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1 Introduction

In 1951, Claude E. Shannon, ‘the father of information theory’, built a machine that could
play the two-player game on a graph nowadays known as the Shannon Switching Game, but
which Shannon himself called Bird Cage.1 A special case of the game has also been called
(the game of) Gale (after David Gale, who independently invented the game) and Bridg-It,
under which name the game was actually marketed [6, 8].

Shannon’s machine was a physical resistance network in which the voltage was measured at
different places to determine its moves. The players made their moves by turning switches
on or off, effectively short-circuiting or cutting resistors. The name of the game, as well
as the common names of the two players (‘Short’ and ‘Cut’), originate here. The machine
played well, but not perfectly [6].

In 1964, Alfred Lehman [12] used matroid theory to give necessary and sufficient conditions
for the game to always be won (when played optimally) by respectively the Short player, the
Cut player, or the player that goes first. Moreover, he formulated winning strategies for the
player who could win. Both the characterization and the strategies, however, depend on the
existence of two subsets of the edges that satisfy certain properties, and little was known
about the construction or even the existence of such sets.

In 1969, John Bruno and Louis Weinberg [2] gave a constructive, graph-theoretic solution of
the Shannon Switching Game, combining Lehman’s results with work of Genya Kishi and
Yoji Kajitani [10] about maximally distant trees and the principal partition of graphs.

This thesis gives an overview of the Shannon Switching Game, Lehman’s [12] necessary
and sufficient conditions for the game to be short, cut or neutral and the corresponding
strategies, and an elaboration of Bruno and Weinberg’s [2] application of Kishi and Kajitani’s
[10] results to finding a pair of disjoint cospanning trees in a graph if the game is short.
The main contributions of this thesis are providing Lehman’s results and their proofs with
graphical examples to make them easier to read, and the elaboration of Bruno andWeinberg’s
algorithm mentioned above.

In Section 2 and Section 3 we respectively give a short explanation of the Shannon Switching
Game, and classify instances of it. Since Lehman uses matroid theory to analyze the game,
we first cover some basic matroid theory and Lehman’s relevant lemmas in Section 4, and
then translate the Shannon Switching Game on a graph to its matroidal version in Section 5.
This then allows us to prove that the conditions that Lehman formulates are indeed necessary
and sufficient for a game to be short, and we extract a winning strategy for Short from this
proof in Section 6. After we have defined the dual matroid in Section 7, we analyze cut
games in Section 8 in the same manner as we analyzed short games. For both short and
cut games, we also formulate the winning strategy if the game is played on a graph. In
Section 9 we explain how the described strategies can be applied to neutral games. Finally,
in Section 10, we explain how one can find a pair of disjoint cospanning sets, which, together
with Lehman’s results, renders a constructive strategy for the Shannon Switching Game.

1It is not clear by whom the game itself was originally invented.
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Games such as the Shannon Switching Game often have direct applications in network theory
and, more generally, information theory [4]. More specifically, certain optimization problems
could be reduced to (a variant of) such a game [13].

In future research, variants of the Shannon Switching Game could be studied. It would
especially be interesting to see if the classifications of, and the strategies for, those variants
are similar to those given by Lehman for the original game. As Lawler notes, ‘[i]t is not
hard to devise variants of the switching game which are effectively unsolved’ [11, p. 325]. He
proposes a version where ‘neither player is allowed to have more than k arcs2 tagged at any
time,’ which is effectively the game of Bridg-It mentioned above, where both players have a
limited number (20) of ‘bridges’.

Some other ideas for variants (which fall beyond the scope of this thesis) are: one where
players are allowed to ‘untag’ edges tagged by their opponent (and the opponent is not
allowed to directly ‘retag’ that edge); one where the players may tag two (or more) edges per
turn; one where there are multiple distinguished edges (which is to some degree discussed in
[12]); one where the players may not tag two edges incident with the same vertex in a row;
the directed variant discussed in [7].

2 Description of the Shannon Switching Game on a

graph

The Shannon Switching Game is a two-player game that is played on a connected3 graph
G, one of whose edges e∗ = (u, v) ∈ E(G) is distinguished.4 The two players - called either
‘Short’ and ‘Cut’ or ‘the Short player’ and ‘the Cut player’ - in turn tag edges e ∈ E(G) with
e ̸= e∗, which then become either thick (tagged by the Short player) or dashed (tagged by
the Cut player). An edge cannot be tagged more than once. The goals of the two players are
different: the Short player aims to construct a path between u and v consisting only of thick
edges. The Cut player aims to avoid this. The game finishes when one of the players reaches
his or her goal (the Cut player winning when there is no possibility anymore of the Short
player forming a path). Both players have complete information. By this description, the
Shannon Switching Game can be considered a combinatorial game.5 For a simple example
of a game, see Figure 1.

2I.e. edges.
3The Shannon Switching Game can also be played on a disconnected graph. However, then only the

connected component that contains e∗ would be of interest. Because of this, we only consider connected
graphs.

4In other descriptions of the game, this edge is sometimes only added when it is necessary to indicate the
vertices u and v by means of an edge, which will be the case when we will translate the graphical situation
into a matroidal one in Section 5. For simplicity, we require here that there always be such an edge.

5The definition of a combinatorial game varies: for example, Albert et al. [1, p. 3] demand that the
winner is determined by who played last, which is not the case with the Shannon Switching Game.
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e∗ e∗ e∗ e∗

e∗ e∗ e∗ e∗

Figure 1: Example of a Shannon Switching Game. Edges tagged by Short are thick and
edges tagged by Cut are dashed. The edge last played on is highlighted yellow.

3 Classification of Games: Short, Cut or Neutral

By the given description of the game, it is clear that one of the two players must win: when
all edges are tagged, there either is a path between u and v consisting only of thick edges
(a win for the Short player) or there is not (a win for the Cut player). We can now give
the following classification of instances of the Shannon Switching Game (see Figure 2 for a
simple example of every class):

(i) A game is short if the Short player, playing second, can win against any strategy of
the Cut player.

(ii) A game is cut if the Cut player, playing second, can win against any strategy of the
Short player.

(iii) A game is neutral if the player playing first can win against any strategy of the player
playing second.

To see that these are indeed the only three options, we make the following observation. If
a player, playing second, can win against any strategy of the player playing first, then it is
also possible to win playing first by using the following strategy: as the first move, tag any
edge. Then proceed by playing the same (winning) strategy as when playing second. If that
strategy tells you to tag the edge you tagged first, tag any other (untagged) edge. This way,
you play the same strategy as when playing second, only with an extra thick edge, which is
never bad for you. It now logically follows that these three options classify all instances of
the Shannon Switching Game.
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e∗

(a) Short.

e∗

(b) Cut.

e∗

(c) Neutral.

Figure 2: Examples of a short, cut and neutral game.

4 Some matroid theory

Lehman [12] presents a winning strategy6 for the Short player (if the game is short or if
it is neutral and the Short player plays first7). He does this by first defining the Shannon
Switching Game on a matroid instead of a graph. Then, he formulates three conditions that
are necessary and sufficient for the game to be short and proves that they are. From the
proof of the sufficiency, a winning strategy for the Short player becomes clear. Finally, he
translates everything back to a graph-theoretical context.

To prove the necessity and sufficiency of the three conditions, Lehman first proves a series
of lemmas. The proofs of some of these lemmas are quite concise. Hence, we here again
give the lemmas and Lehman’s proofs, but we present them in an extended (and hopefully
clearer) way. Moreover, where both possible and helpful,8 we illustrate (the proofs of) the
lemmas with graphical examples. We would like to emphasize that these examples do not
aim to fully depict (the proofs of) the lemmas, not merely because they are examples, but
because a matroid is a much more general object than a graph, and not every matroid is a
graphical one. However, precisely because matroids are so general and hence abstract, and
because graphs are relatively easy to interpret, we believe that here the examples offer a
valuable contribution. Moreover, the Shannon Switching Game is originally about graphs,
so they seem to be a logical choice of representation.

We will start by giving some basic definitions concerning matroids, and then formulate, prove
and illustrate Lehman’s lemmas. In Section 5, we present his proof of the sufficiency and
necessity of the three conditions for a game to be short.

4.1 Basic definitions

A matroid can be defined in many (equivalent) ways, one of them being in terms of circuits.
Since the Shannon Switching Game is essentially about circuits/cycles9, this is the one that
we will be working with (and the one that Lehman uses).

6As far as we know, no general optimal strategy is known, in the sense that it wins the game in as few
turns as possible.

