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Abstract

Neural networks are susceptible to minor distortions in their input, which
can lead to errors they would not otherwise make. This susceptibility,
termed as the network’s robustness, is a crucial aspect to evaluate. While
several methods exist for measuring robustness, they usually suffer from
interpretability issues and do not provide a statistical guarantee. In this
work, we propose a novel robustness measure that addresses these short-
comings by modeling the robustness as a probability distribution and mea-
suring its 0.05 quantile. Additionally, previous work suggests the poten-
tial modeling of robustness through a log-normal distribution. To eval-
uate this hypothesis and its computational benefits, we introduce an es-
timator that assumes the distribution is log-normal. A comparison with
the standard parameter-free estimator reveals significantly improved com-
putational efficiency with the parametrized approach. However, the log-
normal assumption requires further research. The assumption is too strong
and needs to be relaxed before the parametrized estimator can reliably be
utilized.





Chapter 1
Introduction

Measuring the robustness of a neural network is crucial in situations where
the input to the network can deviate slightly from what the network was
trained on. These deviations can occur naturally, such as by noisy input
data, or maliciously, by attackers intentionally trying to induce errors in
the network [1, 2]. Measuring the robustness is especially important for
safety-critical systems [3], where a misclassification could result in harm.
In these situations, a network that is less sensitive to these distortions
might be preferred over an accurate one.

The robustness of a neural network is commonly measured on a per-
instance basis. Multiple input images are selected, and the network’s ro-
bustness against perturbations on these images is examined. For each im-
age, all distortions within a chosen distance are considered. If the net-
work correctly classifies these distortions, it is deemed locally robust on
the respective image [4–8]. Once the local robustness is measured across
multiple images, various robustness measures can be employed to gauge
the network’s overall robustness. The most common measure is the ro-
bust accuracy, calculated as the percentage of images on which the network
demonstrates local robustness with respect to a given ϵ value [2, 6, 9–16].
However, this measure is affected by the choice of the maximum distance
threshold ϵ for being locally robust, and does not provide a statistical guar-
antee. Choosing a suitable threshold for robust accuracy is highly task-
specific, interpreting the robust accuracy thus requires a deep understand-
ing of the task under evaluation. Moreover, local robustness is binary: it
indicates whether the network is locally robust on a given image for the
chosen distance threshold or not. Therefore, it may not provide informa-
tion about the extent of the network’s robustness on the image.

Bosman et al. [8] introduce the concept of the critical epsilon of a net-
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6 Introduction

work on an image, representing the largest distortion for which the net-
work maintains local robustness on that image. This provides additional
insight into the network’s robustness on an image, as it indicates the thresh-
old at which the network attains local robustness on that image. They use
this concept to analyze how the critical epsilon is distributed for various
neural networks trained on the MNIST dataset [17]. These distributions,
termed robustness distributions, entail significant computational costs for
their computation. Based on their findings, the authors note that these
distributions exhibit similarities to a log-normal distribution.

In this thesis, we build upon the work of Bosman et al. [8]. Firstly, we
introduce a novel robustness measure that relies on the robustness distri-
bution. Specifically, our measure involves estimating a small quantile of
the robustness distribution and constructing a confidence interval for it.
Compared to the robust accuracy, our measure eliminates the need for a
deep understanding of the task under evaluation, thereby enabling inter-
pretaion and comparison of robustness between different networks even
by those without expertise in the specific task. Additionally, by leverag-
ing the robustness distribution instead of relying on local robustness, our
measure provides a more comprehensive insight into the network’s ro-
bustness, accompanied by a statistical guarantee.

Secondly, we analyse the effectiveness and computational advantages
of the hypothesis proposed by Bosman et al. [8] that robustness distribu-
tions adhere to a log-normal distribution. To do this, we employ two dis-
tinct estimators. The first estimator is a Bayesian estimator that assumes
robustness distributions adhere to a log-normal distribution, while the sec-
ond operates without any assumption, being a standard parameter-free es-
timator. We utilize the outcome generated by the parameter-free estimator
as our ground truth for comparison.

