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Abstract

Prediction models play a paramount role in various fields such as psychology and medicine, where the aim is to

maximize predictive performance while ensuring high interpretability and stability. Prediction rule ensembles are

a recent statistical learning method that address the black-box problem from common machine learning methods.

First, an ensemble of trees is fitted, and by employing sparse regression, such as the lasso, only a subset of those

trees is retained in the final ensemble, enhancing interpretability. However, the lasso suffers from drawbacks, con-

sidering that the optimal penalty parameter for variable selection may lead to an over-shrinkage of large coefficients.

This study investigates if accuracy, sparsity, and stability of prediction rule ensembles can be improved by using

the adaptive or relaxed lasso, or their combination. In the adaptive lasso, weight parameters are assigned to each

coefficient in the penalty term, while in the relaxed lasso the lasso coefficients are debiased towards unpenalized

values. In addition, in this study we compared if the results differ if the model selection was based on the lambda-

1se or lambda-min criterion and between continuous and binary outcomes. For this, the models were evaluated on

nine benchmark datasets using repeated 10-fold cross-validation. The results show that all lasso variations improve

model sparsity significantly while maintaining high accuracy, but at the cost of stability. The relaxed and adaptive

lasso select sparser models than the standard lasso while achieving good stability of variable selection, but at the

cost of less stable predictions. The relaxed adaptive lasso yields the sparsest model, but is the most unstable. Re-

garding lambda criterion, for continuous outcomes the lambda-minimum criterion leads to highly unstable results

and diminishes the effect of lasso approach used. For binary outcomes, the lambda-1se criterion only improves

accuracy and sparsity, but not stability, while for continuous outcomes it improves all performance diagnostics.

Keywords: prediction rule ensembles, relaxed lasso, adaptive lasso, relaxed adaptive lasso, stability, sparsity,

accuracy
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Introduction

Common applications of statistics are prediction models, which are gaining increasing popularity as they play a

pivotal role in many fields. Examples are in psychology, medicine, economy, and more. Goals of prediction models

are selecting relevant predictors, and making accurate predictions without over-fitting the data. Furthermore, for

practical applications, it is crucial that the results derived from prediction models remain interpretable and stable.

Stability against chance fluctuations in the data is key as it ensures that the model can be used in different settings

and the results are reliable and reproducible (Nogueira et al., 2018).

Examples of the application of prediction models are aptitude tests to predict outcomes such as a student’s

graduation or a job applicant’s performance (Fokkema & Strobl, 2020). In the fields of clinical psychology and

medicine, predictive models are employed to determine the likelihood of patient recovery or relapse (Fokkema

& Strobl, 2020). Additionally, these models are used to predict potential diagnoses and guide the assessment of

necessary medical screenings. Another example application is in credit scoring, predicting an applicant’s credit-

worthiness, or by companies to predict customer churning or improving recommendation systems. In all of these

examples, model interpretability is crucial in order to know which factors to address to achieve the desired outcome.

Prediction Rule Ensembles

In machine learning, a useful tool to make predictions are decision trees, in which predictions are made based

on rules in the format of "if [condition] then [outcome]" statements. In a single decision tree each observation is

evaluated against a condition to make predictions. The interpretation is straightforward but the predictions may

be inaccurate because the model is too simple. To increase accuracy machine learning methods such as random

forest or bagging build many decision trees, forming an ensemble of trees. The predictions are made based on the

aggregated results from all trees in the ensemble. This reduces the risk of over-fitting but makes the results more

complex and difficult to interpret (Fokkema & Strobl, 2020). Tree ensembles are often called black-boxes because

it is complex to understand how the model arrived at the prediction. To make data-driven decisions, interpretability

is crucial. Prediction rule ensembles address the so-called black box problem by combining tree ensembling and

sparse regression to only retain a subset of the trees from the initial ensemble. By fitting a more parsimonious

model prediction rule ensemble strive to balance accuracy and interpretability. As the sparse regression method the

lasso can be used to select which rules and/or linear terms stay in the final ensemble (J. H. Friedman & Popescu,

2008). However, the lasso suffers from some drawbacks. While it works well in model selection, it does not always

select the most optimal model in terms of prediction accuracy (Dalalyan et al., 2017). In addition, the results of the

lasso are unstable when multicollinearity is present (Zhao & Yu, 2006). To address these problems, variations of

the lasso, such as the adaptive or relaxed lasso, have been proposed (Meinshausen, 2007; Zou, 2006). This study

investigates if model accuracy, sparsity and stability of prediction rule ensembles can be improved by using these

lasso variations.
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RuleFit

An example of a prediction rule ensemble is the RuleFit algorithm by J. H. Friedman and Popescu (2008). In

RuleFit, rules and linear terms are generated with gradient boosting, in more detail explained below. The rules and

linear terms are also referred to as base learners. In the second step of the RuleFit algorithm, the lasso is used to

make predictions and to select the final model by retaining only a subset of the initially fitted trees (J. H. Friedman

& Popescu, 2008). In the lasso, all base learners are regressed on the response variable. If a rule/linear term

applies to a given observation it is coded as one, otherwise as zero. Through the use of a penalty parameter, some

base learners are dropped from the final ensemble, if their coefficient is shrunken to zero. Based on the regression

coefficients, importance measures for each base learner and for each predictor can be estimated. This enhances

the interpretation of the outcome as it can be identified which predictors and base learners are the most relevant in

predicting the response variable (Fokkema & Strobl, 2020).

Rule Generation

To obtain the initial tree ensemble, gradient boosting can be employed. In RuleFit the rules in each iteration of

gradient boosting are generated with the classification and regression tree (CART) algorithm (J. H. Friedman &

Popescu, 2008). Alternatively, the conditional inference tree (ctree) algorithm, proposed by Hothorn et al. (2006),

can be used. The advantage of ctree over CART is that ctree leads to more unbiased variable selection, is robust,

and can be used for complex data (Hothorn et al., 2006). Unbiased in this context means that every predictor

has the same likelihood of being selected if all predictors are uncorrelated to the response variable, regardless of

measurement scale or missing values (Hothorn et al., 2006). The ctree algorithm ensures this by selecting the

predictor variables based on a conditional inference test before generating the node splitting criteria (Hothorn et al.,

2006).

In gradient boosting, the trees are fitted sequentially with each new tree learning from misclassifications of

previous trees (Ayyadevara, 2018). The predictions are updated in each iteration, scaled by the learning rate. The

learning rate v ∈ [0, 1] regulates the influence from previous trees and is needed to avoid over-fitting (Natekin &

Knoll, 2013). Research has shown a learning rate close to zero, for example v = 0.01, performs well in tree ensem-

ble algorithms (J. H. Friedman, 2001). Furthermore, misclassified observations will have larger residuals/gradients,

and thus exert more influence on the new predictions than the correctly classified observations. This allows new

trees to learn from errors made by previous trees. The algorithm will stop when fitting a new tree would not improve

the predictions significantly or when the maximum number of trees are reached. In addition, the maximum tree

depths can be specified (Natekin & Knoll, 2013). Alternative methods to fit the trees in prediction rule ensembles

are bagging or random forest (Fokkema & Strobl, 2020). An advantage is that no assumptions are made on the

distribution of the response variable and they can thus be applied to many different types of data (Natekin & Knoll,

2013).
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Rule Selection

After a forest of trees is fitted with gradient boosting, the next step in prediction rule ensembles is to select a small

set of rules and linear terms to increase model sparsity and interpretability. For this, the Least Absolute Shrinkage

and Selection Operator (LASSO) and three variations from the LASSO are compared in this study.

The Lasso

The lasso, first proposed by Tibshirani (1996), is a penalized regression method with a L1 penalty in the loss

function. The size of the penalty is regulated by parameter λ. The lasso estimate can be written as follows:

β̂lasso = arg min
β

∥y − p∑
j=1

X jβ j∥
2 + λ

p∑
j=1

|β j|

 (1)

The larger λ, the more the coefficients will be shrunken toward zero and some coefficients will become exactly

zero and thus be dropped from the model (Tibshirani, 1996). Other examples of variable selection methods are for-

ward stepwise regression and best subset selection. However, these methods are computationally more expensive

than the lasso, and are therefore not feasible when the number of predictors/base learners is large (Hastie et al.,

2020). An advantage of the lasso is that in contrast to best subset selection and stepwise regression it is a convex

optimization problem, meaning that there is only one local minimum, which is also the global minimum. Thus, the

results are expected to be stable because the algorithm cannot get stuck in a local minimum (Hastie et al., 2020;

Zou, 2006). In terms of variable selection the lasso is less aggressive and as a result leads to less parsimonious

solutions especially when the signal-to-noise ratio (SNR) is high (Hastie et al., 2020). Another distinction is that

in the lasso a shrinkage is also applied to the nonzero coefficients. A downside of this is that this can lead to an

over-shrinkage of large coefficients (Dalalyan et al., 2017). Variations such as the relaxed or adaptive lasso have

been proposed to counter these problems, as will be described in more detail below.

Relaxed Lasso

The relaxed lasso used in this study is a simplified version of the original relaxed lasso proposed by Mein-

shausen (2007). In the simplified relaxed lasso a multiplicative factor γ is introduced to control the strength of the

regularization (Hastie et al., 2020). The new beta coefficients are calculated as a function of λ and γ:

β̂relaxed(λ, γ) = γβ̂lasso(λ) + (1 − γ)β̂ML(λ) (2)

The β̂ML value is estimated by fitting an unpenalized model to the predictors selected by the lasso. By multiplying

the beta coefficients estimated with the lasso by γ ∈ [0, 1], and adding them to the original coefficients from the OLS

multiplied by (1 − γ), the coefficients of predictors remaining in the model are debiased towards their OLS values.

When γ = 1 the original lasso is obtained. In the ordinary lasso, a smaller lambda value that is suited for predictions

may not be optimal for variable selection as redundant predictors will be selected. A larger lambda value suited

for variable selection leads to an over-shrinkage of large coefficients. The factor γ < 1 in the relaxed lasso can

mitigate this by reducing the penalty performed on predictors remaining in the model. Hastie et al. (2020) found
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that the relaxed lasso achieves similar accuracy as the ordinary lasso when the signal-to-noise ratio (SNR) is low,

but outperforms the ordinary lasso when the SNR is high. In addition, the relaxed lasso has a faster convergence

rate than the original lasso and selects sparser models (Meinshausen, 2007).

