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Abstract

This study focussed on the development of a QSAR model for describing and
predicting the anti-Streptococcus activity of prenylated phenolics. Traditionally,
QSAR modelling is done with Multiple Linear Regression (MLR). Hereby, the
relation between activity and molecular descriptors is assumed to be linear, which is
not always fair in QSAR. Smoothing splines is a nonparametric method that relaxes
the linearity assumption. Their use within Generalized Additive Models (GAMs)
allows for multiple predictors. MLR models and GAMs with smoothing splines
were fitted to a dataset with 28 prenylated phenolics experimentally tested against
Streptococcus mutans. Inclusion of imputed Minimum Inhibitory Concentration
(MIC) values for inactive molecules, addition of molecules from the Chalcone subclass
and complementation with literature data that allowed for different bacterial strains
and species did not benefit the models. The best MLR model that functioned
as baseline was statistically not compliant (R2

adjusted = 0.586, Q2
LOO = 0.358).

Identification of high leverage molecules and their removal from the Applicability
Domain (AD) did not improve the model performance. A GAM with a good fit
(R2

adjusted= 0.638) and sufficient internal predictive power (Q2
LOO= 0.525) was

obtained. The removal of three influential molecules from the AD improved the
GAM fit further (R2

adjusted = 0.733). Internally, this model predicted well the
activity against S. mutans from the hydrophobic volume at an interaction energy of
-0.2 kcal/mol (Q2

LOO = 0.607).
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1 Introduction

Antimicrobial resistance poses one of the biggest threats to global healthcare (World
Health Organization, 2021). It occurs when microorganisms adapt such that the effectivity
of antimicrobial substances designed to kill them decreases. This phenomenon is mainly
driven by the misuse and overuse of traditional antibiotics. The antimicrobial resistance
induces challenges to the treatment of infections, leading to severe illness or even decease
(Murray et al., 2022). Hence, novel antibacterial compounds are being investigated on
their ability to combat infections.

The antimicrobial resistance problem is clearly illustrated by Streptococcus mutans
(S. mutans), an oral bacterium that forms the major cause of dental caries. Fluoride is
traditionally used to inhibit the growth of this bacterium and therefore acts as an anti-
caries agent. However, S. mutans develops resistance against the antimicrobial effects of
fluoride (Liao et al., 2017). Alternative antimicrobials are thus needed to prevent tooth
decay.

Several studies have shown a that prenylated phenolics have promising antibacterial
activity against Streptococcus and other pathogens. Prenylated phenolics are bioactive
molecules found in high concentrations in edible plants such as licorice root and soybean
(Chang et al., 2021). These prenylated phenolics all have a similar main structure, but
the substituents they carry can differ widely (Balasundram et al., 2006). The differences
in molecular structure cause a different Minimum Inhibitory Concentration (MIC), which
is the minimum concentration of a molecule needed to stop bacterial growth (Kowalska-
Krochmal & Dudek-Wicher, 2021). To determine if a prenylated phenolic is an effective
antimicrobial, the relation between its structural properties and antibacterial activity is
of interest.

Traditionally, Quantitative Structure-Activity Relationship (QSAR) models describe
the relation between molecular descriptors and the MIC (Roy et al., 2015). Well
performing and robust QSAR models make an excellent screening tool to save time
and resources in synthesis and testing of molecules. Not only are QSAR models capable
of predicting the expected MIC for a molecule, but they also acquire insights into the
structural features needed for a desired MIC. The latter allows for synthesis of molecules
with optimized activity.

QSAR modelling encounters particular challenges. Data used for QSAR modelling
generally consist of more molecular descriptors than samples. Due to cost and time
constraints, there is often limited capacity to test molecules in the lab causing only a
small number of samples to be available. The molecular descriptors are however easily
calculated and many have been invented. This is problematic in most statistical models
as it leads to overfitting and consequently poor predictive accuracy. Feature selection
eliminates this problem by selecting the most relevant descriptors. Additionally, feature
selection helps keeping the model parsimonious and interpretable (Hageman, 2022).

The most frequently used regression model in QSAR is Multiple Linear Regression
(MLR) (Liu & Long, 2009). MLR assumes a linear relation between the molecular
descriptors and the MIC resulting in a straightforward and highly interpretable model.
However, one should be careful with assuming linearity and check if this assumption
holds. If not, linear methods neglect information in the data leading to decreased
accuracy. Relaxing linearity by methods such as smoothing splines and Generalized
Additive Models (GAMs) can be considered. Smoothing splines are very flexible and
can model many different nonlinearities without assuming a functional form. The use of
smoothing splines within GAMs allows for multiple predictor models while interpretability
is maintained as additivity remains. Since there are limited studies available on the use
of nonlinear methods in QSAR, these properties make the combination of smoothing
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splines and GAMs a suitable exploratory method.
A recurring problem in QSAR is that molecules can be very diverse in nature and

exhibit different modes of action. Molecules with very different modes of action cannot
be combined in a single model. A concept used to investigate and define which molecules
can be considered for a model is the Applicability Domain (AD) (Weaver & Gleeson,
2008). The AD is defined by molecules that show consistent behaviour indicated by small
residuals and the absence of high leverage molecules. Molecules showing high residuals or
high leverages will be removed from the data before the model is fit. However, calculating
leverages for nonlinear models is non-trivial.

The aim of this thesis project is twofold. The first aim is to obtain an accurate and
interpretable model that can accurately predict the MIC of prenylated phenolics against
Streptococcus in datasets provided by the Food Chemistry department of Wageningen
University and Research. The second aim is to investigate if QSAR model performance
can be improved by relaxing linearity using smoothing splines within GAMs. As a third
aim, the effect of complementation with literature data and imputation of MIC values
for inactive prenylated phenolics on the statistical models will be reviewed.

To address the research aims, forward-MLR models and forward-GAMs are fitted
to an experimental dataset with and without imputed MIC values and two datasets
augmented with literature data. The forward-MLR models function as a baseline method
to compare the performance of the forward-GAMs with. The AD for the forward-MLR
models is determined in terms of leverage in a leave-one-out cross-validation (LOOCV)
context. For the forward-GAMs, the AD is determined by assessing the LOOCV model
performance to examine the influence of the individual prenylated phenolics. Lastly, the
forward-MLR models and forward-GAMs are interpreted, the forward-GAMs by means
of profile plots.
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2 Materials and Methods

2.1 The dataset

The QSAR dataset employed in this study was collected experimentally and from literature
by the Food Chemistry department of Wageningen University and Research. They
assessed the anti-Streptococcus activity of prenylated phenolics originating from plant
sources. For each prenylated phenolic in the dataset, the following variables are included:

• The compound name, subclass, and molecular weight

• Experimental conditions used:

– The initial bacterial inoculum size

– The assay method for determining the MIC

– The incubation time, temperature, and atmosphere

– Growth medium

• The bacterium: S. mutans, or another species of Streptococcus

• The bacterial strain

• The data source:

– Experimental (determined in the lab)

– From literature

• The antibacterial activity (MIC) in µg/mL and the pMIC (M)

• 440 molecular descriptors, calculated by Molecular Operating Environment (MOE).

