group, for our discussions, code-meetings, group meetings and
knowledge sharing, as well as the fun coffee- and lunch breaks. The group
felt like a safe environment in which everyone is encouraged to ask ques-
tions and help each other out. Lastly, I would be remiss in not mentioning
Alek, Hans and Matthijs, my office buddies at HL602, for striking the best
balance ever between seriousness and fun. Doing research in the office
wouldn’t have been so productive yet so enjoyable without you.

Version of March 1, 2024– Created March 1, 2024 - 18:58

49

Bibliography

[1] Daniel Gottesman. An Introduction to Quantum Error Correction and
Fault-Tolerant Quantum Computation. Apr. 16, 2009. arXiv: 0904.2557[quant-
ph]. URL: http://arxiv.org/abs/0904.2557 (visited on 10/01/2023).

[2] Joschka Roffe. “Quantum Error Correction: An Introductory Guide”.
In: Contemporary Physics 60.3 (July 3, 2019), pp. 226–245. ISSN: 0010-
7514, 1366-5812. DOI: 10 . 1080 / 00107514 . 2019 . 1667078. arXiv:
1907.11157[quant-ph]. URL: http://arxiv.org/abs/1907.11157
(visited on 10/29/2023).

[3] A. Yu Kitaev. “Fault-tolerant quantum computation by anyons”. In:
Annals of Physics 303.1 (Jan. 2003), pp. 2–30. ISSN: 00034916. DOI:
10.1016/S0003-4916(02)00018-0. arXiv: quant-ph/9707021. URL:
http://arxiv.org/abs/quant-ph/9707021 (visited on 02/24/2024).

[4] Vladimir Kolmogorov. “Blossom V: a new implementation of a min-
imum cost perfect matching algorithm”. In: Mathematical Program-
ming Computation 1.1 (July 1, 2009), pp. 43–67. ISSN: 1867-2957. DOI:
10.1007/s12532-009-0002-8. URL: https://doi.org/10.1007/
s12532-009-0002-8 (visited on 09/13/2023).

[5] Austin G. Fowler. Minimum weight perfect matching of fault-tolerant
topological quantum error correction in average $O(1)$ parallel time. Oct. 10,
2014. arXiv: 1307.1740[quant-ph]. URL: http://arxiv.org/abs/
1307.1740 (visited on 01/16/2024).

[6] David Silver et al. “Mastering the game of Go without human knowl-
edge”. In: Nature 550.7676 (Oct. 2017), pp. 354–359. ISSN: 0028-0836,
1476-4687. DOI: 10.1038/nature24270. URL: https://www.nature.
com/articles/nature24270 (visited on 02/24/2024).

Version of March 1, 2024– Created March 1, 2024 - 18:58

51

https://arxiv.org/abs/0904.2557 [quant-ph]
https://arxiv.org/abs/0904.2557 [quant-ph]
http://arxiv.org/abs/0904.2557
https://doi.org/10.1080/00107514.2019.1667078
https://arxiv.org/abs/1907.11157 [quant-ph]
http://arxiv.org/abs/1907.11157
https://doi.org/10.1016/S0003-4916(02)00018-0
https://arxiv.org/abs/quant-ph/9707021
http://arxiv.org/abs/quant-ph/9707021
https://doi.org/10.1007/s12532-009-0002-8
https://doi.org/10.1007/s12532-009-0002-8
https://doi.org/10.1007/s12532-009-0002-8
https://arxiv.org/abs/1307.1740 [quant-ph]
http://arxiv.org/abs/1307.1740
http://arxiv.org/abs/1307.1740
https://doi.org/10.1038/nature24270
https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270

52 BIBLIOGRAPHY

[7] Dr James Wootton. Even You Can Help Build a Quantum Computer. sci
five — University of Basel. Nov. 8, 2016. URL: https://medium.com/
sci-five-university-of-basel/even-you-can-help-build-a-

quantum-computer-34275b5ab716 (visited on 02/24/2024).

[8] R.W. Hamming. “Error detecting and error correcting codes”. In: The
Bell System Technical Journal 29.2 (1950), pp. 147–160. DOI: 10.1002/
j.1538-7305.1950.tb00463.x.

[9] Emanuel Knill and Raymond Laflamme. “A Theory of Quantum
Error-Correcting Codes”. In: Physical Review Letters 84.11 (Mar. 13,
2000), pp. 2525–2528. ISSN: 0031-9007, 1079-7114. DOI: 10 . 1103 /
PhysRevLett.84.2525. arXiv: quant- ph/9604034. URL: http://
arxiv.org/abs/quant-ph/9604034 (visited on 12/08/2023).

