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Abstract

In this thesis we present an experimental realisation of a double loop type
Magnetic Paul Trap. We show that a microgram heavy NdFeB permanent
magnet can stably be levitated for hours at room temperature in this trap.
Magnetic levitation of a magnetized particle is theoretically possible with
this trap by generating opposed alternating magnetic fields. We show the
fabrication of a printed circuit structure capable of producing these fields,

as well as the engineering behind the realisation of the trap. Both by
optical and magnetic readout we characterize the motion of the trapped

magnet and show that its center of mass motion frequencies
ωz = 2ωx,y ≈ 20Hz. We characterize the damping on these modes and

find that at low pressure the quality factor is strongly limited (to Q ≈ 90)
by coupling to the environment through generation of Eddy currents.
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1. INTRODUCTION

Bringing particles into a state of stable and controlled levitation is a field of
considerable interest. Controlling the trapping of a particle disconnected
from environmental inputs allows the building of experimental platforms
to study atoms, microparticles, materials, quantum systems among others
in more isolated regimes than other techniques provide. Levitation in a
vacuum isolates a particle from direct physical contact with other mate-
rials, preventing unwanted coupling to external factors like heating and
leaving its degrees of freedom to evolve and interact freely [1]. Optical,
electric and magnetic techniques for trapping dielectric, charged and mag-
netized particles, each have advantages and drawbacks and consequently
have varying applications regarding what type of particle is studied. Mag-
netic levitation stands out among the three as a method of trapping very
large particles (µm to cm) in either cryogenic regimes with static fields
making use of the Meissner effect, or at room temperature with rotat-
ing or otherwise changing fields [2]. The drawback of larger particles is
their lower trapping frequency, significantly reducing the speed at which
center-of-mass cooling can be done. Trapping heavier particles plays a cru-
cial part in quantum research, where experimental resolve is looked at for
guidance regarding quantum gravity theory [3]. Bringing levitated heavy
particles (∼ picogram) close to the quantum ground state through cool-
ing has been proposed to measure the quantum nature of gravity through
gravity mediated entanglement [4, 5]. Two heavy particles’ entanglement
would, being isolated from other entangling factors, be mostly dependent
on the gravitational force between them, if the gravitational field can act
as a quantum mediator. The larger the mass of these particles, the easier
the entanglement would be to measure.

The project presented in this thesis is concerned with the proposal of
magnetically levitating a large particle as discussed in [2]. There it is
shown that a permanent magnet (∼cm) can be stably levitated without
the Meissner effect and despite Earnshaw’s theorem (stating that levita-
tion with static fields is impossible) through the use of a rotating, saddle-
shaped magnetic field, which is coined the Magnetic Paul Trap (after its
electric counterpart, the Paul Trap). It is further proposed that, based on
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8 Introduction

Figure 1.1: The Magnetic Paul Trap in action. We see the black plastic of the top
Helmholtz coil, and the inner white teflon as a spacer between the PCB, on which
the trap structure is printed, and the glass cover keeping the magnet closed in.
The red light (632.8nm) He-Ne laser, redirected with a mirror to point directly
upward through the trap, is seen to illuminate the levitating cube magnet from
the bottom. Some wiring and thermalising copper tape is seen in the top of the
picture.

their working principle, an on-chip trap with a double-loop design should
also be able to levitate a magnetized particle (∼ µm). In the chapters that
follow we show our successful realisation of this novel Magnetic Paul Trap
with a PCB (Printed Circuit Board) design as well as our attempts at mea-
suring and characterizing the motion of a NdFeB cube magnet (250µm).
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2. THEORY

2.1 Levitodynamics

From the analytical expression for the magnetic field generated by the trap
loops and the magnetic moment of the particle the magnetic energy of the
particle can be approximated through a second-order Taylor expansion
with Emag = –µ · B. A dimensionless stability factor q is introduced Eq. 2.1
for which the secular approximation is valid when q ≤ 0.4 which allows
averaging over the field oscillations and obtaining the motional frequen-
cies [2]:

qz = −2qx = −2qy =
2B

′′
1 Bsat

µ0ρmΩ2 (2.1)

in which B
′′
1 is the magnitude of the curvature of the trap-generated

field, Bsat is the field strength of the magnetized particle at saturation,
also called the remanent field. µ0 is the magnetic permeability in vacuum,
ρm the mass density of the material of the particle and Ω the radial trap-
ping frequency. The frequencies of the center-of-mass modes in x, y and z,
where the trap loops lie in the x, y–plane and z is the height, are given by
Eq. 2.2.

ωz = 2ωx = 2ωy =
Ω
2
|qz|√

2
(2.2)

As long as the stability criterion is obeyed the equation can be written
without q to see that the CoM eigenfrequencies are directly proportional
and inversely proportional to the trap field curvature and the trap fre-
quency respectively Eq. 2.3.

ωz = 2ωx = 2ωy =
1√
2

|B′′
1 |Bsat

µ0ρmΩ
(2.3)

The librational frequencies ωγ and ωβ, which are the rotations around
the x and y axes, are given by Eq. 2.4 and depend on the strength of the
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10 Theory

homogeneous aligning field, which makes sense as these modes are vibra-
tions in the alignment of the particle along the z-axis.

ωγ = ωβ =

√
5
2

B0Bsat

µ0ρma2 (2.4)

Here a is the radius of the particle. In the mathematical model the trap
and magnet are rotationally invariant along the z-axis, which is why there
is no mode associated with the particle rotating along this axis. However,
we will call this rotation by the angle α.