Adaptive Lasso

In the adaptive lasso, a weight ω is imposed on the penalty of each predictor. By imposing a smaller weight

on large coefficients, the penalty for important base learners is reduced (Zou, 2006), addressing the problem of

over-shrinkage of large coefficients (Meinshausen & Bühlmann, 2006). The equation of the adaptive lasso can be

written as follows:

β̂adaptive = arg min
β

∥y − p∑
j=1

X jβ j∥
2 + λ

p∑
j=1

ω j|β j|

 (3)

The second term is the L1 penalty. Vector ω j contains the weights for each coefficient j and can be calculated

as ω̂ = 1
|β̂|ridge . When the coefficient β̂ of the predictor is larger, the weight will be smaller, reducing the shrinkage

of lambda. The β̂ parameter is estimated in a ridge regression in this study. Alternatively, it could be estimated

from an OLS regression (Zou, 2006), but the ridge regression estimator is more stable. The ridge regression makes

use of a L2 penalty term. In the L2 penalty, the squared coefficient β2 is multiplied by λ, which is different from

the L1 penalty in which the absolute value |β| is multiplied by λ. Furthermore, research by Zou (2006) shows

that the adaptive lasso meets the oracle properties; namely it can make as optimal predictions as if the underlying

model was known. This is in contrast to the ordinary lasso which only consistently selects the true model when

multicollinearity is low. In addition, they proved that the near-minimax optimal shrinkage property of the ordinary

lasso also applies to the adaptive lasso. This means that the most optimal solution that can be obtained with nearly

minimum risk will be selected (Zou, 2006).

Relaxed Adaptive Lasso

The relaxed adaptive lasso combines the relaxed and adaptive lasso. It is a very recent method and therefore

not many research findings exist yet. Zhang et al. (2022) conducted a simulation study comparing the three lasso

variations on linear models with continuous outcome variables. They found that the relaxed adaptive lasso can

make more accurate predictions than the ordinary, relaxed, or adaptive lasso. The relaxed lasso and adaptive lasso

tend to shrink too many coefficients to zero, while the relaxed adaptive lasso tended to select the right number

of predictors. Moreover, the relaxed adaptive lasso has the same convergence rate as the relaxed lasso, namely

Op(n−1). The adaptive lasso has a slower convergence rate, followed by the ordinary lasso (Zhang et al., 2022).

However, no research findings exist on the use of relaxed adaptive lasso for non-continuous outcome variables or

its application in rule ensembling methods. This study will address this research gap by comparing and evaluating

prediction rule ensembles with rule selection based on the ordinary, relaxed, adaptive or relaxed adaptive lasso.

The following sections of this paper are structured as follows. In the Method section, the models and datasets are

described and it is explained how the model metrics predictive accuracy, sparsity, and stability were measured. In
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the Results section the findings for each of the mentioned metrics are discussed. The paper ends with a Discussion

and Conclusion section.

Method

Fitted Models

All analyses were conducted in R version 4.3.1 (R Core Team, 2023). The models were fitted with function

pre (Fokkema, 2020), which employs function cv.glmnet from package glmnet (J. Friedman et al., 2010). By

default the standard lasso is used for rule selection. To obtain results for the relaxed lasso, the argument relax is

set to ’TRUE’. The argument will be passed on to cv.glmnet which fits the relaxed lasso as described by Hastie

et al. (2020). For the adaptive lasso, ad.alpha is set to 0, which specifies that the weights in the adaptive lasso are

calculated based on coefficients from the ridge regression. For the parameter tuning the default settings of prewere

used. Predictors were winsorized before being included as linear terms in estimation of the final model. For this,

values below the 5th or above the 95th percentile were set to the 5th or 95th percentile respectively. This reduces

the effect of outliers on the model. The decision trees were generated based on the ctree algorithm and fitted using

gradient boosting with a learning rate of 0.01. Furthermore, 500 trees were built with a maximum tree depth of

three. Each tree was fitted on a randomly drawn sub-sample consisting of 50% of the observations. The penalty

parameter λ was selected based on k-fold cross-validation, and can be chosen either based on the lambda resulting

in the lowest cross-validated error estimate, or the highest lambda value yielding a cross-validated error within 1

SE of the minimum (Fokkema & Strobl, 2020). The results for the predictions and importance measures based on

the 1-SE versus the minimum criterion can be extracted from the same ensemble model, and were compared in this

study. Both criteria are further referred to as the lambda-1se and lambda-min criterion.

Importance Measures

For each predictor and base learner importance measures were calculated indicating how much they contribute

to the predictions. The importance measures of the base learners are estimated by multiplying the absolute value of

their coefficients with their sample standard deviation. Equation 4 gives the formula of the importance measures of

linear terms and Equation 5 of rules.

I j = |b̂ j| × sd(l j(x j)) (4)

Ik = |âk| ×
√

sk(1 − sk) (5)

Here, sk is the proportion of training observations to which rule k applies to. Accordingly, the standard deviation

of rule k is estimated as
√

sk(1 − sk) . A larger regression coefficient indicates that the rule or linear term is more

important and by multiplying it by its standard deviation it is accounted for its variance.

The importance measures can be further standardized with regard to the outcome variable, by dividing it by the

standard deviation of the outcome variable y:



10

I′j = |b̂ j| ×
sd(l j(x j))

sd(y)
(6)

I′k = |âk| ×

√
sk(1 − sk)
sd(y)

(7)

The importance measures of each predictor are calculated as follows:

J j = I j +
∑
x j∈rk

Ik

ck
(8)

Here, I j is the importance measure of a linear term of predictor j, and
∑

x j∈rk
Ik
ck

is the sum of the importance

measures of each rule that contains predictor j, divided by the number of conditions ck in the rule. The sum gives

the importance measure of the predictor (J. H. Friedman & Popescu, 2008). The higher the importance measure,

the more relevant the predictor. If a predictor or base learner has been dropped from the model, its importance

measure will be equal to zero.

Datasets

For this study eight benchmark datasets were used to implement and evaluate the four fitted models. Table 1

shows a summary of the datasets. Dataset three was used twice, with two different outcome variables. Thus there

are nine datasets in total. A detailed description of all datasets can be found in Appendix A.

Table 1

Summary of Datasets
Name Outcome variable Outcome type p N Reference

1 High School Grades grades Continuous 30 649 Cortez, 2014
2 Sensation Seeking and Delinquency delinquent behaviour Continuous 25 1076 Roth and Herzberg, 2004
3 Personality and Drug Consumption cannabis consumption Continuous 12 1885 Fehrman et al., 2016
4 Personality and Drug Consumption ecstasy consumption Continuous 12 1885 Fehrman et al., 2016
5 Objectivity of Article label (objective/subjective) Binary 59 1000 Rizk and Awad, 2018
6 Breast Cancer Screening benign/malignant tumour Binary 30 569 Wolberg et al., 1995
7 Sleep Quality sleep quality (poor/good) Binary 17 546 Norbury and Evans, 2018
8 University Graduation graduate/dropout Binary 28 3630 Realinho et al., 2021
9 ADHD Screening ADHD vs. control group Binary 93 220 Trognon and Richard, 2022

Model Evaluations

The models were compared based on out-of-sample prediction accuracy, sparsity, and stability. For this, a re-

peated 10-fold cross validation with 10 repeats was conducted. The seed was set, ensuring that the same fold

splitting was used for the same repeat in each model.
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Predictive Accuracy

In each cross-validation the premodel was fitted on 90% of the data and predictions were made on the remaining

10%, which served as a validation set. This results in a vector containing the cross-validated predictions for each

observation. In each of the 10 repeats, for continuous outcomes the Mean Squared Error (MSE) was calculated,

and for binary outcomes the Squared Error Loss (SEL) based on the predicted probabilities, and the area under the

ROC curve (AUC). To provide a measure of the effect size of predictive accuracy, the variance accounted for (VAF)

was estimated by the coefficient of determination as follows:

R2 = 1 −
MSE
var(y)

(9)

In case of a binary outcome, the SEL was used instead of the MSE. The R2 will be higher with increasing number

of terms; to correct for this, the adjusted R2 was estimated:

R2
adjusted = 1 −

(1 − R2) × (n − 1)
n − p̂ − 1

(10)

In this formula, n indicates the sample size, p̂ the average number of terms selected across the 10 folds in the

given repeat, and R2 the coefficient of determination. The adjusted R2 is independent of the measurement scale and

can therefore be compared across datasets and provides an indication of the SNR.

It was also evaluated how stable the predictions are across the 10 repeats. For this, Euclidean distances between

predictions were estimated between each pair of repeats. The average of the distances is reported in the Results

and the distributions were plotted with boxplots. Given that this measure is dependent on the measurement scale of

the outcome variable, it can only be compared within the same dataset. Additionally, the standard deviation of the

MSE or SEL were calculated. The more variation, the less stable are the predictions.

Sparsity

The sparsity was estimated by the number of base learners and predictors selected in each fold of the cross-

validation and for each repeat, resulting in 100 (folds × repeats) outcomes. The mean and standard deviation are

reported in the Results section. We assume that a more parsimonious model has higher interpretability.

Stability

Model stability refers to robustness to small changes in the training data and is crucial in order to receive repro-

ducible and generalizable results (Nogueira et al., 2018). In this study the stability of variable selection, importance

measures, and predictions was evaluated.

Variable Selection. If a variable has been selected its importance measure will be > 0. In every fitted model

a variable has either been selected (1) or not (0), resulting in a binary outcome for each fold. In order to estimate

the stability of variable selection while correcting for the total number of variables, and the proportion of variables

selected, a stability measure proposed by Nogueira et al. (2018) was calculated with following formula:
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ϕ̂(Z) = 1 −
1
p
∑p

j=1 s2
j

p
p (1 − p

p )
(11)

Here, p is the average proportion of predictors selected across the folds, p the total number of predictors, and s2
j

the sample variance of selection of predictor j. The numerator is the average over the predictor’s sample variance

of selection. The denominator is the sample variance of the proportion of variables selected. If variable selection

would be random, numerator and denominator would be equal and thus stability would be 0. The measure will be 1

only if selection of all predictors has a sample variance of 0, indicating that the same predictors have been selected

in each fold and repeat. Nogueira et al. (2018) suggest following rules of thumb to interpret the stability:

• ϕ̂(Z) > 0.75 : Excellent stability

• 0.4 < ϕ̂(Z) < 0.75 : Intermediate to good stability

• ϕ̂(Z) < 0.4 : Poor stability

The stability between methods was compared with confidence intervals, calculated using a formula by Nogueira

et al. (2018). The formula assumes that the stability measure follows a standard normal distribution.
Importance Measures. The stability of importance measures was evaluated with Euclidean distances. The

standardized importance measures of the predictors were saved across each fold and repeat resulting in a dataframe

containing a column for each predictor and a row with the importance measure for each fold. Euclidean distances

between each row were calculated giving a measure of how much the importance measures differ across the folds.

A larger distance indicates that the importance measures are less stable.

Model Comparison

To test whether the differences between the models are statistically significant, for each dataset linear mixed

effects models were fitted, using the lmer function from the lmerTest package in R (Kuznetsova et al., 2017).

The repeats are within-model effects. A full-factorial 2 (lambda criteria) × 2 (relaxed lasso) × 2 (adaptive lasso)

design was used. The lambda-min criterion and standard lasso were taken as the reference categories. Further-

more, a three-way interaction between the lambda criterion, adaptive, and relaxed lasso was added to assess if the

differences between lasso approaches differ depending on the lambda criterion.

Three linear mixed models were fitted. First, the difference in accuracy was tested with MSE/SEL as the out-

come, and in a second model the adjusted R2. For binary outcomes, an additional model was fitted, predicting the

AUC. Third, to test the difference in sparsity the outcome variable was the number of predictors. The significance

of the random effect was tested with a likelihood-ratio test. If the variance of the random-intercept variance was

not significantly different than 0 (alpha = 0.05), we fitted a fixed-instead of a mixed-effects model. To test the

differences in stability, the distances between predictions and between importance measures of predictors were

regressed on method and criterion using a linear model. For the distances no random effect was needed as the

distances were calculated between each pair of results and there is thus no dependency between observed values.