[10] W. K. Wootters and W. H. Zurek. “A single quantum cannot be cloned”.
In: Nature 299.5886 (Oct. 1982), pp. 802–803. ISSN: 0028-0836, 1476-
4687. DOI: 10.1038/299802a0. URL: https://www.nature.com/
articles/299802a0 (visited on 12/08/2023).

[11] H. Bombin. An Introduction to Topological Quantum Codes. Nov. 1,
2013. arXiv: 1311.0277[quant-ph]. URL: http://arxiv.org/abs/
1311.0277 (visited on 09/22/2023).

[12] Eric Dennis et al. “Topological quantum memory”. In: Journal of Math-
ematical Physics 43.9 (Sept. 1, 2002), pp. 4452–4505. ISSN: 0022-2488,
1089-7658. DOI: 10.1063/1.1499754. URL: https://pubs.aip.org/
jmp/article/43/9/4452/230976/Topological-quantum-memory

(visited on 09/20/2023).

[13] Hugo Theveniaut and Evert van Nieuwenburg. “A NEAT Quantum
Error Decoder”. In: SciPost Physics 11.1 (July 12, 2021), p. 005. ISSN:
2542-4653. DOI: 10.21468/SciPostPhys.11.1.005. arXiv: 2101.
08093[physics,physics:quant-ph]. URL: http://arxiv.org/abs/
2101.08093 (visited on 09/12/2023).

[14] P Herringer. “The Toric Code”. In: (2020). URL: https://www.physics.
rutgers.edu/grad/602/Lectures/JC_Presentations/0419/Intro_

Toric_Code.pdf.

[15] Nando Leijenhorst. “Quantum Error Correction: Decoders for the
Toric Code”. In: (2019). URL: https://repository.tudelft.nl/
islandora/object/uuid%3A94823249-e114-4fc0-bae9-4c80d503296f

(visited on 02/27/2024).

52

Version of March 1, 2024– Created March 1, 2024 - 18:58

https://medium.com/sci-five-university-of-basel/even-you-can-help-build-a-quantum-computer-34275b5ab716
https://medium.com/sci-five-university-of-basel/even-you-can-help-build-a-quantum-computer-34275b5ab716
https://medium.com/sci-five-university-of-basel/even-you-can-help-build-a-quantum-computer-34275b5ab716
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1103/PhysRevLett.84.2525
https://doi.org/10.1103/PhysRevLett.84.2525
https://arxiv.org/abs/quant-ph/9604034
http://arxiv.org/abs/quant-ph/9604034
http://arxiv.org/abs/quant-ph/9604034
https://doi.org/10.1038/299802a0
https://www.nature.com/articles/299802a0
https://www.nature.com/articles/299802a0
https://arxiv.org/abs/1311.0277 [quant-ph]
http://arxiv.org/abs/1311.0277
http://arxiv.org/abs/1311.0277
https://doi.org/10.1063/1.1499754
https://pubs.aip.org/jmp/article/43/9/4452/230976/Topological-quantum-memory
https://pubs.aip.org/jmp/article/43/9/4452/230976/Topological-quantum-memory
https://doi.org/10.21468/SciPostPhys.11.1.005
https://arxiv.org/abs/2101.08093 [physics, physics:quant-ph]
https://arxiv.org/abs/2101.08093 [physics, physics:quant-ph]
http://arxiv.org/abs/2101.08093
http://arxiv.org/abs/2101.08093
https://www.physics.rutgers.edu/grad/602/Lectures/JC_Presentations/0419/Intro_Toric_Code.pdf
https://www.physics.rutgers.edu/grad/602/Lectures/JC_Presentations/0419/Intro_Toric_Code.pdf
https://www.physics.rutgers.edu/grad/602/Lectures/JC_Presentations/0419/Intro_Toric_Code.pdf
https://repository.tudelft.nl/islandora/object/uuid%3A94823249-e114-4fc0-bae9-4c80d503296f
https://repository.tudelft.nl/islandora/object/uuid%3A94823249-e114-4fc0-bae9-4c80d503296f

BIBLIOGRAPHY 53

[16] Jack Edmonds. “Paths, Trees, and Flowers”. In: Canadian Journal of
Mathematics 17 (1965), pp. 449–467. ISSN: 0008-414X, 1496-4279. DOI:
10.4153/CJM-1965-045-4. URL: https://www.cambridge.org/
core/product/identifier/S0008414X00039419/type/journal_

article (visited on 09/13/2023).