The motion of the levitated particle does not directly depend on the
the gradient B

′
2, but it does depend on the curvature B

′′
1 which is not con-

stant everywhere around the trap. The magnet is confined in the x- and
y direction, but its equilibrium height can be controlled by changing the
gradient. We can approximate the curvature’s dependence on the height z
above the trap and thus find an expected relation between B

′
2 and the CoM

eigenfrequencies of the motion. The strength of a magnetic field of a coil
with N windings, with radius R carrying a current I at a distance z from
the center of the coil reads:

B(z) =
µ0NIR2

2(R2 + z2)
3
2

(2.5)

The curvature of this field is found as:

B
′′
(z) =

d2B(z)
dz2 =

3
2

µ0 INR2 ·
(
4z2 − R2)

(z2 + R2)
7
2

(2.6)

from which follows:

B
′′
1(z) ∼

z>R

1
z5 (2.7a)

B
′′
1(z) ∼

z≈R

1
z

(2.7b)

B
′′
1(z) ∼

z<R

1
z2 (2.7c)

The force of a magnetic field on a permanent magnet with homoge-
neous magnetization can be calculated from:

Fmag = −µ · ∇B (2.8)

10



2.2 Damping 11

which results in the relation between the equilibrium height of a levi-
tated particle and the gradient field B2

′:

z ∼
Fmag

mω2
z
∼ B2

′ (2.9)

In conclusion, the linearity of the relationships between the current
through our Helmholtz coils, the generated gradient between them and
the displacement in height due to that gradient together with the linear
relation between the CoM mode frequencies and the curvature of the trap
fields can tell us in what region (Eqs. 2.7) above the trap our magnet is
levitating.

2.2 Damping

As discussed our setup can be placed in a vacuum chamber. We wish to
study the effect of depressurizing the environment of the levitated magnet
to find how strongly its motion is gas-damped. Given the linear relation-
ship between pressure and number of particles from the ideal gas law, we
would expect an inverse relationship between the gas-damping depen-
dent quality factor Qgas and the pressure. The magnet dissipates energy
to its environment by colliding with gas particles, therefore the damping
depends on the number of particles. An inverse relation between the qual-
ity factor and the pressure has been suggested for levitated particles [6] as
well as resonators [7]. The total quality factor is most likely not only de-
pendent on the pressure. The magnet is of a conducting material, through
which Eddy currents can be generated by the plethora of magnetic fields
of the trap. The magnet’s motion can also generate Eddy currents in the
copper tracks of the trap. Both allow the magnet’s motion to couple to the
environment, further increasing the damping on its motion and reducing
the potential quality factor. The total quality factor is a combination of the
sum of the inverses of all quality factors:

1
Qtotal

= ∑
i

1
Qi

(2.10)

The quality factor (Q factor) is defined as the number of oscillations of
a damped harmonic oscillator after which its amplitude has dissipated to
1
e of its starting amplitude. Equivalently the time constant τ of such an
exponential decay is proportional to the Q factor. In our experiments we
measure the driving and decaying of the motion of the magnet at one of
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12 Theory

its resonances to see what is called a ringdown: its amplitude decreasing
over time, i.e. the oscillator ringing down. By fitting an exponential decay
to these measurements we find the time constant which together with the
resonance frequency (ωr = 2π fr) gives the Q factor:

Q =
ωr · τ

2
= π · fr · τ (2.11)

2.3 Simulations

We have performed simulations of a double loop type Magnetic Paul Trap
with Python of the motion of a point-like magnetized particle. Calculation
of alternating trapping fields was accomplished using NASA’s published
analytical expressions for magnetic fields produced by closed loops [8].
The simulation is based on iterative calculation of the particles’ position
and rotation as well as force and torque exerted on it by the magnetic
fields. We found the range wherein trap parameters, including current
through the trap loops, inner loop to outer loop diameter, inner loop to
outer loop current and trap frequency, lie to be very broad, narrowing
the dimensions and parameters of a realistic trap down only vaguely. We
found a homogeneous magnetic field necessary for stable levitation if the
particle is allowed to rotate.

Figure 2.1: Simulated motion of a point-like magnetized particle in three dimen-
sions. As expected from Eq. 2.3 the center of mass frequency of the vertical mo-
tion is twice that of the planar motion. The particle moves with a secondary fre-
quency, which is its response to the trap frequency. The initial offset is z0 = 10µm
and x0 = y0 = 1µm and the motion is not damped.

12



3. EXPERIMENTAL METHODS

This chapter discusses the physical aspects of the setup we built in which
we succeeded levitating our magnet of choice: a Nd2Fe14B, nickel coated
cube magnet with sides of 250µm. In a second section three techniques of
measuring the motion of this levitated magnet are described, which were
tested and of which the results can be found in Chapter 4.

3.1 The Magnetic Paul Trap

3.1.1 On-chip proposal

The proposal in [2] describes a trap based on magnetic fields in three parts:
the outer and inner loops of an on-chip double loop structure carry an al-
ternating current in opposite direction, with the outer loop diameter and
current twice that of the inner loop, such that the fields (B1) cancel each
other in the middle of the trap. A magnetized particle will feel a poten-
tial well, which is most suitable for trapping when its alignment is along
the axis of the loops. Alternating this field is necessary to push the parti-
cle back when it strays from its equilibrium, and the further it strays, the
stronger the field pushes back. Aligning the particle’s magnetization di-
rection can be done by applying a homogeneous B0. Additionally a field
gradient B

′
2 can be applied to counteract for the gravitational pull on the

particle to bring its equilibrium height to the center of the trap. We have
borrowed the schematic figure used in the proposal 3.1 for clarification.

3.1.2 Our larger design and realisation

We applied the ideas of the on-chip proposal to a more manageable elec-
tronic structure printing technique: the printed circuit board. Apart from
the double loop type trap we also put on an Anti-Helmholtz type config-
uration by printing on both sides of the board. We designed a 10cmx6cm
PCB with four tracks: for both trap-types (double-loop, AHC) a 300µm
track for traps with inner radius between 1mm and 2mm and a 200µm track
for inner radii 1.1mm to 0.6mm. See Fig. 3.2. At every loop location on the
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14 Experimental methods

board a hole is bored such that the magnet can move about freely around
the center of the trap.