Our analysis indicates that, while the log-normal assumption repre-
sents progress, it proves overly restrictive as we find that the underlying
distribution is not log-normal, but close to it. The Bayesian estimator’s
results align with the ground truth approximately 80% of the time. How-
ever, for an estimator to be considered reliable, it should consistently yield
accurate results. Moreover, the Bayesian estimator’s outcomes exhibit con-
siderable deviations, rendering it inadequate for drawing definitive con-
clusions based on a single measurement. Nonetheless, it offers a notable
advantage in terms of computational efficiency, requiring only 30 images.
In contrast, the ground truth estimation, which makes no assumptions,
demands approximately 1000 images, significantly increasing the compu-
tational burden. We are confident that with further research into relaxing
the log-normal assumption, it is possible to develop an efficient and accu-

6
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rate estimator.
This thesis continues as follows: In chapter 2 we highlight relevant re-

lated work that has been performed in local and global robustness and
some background information on these topics. In chapter 3 we introduce
our measure and show the details of both the estimators that are used
in the experiments. The results of these experiments are shown and dis-
cussed in chapter 4. We finish with a conclusion in chapter 5.

Version of May 24, 2024– Created May 24, 2024 - 17:41

7





Chapter 2
Background and Related Work

Background

To determine the local robustness or critical epsilon of a neural network on
a given image, one uses Neural Network Verification (NNV) algorithms.
Neural Network Verification (NNV) provides a formal method of ascer-
taining whether a neural network adheres to a desired property between
its input and output. In our case, this property would be the local robust-
ness of a network on a given image. This is used to calculate the critical
epsilon and, consequently, the robustness distribution. NNV algorithms
can either be complete or incomplete. With an incomplete algorithm, there
is no guarantee that the desired property holds for the network or not. A
complete algorithm on the other hand will provide that guarantee and is
thus more desirable in most cases. In this thesis, we exclusively utilize
results obtained from complete verification methods.

In NNV a property is defined by a mathematical formula that estab-
lishes a relationship between the inputs of a network and its outputs. The
objective of an NNV algorithm is therefore to verify whether a given net-
work adheres to this specified formula. To this extent, NNV algorithms
often use satisfiability modulo theories (SMT) solvers [16, 18]. A NNV
property can also be formulated as a mixed-integer programming prob-
lem, thus MIP solvers have also been used for NNV algorithms [6, 7]. In
either formulation, solving the problem is computationally demanding,
requiring a lot of compute time and memory. To address this challenge,
current state-of-the-art networks employ branch and bound based algo-
rithms [19]. These algorithms effectively partition the solution space into
smaller regions, which are computationally less expensive to solve. By do-
ing so, regions that don’t contain the solution can be discarded early in the

Version of May 24, 2024– Created May 24, 2024 - 17:41

9



10 Background and Related Work

process, thus conserving computational resources.
The local robustness property of a neural network for an image can

formally be written as follows:

Definition 1 (local robustness). Consider a neural network f : Rn → N

that classifies images with n pixels, an image x0 ∈ Rn, and a distortion ϵ.
We say that the network is locally robust, or ϵ-robust, on x0 if ∀x ∈ Rn :
||x− x0||∞ < ϵ we have that f (x) = f (x0) (the same classification).

The idea of the local robustness is to examine all possible distortions
that are at most epsilon away from your image and see if the network
classifies these distortions the same.

As previously mentioned, Bosman et al. [8] use the local robustness to
define a property that encompasses the robustness of a network, on an
image, better:

Definition 2 (critical robustness). Consider a neural network f : Rn → N

that classifies images with n pixels, and an image x0 ∈ Rn. The critical
robustness, or critical epsilon, of the network on that image is the distor-
tion ϵ∗ such that the network is locally robust on x0 for all ϵ ≤ ϵ∗, but not
locally robust for all ϵ > ϵ∗.

The critical robustness of a network on an image represents the max-
imum distortion for which the network retains local robustness on that
image.

Related Work

A robustness measure seeks to determine a universal value of robustness
for a given neural network. Typically, this is achieved by computing the lo-
cal robustness of a network across a set of images. The most commonly uti-
lized robustness measure, to our knowledge, is the robust accuracy [2, 6, 9–
16]. This measure is also known by various other names, including astute-
ness [9], adversarial error rate [10], adversarial accuracy [6], and certified
accuracy [14]. Additionally, it is equivalent to 1 minus the adversarial fre-
quency [13]. The robust accuracy is calculated as the percentage of images
on which the network demonstrates local robustness.

Although not a robustness measure, the average critical epsilon is some-
times used as an indicator of the robustness of a neural network [2, 6, 20–
23]. We refer to this as the average minimum distortion [2], but it is also
known as the average verified bound [20] and the mean minimum adver-
sarial distortion [6].