To compare the stability of variable selection, confidence intervals were compared.
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Results

To avoid repetition of similar results, we chose to report the results of datasets High School Grades and ADHD as

typical examples of regression and classification problems. Results for all datasets are presented in the Appendix,

visualizations in Appendix B and results of significance tests in Appendix C. The R-code and dataset files used in

this study are available at https://github.com/Anne3478/thesis-pre-with-relaxed-adaptive-lasso.git.

Predictive Accuracy

Table 2 presents the predictive accuracy for all datasets. In most regression and classification datasets, the

standard lasso with the lambda-min criterion yields the best MSE/SEL value but the differences to the other lasso

approaches are not large. Figure 1a shows that in dataset High School Grades the differences between the lasso

approaches are not substantial and smaller than the differences between the two lambda criteria. This aligns with

findings from other regression datasets. In two regression datasets, under the lambda-1se criterion, both the relaxed

and standard lasso yield a lower MSE than the other approaches. In classification dataset ADHD, Figure 1b, the

relaxed adaptive lasso has the highest SEL, with no significant differences observed among the remaining three

lasso approaches. In the other classification datasets the pattern is similar. Furthermore, in both regression and clas-

sification datasets, the relaxed adaptive lasso has the largest variance compared to the other methods; suggesting

that its predictions are less stable.

While the MSE/SEL is lower with increasing number of terms, the adjusted R2 accounts for the number of base

learners selected. As seen in Figure 1c, in dataset High School Grades the standard lasso has the lowest and the

relaxed lasso the highest adjusted R2, although the differences are not substantial. The same pattern is found in

datasets Cannabis Consumption and Ecstasy consumption, while in dataset Delinquency no differences between

lasso approaches are observed. In all regression datasets the adjusted R2 is higher for the lambda-1se criterion

than the lambda-min criterion. In dataset ADHD (Figure 1d), similar as to the other classification datasets, no

considerable difference in adjusted R2 between lasso approaches are found. Linear mixed models indicate that the

main and interaction effects of relaxed and adaptive lasso on adjusted R2 are not significant. In seven out of nine

datasets, the lambda-1se criterion performed significantly better in terms of adjusted R2 compared to the lambda-

min criterion. Moreover, based on the significance tests and visualizations, the AUC seems to be unaffected by

lambda criterion and lasso approach used.
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Figure 1

Predictive Accuracy of Dataset High School Grades and ADHD

(a) MSE of Dataset High School Grades (b) SEL of Dataset ADHD

(c) R2
adj of Dataset High School Grades (d) R2

adj of Dataset ADHD
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Table 2

Predictive Accuracy
Lasso Relaxed Lasso Adaptive Lasso Relaxed Adaptive

Dateset 1se min 1se min 1se min 1se min
High
School
Grades

MSE 7.714 7.503 7.751 7.580 7.709 7.587 7.796 7.714
SE 0.110 0.110 0.130 0.110 0.060 0.120 0.160 0.150
R2

adj 0.239 0.222 0.248 0.225 0.245 0.227 0.243 0.219

Delinquency
MSE 2.049 2.033 2.068 2.045 2.059 2.060 2.080 2.072
SE 0.020 0.040 0.030 0.030 0.020 0.040 0.030 0.030
R2

adj 0.100 0.072 0.098 0.073 0.100 0.073 0.096 0.074

Cannabis
Consumption

MSE 2.664 2.643 2.668 2.640 2.690 2.695 2.689 2.681
SE 0.010 0.030 0.010 0.020 0.010 0.030 0.030 0.020
R2

adj 0.479 0.462 0.481 0.467 0.476 0.455 0.479 0.461

Ecstasy
Consumption

MSE 2.007 1.979 2.006 1.984 2.027 1.999 2.044 2.008
SE 0.010 0.010 0.020 0.010 0.010 0.010 0.030 0.020
R2

adj 0.250 0.246 0.255 0.248 0.246 0.243 0.243 0.242

Objectivity

SEL 0.130 0.127 0.132 0.130 0.132 0.128 0.135 0.131
SE <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
R2

adj 0.420 0.413 0.416 0.408 0.418 0.423 0.410 0.412
AUC 0.810 0.820 0.810 0.820 0.810 0.820 0.810 0.810

Breast
Cancer

SEL 0.031 0.030 0.033 0.032 0.032 0.031 0.038 0.033
SE <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
R2

adj 0.859 0.862 0.852 0.854 0.857 0.862 0.836 0.853
AUC 0.960 0.960 0.950 0.950 0.960 0.960 0.950 0.950

Sleep Quality

SEL 0.216 0.215 0.218 0.218 0.217 0.217 0.221 0.221
SE <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
R2

adj 0.112 0.098 0.113 0.094 0.114 0.094 0.104 0.091
AUC 0.660 0.660 0.660 0.660 0.650 0.650 0.650 0.650

University
Graduation

SEL 0.072 0.071 0.073 0.071 0.073 0.072 0.073 0.072
SE <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
R2

adj 0.691 0.692 0.691 0.693 0.691 0.692 0.691 0.692
AUC 0.910 0.910 0.910 0.910 0.910 0.910 0.910 0.910

ADHD

SEL 0.063 0.066 0.065 0.064 0.065 0.065 0.069 0.066
SE 0.010 0.010 0.010 <0.001 0.010 0.010 0.010 0.010
R2

adj 0.725 0.702 0.716 0.708 0.722 0.716 0.709 0.710
AUC 0.920 0.920 0.910 0.920 0.910 0.920 0.910 0.920

Note. The values denote the means over the ten repeats of the mean squared error (MSE), squared error loss (SEL), adjusted
R2, and area under the receive curve (AUC). The SE indicates the standard error of the MSE or SEL. Best values are in bold.
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Sparsity

Table 3 and 4 show a summary of the number of predictors and number of base learners selected across folds

and repeats. As expected, the lambda-1se criterion results in sparser models than the lambda-min criterion, both

in terms of variable and base learner selection. As shown in Figure 2, in regression datasets, when the lambda-

1se criterion is used, the relaxed lasso leads to the sparsest model in terms of variable selection and the relaxed

adaptive lasso in terms of base learner selection. Interestingly, under the lambda-min criterion, the differences in

sparsity between the lasso approaches is diminished and the variance is larger suggesting that when the base learner

selection is less stable the differences between lasso approaches become less visible. In classification datasets, the

relaxed adaptive lasso leads to the sparsest model, both in terms of variable and base learner selection. The standard

lasso yields the least sparse model in all datasets.

Table 3

Number of Variables Selected

Lasso Relaxed Lasso Adaptive Lasso Relaxed Adaptive
Dataset 1se min 1se min 1se min 1se min
High School
Grades

M 14.25 21.13 8.67 20.08 14.69 20.58 10.70 19.61
SD 2.11 1.89 3.09 2.77 2.10 1.89 3.14 2.75

Delinquency
M 12.08 20.32 8.89 18.71 12.54 19.07 10.05 17.86
SD 1.86 2.30 2.20 3.15 2.49 2.19 2.53 2.64

Cannabis
Consumption

M 10.04 11.92 8.62 11.75 11.01 11.95 10.33 11.93
SD 1.24 0.31 1.25 0.66 1.03 0.26 1.36 0.26

Ecstasy
Consumption

M 8.24 10.75 6.15 10.16 8.89 10.58 7.78 10.24
SD 0.85 0.82 1.11 1.13 1.06 0.85 1.25 0.93

Objectivity
M 25.20 35.60 22.15 33.53 20.80 30.14 14.79 29.75
SD 3.05 3.72 3.89 5.14 3.27 3.96 4.21 4.50

Breast
Cancer

M 11.96 13.71 11.35 13.63 10.80 12.04 8.69 11.46
SD 1.32 1.42 1.89 1.51 1.25 1.33 2.03 2.06

Sleep
Quality

M 8.39 10.78 6.32 9.69 8.31 10.45 6.80 9.13
SD 1.32 1.73 1.81 2.07 1.20 1.76 1.34 2.04

University
Graduation

M 20.98 25.30 18.92 24.59 20.88 24.66 19.35 24.27
SD 1.90 1.01 2.17 1.46 1.88 1.08 2.25 1.37

ADHD
M 15.92 21.38 15.08 21.37 12.05 16.81 10.23 16.27
SD 2.45 3.27 4.23 3.16 2.35 2.70 4.02 3.24

Note. M indicates the mean number of predictors selected across folds and repeats, and SD its standard
deviation. Latter can be interpreted as the standard error. Best values are in bold.
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Table 4

Number of Base Learners Selected

Lasso Relaxed Lasso Adaptive Lasso Relaxed Adaptive
Dataset 1se min 1se min 1se min 1se min
High
School
Grades

M 18.71 48.85 8.30 40.94 14.25 38.47 8.32 34.35
SD 4.85 12.02 5.13 13.57 3.79 9.09 4.20 12.30

Delinquency
M 18.65 58.27 11.06 50.97 13.12 43.78 7.74 37.28
SD 3.76 14.57 4.55 19.81 4.35 11.23 3.69 14.56

Cannabis
Consumption

M 43.75 115.11 31.56 100.26 34.86 104.54 24.78 94.67
SD 8.45 28.02 11.43 33.10 12.15 26.10 12.67 30.92

Ecstasy
Consumption

M 25.34 62.9 14.40 53.69 17.13 51.35 10.46 44.53
SD 3.73 18.1 5.34 17.72 5.03 14.80 5.55 17.56

Objectivity
M 34.57 65.44 29.04 57.76 21.19 44.58 11.71 42.73
SD 5.67 14.64 7.47 17.22 6.11 10.45 6.35 11.58

Breast
Cancer

M 27.89 33.12 25.74 33.08 19.07 24.70 10.66 21.54
SD 3.39 4.13 6.31 4.56 2.65 2.91 6.30 6.67

Sleep
Quality

M 13.41 24.44 7.61 19.30 9.05 19.61 5.15 13.89
SD 3.27 6.84 3.88 7.89 2.47 6.57 2.23 8.05

University
Graduation

M 55.73 105.10 44.50 91.90 42.22 82.35 33.19 76.52
SD 9.36 13.09 8.46 21.02 7.42 10.73 7.31 16.89

ADHD
M 20.15 26.88 18.72 26.48 13.74 19.94 11.29 19.12
SD 3.51 3.66 5.53 3.20 2.90 3.48 5.19 3.77

Note. M indicates the mean number of base learners selected across folds and repeats, and SD its standard
deviation. Latter can be interpreted as the standard error. Best values are in bold.
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Figure 2

Sparsity: Number of Base Learners and Predictors Selected

(a) Base Learners Dataset High School Grades (b) Base Learners Dataset ADHD

(c) Predictors Dataset High School Grades (d) Predictors Dataset ADHD
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Stability

Stability was assessed with three different measures; the stability of variable selection, the distances between

predictions, and the distances between importance measures. Table 5 shows the results. In regression datasets, the

stability on all three measures is higher for the lambda-1se than the lambda-min criterion. On the other hand, for

classification datasets, no differences between the lambda-1se and lambda-min criterion are found.