Figure 3.1: Figure borrowed from [2]. The on-chip design for the Magnetic Paul
Trap. A double-loop structure carries alternating current in opposite direction. A
homogeneous magnetic field is generated along the axial direction of the loops.
In our larger design the structure is realised on a printed circuit board and a cube
magnet is used in stead of a spherical one. This schematic drawing represents the
ratio between the magnet’s diameter and the loop diameters of our realised trap
(∼ 1

6 ) well, despite this ratio being much smaller in the original proposal ( 1
100 )

The application of B0 and B
′
2 was done by building a Helmholtz coil

pair with radius and separation 14mm theoretically capable of creating
several tens of milliTeslas (at 1 Ampere) in their common center, thus in
the trap. Two Tenma 72-2540 current sources individually applied current
over both coils such that the aligning field and gradient field could be
controlled. The trap is driven by an Agilent 33220A arbitrary waveform
generator combined with a Servowatt DCP 260/30A AC current booster.
The current is divided 1

3 to 2
3 over the inner and outer loops by two high

power potentiometers, and the phase shift is accomplished by sending the
current through the trap in opposite directions.

A specific aluminium plate (18cmx18cm) was manufactured for mount-
ing all parts, with a hole in the middle that perfectly fits one of the Helmholtz
coils. The board can be placed directly on top of the plate, such that the
top Helmholtz coil is clamped tight on top of the board. A 1mm thick slab
of teflon with a 1.5mm diameter hole centered over the trap is placed be-
tween the board and the top Helmholtz coil. Two thin cover glasses cover
the inner cylindrical space on top and on the bottom confining the magnet

14



3.2 Optical readout with camera 15

Figure 3.2: A photograph of the front side of the Printed Circuit Board
with our design for many differently sized double-loop configurations and
(anti)Helmholtz configurations, which makes use of printing the second loop on
the other side of the board. The loops with a larger diameter are printed with
a track width of 300µm, while the smaller traps are printed with a track width
200µm. The track height is 30µm copper. Board material is standard FR-4. Our
measurements were done in the 1.4mm wide double-loop trap.

to this region prior to trapping. The aluminium plate is mounted on four
10cm high pillars placed on a base over which a glass dome fits forming a
vacuum chamber.

3.2 Optical readout with camera

By mounting a camera (Bresser MikroCam SP 5.0) on a microscope we can
observe and film a levitating magnet in our trap at a high enough fram-
erate (between 300-500fps depending on brightness of surroundings) to
see the magnet’s motion, and subsequently see it’s motion represented
by peaks in the frequency domain. Our camera can be connected to a
computer via USB, which makes storing data directly simple. To analyze
the motion we used the OpenCV (Open Computer Vision Library, version
4.8.1) python packages to follow the motion of the magnet in a video. The
library allows one to choose a tracker, open a video and draw a rectan-
gle around the object that is wished to be tracked. Some tracker types are

15



16 Experimental methods

better at following certain movement than others based on visibility and
speed of the object’s contours in the video, and choosing the wrong type
often results in the tracker losing the object at some time during the video.
For our video’s the ”CSRT” tracker (Discriminative Correlation Filter with
Channel and Spatial Reliability) seemed to work best, as it never loses the
object. See Fig. 3.3a.

An inherent downside to OpenCV’s tracking possibilities is the fact
that the boundary box can not rotate, does not fit tightly around an object
and can only be a rectangle. To solve some of these issues we used the
library’s functions for finding objects in images, referred to as object de-
tection. By grey scaling an image and defining the contour parameters for
threshold- and maximum values all of the contours the function finds can
be returned. By choosing the largest of these we found the contour around
the magnet for every frame in a video successfully. This new boundary
box shaping technique can rotate and fits around the image of the magnet
tightly, resulting in better tracking and more accurate following of its cen-
ter of mass. We also used functions present in the library to get the center
of mass from any contour. See Fig. 3.3c.

Boundary box coordinates are saved after running the tracking through
a video. From there it is straightforward to perform a Fourier transform
and plot the data in the frequency domain.

16



3.2 Optical readout with camera 17

(a) A still frame as taken from the built
in OpenCV object tracking method. A
Region of Interest is drawn by the user
around the object that is wished to be
tracked. The tracker then tries to draw
a similar region around a similar object
in consecutive frames.

(b) A still frame of the 250µm cube magnet
being stably levitated in the Magnetic Paul
Trap. The PCB trap structure is seen in the
background.

(c) Five consecutive frames taken during motion tracking of the levitated cube magnet’s
motion. The object detection method is used here. We see that for every frame the tracker
finds a rectangle shaped contour around the top of the cube, which is clearly visible in
every frame. By tracking the location of the corners of this rectangle, we find its rotation
around the z-axis, α. This rotation has a low frequency, however, and can be well ap-
proximated by eye. The blue dot is the center of mass of the rectangle, whose coordinates
are used in analyzing the x- and y motion. The number printed in green is the number
of frames the software can analyze per second and is, due to the low computing power
necessary for this method, simply bottlenecked by the speed of the video.

Figure 3.3: The 250µm cube magnet as seen through a microscope and used in
tracking analysis. a. OpenCV’s built-in video tracking package. b. The levitating
magnet hanging still in the trap, seen from above. c. Consecutive frames from
our object detection tracker.

17



18 Experimental methods

3.3 Magnetic readout

A changing magnetic field induces a voltage in a coil. It should therefore
be possible to pick up the vibrational motion of a levitating magnet with
a so-called pick up coil. Ideal dimensions of a pick up coil are such that
the greatest change in magnetic field is felt by the coil. A coil with size of
the order of the magnet is suspected to do this. As our trap is magnetic,
our pick-up coil will be prone to noise, but the smaller the coil, the smaller
the picked up signal. Since our levitated magnet is 250µm wide it is dif-
ficult to construct a coil of a size similar to the magnet. For these reasons
we construct a simple coil by winding 80µm insulated copper around the
wooden end of a cotton swab spaced with plastic washers. The result-
ing coil has an inner diameter of 2mm, an outer diameter of 5mm and a
length of 3mm. It has an induction of 100µH at 200kHz. By placing the coil
as close as possible to the trapped magnet and performing measurements
with a Stanford Research Systems SR830 lock in amplifier combined with
an additional Stanford SR560 low noise preamplifier, driving the particle
(through the fields of one of the Helmholtz coils) at a range of frequen-
cies and measuring the pick up coil’s response, we should find a response
around the magnet’s resonances. See Fig. 3.4 for a picture of the setup.
We calculate the expected induced electromotive force in a coil from the
motion of the magnet as follows:

ε = −dΦB

dt
= −Acoil

dB
dt

= −Acoil · ∆B · fz (3.1)

where ∆B the magnetic field change due to the motion of the magnet
from one oscillation and fz the frequency of oscillation. We calculate an
induced voltage in the coil on the order of several nanoVolts.