10
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Bastani et al. [13] introduce the adversarial severity. This closely re-
sembles the average minimum distortion; however, it only considers crit-
ical epsilon values that fall below a chosen threshold. This measure aims
to quantify the severity of distortion when the network fails to maintain
local robustness on an image.

In their work, Katz et al. [16] discuss the concept of global adversarial
robustness. They consider a network globally adversarial robust if it main-
tains local robustness on every possible image. They note that they were
only able to prove this property for small networks, due to the domain of
possible images being very large.
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Chapter 3
Method

We build upon the work of Bosman et al. [8] and introduce our measure,
which we call the σ-robustness:

Definition 3 (σ-robustness). Consider a quantile 0 < σ < 1. The σ-
robustness of the network is the function Mσ : {Rn → N} → R>0 that
maps a neural network f : Rn → N, that classifies images with n pixels,
as follows:

Mσ( f ) = ϵ such that P(ϵ∗ ≤ ϵ) = σ

Here, ϵ∗ represents the critical epsilon, and the probability distribution
is over all possible critical epsilons. The probability of a specific critical
epsilon ϵ∗ is determined by how likely the network has that critical epsilon
on an arbitrary image.

The σ-robustness denotes the maximum distortion that the network
maintains local robustness on any arbitrary image, provided that we dis-
regard the (σ ∗ 100)% least critical robust images. The value of σ represents
the permitted error and is chosen to be very small. In our experiments, it
is set to 0.05.

One of the key observations made by Bosman et al. [8] is the resem-
blance of robustness distributions to log-normal distributions. If this is in-
deed true, it presents an opportunity for exploitation. Adopting a naive
approach, we will assume that robustness distributions are log-normal
distributions. We will see later that this assumption is too strong. Nonethe-
less, it allows us to gauge the computational time saved by making this
assumption. Additionally, we need to assess the accuracy of the assump-
tion. To accomplish this, we also measure the σ-robustness in the standard
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14 Method

manner without any assumptions, serving as our ground truth and pro-
viding a baseline for computational cost.

Measurements of the σ-robustness are conducted using estimators. To
leverage the log-normal assumption, we will employ a Bayesian estimator.
We will use the standard parameter-free estimator to estimate the ground
truth, thereby avoiding any assumptions about the distribution. For each
measurement of the σ-robustness, we will construct 95% confidence in-
tervals. These intervals allow us to compare different measurements, as
non-overlapping intervals indicate distinct measurements. *

Bayesian Estimator

We utilize Bayesian statistics to implement the assumption that a robust-
ness distribution follows a log-normal distribution. Formally, this is done
by employing a surrogate model Sθ that is parameterized by certain pa-
rameters θ which are unknown to us. The surrogate model incorporates
our beliefs about the distribution while allowing for some flexibility through
its parameters. In our case, the surrogate model corresponds to the log-
normal distribution. The log-normal distribution is characterized by two
parameters, µ and σ. Therefore, we define θ := (µ, σ). Mathematically, the
surrogate model is employed as follows:

P(ϵ∗ ≤ ϵ | θ) =
∫ ϵ

0
Sθ(x)dx (3.1)

Where we specify the dependence on the parameters θ on the left side.
Once we gather some data D, we can gain insight into our parameters

θ. Formally, with the data D, we create a probability distribution over
possible model parameters as follows:

P(θ | D) ∝ P(D | θ)P(θ) (3.2)

Where we have used Bayes theorem in the last step.
One can use the prior P(θ) to encode beliefs about the parameters θ. In

our case, where we lack concise information about the parameters, we opt
for a uniform prior.

The distribution over model parameters also induces a distribution
over the σ-robustness as follows:

P(ϵ | D) =
∫

θ
P(ϵ ∩ θ | D)dθ =

∫
θ

P(ϵ | θ, D)P(θ | D)dθ (3.3)

*Full details here: https://github.com/quantagenmtg/Robustness-Metric

14
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Where ϵ = Mσ( f ) is the σ-robustness of a network f .
We can remove the dependence on D in P(ϵ | θ, D) as it is not rele-

vant to the value of ϵ once the parameters are set. We also observe that
P(ϵ | θ) = 1 when

∫ ϵ
0 Sθ(x)dx = σ and 0 otherwise. We can thus rewrite

equation 3.3 as follows:

P(ϵ |D) =
∫

θ:
∫ ϵ

0 Sθ(x)dx=σ
P(θ |D)dθ ∝

∫
θ:
∫ ϵ

0 Sθ(x)dx=σ
P(D | θ)P(θ)dθ (3.4)

Where we have used Bayes theorem in the last step just as described in
equation 3.2. We can neglect the constant of proportionality since, in prac-
tice, we can normalize the probabilities after calculating them.