7See Section 9 for a more detailed explanation of how the strategy is applied to neutral games.
8In particular, we chose not to illustrate (the proof of) Lemma 6. Since the proof consists of many steps,

involves edge-dependent subsets for every edge in the graph, and contains complex subsets (in that they
consist of many subsets themselves), we believe that any illustration of (the proof of) the lemma would
either be very lengthy, or would not illustrate all important facets of it.

9The path that Short aims to form, together with e∗, constitutes a cycle in the graph.
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A matroid M is a pair (E,C), with E a finite non-empty set and C ⊆ 2E a collection of
subsets of E respecting the following properties:

1. ∅ /∈ C.

2. If C ′, C ′′ ∈ C and C ′ ⊆ C ′′, then we have C ′ = C ′′.

3. If C ′, C ′′ ∈ C, e ∈ C ′ ∩ C ′′ and C ′ ̸= C ′′, then there exists C ∈ C such that C ⊆
C ′ ∪ C ′′ − {e}.

Here, we denote set difference by −. The set operations used in this text (∪, ∩ and −) are
to be performed from left to right, unless otherwise indicated by brackets.

An element C ∈ C is called a circuit and elements e ∈ E are called branches.

The span sp(A) of a subset A ⊆ E is defined as

sp(A) := {e ∈ E | e ∈ A or there exists a circuit C ∈ C such that e ∈ C ⊆ A ∪ {e}}
and A is said to span a branch e ⊆ E if e ∈ sp(A).

To illustrate these concepts, we look at a few matroids. The graphical matroid M(G) =
(E,C) of a graph G has the edges of G as its branches and the cycles10 in G as its circuits. To
see that M(G) is indeed a matroid, note that the empty set is not a cycle, cycles do not con-
tain other cycles and if we have two different cycles with a non-empty intersection, the sym-
metrical difference of those two cycles contains (actually, is) again a cycle. For example, if G
is the graph in Figure 3, we have C = {{1, 3, 4}, {1, 2, 4, 5}, {1, 2, 4, 6, 7}, {2, 3, 5}, {2, 3, 6, 7},
{5, 6, 7}}. We also have, for example, sp({2, 3, 7}) = {2, 3, 5, 6, 7}.

1

2 3 4

5

6 7

Figure 3: A graph.

A matroid is, however, not necessarily based upon a graph. For example, consider the
set A = {a1, a2, a3, a4, a5, a6, a7} ⊆ R5 with a1 = (1, 1, 0, 0, 0)⊤, a2 = (1, 0, 1, 0, 0)⊤, a3 =
(1, 0, 0, 1, 0)⊤, a4 = (0, 1, 0, 1, 0)⊤, a5 = (0, 0, 1, 1, 0)⊤, a6 = (0, 0, 1, 0, 1)⊤, a7 = (0, 0, 0, 1, 1)⊤.
The vector matroidM(A) = (E,C) of the set of vectors A has the vectors in A as its branches
and the minimal linearly dependent subsets of A as its circuits. This definition again satisfies
the three properties of a matroid, where the last property follows from basic linear algebra
(the ‘exchange property’). The matroids M(A) and M(G) are isomorphic11: every vector

10That is, the circuits in which only the first and the last vertices are equal. They are also called simple
circuits.

11See, for example, [9, p. 235].
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e

(a) Statements (ii) and (iv). (b) Statement (iii). (c) Statement (v).

Figure 4: Examples of the statements in Figure 4. Edges in A are red, edges in B are blue,
and C is gray and dashed.

ai corresponds with an edge i, and the vector entries correspond with the vertices in such a
way that the entries equal to 1 correspond with the end points of the corresponding edge.
A subset of the vectors is now precisely minimal dependent if the corresponding edges form
a cycle: their linear combination is then equal to zero, since every vertex in the cycle is the
endpoint of exactly 2 vertices. Hence, M(A) is also a graphical matroid.

An example of a matroid that is not graphical, is M = (E,C) with E = {1, 2, 3, 4} and
C = {{2, 3, 4}, {1, 3, 4}, {1, 2, 4}, {1, 2, 3}} - the so-called 2-uniform matroid: a graph that
has cycles {2, 3, 4} and {1, 3, 4} must also contain the cycle {1, 2}, but {1, 2} /∈ C.

4.2 Some lemmas about matroids

The following six lemmas are from Lehman [12]. Lemma 1 corresponds to Lemmas 3, 4,
5, 6 and 7 from [12]; Lemmas 2, 3, 4, 5 and 6 correspond to Lemmas 8, 9, 11, 12 and 13,
respectively. We have included only the most basic lemmas (summed up in Lemma 1) and
the lemmas that are used in the proof of Lehman’s Theorem 14 (our Theorem 1).

Lemma 1. Let M = (E,C) be a matroid, A,B ⊆ E subsets of the set of branches and e ∈ E
a branch. Then the following statements hold:

(i) A ⊆ sp(A).

(ii) e ∈ sp(A)− A if and only if there exists a circuit C such that C − A = {e}.

(iii) If A ⊆ B then sp(A) ⊆ sp(B).

(iv) sp(A) = sp(sp(A)).

(v) If A ⊆ sp(B) then sp(A) ⊆ sp(B).

We omit the proof, since the results are quite basic.12 To get a sense for why they are true,
see Figure 4.

Lemma 2. Let a ∈ E be a branch and A,B ⊆ E subsets of branches, such that a ∈ A− B
and sp(B) ⊆ sp(A). Then either sp(B) ⊆ sp(A − {a}) or there exists a branch b ∈ B − A

12Moreover, we will not refer to this lemma every time we use it, since this would decrease readability.
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such that sp(B) ⊆ sp(A ∪ {b} − {a}).

Proof. We distinguish between two cases.

1. See Figure 5a. If B−A ⊆ sp(A−{a}), then B ⊆ sp(A−{a}) and hence by Lemma 1(v)
we have sp(B) ⊆ sp(A− {a}).

2. See Figure 5b. If B − A ⊈ sp(A − {a}), then there exists a branch b ∈ (B − A) −
sp(A − {a}). Since b ∈ B ⊆ sp(A), there exists a circuit C ⊆ A ∪ {b} with b ∈ C.
Since b /∈ sp(A − {a}), there is no circuit in A − {a} ∪ {b} that contains b and hence
a ∈ C. Then a ∈ sp(A ∪ {b} − {a}), so A ⊆ sp(A ∪ {b} − {a}) and hence sp(B) ⊆
sp(A) ⊆ sp(A ∪ {b} − {a}).

Intuitively, in the second case, b ‘repairs’ A, in the sense that A ∪ {b} − {a} spans B again.

a

(a) The case B −A ⊆ sp(A− {a}).

a b

(b) The case B −A ⊈ sp(A− {a}).

Figure 5: Illustration of Lemma 2. Edges in A are red, edges in B are blue, and C is gray
and dashed.

Lemma 3. Let A,B ⊆ E be subsets of the set of branches and a, d ∈ E branches, such
that a ∈ A − B, d /∈ sp(A ∩ B) and d ∈ sp(A) = sp(B). Then there exists a branch
b ∈ B − sp(A ∩B) such that sp(A ∪ {b} − {a}) = sp(B).

Proof. Since d ∈ sp(B) − sp(A ∩ B), B − sp(A ∩ B) is not empty: suppose it was, then B
would be spanned by A∩B and hence d ∈ sp(B) ⊆ sp(A∩B). We distinguish between two
cases:

1. See Figure 6a. If sp(A− {a}) = sp(B), any b ∈ B − sp(A ∩B) suffices.

2. See Figure 6b. If sp(A−{a}) ̸= sp(B), we have sp(B) ⊈ sp(A−{a}), so from Lemma 2
it follows that there exists a branch b ∈ B − A such that sp(B) ⊆ sp(A ∪ {b} − {a})
and even sp(B) = sp(A ∪ {b} − {a}), since sp(A − {a}) ⊆ sp(A) = sp(B). Moreover,
b /∈ sp(A− {a}) (otherwise we would have sp(A− {a}) = sp(A ∪ {b} − {a}) = sp(B),
which is against the assumption), so b ∈ B − sp(A− {a}) ⊆ B − sp(A ∩B).

This result is quite similar to Lemma 2, the most important difference being that there now
always exists a branch b ∈ B that repairs A (if there is anything to repair), and we can

9



b

d

a

(a) The case sp(A− {a}) = sp(B).

b

d

a

(b) The case sp(A− {a}) ̸= sp(B).

Figure 6: Illustration of Lemma 3. Edges in A are red and edges in B are blue.

demand that b /∈ sp(A ∩ B). In the proof of Theorem 1, this will guarantee that the Short
player will always have a branch b to play on in response to a play on a by the Cut player.

