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Abstract

In the pursuit of designing complex materials with desired properties, un-
derstanding their design parameter space is crucial. However, this space’s
convolution often hinders comprehension of complex materials’ responses
as a function of their design parameters. Machine Learning has recently
emerged as a promising tool for capturing patterns in complex design
spaces, although this performance often comes at the cost of interpretabil-
ity. This thesis aims to explore the design parameter space of interact-
ing hysterons using interpretable Machine Learning, specifically Decision
Tree inspired methods. Despite the complexity of the design parameter
space of even small systems of interacting hysterons, interpretable Ma-
chine Learning can classify coarse-grained properties of the system effec-
tively. Introducing the Support Vector Classifier (SVC) inspired Decision
Tree, we achieve almost perfect isolation of these properties. This model
preserves interpretability while effectively probing the statistical structure
of design parameter space of systems of interacting hysterons.
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Chapter

Introduction

Many complex materials, from amorphous matter to glasses and meta-
materials, are comprised of many meta-stable states [1-3]. These states can
be adequately modelled by a system of interacting hysterons, hysteric two
state elements[4, 5]. External driving can change the system from one state
to another, creating pathways between these states. The collection of path-
ways between these states, represented by transition graphs, or t-graphs,
show interesting properties, such as breaking return point memory [6],
sub-harmonic orbits [5] , and transient memory [7]. A system of n;, inter-
acting hysterons has a finite set of possible t-graphs. This set of t-graphs
grows exponentially with the number of interacting hysterons, making it
difficult to fully enumerate the design parameter space for many interact-
ing hysterons. This is why we are endeavoring to find rules that describe
the design parameter space.

Previous work in this field [5, 8] has shown that it is possible to describe
each possible transition graph of a system of 2 or 3 interacting hysterons.
A transition graph, or t-graph is a visual representation of all reachable
states of a system of interacting hysterons. [5] has already given us a set
of pairwise inequalities, able to describe every possible t-graph in a sys-
tem of 2 interacting hysterons. Recently, this work has been extended to
creating precise and finite algorithms to obtain these inequalities for a sys-
tem of an arbitrary number of interacting hysterons [8]. We expect sets of
inequalities describing a specific t-graph to form a polytope in the design
parameter space. As the presence of specific features, such as the presence
of avalanches, can be easily decided for each t-graph, the subset in design
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8 Introduction

space associated with a common coarse-grained property is, in general, a
collection of such polytopes. Yet, despite this framework of inequalities,
we still lack understanding of these polytopes.

We have some, but not much, intuition about the frequency, location, and
general shape of these polytopes in the design space. We would like to
explore this further, especially for systems with more than 2 interacting
hysterons. Even though complete sets of inequalities are known for sys-
tems of 2, and can be derived for systems of 3 interacting hysterons, we
would like to have a better idea of the statistical structure of their design
parameter spaces. Machine Learning has recently shown to be effective in
finding rules that delineate convoluted high dimensional spaces, in design
metamaterials [9-11] for example.

This thesis proposes an interpretable Machine Learning model, the Sup-
port Vecor Classifier (SVC) inspired Decision Tree (DT) to identify coarse-
grained sub-spaces. These sub-spaces are defined by common properties
of t-graphs that reside in these sub-spaces. We first try to do so using Deci-
sion Trees (DTs) (Chap. 4.1), but find their decision boundaries to be lack-
ing in expressiveness as they are only 1st order inequalities. We therefore
introduce the SVC inspired Decision Tree DT (Chap. 5), that preserves
DT structure, but incorporates a more expressive decision boundary, in
the form of a linear inequality of order d, where d is the number of de-
sign parameters. We find that this model, while retaining interpretability,
is able to almost perfectly isolate these coarse grained regions defined by
common properties, such as avalanches, for small systems of interacting
hysterons (Chap. 6). We expect the SVC inspired DT to be a useful tool for
probing the statistical structure of design parameter spaces of systems of
interacting hysterons.
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Chapter 2

The model of interacting hysterons

In this thesis we will be looking at the design parameter space of systems
of linearly interacting hysterons, as described in [5]. Therefore, the follow-
ing section is dedicated to explaining this system and both a visualisation
of it, in the form of transition graphs, as well as properties that these sys-
tems can exhibit. We will do so by first going over the Preisach model
of (non-interacting) hysterons [4], after which we will introduce a linear
interacting between these hysterons. Furthermore, it will introduce the
transition graph as a means of visualising states and transitions in the sys-
tem. Finally, it highlights some of the properties a system of interacting
hysterons can have and elaborates on them.

