
Reciprocation in scale-invariant network models
Claus, Benjamin

Citation
Claus, B. (2024). Reciprocation in scale-invariant network models.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master Thesis,
2023

Downloaded from: https://hdl.handle.net/1887/3764445

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/3764445

Reciprocation in Scale-Invariant
Network Models

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

PHYSICS

Author : B.W.A. Claus
Student ID :
Supervisor : Dr. D. Garlaschelli
Second corrector : Dr. F. Jansen

Leiden, The Netherlands, June 10, 2024

Reciprocation in Scale-Invariant
Network Models

B.W.A. Claus

Huygens-Kamerlingh Onnes Laboratory, Leiden University
P.O. Box 9500, 2300 RA Leiden, The Netherlands

June 10, 2024

Abstract

In this research, a recently proposed renormalization group approach for
networks to the case of random directed graphs is being generalized: we
present a scale-invariant description of directed networks containing re-
ciprocated edges. This allows us to neglect several strong assumptions
that are currently necessary to renormalize directed networks such as fi-
nancial transaction networks. As an application, a model of ING’s trans-
action data has been derived across multiple coarse-grained partitions. In
this article we provide detailed information on how this particular model
has been structured and how its parameters are obtained. We show how
we can use this model to determine the expected cumulative degree and
weight distributions of ING’s transaction network across multiple coarse-
grained partitions of the network which we will compare to the empirical
degree and weight distributions, respectively.

Contents

1 Introduction 3

2 Directed Scale-Invariant Model 6

2.1 Scale Invariance 6
2.1.1 Renormalization 10

3 Data 13

3.1 Financial Transactions 13
3.2 Financial Transaction Network 14

4 Method 20

4.1 Network Generator 20
4.2 Parameter Estimation 22

4.2.1 Prepare Data 22
4.2.2 Optimization Problem 24
4.2.3 Error Measurement 27

4.3 Coarse Graining 29

5 Results and Discussion 31

5.1 Estimated Parameter Values 31
5.2 Degree distributions 32
5.3 Weight distributions 35

6 Summary and Conclusion 38

7 Appendix 40

7.1 Derivation of p00
I j , p01

I j , p10
I j and p11

I j 40
7.1.1 Derivation of p00

I j 40

Version of June 10, 2024– Created June 10, 2024 - 13:16

1

CONTENTS 2

7.1.2 Derivation of p01
I j and p10

I j 43
7.1.3 Derivation of p11

I j 44
7.1.4 Self-loops: Derivation of p11

I j (j 2 I) ⌘ ps
I 45

7.2 Bound on the parameters 48
7.2.1 Boundaries on p00

I j 48
7.2.2 Boundaries on p10

I j and p01
I j 48

7.2.3 Boundaries on p11
I j 49

7.2.4 Boundaries on p11
I j (j 2 I) ⌘ ps

I 51
7.3 Additional Empirical Data Plots 52
7.4 Empirical and Expected Degree Distribution Plots 55

7.4.1 Network Scale 1 56
7.4.2 Network Scale 2 58
7.4.3 Network Scale 3 60
7.4.4 Network Scale 4 62

7.5 Empirical and Expected Weight Distribution Plots 63
7.5.1 Network Scale 1 64
7.5.2 Network Scale 2 65
7.5.3 Network Scale 3 66
7.5.4 Network Scale 4 67

Bibliography 68

Acknowledgement 70

Version of June 10, 2024– Created June 10, 2024 - 13:16

2

Chapter 1
Introduction

Our modern society is driven by complex networks: transportation net-
works, communication networks, social networks, and of course economic
networks. The actions of one element in one of these networks can have
a ripple effect which in turn can causes other elements in that network to
take a specific form of action as well. Everything is connected. The con-
nectedness of these complex networks is the very reason why our mod-
ern society has evolved to be as powerful as we have never experienced
before: global communication is faster and easier than ever before, the
World-Wide-Web is growing at a rate that no one could ever have dreamed
of, the speed with which people and goods travel around the globe would
have been fictional only a few decades ago. Unfortunately, this connect-
edness also makes us vulnerable. A financial crisis or a contagious disease
can have the entire world on its knees in a matter of days. It is therefore
of no surprise that the study of complex networks has become of much
interest for computer scientists, biologists, mathematicians and physicists.

In this thesis, we focus our attention on the complex networked sys-
tem that is the economic network of our modern society. More precisely,
we investigate several behavioural properties of the financial transaction
network between firms and organizations. The data, not accessible to the
public, is provided by the largest bank of the Netherlands: ING Bank
N.V. [1]. Given the limited availability of firm-to-firm financial transac-
tion data, it is ever so important to develop a mathematical framework
that is capable of reproducing multiple structural properties of this type of
networks given nothing more but partial information [2]. Scale-invariant
network models have been proposed in the past in order to fulfill this
purpose. It has become evident that the analyses of a complex system

Version of June 10, 2024– Created June 10, 2024 - 13:16

3

4

at different scales is crucial in understanding certain aspects of the un-
derlying physical system [3]. Garuccio, Lalli and Garlaschelli proposed a
model that ”remains invariant across all scales, for any desired (horizontal
or vertical) partition of nodes into block-nodes” to describe the Interna-
tional Trade Network [4]. In a paper by Di Vece, Pijpers and Garlaschelli
the role of reciprocated edges in the Dutch industry-industry network (as
seen by the Dutch central bureau of statistics [5]) has been investigated
with the use of a Directed Binary Configuration Model and a Reciprocal
Binary Configuration Model [6]. In another paper, by Garlaschelli and Lof-
fredo, the fundamentals of link reciprocity has been investigated. In this
paper, Garlaschelli and Loffredo determine whether reciprocated links be-
tween vertex pairs occur in empirical networks as often as expected by
chance. This has been investigated for multiple types of real world net-
works among which the World Trade Web and the World Wide Web [7].

Here we propose a directed scale-invariant, reciprocity controlling net-
work model for an inter-firm financial transaction network. Scale-invariant
in this context means that the model should be capable of describing the
transaction network on multiple scales. Coarse-graining the transaction
network brings us to a higher network scales which can be considered as
an inter-(sub)sector financial transaction network when coarse-graining
operates on the so called NAICS-codes of the firms which will indeed be
the case in this research (more on this in chapter 3). Another example is to
coarse-grain on the firm locations which yields a financial transaction net-
work between cities. After having coarse-grained the network it is by con-
struction more likely for the resulting network to be more dense. To prop-
erly describe such dense higher scaled networks we need our model to
be able to control reciprocity. Reciprocity controlling for a network model
means that it accurately describes the probability that a reciprocated con-
nection exists, i.e. a link from A to B and from B to A simultaneously exist.

Since detailed financial transaction data remains to be confidential, it is
nonetheless useful for banks to share information on the structure of their
networks between them. This information transparency between banks
allows for easier monitoring of the health of the economy. Our proposed
directed scale-invariant, reciprocity controlling network model for inter-
firm networks can possibly be used as a means of communication. With
this, banks only need to communicate the network parameters between
each other which are not directly dependent on private information of the
banks of their clients.

Version of June 10, 2024– Created June 10, 2024 - 13:16

4

5

In the next chapter we primarily discuss the mathematics of our pro-
posed network model. We derive the model from the ground up and show
how the Hamiltonian and the partition function behave. Chapter 3 de-
scribes the data as provided by ING and chapter 4 explains what methods
are used to ”fit” the network model to the data. In chapter 5 the results are
given and discussed. Finally, a summary and conclusion is given in chap-
ter 6. Throughout the chapters we often refer to the appendix (see chapter
7) for additional information on a specific subject.

Version of June 10, 2024– Created June 10, 2024 - 13:16

5

Chapter 2
Directed Scale-Invariant Model

In this chapter we focus on the derivation of the proposed directed scale-
invariant network model that accounts for reciprocated edges in economic
transaction networks. In order to do so, we first briefly take a look at the
nature of the data in order to explain the notion of scale-invariance (the
data will be described in more detail in chapter 3). With this informa-
tion we can derive the probability distributions for financial transactions
between firms to occur which can in turn provide us with a probability
function for a network to exist with a given adjacency matrix A

l on net-
work scale l. Given this probability function we can determine several
other useful functions such as the likelihood function, the Hessian matrix,
the Hamiltonian and the partition function.

2.1 Scale Invariance

For the purpose of this research, we assume that transactions and edge
weights are an additive variable. This axiom allows us to derive a scale-
invariant probability distribution for the existence of an edge between a
pair of nodes due to the fact that we can treat clusters of nodes the same
as how we treat individual nodes.

Definition: We say that a collection of nodes I connects to another col-
lection of nodes J, if any of the nodes in I connects to any of the nodes in
J. The probability of this is thus one minus the probability that none of the
nodes in I connect to any of the nodes in J.

Definition: The in-strength of a node i is the sum of the weights of all

Version of June 10, 2024– Created June 10, 2024 - 13:16

6

2.1 Scale Invariance 7

the edges that are directed to node i, while the out-strength of a node i is
the sum of the weights of all the edges that are directed from node i.