Lemma 4. Let A,B ⊆ E be subsets of the set of branches and a, d ∈ E branches such that
a ∈ A ∩B, d /∈ A ∪B and d ∈ sp(A) = sp(B). Then there exist A′, B′ ⊆ E such that

(i) A′ ∪B′ ⊆ A ∪B;

(ii) A′ ∩B′ ⊆ A ∩B − {a};

(iii) sp(A′ ∪ {d}) = sp(B′).

Proof. For every e ∈ (B − A) ∪ {d}, let CA
e be a circuit with CA

e ⊆ A ∪ {e} and e ∈ CA
e

(which exists because e ∈ sp(A) − A). Similarly, for every e ∈ (A − B) ∪ {d}, let CB
e be a

circuit with CB
e ⊆ B ∪ {e} and e ∈ CB

e . See Figure 7.

Define13 the sequence B0, A1, B1, A2, B2, ... by B0 = ∅, A1 = CA
d − {d},

Ai+1 = Ai ∪ ((Bi − sp(Ai)) ∩ A) ∪ (
⋃

e∈(Bi−sp(Ai))−A

(CA
e − {e})),

Bi+1 = Bi ∪ ((Ai+1 − sp(Bi)) ∩B) ∪ (
⋃

e∈(Ai+1−sp(Bi))−B

(CB
e − {e})).

In other words, to construct, say, Ai+1, we take Ai and for every e ∈ Bi that was not
already spanned by Ai, we either add e itself (if e ∈ A), or we add CA

e − {e} (if e /∈ A).
Since E is finite and we have Ai ⊆ Ai+1 and Bi ⊆ Bi+1 for every i, A∞ := limi→∞Ai and
B∞ := limi→∞Bi exist. See Figure 8.

We now distinguish between two cases.

1. If a /∈ A∞ ∩ B∞, set A′ = A∞ and B′ = B∞. From the construction of the sequence
it is clear that we then have d ∈ sp(A′) = sp(B′) and A′ ⊆ A and B′ ⊆ B. Hence,
A′ ∪B′ ⊆ A ∪B, A′ ∩B′ ⊆ A ∩B − {a} and sp(A′ ∪ {d}) = sp(B′).

13In [12] there is a typo in the definition of Bi+1. (The second ∩ should be a ∪.)

10



2. If a ∈ A∞∩B∞, let k be the minimal index such that a ∈ Bk −Ak or a ∈ Ak+1−Bk.
14

We then have one of the following three situations:

(i) If a ∈ A1, set A
′ = A− {a} and B′ = B.

(ii) If a ∈ Bk − Ak, then there exists a branch b ∈ (Ak − sp(Bk−1)) − B such that
a ∈ CB

b −{b}.15 To see this, note that Bk is the union of three sets. a cannot be in
one of the first two, i.e. Bk−1 or (Ak−sp(Bk−1))∩B: if a ∈ Bk−1, then k would not
have been minimal, and if a ∈ (Ak−sp(Bk−1))∩B, we would not have a ∈ Bk−Ak.
Now b, A and B ∪ {b} − {a} satisfy the original assumptions for a, A and B:
b ∈ A∩(B∪{b}−{a}), d /∈ A∪(B∪{b}−{a}) and d ∈ sp(A) = sp(B∪{b}−{a}).
Hence we can go through the same process, using the same CA

e ’s and CB
e ’s, except

setting CB
a to be the previous CB

b - we do not define them again, so even though
new circuits might have been created, we do not accept those. We do, however,
redefine the sequence B0, A1, B1, A2, B2, .... Note that we still have b ∈ Ak−Bk−1.
We now have situation (i) or (iii) - where b takes the role of a, A the role of A,
and B ∪ {b} − {a} the role of B - and can proceed accordingly.

(iii) If a ∈ Ak+1 − Bk, the situation is analogous to the above: there exists a branch
b ∈ (Bk − sp(Ak)) − A such that a ∈ CA

d − {b}. Now b, A ∪ {b} − {a} and B
satisfy the original assumptions for a, A and B. Hence we can go through the
same process, using the same CA

e ’s and CB
e ’s, except setting C

A
a to be the previous

CA
b . We now have situation (ii) - where b takes the role of a, A ∪ {b} − {a} the

role of A, and B the role of B - and can proceed accordingly.

At every step, the branch b that replaces a is in a set further to the left in the sequence;
hence it is clear that the above process is finite and that eventually we will arrive at
situation (i). A′ and B′ then clearly meet the required conditions. See Figure 9.

In the proof of Theorem 1, this lemma allows for the replacement of b in Aa by e∗ in
A′

a ∪ {e∗}.16

Since the proof above is quite nontransparent, we will explain the idea behind it. After
defining the circuits and the sequence, if a ∈ Bk − Ak or a ∈ Ak+1 − Bk for some k ≥ 1, we
perform an iterative process of ‘reshuffling’ the sets A and B to achieve that a is not in A′

anymore, and d ‘takes its role’: we find a branch b so that a is in CA
b (or in CB

b ), we add b
to B and we remove a from B. We then perform the same steps, b taking the role of a, and
we keep doing this procedure until the replacing branch is in A1.

Lemma 5. Let A,B ⊆ E be subsets of the set of branches and a, d ∈ E branches such that
a ∈ A−B, d /∈ A ∪B and d ∈ sp(A) = sp(B). Then there exist A′, B′ ⊆ E such that

14Lehman [12, p. 693] seems to claim that k (or his |a|) is unique(ly defined). The example in the appendix
shows that this is not necessarily true.

15Since we found this step a little counterintuitive ourselves, we would like to point out to the reader that
we are here picking a branch b such that a is in CB

b − {b}, and not a branch b such that b is in some circuit
dependent on a.

16For technichal reasons, e∗ is not in A′
a and instead we work with A′

a ∪ {e∗}.
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a

e

d

Figure 7: An example of the situation in Lemma 4, including a circuit CA
e . Edges in A are

red, edges in B are blue, and CA
b is gray and dashed.

(i) A′ ∪B′ ⊆ A ∪B − {a};

(ii) A′ ∩B′ ⊆ A ∩B;

(iii) sp(A′ ∪ {d}) = sp(B′).

Proof. We distinguish between two cases.

1. If sp(A− {a}) = sp(B), set A′ = A− {a} and B′ = B.

2. If sp(A − {a}) ̸= sp(B), we have sp(B) ⊈ sp(A − {a}) and hence by Lemma 2 there
exists a branch b ∈ B − A such that sp(B) ⊆ sp(A ∪ {b} − {a}) and thus sp(B) =
sp(A∪{b}−{a}). We now have b ∈ (A∪{b}−{a})∩B and clearly d /∈ (A∪{b}−{a})∪B
and d ∈ sp(A ∪ {b} − {a}) = sp(B), so by Lemma 4 there exist A′, B′ ⊆ E such that

• A′ ∪B′ ⊆ (A ∪ {b} − {a}) ∪B ⊆ A ∪B,

• A′ ∩B′ ⊆ (A ∪ {b} − {a}) ∩B − {b} ⊆ A ∩B and

• sp(A′ ∪ {d}) = sp(B′).

Since a /∈ A′, B′, we even have A′ ∪B′ ⊆ A ∪B − {a}

Lemma 5 is almost identical to Lemma 4, the only difference being that a ∈ A− B instead
of a ∈ A ∩B.

Lemma 6. Let d ∈ E be a branch such that E − {d} ≠ ∅ and suppose that for every branch
a ∈ E − {d} there exist Aa, Ba ⊆ E such that a, d /∈ Aa ∪ Ba and sp(Aa ∪ {d}) = sp(Ba).
Then there exist A,B ⊆ E such that

(i) d /∈ A ∪B;

12



a

d

(a) A copy of the situ-
ation in Figure 7.

a

d

(b) A1

a

d

(c) A2

a

d

(d) A3 = A∞

a

d

(e) B0

a

d

(f) B1

a

d

(g) B2

a

d

(h) B3 = B∞

Figure 8: The construction of the sequence. For every i, edges in Ai are red and edges in Bi

are blue.

(ii) A ∩B ⊆
⋃

a∈E−{d}(Aa ∩Ba);

(iii) d ∈ sp(A) = sp(B).

Proof. If, for some a ∈ E−{d}, we have d ∈ sp(Aa), set A = Aa and B = Ba. Otherwise, let
a ∈ E−{d} be fixed. Since d ∈ sp(Ba)−Ba, there exists a circuit C such that C−Ba = {d}.
We have (C −{d})− sp(Aa) ̸= ∅ (otherwise C −{d} and hence d itself would be spanned by
Aa, which we supposed not to be the case). Let b ∈ (C − {d})− sp(Aa). It follows from the
assumption that there exist Ab, Bb ⊆ E such that b, d /∈ Ab ∪Bb and sp(Ab ∪ {d}) = sp(Bb).