2.1 Preisachs model of (non-interacting) hysterons

If we want to model metastable materials, such as programmable metama-
terials and amporhous solids, we can approach this metastability as a con-
sequence of many (interacting) bistable elements. Originally derived for
ferromagnetism, a hysteron is a hysteric two state element that can either
be 0 or 1 and allows us to model meta-stable states. Hysterons are based
on the principle of hysteresis. Now hysteresis can mean many things de-
pending on the context it is described in. However, in Preisach’s model
of hysteresis, hysteresis means that switching up, from state 0 to 1 and
down, from 1 to 0, happens at two different values of an external driving
field U. We call these values the switching fields U;" and U~ respectively,
for which

0< U <1 (2.1)

9
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10 The model of interacting hysterons

Transitions in the system, from state S — S’ where

S = {s1,52,..,5N, } (2.2)

describes a system of Nj hysterons, are a result of external driving of
the system, where transitions take place when the external driving passes
some critical value U.. A hysteron i in state s; = 0(1) flips up(down) to
state s; = 1(0) when the external driving field is larger(smaller) than the
bare up(down) switching field; U > Uf (U < U;"). The order in which
hysterons switch up or down under driving is independent of the state of
the system.

U U

Figure 2.1: The switching fields can change as the systems transitions from state
S (left) to a new state S'(right). The values of the down (red) and up (green)
switching fields changes as a function of the state of the system, resulting in a
change in the ordering of the switching fields.

2.2 Model of interacting hysterons

If we add linear interactions between these hysterons such that the switch-
ing fields LI;L ~(0< Ll;r " < 1) are now a function of the bare switching
fields u™~ (0 < u;“_ < 1) and the interaction coefficients ¢;; (—1 < ¢;; <
1);
Ur=(S) =u"~ =Y cis;, (2.3)
j#i

10
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2.3 Transition graphs 11

we find that the switching fields of the hysterons are dependent on the
state S of the system. Here we impose u;” > u; > ... and assume no two
bare switching fields to ever have the same value. This means that the or-
dering of the switching fields is also state dependent; going from state S
to S', switches the order of U;" and LI]‘+ (Fig. 2.1).

At each state the system has two critical values that follow from the switch-
ing fields of the individual hysterons. Namely, one up and one down crit-
ical switching field:

US(S) = minU;"(S), (2.4)
Uz (S) = minyU; (S), (2.5)

which states that the lowest (highest) up (down) switching field of any
hysteron in state 0 (1) is the critical up (down) switching field of the system
in state S [5]. This means thatif U > Ul orif U < U the system becomes
unstable evoking a transition (S — S’). For a more detailed description of
the linearly interacting hysteron model, see [5, 8].

2.3 Transition graphs

Transitions graphs, or t-graphs, introduced in [5], are a visualisation of all
reachable states and possible transitions between these states of a system
of hysterons. In order to generate a transition graph, we go through all
the states the system can reach from the two extremal states, 0 = {0,...} and
1= {1,...}. The states are then displayed in the t-graph in order of low to
high magnetisation from bottom to top, where m = ) ; s;. Furthermore, the
states are arranged lexicographically from left to right. We see in Figure 2.2
all possible t-graphs for a system of 2 linearly interacting hysterons. This
set includes the two graphs (in green) that correspond with the Preisach
model of non-interacting hysterons. The addition of interaction, makes
a lot more t-graphs realisable (in orange). We have two bare switching
fields for each hysterons, giving us 2n; design parameters. Additionally,
considering interaction coefficients c;; where ¢;; = 0, there are ni — ny, such
coefficients. The number of design parameters for a system for a system
of hysterons is therefore n? + 1. The relationship between the number of
interacting hysterons and the number of realisable t-graphs is exponential.
It grows from 2 to 11 for a system of 2 hysterons and we know that for a
system of 3 hysterons the possible t-graphs grow from 6 to over 15000.

11
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Figure 2.2: All possible transition graphs for a system of 2 interacting hysterons.
We find the Preisach t-graphs, where c;; = 0 (a, b). As well as the t-graphs that
additionally become possible when we add linear interactions c;; # 0 between
hysterons (c-k). This Figure is a modification of the original from [5]

2.3.1 t-graph properties

Figure 2.2 shows that new transitions arise when we introduce linear in-
teractions between hysterons. Most notably, avalanches, Figure 2.2 (c-k),
are a new transition graph property. Another important new phenomenon
is that transition graphs can now be “ill defined’. We require this new def-
inition as it is possible for transitions to end in self loops, S — S.