Suppose pi!j is the probability that a node i connects to a node j. We
assume that this probability depends on four variables: the in- and out-
strength of node i, and the in- and out-strength of node j. If I = i1, · · · in is
a collection of nodes and J = j1, · · · jm is another collection of nodes, then
by the above definition

pI!J(xI , yI ; xJ , yJ) = 1�’
i2I

’
j2J

(1� pi!j(xI , yI ; xJ , yJ)). (2.1)

For convenience define li!j(xi, yi; xj, yj) ⌘ log(1� pi!j(xi, yi; xj, yj)). Then,
equation 2.1 can be rewritten:

lI!J(xI , yI ; xJ , yJ) = Â
i2I

Â
j2J

li!j(xi, yi; xj, yj) (2.2)

where xk and yk denote the in- and out-strengths, respectively, of node k.
Using the notation from equation 2.2, it is easy to show that we will have
scale-invariance if

l

Â
i2I

xi, Â
i2I

yi; Â
j2J

xi, Â
j2J

yj

!
= Â

i2I
Â
j2J

l
�
xi, yi; xj, yj

�
(2.3)

which is in line with the above definition.

In what follows, we denote by ∂
∂ax

the derivative with respect to the first
argument (the in-strength of node i on the right hand side, the in-strength
of node I on the left hand side) of l, by ∂

∂ay
the derivative with respect to

the second argument (the out-strength of node i on the right hand side,
the out-strength of node I on the left hand side), by ∂

∂bx
the derivative with

respect to the third argument (the in-strength of node j on the right hand
side, the in-strength of node J on the left hand side), and by ∂

∂by
the deriva-

tive with respect to the fourth argument(the out-strength of node j on the
right hand side, the out-strength of node J on the left hand side).

For two different nodes a and b from node collection I we get equa-

Version of June 10, 2024– Created June 10, 2024 - 13:16

7

2.1 Scale Invariance 8

tions:

∂2l
∂a2

x
(xa, ya; xb, yb) = 0

∂2l
∂a2

y
(xa, ya; xb, yb) = 0

∂2l
∂ax∂ay

(xa, ya; xb, yb) = 0

So that

l(xa, ya; xb, yb) = f (xb, yb)xa + g(xb, yb)ya + h(xb, yb) (2.4)

Similarly for two different nodes a and b from collection J we get equa-
tions:

∂2l
∂b2

x
(xa, ya; xb, yb) = 0

∂2l
∂b2

y
(xa, ya; xb, yb) = 0

∂2l
∂bx∂by

(xa, ya; xb, yb) = 0

So that

l(xa, ya; xb, yb) =k(xa, ya)xb + r(xa, ya)yb + s(xa, ya) (2.5)

Equations 2.4 and 2.5 can only be true simultaneously if l(xa, ya; xb, yb) =
�dxxxaxb � dxyxayb � dyxyaxb � dyyyayb where the deltas are constants.
This expression can be conveniently written by collecting the deltas in a
constant matrix D such that l(xa, ya; xb, yb) = �(xa, ya)T

· D · (xb, yb). From
this, we obtain our scale-invariant network model: the probability that a
node i connects to a node j is given by

pi!j(xi, yi; xj, yj) = 1� e�(xi ,yi)T
·D·(xj ,yj) (2.6)

where xk and yk denote the in- and out-strengths, respectively, of node k.
In what follows, the in- and out-strengths of a node will be represented by
a 2-dimensional vector (e.g.: ~xk = (xk, yk)

T)

Version of June 10, 2024– Created June 10, 2024 - 13:16

8

2.1 Scale Invariance 9

Note that above, nothing has been stated about the probability that
node j connects to node i. Thus far, we can therefore only say anything
conclusively about the probability that node i connects to node j. In other
words, the probability pi!j that node i connects to node j, and the proba-
bility pi j that node j connects to node i are independent (note that they
are however correlated due to their dependence on the same strengths).

In what follows, we construct a scale-invariant network model that has
control over reciprocity by making the probabilities pi!j and pi j depen-
dent of each other [8]. To do this, we need to define four probability dis-
tributions:

1. p11
ij : the probability that both node i connects to node j, and node j

connects to node i. Here, i = j is allowed meaning that a self-loop
exists.

2. p10
ij : the probability that node i connects to node j, but node j does

not connect to node i. Here, i = j is not allowed.

3. p01
ij : the probability that node i does not connect to node j, but node

j does connect to node i. Here, i = j is not allowed.

4. p00
ij : the probability that neither node i connects to node j, nor node

j connects to node i. Here, i = j is again allowed meaning that a
self-loop does not exists.

Now if we have a node i and a node k (i 6= k), and we want to know if
the collection of the two I = {i, k} connects to a third node j, then this is
given by

p00
I j = p00

ij p00
kj (2.7)

p10
I j = p10

ij p10
kj + p10

ij p00
kj + p00

ij p10
kj (2.8)

p01
I j = p01

ij p01
kj + p01

ij p00
kj + p00

ij p01
kj (2.9)

p11
I j = all other combinations = 1� p00

I j � p10
I j � p01

I j (2.10)

We will use the above equations to determine the functional forms of
the quantities p00

I j , p01
I j , p10

I j and p11
I j . The results are given below while the

Version of June 10, 2024– Created June 10, 2024 - 13:16

9

2.1 Scale Invariance 10

derivations are given in the appendix (7.1).

p00
ij =

(
e�~xi·M·~xj , if i 6= j
e�

1
2~xi·M·~xi�~uT

·~xi , if i = j
(2.11)

p01
ij =

(
e�~xi·M·~xj

⇣
e~xi·A·~xj � 1

⌘
, if i 6= j

0, if i = j
(2.12)

p10
ij =

(
e�~xi·M·~xj

⇣
e~xi·AT

·~xj � 1
⌘

, if i 6= j

0, if i = j
(2.13)

p11
ij =

(
1 + e�~xi·M·~xj

⇣
1� e~xi·A·~xj � e~xi·AT

·~xj
⌘

, if i 6= j

1� e�
1
2~xi·M·~xi�~uT

·~xi , if i = j
(2.14)

with ~xi = (xi, yi)T = (in-strengthi, out-strengthi)
T. Also, the probabilities

need to be normalized so that p00
ij + p01

ij + p10
ij + p11

ij = 1. Moreover, the
probabilities need to be non-negative and bounded by 1. This leads to a
constraint that needs to be imposed on the values of the elements of the
matrices M and A, and the vector ~u as given in equation 2.15 (once more
the derivation is given in the appendix in section 7.2).

0 A+AT
 M < •

0 ~u < •
(2.15)

Where M = MT since p00
ij = p00

ji , p11
ij = p11

ji and p01
ij = p10

ji by construction.
The practical implementation of these inequalities will be covered in chap-
ter 4.

2.1.1 Renormalization

Above derivations resulted from the postulate that transactions are addi-
tive quantities (other examples of additive quantities for financial transac-
tions networks are the number of payments between two nodes and the
account balance of a node). The practical application of this is that we can
treat clusters of nodes the same as how we treat individual nodes. This
means that the strength of a cluster of nodes I is given by ~xI = Âi2I ~xi.
This (deterministic) partition, which we will denote by the letter W, al-
lows us to evaluate the network at different scales. The adjacency matrix
of the network observed at a specific scale will be denoted by Al where l

Version of June 10, 2024– Created June 10, 2024 - 13:16

10

2.1 Scale Invariance 11

denotes the scale of the observed network. Let Pl(Al) be a random process
that generates a network on scale l as function of the adjacency matrix Al.
Since the partition W is fixed, P0(A0) induces a random process at higher
network scales as given by [8]:

Pl(Al) = Â
{A0}

Wl ...W0
���!Al

P0(A0). (2.16)

Given equations 2.11, 2.12, 2.13 and 2.14 we obtain the following for
Pl(Al) the following:

Pl(Al) =
Nl

’
il=1

il
’
jl=1

��!pil ,jl
���!ail ,jl

� �pil ,jl
� ��ail ,jl

� !pil ,jl
� !ail ,jl

�
pil ,jl

�ail ,jl (2.17)

where we have adopted the following notation �!pil ,jl = p10
il ,jl

, �pil ,jl = p01
il ,jl

,
 !pil ,jl = p11

il ,jl
and pil ,jl = p00

il ,jl
for the probability functions. In what follows

we will use both notations interchangeably depending on the context. We
can rewrite this equation

Pl(Al) =

Nl

’
il=1

il
’
jl=1

pil ,jl

!
·

0

@
Nl

’
il=1

il
’
jl=1

�!pil ,jl
pil ,jl

!��!ail ,jl

 �pil ,jl
pil ,jl

! ��ail ,jl

 !pil ,jl
pil ,jl

! !ail ,jl
1

A

=

Nl

’
il=1

pil ,il

il�1

’
jl=1

pil ,jl

!
·

0

@
Nl

’
il=1

il
’
jl=1

�!pil ,jl
pil ,jl

!��!ail ,jl

 �pil ,jl
pil ,jl

! ��ail ,jl

 !pil ,jl
pil ,jl

! !ail ,jl
1

A

=Q

0

@
Nl

’
il=1

il
’
jl=1

�!pil ,jl
pil ,jl

!��!ail ,jl

 �pil ,jl
pil ,jl

! ��ail ,jl

 !pil ,jl
pil ,jl

! !ail ,jl
1

A

(2.18)

where the factor Q is a scale independent constant since it does not depend
on the adjacency matrix Al. We can explicitly calculate Q by substituting
pil ,il = e�

1
2~xi·M·~xi�~uT

·~xi and pil ,jl = e�~xi·M·~xj .

Q =

Nl

’
il=1

e�
1
2~xi·M·~xi�~uT

·~xi
il�1

’
jl=1

e�~xi·M·~xj

!