[17] Oscar Higgott. PyMatching: A Python package for decoding quantum
codes with minimum-weight perfect matching. July 12, 2021. DOI: 10.
48550 / arXiv . 2105 . 13082. arXiv: 2105 . 13082[quant - ph]. URL:
http://arxiv.org/abs/2105.13082 (visited on 09/12/2023).

[18] Sergey Bravyi, Martin Suchara, and Alexander Vargo. “Efficient al-
gorithms for maximum likelihood decoding in the surface code”. In:
Physical Review A 90.3 (Sept. 25, 2014), p. 032326. ISSN: 1050-2947,
1094-1622. DOI: 10 . 1103 / PhysRevA . 90 . 032326. URL: https : / /
link . aps . org / doi / 10 . 1103 / PhysRevA . 90 . 032326 (visited on
01/15/2024).

[19] Richard S. Sutton and Andrew Barto. Reinforcement learning: an intro-
duction. Nachdruck. Adaptive computation and machine learning.
Cambridge, Massachusetts: The MIT Press, 2014. 322 pp. ISBN: 978-
0-262-19398-6.

[20] John Schulman et al. Proximal Policy Optimization Algorithms. Aug. 28,
2017. arXiv: 1707.06347[cs]. URL: http://arxiv.org/abs/1707.
06347 (visited on 10/29/2023).

[21] Ryan Sweke et al. “Reinforcement Learning Decoders for Fault-Tolerant
Quantum Computation”. In: Machine Learning: Science and Technol-
ogy 2.2 (June 1, 2021), p. 025005. ISSN: 2632-2153. DOI: 10.1088/2632-
2153/abc609. arXiv: 1810.07207[quant-ph]. URL: http://arxiv.
org/abs/1810.07207 (visited on 10/29/2023).

[22] Philip Andreasson et al. “Quantum error correction for the toric code
using deep reinforcement learning”. In: Quantum 3 (Sept. 2, 2019),
p. 183. ISSN: 2521-327X. DOI: 10.22331/q-2019-09-02-183. arXiv:
1811.12338[cond-mat,physics:quant-ph]. URL: http://arxiv.
org/abs/1811.12338 (visited on 09/13/2023).

[23] Laia Domingo Colomer, Michalis Skotiniotis, and Ramon MuÃ±oz−
Tapia. “Reinforcement learning for optimal error correction of toric
codes”. In: Physics Letters A 384.17 (June 15, 2020), p. 126353. ISSN:
0375-9601. DOI: 10.1016/j.physleta.2020.126353. URL: https://
www.sciencedirect.com/science/article/pii/S0375960120301638

(visited on 09/13/2023).

Version of March 1, 2024– Created March 1, 2024 - 18:58

53

https://doi.org/10.4153/CJM-1965-045-4
https://www.cambridge.org/core/product/identifier/S0008414X00039419/type/journal_article
https://www.cambridge.org/core/product/identifier/S0008414X00039419/type/journal_article
https://www.cambridge.org/core/product/identifier/S0008414X00039419/type/journal_article
https://doi.org/10.48550/arXiv.2105.13082
https://doi.org/10.48550/arXiv.2105.13082
https://arxiv.org/abs/2105.13082 [quant-ph]
http://arxiv.org/abs/2105.13082
https://doi.org/10.1103/PhysRevA.90.032326
https://link.aps.org/doi/10.1103/PhysRevA.90.032326
https://link.aps.org/doi/10.1103/PhysRevA.90.032326
https://arxiv.org/abs/1707.06347 [cs]
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1088/2632-2153/abc609
https://doi.org/10.1088/2632-2153/abc609
https://arxiv.org/abs/1810.07207 [quant-ph]
http://arxiv.org/abs/1810.07207
http://arxiv.org/abs/1810.07207
https://doi.org/10.22331/q-2019-09-02-183
https://arxiv.org/abs/1811.12338 [cond-mat, physics:quant-ph]
http://arxiv.org/abs/1811.12338
http://arxiv.org/abs/1811.12338
https://doi.org/10.1016/j.physleta.2020.126353
https://www.sciencedirect.com/science/article/pii/S0375960120301638
https://www.sciencedirect.com/science/article/pii/S0375960120301638

54 BIBLIOGRAPHY

[24] Greg Brockman et al. OpenAI Gym. June 5, 2016. arXiv: 1606.01540[cs].
URL: http://arxiv.org/abs/1606.01540 (visited on 02/04/2024).