We will now show that the sets {d} ∪ Ab ∪ ((Ba − {b}) − Bb) and Bb ∪ (Aa − Ab) and
the branches d and b satisfy the conditions of Lemma 5. Clearly, d ∈ ({d} ∪ Ab ∪ ((Ba −
{b})− Bb))− (Bb ∪ (Aa − Ab)) and b /∈ ({d} ∪ Ab ∪ ((Ba − {b})− Bb)) ∪ (Bb ∪ (Aa − Ab)).
To prove that b ∈ sp({d} ∪ Ab ∪ ((Ba − {b}) − Bb)) = sp(Bb ∪ (Aa − Ab)), note that
sp({d} ∪ Ab ∪ ((Ba − {b})−Bb)) contains

• {d} ∪ Ab and hence sp({d} ∪ Ab) = sp(Bb) and Bb;

• both (Ba − {b}) − Bb and sp(Bb) ⊇ Bb ⊇ (Ba − {b}) ∩ Bb, and hence Ba − {b},
Ba ∪ {d} − {b}, C − {b}, sp(C − {b}), {b}, Ba, sp(Ba) = sp(Aa ∪ {d}) and Aa.

Thus, sp({d} ∪ Ab ∪ ((Ba − {b}) − Bb)) contains Bb ∪ Aa ⊇ Bb ∪ (Aa − Ab) and hence
sp(Bb ∪ (Aa − Ab)). Similarly, sp(Bb ∪ (Aa − Ab)) contains

• Bb and hence sp(Bb) = sp(Ab ∪ {d}) and Ab ∪ {d};

13



a

b

d

(a) a ∈ A3 −B2

→
a

b

d

(b) a ∈ B2 −A2

→ a

b

d

(c) a ∈ A2 −B1

→

a
b

d

(d) a ∈ B1 −A1

→

a

d

(e) a ∈ A1 −B0

→

d

(f) The result: A′ (red)
and B′ (blue).

Figure 9: The process of substituting a for d, including the circuits CA
b and CB

b . At every
step, the ‘new’ A and B are depicted. Edges in A are red, edges in B are blue, and circuits
CA

b and CB
b are gray and dashed.

• both Aa − Ab and Ab ∪ {d} ⊇ Ab ⊇ Aa ∩ Ab, and hence Aa, Aa ∪ {d}, sp(Aa ∪ {d}) =
sp(Ba) and Ba.

Thus, sp(Bb ∪ (Aa −Ab)) contains Ab ∪ {d} ∪Ba ⊇ {d} ∪Ab ∪ ((Ba − {b})−Bb) and hence
sp({d}∪Ab∪((Ba−{b})−Bb)). So b ∈ sp({d}∪Ab∪((Ba−{b})−Bb)) = sp(Bb∪(Aa−Ab)).

Now, by Lemma 5, there exist A′, B′ ⊆ E such that

• A′ ∪B′ ⊆ ({d}∪Ab ∪ ((Ba −{b})−Bb))∪ (Bb ∪ (Aa −Ab)) ⊆ Aa ∪Ba ∪Ab ∪Bb −{b},

• A′ ∩B′ ⊆ ({d} ∪ Ab ∪ ((Ba − {b})−Bb)) ∩ (Bb ∪ (Aa − Ab)) and

• sp(A′ ∪ {b}) = sp(B′).

Let A = A′ ∪ (Ba − B′) and B = B′ ∪ (Aa − A′). To prove that d ∈ sp(A) = sp(B), note
that sp(A) contains

• A′, {b} (which is in Ba but not in B′) and hence A′ ∪ {b}, sp(A′ ∪ {b}) = sp(B′) and
B′;

• both Ba −B′ and B′ ⊇ Ba ∩B′, and hence Ba, sp(Ba) = sp(Aa ∪ {d}) and Aa.

Thus, sp(A) contains B′ ∪ Aa ⊇ B′ ∪ (Aa − A′) = B and hence sp(B). Similarly, sp(B)

14



contains

• B′, sp(B′) = sp(A′ ∪ {b}) and hence A′;

• both Aa − A′ and A′ ⊇ Aa ∩ A′, and hence A′, A′ ∪ {b} and sp(Aa ∪ {b}). Since
b ∈ sp(Aa ∪ {d}) − sp(Aa) and b /∈ Aa ∪ {d}, there exists a circuit C ′ such that
b ∈ C ′ ⊆ Aa∪{d}∪{b}. We also have d ∈ C ′ (otherwise b ∈ sp(Aa)), so d ∈ sp(Aa∪{b})
and thus sp(Aa ∪ {b}) = sp(Aa ∪ {d}). Hence, sp(B) contains sp(Aa ∪ {d}) = sp(Ba)
and Ba.

Thus, sp(B) contains A′ ∪ Ba ⊇ A′ ∪ (Ba − B′) = A and hence sp(A). We then have
d ∈ sp(A) = sp(B) and, since d /∈ Aa ∪Ba, also d /∈ A ∪B. Finally,

A ∩B = (A′ ∪ (Ba −B′)) ∩ (B′ ∪ (Aa − A′))

= (A′ ∩B′) ∪ (A′ ∩ (Aa − A′)) ∪ ((Ba −B′) ∩B′) ∪ ((Ba −B′) ∩ (Aa − A′))

⊆ (A′ ∩B′) ∪ (Ba ∩ Aa),

and

A′ ∩B′ ⊆ ({d} ∪ Ab ∪ ((Ba − {b})−Bb)) ∩ (Bb ∪ (Aa − Ab))

= (({d} ∪ Ab) ∩Bb) ∪ (({d} ∪ Ab) ∩ (Aa − Ab))

∪ (((Ba − {b})−Bb) ∩Bb) ∪ (((Ba − {b})−Bb) ∩ (Aa − Ab))

⊆ (Ab ∩Bb) ∪ (Aa ∩Ba).

Hence, A ∩B ⊆ (Aa ∩Ba) ∪ (Ab ∩Bb) ⊆
⋃

a∈E−{d}(Aa ∩Ba).

5 Description of the Shannon Switching Game on a

matroid

Now that we have developed some theory about matroids, we can describe how the Shannon
Switching Game is to be played on such a matroid. The general situation from the graph
version easily translates into this matroidal one: instead of a graph, we have a matroid and
instead of edges, we have branches, one of which is distinguished and unplayable: e∗. Note
that the vertices do not have a matroidal counterpart.17 The goal of the Short player is to
tag a subset S ⊆ E that spans e∗. Since e∗ itself is unplayable, this means that S∪e∗ should
contain a circuit and hence the Short player should aim to tag the branches C−{e∗} of some
circuit C ∈ C with e∗ ∈ C. Again, the Cut player’s goal is to avoid that this happens.

The Shannon Switching Game on a matroid is either short, cut or neutral, following the same
reasoning as for the graphical version. Indeed, if we let M be the graphical matroid on a
given graph G, the classes of the Shannon Switching Games played on M and G correspond.

17This is the reason why it was necessary to distinguish one edge in the graphical version.
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6 A winning strategy for the Short player

We now present Lehman’s theorem (Theorem 14 in [12]) about a set of necessary and suffi-
cient conditions for a Shannon Switching Game to be short, whose proof suggests a strategy
for the Short player.18

Theorem 1. Consider the Shannon Switching Game played on a matroid M with distin-
guished branch e∗. It is short if and only if there exist A,B ⊆ E such that

(i) e∗ /∈ A ∪B;

(ii) A ∩B = ∅;

(iii) e∗ ∈ sp(A) = sp(B).

Proof. We will first prove that the three conditions are sufficient for the Shannon Switching
Game to be short: suppose that there exist A,B ⊆ E such that e∗ /∈ A ∪B, A ∩B = ∅ and
e∗ ∈ sp(A) = sp(B). Suppose also that the Cut player moves first. At turn i of the Cut
player (that is, just before he or she moves), let Ai ⊆ E denote the set of branches that are
either still untagged and in A, or already tagged by the Short player (and thus in A∪B, as
we will see). That is

Ai := {e ∈ A | e untagged before turn i} ∪ {e ∈ A ∪B | e tagged by Short before turn i}

and similarly

Bi := {e ∈ B | e untagged before turn i} ∪ {e ∈ A ∪B | e tagged by Short before turn i}.

We hence have A1 = A and B1 = B.