=e�Â
Nl
il=1(~uT

·~xi)�Â
Nl
il=1

⇣
1
2~xi·M·~xi+Â

il�1
jl=1 ~xi·M·~xj

⌘

=e�Â
Nl
il=1(~uT

·~xi)�Â
Nl
il=1 Â

Nl
jl=1(

1
2~xi·M·~xj)

=e�
1
2 Â

Nl
il=1 Â

Nl
jl=1(~xi·M·~xj)�~uT Â

Nl
il=1 ~xi

(2.19)

Version of June 10, 2024– Created June 10, 2024 - 13:16

11

2.1 Scale Invariance 12

where the sums in the exponent run over all nodes in the network. Above
we have stated that ~xI = Âi2I ~xi for a cluster of nodes I. Similarly for the
entire network we thus obtain ~xi• = ÂNl

il=1 ~xil where we define ~xi• as the
two-dimensional vector representing the in- and out-strength of the entire
network. Thus for Q we obtain

Q =e�
1
2 ~xi• ·M· ~xi•�~u

T
· ~xi•

=1� �!pi• ,i• .
(2.20)

We can simplify equation 2.18 further

Pl(Al) =Q
Nl

’
il=1

il
’
jl=1

e
log

0

@
�!pil ,jl
pil ,jl

1

A

��!ail ,jl
+log

0

@
 �pil ,jl
pil ,jl

1

A

 ��ail ,jl
+log

0

@
 !pil ,jl
pil ,jl

1

A

 �!ail ,jl

=Qe
Â

Nl
il=1 Â

il
jl=1

2

64log

0

@
�!pil ,jl
pil ,jl

1

A

��!ail ,jl
+log

0

@
 �pil ,jl
pil ,jl

1

A

 ��ail ,jl
+log

0

@
 !pil ,jl
pil ,jl

1

A

 �!ail ,jl
3

75

.

(2.21)

Now it is clear that we can write the probability Pl(Al) as function of the
effective Hamiltonian H

l
e f f and partition function Z

l:

Pl(Al) =
e�H

l
e f f

Z l (2.22)

where for the effective Hamiltonian we have

H
l
e f f = �

Nl

Â
il=1

il
Â
jl=1

2

4log

�!pil ,jl
pil ,jl

!��!ail ,jl

+ log

 �pil ,jl
pil ,jl

! ��ail ,jl

+ log

 !pil ,jl
pil ,jl

! !ail ,jl
3

5

(2.23)
and for the partition function we have

Z
l =

1
Q

=
1

1� �!pi• ,i•
. (2.24)

We clearly see that the partition function is scale-invariant. As a result,
according to Kadanoff, free energy is thus conserved [9].

Version of June 10, 2024– Created June 10, 2024 - 13:16

12

Chapter 3
Data

This chapter describes the provided data for this research. We will look
into how the entire dataset has been filtered in order to obtain a financial
transaction network solely between firms and organizations. We will then
analyze the cleaned dataset by investigating the behaviour of (among oth-
ers) the empirical degree and strength distributions.

3.1 Financial Transactions

The data we are interested in for the purpose of this research consists of
financial transaction data between firms and organizations. We therefore
discard any data from private individuals. The raw data has been pro-
vided by ING’s Wholesale banking Advanced Analytics tribe (WBAA)
[10]. Since the year 2018, ING stores transaction information to and from
all of their clients as a table format. This table provides information on the
amount of money being transferred (in euros as well as in the applicable
currency) and the time at which the transaction took place. The payers and
beneficiaries of the transactions are listed by their names, international
bank account number (IBAN), and their IDs which are unique for every
economic entity (however, a large organization can have more than one
ID, for example mother and daughter companies have different IDs since
they are in principle different entities). Two separate columns in this table
tell us whether the payer and/or beneficiary are ING clients, and whether
the payers and/or beneficiaries are private individuals (freelancers and
one man businesses are also flagged as private individuals).

For non-private individual accounts, sector specific information is re-

Version of June 10, 2024– Created June 10, 2024 - 13:16

13

3.2 Financial Transaction Network 14

quired. This information is listed in a separate data table. This second ta-
ble contains more detailed information on the account holder. Sector spe-
cific information is given by the NAICS-code (North American Industry
Classification System) [11]. This is a 6-digit code where the first two digits
(count from left to right) specify the sector, the third specifies the subsec-
tor, the forth specifies the industry group, the fifth specifies the NAICS
industry and the sixth specifies the national industry.

The data provided in the transaction data table can in principle already
be seen as a complex network. However in this network, every node pair
can have multiple transactions (edges) between them. In addition, since
transactions have been registered by the above described method since
the year 2018, this network will be extremely large which upon analyzing
may result in computational challenges that are beyond the scope of this
research. Thus, in this research we analyse the transaction network for
solely one year. This makes the size of the data much more manageable
while not being effected to seasonal changes in the data. The year in ques-
tion is 2022 since the data for 2018 is incomplete, 2019 and 2020 were due
to the COVID pandemic considered to be unusual years, and data from
2021 (possible still skewed by the aftermath of the pandemic) is obviously
less up to date than data from 2022.

3.2 Financial Transaction Network

In the transaction data from 2022, nodes can still be linked to each other
via multiple edges. By grouping the IDs together and summing the num-
ber of transactions and the amount of money that is being transferred in
each transaction we obtain a graph in which every pair of nodes is con-
nected by at most one edge. Next, we remove all private individuals from
this network as well as all accounts that are not ING clients. This gives
us a closed transaction network of firms/organizations (closed meaning
that we do not consider transactions from/to accounts that are not from
ING clients. We refer to these accounts as the rest of the world (ROTW)
which, for convenience, we have clustered to form one large node). Finally
we need to filter out accounts from public administrations (which include
the Dutch tax office) and accounts from financial institutions. The NAICS-
codes of these accounts start with the numbers 92 and 52, respectively. It
is assumed that these accounts exhibit ”unusual” transaction behaviour
(they execute transactions very frequently while the amount of money be-

Version of June 10, 2024– Created June 10, 2024 - 13:16

14

3.2 Financial Transaction Network 15

ing transferred is often relatively large) in comparison to the vast majority
of accounts from firms/organizations. Keep in mind that in this construc-
tion an edge is allowed to start and end at the same vertex. This often
occurs for large companies that have multiple accounts. If they manage
their cash over these accounts, self-loops are created. Thus we do not end
up with a simple graph.

The result is a (very) sparse network of financial transactions consist-
ing of 323880 vertices with 2.6 · 106 edges. The maximum allowed num-
ber of edges for a network with 323880 nodes is approximately equal to
N2

2 ⇡ 52 · 109. From these edges, approximately 3.2 · 104 are self-loop
edges (edges that start and end at the same vertex), while 5.6 · 105 are re-
ciprocated links (a connection/link/edge from node A to node B is said to
be reciprocated if a connection/link/edge exists in the opposite direction
as well).

In figure 3.1 the complementary cumulative in-degree and out-degree
distributions have been plotted to give a more detailed description of some
of the properties of the network. We calculate the in-degree and out-
degrees (kin

i , kout
i) of a certain node i by summing the entries of the ad-

jacency matrix:

kin
i = Â

i,j,(i 6=j)
ai j kout

i = Â
i,j,(i 6=j)

ai!j. (3.1)

The complementary cumulative distributions are then given by the in-
verse cumulative sum of kin

i and kout
i for all nodes i in the transaction net-

work. When calculating the degree distributions, we first distinguished
four types of adjacency matrices:

• Including connections to and from the ROTW-node and including
self-loop connections;

• Excluding connections to and from the ROTW-node and including
self-loop connections;

• Including connections to and from the ROTW-node and excluding
self-loop connections;

• Excluding connections to and from the ROTW-node and excluding
self-loop connections.

Version of June 10, 2024– Created June 10, 2024 - 13:16

15

3.2 Financial Transaction Network 16

In figure 3.1 it can be clearly seen on the log-log scale, that the complemen-
tary cumulative degree distributions follow a near power law distribution
as illustrated by the black dashed lines. The tails however do not precisely
obey to this power law distribution (3.28x�1.27 for the in-degree distribu-
tion and 18.26x�1.75 for the out-degree distribution). Of course it is to be
expected that the four different types of distributions for both kin

i and kout
i

are nearly identical to each other since the difference in degrees can be at
most two: consider two different nodes a and b. Node a is connected to
the ROTW-node while node b is not which is the only key difference be-
tween the degrees of these nodes. It holds that ka = kb + 1. Similarly, for
two other unequal nodes c and d where node c has a connection with itself
while node d does not, kc = kd + 1.

(a) Complementary cumulative in-degree⇣
kin

i = Âi,j,(i 6=j) ai j

⌘
distribution.

(b) Complementary cumulative out-degree⇣
kout

i = Âi,j,(i 6=j) ai!j

⌘
distribution.

Figure 3.1: Complementary cumulative in-degree (left) and out-degree (right)

distributions for financial transaction networks including the rest-of-the-world

node (ROTW) and self-loop connections (blue triangles), excluding ROTW-node

and including self-loops (orange dot), including ROTW-node and excluding self-

loops (green diamante), and excluding ROTW-node and self-loops (red upside

down triangle). On these distributions a power law distribution has been fitted

which is visualized by a black dashed line. Node that both the x and y-axis are

log-scaled.