Stability of Variable Selection

Figure 3 shows the stability of variable selection with confidence intervals. In dataset High School Grades, under

the lambda 1se criterion, the standard lasso has a significantly higher stability, while the adaptive and relaxed lasso

are more stable than the relaxed adaptive lasso. When the lambda-min criterion is used, the stability is significantly

lower and the differences between lasso approaches are not present. The effect of lasso approach differs per dataset.

As seen in Table 5, for datasets Delinquency and Ecstasy Consumption, both the relaxed and standard lasso yield

the highest stability, and for dataset Cannabis Consumption only the relaxed lasso.

In classification datasets, no clear pattern of significant differences in stability of variable selection are found,

and their seems to be an interaction effect between lasso approach and criterion. Under the lambda-1se criterion,

in half of the classification datasets the standard and adaptive lasso seem to be slightly more stable, and in the

remaining datasets, the relaxed and standard lasso. In dataset ADHD, as can be seen in Figure 3, under the lambda-

1se criterion, the standard and adaptive lasso perform best and under the lambda-min criterion the adaptive and

relaxed adaptive lasso.

An interesting finding is that the results differ for regression and classification datasets. In all regression datasets,

under the lambda-min criterion the stability is significantly lower with no difference between lasso approaches.

In classification datasets, the difference between lambda criteria is not significant and the patterns between lasso

approaches differ per lambda criterion, indicating an interaction effect. No clear conclusions can be drawn on which

lasso approach performs best, as the results differ across datasets. There is a slight indication that for regression

datasets the relaxed and standard lasso are the most stable and for classification datasets the adaptive and standard

lasso, however the results do not reach significance.

Stability of Importance Measures

Table 5 shows that in all datasets the standard lasso with lambda-1se criterion yields the smallest distances.

Similarly to the stability of variable selection, the importance measures are more stable for the lambda-1se than

the lambda-min criterion. Interestingly, again this relationship is stronger for continuous than for binary outcomes.

The results of the linear models show that the interaction effects between lasso approach and lambda criterion

are significant in all datasets. This makes it harder to interpret the main effects. Inspecting the visualizations in

Figure 4 and B8, under the lambda-1se criterion, the standard lasso seems to yield slightly more stable importance

measures, followed by the adaptive and the relaxed lasso, and the most unstable is the relaxed adaptive lasso. In

datasets Objectivity and Graduation, both the adaptive and the standard lasso are the most stable. No difference

between the lasso approaches are observed under the lambda-min criterion for any dataset.
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Figure 3

Stability of Variable Selection

(a) Dataset High School Grades (b) Dataset ADHD

Stability of Predictions

Figure 4 displays the distribution of distances between predictions for dataset High School Grades and ADHD.

A similar pattern is found in all datasets. The standard lasso yields the smallest distances, meaning the model is

more stable. For the adaptive and relaxed lasso the distances are similar and smaller than for the relaxed adaptive

lasso. The results of the linear models show that in all datasets, the interaction effects between lasso approach and

lambda criterion are significant. Inspecting the visualizations in Figure B9, it seems that the differences between

lasso approaches are less pronounced under the lambda-min criterion, and the effect of lambda criterion on stability

is different per lasso approach. In all datasets, the differences between lambda criteria is the strongest for the stan-

dard lasso, showing significantly more stable results under the lambda-1se criterion. In three datasets, the relaxed

adaptive lasso results in higher distances under the lambda-1se criterion, which is the opposite effect as for the other

lasso approaches. Furthermore, looking at the distribution of the MSE/SEL in Figure B1, the variance seems to be

highest for the relaxed adaptive lasso, which is in line with the finding that the predictions by the relaxed adaptive

lasso are the most unstable.
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Figure 4

Distribution of Distances between Importance Measures and Predictions

(a) Dataset High School Grades (b) Dataset ADHD

(c) Dataset High School Grades (d) Dataset ADHD
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Table 5

Stability measures by model
Lasso Relaxed Lasso Adaptive Lasso Relaxed Adaptive

Dateset 1se min 1se min 1se min 1se min

High
School
Grades

ϕ̂(Z) 0.74 0.55 0.67 0.56 0.67 0.56 0.58 0.56
d(importances) 0.23 0.59 0.44 0.65 0.36 0.65 0.53 0.73
d(predictions) 9.95 16.66 15.59 17.83 14.53 19.58 20.50 20.96

Delinquency

ϕ̂(Z) 0.69 0.35 0.66 0.39 0.60 0.44 0.55 0.47
d(importances) 0.11 0.32 0.20 0.37 0.16 0.34 0.23 0.36
d(predictions) 5.70 10.74 9.18 11.42 8.67 12.38 12.36 12.80

Cannabis
Consumption

ϕ̂(Z) 0.37 0.01 0.67 0.04 0.19 0.00 0.30 0.01
d(importances) 0.15 0.54 0.27 0.54 0.28 0.69 0.31 0.73
d(predictions) 9.34 13.90 12.60 14.16 14.77 17.65 17.21 17.38

Ecstasy
Consumption

ϕ̂(Z) 0.73 0.45 0.75 0.45 0.66 0.45 0.66 0.44
d(importances) 0.07 0.25 0.17 0.28 0.13 0.28 0.18 0.31
d(predictions) 5.89 9.24 10.38 10.06 10.26 11.38 14.21 12.18

Objectivity

ϕ̂(Z) 0.65 0.65 0.63 0.61 0.61 0.64 0.56 0.61
d(importances) 0.28 0.62 0.56 0.64 0.33 0.54 0.53 0.58
d(predictions) 2.06 2.95 2.91 3.19 2.70 3.01 3.77 3.27

Breast
Cancer

ϕ̂(Z) 0.77 0.71 0.75 0.71 0.80 0.76 0.72 0.74
d(importances) 0.52 0.87 1.19 0.88 0.58 0.81 1.61 0.93
d(predictions) 1.38 1.70 1.74 1.76 1.57 1.76 2.62 1.97

Sleep
Quality

ϕ̂(Z) 0.64 0.54 0.60 0.55 0.64 0.56 0.57 0.56
d(importances) 0.19 0.34 0.30 0.39 0.26 0.46 0.39 0.50
d(predictions) 1.43 1.95 2.09 2.22 2.09 2.46 2.93 2.78

Graduation

ϕ̂(Z) 0.62 0.63 0.66 0.58 0.57 0.68 0.57 0.60
d(importances) 0.45 0.82 0.92 1.01 0.57 0.90 0.93 1.07
d(predictions) 2.21 3.31 2.80 3.49 2.99 3.83 3.50 4.05

ADHD

ϕ̂(Z) 0.62 0.53 0.58 0.52 0.63 0.57 0.59 0.57
d(importances) 0.52 1.01 1.03 1.07 0.57 1.08 1.47 1.50
d(predictions) 1.19 1.58 1.65 1.71 1.35 1.63 1.97 1.93

Note. The ϕ̂(Z) measure indicates the stability of variable selection and lies between 0 and 1, with a higher value
indicating higher stability (Nogueira et al., 2018). The d(importances) and d(predictions) refer to the euclidean dis-
tances between the importance measures and predictions respectively. Larger distance indicates lower stability. Note
that the distances are dependent on the measurement scale and therefore not comparable across different datasets.
Best values for each measure are in bold.
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Discussion

In this study, we evaluated if model accuracy, sparsity, and stability of prediction rule ensembles can be improved

by using the adaptive, relaxed, or relaxed adaptive lasso instead of the standard lasso. The standard lasso faces some

drawbacks, such as difficulties in finding a regularization parameter that yields both optimal variable selection and

optimal predictive accuracy (Dalalyan et al., 2017). The relaxed and adaptive lasso address this problem by intro-

ducing additional parameters, that mitigate over-shrinkage of large coefficients (Meinshausen, 2007; Zou, 2006).

However, there is limited research about comparing these variations of the lasso in the context of prediction rule

ensembles.

The results suggest that sparsity of prediction rule ensembles can be improved by using the relaxed or adap-

tive lasso, but at the cost of stability. While the relaxed adaptive lasso selects the sparsest model, this is at the

cost of significantly lower stability of predictions and slightly lower stability of variable selection and importance

measures. The relaxed and adaptive lasso outperform the standard lasso in terms of sparsity while maintaining a

high level of stability in variable selection, but make less stable predictions. In terms of accuracy the four lasso

variations perform equally well. Furthermore, the lambda-1se criterion explains more variance than the lambda-

min criterion when adjusting for the number of base learners selected, selects sparser models, and for regression

datasets also improves stability. The differences between lasso approaches diminish under the lambda-min criterion

in regression datasets as the results become highly unstable. In classification datasets, no significant differences in

stability between the lambda criteria are found.

Predictive Accuracy

In terms of lasso approach, there are no significant differences in predictive accuracy found. In most regres-

sion datasets, the adjusted R2 is highest for the relaxed lasso but the effect did not reach significance. Moreover,

the lambda-1se criterion yields a significantly higher adjusted R2 than the lambda-min criterion. The lambda-1se

criterion is better at balancing sparsity and accuracy, while the lambda-min criterion is prone to select more noise

variables which decreases the value of the adjusted R2. Past research has shown that under low signal-to-noise ratio

(SNR), the adaptive lasso and relaxed lasso perform equally well in terms of accuracy as the standard lasso, but

yield higher predictive accuracy when the SNR is high (Meinshausen, 2007; Hastie et al., 2020; Zou, 2006). In this

study, no difference in lasso approach is observed in relation to the SNR. These differences in findings might be

explained by the fact that the previous studies compared variations of the lasso in linear penalized regression while

the current study investigates the role in the context of prediction rule ensembles.

Sparsity

In terms of model sparsity, the results of this study are in line with previous research, showing that the relaxed,

adaptive, and relaxed adaptive lasso select sparser models than the standard lasso (Huang et al., 2008; Meinshausen,

2007; Zhang et al., 2022). While the previous studies focused on linear models and assessed sparsity by the number

of variables selected, this study additionally compared continuous and binary outcomes, and also evaluated the

number of base learners selected. For both outcome types, the relaxed adaptive lasso is the sparsest model in terms
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of base learner selection, followed by comparable results between the relaxed and adaptive lasso, and the least

sparse the standard lasso. In most regression datasets, the relaxed lasso leads to the sparsest model in terms of

variable selection and in classification datasets the relaxed adaptive lasso.

Furthermore, an interesting finding is that for continuous outcomes, the differences in sparsity between lasso

approaches disappear when the lambda-min instead of the lambda-1se criterion is used. On the other hand, when

the outcome is binary, no interaction between lasso approach and lambda criterion is observed. In most datasets,

the variance of number of base learners selected is much higher for the lambda-min than the lambda-1se criterion,

indicating lower stability. Nogueira et al. (2018) found that models that select more noise variables are less stable.

In the context of prediction rule ensembles, this suggests that under the lambda-min criterion, more irrelevant base

learners are selected, making the model less stable and reducing the effects of the lasso variations.