We will now show that the Short player can play in such a way that for every turn i, we
have sp(Ai) = sp(Bi) = sp(A) and (hence) e∗ ∈ sp(Ai). We do this by induction. For
i = 1 this clearly holds, since A1 = A and B1 = B. Now, let N ≥ 1 and suppose we have
sp(Ai) = sp(Bi) = sp(A) for all 1 ≤ i ≤ N .

If e∗ ∈ sp(AN ∩BN) = sp({e ∈ A∪B | e tagged by Short before turn N}), the Short player
has tagged a subset of the branches that spans e∗ and has hence won.19 If not, the Cut player
tags some (untagged) branch a ∈ E − (AN ∩ BN), which set falls apart in E − (AN ∪ BN),
AN −BN and BN − AN .

• If a ∈ E− (AN ∪BN), then there trivially exists a branch b ∈ BN − sp(AN ∩BN) such
that sp(AN+1) = sp(AN ∪ {b}) = sp(BN) = sp(BN+1)

20: Short can tag any branch,
since Cut ‘broke’ neither AN nor BN .

18This strategy makes use of two subsets of the branches (A and B), but Lehman does not say how to
determine them. In Section 10 we cover a method for determining those subsets, although there, we consider
only graphs.

19In this case, the players do not tag branches anymore, but we say they still ‘take turns’, so as to not
make the induction more complex than necessary.

20Analogously, there exists a branch b ∈ AN − sp(AN ∩BN ) such that sp(BN+1) = sp(BN ∪ {b}).
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• If a ∈ AN − BN , then by Lemma 3 there exists a branch b ∈ BN − sp(AN ∩ BN) such
that sp((AN ∪ {b}) − {a}) = sp(BN). Short should play on b, so that sp(AN+1) =
sp((AN ∪ {b})− {a}) = sp(BN) = sp(BN+1).

• If a ∈ BN − AN , then by Lemma 3 there exists a branch b ∈ AN − sp(AN ∩ BN) such
that sp((BN) ∪ {b}) − {a}) = sp(AN). Short should play on b, so that sp(BN+1) =
sp((BN ∪ {b})− {a}) = sp(AN) = sp(AN+1).

In any of these cases, we have e∗ ∈ sp(AN+1) = sp(BN+1) = sp(A). This completes the
induction.

Since e∗ ∈ sp(Ai) = sp(Bi) for any i and after a finite number of turns n we have An = {e ∈
A∪B | e tagged by Short before turn n}, e∗ will eventually be spanned by branches tagged
by the Short player. Hence, the game is short.

We will now prove that the three conditions are necessary for the Shannon Switching Game
to be short. Suppose it is short, and suppose first that |E| ≤ 3. Then either {e∗} itself
is a circuit, or we have E = {e∗, a, b} with C = {{e∗, a}, {e∗, b}, {a, b}}. (This becomes
clear simply by checking all possibilities.) In the former case A = B = ∅ satisfy the three
conditions; in the latter A = {a} and B = {b} do.

Now, let N ≥ 3 and suppose the theorem is true for all matroids with |E| ≤ N . Let
M = (E,C) be a matroid with |E| = N + 2 such that the Shannon Switching Game played
on M with respect to some branch e∗ is short. If the Cut player plays first on a branch
a, the Short player can respond by playing on a branch b (where {b} is not a circuit21)
such that the resulting, reduced game on M r = (Er,Cr) is still winning for him. Here,
Er = E − {a, b} and Cr = Cr

1 ∪ Cr
2, with Cr

1 = {C − {b} ⊆ E | C ∈ C, a /∈ C, b ∈ C} and
Cr
2 = {C ∈ C | a, b /∈ C,Cr ⊊ C for all Cr ∈ Cr

1}; or in words: the circuits C in C that
contained a are not circuits anymore. The circuits C that contained b (but not a) become
circuits C −{b}. The circuits C that did not contain b (and a) stay circuits C, except when
they now contain a (new) circuit C − {b}, since circuits cannot contain other circuits.

Since |Er| = |E| − 2 = N , the theorem holds for this reduced game (by the induction
hypothesis), so there exist Ar

a, B
r
a ⊆ Er such that e∗ /∈ Ar

a ∪ Br
a, A

r
a ∩ Br

a = ∅ and e∗ ∈
sp(Ar

a) = sp(Br
a) (where the spans are taken with respect to M r). It follows that, in the

original matroid M , the subsets Aa, Ba ⊆ E with Aa = Ar
a ∪ {b} and Ba = Br

a ∪ {b} satisfy
a, e∗ /∈ Aa ∪ Ba, Aa ∩ Ba = {b} and e∗ ∈ sp(Aa) = sp(Ba) (where the spans are taken
with respect to M). By Lemma 4, there exist A′

a, B
′
a ⊆ E such that A′

a ∪ B′
a ⊆ Aa ∪ Ba

(and hence a, e∗ /∈ A′
a ∪ B′

a), A
′
a ∩ B′

a ⊆ Aa ∩ Ba − {b} = ∅ and sp(A′
a ∪ {e∗}) = sp(B′

a).
Clearly, E − {e∗} ≠ ∅, and, since Cut could have played on any branch except e∗, this
holds for all a ∈ E − {e∗}. Now by Lemma 6 there exist A,B ⊆ E such that e∗ /∈ A ∪ B,
A∪B ⊆

⋃
a∈E−{e∗}(A

′
a∩B′

a) = ∅ and e∗ ∈ sp(A) = sp(B). This completes the induction.

The strategy that Short should follow is thus as follows: if Cut plays on a branch in Ai,
Short should play on a branch in Bi so that sp(Ai+1) = sp(Ai). If Cut plays on branch in Bi,

21Demanding this makes the proof a little easier.
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Short should play on a branch in Ai so that sp(Bi+1) = sp(Bi). If Cut plays on E−(Ai∪Bi),
Short can play on any (unplayed) branch in Ai ∪Bi.

22

6.1 Short’s strategy on a graph

In the Shannon Switching Game played on a graph, this strategy is quite intuitive. If the
game is short, there exist two subsets of the edges A and B that

• do not contain e∗,

• have an empty intersection and

• span the same subset of the edges, which contains e∗.

We can restrict A and B to spanning trees At and Bt of the subgraph corresponding to the
edges in sp(A) = sp(B) by leaving out edges that do not add to the span; it is easy to see
that At and Bt still satisfy the above properties. We now have two disjoint trees that span
both e∗ and each other. That means that there exist two paths between u and v (recall that
e∗ = (u, v)), one consisting of edges in At and one of edges in Bt. If the Cut player now
deletes (tags) an edge a of one of these paths (and thereby ‘breaks’ it), say the one consisting
of edges in At, not all vertices incident with the edges in sp(At) are connected anymore by
edges in At − {a}. Since they are still connected by edges in Bt, Short can tag an edge b
in Bt such that At − {a} ∪ {b} is again a spanning tree of the subgraph corresponding to
the edges in sp(At). Hence, we again have two sets (i.e. At − {a} ∪ {b} and Bt) that do
not contain e∗ and span the same subset, which contains e∗. They are, however, not disjoint
anymore; this is okay because Cut cannot tag their common edge b (and ‘break’ both paths
at once), since it has already been tagged.

An example of this strategy is given in Figure 10. It is easily verified that A and B (which,
in this case, are already trees themselves) satisfy the three conditions. We illustrate some
of the moves. In Figure 10b, the Cut player breaks (the vertices incident with edges in) B
up into two parts; Short remedies this by tagging an edge in A that reconnects these two
parts again. In Figure 10k, Short could already have won by tagging one of the two upper
bent edges, but the strategy tells him to do otherwise. After Cut plays outside A ∪ B in
Figure 10l, Short can play on any edge.23 Finally, in Figure 10o, Short completes a cycle
that contains e∗ and hence wins.

22Actually, Short can play on any (unplayed) branch in E; however, if Short plays on a branch in E −
(Ai ∪Bi), we do not have sp(Ai) = sp(A) anymore, which would make the proof a bit more complicated.