Through every edge, a certain amount of money is being transferred.
This amount is called the weight of an edge (or weight for short). The
weight of an edge spanning from node i to node j is denoted by wij. Now
since every edge is an aggregate of transactions from node i to node j in
the complete year of 2022, we can also identify a transaction weight. The

Version of June 10, 2024– Created June 10, 2024 - 13:16

16

3.2 Financial Transaction Network 17

complementary cumulative distributions of both the edge weights and the
transaction weights are given in figure 3.2. In this figure we see that the
weights per edge are approximately two orders of magnitude larger than
the weights per transaction. This means that an edge on average consists
of order a hundred individual transactions.

Figure 3.2: Complementary cumulative edge weight distribution (in euros) (left),

and complementary cumulative transaction weight distribution (in euros) (right)

for the financial transaction network including the ROTW-node and self-loops

(blue triangles), excluding ROTW-node and including self-loops (orange dot), in-

cluding ROTW-node and excluding self-loops (green diamante), and excluding

ROTW-node and self-loops (red upside down triangle) on a double log scale.

Using these weights we can determine the node strength (or strength
for short) which is calculated by

sin
i = Â

i,j,(i 6=j)
wi j sout

i = Â
i,j,(i 6=j)

wi!j. (3.2)

Here wi!j is the edge weight for an edge from node i to node j. In figure
3.3 the complementary cumulative distributions for the in-strength and
the out-strength are plotted. As can be seen in the figure, these distribu-
tions exhibit significantly less of a power law distributions in comparison
to the complementary cumulative degree distributions. We can see that
the vast majority of the nodes have an in- and out-strength of at least⇠ 103

euros. We can conclude this since we see that the distributions start curv-
ing at approximately 103 euros. In addition, examining the tails of these
distributions, we see that there are some outlier nodes that have a strength
of well over a billion (109) euros. This means that in our financial trans-
action network there are a handful of firms/organisations that transferred

Version of June 10, 2024– Created June 10, 2024 - 13:16

17

3.2 Financial Transaction Network 18

and/or received in the year 2022 over a billion euros.

(a) Complementary cumulative in-strength⇣
sin

i = Âi,j,(i 6=j) wi j

⌘
distribution.

(b) Complementary cumulative out-

strength

⇣
sout

i = Âi,j,(i 6=j) wi!j

⌘
distribution.

Figure 3.3: Complementary cumulative in-strength (left) and out-strength (right)

distributions for financial transaction networks including the rest-of-the-world

node (ROTW) and self-loop connections (blue triangles), excluding ROTW-node

and including self-loops (orange dot), including ROTW-node and excluding self-

loops (green diamante), and excluding ROTW-node and self-loops (red upside

down triangle). On these distributions an exponential distribution has been fitted

which is visualized by a black dashed line. Node that both the x and y-axis are

log-scaled.

To conclude our thorough description of the data at hand, we plot
the in- and out-degree distributions versus the in- and out-strength dis-
tributions in order to visualize any correlated behaviour between these
distributions. These plots have been given in figure 3.4 for a financial net-
work that excludes connections to and/or from the rest-of-the-world node
(ROTW-node) and includes self-loop connections. As described above, the
model given in chapter 2 will be fitted to this closed network. However, to
give an accurate description of the entire data set at hand, similar heat-
map plots for networks including both the ROTW-node and self-loops
connections, including the ROTW-node and excluding self-loop connec-
tions, and excluding both the ROTW-node and self-loop connections are
given in the appendix section 7.3, figures 7.2, 7.3 and 7.4 respectively. Note
that since empirical degrees are only integer values, the y-axis in figure 3.4
is obviously not continuous.

Version of June 10, 2024– Created June 10, 2024 - 13:16

18

3.2 Financial Transaction Network 19

Figure 3.4: Out-degree vs. out-strength (left) and in-degree vs. in-strength (right)

for a financial transaction network excluding connections towards and from the

ROTW-node while including self-loop connections. Both plotted on double log

scales including a log scale for the density scale.

Examining figure 3.4, we see that the degree and the strength distribu-
tions are rather strongly positively correlated given that the heat-maps are
skewed to the right. Therefore we see that the average degree (average
over the vertical) increases with strength, and the average strength (aver-
age over the horizontal) increases with the degree. This means that a node
with a relatively high strength is more likely to have a relatively high de-
gree than a relatively low degree. This is especially clearly visible in the
plot showing the out-degree vs. the out-strength. Moreover, again we see
that a strength of ⇠ 103 is most abundant in this network with a degree of
⇠ 100 to ⇠ 101.

In appendix section 7.3, information regarding the payment distribu-
tions (number of in- and out-payments per node, and the number of pay-
ments per edge in figures 7.5 and 7.6) is given as well.

Version of June 10, 2024– Created June 10, 2024 - 13:16

19

Chapter 4
Method

In the previous chapters we have derived our scale-invariant network
model and we have analyzed the data to which the model needs to be
fitted. This chapter describes the methods that are used to obtain an al-
gorithm that allows to properly fit the theoretical model to the transaction
data.

4.1 Network Generator

Given the fact that the data set described in chapter 3 is significantly large
(on the order of 105 vertices and 106 edges), it would be virtually impos-
sible to implement an accurate fitting algorithm directly to this dataset.
During the development of the fitting algorithm it would be beneficial if
we can (partially) test our fitting algorithm on a relatively small fictitious
dataset of which the network properties are known. We therefore first
want to have a method for generating fictitious transaction networks given
the node strengths and the values for matrices M and A and vector u from
equations 2.11-2.14. The benefit of this is that we know what the results of
the fitting algorithm should be and thus we can measure its performance
during the development of the algorithm. Moreover, generating a small
fictitious network using Google JAX improves the computation speed (the
Google JAX library is also used in the fitting algorithm).

We start off by randomly generating node strengths for N number of
nodes and (randomly) choosing values for M, A and ~u (while obeying
eq. 2.15). Now we can explicitly calculate the probability distributions
from equations 2.11-2.14 (setting the probability distribution for the self-

Version of June 10, 2024– Created June 10, 2024 - 13:16

20

4.1 Network Generator 21

loops aside for now) which are in the form of symmetric N -by-N ma-
trices when we allow all four types of connections to exist between all
pairs of nodes. From these symmetric matrices we will take the upper
triangle elements to decrease the computation time. We can randomly
choose connection types as function of the probability distributions using
jax.random.choice(key=key, a=a, p=P) with key being JAX’s pseudo
random number generator key, a = jnp.arange(4) (because there are four
different types of connections apart from the self-loops), and P being a
concatenated array of the upper triangle elements of the probability distri-
butions (jnp.concatenate(pi,j,

�!pi,j,
 �pi,j,

 !pi,j)). The result is a N -by-N
”adjacency” matrix (denoted by A) with an empty diagonal (which will
be filled later) containing 0s, 1s, 2s and 3s. These numbers represent how
the nodes are connected to each other. If Aij = 0, than there is no edge
between nodes i and j, if Aij = 1 and Aij = 2 than there is one directed
edge between a pair of nodes (from i to j and from j to i respectively), if
Aij = 3 than there is a reciprocated connection between a pair of nodes.

For randomly generating the self-loop connections we follow practi-
cally the same procedure: explicitly calculate the probability that a vertex
is connected to itself as function of matrix M, vector u and its strength.
Doing this for all N nodes in our fictitious network we can again ran-
domly choose which self-loop connections are indeed realized using a ran-
dom Bernoulli distribution (jax.random.bernoulli(key, p_self)) with
key being JAX’s pseudo random number generator key and p_self an
array with length N containing the probabilities that the nodes are con-
nected to themselves. The result is an array with length N containing 0s
and 1s representing the diagonal in our ”adjacency” matrix A. If matrix
element Aii = 1, than node i is connected to itself.

For computational convenience, our fitting algorithm needs to be de-
signed such that it can take ING’s financial transaction table as input in-
stead of a complete adjacency matrix. Thus, it would also be convenient to
store the information of our fictitious adjacency matrix A in table format as
well. We only need two columns (two separate arrays or lists will suffice)
both with length equal to the amount of connections in our fictitious net-
work. Define a payer- and a beneficiary-column. The payer-column contains
all nodes that transfer a certain amount of money while the beneficiary-
column contains all nodes that receive a certain amount of money. Node
pairs that share a reciprocated connection are listed in both the payer- and
beneficiary-column. The same goes for nodes that are connected to them-
selves.

Version of June 10, 2024– Created June 10, 2024 - 13:16

21

4.2 Parameter Estimation 22

Now that the connections of our fictitious transaction network are stored
in a table format (an example is given in table 4.1), we can build and test
our fitting algorithm. We do not need to change the structure of our al-
gorithm when it is being implemented on the real-world transaction data
since that is also stored in table format.

Index Payer Beneficiary e Number of payments
1 0 3 5 2
2 1 0 16 3
3 1 2 9 5
4 1 4 37 10
5 2 1 18 4
6 2 4 8 1
7 3 3 21 3

Table 4.1: Example of transaction records for a small network containing 5 nodes.

In the actual data set, columns containing codes related to the identity of the

organizations are provided as well.

4.2 Parameter Estimation

This paragraph describes the algorithm that is used to fit the reciprocated
scale-invariant network model from equations 2.11-2.14 to ING’s transac-
tion data. In other words, the goal of this algorithm is to find values for
the elements of the 2-by-2 matrices M and A as well as for the elements of
the two dimensional vector ~u.