[25] Shengyi Huang and Santiago Ontanon. “A Closer Look at Invalid
Action Masking in Policy Gradient Algorithms”. In: The International
FLAIRS Conference Proceedings 35 (May 4, 2022). ISSN: 2334-0762. DOI:
10.32473/flairs.v35i.130584. arXiv: 2006.14171[cs,stat]. URL:
http://arxiv.org/abs/2006.14171 (visited on 10/10/2023).

[26] Antonin Raffin et al. “Stable-Baselines3: Reliable Reinforcement Learn-
ing Implementations”. In: ().

[27] L. Spoor. “RL on the toric code”. In: (). URL: https://github.com/
lindsayspoor/RL_on_toric_code.

54

Version of March 1, 2024– Created March 1, 2024 - 18:58

https://arxiv.org/abs/1606.01540 [cs]
http://arxiv.org/abs/1606.01540
https://doi.org/10.32473/flairs.v35i.130584
https://arxiv.org/abs/2006.14171 [cs, stat]
http://arxiv.org/abs/2006.14171
https://github.com/lindsayspoor/RL_on_toric_code
https://github.com/lindsayspoor/RL_on_toric_code

Appendix A
Static Framework

A.1 Hyperparameter Settings

Parameter Value

Max steps per syndrome 200
Entropy coefficient 0.01
Clipping parameter 0.1
Learning rate 0.001
Network Layers 2
Network Nodes 64 per layer
Batch Size 64
γ 0.99

Table A.1: Hyperparameter set-
tings for the ablation study of
the reward schemes for the d =
5 PPO agent.

Parameter Value

Max steps per syndrome 200
Entropy coefficient 0.05
Clipping parameter 0.1
rc, rl , rs -1,5,10
Learning rate 0.001
Batch Size 64
γ 0.99

Table A.2: Hyperparameter set-
tings for the ablation study of
the network architecture for the
d = 5 PPO agent.

Version of March 1, 2024– Created March 1, 2024 - 18:58

55

56 Static Framework

Parameter Value

Max steps per syndrome 200
Entropy coefficient 0.05
Clipping parameter 0.1
rc, rl , rs -1,5,10
Network Layers 2
Network Nodes 64 per layer
Batch Size 64
γ 0.99

Table A.3: Hyperparameter set-
tings for the ablation study of
the learning rates for the d = 5
PPO agent.

Parameter Value

Max steps per syndrome 200
Clipping parameter 0.1
rc, rl , rs -1,5,10
Network Layers 2
Network Nodes 64 per layer
Learning rate 0.001
Batch Size 64
γ 0.99

Table A.4: Hyperparameter set-
tings for the ablation study of
the entropy coefficient for the
d = 5 PPO agent.

Parameter Value

Max steps per syndrome 200
Entropy coefficient 0.01
Clipping parameter 0.1
Learning rate 0.001
rc, rl , rs -1,5,10
Network Layers 2
Network Nodes 64 per layer
Batch Size 64
γ 0.99

Table A.5: Hyperparameter set-
tings used for training and eval-
uation of the PPO agents on
board sizes d = 3, 5, 7 on a static
game framework, both for cor-
related and uncorrelated bit-flip
noise, and for curriculum learn-
ing.

Parameter Value

Max steps per syndrome 200
Entropy coefficient 0.01
Clipping parameter 0.1
Learning rate 0.001
rc, rl , rs -1,-1,-1
Network Layers 2
Network Nodes 64 per layer
Batch Size 64
γ 0.99

Table A.6: Hyperparameter set-
tings used for training and eval-
uation of the PPO agents on
board sizes d = 3, 5, 7 on a
static game framework on a re-
ward scheme of (rc, rs, rl) =
(−1,−1,−1).

56

Version of March 1, 2024– Created March 1, 2024 - 18:58

A.1 Hyperparameter Settings 57

0 1000 2000 3000 4000 5000 6000
Number of training iterations

80

60

40

20

0

Re
wa

rd

d=5 PPO, 64x64
d=5 PPO, 64x64x64
d=5 PPO, 20x20x20

Figure A.1: Early training convergence
of PPO agents trained on different net-
work architectures on a d = 5 board
with error rate perror = 0.1 for the first
6000 training iterations.