23Note that this play by Short (see Figure 10m) causes Bi to contain a cycle and hence cease to be a tree.
This can be remedied by deleting an untagged edge in the cycle from B, or we can simply ignore it and let
Short play on any edge if Cut plays on an edge from the cycle.
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e∗

(a)

→
e∗

(b)

→
e∗

(c)

→

e∗

(d)

→
e∗

(e)

→
e∗

(f)

→

e∗

(g)

→
e∗

(h)

→
e∗

(i)

→

e∗

(j)

→
e∗

(k)

→
e∗

(l)

→

e∗

(m)

→
e∗

(n)

→
e∗

(o)

Figure 10: An example of the Short player’s strategy. Edges in A are red, edges in
B are blue, edges tagged by Short are thick and edges tagged by Cut are dashed.
Hence, at turn i, Ai consists of the thick edges plus the red edges that are neither
thick nor dashed. Bi consists of the thick edges plus the blue edges that are neither
thick nor dashed. The edge last played on is highlighted yellow.
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7 Dual matroids

Now that we have presented a winning strategy for the Short player (when the game is short),
we would like to do the same for the Cut player (when the game is cut). As it turns out,
the goals of the two players are, in a way, similar to each other.24 Because of this, we do not
need to find a completely new strategy for the Cut player; instead, we can translate Short’s
strategy into one for Cut. To do so, we first need the concept of the dual of a matroid.

Like a matroid itself, the dual of a matroid can be defined in different (equivalent) ways. For
the same reason as before, we do this in terms of circuits.

Let M = (E,C) be a matroid. Then M ′ = (E,C′) is called the dual matroid, or simply
the dual, of M , where C′ ⊆ 2E is the collection of subsets of E respecting the following
properties:

1. ∅ /∈ C′.

2. If C ′
1, C

′
2 ∈ C′ and C ′

1 ⊆ C ′
2, then we have C ′

1 = C ′
2.

3. |C ′ ∩ C| ≠ 1 for all C ′ ∈ C′ and C ∈ C.

We denote the span of a subset A ⊆ E with respect to C′ by sp′(A), that is

sp′(A) := {e ∈ E | e ∈ A or there exists a circuit C ′ ∈ C′ such that e ∈ C ′ ⊆ A ∪ {e}}.

Lehman [12, p. 701] offers the following alternative definition (here presented as a lemma)
of the dual matroid, which is used in the proof of Lemma 8. We refer to [12] for the proof
of Lemma 7.

Lemma 7. Let e ∈ A ∈ E. Then A ∈ C′ if and only if A is a minimal set such that
A ∩ C − {e} ≠ ∅ for all C such that e ∈ C ∈ C.

Although there does not exist a (universally accepted) general definition of duality, the
definition of the dual matroid above satisfies two of its common properties. The first is that
the dual of a matroid is again a matroid. The second is that the dual of the dual of a matroid
yields the original matroid: M ′′ = M . For the proofs of both properties, see for example
[12] (in terms of circuits)25 or [9] (in terms of bases).

8 A winning strategy for the Cut player

Now that we have defined the dual of a matroid and considered some of its properties, we
can make the way in which the goals of the two players are similar to each other precise. (In
[12], this is Lemma 21.)

Lemma 8. The Short player wins the game on M if and only if the Cut player wins the
game on M ′.

24This similarity becomes immediately clear in a specific version of the Shannon Switching Game, which
is known as Gale or Bridg-It. See, for example, [6, p. 84] and [12, p. 714].

25In the second line of the proof of (19) from [12] there is a typo: A,B ∈ M should be A,B ∈ M′.
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Proof. Suppose first that the Short player wins the game on M . That means that there is
a circuit C ∈ C with e∗ ∈ C where every branch in C − {e∗} is tagged by the Short player.
Thus, in the game on M ′, these branches are tagged by the Cut player. From (the dual
version of) Lemma 7 it now follows that C ∩C ′ −{e∗} ≠ ∅ for all C ′ such that e∗ ∈ C ′ ∈ C′,
and hence every circuit in M ′ that contains e∗, contains a branch tagged by the Cut player.
Hence, the Cut player wins the game on M ′.

Suppose now that the Cut player wins the game on M ′. That means that every circuit
C ′ ∈ C′ with e∗ ∈ C ′ contains (at least) one branch that is tagged by the Cut player, say aC′ .
Let A = {aC′ | e∗ ∈ C ′ ∈ C′}. Then A∩C ′−{e∗} ≠ ∅ for all C ′ such that e∗ ∈ C ′ ∈ C′. Now,
let Amin ⊆ A be minimal such that Amin ∩ C ′ − {e∗} ≠ ∅ for all C ′ such that e∗ ∈ C ′ ∈ C′.
Then by Lemma 7, we have Amin ∈ C′′ = C. Since every branch in A − {e∗} (and hence
every branch in Amin − {e∗}) is tagged by the Cut player in the game on M ′, every branch
in Amin − {e∗} is tagged by the Short player in the game on M . Since Amin is a circuit in
M , the Short player wins the game on M .

Lemma 8 allows us to ‘translate’ the conditions for a game to be short (given in Theorem 1)
to conditions for a game to be cut, for which only the primal game needs to be considered.
(In [12], this is Theorem 26.)

Theorem 2. Consider the Shannon Switching Game played on a matroid M with distin-
guished branch e∗. It is cut if and only if there exist A,B ⊆ E such that

(i) e∗ /∈ A ∪B;

(ii) A ∩B = ∅;

(iii) e∗ ∈ C ∈ C implies A ∩ C ̸= ∅ (and B ∩ C ̸= ∅);

(iv) C ∈ C implies A ∩ C ̸= ∅ if and only if B ∩ C ̸= ∅.

Proof. Combining Theorem 1 and Lemma 8, we get that the game is cut if and only if there
exist A,B ⊆ E such that e∗ /∈ A ∪B, A ∩B = ∅ and e∗ ∈ sp′(A) = sp′(B).

Suppose first that the game is cut. From the above it is clear that we only have to prove the
third and fourth property of A and B, which we prove simultaneously: first, let C ∈ C be a
circuit such that e∗ ∈ C and/or A∩C ̸= ∅. Then there exists a branch a ∈ C ∩ (A∪{e∗}) ⊆
sp′(A) = sp′(B), where the inclusion follows from the fact that both A and {e∗} are spanned
by A. Since a ∈ A ∪ {e∗}, a /∈ B and hence a ∈ sp′(B) − B. This means that there exists
a circuit C ′ ∈ C′ such that a ∈ C ′ ⊆ B ∪ {a} and hence C ∩ B ⊇ C ∩ C ′ − {a} ̸= ∅, where
the inequality follows from the third property of the definition of the dual. By symmetry,
B ∩ C ̸= ∅ implies A ∩ C ̸= ∅.

Suppose now that the four properties of A and B hold. For the same reason as above, we
here only have to prove e∗ ∈ sp′(A) = sp′(B). Let a ∈ A ∪ {e∗} be a branch. If a ∈ C ∈ C,
then we have e∗ ∈ C ∈ C and/or A∩C ̸= ∅, both of which imply B ∩C ̸= ∅ by assumption.
Note that B ∩C = (B ∪{a})∩C −{a}, which thus is not empty either. Now, let Bmin ⊆ B
be a minimal set such that still (Bmin ∪ {a}) ∩ C − {a} ̸= ∅, then by Lemma 7 we have
Bmin ∪ {a} ∈ C′. Since a ∈ Bmin ∪ {a} ⊆ B ∪ {a}, a is spanned by B with respect to C′ and
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hence A ∪ {e∗} ⊆ sp′(B). By symmetry, we also have B ∪ {e∗} ⊆ sp′(A).26 From these two
inclusions it follows that we have e∗ ∈ sp′(A) = sp′(B) and hence the game is cut.

The strategy that Cut should follow, is found by dualizing the strategy for Short in the proof
of Theorem 1. If we set

A′
i := {e ∈ A | e untagged before turn i} ∪ {e ∈ A ∪B | e tagged by Cut before turn i}

and

B′
i := {e ∈ B | e untagged before turn i} ∪ {e ∈ A ∪B | e tagged by Cut before turn i},

then Cut should play as follows: if Short plays on a branch in A′
i, Cut should play on a

branch in B′
i so that sp′(A′

i+1) = sp′(A′
i). If Short plays on branch in B′

i, Cut should play on
a branch in A′

i so that sp′(B′
i+1) = sp′(B′

i). If Short plays on E − (A′
i ∪B′

i), Cut can play on
any (unplayed) branch in A′

i ∪B′
i (or even in E).

8.1 Cut’s strategy on a graph

As for Short’s strategy, we now give a more intuitive strategy for the Cut player for the
Shannon Switching Game played on a graph. If the game is cut, there exist two subsets of
the edges A and B that

• do not contain e∗,

• have an empty intersection and

• all circuits that contain an edge in one of the subsets, also contain an edge in the other.

• Furthermore, all circuits that contain e∗, also contain an edge in one subset (and hence
also an edge in the other).