18



3.3 Magnetic readout 19

Figure 3.4: A picture of our pick up coil being positioned near the trapped particle
in the MPT setup. Just below the PU coil the structure on the PCB can be made
out. A plastic spacer (∼ 1mm) and a glass cover are between the PCB and the top
Helmholtz coil, of which the black plastic bobbin is seen being clamped tight to
the table. Copper tape for thermalization of the Helmholtz coil connects the coil
to the table.

19
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3.4 Optical readout with laser

An optical readout of the magnet’s motion should have a better signal-to-
noise ratio than a readout based on magnetic fields, since the trap itself is
a collection of magnetic fields. A laser shining on the surface of the mag-
net creates a reflected beam or speckle pattern (depending on the surface
roughness) that contains the motion of the magnet in its angle of reflection
[9]. Alternatively the laser can be shone through the trap. The light at the
photodiode then contains the magnet’s shadow and therefore information
about its motion. Fig. 3.5 contains a schematic drawing of the setup, in
which the laser and photodiode emit and collect the beam horizontally,
and the guiding of the beam through the trap is done with silver mirrors
and positioning plates. We use a 4mW Spectra-Physics model 102-3 He-Ne
laser. A quadrant photodiode (a collection of four photodiodes in a 2x2
grid) can then be used to measure the total intensity of the arriving light
as well as the lateral intensity in two directions. We used a New Focus
model 2901 visible quadrant cell photoreceiver which has outputs for the total
illumination (SUM), and two outputs for acquisition of the lateral posi-
tion of a particle in the beam X and Y. From these signals a position can
be found, but we only look at the frequency spectrum, therefore it is un-
necessary to do this calculation. We have had two working setups; in the
first all three channels can be read out through a Rigol DS1104 Z+ oscillo-
scope connected to a computer while the particle driving is performed by
a Stanford SR830 lock in amplifier’s output signal. In the second a Zürich
Instruments MFLI digital lock in amplifier drove the particle and measured
one channel of the photodiode at a time.

20



3.4 Optical readout with laser 21

Figure 3.5: A schematic representation of the setup with which we performed
measurements by shining a laser through the trap onto a quadrant photodiode.
The magnet’s motion is picked up by the photodiode as a perturbation in the
beam. The board with the trap structure is elevated to allow the placing of a mir-
ror underneath it. In the plate on the posts is a slot in which the bottom Helmholtz
coil fits. The top Helmholtz coil and a teflon spacer are clamped on the board.
Two cover glasses cover the inside of the trap on the top and bottom, but allow
the laser to shine through. This schematic represents nicely how a large vacuum
chamber excludes certain types of read out techniques.

21





4. RESULTS

4.1 Regarding trapping parameters and stability

Having an aligning field (B0) and a field gradient (B
′
2) to counteract for the

gravity on the particle proved indispensable for stable levitation. Without
it the particle behaves chaotically in the trap, if it is confined in any way
at all, else it flies out randomly. This chaotic behavior is key to our trap-
ping, which is not an active loading technique where the magnet is placed
into an equilibrium position deliberately, but rather is confined to an en-
vironment (cylindrical due to fabrication of the trap) in which the magnet
flies around chaotically until it falls into the magnetic potential well by
chance. Without generating B0 and B

′
2, this never happens. Furthermore,

with optimal trap settings, this happens more quickly, suggesting that op-
timal settings are those in which the potential well is deeper and overall
more felt by the magnet. N.B. the magnet ’feels’ the potential well best
when its magnetization direction is aligned with the axial direction of the
trap.

Levitation in our final measurement setup, which involved the laser
and quadrant photodiode combination, required a much larger B

′
2 gradi-

ent to be stable, despite the trapping procedure being similar still. We
attributed this to possible degradation of the Helmholtz coil pair from
being loaded with hundreds of milliAmps while in vacuum. Their plas-
tic bobbins, when melted, would alter the shape and/or position of the
coils relative to the trap, which when not optimal can have significant ef-
fects. This presumption was confirmed after a measurement at low pres-
sure (P = 1.6e–2mbar) where we kept the current through the Helmholtz
coils much higher than in previous low pressure measurements to keep
the trapping more stable, necessary to keep the magnet from falling out at
low pressure. Afterwards we found the top Helmholtz coil’s bobbin had
melted and gotten deformed. The deformation was severe enough for the
trap not to function anymore.

We have tried many of the sizes of traps on our PCB design, but only
found stable levitation in the 1.5mm and 1.4mm traps, suggesting that the
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24 Results

Value

B0 8mT

B
′′
1 30-40Tm−2

B
′
2 0.5mTm−1

ωz = 2ωx,y ∼ (2π)20Hz

ωγ,β ∼ (2π)1000Hz

ωα ∼ (2π)2Hz

r1 = 1
2r2 0.7mm

I1 = −1
2 I2 1.1A

Table 4.1: Estimates of the field strength, gradient and curvature of the three gen-
erated fields in the Magnetic Paul Trap as well as the working trap frequency
range and the resulting mode frequencies, although the librational ωγ,β is calcu-
lated and has not been observed yet. B0 was measured with a Gaussmeter. B

′′
1 is

calculated using Eq. 2.3 and the fitting parameters from Fig. 4.4. B
′
2 is calculated

based on B0 of both Helmholtz coils and their distance of separation.

ideal ratio for a cube magnet in loop-based MPT lies around 1/6 magnet
width to inner trap diameter. In a smaller trap the magnetic potential well
becomes too narrow for a large magnet to fit in, while a larger trap requires
lots more current to produce an equally deep well as a smaller trap, since
the strength of the trapping field reduces by the third power with distance.
We observed burning of the PCB tracks from 3.5 Amperes, therefore we
limited ourselves to the working I1 = −1

2 I2 = 1.1A to prevent acute heat
damage and damage over time. The current through both trapping loops
was constantly measured as it had been set up to divide the current over
the inner and outer loop.