4.2.1 Prepare Data

Chapter 3 describes how the raw transaction data is filtered to a useful
data set for this research. In this paragraph we look at how the data is
used in our fitting algorithm. The data set is formatted as a table of which
an example is given in 4.1. In this table we see that a node with label ”0”
transfers e5 to a node with label ”3” within a total of 2 separate payments.
Closely analyzing table 4.1 we conclude that node ”0” has an in-strength of
e16 and an out-strength of e5, node ”1” has an in-strength of e18 and an
out-strength of e16 + e9 + e37 = e62, etc. Upon extracting the strengths
of all nodes from the transaction data, the in- and out-strength are taken

Version of June 10, 2024– Created June 10, 2024 - 13:16

22

4.2 Parameter Estimation 23

to be in units of e109.

Despite the fact that the labels of the nodes in the columns ”payer” and
”beneficiary” are convenient numbers ranging from 0 to N � 1 with N

being the number of nodes in the network (in the example network from
table 4.1 we have N = 5), it remains computationally challenging (when
faced with a large transaction network) to identify exactly how the nodes
are connected to each other. We will therefore introduce a new labeling
system in which we label the connections instead of the nodes themselves
(in principle we count their location in the adjacency matrix). We define
tail-nodes to be given by pN + b and head-nodes to be given by bN + p
(where we use the analogy between an arrow and the direction in which
money is being transferred). Here, p and b are the standard 0 to N � 1 la-
bels for the payer- and beneficiary-nodes respectively. Using this transfor-
mation on the ”payer” and ”beneficiary” columns of table 4.1, we obtain
table 4.2.

Index Tails (pN + b) Heads (bN + p) e Number of payments
1 3 15 5 2
2 5 1 16 3
3 7 11 9 5
4 9 21 37 10
5 11 7 18 4
5 14 22 8 1
7 18 18 21 3

Table 4.2: Example of transformed transaction for a small network containing 5

nodes. In the actual data set, columns containing codes related to the identity of

the organizations are provided as well.

Analyzing table 4.2 we can easily identify which node pair is connected
via a single directed edge or via a reciprocated edge: for every pair of
node-label that is listed in both the tails and heads column, its correspond-
ing nodes are connected via a reciprocated connection. Thus we see that at
indexes 3 and 5 labels 11 and 7 are both listed as tails and heads. Their cor-
responding nodes ”1” and ”2” (obtained from the inverse of both pN + b
and bN + p) are thus linked via a reciprocated connection. Similarly, every
label that is listed in both the tails and heads column on the same index
suggests a self-loop connection for that corresponding node. For example,
at index 7 we see that label 18 is listed both as a tail and a head which
means that its corresponding node (node ”3”) is connected to itself. Every
other pair of nodes is connected via a single directed edge.

Version of June 10, 2024– Created June 10, 2024 - 13:16

23

4.2 Parameter Estimation 24

4.2.2 Optimization Problem

Using the above described method we know which nodes are connected
via a single directed edge or via a reciprocated edge. We also know which
nodes are connected to themselves and how much money is being trans-
ferred across every edge. We are now ready to determine the parame-
ters from equations 2.11-2.14. There are a number of ways to solve this
problem, however we choose to do this by minimizing the negative log-
likelihood (NLL) functions. Equation 4.1 gives the NLL-function that is
derived from the probability distribution functions for non-self-loop con-
nections (thus i 6= j)

NLL = Â
(i,j,(j>i))2I00

~xi · M · ~xj

� Â
(i,j,(j>i))2I01

log
⇣

e�~xi·M·~xj
⇣

e~xi·A·~xj � 1
⌘⌘

� Â
(i,j,(j>i))2I10

log
⇣

e�~xi·M·~xj
⇣

e~xi·AT
·~xj � 1

⌘⌘

� Â
(i,j,(j>i))2I11

log
⇣

1 + e�~xi·M·~xj
⇣

1� e~xi·A·~xj � e~xi·AT
·~xj
⌘⌘

(4.1)

while equation 4.2 gives the NLL-function that is derived from the proba-
bility distribution functions for self-loop connections (thus i = j).

NLLloops = Â
(i,j,(j=i))2I00

1
2
~xi · M · ~xj � ~uT

· ~xi

� Â
(i,j,(j=i))2I11

log
⇣

1� e�
1
2~xi·M·~xj�~uT

·~xi
⌘ (4.2)

Where the sums run over the node pair collections I00, I01, I10 and I11.
The pair i, j lives in I00 if and only if there is no connection between i and
j, if and only if j connects to i, the pair lives in I01, and in I10 if and only
if i connects to j, lastly, the pair i, j lives in I11 if and only if i connects to j
and j connects to i.

We use gradient descent (with the adam optimizer and a learning rate
of 0.001) to minimize the NLL from equation 4.1. This give us values for
the elements in matrices M and A. With the found matrix M held fixed
we use gradient descent again (also with the adam optimizer, now with a

Version of June 10, 2024– Created June 10, 2024 - 13:16

24

4.2 Parameter Estimation 25

learning rate of 0.005) to minimize NLLloops from equation 4.2 from which
we retrieve the vector ~u. Both these gradient descent methods terminate
after having completed 4500 iterations (more on this in the next section).
The choice for separating these two NLL-functions instead of defining one
NLL-function that can also account for self-loops, is a result of the fact that
self-loop connections are scarce in ING’s transaction network (from a to-
tal of ⇠ 2.6 · 106 edges, ⇠ 3.2 · 104 self-loops). This would mean that the
additional presence or absence of a small number of self-loops can have
a larger impact on the estimation of matrices M and A in comparison to
the additional presence or absence of the same amount of non-self-loop
edges. Moreover, sending money to oneself is logically done for very dif-
ferent reasons than sending money to others. Therefore we assume that
self-loop connections obey to different physics compared to non-self-loop
connections. Since the probability distributions of these types of connec-
tions both depend on the matrix M, the new physics introduced by the
self-loops can therefore ”pull” on the true values for M if we were to de-
fine one NLL-functions accounting for all types of connections.

Since the in- and out-strengths of the nodes are taken to be in units
of e109 (as described in the previous section), the outcomes of the dot-
products in the exponents of equations 4.1 and 4.2 can become very small.
In other words, this means that the combination ~xT

· M · ~x can become
very small which makes e~xT

·M·~x numerically unstable. To make sure that
this can computationally still have meaning, we use the jnp.expm1 func-
tion from JAX. This function allows us to calculate ex

� 1 for (very) small
values of x. However, to utilize this function we have to rewrite equations
4.1 and 4.2 to ”expose” all ex

� 1 terms. This leads to:

Version of June 10, 2024– Created June 10, 2024 - 13:16

25

4.2 Parameter Estimation 26

NLL = Â
(i,j,(j>i))2I00

~xi · M · ~xj

+ Â
(i,j,(j>i))2I01

~xi · M · ~xj � Â
(i,j,(j>i))2I01

log
⇣

e~xi·A·~xj � 1
⌘

+ Â
(i,j,(j>i))2I10

~xi · M · ~xj � Â
(i,j,(j>i))2I10

log
⇣

e~xi·AT
·~xj � 1

⌘

� Â
(i,j,(j>i))2I11

log
⇣

1 + e�~xi·M·~xj � e~xi·(A�M)·~xj � e~xi·(AT
�M)·~xj

⌘

= Â
(i,j,(j>i))2I00,I01,I10

~xi · M · ~xj

� Â
(i,j,(j>i))2I01

log
⇣

e~xi·A·~xj � 1
⌘
� Â

(i,j,(j>i))2I10

log
⇣

e~xi·AT
·~xj � 1

⌘

� Â
(i,j,(j>i))2I11

log
✓

e~xi·(A+AT
�M)·~xj ·

⇣
e~xi·A·~xj � 1

⌘ ⇣
e~xi·AT

·~xj � 1
⌘

�

⇣
e~xi·(A+AT

�M)·~xj � 1
⌘◆

(4.3)

while equation 4.2 becomes

NLLloops = Â
(i,j,(j=i))2I00

1
2
~xi · M · ~xj � ~uT

· ~xi

� Â
(i,j,(j=i))2I11

log
⇣
�

⇣
e�

1
2~xi·M·~xj�~uT

·~xi � 1
⌘⌘

.
(4.4)

For all ex
� 1 terms in the above functions for NLL we can use jnp.expm1

for a correct calculation in the small number regime.

In equations 4.3 and 4.4 we are not directly able to obey the boundary
conditions for M, A and ~u as given in equation 2.15. We can only do this
after having performed the following substitutions:

M =
✓

m 2
00 m 2

01
m 2

10 m 2
11

◆
(4.5)

where mkl (with k, l 2 {0, 1} and m01 = m10 as discussed in chapter 2) can
be any number in R. This substitution ensures that 0 M < •. Similarly

Version of June 10, 2024– Created June 10, 2024 - 13:16

26

4.2 Parameter Estimation 27

for vector ~u we take
~u =

✓
u 2

0
u 2

1

◆
(4.6)

where also uk (with k 2 {0, 1}) can be any number inRwhich ensures that
0 ~u < •. Finally, we need to ensure that 0 A + AT

 M holds which
is done by taking

A =
✓ 1

2 cos2(q00)m 2
00 cos2(q01)sin2(f)m 2

01
cos2(q01)cos2(f)m 2

10
1
2 cos2(q11)m 2

11

◆
. (4.7)

Where f and qkl (with k, l 2 {0, 1}) can be any number in R. As a
result A + AT becomes

A + AT =

0

@
2
⇣

1
2 cos2(q00)m 2

00

⌘
cos2(q01)m 2

01
�
sin2(f) + cos2(f)

�

cos2(q01)m 2
01
�
sin2(f) + cos2(f)

�
2
⇣

1
2 cos2(q11)m 2

11

⌘

1

A

=
✓

cos2(q00)m 2
00 cos2(q01)m 2

01
cos2(q01)m 2

01 cos2(q11)m 2
11

◆

(4.8)

from which we can conclude that 0 A + AT
 M holds since 0

cos2(x) 1.