The Minimum Inhibitory Concentration (MIC) is the lowest concentration of a
molecule that results in a bacterial cell count equal to or lower than that of the initial
inoculum size. A lower MIC indicates higher activity of the molecule. The pMIC was
calculated from the MIC using the logarithmic transformation:

pMIC = −log10( (MIC/molecular weight)/1000) ).

The pMIC provides a more convenient scale for statistical modelling. Resulting from
this transformation, the interpretation of the pMIC is opposite from the MIC: a higher
pMIC indicates higher activity of the molecule.

Molecular descriptors were calculated from optimized chemical molecular structures
by MOE software. The descriptors include both 2D and 3D molecular descriptors.
Examples are descriptors on structural, electronic, steric, geometric, and physicochemical
properties.

This study aims at modelling the pMIC as a function of the MOE descriptors
only. The remaining variables were only used to gain insights into the differences in
experimental conditions compared to other studies to make appropriate choices when
selecting literature data. If multiple articles on a specific prenylated phenolic were
available, the study with experimental conditions most resembling those in the Food
Chemistry laboratory was selected.

Due to the combination of experimental and literature data, the total dataset was
divided into three different sets. The first set contained the MICs for 42 prenylated
phenolics (shown in figure 1) against the same S. mutans strain experimentally determined
in the Food Chemistry laboratory. Activity of these prenylated phenolics was assessed
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Figure 1: The 42 molecules that were experimentally tested in the Food Chemistry
laboratory from Wageningen University and Research.

by broth microdilution assay. Here, equal volumes (100 µL) of bacterial inoculum (size
4.9 logCFU/mL) were added to a series of 2-fold dilutions (1.56 – 100 µg/mL) from each
prenylated phenolic in growth medium TSB. The samples were incubated in an aerobic
environment for 24 hours at 37°C. Every 10 minutes the bacterial growth was measured
using Optical Density (OD) at 600nm. Bacterial growth causes a more turbid sample,
thereby more scattering of light and thus a higher OD. In OD, the time to detection
(TTD) refers to the time it takes to reach a detectable level of bacterial growth or
inhibition. Here, the TDD threshold was set at 0.05 units change, meaning that an
increase of 0.05 in 10 minutes indicated significant bacterial growth. Viable cell count
was performed when the change in OD was below 0.05. The lowest concentration of
the prenylated phenolic at which the cell count was equal to or lower than the initial
inoculum size was determined as the MIC.

The second dataset comprised the experimental data augmented with literature
data. Here, it was mandated that the bacteria in the literature were of the species
S. mutans, while variation in the bacterial strains within that species was permitted.
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39 additional prenylated phenolics were added to this dataset resulting in a total of 81
observations. The third set was further augmented with literature data that allowed for
diverse Streptococcus species and varying strains. This resulted in a dataset with 122
prenylated phenolics.

Molecular descriptors with zero variance were removed from the data. A descriptor
with the same value for each molecule cannot explain any difference between them.
Inclusion of such predictors leads to problems in statistical modelling. Additionally,
highly collinear variables were removed. Strongly correlated variables are problematic
because they destabilize statistical models and reduce their predictive power.

2.2 Imputed MIC values for inactive prenylated phenolics

9 out of the 42 experimentally tested prenylated phenolics failed to inactivate S. mutans
at their highest concentration (100 µg/mL). Using their TDD and the TTD of the
negative control where S. mutans was inactivated by 2% DMSO, the MIC for these
prenylated phenolics was estimated as:

1. TDD between 0 – 5 hours compared to the negative control:

Estimated MIC = highest concentration x 10

2. TDD between 5 – 10 hours compared to the negative control:

Estimated MIC = highest concentration x 5

3. TDD > 10 hours compared to the negative control:

Estimated MIC = highest concentration x 2

2.3 R packages and functions

The statistical analysis for this study was performed in R. Table 1 provides and overview
of the packages and functions used.

Table 1: Overview of R packages and functions used in this study.

Package Function Used for:

caret findCorrelation Identification of highly correlated predictors

dplyr rename Renaming column headers

ggplot2 ggplot Visualization of pMIC observed versus pMIC
predicted plot

ggrepel geom label repel Adding non-overlapping labels to ggplot figures

mgcv gam Fitting Generalized Additive Models

mgcv s Modelling predictors as smooth terms in Generalized
Additive Models. The default type of smoothing
splines used in this function is thin plate (Wood,
2003). The optimization of λ performed using the
default Generalized Cross-Validation.
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2.4 Multiple Linear Regression

MLR is a statistical modelling technique used to analyze and predict a quantitative
outcome as a function of multiple predictor variables. The equation for MLR has the
following form:

Y = β0 + β1X1 + β2X2 + ...+ βpXp + ε.

In this equation, Y is a vector containing the outcome values for each of the observations
from the dataset. Vector Xj includes the values for the jth predictor and βj are unknown
coefficients describing the weight of each predictor on the outcome. The error term ε
represents the unknown error for each observation. Thereby, the discrepancy between an
observed outcome and the outcome that is predicted from an MLR model is quantified.
The aim of this QSAR study is to predict the pMIC from molecular descriptors. In that
context, coefficient βj is interpreted as the change in pMIC upon a one unit increase in
molecular descriptor Xj , while keeping all remaining molecular descriptors at a constant
value.

Fitting an MLR model involves the estimation of the unknown coefficients β1, β2,
. . . , βp. Given the regression coefficient estimates, the formula that can be used to make
predictions on the outcome is:

ŷ = β̂0 + β̂1x1 + β̂2x2 + ...+ β̂pxp.

The values for β1, β2, . . . , βp are estimated by minimizing the Residual Sum of Squares
(RSS):

RSS =
n∑

i=1

(yi − ŷi)
2 =

n∑
i=1

(yi − β̂0 − β̂1xi1 − β̂2xi2 − ...− β̂pxip)
2.

This method of determining the βj coefficients is called the least squares approach.
Matrix algebra is used to calculate the estimates (Fox, 2015).

MLR is a parametric regression method since the functional form of the relation
between the outcome and the predictors is predetermined. The relation is assumed to
be linear. Due to this linearity assumption, the interpretation of the MLR equation
is straightforward: a change in the outcome is a linear combination of the changes
in predictors weighted by their respective coefficients. This also shows the additive
nature of MLR as the linear combination is the sum of individual contributions of the
weighted predictor values. The simplicity and interpretability resulting from the linearity
assumption make MLR a very popular method in QSAR studies (Liu & Long, 2009).

Despite its benefits, the linearity assumption can be problematic in QSAR studies.
Some relations between molecular descriptors and the pMIC are expected to show
nonlinear behavior as linearity is rarely true, especially in biological context. For
example, molecular descriptors can follow a parabola and have an optimum at a certain
value, or a step function with a threshold for certain activity. Falsely assuming linearity
causes MLR to ignore such information present in the data. In this light, it is expected
that the relaxation of linearity improves QSAR model performance. Thus, it is important
to check the linearity assumption (e.g. by examining Y versus X scatterplots) before
applying MLR to a QSAR dataset and to adapt the modelling method if nonlinearities
are observed.