24



4.2 Measuring techniques 25

4.2 Measuring techniques

4.2.1 Optically with camera

Different read out techniques were set up to measure the levitating mag-
net’s movement and subsequently its eigenfrequencies. Viewing the mag-
net with a camera through a microscope proved to be a technique able to
measure all spatial modes of the trapped magnet, thanks to proper visibil-
ity and high-enough framerate. It lacked however in its ability to measure
the librational modes, as it is estimated that these modes reside at frequen-
cies around 1000Hz, and a very high framerate would be needed to see
these modes. Furthermore, application of camera-through-microscope ob-
servation of the trap is practically infeasible in our setup when the setup is
converted to the depressurization chamber that was available to us. Also,
data obtained with this method is in the form of video-capture and analyz-
ing these through the use of video tracking is cumbersome, albeit doable.

In our analysis, we have used two methods of finding a frequency spec-
trum of the motion of our trapped magnet, both making use of the open
source video-analysis Python library OpenCV. The first method relied on
the existing trackers accessed through this library, while the other made
use of the object detection features of the library, usually done on images,
but for this application was implemented on video. Fig. 3.3a holds a still of
the first method, in which a rectangle shaped Region of Interest is drawn
by the user, which is then redrawn in subsequent frames by the tracker.
The pixel coordinates of the rectangle are saved and used for analysis.
The inherent two-dimensionality of video-capture results in the axes of
recordings not being aligned with the axes of the modes of the magnet.
Therefore, the x- and y coordinates of the boundary box drawn by the
tracker hold projections of the magnet’s movement on the video axes, but
by rotating the data in post we can align these axes. Under an angle (3.3a)
all three spatial modes are projected on to the video’s two axes.

Fig. 4.1 shows the frequency domain of the motion of the magnet as
filmed directly from above on the left, and filmed under an angle on the
right. Two frequency representations are presented, one of the motion
along the horizontal axis of the video and the other along the vertical. We
see in total three modes appearing in the data. During the filming of both
videos used in this analysis the magnet’s motion is excited through minor
perturbations (lightly tapping the setup). Two resonances are found in the
topview image, one stronger than the other, at 8.5Hz and 14.2Hz. Under
an angle we also see a 24.4Hz resonance. During these measurements we
have observed individual spatial mode excitation by driving the magnet
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at these frequencies.

Figure 4.1: The frequency domain of the equilibrium motion of the magnet at
room temperature and ambient pressure, measured by object tracking and split
into double columns and rows specifying the camera angle and the video coordi-
nate axis along which the Fourier transform was taken. Assuming the two axes
(vertical, horizontal) of the analyzed video do not share the orientation of the x-
and y modes’ directions in the actual trap, the data is rotated to make these axes
align. We see however that the motion is a collection of modes such that they
never appear on individual axes only. The z-mode is visible in the recording un-
der an angle, as expected, while it is absent when the magnet is viewed directly
from above. Trap settings: Ω = 223Hz, I1 = 4.8V.
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4.2.2 Pick up coil

The pick-up coil as described in Methods was unable to give a good sig-
nal to noise ratio for more than one mode at a time. This is due to the
spacing of the coil relative to the trapped magnet, which determines the
coupling to modes. At most one mode with good coupling was achieved,
with other modes being only barely visible. Much crosstalk between the
pick up coil and the B0,2 generating Helmholtz-coil pair lowered the SNR
of this method. With the pick up coil placed semi-horizontally and as
close as possible to the trap we obtain the results in Fig. 4.2. Since we
have V = IR, Eq. 2.7 and Eq. 2.3 give a linear relation expectation for
the voltage over the trapping loops and the spatial eigenfrequencies of the
magnet. In Fig. 4.2 we have drawn a linear relation over the clearest con-
tinuously visible peaks, for which V ∼ 0.33 f . Two other traces of linear
behavior might be present in the range 15Hz to 20Hz and 30Hz to 40Hz, of
which the second could be a consequence of aliasing of the first response’s
signal.

Figure 4.2: The magnet’s response to being driven at frequencies between 5Hz
and 45Hz at varying trap amplitudes ranging between 7.7V (I1 = 0.85A and 10V
(I1 = 1.10A). A linear relation between the trapping current and the frequency
of the eigenmodes is best visible from the shifting peak amplitude between 26Hz
and 32Hz.
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4.2.3 Optically with laser

The laser and quadrant photodiode combination proved a good read-out
technique of the magnet’s motion. The implausibility of crossover be-
tween the photodiode’s output and a lockin amplifier’s output signal driv-
ing the magnet made it possible to measure the magnet’s motion’s fre-
quency spectrum and its dependence on the trapping parameters with
good signal to noise ratio. Artifacts are continuously present in all datasets,
but varying the parameters in our setup for which the theory predicts
an eigenfrequency dependence allows differentiating between signal and
noise. Figs. 4.3, 4.4 and 4.5 show the response of the mode frequencies
on a change in top Helmholtz coil current, trapping frequency and trap-
ping amplitude (trap-loop current) respectively. The figures represent the
response signal during subsequent frequency sweeps, each with the re-
spective parameter slightly lower. In Figs. 4.5 and 4.4 two peaks in the
frequency domain are at a different frequency for every parameter change.

Figure 4.3: A colormap of the magnet’s response at frequencies between 5Hz and
45Hz at varying top Helmholtz coil current, which changes the levitation height
of the magnet through varying the gradient (Eq. 2.9). Aside from artifacts which
are consistent throughout the sweep, we see again see two modes like in Fig.
4.4 and Fig. 4.5. We’ve found an inverse 5th power relation (which is plotted)
between the current and the resonances to fit better than a first or a second, im-
plying that the levitation height is in the range z > R (Eq. 2.6, Eq. 2.7a).

We fitted the expected relationships between the magnet’s CoM fre-
quency ωx,y,z and the trap frequency Ω as well as the trap current (through
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the curvature B
′′
1). This was done by means of a double sliding window:

a window is defined that follows the region around the peak linearly. The
total curve to which we want to fit lies in the window, but other signals
do not. For every frequency sweep a Gaussian is fit to the data in that
window, such that we find the location of the peak for that sweep. Con-
tinuing this through the changing parameter we fit the expected relation
to the collection of peaks found within the windows. This is done for both
of the curves which we expect to be modes.