That means that every path between u and v contains at least one edge from both A and
B. Suppose the Short player tags an edge a so that there now exists a circuit that does not
contain an untagged edge anymore in one of the two sets (but previously did), say A. (Note
that there is at most one such circuit: suppose there were two, then the circuit consisting of
these two circuits minus the tagged edge would not have contained edges in A in the first
place.) Since the circuit still contains an untagged edge in B, Cut can tag an edge b in B
such that all circuits (that previously contained edges in both A and B) again contain edges
in both A−{a}∪{b} and B. Hence, we again have two sets (i.e. A−{a}∪{b} and B) that
satisfy the above properties, except that they are not disjoint anymore; this is okay because
Short cannot tag their common edge b (and thereby tag edges from both sets in a circuit at
once), since it has already been tagged.

Alternatively, Cut’s strategy for a Shannon Switching game played on a graph can be found
by following Short’s strategy on the dual graph (due to Lemma 8). Note that the dual graph
only exists if the (primal) graph is planar.27 A simple example of this procedure is depicted in

26In [12] the prime symbol (′) is missing here.
27See, for example, [9, p. 60].
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Figure 11. In Figure 11b the dual graph is found by placing a vertex in every face (including
‘the outside’), and for every edge in the primal graph, placing an edge that connects the
vertices corresponding to the faces on both sides of that primal edge. In Figure 11c A and B
are indicated in both graphs, satisfying the conditions of Theorem 1 in the dual graph, and
the conditions of Theorem 2 in the primal graph. Cut can now win the game on the primal
graph by following Short’s strategy on the dual, where the intersecting edges correspond
with each other.28

e′∗

e∗

(a) A graph.

e∗

e′∗

(b) Its dual graph (dotted).

e∗

e′∗

(c) A (red) and B (blue).

Figure 11: An example of the procedure of finding Cut’s strategy by dualizing the graph
and playing Short’s strategy on it.

If the graph is not planar, we have to follow the ‘matroidal’ strategy given in Theorem 2. An
example of such a graph is K3,3, which indeed renders a cut game (irrespective of the chosen
edge e∗). Note that K5, the other ‘fundamental nonplanar graph’, renders a short game.

An example of this strategy is given in Figure 12. It is easily verified that A and B satisfy
the four conditions. We illustrate some of the moves. In Figure 12b, the Short player tags
an edge a in A so that the cycle {e∗, a, b} does not contain an edge in A anymore that is or
can be deleted by Cut. Cut remedies this by tagging b (and ‘adding’ it to A). After Short’s
play in Figure 12l, Cut could already have won by playing on d, but the strategy demands a
play on f to ensure that the cycle {f, g, h} once again contains an edge in both sets. Finally,
in Figure 12o, Cut tags an edge that makes sure that Short cannot win anymore and hence
Cut wins.

9 Winning strategies in neutral games

We have seen how Short can win if the game is short, and how Cut can win if the game is
cut. We will now see how both players can win in a neutral game if they play first.

In a graph, we can turn a neutral game into a short game by adding an edge with end points
u and v (where still e∗ = (u, v)) [12]. (See Figure 13b.) To see that this game is indeed

28Technically, we have drawn a dual graph, although we can speak of the (abstract) dual if we do not
draw it.
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e∗

(a)

→ a
e∗

b

(b)

→
e∗

(c)

→

e∗

(d)

→
e∗

(e)

→
e∗

(f)

→

e∗

(g)

→
e∗

(h)

→
e∗

(i)

→

e∗

(j)

→
e∗

(k)

→ d

g
fe∗

h

(l)

→

e∗

(m)

→
e∗

(n)

e∗

(o)

Figure 12: An example of the Cut player’s strategy. Edges in A are red, edges in B are
blue, edges tagged by Short are thick and edges tagged by Cut are dashed. Hence, at turn
i, A′

i consists of the dashed edges plus the red edges that are neither thick nor dashed. B′
i

consists of the thick edges plus the blue edges that are neither thick nor dashed. The edge
last played on is highlighted yellow.
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short, note that if Cut does not play on the added edge, Short can win by playing on it; if
Cut does play on the added edge, the resulting game is the neutral game that we started
with, and Short can play first. A winning strategy for the Short player in the neutral game
can now be found by following the strategy for the short game after Cut would have played
on the added edge.

On a matroid, we can perform this same procedure by adding a branch a to E and adding
the circuit {e, a} to C, as well as circuits C − {e} ∪ {a} for every circuit C that contains e.

We can now find a winning strategy for the Cut player in a neutral game on a graph in two
ways. We can either dualize the short game that was used to find a winning strategy for
Short (where we now suppose that Short plays first on the added edge), or we can turn the
neutral game directly into a cut game by adding a vertex to the edge e∗, thereby ‘splitting’
it into two edges and setting one of these two edges to be the new distinguished edge e∗.
(See Figure 13c.) On a matroid, this corresponds to adding a branch a to E and replacing
all circuits C containing e∗ by C ∪ {a}.

e∗

(a) A neutral game.

e∗

(b) The neutral game made
short.

e∗

(c) The neutral game made
cut.

Figure 13: Turning a neutral game into either a short or a cut game.

Note that we can now also check whether a game is neutral by adding an edge with end
points u and v and then checking if the game is short. If that newly obtained game is short,
but the original game was not, it must have been neutral.29

10 Finding a pair of disjoint cospanning sets

As Bruno and Weinberg [2] note, Lehman’s solution to the Shannon Switching Game ‘is
not fully satisfactory. The basic theorem on so-called short games is given in terms of the
existence of a pair of disjoint cospanning30 sets, but it appears in nonconstructive form; that
is, no method is given for generating such a pair or even determining whether they exist in
a given graph or matroid.’ Bruno and Weinberg then combine Lehman’s results with those

29A similar procedure where a vertex is added to e∗ and it is checked whether the game is cut also works.
30Two subsets A,B ⊆ E are said to be cospanning if sp(A) = sp(B).
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of Kishi and Kajitani [10] to give a complete (graph-theoretic) solution of the game. For
the determination of the cospanning sets, they refer to Bruno’s Ph.D. dissertation [3]; the
algorithms given there, however, are in terms of matroids.

In this section, we present a graph-theoretic procedure for determining a pair of subsets of
the edges of a graph that satisfies the conditions for the Shannon Switching Game played on
that graph to be short, as given in Theorem 1. (That is, if the game is a short game.) We
have established this procedure by applying the procedure given in [10, pp. 325-326] to an
instance of the Shannon Switching Game, the main difference being that the subsets may
now not contain the distinguished edge e∗. A pair of subsets that satisfies the conditions for
the game on that graph to be cut (if the game is a cut game) as given in Theorem 2 may be
found by first constructing the dual graph (or matroid), then applying the procedure given
below, and finally translating back the obtained subsets to the primal situation.

Given a graph G and a distinguished edge e∗ ∈ E(G), our goal is to determine two subsets
of the edges A,B ⊆ E(G) so that e∗ /∈ A ∪ B, A ∩ B = ∅ and e∗ ∈ sp(A) = sp(B).31 We
achieve this in three steps:

1. We determine two spanning trees of G.

2. We perform the procedure by Kishi and Kajitani to find a pair of maximally distant
trees. (We will define (maximal) distance later.)

3. We make sure that neither tree contains e∗ and find disjoint subtrees.

10.1 Step 1 - Finding two spanning trees

To determine two spanning trees, we can simply apply a tree finding algorithm like depth-
first search or breadth-first search.32 For example, depth-first search tells you to start at
some vertex of the graph and then walk along an edge to an adjacent vertex. If you have not
visited that vertex before, you add the edge to some subset T ⊆ E(G) (which is initialized
as ∅), walk on to a vertex adjacent to the last one, and continue depending on whether you
have visited that vertex already.

If you have visited a vertex before, you do not add the edge to T but instead walk back
along the same edge and try another adjacent vertex. When you have visited all adjacent
vertices, you go back one more vertex and try the vertices adjacent to that one. When you
have visited all vertices, you stop. T is now a spanning tree of G: it connects all vertices
and contains no cycles.

To obtain a second spanning tree, simply perform the algorithm again. Although the two
trees are allowed to be equal, step 2 will generally be faster if the two trees are already
more distant. Hence, choosing a different starting vertex may be helpful. Let (T1, T2) be the
obtained pair of spanning trees. See Figure 14 for an example.

31In this section, sp(S) denotes the graphical span of a subset of the edges S, that is, sp(S) := {e ∈ S |
e ∈ S or there exists a cycle C such that e ∈ C ⊆ S ∪ {e}}. Note that this definition agrees very naturally
with that of the matroidal span.

32See, for example, [5].
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e∗

(a) A graph and a distin-
guished edge e∗.