2.5 Smoothing Splines

Discovery of nonlinear patterns in QSAR data makes it unfair to remain with the
linearity assumption. Nonlinearities require a method that can capture more nuanced
relationships by relaxing linearity. Selection of a method that correctly fits the nonlinear
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relationship is important. Visual inspection of Y versus X scatterplots can provide
insights into the type of relation present, but is often affected by e.g. complex forms,
clustering, and outliers. Since nonlinear methods are not yet frequently applied in QSAR,
nonparametric regression is preferred. Nonparametric holds that no assumptions are
made on the functional form of the relation between the outcome and the predictors.
This prevents ignorance of information and allows unexpected patterns in the data to
be captured. One nonparametric method that can be used on quantitative data is
smoothing splines. The explanation of smoothing splines in this section is based on the
book ‘An Introduction to Statistical Learning’ by James et al. (2021).

Due to their flexibility, smoothing splines can capture a wide range of nonlinear patterns
and reveal underlying structures of the data. This makes it a great method to explore
the nonlinearities between the pMIC and molecular descriptors. To understand how
smoothing splines can relax the linearity assumption, a step-by-step pathway towards
smoothing splines is illustrated in figure 2.

Figure 2a shows simple linear regression as the starting point. This linear regression
describes the relation between a quantitative outcome Y and a single quantitative
predictor X as:

Y = β0 + β1X + ε,

where β0 describes the intercept and β1 the slope of the line. The error term is indicated
with the ε.

The linear regression model can be extended in two different directions: polynomial
regression and a step function. To arrive at polynomial regression, higher order terms of
the predictor are included. The higher order terms are obtained by raising predictor X to
powers up to a certain degree. Resultingly, a global nonlinear fit to the data is attained.
Figure 2b shows an example of a second-degree polynomial. A degree-d polynomial is
mathematically described by:

Y = β0 + β1X + β2X
2 + ...+ βdX

d + ε,

where β0 describes the intercept. The remaining β-coefficients assign a weight to the
first and higher order predictor terms.

Extension of linear regression towards a step function requires the division of predictor
values into bins. The resulting qualitative predictor allows a constant value for the
outcome Y in each of the bins. Thereby, a stepwise function introduces specificity within
a certain range. The mathematical representation of a step function with bins created
by cutting the range of X in points (called knots) c1, . . . , ck is of the form:

C0(X) = f(X < c1)

C1(X) = f(c1 ≤ X < c2)

...

CK−1(X) = f(cK−1 ≤ X < cK)

CK(X) = f(cK ≤ X).

Cutting the range of predictor X into k knots results in k+1 bins. An example of a step
function created with two knots and thus three bins is illustrated in figure 2c. Usually,
the constant defined within each bin is the mean of values within that bin. In that case,
the function f around the values in a bin is defined as the sum of all predictor values
corresponding to the observations in the bin divided by the number of observations in
that bin.

Polynomial regression and the step function can be combined to fit separate, usually
low-degree polynomials to each bin. This combination is named a piecewise polynomial.
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Figure 2: Step-by-step path diagram from simple linear regression towards a smoothing
spline.
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A piecewise third-degree polynomial, also called piecewise cubic polynomial, with a single
knot in point c1 is represented as:

Y =

{
β01 + β11X + β21X

2 + β31X
3 + ε if X < c1

β02 + β12X + β22X
2 + β32X

3 + ε if X ≥ c1.

The example of a piecewise polynomial with one knot illustrated in figure 2d shows
that the individual polynomials do not connect at the knot. Despite the provided
flexibility, this discontinuity is problematic for the interpretation and fit of the model.
The remedy lies in the addition of constraints that provide connection and smoothness
at the knot. Connection is obtained by imposing the constraint that the neighbouring
endpoints of the polynomials should be of equal value at the knots. Smoothness at
the knots is the result of continuity in the derivatives at each knot. A piecewise
polynomial composed of degree-d polynomials with the constraint that its derivatives
are continuous up to degree d− 1 is called a degree-d regression spline. The derivatives
are only continuous until degree d − 1 as otherwise the resulting function becomes a
global polynomial again. An example of a regression spline with one knot is shown in
figure 2e.

The mathematical representations of the models up to piecewise polynomials were relatively
straightforward. Due to the added constraints, the equation of a regression spline
is rather complex. The constraints are included by means of truncated power basis
functions. Truncated power basis functions only have value with a specific interval and
are zero outside this interval. Mathematically, this is presented as:

g(x, ζ) = (x− ζ)d+ =

{
(x− ζ)d if x > ζ

0 otherwise.

The restriction that the derivatives should be continuous up to degree d− 1 imposes
the addition of one truncated power function of degree d per knot. For a cubic regression
spline with k knots, the resulting equation is:

Y = β0 + β1X + β2X
2 + β3X

3 + β3+k(X − ζk)3+ + ε.

The first four terms describe the global fit of the cubic regression spline. The truncated
power basis functions provide a more nuanced fit to the global function on their interval.
A cubic regression spline thus has 3 + k predictors, and a total of 4 + k regression
coefficients are estimated. Resultingly, a cubic smoothing spline modelled using k knots
uses 4 + k degrees of freedom.

How strong the truncated power basis functions influence the global function depends
on their weights represented by the β-coefficients. This principle is illustrated in figure
3. The upper graph shows a global function in blue, and the lower graph a truncated
power basis function in yellow. Adding this basis function to the global function shifts
the curve of the global function at the specified interval which results in the green curve.

The progress from a regression spline to a smoothing spline lies in the number of
knots. Choosing the right number of knots is a difficult task. Smoothing splines
avoid this problem by not requiring a predefined number of knots to the create basis
functions. Instead, each unique datapoint is considered a knot as illustrated in figure
2f. Consequently, the approach by which a smoothing spline is fitted differs from that
of regression splines.
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Figure 3: The addition of a truncated power basis function (lower graph, yellow) to
a global function (upper graph, blue) that results in the piecewise polynomial (upper
graph, green).

When fitting a curve to data, the goal is to find a function g(x) that fits the data well.
In other words, a function g(x) should estimate the values of Y such that the difference
with the observed Y is small. This corresponds to a low Residual Sum of Squares (RSS):

RSS =

n∑
i=1

(yi − g(xi))
2.

Without any constraints on g(x), this function can be chosen such that the RSS is
zero, indicating a perfect fit to all datapoints. This phenomenon is called overfitting.
Overfitting should be prevented as it leads to bad prediction models and decreased
interpretability. So, function g(x) should not only fit the data well but should also be a
smooth function. Smoothing splines prevent overfitting by not minimizing the RSS, but
minimizing a penalized RSS:

n∑
i=1

(yi − g(xi))
2 + λ

∫
g′′(t)2dt.

The added term is composed of two elements: tuning parameter λ and a measure of
wigglyness described as the integral of the squared second derivative of function g(x) at
point t.