The results of a measurement in which we changed the B
′
2 gradient by

control over the current through the top Helmholtz coil are presented in
Fig. 4.3. We assume a linear relation between this current, the gradient
field B

′
2 and the equilibrium height of the levitated magnet. We expect an

inverse power relation between the equilibrium height and the curvature
B

′′
1 and thus the CoM eigenfrequencies ωx,y,z (Eq. 2.3, Eq. 2.7). We’ve

performed the fitting procedure as discussed before to fit I ∼ 1
f x for x ∈

1, 2, 5 and found x = 5 the best fit, as evaluated by comparison of the
shapes of the fit and data. This corresponds to Eq. 2.7a; the region of
equilibrium height above the trap for which z > R.
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Figure 4.4: A colormap of the three photodiode outputs X, Y and SUM in which
the response of the magnet to being driven at frequencies between 5Hz and 30HZ
is plotted for trap driving frequencies between 200Hz and 300Hz. The expected
relation between a mode frequency and the trap frequency is inversely propor-
tional (Eq. 2.3). The fits show that the data represents such a relation. Individual
channels represent the modes’ visibility differently: Mode 1 is stronger in channel
X, mode 2 is stronger in channel Y and SUM. Consequently the fits on mode 2 in
channel X and mode 1 in channel Y are a bit off. These sweeps were done at a
trapping amplitude of 5V (I1 = 1.1A).
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Figure 4.5: A colormap of the three photodiode outputs X, Y and SUM in which
the response of the magnet to being driven at frequencies between 5Hz and 45HZ
is plotted for trap driving amplitudes between 3V and 5V. This relation is ex-
pected to be linear (Eq. 2.3 and Eq. 2.6), which is what we see after fitting a linear
relation to the data. Artifacts around 25Hz and 29Hz are strong, but are consis-
tent throughout changing the trap parameters, therefore it is unlikely that they
are due to the trapped magnet. These sweeps were done at a trapping frequency
of 287Hz.
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4.2.4 Damping

A collection of ringdown measurements at varying pressure is seen in Fig.
4.6. We see two ringdowns at ambient pressure, which are the result aver-
aging 10 ringdowns in succession and fitting exponentially, acquired once
through channel Y and once through channel SUM of the quadrant pho-
todiode. Similar values for the time constant of each ringdown are found
from the exponential fit on the data. The levitating magnet was not driven
to the same amplitude, as is seen from the differing amplitude of the os-
cillation at t = 0. This is because we increased the driving amplitude only
after observing that the magnet was still trapped and had not been kicked
out of levitation by the driving.

Our vacuum pump, a Pfeiffer Vacuum HiCube, depressurized the system
to a stable pressure of 1.6e0mbar without the turbopump and to a stable
P = 1.9e–2mbar with the turbopump active. Only a single succession of
ringdowns was performed at the lowest pressure, as we tried to prevent
too much heating from destroying the trap. A low driving amplitude was
used to make sure the magnet would stay trapped.

In Fig. 4.7 a ringdown as measured optically by camera is presented.
The magnet was driven by tapping the setup. Therefore all CoM modes
are excited and the motion is collective. The view in the analyzed video
of this ringdown is from the top. As a result the z-mode is not observed.
The motion is a collection of modes, which is concluded from the fact that
there is no rotated planar coordinate system for which the x- and y modes
can be individually projected on the video axes. From a manual fit to the
amplitudes of the oscillations we find a time constant of 1.5 ± 0.2s, which
gives a quality factor (Eq. 2.11) Q = 52.4 ± 3.5.

We have collected the resulting quality factors and the pressures at
which they were found in Fig. 4.8. The point found in Fig. 4.7 is presented
in blue. The remaining six from Fig. 4.6 are red.
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Figure 4.6: Ringdowns measured with the laser and photodiode setup, per-
formed by driving the magnet at a resonance frequency and allowing it to ring
down while measuring the response over time. Each data in grey is an average
over 10 ringdowns taken within the same measurement with the same settings,
and the various ringdowns within the subfigures signify distinct measurements
with different driving amplitudes (which results in different ringdown ampli-
tude) and resonance frequencies (due to inconsistencies of the trap, as well as
having to re-trap the magnet and the resulting difference in settings). Exponen-
tial fits over these averages are presented which show that the time constant in-
creases with decreasing pressure, signifying that the gas damping on the magnet
reduces. The fit-certainty gives a time constant error of ±0.02 at the most.
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Figure 4.7: The motion of the trapped magnet as projected onto the horizontal
and vertical axes of a video recording, during which the setup was lightly tapped
to excite the magnet slightly, such that a ringdown can be seen. Vibrations of the
setup ring down much quicker than those of the magnet, and the data visible here
is that of a second after tapping, such that only the magnet’s motion should be
taken. A manual exponential fit to the amplitude of the oscillation results in a
time constant of τ = 1.5 ± 0.2s, which gives Q = 52.4 ± 3.5. Due to the nature
of the excitation all modes are excited. The video was taken from directly above
such that the x- and y mode are most visible. The x- and y modes have different Q
factors, as they have different resonance frequencies. The resulting Q is collective
for these modes.
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Figure 4.8: A collection of datapoints relating the quality factor of our levitating
magnet to the air pressure of its environment. The points in red are obtained
with the laser+photodiode method, while the single blue point is from Fig. 4.7.
Although an inversely proportional relation between the quality factor and the
pressure is expected this is not immediately reflected by the points. Despite the
lack of additional data clarifying the result, it is not unthinkable that gas-damping
is only a small part of the total damping, since our Q is very low already, and
much higher Q’s for magnetically levitated particles have been reported [10–13].
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5. DISCUSSION

5.1 Trap dimensions and settings

Our results show that our Magnetic Paul Trap with double loop design can
stably levitate a 250µm NdFeB magnet for several hours. Despite our ini-
tial idea of the necessary large current through the trap structure required
for levitation, only ∼ 3A through both loops is needed for levitation in our
setup and this can be lowered after trapping the magnet. This provides
hope for further miniaturization of this trap design. Decreasing the size of
the trap to chip size will reduce the maximal current one is able to send
through. Placing the trap in a cryogenic environment might be wanted in
the future, which further increases the difficulty of sending high currents
through the system. As these limitations might not scale with the reduc-
tion of the necessary current as the design is miniaturized, the result of not
having to send a too large current in our setup is welcome.