Stability

Previous research suggests that the standard lasso is unstable in variable selection when multicollinearity is high

(Zhao & Yu, 2006). That is because in the presence of multicollinearity, the standard lasso may randomly select

one of the correlated predictors (Dalalyan et al., 2017). The adaptive lasso addresses this by adding the weight pa-

rameter to adapt the shrinkage on each predictor individually. However, research comparing the stability between

the different variations of the lasso is lacking.

The results of this study suggest that for regression datasets the relaxed and standard lasso seem slightly more

stable in variable selection and in classification datasets the adaptive and standard lasso, but the pattern of results

are not consistent across all datasets. In terms of importance measures and predictions the standard lasso seems

the most stable. The least stable predictions are made by the relaxed adaptive lasso. This suggests that as more

parameters are tuned in the model, the predictions become more unstable but this has only small effect on the

stability of variable selection. Both the γ parameter in the relaxed lasso, and the weight ω in the adaptive lasso, are

tuned based on the data. This might increase the risk of over-fitting as data dependency increases.

Furthermore, all regression datasets have significantly higher stability when the lambda-1se compared to the

lambda-min criterion is used. Nogueira et al. (2018) found that when applying the ordinary lasso in logistic re-

gression, a slightly larger lambda value is needed for achieving optimal stability compared to achieving optimal

predictive accuracy. By sacrificing a small loss of accuracy, the stability increases as the risk of over-fitting is

reduced. This is line with the findings for regression datasets, which show that the lambda-1se criterion yields

significantly higher stability. More research is needed to explain why this finding could not be replicated in classifi-

cation datasets. Nogueira et al. (2018) found the effect is stronger when more noise variables are present. However,

in the current study no relationship between the SNR and stability is observed.

Strength and Limitations

The results of this study provide valuable insights into the use of the relaxed and adaptive lasso, or their combi-

nation, in prediction rule ensembles. This is the first study investigating model performance of these methods in the

context of rule ensembles and the first to compare the lasso variations both with the lambda-min and lambda-1se

criterion. Previous research on the lasso variations primarily focused on prediction accuracy and sparsity, lacking
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evaluation of its stability. This study sheds light on the impact of variations of the lasso on stability of variable

selection, importance measures and predictions.

An advantage of this study is that two outcome variables were compared, providing information on possible

differences between linear and geneneralized linear models. Moreover, a strength is the use of repeated cross-

validation, which makes the results less dependent on a single choice of folds. The datasets used differ in the

number of participants and number of predictors, making the results more generalizable. Future research could ex-

tend this study by looking at different outcome types such as poisson, cox, or multinomial, and at high-dimensional

data.

A limitation is that standard errors for predictive accuracy were only computed across repeats, but not computed

across folds and repeats of the cross-validation. Thus, they quantify uncertainty due to different possible ways to

separate a dataset into 10 equally-sized folds, but do not quantify uncertainty due to taking different subsamples

of observations. Another limitation is that the results for stability of predictions are not standardized and therefore

not comparable across datasets. While this study compared the lasso approaches in nine datasets, an additional

analysis aggregating the results from all datasets is missing. In addition, future research could investigate which

factors influenced the differences in sparsity and stability, and may help assessing how to further improve predic-

tion rule ensembles. Past research suggests that SNR is an influencing factor but in the current study SNR did not

systematically impact performance differences between lasso approaches.

Conclusion

Based on the results of this study, practical advice can be given on which lasso approach should be chosen

for optimal performance of prediction rule ensembles. The choice of lasso approach should be dependent on if

accuracy, sparsity, or stability is prioritized, or the trade-off between them. If accuracy is most important, the

standard lasso with lambda-min criterion performs best, if sparsity is more relevant the relaxed adaptive lasso and

for optimal stability the standard lasso with lambda-1se criterion. To achieve optimal trade-off between the three

measures the relaxed or adaptive lasso with lambda-1se criterion are the best choices as both yield sparser models

than the standard lasso, higher stability than the relaxed adaptive lasso, and maintain the same level of accuracy.

The results of this study can be summarized as follows:

• Standard lasso with lambda-min criterion performs best in terms of prediction error, but is the least sparse.

• For optimal trade-off between accuracy and sparsity, lambda-1se criterion performs significantly better than

lambda-min. No significant differences between lasso approaches.

• The relaxed adaptive lasso with lambda-1se criterion selects sparsest model.

• Stability of variable selection is equally high for all lasso approaches and higher for lambda-1se than lambda-

min criterion.

• The standard lasso with lambda-1se criterion yields most stable importance measures and predictions.

• The least stable predictions are made by the relaxed adaptive lasso.
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• In regression datasets, the lambda-1se criterion yields significantly more stable results than the lambda-min

criterion.

• The effect of lambda-criterion is more pronounced in regression than in classification datasets.
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Appendix A
Dataset Descriptions

Dataset 1: High School Grades

In this dataset, the Portuguese language grades of secondary-school students are predicted based on de-

mographics, such as gender and family educational background, social-emotional factors such as relationships and

alcohol consumption, and school related factors such as number of school absences. The data was gathered 2005

and 2006 at two schools in Portugal using school reports and a questionnaire (Cortez & Silva, 2008).

Dataset 2: Youth Delinquency

This dataset comes from a study by Roth and Herzberg (2004) who investigated the validity of the Arnett

Inventory of Sensation Seeking (AISS) scale and the relationship between sensation seeking and delinquency in

adolescence. Delinquency was measured with 5 questions from the Youth Self-Report (YSR)- Subscale Delinquent

Behaviour questionnaire. In the current study the sum of these questions is taken and predicted by the validated

items from the sensation seeking questionnaire and demographics such as gender and age. After removing 160

observations due to missing values, the sample consists of 1076 German high school students.

Dataset 3: Drug Consumption

This dataset contains information about personality, demographics, and drug consumption for 18 different

illegal drugs. The current study focuses on predicting cannabis and ecstasy consumption by the five personality

traits, measured with the Revised NEO-Five Factor Inventory (NEO-FFI-R), and scores from the Barratt Impulsive-

ness Scale (BIS-11) and the Impulsiveness Sensation Seeking Scale (ImpSS). The data were collected in 2011 and

2012 with an online questionnaire. Participants are adults, mainly from English-native speaking countries (Fehrman

et al., 2017).

Dataset 5: Objectivity of Article

This dataset contains data about the linguistic properties of 1000 sports articles (Rizk & Awad, 2018).

Features were extracted using the Stanford Part-Of-Speech (POS) tagger software. Examples are grammatical

properties such as the frequency of using adverbs, plural/singular nouns, and determiners, leading to a collection of

59 features. The outcome variable is to predict if the article is objective or subjective (Rizk & Awad, 2018).

Dataset 6: Breast Cancer

The Breast Cancer dataset comes from an oncological study by Street et al. (1993) who analyzed 569

images of cell nuclei. Using a computer vision diagnostic system they extracted ten features from the nuclei, such

as the radius, smoothness, and symmetry. For each of these ten features they calculated the mean, maximum, and

standard deviation. Thus, in total there are 30 predictor variables, three for each of the ten features. It is notable

that high multicollinearity is expected for the measure of the same characteristic. The outcome variable is whether

the cell nuclei come from a benign or malignant breast cancer tumour.
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Dataset 7: Sleep Quality

Norbury and Evans (2019) investigated the relationship between sleep quality, mental health, and preferred

university starting time. For this, 546 university students from two universities in England completed an online

survey. The outcome variable is subjective sleep quality measured with the Pittsburgh Sleep Quality Index (PSQI)

and dichotomized into poor/good sleep. Examples of predictors are trait anxiety, day-time dozing, sleep duration,

preferred university starting time, chronotype (morning versus evening person) as well as tobacco, alcohol, and

caffeine consumption (Norbury & Evans, 2019).

Dataset 8: University Graduation

This dataset comes from research by Martins et al. (2021) who studied methods to identify students at risk

of academic failure in order to support these students at an early stage. The participants are undergraduate students

at the Polytechnic Institute of Portalegre (IPP), Portugal. Data was collected from the academic year 2008/09 to

2018/19 and contains information about demographics, socio-economic factors such as student debts or parents’

employment situation, and student’s academic path such as admission grades and high school grades. The outcome

is if the student graduated on time, graduated with a delay or did not graduate. In the current study, the outcome

is dichotomized and only includes students who either graduated on time or not graduated. Based on this, 794

observations were excluded of students who graduated with a delay, leading to a final sample size of 3630 students.

Dataset 9: ADHD

The last dataset comes from an online study investigating the psychometric properties of an ADHD screen-

ing scale (Trognon & Richard, 2022). The sample are adults from the general French population of which 110

have been diagnosed with ADHD and the remaining 110 participants serve as a control group. Predictors are

demographics such as age and gender, and items from three questionnaires; 43 items adapted from the DSM-5, 21

items from the Depression Anxiety Stress Scale (DASS), and 26 items of the the Scale of Adherence to the Values

of the Ideal Democracy (AVDI). The last scale serves as a control scale and is not expected to be correlated to the

diagnosis of ADHD (Trognon & Richard, 2022).
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Appendix B
Visualizations

Accuracy

MSE/SEL

Figure B1

MSE by Dataset for Continuous Outcomes

(a) Dataset 1: High School Grades (b) Dataset 2: Delinquency

(c) Dataset 3: Cannabis Consumption (d) Dataset 4: Ecstasy Consumption
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Figure B2

SEL by Dataset for Binary Outcomes

(a) Dataset 5: Objectivity (b) Dataset 6: Breast Cancer

(c) Dataset 7: Sleep Quality (d) Dataset 8: Graduation

(e) Dataset 9: ADHD
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Adjusted Variance Accounted For (VAF)

Figure B3

R2
adj by Dataset

(a) Dataset 1: High School Grades (b) Dataset 2: Delinquency

(c) Dataset 3: Cannabis Consumption (d) Dataset 4: Ecstasy Consumption
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(e) Dataset 5: Objectivity (f) Dataset 6: Breast Cancer

(g) Dataset 7: Sleep Quality (h) Dataset 8: Graduation

(i) Dataset 9: ADHD



36

Figure B4

AUC by Dataset for Binary Outcomes

(a) Dataset 5: Objectivity (b) Dataset 6: Breast Cancer

(c) Dataset 7: Sleep Quality (d) Dataset 8: Graduation

(e) Dataset 9: ADHD
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Sparsity

Number of Predictors

Figure B5

Distribution of Number of Predictors by Dataset

(a) Dataset 1: High School Grades (b) Dataset 2: Delinquency

(c) Dataset 3: Cannabis Consumption (d) Dataset 4: Ecstasy Consumption
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(e) Dataset 5: Objectivity (f) Dataset 6: Breast Cancer

(g) Dataset 7: Sleep Quality (h) Dataset 8: Graduation

(i) Dataset 9: ADHD
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Number of Base Learners

Figure B6

Distribution of number of base learners by Dataset

(a) Dataset 1: High School Grades (b) Dataset 2: Delinquency

(c) Dataset 3: Cannabis Consumption (d) Dataset 4: Ecstasy Consumption
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(e) Dataset 5: Objectivity (f) Dataset 6: Breast Cancer