Understanding of the wigglyness measure requires knowledge on the concept of
derivatives. The first derivative g′(t) describes the slope of function g(x) at point t.
The second derivative g′′(t) describes the amount by which the slope changes at point t.
When the second derivative at a point t is large it means that g(x) drastically changes
its slope in that point. Taking the integral of the squared second derivatives over the
entire range at which g(x) is defined can be said to provide a measure of wigglyness.
Note that the value of g′′(t) is squared to prevent positive and negative changes in slope
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from cancelling out. From this definition of wigglyness becomes intuitive that a very
wiggly function has a frequently changing slope which corresponds to a large value for∫
g′′(t)2dt.

Part of the wigglyness of function g(x) can be controlled by choosing the number
of basis functions k instead of allowing k to equal the number of unique values of the
predictor. When a predictor is modelled as smoothing spline, the degrees of freedom
available for the basis functions equals k–1. Less degrees of freedom available decreases
the number of basis functions that can be used and thus restricts the wigglyness.

Tuning parameter λ also controls the wigglyness as it encourages the function to be
smooth by balancing the fit of the data and smoothness of the curve. Therefore, the aim
is to optimize λ by using methods as Generalized Cross-Validation (GCV) or Restricted
Maximum Likelihood (REML). When λ approaches zero, the measure of wigglyness
becomes less influential. It allows the model to be flexible and wiggly, resulting in a
curve closely fitting the datapoints. This comes with the risk of overfitting. Higher
values for λ increase the importance of the wigglyness measure. It shifts the importance
from fitting the data closely towards obtaining a smoother curve that is less prone to
overfitting and able to reveal underlying trends. Figure 4 illustrates this effect of λ on
two curves fitted on the same data. The final curvature resulting from the choice of k
and the optimized λ is quantified in terms of the Effective Degrees of Freedom (EDF).
Lower values for the EDF indicate smoother curves.

Figure 4: Smoothing spline fitted with a large λ (left) and a small λ (right).

Compared to other nonlinear modelling methods, smoothing splines remain relatively
easy to interpret by means of profile plots. These plots provide a visual representation of
the relationship between the outcome and a predictor while accounting for the smoothing
effect. This intuitive nature of profile plots aids researchers to make informed interpretations
about underlying pattern of the data. Figure 5 shows an example of a profile plot where
the smooth function is plotted together with its confidence interval. The descriptor is
represented on the x-axis and the y-axis represents the outcome values as determined
by the smooth function. Profile plots always indicate the EDF corresponding to the
curve. The small bars on the x-axis represent the observations at their descriptor value.
Examination of the confidence interval gives an idea of the uncertainty associated with
the smooth curve at different predictor values. From profile plots, the functional forms
of relationships between the outcome and predictors can be observed.

A disadvantage of smoothing splines is that they can only model one single predictor
at the time. In QSAR, individual molecular descriptors are not expected to be related
strong enough to the pMIC such that they can sufficiently predict on their own. Generalized
Additive Models (GAMs) can model multiple molecular descriptors as smoothing splines
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Figure 5: Example of a profile plot with its confidence interval. The descriptor values
corresponding to the observations are indicated with bars on the x-axis. The y-axis
represents the outcomes as modelled by the smooth function. The EDFs corresponding
to the profile plot are indicated in the smooth term.

in one model.

2.6 Generalized Additive Models

Generalized Additive Models (GAMs) are used to fit an additive models with predictor
terms that can be nonlinear. The general formula for a GAM is:

Y = f(X1, X2, ..., Xp) + ε = β0 + f1(X1) + f2(X2) + ...+ fp(Xp) + ε.

The functions f can be different for each predictor. For example, X1 can be modelled
as a linear term, X2 as a third-degree polynomial and X3 as a smoothing spline. In this
study, all predictors are modelled as smoothing splines.

As described, modelling a single smoothing spline does not require the number of
basis functions to be specified as all unique datapoints can be seen as knots. However,
the number of basis functions can be set to a maximum that equals the number of
unique values of the predictor. The same holds for the smooth terms in a GAM. This
thesis aims to find the optimal GAM by varying the number of predictors included. It
is possible that the first predictors included in the model claim all degrees of freedom.
This hinders the inclusion of more predictors and comes with the risk on overfitting.
Therefore, the number of basis functions for each predictor is rather specified. This
study equally divides the total degrees of freedom amongst the predictors. The total
degrees of freedom available equals the number of observations. An upper limit for the
number of basis functions per predictor is determined as the total degrees of freedom
divided by the number of predictors, always rounded downwards.

Each predictor included in the GAM can be interpreted using the same profile plots
as illustrated in figure 5 of the previous paragraph on smoothing splines. However, the
interpretation slightly changes due to the presence of multiple predictors in the model.
The profile plots are now interpreted as the marginal effect of the considered predictor
on the outcome while holding the other predictors at fixed values. Hereby, it is assumed
that the predictors in the model are not correlated with each other to prevent misleading
interpretations.
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2.7 Forward selection

Extensive labor and high costs related to the purification and testing often results in
only a limited number of molecules that are tested. On the other hand, molecular
descriptors are easily calculated and many have been invented. This leads to QSAR
data consisting of more molecular descriptors than molecules tested. The resulting high-
dimensional data poses fundamental problems to statistical models. Firstly, models that
use more predictors than observations do not have a unique solution. Next to that,
not all predictors are expected to contribute to the outcome and the inclusion of many
irrelevant predictors hinders the modelling. The flexibility and complexity of models
with many predictors easily leads to overfitting, causing models to be fitted to the noise
present in the data instead of to the underlying pattern. This reduces the predictive
ability of the model. Also, a smaller set of predictors is desirable for model interpretation
and benefits gaining insights into the underlying mechanisms (Hageman, 2022). To avoid
these high-dimensionality problems, a variable selection method can be applied to build
a model with only the most important predictors.

Forward selection is a straightforward way of selecting the most important predictors
and is extensively used in QSAR. This method belongs to the wrapper methods as both
the outcome and the predictors are considered in the selection process. The starting point
of forward selection is a model with only the intercept. Predictors are added to the model
one at the time, and for each predictor the improvement of the model is assessed. One
measure that can be used to determine the model improvement is the Residual Sum of
Squares (RSS). The RSS quantifies the unexplained variability in a model as the sum of
squared differences between the actual values for the outcome and the values predicted
by a statistical model. A smaller RSS implies that the predicted values are close to
the actual values, indicating a better model fit. The predictor whose addition results in
the lowest RSS is then selected into the model. The proceeding round then looks for
the second-best predictor following the same procedure. How many rounds of forward
selection are performed depends on the desired number of predictors to be selected or a
criterium can be specified that determines when to stop selecting additional predictors.
In QSAR, models with between 1 and 10 predictors are considered parsimonious and
interpretable.

To verify the robustness of the subset with selected predictors, forward selection
can be applied in a LOOCV context. Especially in smaller size datasets, a outlying
observations can lead to the selection of different predictors. Performing the selection in
a LOOCV allows investigation of the frequency by which predictors are selected. The
predictors most frequently selected are used in the final model.