In order to understand how these properties come to be, lets look at a case
where we transition from state S = {00} for a system with n;, = 2. As
mentioned in the previous section, if the external driving field is bigger
than the critical up switching field of state {00} (2.4), the system will tran-
sition to a landing state S’. Since u; < uj is imposed, the system will
transition to S’ = {01} at U, = u;. It is not a given, however that this
state is stable. S’ = {01} has two critical switching fields itself, see Figure
2.3. The critical driving field U, = uzr must therefore be greater (lesser)
than the critical down (up) switching field of the landing state S’ = 01
for S’ to be a stable landing state. This means S’ = {01} is unstable if
u;_“ < u, , which is a given, or if u;_L > uf — c12. Generally, any landing
state S’ is unstable if the driving field U is greater (lesser) than the critical
down (up) switching field of S’. If S" = {01} is unstable, that means that a

12
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2.3 Transition graphs 13

5 —Ca1

Figure 2.3: Shown here are the critical switching fields of all possible states of a
system of 2 hysterons. The arrows indicate the possible transitions of each hys-
teron. Figure from [5]

transition from S to S” = {11} is possible. We follow the same procedure
as before and again find condition(s) in the form of pairwise inequalities
for this transition to be stable. If it is, we call this transition S — S” an
‘avalanche’ transition. Generally, any transition between two states where
more than one hysteron switches up or down is called an "avalanche’ tran-
sition. A case in which a transition from a state ends up back at that same
state S — S we call ill defined’.

Below we find a decision tree, which shows what transition is made, based
on the pairwise inequality conditions that we found. Doing this for every

Figure 2.4: Decision tree of pairwise inequality conditions derived from the crit-
ical switching fields, that shows a transition from state 00. "T” ('F’) indicates a
condition to be true (false). Figure from [5]

state that is reachable, meaning that a transition to that state is stable, com-

13
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14 The model of interacting hysterons

pletes a transition graph.

Some properties only arise in systems with a larger number of hysterons.
One such properties is the breaking of loop-Return Point Memory (I-RPM).
We define a loop to have a 'bottom” state and a "top” state and for these
states to be connected by two sequences, one of up transitions, the other
of down transitions. I-RPM requires for a sequence starting from any state
in this loop to only be able to go to the "bottom” or "top” state. If these con-
ditions are not met, I-RPM is broken. An example is shown in Figure 2.5.
The sequence {100} — {110} — {111} breaks I-RPM of the loop between
‘bottom” state {000} and "top” state {101}. For a more elaborate expla-
nation of t-graph creation and property definitions, such as ill definition,
avalanche(s) and breaking I-RPM see [5, Section IIIB].

(D)

1
N

Figure 2.5: An example t-graph that breaks loop-Return Point Memory (I-RPM)
for a system of 3 interacting hysterons. I-RPM is broken by the sequence {100} —
{110} — {111}. Figure from [5].

/

L
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Chapter

Sampling the design parameter
space

The essence of this thesis boils down to the following. In order to better
understand the design space of interacting hysterons, we aimed to identify
sub-spaces in that design parameter space that house t-graphs with a com-
mon property, a subspace where all t-graphs have one or more avalanches
for example. In the following section we describe how we translate the
properties from Sec. 2 into Machine Learning data, such that we can train
a model to identify sub-spaces in the design parameter space based on
common topologies of t-graphs in that sub-space. The transition graphs
from the previous section are merely a nice visualisation of the relation
between the design parameters u;r’f and c;; and the properties of the sys-
tem, that we can label. Each data entry is therefore a d-dimensional point
in the design parameter space, where d = n? + n;, with assigned to it labels
that are about the properties of the system. Recall that 7, is the number of
interacting hysterons in the system.

X = {uf’_,cij} (3.1)
y={f} (3.2)

where f is a statement about a property of the system, such as it being ill
defined or having one or multiple avalanche(s).

These properties can be boolean statements, such as whether a t-graph
is ill defined or not, although in some cases it is useful to save more infor-
mation. Avalanches for example can occur more than once in a t-graph,

15
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16 Sampling the design parameter space

and there are multiple kinds of avalanches, that can happen between dif-
ferent states. Therefore we save information about avalanches as a list of
strings of states between which avalanches occur. For example, the list for
the graph in Fig. 2.2(c) is ;

avalanches = [0110,1001]. (3.3)

This allows us to also classify t-graphs with specific avalanche transitions
instead of just whether t-graphs have avalanche(s) or not. Practically, we
store boolean statements as 1 (true) or -1 (false), as we require a numeric
value for our loss function to work.