This integral is too complex to solve directly. In practice, we will rely
on Monte Carlo integration. Further details can be found in the Appendix.

Our dataset consists of critical epsilon bounds, as it is infeasible to ob-
tain the exact critical epsilon. We denote the dataset as:

D = {(ϵL
1 , ϵU

1 ), . . . , (ϵL
n , ϵU

n )} (3.5)

Where ϵL
i represents the lower bound of the critical epsilon of the network

on image i, and ϵU
i represents the upper bound. Since the data points are

i.i.d. we see that the following holds:

P(D | θ) =
n

∏
i=1

∫ ϵU
i

ϵL
i

Sθ(x)dx (3.6)

Algorithm

Equation 3.4 allows us to construct a distribution over possible values for
the σ-robustness Mσ( f ) = ϵ. From this distribution, we build a 95% confi-
dence interval. Algorithm 1 outlines the process for calculating the distri-
bution over all potential values of ϵ. Since it’s not feasible to numerically
compute the probability for every ϵ, we instead calculate it for a finite
number of bins. At each step, we collect a new data point and update the
distribution. We then remake the bins for the area with nonzero probabil-
ity. We halt the process of adding data points either when the distribution
attains an uncertainty level γ or when it converges to zero probability for
all ϵ. The latter usually happens due to the restrictive nature of the log-
normal assumption. In our experiments, the critical epsilon values have
an uncertainty of 0.002; hence, we set γ to that value. Figure 3.1 shows an
example of the resulting distribution and the ground truth 95% confidence
interval.
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16 Method

Figure 3.1: Blue is the distribution given by algorithm 1. The vertical red lines
indicate the ground truth 95% confidence interval.

Algorithm 1 Distribution over σ-robustness
Input: Number of bins n, Smallest edge ϵmin, Largest edge ϵmax, γ, σ
Output: ϵi for i ∈ {1, . . . , n+ 1} and P(ϵi < ϵ ≤ ϵi+1 |D) for i ∈ {1, . . . , n}

1: D ← ∅ ▷ Initialize dataset
2: while ϵmax − ϵmin > 2γ do
3: ϵi ← ϵmin + (i− 1) ϵmax−ϵmin

n ∀i ∈ {1, . . . , n + 1}
4: D ← D ∪ {(ϵL, ϵU)} ▷ Gather a new data point
5: Calculate P(ϵi < ϵ ≤ ϵi+1 | D) ∀i ∈ {1, . . . , n} ▷ See Appendix
6: if P(ϵi < ϵ ≤ ϵi+1 | D) = 0 for i ∈ {1, . . . , n} then
7: D ← D \ {(ϵL, ϵU)} ▷ Remove last data point
8: Break loop
9: end if

10: Take l ← min{i : P(ϵi < ϵ ≤ ϵi+1 | D) ̸= 0}
11: Take u← max{i : P(ϵi−1 < ϵ ≤ ϵi | D) ̸= 0}
12: ϵmin ← ϵl, ϵmax ← ϵu ▷ Update domain where nonzero probability
13: end while

16
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The first 3 inputs of the algorithm represent the initial area of the dis-
tribution which the algorithm investigates. In our experiments, we use
amin = 0, amax = 0.4, and around 200 bins. The input γ depicts the uncer-
tainty we want to reach. The input σ depicts the quantile we are estimat-
ing. The algorithm outputs bins with their corresponding probabilities. In
line 1 we initialize the dataset. In line 2-12 we perform a while loop that
gathers data until we have reached the uncertainty γ or we have reached
zero probability (lines 6-9). In line 3 we update the bin edges such that
we have n bins of equal size. In line 4 we insert a new data point into
our dataset. In line 5 we update the distribution with the new bins and
the new data point. In line 10 - 12 we reduce the area that the algorithm
investigates. Everything below amin and above amax has a probability of
zero.

Parameter-free estimator

For the parameter-free estimator we will follow Meeker et al. [24]. We
build a 95% confidence interval and use it as the ground truth to evaluate
the Bayesian estimator.

In our experiments we are given samples X1, ..., Xn of critical epsilons
bounds. To simplify matters, we will assume that these are not bounds but
values. Mathematically this will not make a difference, but it will simplify
a lot of equations. With these samples we can now make order statistics
X(1) ≤ X(2) ≤, · · · ,≤ X(n).