Forward selection can be applied to both linear and nonlinear additive models.
Whereas it is frequently used in combination with MLR, the combination of forward
selection with GAMs is less common. Since MLR models and GAMs are both additive,
no problems are expected with the one-by-one addition of predictors and the assessment
of the model fit. What should be kept in mind is that GAMs provide more flexibility.
Addition of predictors that capture noise to a GAM might introduce overfitting, resulting
in a low RSS. Such predictors can thus be selected as best predictor while this is not
desired.

2.8 Model validation

The assessment of QSAR model performance is important because accurate predictions
on the activity of new molecules can only be trusted when the model fits well and
is reliable. The performance of QSAR methods can be assessed through internal and
external validation methods. This thesis is limited to internal validation methods as
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no sufficient data is available for separation into training and test sets. The internal
validation methods used are the significance of the models and their individual predictors
(p < 0.05), coefficient of determination R2, R2

adjusted which is corrected for the number
of descriptors used in the model, and the leave-one-out cross validated coefficient of
determination Q2

LOO.
The coefficient of determination R2 quantifies the proportion of variance in the

outcome that a statistical model can explain using the selected predictors. R2 ranges
from zero to one, where a value close to one indicates more variation explained by the
model and thus a better fit. The R2 is calculated as:

R2 = 1 –

∑n
i=1(yi–ŷi)

2∑n
i=1(yi–ȳ)2.

R2 is only valid in linear context and tends to increase upon the addition of every
predictor, even if their inclusion does not significantly improve the model performance.
This hinders comparison of models with different numbers of predictors and can lead
to misleading conclusions. These limitations are addressed by the adjusted version of
R2, denoted as R2

adjusted. R2
adjusted corrects for the number and usefulness of predictors

included. Mathematically, R2
adjusted is determined as:

R2
adjusted = 1 − (1 −R2)(n− 1)

(n− p− 1)
,

where p is the effective degrees of freedom of the model and n the number of observations
in the data. In a linear context, p equals the number of predictors in the model (Fox,
2015). In GAMs, the correction for effective degrees of freedom allows penalization for
the flexibility and complexity introduced by the smoothing splines. Therefore, R2

adjusted

is also valid in that context.
R2 and R2

adjusted only explain how well the model fits the data, yet another important
aspect of a model is its ability to predict the outcome for new observations. The leave-
one-out cross validated coefficient of determination Q2

LOO is a measure that quantifies the
internal predictive power of a model. This parameter allows for comparison of different
QSAR models in a simple way by presenting the values in a standardized range. The
values for Q2

LOO range from zero to one but can dive below zero when a model’s internal
predictive ability is very bad. The latter suggests modelling issues like overfitting.

To calculate Q2
LOO, models are fitted in a LOOCV context. The model fitted on

all molecules in the data minus one is used to predict the outcome of the molecule
that was left out. Each molecule is left out once and thereby a prediction on the
outcome is obtained for each of them. Since these molecules are extracted from the
data, their observed value is also known. Using the predicted and observed values from
each molecule, the value of Q2

LOO is calculated as:

Q2
LOO = 1 −

∑n
i=1(yi − ŷi)

2∑n
i=1(yi − ȳ)2

with n the number of molecules (Consonni et al., 2009; Todeschini et al., 2009). This
equation looks identical to the equation for R2, but there predictions are made using the
model fitted on all molecules.

According to Tropsha (2010), a QSAR model is predictive when Q2
LOO > 0.5 and

R2 > 0.6. QSAR models satisfying these conditions are expected to fit the underlying
patterns in the data. Models with high R2 and low Q2

LOO likely overfit the data. Such
models explain a large part of the variance in the outcome by capturing noise. Due to
this overfitting, these models cannot generalize patterns in the data and their predictive
ability is low.

16



2.9 The Applicability Domain

A very important concept in QSAR is the Applicability Domain (AD). The AD defines
the chemical space for a model. Predictions on the activity of molecules that do not
belong to the same AD as where the model is trained on are invalid. Also, not all
molecules in a dataset might belong to the same AD. Determination of the AD by robust
statistical methodology prevents extrapolation errors and identifies the boundaries of a
model’s reliability (Todeschini et al., 2009).

The identification of the chemical space occurs in two ways. It is important to make
a well-considered choice from a chemical perspective. One should choose a group of
molecules that is expected to belong to the same AD. In this thesis, molecules from
the class of prenylated phenolics are tested. Prenylated phenolics have similar basis
skeletons but differing side groups ensure division into different subclasses (see figure 1).
The homogeneity of these subclasses should be assessed. Here, the Chalcones subclass
is very different from the other prenylated phenolic subgroups as they only have 2 ring
structures instead of 3. This structural difference can cause a different mode of action for
the Chalcones which may not align with the other prenylated phenolics. The influence
of deviating subclass structures within a molecule class is assessed by fitting models with
and without this subclass. A strong decrease in model performance is in an indication
that the subclass does not belong to the same AD.

Next to these intuitive considerations, the fit of the individual molecules to the AD
should be investigated. No standard protocol is available for this yet (Tropsha, 2010). In
linear context, the leverage approach is commonly used. Leverage is a similarity measure
that quantifies how far away a molecule is from the other molecules in the model with
respect to its predictor values. A high-leverage point is considered an outlier as it has
no close neighbors in the space defined by the predictors. Resultingly, they can cause
drastic changes in the estimated model coefficients upon their removal. Even though
high-leverage points are often also high influence points, this is not necessarily the case.

Using the predictors selected by a linear model, the leverage or hat matrix is obtained
by:

H = X(XTX)−1XT ,

where the diagonal elements represent the leverages for each of the molecules. The
leverage threshold is defined as three times the number of predictors divided by the
number of molecules the model is fitted on. Molecules exceeding this threshold are
considered high leverage (Sahigara et al., 2012).

The molecular descriptors in this study are selected using LOOCV. Therefore, the
leverages are also determined in a LOOCV context. The number of leverages obtained
for each molecule equals the total number of molecules minus one as each molecule is
left out of the data once. For all resulting LOOCV models, high-leverage molecules can
be identified. The molecules most frequently marked as high leverage are excluded from
the data to assess their influence on the model performance.

Visualization of leverages is done using Williamsplots. The leverages are plotted on
the horizontal axis and the standardized residuals on the vertical axis. An example of a
Williamsplot with the leverage threshold indicated in red is shown in figure 6.

In nonlinear regression, determination of the AD needs additional attention. Very
limited studies on concepts comparable to leverage in a nonlinear context are available.
This thesis proposes a method based on internal predictive power Q2

LOO to assess how
the presence of each individual molecule influences the model performance. Fitting the
model with an additional LOOCV around it allows to compute the Q2

LOO on datasets
where each molecule is ignored once. The influence of the molecule that is left out can
be assessed by comparing the Q2

LOO from the corresponding model with the Q2
LOO from
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Figure 6: Williamsplot with the leverage threshold indicated with the red dotted line.
The blue dotted lines represent the residual thresholds.

the model fitted on all molecules. If the removal of this molecule leads to an increase in
Q2

LOO, its removal benefits model performance. This molecule can then be said to fall
outside the AD.