(g) Dataset 7: Sleep Quality (h) Dataset 8: Graduation

(i) Dataset 9: ADHD
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Stability

Stability of Variable Selection

Figure B7

Stability of Variable Selection by Dataset

(a) Dataset 1: High School Grades (b) Dataset 2: Delinquency

(c) Dataset 3: Cannabis Consumption (d) Dataset 4: Ecstasy Consumption
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(e) Dataset 5: Objectivity (f) Dataset 6: Breast Cancer

(g) Dataset 7: Sleep Quality (h) Dataset 8: Graduation

(i) Dataset 9: ADHD
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Distances between Importance Measures

Figure B8

Distances between Importance Measures by Dataset

(a) Dataset 1: High School Grades (b) Dataset 2: Delinquency

(c) Dataset 3: Cannabis Consumption (d) Dataset 4: Ecstasy Consumption
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(e) Dataset 5: Objectivity (f) Dataset 6: Breast Cancer

(g) Dataset 7: Sleep Quality (h) Dataset 8: Graduation

(i) Dataset 9: ADHD
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Distances between Predictions

Figure B9

Distances between Predictions by Dataset

(a) Dataset 1: High School Grades (b) Dataset 2: Delinquency

(c) Dataset 3: Cannabis Consumption (d) Dataset 4: Ecstasy Consumption
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(e) Dataset 5: Objectivity (f) Dataset 6: Breast Cancer

(g) Dataset 7: Sleep Quality (h) Dataset 8: Graduation

(i) Dataset 9: ADHD
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Appendix C
Statistical Significance Tests

This section displays the results of the linear mixed models and linear models. As a reference group, the standard

lasso with the lambda-min criterion was used in all tests.

Dataset 1: High School Grades

Table C1

Linear Mixed Model of MSE by Method

Estimate Std. Error df t-value P(> |t|)

(Intercept) 7.503 0.039 50.44 194.241 >0.001***
1SE 0.211 0.047 63.00 4.457 >0.001***
Relaxed 0.077 0.047 63.00 1.635 0.107
Adaptive 0.084 0.047 63.00 1.769 0.082.
1SE:Relaxed −0.041 0.067 63.00 −0.613 0.542
1SE:Adaptive −0.089 0.067 63.00 −1.335 0.187
Relaxed:Adaptive 0.050 0.067 63.00 0.745 0.459
1SE:Relaxed:Adaptive 0.001 0.095 63.00 0.012 0.991

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C2

Linear Mixed Model of adjusted VAF by Method

Estimate Std. Error df t-value P(> |t|)

(Intercept) 0.223 0.004 47.767 54.646 >0.001***
1SE 0.016 0.005 63.000 3.334 0.001**
Relaxed 0.002 0.005 63.000 0.437 0.664
Adaptive 0.005 0.005 63.000 0.955 0.343
1SE:Relaxed 0.007 0.007 63.000 0.960 0.341
1SE:Adaptive 0.001 0.007 63.000 0.171 0.865
Relaxed:Adaptive −0.010 0.007 63.000 −1.426 0.159
1SE:Relaxed:Adaptive 0.000 0.010 63.000 −0.039 0.969

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001
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Table C3

Linear Model of Number of Predictors by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 21.13 0.252 83.962 >0.001***
1SE −6.88 0.356 −19.331 >0.001***
Relaxed −1.05 0.356 −2.950 0.003**
Adaptive −0.55 0.356 −1.545 0.123
1SE:Relaxed −4.53 0.503 −9.000 >0.001***
1SE:Adaptive 0.99 0.503 1.967 0.050*
Relaxed:Adaptive 0.08 0.503 0.159 0.874
1SE:Relaxed:Adaptive 1.51 0.712 2.121 0.034*

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C4

Linear Model of Distances between Importance Measures by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 0.590 0.003 201.239 >0.001***
1SE −0.355 0.004 −85.674 >0.001***
Relaxed 0.060 0.004 14.386 >0.001***
Adaptive 0.060 0.004 14.504 >0.001***
1SE:Relaxed 0.150 0.006 25.616 >0.001***
1SE:Adaptive 0.067 0.006 11.368 >0.001***
Relaxed:Adaptive 0.018 0.006 3.141 0.002**
1SE:Relaxed:Adaptive −0.056 0.008 −6.755 >0.001***

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C5

Linear model of Distances between Predictions by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 16.665 0.122 136.385 >0.001***
1SE −6.715 0.173 −38.859 >0.001***
Relaxed 1.166 0.173 6.750 >0.001***
Adaptive 2.920 0.173 16.896 >0.001***
1SE:Relaxed 4.474 0.244 18.306 >0.001***
1SE:Adaptive 1.662 0.244 6.802 >0.001***
Relaxed:Adaptive 0.208 0.244 0.850 0.396
1SE:Relaxed:Adaptive 0.121 0.346 0.351 0.726

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001
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Dataset 2: Delinquency

Table C6

Linear Mixed Model of MSE by Method

Estimate Std. Error df t-value P(> |t|)

(Intercept) 2.033 0.010 25.41 207.214 >0.001***
1SE 0.016 0.010 63.00 1.644 0.105
Relaxed 0.012 0.010 63.00 1.275 0.207
Adaptive 0.027 0.010 63.00 2.801 0.007**
1SE:Relaxed 0.007 0.014 63.00 0.517 0.607
1SE:Adaptive −0.017 0.014 63.00 −1.250 0.216
Relaxed:Adaptive −0.001 0.014 63.00 −0.042 0.967
1SE:Relaxed:Adaptive 0.002 0.019 63.00 0.123 0.903

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C7

Linear Mixed Model of adjusted VAF by Method

Estimate Std. Error df t-value P(> |t|)

(Intercept) 0.072 0.005 26.153 16.058 >0.001***
1SE 0.028 0.005 63.000 6.175 >0.001***
Relaxed 0.001 0.005 63.000 0.204 0.839
Adaptive 0.001 0.005 63.000 0.183 0.856
1SE:Relaxed −0.003 0.006 63.000 −0.469 0.640
1SE:Adaptive −0.001 0.006 63.000 −0.080 0.936
Relaxed:Adaptive 0.000 0.006 63.000 −0.058 0.954
1SE:Relaxed:Adaptive −0.002 0.009 63.000 −0.253 0.801

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001
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Table C8

Linear Model of Number of Predictors by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 20.32 0.245 83.012 >0.001***
1SE −8.24 0.346 −23.803 >0.001***
Relaxed −1.61 0.346 −4.651 >0.001***
Adaptive −1.25 0.346 −3.611 >0.001***
1SE:Relaxed −1.58 0.490 −3.227 0.001**
1SE:Adaptive 1.71 0.490 3.493 0.001**
Relaxed:Adaptive 0.40 0.490 0.817 0.414
1SE:Relaxed:Adaptive 0.30 0.692 0.433 0.665

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C9

Linear Model of Distances between Importance Measures by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 0.317 0.002 185.056 >0.001***
1SE −0.211 0.002 −87.127 >0.001***
Relaxed 0.053 0.002 22.018 >0.001***
Adaptive 0.024 0.002 9.950 >0.001***
1SE:Relaxed 0.041 0.003 12.001 >0.001***
1SE:Adaptive 0.033 0.003 9.504 >0.001***
Relaxed:Adaptive −0.030 0.003 −8.747 >0.001***
1SE:Relaxed:Adaptive 0.003 0.005 0.525 0.599

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C10

Linear Model of Distances between Predictions by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 10.742 0.072 148.199 >0.001***
1SE −5.044 0.103 −49.209 >0.001***
Relaxed 0.675 0.103 6.586 >0.001***
Adaptive 1.641 0.103 16.010 >0.001***
1SE:Relaxed 2.811 0.145 19.389 >0.001***
1SE:Adaptive 1.334 0.145 9.200 >0.001***
Relaxed:Adaptive −0.254 0.145 −1.756 0.080.
1SE:Relaxed:Adaptive 0.460 0.205 2.242 0.026*

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001
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Dataset 3: Cannabis Consumption

Table C11

Linear Mixed Model of MSE by Method

Estimate Std. Error df t-value P(> |t|)

(Intercept) 2.643 0.007 38.195 382.769 >0.001***
1SE 0.021 0.008 63.000 2.626 0.011*
Relaxed −0.003 0.008 63.000 −0.397 0.693
Adaptive 0.052 0.008 63.000 6.591 >0.001***
1SE:Relaxed 0.007 0.011 63.000 0.662 0.511
1SE:Adaptive −0.026 0.011 63.000 −2.329 0.023*
Relaxed:Adaptive −0.011 0.011 63.000 −0.997 0.323
1SE:Relaxed:Adaptive 0.006 0.016 63.000 0.407 0.686

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C12

Linear Mixed Model of adjusted VAF by Method

Estimate Std. Error df t-value P(> |t|)

(Intercept) 0.462 0.002 47.359 301.793 >0.001***
1SE 0.017 0.002 63.000 9.125 >0.001***
Relaxed 0.005 0.002 63.000 2.775 0.007**
Adaptive −0.007 0.002 63.000 −3.942 >0.001***
1SE:Relaxed −0.003 0.003 63.000 −0.963 0.339
1SE:Adaptive 0.005 0.003 63.000 1.819 0.074.
Relaxed:Adaptive 0.001 0.003 63.000 0.289 0.774
1SE:Relaxed:Adaptive 0.000 0.004 63.000 −0.117 0.907

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001
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Table C13

Linear Model of Number of Predictors by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 11.92 0.091 130.590 >0.001***
1SE −1.88 0.129 −14.564 >0.001***
Relaxed −0.17 0.129 −1.317 0.188
Adaptive 0.03 0.129 0.232 0.816
1SE:Relaxed −1.25 0.183 −6.847 >0.001***
1SE:Adaptive 0.94 0.183 5.149 >0.001***
Relaxed:Adaptive 0.15 0.183 0.822 0.412
1SE:Relaxed:Adaptive 0.59 0.258 2.285 0.023*

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C14

Linear Model of Distances between Importance Measures by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 0.541 0.003 155.439 >0.001***
1SE −0.390 0.005 −79.171 >0.001***
Relaxed −0.002 0.005 −0.455 0.649
Adaptive 0.145 0.005 29.500 >0.001***
1SE:Relaxed 0.125 0.007 17.979 >0.001***
1SE:Adaptive −0.016 0.007 −2.362 0.018*
Relaxed:Adaptive 0.048 0.007 6.931 >0.001***
1SE:Relaxed:Adaptive −0.146 0.010 −14.787 >0.001***

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C15

Linear Model of Distances between Predictions by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 13.899 0.082 170.509 >0.001***
1SE −4.555 0.115 −39.516 >0.001***
Relaxed 0.261 0.115 2.264 0.024*
Adaptive 3.754 0.115 32.564 >0.001***
1SE:Relaxed 2.993 0.163 18.357 >0.001***
1SE:Adaptive 1.669 0.163 10.240 >0.001***
Relaxed:Adaptive −0.530 0.163 −3.249 0.001**
1SE:Relaxed:Adaptive −0.280 0.231 −1.216 0.225