0.02 0.04 0.06 0.08 0.10 0.12 0.14
perror

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p s

d=5 MWPM
d=5 PPO, 64x64
d=5 PPO, 64x64x64
d=5 PPO, 20x20x20

Figure A.2: Performance as success rate
ps after 300.000 training timesteps of
PPO agents trained on different net-
work architectures on a d = 5 board,
compared to a d = 5 MWPM decoder,
evaluated over 10.000 games.

0 500 1000 1500 2000 2500 3000
Number of training iterations

80

60

40

20

0

Re
wa

rd

d=5 PPO, lr=0.0001
d=5 PPO, lr=0.001
d=5 PPO, lr=0.01

Figure A.3: Early training convergence
of PPO agents trained on different
learning rate values on a d = 5 board
with error rate perror = 0.1 for the first
3000 training iterations.

0.02 0.04 0.06 0.08 0.10 0.12 0.14
perror

0.0

0.2

0.4

0.6

0.8

1.0

p s

d=5 MWPM
lr=0.0001
lr.0.001
lr=0.01

Figure A.4: Performance as success rate
ps after 300.000 training timesteps of
PPO agents trained on different learn-
ing rate values on a d = 5 board, com-
pared to a d = 5 MWPM decoder, eval-
uated over 10.000 games.

Version of March 1, 2024– Created March 1, 2024 - 18:58

57

58 Static Framework

0 2000 4000 6000 8000 10000
Number of training iterations

80

70

60

50

40

30

20

10

0

Re
wa

rd

d=5 PPO, ent_coef=0
d=5 PPO, ent_coef=0.01
d=5 PPO, ent_coef=0.05

Figure A.5: Early training convergence
of PPO agents trained on different en-
tropy coefficient values on a d = 5
board with error rate perror = 0.1 for the
first 20000 training iterations.

0.02 0.04 0.06 0.08 0.10 0.12 0.14
perror

0.5

0.6

0.7

0.8

0.9

1.0

p s

d=5 MWPM
d=5 PPO, ent_coef=0
d=5 PPO, ent_coef=0.01
d=5 PPO, ent_coef=0.05

Figure A.6: Performance as success rate
ps after 300.000 training timesteps of
PPO agents trained on different entropy
coefficient values on a d = 5 board,
compared to a d = 5 MWPM decoder,
evaluated over 10.000 games.

58

Version of March 1, 2024– Created March 1, 2024 - 18:58

A.2 Experiments on PPO 59

A.2 Experiments on PPO

0.0 0.2 0.4 0.6 0.8 1.0
Number of training timesteps 1e6

10

5

0

5

10

Re
wa

rd

Figure A.7: Training convergence for a
PPO agent over 106 training timesteps
on a d = 3 board. The line is smoothed
by showing the moving average of the
timestep reward over a window of 50
timesteps.

0.0 0.2 0.4 0.6 0.8 1.0
Number of training timesteps 1e6

70

60

50

40

30

20

10

0

Re
wa

rd

Figure A.8: Training convergence for a
PPO agent over 106 training timesteps
on a d = 5 board. The line is smoothed
by showing the moving average of the
timestep reward over a window of 50
timesteps.

0.0 0.2 0.4 0.6 0.8 1.0
Number of training timesteps 1e6

200

175

150

125

100

75

50

25

0

Re
wa

rd

Figure A.9: Training convergence for a
PPO agent over 106 training timesteps
on a d = 7 board. The line is smoothed
by showing the moving average of the
timestep reward over a window of 50
timesteps.

0.02 0.04 0.06 0.08 0.10 0.12 0.14
perror

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p s d=3 MWPM
d=3 PPO agent
d=5 MWPM
d=5 PPO agent
d=7 MWPM
d=7 PPO agent
d=15 MWPM

Figure A.10: Performance as success
rate ps after 106 training timesteps of
converged PPO agents for board sizes
d = 3, 5, 7 versus bit-flip error rate
perror.

Version of March 1, 2024– Created March 1, 2024 - 18:58

59

60 Static Framework

0.0 0.2 0.4 0.6 0.8 1.0
Number of training timesteps 1e6

80

70

60

50

40

30

20

10

Re
wa

rd

Figure A.11: Training convergence for a
PPO agent over 106 training timesteps
on a d = 5 board, using reward scheme
(rc, rl , rs) = (−1,−1,−1). The line is
smoothed by showing the moving aver-
age of the timestep reward over a win-
dow of 50 timesteps.