→

9

10

8

7
2

3 1

6 4

5

e∗

(b) The construction of
T1.

→

e∗

10

(c) The obtained pair of
spanning trees (T1, T2).

Figure 14: Step 1. The construction of a pair of spanning trees using depth-first search.
Edges in T1 are red and the numbers in (b) indicate the order in which the algorithm adds
the edges. Edges in T2 are blue.

10.2 Step 2 - Maximally distant trees

Given a graph G, the distance d(T1, T2) between two spanning trees T1 and T2 of G is defined
to be the number of edges contained in one tree, but not in the other. Note that this is well-
defined, since every spanning tree of the same graph contains the same number of edges (i.e.
the number of vertices minus 1). A pair of spanning trees (T1, T2) is called maximally distant
if there exists no pair of spanning trees (T ′

1, T
′
2) such that d(T ′

1, T
′
2) > d(T1, T2).

Kishi and Kajitani offer a procedure to construct a pair of maximally distant spanning trees
from an arbitrary pair of spanning trees. Before we give it here, we first need a few more
definitions.

Given a graph G and a spanning tree T , a chord of T is an edge in E(G) − T . An edge
that is a chord of two spanning trees T1 and T2 is called a common chord of T1 and T2. The
fundamental cycle of a chord e with respect to T is the unique cycle in T ∪ {e}.

Consider now again the pair of spanning trees (T1, T2) from step 1. If they have no common
chords, they are maximally distant, since they overlap as little as possible. Suppose therefore
that the set of common chords of (T1, T2) is not empty and let e be a common chord. Let L1

e

be the fundamental cycle of e with respect to T1. If L
1
e ∩ T2 ̸= ∅, then we can ‘interchange’

e and some a ∈ L1
e ∩ T2 to obtain a new spanning tree T ′

1 = T1 ∪ {e} − {a}. (T ′
1 is still a

spanning tree, since it connects all vertices and contains no cycles: if it did, T1 would have
contained a cycle as well.) Clearly we have d(T ′

1, T2) = d(T1, T2) + 1.

If L1
e ∩T2 = ∅, then we consider the second ‘layer’, L2

e, which is the union of all fundamental
cycles of the edges in L1

e with respect to T2. If L2
e contains an edge in T1 ∩ T2, say b, in

the fundamental cycle of some edge a ∈ L1
e (with respect to T2), then we can obtain two

new spanning trees T ′
1 = T1 ∪ {e} − {a} and T ′

2 = T2 ∪ {a} − {b}. Note that if b is in the
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fundamental cycle of e itself, b still has to be in the fundamental cycle of some edge a ∈ L1
e

with a ̸= e: suppose not, then e would be spanned by both its fundamental cycle and the
union of the fundamental cycles of the edges in L1

e, and hence T2 would contain a cycle.33

To ensure that the process is clear, we also discuss what to do when L2
e ∩ (T1 ∩ T2) = ∅.

L3
e then is the union of all fundamental cycles of the edges in L2

e with respect to T1. If
L3
e contains an edge in T1 ∩ T2, say c, in the fundamental cycle of some edge b ∈ L2

e (with
respect to T1), then we can obtain two new spanning trees T ′

1 = T1 ∪ {e, b} − {a, c} and
T ′
2 = T2 ∪ {a} − {b}. If not, we continue with L4

e.

If Li
e∩ (T1∩T2) = ∅ for all i, we will get Lk

e = Lk−1
e := L∞

e for some k: we have Li
e ⊆ Li−1

e for
all i > 1 and the number of edges is finite. Either when we have Lk

e ∩ (T1 ∩ T2) ̸= ∅ for some
k (and perform the interchanging procedure) or when we have Lk

e = Lk−1
e for some k, we

stop, and we start the process with another common chord, using the newly obtained trees
if we have constructed them. We do this for every common chord. The pair of spanning
trees that we end up with, say (T ∗

1 , T
∗
2 ), is maximally distant. We refer to [10] for the proof.

See Figure 15 for an example.

10.3 Step 3 - Finding disjoint subtrees that do not contain the
distinguished edge

Steps 1 and 2 can be performed on any graph, even if the game played on that graph is not
short. Note that we already have e∗ ∈ sp(T ∗

1 ) = sp(T ∗
2 ). If the game is short, we can now

quite easily obtain two trees that both do not contain e∗ (if that is not already the case) in
the following way: there exists a (not necessarily unique) common chord e of T ∗

1 and T ∗
2 so

that e∗ is in some layer Li
e around e.34 We now perform the same procedure on e as we did

in step 2, except that we try to find e∗ instead of some edge in T1 ∩T2. When we find e∗, we
perform the same interchanging procedure to obtain two spanning trees T ∗∗

1 and T ∗∗
2 that do

not contain e∗.

To find a right common chord, we could just perform the described procedure on all common
chords until e∗ shows up in a layer around one of them. However, we could also already find
one during the execution of step 2: if e∗ is not a common chord itself, it must be in a layer
around a common chord e whose layers do not contain an edge in T1 ∩ T2 (that is, at the
moment in the procedure that those layers are checked)35 and hence is not interchanged. We
can then perform the interchanging procedure starting at e.

The former common chord e together with the layers around it (i.e. L∞
e ) or, equivalently, the

current common chord e∗ together with the layers around it (i.e. L∞
e∗), does, as mentioned,

not contain an edge in T ∗∗
1 ∩ T ∗∗

2 . Hence, the trees T ∗∗
1 ∩L∞

e∗ and T ∗∗
2 ∩L∞

e∗ are disjoint. The

33All fundamental cycles referred to in this last sentence are with respect to T2.
34Kishi and Kajitani prove this and from this proof it is clear which common chord you should choose.

For this proof, they develop some theory that goes beyond our purposes, so we omit it here. (To the reader
who is familiar with the article: e∗ should be in the so-called K subgraph of (T ∗

1 , T
∗
2 ) with respect to e.) We

will, however, cover two simple alternative methods of finding a right common chord.
35This again follows from the theory developed in [10]: e∗ is in the K subgraph of (T ∗

1 , T
∗
2 ) with respect

to some common chord, that is, if the game with respect to e∗ is indeed a short game.
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other conditions clearly still hold, so we have found a pair of subsets of the edges of G that
satisfies the conditions given in Theorem 1. See Figure 16 for an example.
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e∗
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1 and T ′

2.

→

e∗

a

e

(f) A new common chord
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→ · · · →

e∗

(g) The obtained pair of
maximally distant trees
(T ∗

1 , T
∗
2 ).

Figure 15: Step 2. The construction of a pair of trees (T ′
1, T

′
2) from (T1, T2), where d(T

′
1, T

′
2) =

d(T1, T2)+1, and the final pair of maximally distant trees (T ∗
1 , T

∗
2 ). Edges in T1, T

′
1 and T ∗

1 are
red, edges in T2, T

′
2 and T ∗

2 are blue, and edges in Li
e are thick. We have T ′

1 = T1∪{e, b}−{a, c}
and T ′

2 = T2 ∪ {a} − {b}.

30



e

e∗
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1 , T
∗
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→

e

e∗

(b) Edges e and e∗ are in-
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e∗

(c) The pair of disjoint
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Figure 16: Step 3. The construction of two disjoint subtrees that do not contain the distin-
guished edge. Edges in T ∗

1 , T
∗∗
1 and T ∗∗

1 ∩ L∞
e∗ are red, and edges in T ∗

2 , T
∗∗
2 and T ∗∗

2 ∩ L∞
e∗

are blue.
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A Example of the situation in Lemma 4 where k is not

unique

Figure 17 shows an example of the situation in Lemma 4 where Lehman’s |a| from his
Lemma 11 is not uniquely defined. This is due to his definition of Ai+1: the second ‘part’,
i.e. (Bi − sp(Ai))∩A, indicates that every branch e ∈ Bi that is in A should be included in
Ai+1, except when it was already spanned by Ai. This condition was probably meant to not
have to check all branches that were already in (the span of) A, which is often unnecessary.
In special cases such as the situation on the next page, however, a is both spanned by A2

and is a member of A. This causes a not to be included in A3, and hence we have both
a ∈ B2 − A2 and a ∈ B3 − A3. The example is constructed in such a way that we still have
a ∈ A∞, which was assumed.
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a d

(a) A situtation satisfying the condi-
tions of Lemma 4.

a d

(b) A1
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(c) B1
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(d) A2
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(f) A3
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(g) B3 = B∞

a d

(h) A4 = A∞

Figure 17: An example where Lehman’s |a| is not uniquely defined (or alternatively: where
our k is not unique).
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