Our goal is to find an appropriate interval [X(l), X(u)] such that we form
a 95% confidence interval P(X(l) ≤ ϵ ≤ X(u)) ≥ 0.95. For X(l) ≤ ϵ we
need at least l out of the n samples to be less or equal to ϵ. Since for any
sample i we have that P(Xi ≤ ϵ) = σ it follows that P(X(l) ≤ ϵ) =

P(B(n, σ) ≥ l) = 1− P(B(n, σ) ≤ l − 1) where B(n, p) is the binomial
distribution for n trials and probability p of success for one trial. Following
this logic we get:

P(X(l) ≤ a ≤ X(u)) = P(X(l) ≤ a)−P(X(u) ≤ a) =

P(B(n, σ) ≤ u− 1)−P(B(n, σ) ≤ l − 1) (3.7)

There are many choices of l and u that are possible, we pick them such
that we get a two sided confidence interval. This is given by P(X(l) ≥ a) =
P(X(u) ≤ a) = 0.025. The same is done when constructing the confidence
interval with the Bayesian estimator.
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18 Method

To go back to the original formulation, where the samples are bounds,
we just take the interval [X(l) − 0.002, X(u)] instead.

18
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Chapter 4
Results

In our experiments, we sought to assess the Bayesian estimator based on
three distinct criteria. Firstly, we wanted to evaluate its accuracy by ex-
amining its overlaps with the ground truth. Secondly, recognizing that the
log-normal assumption might be overly restrictive, we aimed to determine
whether the estimator, in its current state, is suitable for comparing the ro-
bustness of networks. Thirdly, we aimed to evaluate the total runtime
required by the estimator, considering that measuring the critical epsilon
of an image is computationally demanding.

To perform these assessments we take multiple measurements using
the Bayesian estimator. As mentioned, algorithm 1 will terminate after
utilizing approximately 30 instances. Altering the instances it considers
will yield different measurements for the Bayesian estimator. In our ex-
periments, we do this 100 times.

To obtain the ground truth we use all instances available to us for the
parameter-free estimator. This amounts to around 1000 instances. We
thus have 100 different measurements with the Bayesian estimator and
1 ground truth measurement with the parameter-free estimator per net-
work.

Experimental setup

For our experiments, we utilized critical epsilon values obtained from
three neural networks pre-trained on the MNIST dataset [17]. This dataset
comprises a vast collection of handwritten digits along with their corre-
sponding labels, with 60,000 instances allocated for training and 10,000
for testing. From this pool, Bosman et al. [8] selected the first 1000 test
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and 1000 train instances to measure the critical robustness across the des-
ignated networks. Notably, only instances correctly classified by the net-
works were considered, resulting in potentially varied image distributions
per network. The networks are: mnist-net, mnist-net 256x4 and mnist relu
4 1024.

Critical robustness for the network on each image was assessed through
a parallelized binary search across epsilon values ranging from 0.001 to 0.4
in increments of 0.002. At each epsilon, Bosman et al. [8] verified if the net-
work remained epsilon-robust on the image until determining an interval
of size 0.002 wherein the critical epsilon must lie.

Consequently, we obtained critical epsilon bounds and runtimes for
each of the three aforementioned neural networks on approximately 1000
test instances. These are used by the estimators.

Furthermore, Bosman et al. [8] analyzed nine additional networks pre-
trained on the MNIST dataset. However, critical robustness for these net-
works was measured on only the first 100 test and 100 train instances.
Although included in Tables 4.2, and 4.3, we refrain from drawing conclu-
sions based on these networks due to the unreliable ground truth derived
from only 100 instances. The additional networks are: mnist-net 256x2,
mnist-net 256x6, mnist nn, mnist relu 3 100, mnist relu 3 50, mnist relu 6
100, mnist relu 6 200, mnist relu 9 100, mnist relu 9 200.

Accuracy of Bayesian estimator

To assess the accuracy of the Bayesian estimator, we examine the number
of intervals out of the 100 that overlap with the ground truth. If overlap
occurs, we analyze the assigned probability to the overlap and check what
ratio of the interval is part of the overlap. This can be seen in table 4.1.
Out of the 100 intervals, 95 overlap with the ground truth for mnist-net,
81 for mnist-net 256x4, and 86 for mnist relu 4 1024. If an adequate surro-
gate model is used there should always be overlap with the ground truth.
With our current surrogate model, this overlap only occurs around 80% of
the time for these networks. Although this is not 100%, it does indicate
that a log-normal surrogate model is a step in the right direction, as most
of the intervals produced overlap with the ground truth. The table also
highlights that the probability assigned to the overlap falls short of the
desired level, peaking at 0.65 for mnist-net but being lower for the other
two networks. Furthermore, the ratio of overlap with the ground truth is
below 0.5 for all three networks, suggesting that the measured intervals
predominantly lie outside the ground truth rather than within it.