0.02 0.04 0.06 0.08 0.10 0.12 0.14
perror

0.5

0.6

0.7

0.8

0.9

1.0

p s

d=5 MWPM
d=5 PPO, perror = 0.1

Figure A.12: Performance as success
rate ps after 106 training timesteps
for a converged PPO agent on board
size d = 5 versus bit-flip error
rate perror, using reward scheme
(rc, rl , rs) = (−1,−1,−1).

0.02 0.04 0.06 0.08 0.10 0.12 0.14
perror

0.5

0.6

0.7

0.8

0.9

1.0

p s

d=5 MWPM
d=5 PPO, perror = 0.1
d=5 PPO, curriculum learning

Figure A.13: Performance as success rate ps for converged PPO agents on board
size d = 5 versus bit-flip error rate perror. The agent trained with curriculum
learning has trained on error rates [0.01, 0.038, 0.066, 0.094, 0.122, 0.15], each for
106 training timesteps.

60

Version of March 1, 2024– Created March 1, 2024 - 18:58

A.2 Experiments on PPO 61

0.0 0.2 0.4 0.6 0.8 1.0
Number of training timesteps 1e6

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

Re
wa

rd

Figure A.14: Training convergence for a
PPO agent over 106 training timesteps
on a d = 3 board for correlated bit-flip
errors. The line is smoothed by show-
ing the moving average of the timestep
reward over a window of 50 timesteps.

0.0 0.2 0.4 0.6 0.8 1.0
Number of training timesteps 1e6

80

70

60

50

40

30

20

10

0

Re
wa

rd

Figure A.15: Training convergence for a
PPO agent over 106 training timesteps
on a d = 5 board for correlated bit-flip
errors. The line is smoothed by show-
ing the moving average of the timestep
reward over a window of 50 timesteps.

0.0 0.2 0.4 0.6 0.8 1.0
Number of training timesteps 1e6

160

140

120

100

80

60

40

20

Re
wa

rd

Figure A.16: Training convergence for
a PPO agent over 106 training timesteps
on a d = 7 board for correlated bit-flip
errors. The line is smoothed by show-
ing the moving average of the timestep
reward over a window of 50 timesteps.

0.02 0.04 0.06 0.08 0.10 0.12 0.14
perror

0.5

0.6

0.7

0.8

0.9

1.0

p s d=3 MWPM
d=3 PPO agent
d=5 MWPM
d=5 PPO agent
d=7 MWPM
d=7 PPO agent
d=15 MWPM

Figure A.17: Performance as success
rate ps after 106 training timesteps of
converged PPO agents for board sizes
d = 3, 5, 7 versus bit-flip error rate perror
for correlated bit-flip errors. The re-
sults are compared to the correspond-
ing MWPM performances. The d =
15 MWPM performance shows the ap-
proach to larger system sizes.

Version of March 1, 2024– Created March 1, 2024 - 18:58

61

62 Static Framework

A.3 Examples of failed decoding cases

Fig. A.18-A.27 show rendered examples of cases in which a d = 5 PPO
agent with the performance shown in Fig. 5.5 fails to decode the presented
syndrome. Each plot shows the initial qubits flipped by the environment,
the flips from the agent, and the flips from the MWPM decoder. In each
of the shown examples, the MWPM decoding actions led to a success,
whereas the agent failed.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

initial qubit flips

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

actions agent

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

actions MWPM

Figure A.18

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

initial qubit flips

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

actions agent

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

actions MWPM

Figure A.19

62

Version of March 1, 2024– Created March 1, 2024 - 18:58

A.3 Examples of failed decoding cases 63

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

initial qubit flips

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

actions agent

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

actions MWPM

Figure A.20

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

initial qubit flips

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

actions agent

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

actions MWPM

Figure A.21

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

initial qubit flips

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

actions agent

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

actions MWPM

Figure A.22

Version of March 1, 2024– Created March 1, 2024 - 18:58

63

64 Static Framework

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

initial qubit flips

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

actions agent

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

actions MWPM

Figure A.23

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

initial qubit flips

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

actions agent

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

actions MWPM

Figure A.24

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

initial qubit flips

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

actions agent

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

actions MWPM

Figure A.25

64

Version of March 1, 2024– Created March 1, 2024 - 18:58

A.3 Examples of failed decoding cases 65

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

initial qubit flips

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

actions agent

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

actions MWPM

Figure A.26

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

initial qubit flips

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

actions agent

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

actions MWPM

Figure A.27

Version of March 1, 2024– Created March 1, 2024 - 18:58

65

Appendix B
Dynamic Framework

B.1 Hyperparameter Settings

Parameter Value

Max steps per syndrome 300
Entropy coefficient 0.05
Clipping parameter 0.1
Learning rate 0.001
N, Nnew, k 1,1,2
Network Layers 2
Network Nodes 64 per layer
Batch Size 64
γ 0.99

Table B.1: Hyperparameter set-
tings for the ablation study of
the reward schemes for the d =
3 PPO agent.