To conclude, with the above described method for minimizing the NLL-
functions, we can find estimated values for the parameters m00, m01, m11,
u0, u1, q00, q01, q11 and f. The initial values of these parameters are ran-
domly generated real-valued numbers. The initial values of u0 are in the
range [10, 15], while for all other parameters their initial values are in the
range [0, 10]. At the end of the gradient descent method, these parameters
finally determine the sought after matrices M and A and the vector ~u.

4.2.3 Error Measurement

The above described method for determining the values for the parame-
ters is not perfect due to the fact that the initial values need to be guessed.
In theory, the gradient descent method should nonetheless find values for
the parameters such that the gradients of the NLL-functions go to 0. How-
ever, this only occurs when the number of iterations of the method got to
•. Of course this is not feasible in real life which is why the number of
iterations have been set to a large value such that the gradients will in-
deed approach significantly small numbers within a manageable amount

Version of June 10, 2024– Created June 10, 2024 - 13:16

27

4.2 Parameter Estimation 28

(a) Convergence of the NLL-function given

in equation 4.3

(b) Convergence of the NLL-function for

self-lops given in equation 4.4

Figure 4.1: Convergence of NLL-functions within a total of 4500 iterations.

of time. The number of iterations is taken to be 4500. To prove that the gra-
dients indeed decrease (very) small values, the convergence of the NLL-
functions have been plotted in figure 4.1. This finite value for the number
of iterations does however mean that the values of the parameters will
never be perfect since the gradients can never truly reach 0. Thus, we are
subjective to two types of errors that emerge using this method: an initial-
ization error due to the random guess of the initial values and a standard
error due to the finite gradient descent method.

We can measure the initialization error by performing the above de-
scribed gradient descent method multiple times and determining the stan-
dard deviation of the resulting set of values of the parameters. We have
chosen to execute the gradient descent method 10 separate times. At the
start of every execution, new random initial values for the parameters are
generated. The final values of the NLL-functions are stored in a list as
well as the final parameter values. Since the gradient descent method is
designed to minimize the NLL-functions, we can argue that the best exe-
cution of this method is the one that yields the lowest value for the NLL-
functions. Its corresponding set of parameter values are label as the ”best”
final values for the parameters. Using the complete set of parameter val-
ues from all executions we can determine the initialization error by using
np.std.

The standard error can be determined by utilizing the Hessian matrix
[12]. The Hessian matrix of the negative log-likelihood functions is de-
fined as given in equation 4.9 where the derivatives are with respect to
the set of parameters {m00, m01, m11, q00, q01, q11, f} and {m00, m01, m11,
u0, u1}, respectively. Upon analyzing the NLL-functions, we can conclude
that their second derivatives are continuous functions which results in the

Version of June 10, 2024– Created June 10, 2024 - 13:16

28

4.3 Coarse Graining 29

Hessian matrix being symmetric. However, we do not need to explicitly
calculate this Hessian matrix as we can use the function jax.hessian to
calculate HNLL and HNLLloops . Taking the inverse of these Hessian matrices

yield the covariance-matrices
⇣

CVNLL and CVNLLloops

⌘
for both sets of pa-

rameters. Taking the square root of the diagonal of CVNLL and CVNLLloops

leaves us with the standard error on every parameter.

(HNLL)ij =
∂2NLL
∂xi∂xj

⇣
HNLLloops

⌘

ij
=

∂2NLLloops

∂xi∂xj

(4.9)

4.3 Coarse Graining

After having obtained explicit values for the elements of the matrices M
and A and vector ~u by fitting the model to the data as described above,
we need to determine the performance of our (now explicitly determined)
reciprocated model as a ”scale-invariant model”.

We start by coarse graining our transaction data to obtain transaction
networks of higher levels (think of a network of transactions between sec-
tors instead of transactions between individual organizations). We can do
this by utilizing the NAICS-codes in our data as described in chapter 3 (an
example of how to utilize the NAICS-codes is given in table 4.3). In this re-
search we have coarse grained three times and thus we have obtained four
transaction networks on different levels/scales. In what follows, we will
refer to these networks as network scale 1 (being the network of transac-
tions between organizations), and scales 2, 3 and 4. In the transaction data
of network scale 1, the NAICS-codes are 6-digits numbers, for scale 2 they
are coarse grained to 5-digit numbers, 4-digit numbers for scale 3 and fi-
nally on scale 4 the NAICS-codes are 3-digit numbers. This means that
the number of 323880 vertices for network scale 1 has been reduces to 972
vertices for scale 2, 647 for scale 3 and 305 vertices for scale 4.

Note that we do not fit our model on every separate network scale.
Rather, we fit the model once on the network with scale 1 and evaluate the
performance of the obtained explicit model on all four networks. Than the
performance of our model is determined by calculating expected degree

Version of June 10, 2024– Created June 10, 2024 - 13:16

29

4.3 Coarse Graining 30

NAICS-code Title
21 Mining, Quarrying, and Oil and Gas Extraction
2111 Oil and Gas Extraction
211120 Crude Petroleum Extraction
211130 Natural Gas Extraction
2121 Coal Mining
212114 Surface Coal Mining
212115 Underground Coal Mining
2122 Metal Ore Mining
212210 Iron Ore Mining
212220 Gold Ore and Silver Ore Mining height

Table 4.3: Fraction of the NAICS-codes table within the mining sector [11].

and weight distributions an comparing them to the empirical degree and
weight distributions for all four network scales (more on this in the next
chapter).

Version of June 10, 2024– Created June 10, 2024 - 13:16

30

Chapter 5
Results and Discussion

This chapter covers the results of the methods described in the previous
chapter. We will first analyze the parameter values including their error
measurements after which the expected degree and weight distributions
will be discussed.

5.1 Estimated Parameter Values

Parameter Parameter value Standard error Initialization error
M00 0.2030 0.0047 0.2540
M01 1.1373 0.0043 0.1998
M11 1.6113 0.0055 0.1594
A00 0.1015 0.0021 0.1174
A01 0.4812 0.0022 0.0823
A10 0.5376 0.0026 0.1009
A11 0.6837 0.0025 0.0721
u0 65.6394 1.3686 0.0005
u1 115.5169 1.6431 0.0005

Table 5.1: Parameter values calculated using methods described in chapter 4 in-

cluding the standard and initialization errors resulting from the described meth-

ods.

The methods described in the previous chapter yield values for the pa-
rameters m00, m01, m11, u0, u1, q00, q01, q11 and f. With the use of equations
4.5, 4.6 and 4.7 the values for the elements of the matrices M and A, and
vector ~u can than be obtained. The resulting parameter values are listed

Version of June 10, 2024– Created June 10, 2024 - 13:16

31

5.2 Degree distributions 32

in table 5.1 including the standard and initialization errors that emerged
during the calculations.

Upon analyzing table 5.1, we see that the standard errors (determined
by utilizing the Hessian matrix) are approximately 2 orders of magnitude
smaller than the determined parameter values. We assume this to be a re-
sult of the fact that the data set is indeed considerable large. Combine this
with the fact that the terms in the NLL-functions are well behaved which
allow the gradient descent method to smoothly minimize these functions,
results in a low standard error. The initialization error clearly has more
influence on the parameter values * (especially on the M00 and A00 param-
eters where it could be argued that the parameter values should be equal
to zero since the initialization errors are approximately equal to the param-
eter values, however we have chosen not to manually change the outcome
of the fitting algorithm), except for the parameters of vector ~u which are
more than a magnitude larger than the other parameters. We assume this
to be a consequence of self-loop connections to obey to different physics
than the non-self-loops connections.

Now that the parameter values of equations 2.11, 2.12, 2.13 and 2.14 are
known (these are only calculated once which is done on the network with
scale 1), we can explicitly calculate the probabilities that pairs of nodes are
connected to each other in a certain configuration for given values of the
node strengths which varies across different network scales.

5.2 Degree distributions

Upon calculating the expected degree distributions using equations 2.11,
2.12, 2.13 and 2.14, we can identify three flavors of expected degrees: con-
ditional degree distributions, unconditional degree distributions and undi-
rected degree distributions (we use joblib.Parallel to speed up the com-
putation of these distributions). These three expected degree distributions
are calculated for all four different network scales and compared to their
empirical degree distributions.

We calculate the expected conditional degree distributions using the

*The large difference between the values of the initialization errors and the standard
errors should not go unnoticed and would be interesting to investigate further in follow
up research. This is for now outside of the scope of this thesis.