The size ratio between the trapping loops and the particle we suc-
ceeded to levitate lies around w = d1

6 with d1 the diameter of the inner
loop and w the width of our magnet. In the first design for levitating a
radius 1µm spherical magnetized particle an inner loop radius for the trap
structure r1 = 100µm is proposed. We have suggested that at larger ratio
of trap-loop radii to particle size the necessary current for levitation sky-
rockets, but this would have to be checked. This experiment can readily
be performed in our setup by attempting levitation in the larger traps on
our PCB. Current around |I1|+ |I2| ∼ 4.5A will burn out the tracks on the
board, but more thermally conducting materials are available (Aluminum
Oxide as a board material, for example).

5.2 On the motion in levitation

Observing the magnet through a microscope shows most reliably that the
frequency responses are the magnet’s spatial modes; we have driven the
magnet at its resonances and observed individual mode excitation. Trapping-
parameter dependent measurements show that we can shift the magnet’s
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resonances. The fits to Fig. 4.4 and 4.5 are good and show that the eigen-
frequencies of our system behave according to Eq. 2.3. From the fitting
parameters and Eq. 2.3 we extract a value for B

′′
1 in our system and find

it is four orders of magnitude lower than predicted in a similar on-chip
design of the trap [2]. This is realistic, as our trap is larger in size and
curvature of the trap-generated field should be weaker.

In Fig. 4.6 we attribute the frequency shift that we observe between the
measured ringdowns to trap instability and having to re-trap at slightly
different settings in between measurements. It is also possible that we are
seeing a frequency pulling effect [11, 14]. The resonance frequencies shift
with the amplitude of the oscillation. Each time we perform a ringdown by
driving at a different amplitude we change the starting eigenfrequencies of
the mode we measure, which during the ringdown shifts back. This phe-
nomenon should in future experiments be researched further if we wish
to understand our system better.

Comparing trap amplitude dependent measurement with the pick up
loop in Fig. 4.2 and with the laser in Fig. 4.5 we find a similar slope: the
first has V ∼ 0.33 f , while the second has V ∼ 0.17 f . Noting that in the ear-
lier experiment we used a peak voltage instead of a peak-to-peak voltage,
therefore the voltage in the first figure is double the voltage in the second
figure, but corresponds to the same current through the trap. We conclude
that the slopes Mode 2 in Fig. 4.5 and the fit in Fig. 4.2 are the same mode.
Therefore, the signal in Fig. 4.2 (in the range 15Hz-20Hz) that looks like
a linear response can be associated with Mode 1 in Fig. 4.5. It is worth
noting this similarity between the results of two different types of mea-
surements (magnetically and optically). The mode frequencies we mea-
sure optically in other parameter dependent experiments as well as in the
results from the video tracking analysis are similar amongst themselves
but lie about 10Hz lower. It is not clear what causes this discrepancy. It is
unlikely that the highest lying mode in Fig. 4.5 and Fig. 4.2 is the z-mode,
as it should then also be visible in other laser acquired results. Instead in
those figures (Fig. 4.4 and Fig. 4.3) we see the same x- and y modes as we
observed with the camera (Fig. 4.1). Through replication of these findings
in further measurements we might come to a better understanding of this
discrepancy.

For the gradient dependence we expected to find the levitation height
from a relation between the top Helmholtz coil current and the shifting
of the eigenmode frequencies. The far-from-the-loop regime corresponds
best to the data. However, this implies that the equilibrium height of the
magnet is further than r1 = 0.7mm from the trap, which is not possible as
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the height between the cover glass and the board is 1mm. With a micro-
scope we have observed the magnet’s equilibrium height to be close to the
trap structure on the board. We can further investigate this problem by
considering the offset due to the gradient using Eq. 2.9. A similar approx-
imation can be made for the negative offset due to gravity. We know our
Helmholtz coils generate a typical gradient of around B

′
2 ≈ 0.5mT/m:

z = hg + hmag (5.1)

hg = − g
ω2

z
(5.2)

hmag =
Fmag

mω2
z
=

µB
′
2

mω2
z
=

BsatB
′
2

ρmµ0ω2
z

(5.3)

where we have used the norm of the magnetic moment of the mag-
net µ = BsatV

µ0
and in which g the gravitational acceleration. We find

|hg| ≈ 600µm and |hmag| ≈ 4µm. Certainly the gradient we measured
can not account for the offset that predicts the far-away regime (Eq. 2.7a)
which we see in the data. At the same time the predicted gravitational
offset is much larger than what is realistic. If the magnet would levitate
more than several times its own size below or above the trap, we would
have been able to see this in our microscope setup. We conclude that our
model is too simplistic to describe the complex behavior of our system.
The eigenfrequencies of our levitating magnet scale with a higher order
to the levitation height despite the magnet not being in the regime where
the curvature of the loops scale with this order. Our model does not ac-
count for the shape of the magnet and its protrusions off of the z-axis into
regions where the fields are no longer described by our model.

The strength of the homogeneous B0 produced by the Helmholtz coil
pair was measured with a Gaussmeter and is similar to the field in the
proposal [2]. The librational modes ωγ,β are dependent on the strength
of the aligning field. We have invested little time finding the librational
frequencies with the laser and photodiode setup and found direct results
lacking. To improve the visibility of the librational modes in the signal,
the setup can be altered such that the reflection of the laser on a side of
the magnet is picked up by the photodiode. Finding the librational modes
would speed up measurements significantly, as these were limited by the
low spatial eigenfrequencies of our system. From Eq. 2.4 we know ωγ,β ≈
1000Hz.
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5.3 On the damping

Fig. 4.8 sums up our measurements regarding the lowering of the total
damping by depressurization of the system. If the levitated magnet was
mostly limited by gas damping, we should see an inversely proportional
relation between the quality factor and the pressure. This is not what we
see. Due to our lack of datapoints however, it is difficult to conclude any
proportionality. We can conclude that other damping factors play a sig-
nificant role in our system and are to be addressed if we wish to further
increase the quality factor.