We expect sub-spaces where all t-graphs have a common property to have
the form of polytopes or a collection of polytopes. We do so based on
the fact that it has been shown that a one or more pairwise inequalities
can describe individual transitions, as well as complete t-graphs. In the
design parameter space these pairwise inequalities form hyperplanes and
we expect a collection of them to intersect to form a polytope. That is
why, in order to find these polytopes, the following Section is dedicated
to probing the design space with interpretable Machine Learning models
that produce linear decision boundaries, that form hyperplanes in the de-
sign parameter space, recursively.

16
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Chapter I

Probing the design parameter
space

In this section, we introduce two models. The first is a Decision Tree (DT).
We show how it performs on our data (Sec. 3) and try and explain the per-
formance with a visual example from our data. We introduce the linear
Support Vector Classifier (SVC) and show how it performs better on our
example. Finally, we propose dressing the DT with a linear SVC, increas-
ing its expressiveness, at each node. We call this model the Support Vector
Classifier (SVC) inspired Decision Tree (DT).

4.1 Decision trees

A decision tree [12-14], one of the most famous and simple machine learn-
ing models, is a natural choice for our problem because transitions in our
system (Sec. 2) follow a tree like structure (Fig. 2.4) as well. Another
advantage of decision trees is that they have very interpretable results, as
they offer a readable tree like structure of relatively simple questions about
the data. Therefore, we use it for a first exploration of the design parame-
ter space of t-graphs. Here, we will explain how a DT works.

A decision tree is a supervised learning model that can perform both re-
gression and classification tasks. It starts with a node containing all data
and tries to split the data into two parts, in such a way that it maximises
the information gained about the data with respect to the classification
task.

17
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18 Probing the design parameter space

node : m
data : D

samples : n,,

Digi(6) = {(=,y)|z; < tm} Driori(0) = {(@: y)|w; > tn}

Figure 4.1: Representation of a single node in a decision tree, the green highlights
the splitting of the data in node n according to 0 = (f, tu).

We can mathematically formulate the best split the following way. Say we
have our data D,, = (X, Y) atnode m of n,, samples, and we want to make
the best split and we do a split 0 = (f, t,,), where f is a feature to split on
and t,,, the threshold value of that feature, that splits the data into (X, Y)}"
and (X, Y)¥. We are then left with two subsets:

(X, V)7(60) = {(x,y)|xi < tm} 41)
(X, Y)R(6) = {(x,y)|xi > tm} (42)

Then, the quality of this split with regards to the information gain is tested
using a loss function. This is often either the Entropy or, as in this thesis
the Gini impurity loss function

2 pmk pmk (4-3)

where p,,« is the ratio of class k observations in node m, defined as

1
Pk =—— ) 1(y=k), (44)
M yeDy,

where I(y = k) is the identity function if y is of class k. We use the Gini
impurity loss function over the Entropy loss because it is generally com-
putationally faster at no significant performance cost. We can then find

18
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4.1 Decision trees 19

the best quality split by altering the split parameters 6 = (f, t,;), such that
it minimises:
nleft left nright Lot
G(D,0) = ——H(Dy (6)) + ——H(D;,*" (6)). (4.5)
M M

To summarise; at each node m, a split 0 = (f, ;) that is parameterised by a
feature and a corresponding threshold is chosen such that it minimises the
impurity G(Dy, 6), see Figure 4.1. This means that at each split the model
tries to gain the most information about the classification. The DT keeps
splitting until all of the nodes are pure (or another termination condition
is met), meaning that all of the training data samples in each node have
the same label. We call those nodes leaf nodes.

5 EE W -

fm
Figure 4.2: On the left we see an illustration of a DT that has been trained to solve
the classification problem that is shown on the right, where the blue triangles
and the orange circles represent two distinct classes. The colored regions on the

right correspond with the colored leaf nodes on the left and indicate that the tree
classifies all points in those regions as the class corresponding to that color.

Figure 4.2 shows the tendency of DTs to over-fit, since it can only make
axis parallel decisions with a decision boundary. We also see that with
increasing tree depth and thus increasing the number of leaf nodes results
in more detailed decision regions.