Version of June 10, 2024– Created June 10, 2024 - 13:16

32

5.2 Degree distributions 33

following set of equations:
D

k01
i

E
= Â

(i,j,(j 6=i))2I01

p01
ij (5.1)

D
k10

i

E
= Â

(i,j,(j 6=i))2I10

p10
ij (5.2)

D
k11

i

E
= Â

(i,j,(j 6=i))2I11

p11
ij (5.3)

where,
⌦
k01

i
↵

gives us the expected in-degree of a node i. This means that,
for node pair (i, j), i does not connect to j while j does connect to i. Sim-
ilarly,

⌦
k10

i
↵

gives us the expected out-degree of node i (meaning that i
connects to j while j does not connect to i), and

⌦
k11

i
↵

gives the expected
reciprocated degree distributions for a node i (for a pair (i, j), both i and j
are connected to each other).

The expected unconditional degree distributions are calculated using
the following two equations:

D
k⇤1i

E
= Â

(i,j,(j 6=i))2I01

p01
ij + Â

(i,j,(j 6=i))2I11

p11
ij (5.4)

D
k1⇤

i

E
= Â

(i,j,(j 6=i))2I10

p10
ij + Â

(i,j,(j 6=i))2I11

p11
ij (5.5)

where
⌦
k⇤1i
↵

gives us the expected unconditional in-degree of node i pro-
vided that we do not know whether node i connects to node j, thus we
only know that j connects to i. Vice versa,

⌦
k1⇤

i
↵

gives us the expected un-
conditional out-degree of node i.

Finally, to calculate the expected undirected degree distribution we use

hkii = Â
(i,j,(j 6=i))2{I01,I10,I11}

⇣
1� p00

ij

⌘
(5.6)

which gives us the expected degree of a node i that is connected to a node
j in some configuration.

To accurately compare these distributions to the empirical degree dis-
tributions, we take the cumulative distribution for both the expected and
empirical degree distributions. The resulting plots in which the expected

Version of June 10, 2024– Created June 10, 2024 - 13:16

33

5.2 Degree distributions 34

degree distributions are compared to the empirical degree distributions
are given in the appendix.The cumulative expected and empirical degree
distributions for network scale 1 are given in section 7.4.1, for network
scales 2, 3, and 4 see sections 7.4.2, 7.4.3 and 7.4.4 respectively.

For the transaction network at scale 1 (with 323880 vertices), figures 7.7,
7.8 and 7.9 show that the predicted degrees are smaller than the empirical
degrees since the orange curves are throughout the whole domain below
the blue curves. Now since degrees need to be integer valued numbers
(it is impossible to be connected to half a vertex), we round the expected
degree distributions (orange curve) to integers (green curves). In the fig-
ures we see that these cumulative rounded expected degree distributions
are still below the cumulative empirical degree distributions for the largest
part of the domain.

We can extract a similar conclusion for the curves of the transaction
network at scale 2 (with 972 vertices. See figures 7.10, 7.11 and 7.12). How-
ever, here we see that the three curves (the expected, the expected rounded
to integers, and the empirical) are significantly closer together where in
some cases the green and the blue curves even seem to overlap each other
on a significant portion of the domain.

For the transaction network at scale 3 having 647 vertices (see figures
7.13, 7.14 and 7.15) this overlapping of curves seems to be similar. Now
the orange curves (the not-rounded cumulative expected degree distribu-
tions) seems to be mimicking the trajectory of the blue curves more closely
as the model start ”rejecting” (very) low valued degrees for this data set.

Finally, the curves of the cumulative degree distributions for the trans-
action network at scale 4 which has 305 vertices (figures 7.16, 7.17 and 7.18)
almost completely overlap each other. With the exception that the cumu-
lative expected conditional in- and out-degree distributions (figure 7.16)
abruptly drops of and thus cannot get close to the cumulative empirical
degree distributions for large valued degrees.

Thus, we see that the performance of the model for accurately predict-
ing the cumulative degree distributions increases as the network scale in-
creases. Increasing the network scale decreases the total number of nodes
in a network. Therefore, the maximum allowed degree per node decreases
as well. Additionally, the minimum empirical degree per node increases.
This becomes evident upon analyzing the horizontal axis for the empiri-

Version of June 10, 2024– Created June 10, 2024 - 13:16

34

5.3 Weight distributions 35

cal degree distribution in figures 7.7 through 7.18 where we see that the
domain of the empirical degree distributions decreases from [kmin, kmax] =
[100, 105] to [kmin, kmax] = [101, 103] as the scale increases. It is believed
that this decrease in the values for the global maxima and minima in the
empirical data allows for an increased accuracy of the predictions.

5.3 Weight distributions

In a similar fashion to how the performance of the model can be tested
by calculating the expected degree distributions and comparing them to
the empirical degree distributions as described in the previous section, we
can calculate the expected weight distributions which we will compare to
the empirical weight distribution and the empirical average weight dis-
tribution of the entire network. We can identify two flavours of expected
weight distributions that we will compare with the empirical weight dis-
tribution: weight distributions for directed edges, and weight distribu-
tions for undirected edges.

The weight distributions for directed edges are calculated by

D
w�!ij

E
=

sout
i sin

j p10
ij

W
⇣

p10
ij + p11

ij

⌘ 8i, j (5.7)

D
w !ij

E
=

sout
i sin

j p11
ij

W
⇣

p10
ij + p11

ij

⌘ 8i, j (5.8)

*
w��! !

ij|aij

+
=

sout
i sin

j aij

W
⇣

p10
ij + p11

ij

⌘ 8i, j (5.9)

which give us 1) the expected weight of a connection between nodes i and
j where node i is connected to node j while j is not connected to i. 2) the
expected weight of a reciprocated connection between nodes i and j, and
3) the expected weight of a connection between nodes i and j of which its
existence is known (i.e. aij is element (i, j) of the adjacency matrix). In the
above equations, sout

i is the out-strength of node i, sin
i is the in-strength of

node i, and W is the total weight of the network
⇣

W = Âi sout
i = Âj sin

j

⌘
.

Similarly, the weight distributions for undirected edges can be calculated

Version of June 10, 2024– Created June 10, 2024 - 13:16

35

5.3 Weight distributions 36

using
D

wij|aij

E
=

sout
i sin

j aij

W pij
(5.10)

where pij = 1 � p00
ij . Again aij is element (i, j) of the adjacency matrix.

Lastly, the empirical average weight distribution of the entire network is
determined by

w̄empirical =
sout

i sin
j

W
. (5.11)

Again we determine the cumulative distribution of these weight dis-
tribution functions (in units of e·10�2 for convenience) to be able to ac-
curately compare the weight distributions with each other. The resulting
plots are given in the appendix (sections 7.5.1, 7.5.2, 7.5.3 and 7.5.4 for the
transaction networks at scales 1 through 4 respectively).

For the transaction network at scale 1, we see in figure 7.19 the cumu-
lative expected, average and empirical weight distributions for directed
edges while figure 7.20 shows the cumulative expected, average and em-
pirical weight distributions for undirected edges. We can directly see that
the cumulative distributions of

D
w�!ij

E
(green triangles) and

D
w !ij

E
(red

squares) closely follow the cumulative distribution of w̄empirical (blue dots).

However, the cumulative distribution of

*
w��! !

ij|aij

+
(orange diamonds) fol-

lows more closely the cumulative empirical weight distribution (purple
stars). This holds on all 4 network scales (see remaining figures 7.21, 7.23
and 7.25). In all of these figures we see that the orange diamonds curves
are well below the cumulative empirical weight distributions for the ma-
jority of the domain. Only for high valued weights these curves seem to
converge.

This also seems to be true for the cumulative expected weight distri-
bution for undirected edges (figures 7.20, 7.22, 7.24, and 7.26). Here the
cumulative curves of

D
wij|aij

E
stay well below the cumulative empirical

curves while they only move towards each other for high valued weights.

Finally, it is worth mentioning that the cumulative empirical and aver-
age distributions naturally move towards each other the further we coarse
grain the transaction network. This is of coarse a result of the fact that
the number of vertices significantly decreases while coarse graining and

Version of June 10, 2024– Created June 10, 2024 - 13:16

36

5.3 Weight distributions 37

as a result, making the evaluated transaction network more dense with
a smaller deviation in the amount of money being transferred per edge.
Similarly to what we discussed in the previous section, we belief that this
decrease in global maxima and minima allows for more accurate predic-
tions of the model.

Version of June 10, 2024– Created June 10, 2024 - 13:16

37

Chapter 6
Summary and Conclusion

In chapter 2 we presented our directed scale-invariant model where our
reasoning started of with the premise that transactions and edge weights
(read: transferred amount of money) are additive variables. This allowed
us to obtain an expression for the probability that a node i connects to
a different node j. However, in this expression the behaviour of node j
remained unknown. To that end we derived a network model that has
control over reciprocity. We defined four probability distributions which
together described the behaviour of both nodes i and j (equations 2.11-
2.14). To ensure these probability distributions live only within the domain
[0, 1] we introduced boundary conditions on the values of the parameters
as given in equation 2.15. Additionally, in the same chapter we derived
the effective Hamiltonian of this system as well as the partition function
which has proven to be constant and scale-invariant.

A discussion of the data has been presented in chapter 3. In this chap-
ter we explained how the raw transaction data has been cleaned in order
to obtain a transaction network solely between firms and organizations.
This sparse network, consisting of approximately 3.2 · 105 nodes and ap-
proximately 2.6 · 106 edges, is said to be closed (meaning that there are no
financial transactions going to or coming from other banks) while it allows
for self-loop connections to exist.