In [2] (Supplementary Materials III) it is shown that the current in-
duced by the trapping loops onto each other is negligible. They also show
that dissipation of Eddy currents generated in the magnet do not cause
problematic heating even at high vacuum. Following the same approxi-
mation for this dissipated heat for our larger magnet we find

P = Ω2σa9B
′′2
1 ∼ 10−24W (5.4)

where σ is the electrical conductivity of NdFeB, the (bulk, the coating
is more conductive) material. We draw the same conclusion for our larger
particle.

A possible contributor to the damping is the induction of the moving
magnet on to the trap loops, as well as generation of local Eddy currents.
These effects couple the magnet to its environment. The energy stored in
one oscillation of the magnet equals

Eosc =
1
2

mω2
CoMδ2 ∼ 10−13 J (5.5)

where δ the oscillator length which is on the order 10µm for small per-
turbations and relatively still motion. We calculate the power dissipation
from the induced voltage in the loop (Eq. 3.1, V ∼ 1nV):

P =
V2

R
∼ 10−16W (5.6)

which gives an energy loss per oscillation of 10−4Eosc at 10Hz, which is
insignificant.

We calculate the Eddy current dissipation from the Lorentz force act-
ing on the magnet due to the motion of its perpendicular fieldlines in the
copper tracks which contain free electrons:

Florentz = q(v × B) = q · v⊥ · Bz (5.7)
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where q = Ne, the number of free electrons times the charge per elec-
tron. We calculate the effect of the planar movement of the magnet de-
noted by its speed v⊥. We obtain the strength of Bz at the inner loop by
the analytical description for the magnetic field of a cylindrical permanent
magnet [15]. We find an expression for the dissipated energy in one oscil-
lation of planar motion by Eddy current damping:

EEddy = qBz

∫
vxdx ∼ q f Bzδ2 ∼ 10−12 J (5.8)

Where Bz = 1mT, q = 0.54C, δ = 10µm, f⊥ = ω⊥
2π ≈ 10Hz. The calcu-

lated possible dissipation through Eddy current damping is large enough
to explain the damping we see at low pressure. To counteract this effect
the distance between the levitating particle and the trapping loops would
have to be increased. Problematically this requires increasingly larger cur-
rents to create the same field in the middle of the trap. The Eddy damp-
ing is proportional to the oscillator length squared. Miniaturization of
the Magnetic Paul Trap is therefore expected to further decrease problem-
atic Eddy current damping. Another possible solution of reducing Eddy
damping in the Magnetic Paul Trap is using NdFeB magnets with a non-
conductive coating, which are available to us.

From Fig. 4.8 we can deduce approximations for the quality factors in
the mostly gas damped regime and in the mostly Eddy current damped
regime. Using Eq. 2.10:

1
Qtotal

=
1

Qgas
+

1
QEddy

(5.9)

we read from Fig. 4.8 Qtotal ≈ 40 at ambient pressure and QEddy ≈ 90 at
low pressure. We deduce Qgas ≈ 70 at ambient pressure. We conclude that
the Magnetic Paul Trap suffers almost equally from Eddy current damp-
ing as it does from gas damping at ambient pressure. Our calculations
support this. Measures to reduce the Eddy damping effect will have to be
taken if the quality factor is to be further increased. For a similar sized
permanent magnet levitating above a lead superconductor [12, 13, 16] in
a cryogenic environment similar eigenfrequencies are found, but Q fac-
tors are reported around Q ∼ 106. In [16] Eddy current damping limited
the quality factor of the system to Q ∼ 104. The Magnetic Paul Trap suf-
fers from stronger limitations due to the nature of the environment of a
trapped particle in such a trap.
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5.4 Noise

Persistent noise in our measurements is seen at 24Hz, 28Hz, 31Hz and
39Hz. This noise could interfere with read out of motion whose modes
lie close or at the same frequency. To prevent this in future experiments
the sources of the noise are to be addressed. In our final setup, in which
we read out the motion of the trapped magnet optically with the laser
and photodiode, the pillar-mounted table on which the trap resided was
placed loosely on the base of the vacuum chamber. The vacuum chamber
base is placed on a damped optical table, but is not secured to it. The
laser and photodiode are both tightened to the optical table. To reduce
noise in future measurements we suggest a workaround to securing the
setup whilst keeping the vacuum chamber between the table and the trap.
Boring half-way threads in the base of the vacuum chamber would allow
securing the setup to it. The base has connections for its rubber feet at the
corners, which could be connected to the table instead.
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6. CONCLUSION

We have shown that our double loop type Magnetic Paul Trap design can
levitate a sub-millimeter sized NdFeB permanent magnet at room tem-
perature for long periods of time (> 1hour). This trap allows the study
of magnetically levitated particles at a practical scale without the need
for cryogenic environments. The Magnetic Paul Trap has better control
over a levitated particle than in comparable Meissner levitated systems
[12, 13, 16], as we can control the resonance frequencies as well as the
levitation height, similar to [11]. However, this high control is met with
considerably larger damping due to Eddy current generation by the mag-
net’s motion in its environment. Possible methods of reducing these have
been discussed in the previous chapter. Before further measurements can
be performed the B0 and B

′
2 generating Helmholtz coils will have to be

replaced. Then, laser optical read out measurements can verify the re-
production of the trapping we observed before the degradation of the
Helmholtz coils. It might prove fruitful to rethink the setup: read out
of a speckle pattern in the laser beam’s reflection on the surface of the par-
ticle could increase visibility of the librational modes, allowing speedier
measurement. Other side-questions remain; can we increase the distance
between magnet and trap loops, to decrease Eddy damping, by adding
more loops to the trap? Can we trap smaller magnetized particles in the
smaller traps that are already on the printed board? Can we combine con-
trol over our particle with better environmental isolation by making the
trap superconducting, e.g. on-chip? We leave these questions to future
research.
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