41.1 DT Results

We show in this subsection the results of training DTs on the design pa-
rameters for a system of 2 interacting hysterons. In this section and the

19
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20 Probing the design parameter space

ones after it, we will discuss two features. First, ‘ill definition’, because it
is a simple boolean features for 2 hysterons. Furthermore, we will be look-
ing at “avalanches’, both if they occur, and in what form they occur. We see

107 mmm ill_defined J———

. =
avalanche(s) Pt
BN loop-RPM sz

o
©

o
o

accuracy
accuracy

e
3
L

o
o

I ill_defined
0.65 - avalanche(s)

o
7]
L

1 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 12 3 4 5 6 7 8 910111213 14 15 16 17 18 19
max depth max depth

(a) 2 hysterons (b) 3 hysterons

Figure 4.3: For a system of 2 and 3 interacting hysterons: Training- (dashed)
and test (solid) accuracy of two (three) feature classifications, ill definition,
avalanche(s) (and loop-RPM), as a function of the depth of the DT.

that the test accuracy for a system of 2 hysterons, Figure 4.3(a), converges
at quite high, but sub-optimal accuracy of about 0.95 and 0.85 for “ill def-
inition” and "avalanche(s)” respectively. We conjecture that the reason the
former converges at higher accuracy than the latter is that there are many
different types of avalanches, and thus many t-graphs that are classified
as having avalanches. In the design parameter space that could mean that
the sub-region that we are trying to classify might consist of multiple sep-
arate sub-regions, or clusters. Also, note the over-fitting of the DT, seen in
the Figure as a separation between the training and test accuracies, indica-
tive of bad generalisation, likely due to the DTs limitation to axis parallel
decision making that only considers one design parameter.

4.2 Design Inequalities

[5] shows that for a system of 2 interacting hysterons it is possible to find a
set of pairwise inequalities that is able to describe every possible transition
graph. Furthermore, [8] shows that the same is possible for a system of 3
interacting hysterons. The set of pairwise inequalities for a system of 3

20
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4.3 Support Vector Machines 21

interactions is bigger than one for a system of 2 and it will grow with the
number of interacting hysterons in the system. [5] also shows that a set
of pairwise inequalities is able to describe all t-graphs that are “ill defined’
or have "avalanche(s)’. If we train our DT with these pairwise inequalities
x;, found in [5] Table I, as the input data, it achieves an accuracy of 1, and
also finds the set of conditions on a subset of pairwise inequalities that
describe all t-graphs that are ’ill-defined’. x; means that the condition is
true while —x; means that the condition is not true. Interestingly, the DT
finds a smaller subset than [5], namely:

—xg A\ X5 \ Xg N\ —X7, (46)

instead of:
—X3 A\ X5 \ 2Xg A X7 A\ —Xg. 4.7)

This indicates but does not conclusively posit, that there is a potential re-
dundancy in the set of inequalities presented in [5].

The performance of the DT on classification of properties of a system of 3
interacting hysterons has similar problems as described above. But these
are amplified, we see even more over-fitting as well as lower test accuracy
convergence. We attribute these issues to the higher dimensionality of
both the parameter space and the clusters the DT is tasked to classify. We
suspect that these clusters are more widely dispersed within the design
space, exacerbating the difficulties faced by the DT. This situation under-
scores the limitations of employing single-axis parallel decision-making
strategies in such complex systems.

To investigate this suspicion, we look at an example of non-axis parallel,
but linearly separable data, we see why the performance of a DT might
be sub optimal, see Figure 4.4. We see that in order to achieve decent test
accuracy, the DT needs at least a depth of 3, with 6 leaf nodes (number of
red dotted rectangles). We also see that in this case, the model is already
over-fitting to the training data. For a better performance and to reduce
over-fitting a more expressive decision boundary might be better.

4.3 Support Vector Machines

For a more expressive decision boundary we look to the linear Support
Vector Classifier (SVC). Another very common, computationally efficient

21
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22 Probing the design parameter space

DT Decision Boundaries: 0.86/0.73 train/test acc

up2

Figure 4.4: Decision Boundaries of a Decision Tree (DT) with depth 3. The num-
bers in red indicate the DT depth at which a new decision boundary of a subspace
in a node is made and the red dotted line shows that decision boundary. The DT
is trained to classity classes ill defined” (blue square) and not ill defined” (orange
triangle) using only design parameters u, and u; .