18



3 Results

3.1 Forward-MLR

Forward-MLR models with the number of predictors ranging from 1 to 10 were fitted on
different compositions of the experimental dataset. Hereby, the influence of imputed MIC
values for inactive prenylated phenolics and the inclusion of the Chalcones subclass on
the fit (R2

adjusted) and internal predictive power (Q2
LOO) of the models was investigated.

The addition of imputed values for the inactive compounds nor the addition of the
Chalcones subclass improved the fit and the internal predictive power for the MLR
models. Resultingly, the best experimental dataset consisted of 28 prenylated phenolics
that were tested against the same strain of S. mutans.

This experimental dataset was complemented with the literature dataset that allowed
for different strains of S. mutans and the other literature dataset that allowed for different
Streptococcus species. Neither of the literature additions improved the model in terms of
fit or internal predictive power. Therefore, the best dataset remained the experimental
set with 28 prenylated phenolics.

None of the forward-MLR models fitted on this best experimental data were statistically
compliant (Q2

LOO > 0.5 and R2 > 0.6). Figure 7 shows that the highest internal
predictive power was obtained for the two-predictor MLR model (Q2

LOO= 0.358).

Figure 7: The internal predictive power (Q2
LOO) of Forward-MLR models with 1-10

molecular descriptors fitted on the experimental dataset with 28 prenylated phenolics.
The red dotted line indicates Q2

LOO = 0.

The frequencies by which the LOOCV selected molecular descriptors for the two
predictors are shown in the bar plots in figure 8. For the first predictor, the first atomic-
level cut in the Partial Equalization of Orbital Electronegativity charge calculation
(GCUT PEOE 1 ) was selected in 82% of the models. Polar volume at -2.0 kcal/mol
(vsurf Wp4 ) was selected as the second predictor in 82% of the models. The two-
predictor MLR with these selected predictors was fitted on the dataset with 28 prenylated
phenolics. The resulting model equation for this model was:

pMIC = 6.815(0.419) + 5.372(0.942) ∗GCUT PEOE 1–0.032(0.010) ∗ vsurf Wp4,

where GCUT PEOE 1 is positively correlated with the pMIC and vsurf Wp4 negatively.
The model was significant (p = 6e−06) even as the two molecular descriptors (p = 6e−06
and p = 3.e− 03, respectively). The R2

adjusted corresponding to this model was 0.586.
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Figure 8: Bar plots showing the most frequently selected molecular descriptors for
the two-predictor MLR model fitted on the experimental dataset with 28 prenylated
phenolics.

The AD for this two-predictor MLR model was investigated. Figure 9 shows a bar
plot with the frequencies by which prenylated phenolics were selected as high leverage
molecules in the LOOCV. In more than 80% of the models, Isokanzonol V and Glyasperin
C were selected. Therefore, they were suspected of not belonging to the same AD as
the other prenylated phenolics. To check if the final two-predictor MLR model selects
the same high leverage molecules as the LOOCV, a Williamsplot was made as shown in
figure 10. From this plot can be seen that indeed Isokanzonol V and Glyasperin C had
a leverage above the threshold indicated with the dotted red line.

Removal of the two high leverage molecules resulted in decreased internal predictive
power (Q2

LOO = - 0.208) and a decreased fit (R2
adjusted = 0.536). The low Q2

LOO combined

with a relatively high R2
adjusted suggests overfitting. Resultingly, the two-predictor MLR

model fitted best on all 28 prenylated phenolics.
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Figure 9: Bar plot showing the frequency by which molecules were selected as high
leverage molecules in the LOOCV for the two-predictor MLR model fitted on the
experimental dataset with 28 prenylated phenolics.

Figure 10: Williamsplot for the two-predictor MLR model fitted on the experimental
dataset with 28 prenylated phenolics.

Figure 11 shows the pMIC values predicted from this model versus the observed
pMIC values. Prenylated phenolics with a difference of more than 0.2 M between their
predicted and observed pMIC are labelled. From this figure can be seen that seven
molecules are labelled, which corresponds to the low predictive ability of this model.
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Figure 11: pMIC predicted versus pMIC observed for the two-descriptor MLR model
on the experimental dataset with 28 prenylated phenolics. Prenylated phenolics with
a difference > 0.2 M between the observed and predicted pMIC are labelled. The
prenylated phenolics are coloured by subclass.

3.2 Forward-GAM with smoothing splines

Forward-GAMs with molecular predictors modelled as smooth terms were fitted with 1-
10 molecular descriptors and 3-10 basis functions. These forward-GAMs were fitted on
different compositions of the experimental dataset to investigate the influence of imputed
MIC values for inactive prenylated phenolics and the inclusion of the Chalcones subclass
on the fit (R2

adjusted) and internal predictive power (Q2
LOO). The number of predictors

in these datasets was reduced following the constraint that the number of unique values
for each predictor should exceed the number of basis functions used in the smoothing
spline. Therefore, all predictors with less than 10 unique values were removed.

The addition of imputed MIC values for the inactive compounds nor the addition
of the Chalcones subclass improved the fit and internal predictive power for the forward-
GAMs. For the resulting experimental dataset with 28 prenylated phenolics, the heatmap
with the Q2

LOO values for each of the fitted models is shown in Figure 12. It was observed
that all models with one predictor and two models with two predictors showed a positive
Q2

LOO. Also, the model with four predictors and seven basis functions showed a positive
Q2

LOO. GAMs with an increased number of predictors suggested overfitting as their
internal predictive power went below zero while the corresponding R2

adjusted values were
exceeding 0.6.

The resulting experimental dataset was complemented with the first literature dataset
that allowed for different strains of S. mutans. This addition caused the internal predictive
power for all the models to go below zero. The dataset was further augmented with the
literature data that allowed for different Streptococcus species. This addition increased
the internal predictive power to positive values for models with 1 - 6 predictors and 3 - 5
basis functions, but none of them was statistical compliant. Therefore, the experimental
dataset with 28 prenylated phenolics remained the best dataset for fitting forward-
GAMs.
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Figure 12: Heatmap with the internal predictive power (Q2
LOO) of Forward-GAMs with

1-10 molecular descriptors and 3-10 basis functions on the experimental dataset with 28
prenylated phenolics.