Parameter Value

Max steps per syndrome 300
Entropy coefficient 0.05
Clipping parameter 0.1
rc, re, rl 1,10,1
N, Nnew, k 1,1,2
Network Layers 2
Network Nodes 64 per layer
Batch Size 64
γ 0.99

Table B.2: Hyperparameter set-
tings for the ablation study of
the learning rate for the d = 3
PPO agent.

Version of March 1, 2024– Created March 1, 2024 - 18:58

67

68 Dynamic Framework

0 2000 4000 6000 8000 10000
Number of training iterations

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

wa
rd

rc = 1, re = 1, rl = 1
rc = 0, re = 1, rl = 0
rc = 1, re = 10, rl = 1

Figure B.1: Early training convergence
of PPO agents trained on different re-
ward schemes on a d = 3 board with
error rate (N, Nnew, k) = (1, 1, 2) for the
first 10.000 training iterations.

0 5000 10000 15000 20000 25000 30000 35000 40000
Number of training iterations

102

103

Re
wa

rd

lr=0.0001
lr=0.001
lr=0.01
lr annealing

Figure B.2: Early training convergence
of PPO agents trained on different re-
ward schemes on a d = 3 board with
error rate (N, Nnew, k) = (1, 1, 2) for the
first 40.000 training iterations.

68

Version of March 1, 2024– Created March 1, 2024 - 18:58

B.2 Experiments on different values of N, Nnew, k 69

B.2 Experiments on different values of N, Nnew, k

0 1 2 3 4 5 6 7
Number of training timesteps 1e6

0

200

400

600

800

1000

1200

1400

1600

Re
wa

rd

Figure B.3: Training convergence for
a PPO agent over 7 · 106 training
timesteps on a d = 3 board for
(N, Nnew, k) = (1, 1, 2). The line is
smoothed by showing the moving aver-
age of the timestep reward over a win-
dow of 50 timesteps.

0 1 2 3 4 5 6 7
Number of training timesteps 1e6

0

250

500

750

1000

1250

1500

1750

2000

Re
wa

rd

Figure B.4: Training convergence for
a PPO agent over 7 · 106 training
timesteps on a d = 3 board for
(N, Nnew, k) = (1, 1, 3) The line is
smoothed by showing the moving aver-
age of the timestep reward over a win-
dow of 50 timesteps.

0 1 2 3 4 5 6 7
Number of training timesteps 1e6

15

20

25

30

35

40

45

Re
wa

rd

Figure B.5: Training convergence for
a PPO agent over 7 · 106 training
timesteps on a d = 3 board for
(N, Nnew, k) = (2, 2, 3). The line is
smoothed by showing the moving aver-
age of the timestep reward over a win-
dow of 50 timesteps.

0 1 2 3 4 5 6 7
Number of training timesteps 1e6

0

250

500

750

1000

1250

1500

1750

Re
wa

rd

Figure B.6: Training convergence for
a PPO agent over 7 · 106 training
timesteps on a d = 3 board for
(N, Nnew, k) = (2, 2, 4). The line is
smoothed by showing the moving aver-
age of the timestep reward over a win-
dow of 50 timesteps.

Version of March 1, 2024– Created March 1, 2024 - 18:58

69

Appendix C
Code

The code used for this project is written in Python 3 and is publicly avail-
able at GitHub [27].

C.1 Description

This repository is constructed to run experiments for the thesis ”Quantum
error correction on the toric code using two distinct reinforcement learning
game frameworks”, and was originally made as a deliverable for the MSc
Thesis of Lindsay Spoor. The research contains the training and evaluation
of RL agents on the toric code decoding problem.