20
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Network Frequency of
overlap

Average
probability of

overlap

Average size
ratio of overlap

mnist-net 95 0.65 0.48
mnist-net 256x4 81 0.34 0.22

mnist relu 4
1024

86 0.42 0.28

Table 4.1: Shown is the frequency, average probability and average size of overlap
for the Bayesian estimator measurements with the ground truth. The frequency
is given by the number of intervals measured with the Bayesian estimator that
overlap with the ground truth (out of the 100) for each network. The average
probability of the overlap is computed by summing up the probabilities of the
generated distribution using algorithm 1 within the overlap region. The size ratio
of overlap is determined by dividing the size of the overlap by the size of the
interval. The ground truth was calculated using 1000 instances with a parameter-
free estimator.

Precision of Bayesian estimator

Since the surrogate model used is not perfect we want to see the distri-
bution of confidence intervals produced by the Bayesian estimator. This
gives us an idea of how useful the estimator is for comparing networks.
Table 4.2 shows some statistics over the intervals We also illustrate this
distribution for the 3 networks that have 1000 instances using a histogram.
We take the lower bounds and upper bounds of each interval, these will
be the bin edges. The frequency for each bin is given by the number of
intervals that contain the epsilon values inside the bin. Figure 4.1 shows
this histogram for each of the 3 networks. It is clear from this figure that
mnist-net 256x4 is more robust than the other two networks as its ground
truth confidence interval is strictly greater than that of the other two net-
works. With the Bayesian estimator we cannot always make this conclu-
sion. We can see this by looking at the lowest and highest interval in table
4.2. It is possible that, when using the Bayesian estimator, confidence in-
tervals such that mnist-net 256x4 has a smaller interval than the other two
networks. This would lead to the conclusion that mnist-net 256x4 is less
robust than the other two networks, which would be false.
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Figure 4.1: Each figure is for a different network. The blue curve is a histogram
that shows the amount of times the epsilon values in a given bin were in one of
the 100 different intervals generated using the Bayesian estimator. The yellow
vertical lines show the true two sided 95% confidence interval. This was calcu-
lated using the parameter-free estimator.
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Network Average

lower bound
Average

upper bound
True 95%

confidence
interval

Lowest
interval

Highest
interval

Minimum
size

Maximum
size

Average size Ground
truth size

mnist-net 0.0102 0.0173 (0.0090,
0.0170)

(0.0023,
0.0077)

(0.0151,
0.0254)

0.0001 0.0109 0.0072 0.0080

mnist-net
256x4

0.0172 0.0306 (0.0170,
0.0250)

(0.0043,
0.0100)

(0.0258,
0.0468)

0.0002 0.0210 0.0134 0.0080

mnist relu 4
1024

0.0097 0.0218 (0.0070,
0.0150)

(0.0014,
0.0077)

(0.0213,
0.0371)

0.0004 0.0203 0.0121 0.0080

mnist-net
256x2

0.0126 0.0184 (0.0070,
0.0210)

(0.0073,
0.0149)

(0.0179,
0.0261)

0.0001 0.0089 0.0058 0.0140

mnist-net
256x6

0.0181 0.0304 (0.0050,
0.0330)

(0.0046,
0.0178)

(0.0390,
0.0549)

0.0019 0.0192 0.0123 0.0280

mnist nn 0.0040 0.0082 (0.0010,
0.0110)

(0.0015,
0.0046)

(0.0083,
0.0164)

0.0003 0.0081 0.0042 0.0100

mnist relu 3
100

0.0142 0.0253 (0.0050,
0.0310)

(0.0024,
0.0091)

(0.0304,
0.0438)

0.0001 0.0169 0.0111 0.0260

mnist relu 3
50

0.0166 0.0264 (0.0070,
0.0270)

(0.0082,
0.0190)

(0.0242,
0.0366)

0.0005 0.0138 0.0098 0.0200

mnist relu 6
100

0.0169 0.0293 (0.0090,
0.0270)

(0.0077,
0.0191)

(0.0251,
0.0418)