As was observed from the heatmap in figure 12, the forward-GAM with the best
internal predictive power (Q2

LOO= 0.525) had one predictor and seven basis functions.
Hydrophobic volume at an interaction energy of -0.2 kcal/mol (vsurf D1 ) was selected as
the best molecular descriptor in 100% of the LOOCV models. The model with vsurf D1
as predictor and seven basis functions was fitted. Both the model and vsurf D1 were
significant (p = 2e− 16 and p = 7e− 5 respectively). Since the corresponding R2

adjusted

was 0.638, this model was statistically compliant and well performing.
For this best GAM, the AD was investigated. The internal predictive power calculated

by the additional LOOCV around the original internal predictive power computation was
used to assess the influence of individual prenylated phenolics on the model performance.
The removal of Glycyrrhisoflavone, Wighteone, and Licoisoflavone A resulted in Q2

LOO

values of respectively 0.582, 0.575 and 0.547. Their removal thus increased the internal
predictive power compared to the GAM that was fitted on all 28 prenylated phenolic.
Simultaneous removal of Glycyrrhisoflavone, Wighteone, and Licoisoflavone A resulted
in improved internal predictive power (Q2

LOO= 0.607) and improved model fit (R2adj =
0.733). The smooth term of vsurf D1 was significant (p = 3e − 16) even as the model
itself (p = 2e− 16).

Since the model equation for a GAM with smooth terms is not as interpretable as
in MLR, the final forward-GAM was interpreted using the profile plot shown in figure
13. Here, the pMIC values as predicted by the smooth term are plotted against the
molecular descriptor vsurf D1. The smoothness of the curve was quantified by 5.52
EDF. The little bars on the x-axis show the values of vsurf D1 that were represented in
the dataset. Compared to other molecular descriptors in the data, the observed values
for vsurf D1 were relatively well spread across its range. Inspection of the profile plot
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shows that the highest pMIC values are expected when the value of vsurf D1 is between
930 and 1050 kcal/mol.

Figure 13: Profile plot for the molecular descriptor vsurf D1 that was fitted with seven
basis functions on the experimental dataset with 25 prenylated phenolics.

The plot with predicted pMIC values versus observed pMIC values for the final
forward-GAM is shown in figure 14 . Outliers with a deviation of more than 0.2 M
between their predicted pMIC and observed pMIC are labelled. Most of the points were
observed closely around to the black dotted line, which reflects the statistical compliant
internal predictive power of the model.

Figure 14: pMIC predicted versus pMIC observed for the one-descriptor forward-
GAM with seven basis functions fitted on the experimental dataset with 25 prenylated
phenolics. Prenylated phenolics with a difference > 0.2 M between the observed and
predicted pMIC are labelled. The prenylated phenolics are coloured by subclass.
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4 Discussion

By fitting forward-MLR models and forward-GAMs with smooth terms on different
compositions of the data, the effect of imputed values for the MIC of inactive molecules,
addition of the Chalcones subclass, and literature data was assessed. The imputation of
MIC values for molecules that did not inactivate S. mutans at the highest concentration
tested caused a decrease in model performance for both forward-MLR models and
forward-GAMs. Because the imputations can be seen as a calculated guess, they introduced
a lot of uncertainty. The observed decrease in model performance suggests that imputated
MIC values were too uncertain in this case.

The addition of the Chalcones subgroup also led to a decrease in model performance
for the forward-MLR models and forward-GAMs. This observation was in accordance
with the hypothesis that the remarkable difference in ring structures between Chalcones
and the other prenylated phenolics in the dataset would lead to differences in their
structural features and mode of action, causing them to belong to a different AD. It
should be recognized that the subgroups are not proportionately represented. The
Chalcones represent 14% of the experimentally tested molecules, and some subclasses
are represented by only one molecule. When aiming to ensure the fit of every subclass to
the same chemical space, it is recommended to gather data more balanced with regards
to subclasses. This allows to leave each subclass out of the model once and assess their
influence on the model performance.

Incorporation of literature data did also not improve model performance in both
forward-MLR models and forward-GAMs. This suggests that the level of noise introduced
by allowing for different bacterial strains and species is too large to be captured by these
models. Additional noise is included by the different experimental procedures that was
allowed for, despite articles were selected to resemble the experimental conditions used
by the in-house experiments as much as possible. The inherent heterogeneity in the data
introduces complexities that challenge the model’s ability to discern meaningful patterns.
When considering the addition of literature data, the quality and compatibility should
be carefully considered to avoid the introduction of too much noise.

On the resulting best experimental dataset with 28 prenylated phenolics, the performance
of forward-MLR models and forward-GAMs was further investigated. The performance
of all forward-MLR models was below the critical boundaries (Q2

LOO > 0.5 and R2 >
0.6), whereas GAMs with smooth terms for the predictors showed values close to or
exceeding these boundaries. The linearity assumption in MLR forces the forward selection
procedure to select predictors that best fit a linear relation with the outcome. These
predictors do not necessarily explain a large part of the variation in the outcome. Other
predictors can explain more variation, but only when the model allows them to follow
their relation to the outcome. This explains why smooth terms increased the model
performance and emphasizes the importance of inspecting the functional form of the
relation between the predictors and the outcome before choosing a modelling method.

Resulting from the small size of only 28 prenylated phenolics of the final dataset,
multiple predictors in the dataset showed unequal spread of values across their range.
Both MLR and smoothing splines are affected by this, but the extend of the impact
varies. In MLR, unequal spreads of the predictor values may affect the estimates of
the coefficients and its model performance, but due to the linearity assumptions no
underlying relations need to be interpolated. The latter is what causes a challenge
in smoothing splines. Here, the underlying trend on intervals with sparse or no data
becomes difficult to capture. The interpolation of the curve in these gaps can lead to
biased trends. With regards to the dataset, it is therefore important to have enough
observations such that the spread of predictors values is as uniform as possible.
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Not only the spread of predictor values, but also the spread of the outcome, pMIC, in
this dataset was problematic. All prenylated phenolics tested had a pMIC value between
3.5 and 4.8. This limited variation causes difficulties in identifying the underlying
relationship which results in uncertain and biased parameter estimates. Also, models
build on data with limited outcome variation struggle generalize to other datasets. This
poses challenges in the model validation performed using LOOCV where the yielded
estimates may thus not be reliable. The lack of variation for the pMIC is partly caused
by the fact that MIC values were only measured up to a concentration of 100 µg/mL
which results in a lower bound for the pMIC values. It is recommended to change the
experimental design such that a broader range of pMIC values is obtained.

The AD in a linear context was assessed in terms of leverage. Removal of the
identified high leverage molecules Isokanzonol V and Glyasperin C from the best two-
predictor forward-MLR model did not improve but even decrease model performance.
High leverage molecules have extreme predictor values or unusual combinations of predictor
values compared to the other observations present in the data. According to Alguraibawi
et al. (2015) there exist two types of high leverage points. Good high leverage points have
extreme predictor values, but their outcomes follow the data pattern. Therefore, they
contain valuable information about the extreme regions of the predictors. These points
provide stabilization and should not be removed from the data. Bad high leverage points
deviate from the data pattern causing strong changes in the estimates of the regression
coefficients.

Both Isokanzonol V and Glyasperin C did show extreme values for the molecular
descriptors vsurf Wp4 and GCUT PEOE 1 on which their leverage was assessed, but
their pMIC values did not deviate far from the estimated regression line. Also, both
molecules had values at the border of the vsurf Wp4 range, relatively far away from
the vsurf Wp4 values of the other molecules. This indicates that Isokanzonol V and
Glyasperin C are good high leverage molecules with a stabilizing character. Especially
in smaller datasets as in this study, the removal of good high leverage points causes a
large fraction of information to be lost. This explains why the removal of Isokanzonol
V and Glyasperin C did not improve the model performance for the best two-predictor
forward-MLR model.