algorithm that is used often for classification tasks. A fundamental con-
cept of Support Vector Classification (SVC) is the maximization of the mar-
gin between clusters of points belonging to different classes. This empha-
sis on maximizing the margin is aimed at enhancing the SVC’s ability to
generalize well to unseen data by providing a robust decision boundary.
The points closest to the decision hyperplane are called support vectors
and they play a big role in deciding the orientation of the hyperplane.
However, in our problem this concept is less relevant. This is because
when the parameter space is extensively sampled, the margin between
the clusters of points belonging to different classes may diminish or even
disappear entirely. As a result, the concept of support vectors loses its
significance. Instead, our focus shifts towards ensuring a more expres-
sive decision boundary. This thesis will focus on the linear SVC as we
are interested in higher order linear relations between the design param-

22
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4.3 Support Vector Machines 23

eters. We implement the linear SVC by using a Python framework using
the LIBLINEAR, a linear classification library from the National Taiwan
University [15].

Given a set of training samples (X;, y;), where X; is the input data and y; is
the corresponding class label, the optimal hyperplane decision boundary
is defined by

N
Y wi-xi+b=w-X+b=0, (4.8)
i

which is a sum of N (dimension of the hyperplane) products of input data
x;, in our case design parameters and corresponding weights w; plus a
bias term b. The SVC defines the optimal hyperplane as the one that min-
imises the loss function, and optimises the split parameters 6 = (@,b). A
common loss function for a linear SVCs is the squared hinge function

SH(y, f(x)) = (max(0,1 -y * f(x))?, (4.9)

where y is the true output label and f(x) is the SVCs decision function,
both expressed as either +1 (True) or —1 (False).

Where the decision boundary at each node of a DT is just a first order in-
equality, the decision boundary of a linear SVC is a linear inequality with
an order of the number of design parameters, see Equation (4.8).

Figure 4.5 shows the decision boundary generated by a Linear SVC on the
same data as in Figure 4.4. It shows that a linear SVC decision boundary
not only outperforms a DT of depth 3 in terms of test accuracy, but also
reduces over-fitting compared to that DT. Since this example is taken from
our real data and we expect most linear relations to not be axis parallel, we
expect the SVC decision boundary to be promising when it comes to sep-
arating t-graphs in our design parameter space with respect to properties.
That is why propose to dress a DT with linear SVC decision boundaries at
each node.
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24 Probing the design parameter space

SVC Decision Boundary: 0.88/0.83 train/test acc

0.0 0.2 0.4 0.6 0.8 1.0
up2

Figure 4.5: Decision boundary of a Linear Support Vector Classifier (SVC). The
SVC is capable of generating non-axes parallel decision boundaries.
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Chapter

A Support Vector Classifier
inspired Decision Tree

Inspired by oblique (non axis parallel) and non-linear decision trees [16—-
18] we propose an SVC inspired Decision Tree. Its workflow is shown in
Figure 5.1.

,
z;in SvC

v
‘Decision boundary: f(x)|

tr

Split data:
(X,Y)L =A{(z,9)r: z € f(z) <0}—>
(X, Y)r={(z,9)r : z € f(z) > 0}

Leaf node:
(X,Y)

Figure 5.1: Workflow of the SVC inspired DT algorithm. We see how at each
node the data is split into two based on the decision boundary. If a termination
condition is met, we end up with a leaf node.

Let us introduce the SVC inspired DT algorithm by going through it in
steps.
1) Like a decision tree, at each node the SVC inspired DT splits the design
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26 A Support Vector Classifier inspired Decision Tree

parameter space into two half spaces, but unlike the DT, it does so with a
more expressive decision boundary from Equation (4.8). We find this deci-
sion boundary by optimising our split parameters 6 = (@, b) to minimise
(4.9). This gives a decision boundary f(x). We split the data based on this
decision boundary:

(X, Y)L={(x,y)|xi € f(x;) <0} (5.1)
(X, Y)r ={(x,y)|xi € f(x;) >0},

where f(x) is the decision boundary as described in Equation (4.8).

2) Then, it checks whether any of the termination conditions are met. We
have three of them. They are: I: the depth of the tree exceeds the maximum
depth. The maximum depth can be set by the user. II: All instances of data
in (X, y) are of 1 class, this means we get a pure node. III: The information
gain (4.5) of the classification is 0.

3) If none of the previous conditions are met, we take the split data and
initiate a new node on both sides (5.1) of the decision boundary f(x).

This SVC inspired DT, like a regular DT, after training, returns a set of
d-dimensional linear inequalities, in the form of the (d — 1)-dimensional
decision boundaries with a DT like structure. Recall d, the number of de-
sign parameters: 17 + 1. These results resemble those of the DT and are
still interpretable.