0.0019 0.0184 0.0123 0.0180

mnist relu 6
200

0.0176 0.0310 (0.0050,
0.0330)

(0.0066,
0.0193)

(0.0326,
0.0516)

0.0002 0.0190 0.0134 0.0280

mnist relu 9
100

0.0119 0.0220 (0.0090,
0.0270)

(0.0024,
0.0094)

(0.0193,
0.0358)

0.0001 0.0176 0.0102 0.0180

mnist relu 9
200

0.0174 0.0303 (0.0090,
0.0330)

(0.0068,
0.0220)

(0.0281,
0.0470)

0.0002 0.0188 0.0129 0.0240

Table 4.2: Statistics for the Bayesian estimator. The ground truth is calculated using the parameter-free interval. The
lowest and highest intervals contain the lowest and highest value of epsilon respectively. The size of an interval is given by
subtracting its lower bound from its upper bound. For the networks in bold, their ground truth was calculated using 1000
instances. For the remaining networks, it was calculated using only 100 instances.
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24 Results

Runtime of Bayesian estimator

Table 4.3 presents statistics for the runtimes of the Bayesian estimator, it
also includes the runtime of the parameter-free estimator. Additionally,
to visualize the runtime distribution, we plot a cumulative density plot of
the runtimes of the Bayesian estimator in Figure 4.2. The runtime is given
by the total time it took to calculate the critical epsilon for the network
on each instance used for the measurement. For the ground truth all in-
stances are used, the runtime is thus the total time required to compute the
critical epsilon for the network on every instance in the dataset. The table
indicates a significant speedup achieved by the Bayesian estimator com-
pared to the parameter-free estimator, typically around 100 times faster.
The figure shows that the runtime distributions for mnist-net 256x4 and
mnist relu 4 1024 are very similar. By looking at the steepest parts of the
cumulative density plot we can see that for mnist-net quite a lot of run-
times are at the lower tail of its distributions. for the other two networks
this is not the case as they do not have a lot of runtimes at either tales of
their distribution.
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Figure 4.2: Cumulative frequency of runtime for the Bayesian estimator on three
networks. Each curve is a histogram showing the cumulative runtime of the 100
different intervals generated using the Bayesian estimator. The cumulative fre-
quency for a bin gives the amount of intervals that had less than or equal to the
runtimes in the bin. The runtime for an interval is given by the total runtime of
each instances used to create the interval. The runtime of the instance comes from
measuring its critical robustness.
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26 Results

Network Minimum
runtime
(hours)

Maximum
runtime
(hours)

Average
runtime
(hours)

Ground
truth

runtime
(hours)

mnist-net 19.85 45.38 30.32 4049.16
mnist-net

256x4
43.67 79.39 61.94 9631.47

mnist relu 4
1024

40.50 74.62 57.73 10791.52

mnist-net
256x2

2.68 14.58 8.09 432.95

mnist-net
256x6

49.53 80.41 62.12 1716.84

mnist nn 3.80 19.55 11.52 360.63
mnist relu 3

100
38.02 64.08 49.29 1155.38

mnist relu 3
50

12.29 30.64 21.81 827.41

mnist relu 6
100

44.55 66.67 53.70 1184.82

mnist relu 6
200

45.34 67.69 56.10 1219.33

mnist relu 9
100

39.76 65.84 51.86 1153.48

mnist relu 9
200

51.18 77.18 62.74 1737.23

Table 4.3: Runtime statistics for the Bayesian estimator are given in the first 3
columns. The runtime for the parameter-free estimator is given in the last column.
For the networks in bold, their ground truth was calculated using 1000 instances.
For the remaining networks, it was calculated using only 100 instances.
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Chapter 5
Conclusion

In this thesis we have introduced a measure that gives a guarantee for the
robustness of a network and is easily interpretable. To use this measure,
we build upon previous work on robustness distributions and introduce a
Bayesian estimator that assumes robustness distributions are log-normal.
To evaluate this approach, we compared it with a standard parameter-free
estimator, which served as our ground truth.

Our experiments revealed that while the log-normal assumption pro-
vided computational efficiency for the Bayesian estimator, it was overly
restrictive, leading to deviations from the ground truth in about 20% of
cases. We find that, robustness distributions are not perfectly log-normal.
The assumption thus restricts the estimator too much by not giving it the
freedom to explore different types of distributions. However, the Bayesian
estimator demonstrated significant speed advantages, converging more
than 100 times faster than the parameter-free estimator.