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001
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Dataset 4: Ecstasy Consumption

Table C16

Linear Mixed Model of MSE by Method

Estimate Std. Error df t-value P(> |t|)

(Intercept) 1.979 0.005 41.323 392.486 >0.001***
1SE 0.028 0.006 63.000 4.788 >0.001***
Relaxed 0.005 0.006 63.000 0.859 0.394
Adaptive 0.020 0.006 63.000 3.331 0.001**
1SE:Relaxed −0.006 0.008 63.000 −0.743 0.460
1SE:Adaptive 0.001 0.008 63.000 0.107 0.915
Relaxed:Adaptive 0.004 0.008 63.000 0.494 0.623
1SE:Relaxed:Adaptive 0.013 0.012 63.000 1.118 0.268

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C17

Linear Mixed Model of adjusted VAF by Method

Estimate Std. Error df t-value P(> |t|)

(Intercept) 0.246 0.002 39.738 124.676 >0.001***
1SE 0.005 0.002 63.000 2.110 0.039*
Relaxed 0.002 0.002 63.000 0.831 0.409
Adaptive −0.003 0.002 63.000 −1.164 0.249
1SE:Relaxed 0.003 0.003 63.000 0.913 0.365
1SE:Adaptive −0.002 0.003 63.000 −0.515 0.608
Relaxed:Adaptive −0.003 0.003 63.000 −0.787 0.434
1SE:Relaxed:Adaptive −0.006 0.005 63.000 −1.226 0.225

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001
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Table C18

Linear Model of Number of Predictors by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 10.75 0.101 105.990 >0.001***
1SE −2.51 0.143 −17.499 >0.001***
Relaxed −0.59 0.143 −4.113 >0.001***
Adaptive −0.17 0.143 −1.185 0.236
1SE:Relaxed −1.50 0.203 −7.395 >0.001***
1SE:Adaptive 0.82 0.203 4.042 >0.001***
Relaxed:Adaptive 0.25 0.203 1.232 0.218
1SE:Relaxed:Adaptive 0.73 0.287 2.545 0.011*

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C19

Linear Model of Distances between Importance Measures by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 0.254 0.002 125.298 >0.001***
1SE −0.181 0.003 −63.262 >0.001***
Relaxed 0.024 0.003 8.542 >0.001***
Adaptive 0.030 0.003 10.522 >0.001***
1SE:Relaxed 0.072 0.004 17.724 >0.001***
1SE:Adaptive 0.026 0.004 6.405 >0.001***
Relaxed:Adaptive 0.004 0.004 0.994 0.320
1SE:Relaxed:Adaptive −0.046 0.006 −8.090 >0.001***

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C20

Linear Model of Distances between Predictions by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 9.243 0.070 132.643 >0.001***
1SE −3.349 0.099 −33.989 >0.001***
Relaxed 0.822 0.099 8.341 >0.001***
Adaptive 2.141 0.099 21.722 >0.001***
1SE:Relaxed 3.663 0.139 26.285 >0.001***
1SE:Adaptive 2.226 0.139 15.975 >0.001***
Relaxed:Adaptive −0.023 0.139 −0.163 0.871
1SE:Relaxed:Adaptive −0.514 0.197 −2.606 0.010**

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001
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Dataset 5: Objectivity

Table C21

Linear Mixed Model of SEL by Method

Estimate Std. Error df t-value P(> |t|)

(Intercept) 0.127 0.001 44.494 216.150 >0.001***
1SE 0.003 0.001 63.000 3.833 >0.001***
Relaxed 0.002 0.001 63.000 3.285 0.002**
Adaptive 0.001 0.001 63.000 0.841 0.404
1SE:Relaxed −0.001 0.001 63.000 −0.594 0.555
1SE:Adaptive 0.002 0.001 63.000 1.639 0.106
Relaxed:Adaptive 0.000 0.001 63.000 0.486 0.628
1SE:Relaxed:Adaptive 0.001 0.001 63.000 0.646 0.521

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C22

Linear Mixed Model of AUC by Method

Estimate Std. Error df t-value P(> |t|)

(Intercept) 0.819 0.002 56.816 403.049 >0.001***
1SE −0.004 0.003 63.000 −1.646 0.105
Relaxed −0.003 0.003 63.000 −1.279 0.206
Adaptive −0.001 0.003 63.000 −0.233 0.816
1SE:Relaxed −0.002 0.004 63.000 −0.516 0.608
1SE:Adaptive −0.004 0.004 63.000 −1.125 0.265
Relaxed:Adaptive −0.001 0.004 63.000 −0.323 0.748
1SE:Relaxed:Adaptive 0.003 0.005 63.000 0.655 0.515

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C23

Linear Mixed Model of adjusted VAF by Method

Estimate Std. Error df t-value P(> |t|)

(Intercept) 0.413 0.003 39.696 156.398 >0.001***
1SE 0.007 0.003 63.000 2.251 0.028*
Relaxed −0.006 0.003 63.000 −1.883 0.064.
Adaptive 0.010 0.003 63.000 3.348 0.001**
1SE:Relaxed 0.001 0.004 63.000 0.335 0.738
1SE:Adaptive −0.012 0.004 63.000 −2.780 0.007**
Relaxed:Adaptive −0.006 0.004 63.000 −1.318 0.192
1SE:Relaxed:Adaptive 0.002 0.006 63.000 0.338 0.736

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001
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Table C24

Linear Model of Number of Predictors by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 35.60 0.402 88.640 >0.001***
1SE −10.40 0.568 −18.310 >0.001***
Relaxed −2.07 0.568 −3.644 >0.001***
Adaptive −5.46 0.568 −9.613 >0.001***
1SE:Relaxed −0.98 0.803 −1.220 0.223
1SE:Adaptive 1.06 0.803 1.320 0.187
Relaxed:Adaptive 1.68 0.803 2.092 0.037*
1SE:Relaxed:Adaptive −4.64 1.136 −4.085 >0.001***

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C25

Linear Model of Distances between Importance Measures by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 0.617 0.002 333.186 >0.001***
1SE −0.340 0.003 −129.872 >0.001***
Relaxed 0.023 0.003 8.606 >0.001***
Adaptive −0.076 0.003 −28.938 >0.001***
1SE:Relaxed 0.260 0.004 70.188 >0.001***
1SE:Adaptive 0.129 0.004 34.932 >0.001***
Relaxed:Adaptive 0.021 0.004 5.806 >0.001***
1SE:Relaxed:Adaptive −0.104 0.005 −19.962 >0.001***

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C26

Linear Model of Distances between Predictions by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 2.945 0.019 158.117 >0.001***
1SE −0.886 0.026 −33.648 >0.001***
Relaxed 0.241 0.026 9.158 >0.001***
Adaptive 0.064 0.026 2.413 0.016*
1SE:Relaxed 0.614 0.037 16.471 >0.001***
1SE:Adaptive 0.581 0.037 15.590 >0.001***
Relaxed:Adaptive 0.017 0.037 0.463 0.644
1SE:Relaxed:Adaptive 0.198 0.053 3.767 >0.001***

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001
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Dataset 6: Breast Cancer

Table C27

Linear Mixed Model of SEL by Method

Estimate Std. Error df t-value P(> |t|)

(Intercept) 0.030 0.001 45.342 41.411 >0.001***
1SE 0.001 0.001 63.000 1.045 0.300
Relaxed 0.002 0.001 63.000 1.880 0.065.
Adaptive 0.000 0.001 63.000 0.465 0.644
1SE:Relaxed 0.000 0.001 63.000 0.093 0.926
1SE:Adaptive 0.001 0.001 63.000 0.544 0.588
Relaxed:Adaptive 0.001 0.001 63.000 0.527 0.600
1SE:Relaxed:Adaptive 0.003 0.002 63.000 1.601 0.114

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C28

Linear Mixed Model of AUC by Method

Estimate Std. Error df t-value P(> |t|)

(Intercept) 0.957 0.002 53.061 497.831 >0.001***
1SE 0.000 0.002 63.000 −0.207 0.837
Relaxed −0.004 0.002 63.000 −1.831 0.072.
Adaptive −0.001 0.002 63.000 −0.337 0.737
1SE:Relaxed 0.002 0.003 63.000 0.533 0.596
1SE:Adaptive 0.002 0.003 63.000 0.566 0.574
Relaxed:Adaptive 0.002 0.003 63.000 0.451 0.653
1SE:Relaxed:Adaptive −0.007 0.005 63.000 −1.549 0.126

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C29

Linear Mixed Model of adjusted VAF by Method

Estimate Std. Error df t-value P(> |t|)

(Intercept) 0.862 0.003 43.834 263.191 >0.001***
1SE −0.003 0.004 63.000 −0.718 0.475
Relaxed −0.007 0.004 63.000 −1.930 0.058.
Adaptive 0.000 0.004 63.000 0.083 0.934
1SE:Relaxed 0.000 0.005 63.000 0.024 0.981
1SE:Adaptive −0.003 0.005 63.000 −0.519 0.606
Relaxed:Adaptive −0.002 0.005 63.000 −0.357 0.722
1SE:Relaxed:Adaptive −0.011 0.008 63.000 −1.461 0.149

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001
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Table C30

Linear Model of Number of Predictors by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 13.71 0.163 84.065 >0.001***
1SE −1.75 0.231 −7.588 >0.001***
Relaxed −0.08 0.231 −0.347 0.729
Adaptive −1.67 0.231 −7.241 >0.001***
1SE:Relaxed −0.53 0.326 −1.625 0.105
1SE:Adaptive 0.51 0.326 1.564 0.118
Relaxed:Adaptive −0.50 0.326 −1.533 0.126
1SE:Relaxed:Adaptive −1.00 0.461 −2.168 0.030*

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C31

Linear Model of Distances between Importance Measures by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 0.874 0.010 89.188 >0.001***
1SE −0.351 0.014 −25.345 >0.001***
Relaxed 0.010 0.014 0.711 0.477
Adaptive −0.061 0.014 −4.417 >0.001***
1SE:Relaxed 0.653 0.020 33.360 >0.001***
1SE:Adaptive 0.123 0.020 6.280 >0.001***
Relaxed:Adaptive 0.103 0.020 5.273 >0.001***
1SE:Relaxed:Adaptive 0.260 0.028 9.396 >0.001***

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C32

Linear Model of Distances between Predictions by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 1.700 0.030 57.613 >0.001***
1SE −0.323 0.042 −7.737 >0.001***
Relaxed 0.055 0.042 1.311 0.191
Adaptive 0.060 0.042 1.431 0.153
1SE:Relaxed 0.308 0.059 5.216 >0.001***
1SE:Adaptive 0.135 0.059 2.289 0.023*
Relaxed:Adaptive 0.157 0.059 2.665 0.008**
1SE:Relaxed:Adaptive 0.524 0.083 6.273 >0.001***

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001
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Dataset 7: Sleep Quality

Table C33

Linear Mixed Model of SEL by Method

Estimate Std. Error df t-value P(> |t|)