For the best GAM with vsurf D1 modelled as a smooth term, molecules with a
negative influence on the internal predictive power (Q2

LOO) were identified. The top three
molecules showing the largest improvement were removed from the dataset. This resulted
in an increase of the model performance. The proposed method seems to be well-defined
and able to identify the AD in a nonlinear context. Since it measures the influence on
Q2

LOO, there is no risk of accidentally removing a molecule that has a stabilizing effect.
This would namely cause a decrease in Q2

LOO. Although this method performs well,
it has the drawback of being computationally very intensive as a LOOCV is applied
around another LOOCV. Computing times rapidly increase for larger datasets, leading
to a computational burden when aiming to determine the AD for multiple different
models or datasets.

How the forward-GAMs with smooth terms for the predictors were fitted in this
thesis can be discussed on several aspects. Usually, the upper limit of k for a smooth
term is determined by the number of unique datapoints a predictor has. In this thesis,
the smooth terms in the forward-GAMs were assigned fixed numbers of basis functions k
ranging from 3 to 10 to explore the effect of restricting wigglyness. Therefore, predictors
with less than 10 unique values were removed from the dataset prior to fitting a GAM.
Previous studies showed that the variables removed by this restriction are not commonly
selected as best predictors. Yet, this should not be generalized to other studies as in
QSAR there is often no a priori knowledge on what molecular descriptors are related

26



to the outcome (Todeschini et al., 2009). Additionally, the majority of those studies
used linear models and therefore certainty is lacking on the importance of the removed
predictors in nonlinear context. To prevent ignorance of important predictors, the
removal of predictors should rather be limited. This approach requires more flexibility
in k, as continuous predictors with less unique datapoints can only be modelled with
lower values of k.

This more flexible manner of using k can further benefit smooth terms in forward-
GAMs. Where λ is optimized by Generalized Cross-Validation to balance smoothness
and fit, k also plays a role in the optimization of this balance. In this study, the smooth
term for the best forward-GAM was modelled using seven basis dimensions. The number
of basis functions is related to the upper limit of degrees of freedom for the smooth term
as k–1 = 6 degrees of freedom. It was found that the EDF for this smooth term (5.518)
closely approximates the 6 degrees of freedom. EDF close to the upper limit of degrees
of freedom indicates an overly constrained model in terms of wigglyness. Therefrom, it
follows that the balance between smoothness and fit of this model is not yet optimal.
Optimization of k for each individual predictor instead of using a range of fixed k’s allows
the model to further optimize this balance and gain improved performance.
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5 Future recommendations

This thesis focused on the basic principles and applications of smoothing splines to
explore its usefulness in QSAR modeling. To enhance the performance of QSAR models
even further, it is recommended to examine the trends captured by smoothing splines
and investigate if they can be represented by more accurate modelling manners. An
example is a smoothing spline that shows a threshold value above which the activity is
increased. This suggests the use of a step function to capture the relation more precise.
Using GAMs, each of the predictors can be fitted by the type of function that is most
effective for them.

To our knowledge, this thesis is one of the first to extensively describe the use of
smoothing splines in QSAR. For a comprehensive evaluation on the functionality and
generalizability of smoothing splines, it is advised to test its performance on diverse
datasets with distinct characteristics. The dataset used in this study was small and
exhibited limited variation in outcome, with predictor values not always well spread
over their range. Training on diverse datasets with more optimal characteristics can
verify if the usefulness of smoothing splines.

Where the proof of the pudding lies in the eating, the proof of QSAR models lies in
their external validation. Models that perform excellent in internal validation, can still
completely fail external validation. Insufficient results from internal validation however
always indicate unreliable models. It is therefore highly recommended to apply external
validation before relying on predictions from an internally well-predicting model. Hereby,
it is of great importance that the molecules used for the external validation fall in the
same AD as the molecules the model is trained on (Consonni et al., 2009; Golbraikh &
Tropsha, 2002).

Investigation of the AD by a robust method is very important for the reliability of
predictions. Robust AD methodologies provide a safeguard against extrapolation errors,
identifying the boundaries of the model’s reliability. By addressing the question of which
molecules to include or exclude from the modelling, QSAR models can reach higher
accuracy, giving more confidence to the use of the model. The leverage approach used in
linear context requires a manual check to distinguish between good and bad high leverage
points. Here, it is advised to investigate different measures that do not require manual
inspection afterwards. The proposed method to determine the AD in nonlinear context
needs further verification and optimization to overcome the computational burden.

Data collection in QSAR studies often results in incomplete or censored observations.
The exact activity is not measured, only that it must be above a certain threshold.
Common methods to deal with incomplete observations like row-wise deletion inefficiently
discard data and data imputation methods might be too crude. Censored regression
approaches maximize the use of available information without introducing potentially
inaccurate imputed values, providing a more robust method for handling incomplete
data in QSAR studies.

Lastly, QSAR models face hurdles like the need for a certain amount of data but also
have a limited applicability outside the domain the model was trained for. Even with
sufficient data, these models serve specific tasks. For new tasks (e.g. prediction a MIC
for a different bacterial species) the activities for all molecules need to be (re-)measured
and remodelled. To tackle this, a transfer learning (TL) approach is recommended.
TL leverages knowledge gained in one scenario to enhance performance in a different
situation. Essentially, it allows the reuse of existing QSAR models, minimizing the need
for new data collection and making the process more efficient. This approach ensures
that valuable insights gained from one domain can be applied to another, speeding up
research and potentially saving time and resources.
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6 Conclusion

This study proposed a nonlinear QSAR modelling method using forward-GAMs with
the predictors modelled as smooth terms. Different compositions of the dataset were
assessed, and concluded was that the experimental data without imputed MIC values
for inactive prenylated phenolics and the Chalcones subgroup produced the best models.
This dataset contained a total of 28 prenylated phenolics. The forward-GAM with one
predictor modelled as a smoothing spline was statistically compliant while the baseline
MLR models were not. The best predictor selected by this best forward-GAM was
hydrophobic volume at an interaction energy of -0.2 kcal/mol (vsurf D1 ). Visualization
by means of profile plots ensured interpretability for the GAMs. The AD was determined
in a linear and nonlinear context to investigate how this enhances QSAR modelling. In
the linear context, the leverage approach identified two high leverage molecules. Their
removal did not enhance the forward-MLR model performance. Further inspection
concluded that these molecules were good high leverage molecules and had a stabilizing
effect on the MLR. For the nonlinear forward-GAMs, the AD was investigated by
assessing the removal of molecules on the internal predictive power. The top three
molecules whose removal most benefited the internal predictive power were removed
which improved the fit and internal predictive power of the best forward-GAM even
further. Overall, it can be concluded that the use of smoothing splines enhances QSAR
model performance by allowing for more flexibility.
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