The data that the SVC inspired DT was trained on was under-sampled
to have equal representation of both classes in the classification task as we
found the models performance to be best with that distribution of classes.
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Chapter

Results

Here, we present results of the SVC inspired DT, discussed in the previous
section, on classification tasks that involve “ill definition” and “avalanche(s)’
for a system of n;, = 2 interacting hysterons. Then we will present classi-
fication results relating to more specific avalanche transitions for n;, = 2.
Also, we will show the results of classification task for a system of n;, = 3
interacting hysterons. finally we discuss the interpretability of the deci-
sions made by the SVC inspired DT.

6.1 2 hysterons

So first let us look how the SVC inspired DT does at the same classifi-
cation tasks from 4.3(a), namely the classification of ‘ill definition” and
"avalanche(s)’.

Figure 6.1 shows improved results compared to a regular DT, see Figure
4.3. We see a decrease in overfitting, implying the model is able to gener-
alise better. Also, the more expressive decision making realises a higher
accuracy than the DT with just one decision. Moreover, we find that test
accuracy converges at an accuracy of about 0.98 and 0.92 for ill definition’
and "avalanche(s)’ respectively, outperforming the DT.

As mentioned before, t-graphs with one or more avalanche(s) come in
many forms. For n;, = 2, every non-Preisach graph in Fig. 2.2 (c-k) has
at least one avalanche. In order to see how the model performs a clas-
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Figure 6.1: Both figures show the train (dashed) and test (solid) accuracy as a
function of the depth (orange) and the number of leaf nodes (blue) of the SVC
inspired DT for a system of 2 interacting hysterons.

sification task for what we expect to be a smaller subspace in the design
parameter space, we looked at t-graphs that include specific avalanche
transitions. In particular, the transition 00 — 11 (f-h) and 01 — 10 (c,d).

nr of leaf nodes nr of leaf nodes
0 60 60 80

80 100 0 20 40

accuracy
accuracy

(a) 00 — 11 (b) 01 — 10

Figure 6.2: Both figures show the train (dashed) and test (solid) accuracy as a
function of the depth of the SVC inspired DT for a system of 2 interacting hys-
terons. On the left the model performance on classification of avalanche transition
00 — 11 and on the right 01 — 10.

Figure 6.2 shows that the SVC inspired DT is able to almost perfectly clas-
sify t-graphs containing either avalanche transition. As well as being able
to generalise well, as it shows very minimal over-fitting.
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6.2 3 hysterons 29

Important to note, is that all the datasets for classification results in Figure
6.1 and 6.2 are of the same size, in order to compare the results between
classification tasks. For avalanche(s) for example this means that higher
accuracies are possible, but require a lot more data. Fig. 6.3 shows that

nr of leaf nodes
0 1000 2000 3000 4000 5000 6000 7000 8000

0.96

14
©
B

accuracy

0.92

0.90

0.88

Figure 6.3: Train (dashed) and test (solid) accuracy as a function of the depth (or-
ange) and the number of leaf nodes (blue) of the SVC inspired DT on the classifi-
cation of avalanche(s) with about 10 times as many data entries as in Fig. 6.1(b).

with about 10 times as many data entries the accuracy converges around
an accuracy of 0.97 instead of 0.92 (Fig. 6.1(b)).

We calculated the train- and test accuracies as a function of the depth of
the tree. And while the point at which the accuracy converges is a good
indicator of how hard the classification is, the number of leaf nodes more
directly indicates how hard the sub-space housing t-graphs with common
topologies is to classify. Fig. 6.1 shows that the sub-space housing t-graphs
with “avalanche(s)” is harder to classify than the sub-space housing “ill de-
fined’ t-graphs. We state that because the accuracy at convergence is lower
for the classification of “avalanche(s)” than for the classification of “ill defi-
nition” and it does so at a higher number of leaf nodes. We also find that if
we look at a property that we expect to correspond to a smaller sub-space
housing t-graphs with that property (Fig. 6.2), the same is true.

6.2 3 hysterons

Here, we present the results of the SVC inspired DT on ’ill defined” and
"avalanche(s)’ classification tasks.
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Figure 6.4: Both figures show the train (dashed) and test (solid) accuracy as a
function of the depth (orange) and the number of leaf nodes (blue) of the SVC
inspired DT for a system of 3 interacting hysterons.