Requirements

The code for this project requires Python 3 and the following packages:

• Stable baselines 3

• OpenAI Gymnasium

• Numpy

• Matplotlib

• Pytorch

Version of March 1, 2024– Created March 1, 2024 - 18:58

71

72 Code

Environments

This repository contains different environment files, all wrapped in Ope-
nAI Gym, and were originally created for ”A NEAT Quantum Error De-
coder” (https://github.com/condensedAI/neat-qec), and are tailored to
the purpose of this research. The following files contain environments:

• toric game static env.py - Contains the environment used for the
static game framework using a PPO or DQN agent with an MLP
structure. The file contains the following environments:

– ToricGameEnv: introduces uncorrelated bit-flip errors with an
error rate

– ToricGameFixedErrs: introduces uncorrelated bit-flip errors with
a fixed amount of errors

– ToricGameLocalErrs: introduces correlated bit-flip errors with
an error rate

– Board: Implementation of toric code on a board

• toric game static env cnn.py - Contains the environment used for
the static game framework using a PPO or DQN agent with a CNN
structure. The file contains the following environments:

– ToricGameEnvCNN: introduces uncorrelated bit-flip errors with
an error rate

– ToricGameFixedErrsCNN: introduces uncorrelated bit-flip er-
rors with a fixed amount of errors

– Board: Implementation of toric code on a board

• toric game static env extra action.py - Contains the translation
of action space using an agent trained on a dynamic environment to
be evaluated on a static environment.

• toric game dynamic env.py - Contains the environment used for the
dynamic game framework using a PPO agent with an MLP structure.
The file contains the following environments:

– ToricGameDynamicEnv: introduces uncorrelated bit-flip errors
with an error rate

– ToricGameDynamicEnvFixedErrs: introduces uncorrelated bit-
flip errors with a fixed amount of errors

– Board: Implementation of toric code on a board

72

Version of March 1, 2024– Created March 1, 2024 - 18:58

https://github.com/condensedAI/neat-qec

C.1 Description 73

Agents

The repository contains different files to initialise RL agents with, using
Stable Baselines 3 as a library to train and evaluate the agents with. The
following files are called to initialise agents with:

• PPO static agent.py - Contains a class that constructs, trains, loads
a PPO agent with an MLP network architecture and is dependent on
the environments stored in toric game static env.py

• PPO CNN static agent.py - Contains a class that constructs, trains,
loads a PPO agent with a CNN network architecture and is depen-
dent on the environments stored in toric game static env cnn.py

• DQN static agent.py - Contains a class that constructs, trains, loads
a DQN agent with an MLP network architecture and is dependent
on the environments stored in toric game static env.py

• PPO dynamic agent.py - Contains a class that constructs, trains, loads
a PPO agent with an MLP network architecture and is dependent on
the environments stored in toric game dynamic env.py

Training and evaluating the agents

The repository contains different files to train and evaluate RL agents on
the toric code. The following files can be executed from the command
prompt:

• run PPO static agent.py - Specify all settings in this file in order
to either train or load and evaluate a PPO model on the static envi-
ronment, and make sure the correct storing location is specified in
PPO static agent.py.

• run PPO CNN static agent.py - Specify all settings in this file in or-
der to either train or load and evaluate a PPO model with a CNN
network architecture on the static environment, and make sure the
correct storing location is specified in PPO CNN static agent.py.

• run DQN static agent.py - Specify all settings in this file in order to
either train or load and evaluate a DQN model on the static envi-
ronment, and make sure the correct storing location is specified in
DQN static agent.py.

Version of March 1, 2024– Created March 1, 2024 - 18:58

73

74 Code

• run PPO dynamic agent.py - Specify all settings in this file in order
to either train or load and evaluate a PPO model on the dynamic
environment, and make sure the correct storing location is specified
in PPO dynamic agent.py.

• evaluate dynamic on static.py - Specify all settings in this file in
order to either train or load a PPO model on the dynamic environ-
ment, and evaluate on the static environment, and make sure the
correct storing location is specified in PPO dynamic agent.py.

74

Version of March 1, 2024– Created March 1, 2024 - 18:58

	Introduction
	Error Correction
	Classical Error Correction
	Quantum Error Correction
	Toric Code
	Minimum Weight Perfect Matching

	Reinforcement Learning
	Deep Reinforcement Learning
	Policy-based RL
	Policy Gradient Method
	Actor Critic
	Proximal Policy Optimization

	Reinforcement Learning applied to QEC

	Decoding Game
	Environment
	Static Framework
	Dynamic Framework

	Results
	Static Framework
	Training Setup
	Performance Evaluation

	Dynamic Framework
	Training Setup
	Performance Evaluation

	Discussion and Outlook
	Acknowledgements
	Bibliography
	Static Framework
	Hyperparameter Settings
	Experiments on PPO
	Examples of failed decoding cases

	Dynamic Framework
	Hyperparameter Settings
	Experiments on different values of N,Nnew,k

	Code
	Description