(Intercept) 0.215 0.001 23.788 199.015 >0.001***
1SE 0.001 0.001 63.000 1.149 0.255
Relaxed 0.003 0.001 63.000 2.853 0.006**
Adaptive 0.003 0.001 63.000 2.756 0.008**
1SE:Relaxed −0.001 0.001 63.000 −0.686 0.495
1SE:Adaptive −0.002 0.001 63.000 −1.139 0.259
Relaxed:Adaptive 0.000 0.001 63.000 0.166 0.869
1SE:Relaxed:Adaptive 0.002 0.002 63.000 0.891 0.376

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C34

Linear Mixed Model of AUC by Method

Estimate Std. Error df t-value P(> |t|)

(Intercept) 0.660 0.003 61.258 217.840 >0.001***
1SE 0.000 0.004 63.000 0.080 0.937
Relaxed 0.000 0.004 63.000 0.045 0.965
Adaptive −0.006 0.004 63.000 −1.457 0.150
1SE:Relaxed −0.003 0.006 63.000 −0.621 0.537
1SE:Adaptive 0.000 0.006 63.000 −0.061 0.951
Relaxed:Adaptive 0.001 0.006 63.000 0.107 0.915
1SE:Relaxed:Adaptive −0.004 0.008 63.000 −0.474 0.637

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C35

Linear Mixed Model of adjusted VAF by Method

Estimate Std. Error df t-value P(> |t|)

(Intercept) 0.098 0.004 21.908 21.986 >0.001***
1SE 0.014 0.004 63.000 3.358 0.001**
Relaxed −0.003 0.004 63.000 −0.848 0.400
Adaptive −0.004 0.004 63.000 −0.872 0.387
1SE:Relaxed 0.005 0.006 63.000 0.881 0.381
1SE:Adaptive 0.006 0.006 63.000 1.025 0.309
Relaxed:Adaptive 0.000 0.006 63.000 0.014 0.989
1SE:Relaxed:Adaptive −0.012 0.008 63.000 −1.421 0.160

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001
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Table C36

Linear Model of Number of Predictors by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 10.78 0.169 63.879 >0.001***
1SE −2.39 0.239 −10.014 >0.001***
Relaxed −1.09 0.239 −4.567 >0.001***
Adaptive −0.33 0.239 −1.383 0.167
1SE:Relaxed −0.98 0.338 −2.904 0.004**
1SE:Adaptive 0.25 0.338 0.741 0.459
Relaxed:Adaptive −0.23 0.338 −0.681 0.496
1SE:Relaxed:Adaptive 0.79 0.477 1.655 0.098.

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C37

Linear Model of Distances between Importance Measures by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 0.341 0.002 147.806 >0.001***
1SE −0.151 0.003 −46.254 >0.001***
Relaxed 0.051 0.003 15.610 >0.001***
Adaptive 0.120 0.003 36.873 >0.001***
1SE:Relaxed 0.058 0.005 12.514 >0.001***
1SE:Adaptive −0.047 0.005 −10.286 >0.001***
Relaxed:Adaptive −0.009 0.005 −1.864 0.062.
1SE:Relaxed:Adaptive 0.031 0.007 4.682 >0.001***

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C38

Linear Model of Distances between Predictions by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 1.954 0.018 107.498 >0.001***
1SE −0.529 0.026 −20.578 >0.001***
Relaxed 0.265 0.026 10.316 >0.001***
Adaptive 0.502 0.026 19.543 >0.001***
1SE:Relaxed 0.404 0.036 11.099 >0.001***
1SE:Adaptive 0.159 0.036 4.385 >0.001***
Relaxed:Adaptive 0.060 0.036 1.637 0.103
1SE:Relaxed:Adaptive 0.119 0.051 2.317 0.021*

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001
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Dataset 8: Graduation

Table C39

Linear Mixed Model of SEL by Method

Estimate Std. Error df t-value P(> |t|)

(Intercept) 0.071 0.000 56.593 331.003 >0.001***
1SE 0.001 0.000 63.000 4.847 >0.001***
Relaxed 0.000 0.000 63.000 0.552 0.583
Adaptive 0.000 0.000 63.000 1.822 0.073.
1SE:Relaxed 0.000 0.000 63.000 0.430 0.669
1SE:Adaptive 0.000 0.000 63.000 −0.592 0.556
Relaxed:Adaptive 0.000 0.000 63.000 0.233 0.816
1SE:Relaxed:Adaptive 0.000 0.001 63.000 −0.570 0.571

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C40

Linear Mixed Model of AUC by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 0.912 0.000 1929.296 >0.001***
1SE 0.001 0.001 1.031 0.306
Relaxed 0.000 0.001 −0.681 0.498
Adaptive 0.000 0.001 0.236 0.814
1SE:Relaxed −0.001 0.001 −0.732 0.466
1SE:Adaptive 0.000 0.001 0.407 0.686
Relaxed:Adaptive 0.000 0.001 −0.267 0.790
1SE:Relaxed:Adaptive 0.000 0.001 0.187 0.852

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C41

Linear Mixed Model of adjusted VAF by Method

Estimate Std. Error df t-value P(> |t|)

(Intercept) 0.692 0.001 57.088 738.501 >0.001***
1SE −0.001 0.001 63.000 −1.157 0.252
Relaxed 0.000 0.001 63.000 0.417 0.678
Adaptive 0.000 0.001 63.000 −0.134 0.894
1SE:Relaxed −0.001 0.002 63.000 −0.517 0.607
1SE:Adaptive 0.000 0.002 63.000 0.109 0.914
Relaxed:Adaptive −0.001 0.002 63.000 −0.607 0.546
1SE:Relaxed:Adaptive 0.002 0.002 63.000 0.743 0.460

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001



62

Table C42

Linear Model of Number of Predictors by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 25.30 0.170 148.918 >0.001***
1SE −4.32 0.240 −17.980 >0.001***
Relaxed −0.71 0.240 −2.955 0.003**
Adaptive −0.64 0.240 −2.664 0.008**
1SE:Relaxed −1.35 0.340 −3.973 >0.001***
1SE:Adaptive 0.54 0.340 1.589 0.112
Relaxed:Adaptive 0.32 0.340 0.942 0.347
1SE:Relaxed:Adaptive 0.21 0.481 0.437 0.662

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C43

Linear Model of Distances between Importance Measures by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 0.824 0.005 159.642 >0.001***
1SE −0.373 0.007 −51.097 >0.001***
Relaxed 0.184 0.007 25.197 >0.001***
Adaptive 0.079 0.007 10.882 >0.001***
1SE:Relaxed 0.282 0.010 27.287 >0.001***
1SE:Adaptive 0.043 0.010 4.122 >0.001***
Relaxed:Adaptive −0.021 0.010 −2.034 0.042*
1SE:Relaxed:Adaptive −0.090 0.015 −6.172 >0.001***

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C44

Linear Model of Distances between Predictions by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 3.306 0.016 203.620 >0.001***
1SE −1.094 0.023 −47.643 >0.001***
Relaxed 0.187 0.023 8.161 >0.001***
Adaptive 0.527 0.023 22.965 >0.001***
1SE:Relaxed 0.399 0.032 12.295 >0.001***
1SE:Adaptive 0.250 0.032 7.696 >0.001***
Relaxed:Adaptive 0.029 0.032 0.907 0.365
1SE:Relaxed:Adaptive −0.102 0.046 −2.213 0.028*

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001
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Dataset 9: ADHD

Table C45

Linear Mixed Model of SEL by Method

Estimate Std. Error df t-value P(> |t|)

(Intercept) 0.066 0.002 17.561 28.296 >0.001***
1SE −0.003 0.002 63.000 −1.633 0.107
Relaxed −0.001 0.002 63.000 −0.693 0.491
Adaptive −0.001 0.002 63.000 −0.494 0.623
1SE:Relaxed 0.004 0.003 63.000 1.504 0.138
1SE:Adaptive 0.004 0.003 63.000 1.372 0.175
Relaxed:Adaptive 0.003 0.003 63.000 1.099 0.276
1SE:Relaxed:Adaptive −0.002 0.004 63.000 −0.428 0.670

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C46

Linear Mixed Model of AUC by Method

Estimate Std. Error df t-value P(> |t|)

(Intercept) 0.919 0.004 27.76 254.639 >0.001***
1SE −0.001 0.004 63.00 −0.360 0.720
Relaxed −0.002 0.004 63.00 −0.491 0.625
Adaptive 0.001 0.004 63.00 0.385 0.701
1SE:Relaxed −0.001 0.005 63.00 −0.183 0.855
1SE:Adaptive −0.005 0.005 63.00 −0.894 0.375
Relaxed:Adaptive −0.002 0.005 63.00 −0.445 0.658
1SE:Relaxed:Adaptive 0.000 0.007 63.00 0.001 0.999

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C47

Linear Mixed Model of adjusted VAF by Method

Estimate Std. Error df t-value P(> |t|)

(Intercept) 0.702 0.010 17.371 69.989 >0.001***
1SE 0.024 0.008 63.000 2.905 0.005**
Relaxed 0.006 0.008 63.000 0.793 0.431
Adaptive 0.014 0.008 63.000 1.775 0.081.
1SE:Relaxed −0.016 0.012 63.000 −1.409 0.164
1SE:Adaptive −0.018 0.012 63.000 −1.523 0.133
Relaxed:Adaptive −0.012 0.012 63.000 −1.085 0.282
1SE:Relaxed:Adaptive 0.009 0.016 63.000 0.526 0.601

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001
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Table C48

Linear Model of Number of Predictors by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 21.38 0.324 65.968 >0.001***
1SE −5.46 0.458 −11.912 >0.001***
Relaxed −0.01 0.458 −0.022 0.983
Adaptive −4.57 0.458 −9.971 >0.001***
1SE:Relaxed −0.83 0.648 −1.280 0.201
1SE:Adaptive 0.70 0.648 1.080 0.281
Relaxed:Adaptive −0.53 0.648 −0.818 0.414
1SE:Relaxed:Adaptive −0.45 0.917 −0.491 0.624

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C49

Linear Model of Distances between Importance Measures by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 1.008 0.013 78.401 >0.001***
1SE −0.493 0.018 −27.093 >0.001***
Relaxed 0.064 0.018 3.494 >0.001***
Adaptive 0.076 0.018 4.183 >0.001***
1SE:Relaxed 0.455 0.026 17.709 >0.001***
1SE:Adaptive −0.025 0.026 −0.962 0.336
Relaxed:Adaptive 0.352 0.026 13.684 >0.001***
1SE:Relaxed:Adaptive 0.036 0.036 0.989 0.323

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table C50

Linear Model of Distances between Predictions by Method

Estimate Std. Error t-value P(> |t|)

(Intercept) 1.583 0.036 43.494 >0.001***
1SE −0.395 0.051 −7.671 >0.001***
Relaxed 0.132 0.051 2.559 0.011*
Adaptive 0.044 0.051 0.857 0.392
1SE:Relaxed 0.330 0.073 4.535 >0.001***
1SE:Adaptive 0.115 0.073 1.580 0.115
Relaxed:Adaptive 0.172 0.073 2.361 0.019*
1SE:Relaxed:Adaptive −0.015 0.103 −0.144 0.885

Note. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001
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