Opposite to the results presented in Sec. 6.1, we see little improvement
with respect to both accuracy and mitigating overfitting in Fig. 6.4. We
think some of these problems to be the consequence of discrepancies in
scale between the design space and the coarse-grained sub-spaces hous-
ing common properties. That is to say, we know the design parameter
space to increase in complexity with the n;, and expect that the sub-spaces
housing t-graphs with common topologies to also become more complex
and scattered in the design space. We expect some of these problems to be
remedied by even more extensive sampling of the design parameter space.

6.3 Decisions

Recall that the SVC inspired DT also neatly returns a set of order 4 inequal-
ities (4.8) in a DT like structure that represent (d — 1)-dimensional hyper-
planes in the d-dimensional design parameter space. This result facili-
tates the investigation of the statistical structure of the design parameter
space as it provides interpretable rules that delineate the design parameter
space according to these t-graph properties. However, although the accu-
racy appears high after just one decision, as indicated by results presented
showing high accuracy at a depth of 1, it becomes evident that accuracy
converges at a greater depth, requiring a significantly higher number of
leaf nodes. Consequently, interpreting these decisions becomes more chal-
lenging. Additionally, as the number of hysterons increase, we anticipate
a corresponding growth in the complexity and number of these decisions.

30

Version of March 15, 2024- Created March 15, 2024 - 14:11



Chapter 7

Conclusions and future prospects

7.1 Conclusion

What this thesis hopes to contribute to the exploration of realising in-
versely designed metamaterials, is an interpretable Machine Learning model
that probes the design paramater space of interacting hysterons that model
metastable materials made from bistable elements. The model allows us
to interpret the decision making, and therefore find relations between the
rules of the design parameters and transition graph properties, which helps
facilitate understanding of the design parameter space.

The model, a Support Vector Classitier (SVC) inspired Decision Tree (DT),
attempts to find patterns in the convoluted design space and does so with
a set of interpretable decisions in a tree like structure. We found that the
SVC inspired DT is able to almost perfectly capture sub-spaces defined
by t-graphs with common properties in the design space. It does so by
iteratively splitting the design space into two half-spaces with a decision
boundary in the form of a linear inequality (Sec. 5). The aforementioned
SVC inspired DT is able to almost perfectly capture common properties be-
tween t-graphs in the design space for n;, = 2 with a collection of decision
boundaries in the form of linear inequalities between design parameters
(Sec. 6). Thus implying that higher order linear relations than pairwise
linear relations [5, 8] exist, that are able to describe common properties
between t-graphs. These linear relations are interpretable which helps fa-
cilitate understanding of the design parameter space.
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32 Conclusions and future prospects

7.2 Discussion

Even though for n;, = 2 the model is able to almost perfectly capture sub-
spaces housing t-graphs with common properties, the same can not be
said for nj, = 3. Even though it is able to learn the subspace in training, it
overfits, resulting in a result that is not general.

We do expect some of these problems to be remedied by even more ex-
tensive sampling of the design parameter space, so as to reconcile the
predicted discrepancies in scale between the design space and the coarse
grained sub-spaces housing t-graphs with common properties.

Additionally, we also hypothesise that the model has difficulty isolating
sub-spaces housing t-graphs with common properties that are a collection
of scattered clusters in the design parameter space. We suspect that per-
forming clustering can help the model in these cases, since it would allow
each of these clusters to be considered separately by the model instead of
all at once.

It is also interesting to note that in the exploration for n;, > 2 the linear
SVC scales almost linearly with the number of data instances, as well as
the dimension of each instance d (the number of design parameters). This
means that the linear SVC scales quadratically with the number of hys-
terons n;,. However, since we expect these classification tasks to be harder
for higher n;, and thus require more decision nodes, but do not know ex-
plicitly how the number of nodes is related to the number of interacting
hysterons in the system 7, we can only say that the model will scale at
least quadratically with the n,.

7.3 Future Prospects

One way to be more informed about the design space is to investigate
the statistical structure of the design parameter space and in particular of
the sub-spaces that are defined by transition graph properties. The model
presented in this thesis facilitates this investigation as it provides inter-
pretable rules that delineate the design parameter space according to these
t-graph properties.

Between the 1- and d-dimensional linear inequalities of the DT and SVC in-
spired DT respectively, it would be interesting to see if any d’-dimensional
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7.3 Future Prospects 33

linear relations exist, where 1 < d’ < d. Realising this, by changing the
decision boundary at each node to compare all combinations of d’ number
of design parameters and then choose the best split, has proven techni-
cally difficult. It would be especially interesting to see if we can use it to
find a complete set of pairwise inequalities for n;, = 2 and n;, = 3 as a
performance benchmark.
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