Further research needs to be invested into a proper surrogate model
for the Bayesian estimator, we find that using a log-normal is a step in
the right direction but too restrictive. A model that is similar to a log-
normal but not as strict, such as a mixture model, should be investigated.
Additionally, other estimators should also be explored, such as a standard
frequentist estimator that assumes a normal distribution after the data is
transformed.
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Chapter 6
Appendix

Monte Carlo integration

We adapt the notations used by Robert and Casella [25]. Monte Carlo
integration is used to numerically evaluate integrals that are difficult to
solve analytically. Consider the following integral:

J =
∫
X

f (x)p(x)dx (6.1)

With p being some probability density over x on the domainX and f being
some integrable function over x. This type of integral is commonly found
during statistical inference. An example relevant to this thesis would be
the marginal distribution, given by:

p(ϵ) =
∫

p(ϵ | θ)p(θ)dθ (6.2)

Where the unknown density over ϵ is marginalized over the parameters θ
for which the density and conditional density are known. We can numer-
ically approximate the integral from equation 6.1 by sampling from the
distribution p(x) and then calculating the following:

f̄m =
1
m

m

∑
i=1

f (xi) ≈ J (6.3)

Where x1, . . . , xm are the resulting samples.
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34 Appendix

Calculating distribution P(ϵ | D)

We use Monte Carlo integration to calculate the integral in equation 3.4.
We sample θ1, . . . , θm from the prior P(θ) and put it into equation 6.3 to
get:

P(ϵ | D) ≈ K
m

m

∑
i=1

P(D | θi) (6.4)

As the dimension of the parameter space low in this work a simple Monte
Carlo integration works well. However, if one is working with a more
complex surrogate model the dimension of the parameter space might be
too large to efficiently sample with the prior. In that case, using Markov
Chains [26] might be preferred, as they will guide the samples to areas
under the integral that have the most effect on the outcome.

Since the integral in equation 3.4 is over parameters θ such that
∫ a

0 Sθ(ϵ)dϵ =
σ, we have to take samples of θ in a special way. Sθ is log-normal, it de-
pends on two parameters µ and s as follows:

Sθ(x) = Sµ,s(x) =
1

xs
√

2π
exp

(
− (ln x− µ)2

2s2

)
(6.5)

We have that
∫ ϵ

0 Sθ(x)dx = σ, thus we lose one degree of freedom. We
choose to sample over the median M := exp(µ) as it simplifies calcula-
tions.

Bosman et al. [8] have only ever found critical epsilon values lower or
equal to 0.4 in their experiments. We take that into account by not sam-
pling any M over 0.4, as this gives us distributions that always place low
probabilities on critical epsilon values much larger than 0.4. By definition
we know that

∫ M
0 Sθ(x)dx = 0.5, since σ < 0.5 we know that ϵ < M. We

thus sample M uniformly over the range (ϵ, 0.4].
Once the median is fixed we get µ = ln(M) and s by rearranging the

log-normal cumulative density function, which is given by:

Fµ,s(x) =
1
2

[
1 + erf

(
ln x− µ

s
√

2

)]
(6.6)

Using
∫ ϵ

0 Sθ(x)dx = σ and rearranging then gives us:

s =
ln ϵ− µ√

2 erf−1(2σ− 1)
(6.7)

We can then use Monte Carlo integration as given by equation 6.4 to ap-
proximate P(ϵ | D).
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To get the probability of a bin with edges ϵ1 and ϵ2 we take 10 samples
of ϵ uniformly over the range (ϵ1, ϵ2]. The bins we use get quite small, thus
only taking 10 samples of ϵ works well. For each value of ϵ sampled, we
then sample 1000 medians M uniformly over the range (ϵ, 0.4]. From this
we can calculate the parameters µ and s of the log-normal distribution as
described above, resulting in m = 10000 log-normal parameters θ1, . . . , θm.
We can then use Monte Carlo integration to get the probability over the
bin. Using equation 3.6 we now get:

P(ϵ1 < ϵ ≤ ϵ2 | D) ≈ K
m

m

∑
i=1

P(D | θi) =
K
m

m

∑
i=1

n

∏
j=1

∫ ϵU
i

ϵL
j

Sθi(x)dx (6.8)

We can calculate
∫ ϵU

ϵL Sθ(x)dx using the cumulative density function given
by equation 6.6. We can ignore K and set it to 1. This is because algorithm 1
calculates KP(ϵ |D) across the entire nonzero area. The sum of the results
for each bin is thus equal to 1

K from which we can retrieve K.
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