To obtain values for the parameters of the model we used the method
described in chapter 4. We first explained that a small artificial transaction
network is required to test the fitting algorithm during the process of its
development. The specific details of these artificial networks themselves
are not as important as the method with which they are generated to make

Version of June 10, 2024– Created June 10, 2024 - 13:16

38

39

them as realistic as possible.

Before the fitting algorithm is explained we introduced a new label-
ing system in which we (in principle) count the locations of the nodes
in the adjacency matrix. We defined the ”tail-nodes” by pN + b and the
”head-nodes” by bN + p where p and b are respectively the standard payer
and beneficiary node labels. Using this new labeling system we argued
how to obtain values for the parameters by minimizing the negative log-
likelihood functions (NLL for connections between nodes i and j with i 6= j,
and NLLloops for connections between nodes i and j with i = j). Within
these functions the constraints on the parameters are realized by introduc-
ing a new set of parameters (m00, m01, m11, u0, u1, q00, q01, q11 and f) as
given in equations 4.5, 4.6 and 4.7. The standard deviations are than de-
termined by executing this method multiple times, and by utilizing the
Hessian matrix.

Finally, in chapter 4 we explain how to use the provided NAICS-codes
of the data to coarse-grain the transaction network. With it, the perfor-
mance of the model to determine the expected cumulative degree and
weight distributions are measured on four different network scales.

The results are discussed in chapter 5 (figures are provided in the ap-
pendix). For the expected degree distributions, the model’s predictabil-
ity improved the further we coarse-grained the transaction network. We
saw that the model tends to put more emphasis on small degrees. As the
network scale is increased, this emphasis seems to slowly fade towards
moderate valued degrees. It has been discussed that this is most likely a
result of the increasing uniformity of the empirical data across a smaller
domain that is imposed on the network by coarse-graining. Similarly for
the expected weight distributions, we discussed that the decrease in global
maxima and minima upon coarse-graining the network allowed for more
accurate predictions on the weight distributions. In spite of this, the ex-
pected cumulative weight distributions seemed to be significantly more in
line with the empirical cumulative weight distributions compared to what
has been shown for the degree distributions.

Clearly further investigations are required to improve the model’s per-
formance on predicting the expected degree and weight distributions. Adding
extra parameters to the model such that, for example, the account balance
of organizations are accounted for might benefit the performance.

Version of June 10, 2024– Created June 10, 2024 - 13:16

39

Chapter 7
Appendix

In this chapter we provide additional information to what is described
(and often referred to) in the preceding chapters. In section 7.1 we care-
fully derive the probability distributions given in equations 2.11-2.14. Since
these equations can only have a physical meaning within the range [0, 1]
we need to impose boundary conditions on the parameters which are de-
rived in section 7.2. In section 7.3 we present additional information on
the empirical data described in chapter 3. Finally, in sections 7.4 and 7.5
we present the expected cumulative degree plots and the expected cumu-
lative weight plots, respectively, that are discussed in chapter 5.

7.1 Derivation of p00
I j , p01

I j , p10
I j and p11

I j

In this section we show in detail how the probability distributions given
in equations 2.11-2.14 are derived.

7.1.1 Derivation of p00
I j

Calculate the probability that node cluster I (consisting of nodes i and k)
does not connect to node j in neither direction.

p00
I j = p00

{i,k},j = p00(~xi + ~xk; ~yj) = p00
ij (~xi; ~yj)p00

kj (~xk; ~yj) (7.1)

First we take the derivative of the above probability with respect to the
ath index of the ith node of the first argument: ∂

∂xa
i
.

Version of June 10, 2024– Created June 10, 2024 - 13:16

40

7.1 Derivation of p00
I j , p01

I j , p10
I j and p11

I j 41

∂xa p00(~xi + ~xi; ~yj)
∂(xa

i + xa
k)

xa
i

= p00(~xk; ~yj)∂xa p00(~xi; ~yj)
∂xa

i
∂xa

i
+

p00(~xi; ~yj)∂xa p00(~xk; ~yj)
∂xa

k
∂xa

i
(7.2)

Where in the above ∂xa p00(...; ...) denotes the derivative of the function p00

with respect to the ath index of the first argument of that function which
can be rewritten to

∂xa p00(~xi + ~xi; ~yj) = p00(~xk; ~yj)∂xa p00(~xi; ~yj). (7.3)

Using this, we can write eq. 7.2 in a more convenient form:

∂xa p00(~xi + ~xi; ~yj)
p00(~xi + ~xk; ~yj)

=
p00(~xk; ~yj)∂xa p00(~xi; ~yj)

p00(~xi; ~yj)p00(~xk; ~yj)
=

∂xa p00(~xi; ~yj)
p00(~xi; ~yj)

. (7.4)

Now, we take the derivative with respect to the bth index (note that
a and b can be equal toe each other since there are no constraints on the

indices) of the kth node of the first argument
✓

∂

∂xb
k

◆
. This leads to

∂xb ∂xa p00(~x,~y)
p00(~x,~y)

= 0. (7.5)

Notice that, since the two derivatives ∂xa and ∂xb are with respect to func-
tion arguments and not specific node values ~xi or ~xk, we can write ~x in
place of the node values xi + xk and ~y in place of the node values ~yj. More-

over, eq. 7.5 holds for every b. Therefore, ∂xa p00

p00 cannot depend on any xb,
only on ~y. Thus,

∂xa p00(~x,~y)
p00(~x,~y)

= ca(~y) (7.6)

for some to be determined set of functions ca(~y). This means that ∂xa p00 =
ca(~y)p00, and therefore,

p00(~x,~y) = eÂa ca(~y)xa+c0(~y) (7.7)

with another to be determined function c0(~y). Notice that the summation
is in principle a dot-product.

Version of June 10, 2024– Created June 10, 2024 - 13:16

41

7.1 Derivation of p00
I j , p01

I j , p10
I j and p11

I j 42

Similarly, if we demand that

p00
i,{j,k} = p00(~xi; ~yj + ~yk) = p00

ij (~xi; ~yj)p00
ik (~xi; ~yk) = p00(~xi + ~xk; ~yj) (7.8)

which is the probability that node cluster J (consisting of nodes j and k)
does not connect to node i in neither direction. Again, notice that above
the derivatives are with respect to the function arguments and not specific
node values. This means that p00(~xi; ~yj + ~yk) = p00(~xi + ~xk; ~yj) holds by
construction. And thus for p00

i,{j,k} we end up with a similar expression as
for p00

{i,j},k:

p00
i,{j,k}(~x,~y) = eÂa c0a(~x)ya+c00(~x). (7.9)

So we have simultaneously

eÂa ca(~y)xa+c0(~y) = eÂa c0a(~x)ya+c00(~x) (7.10)

giving
Â
a

ca(~y)xa + c0(~y) = Â
a

c0a(~x)ya + c00(~x). (7.11)

To determine ca(~y) and c0a(~x) we start by differentiating both sides with
respect to xm (with m 6= a):

cm(~y) = Â
a

∂c0a

∂xm (~x)ya +
∂c0a0
∂xm (~x). (7.12)

Next, we differentiate both sides with respect to yn:

∂cm

∂yn (~y) =
∂c0n

∂xm (~x). (7.13)

The last equation can only be true if both sides are constant:

∂cm

∂yn (~y) =
∂c0n

∂xm (~x) = Mmn (7.14)

and therefore,

cm(~y) = Â
n

Mmnyn + Um (7.15)

c0n(~x) = Â
m

Mmnxm + Vn (7.16)

Version of June 10, 2024– Created June 10, 2024 - 13:16

42

7.1 Derivation of p00
I j , p01

I j , p10
I j and p11

I j 43

for some set of constants Um and Vn.

To determine ca
0(~y) and c0a0(~x), we fill the above expressions for cm and

c0n into equation 7.11 giving:

Â
m

Umxm + c0(~y) = Â
n

Vnyn + c00(~x) (7.17)

from which you can read off that

c0(~y) = Â
n

Vnyn + W (7.18)

c00(~x) = Â
m

Umxm + W (7.19)

for some constant W. Thus, we can conclude that

p00(~x,~y) = eÂm,n xm Mmnyn+Âm Umxm+Ân Vnyn+W . (7.20)

Now we need to compare this expression to our initial conditions. By do-
ing this we see that the term Ân Vnyn does not agree with p00

{i,k},j = p00
i,j p00

k,j,
while the term Âm Umxm does not agree with p00

i,{k,j} = p00
i,j p00

i,k, and the
term W does not agree with either. In the derivations this was not seen,
because we differentiated and while terms did not take part in the respec-
tive derivatives after which they just got divided out. Equation 7.5 should
therefore be a necessary condition which leads us to the final form for the
probability p00:

p00(~x,~y) = eÂm,n xm Mmnyn
= e~x

T
·M·~y. (7.21)

This expression can only hold under the condition p00
{i,k},j = p00

i,j p00
k,j = p00

i,{k,j}
if matrix M is symmetric (M = MT). For what follows in section 7.2 it will
be more convenient to take a factor of �1 out of that matrix M. So we are
left with

p00(~x,~y) = e�~x
T
·M·~y. (7.22)

7.1.2 Derivation of p01
I j and p10

I j

The probability p01 is defined as follows

p01
{i,k},j = p01

ij p01
kj + p01

ij p00
kj + p00

ij p01
kj . (7.23)

Version of June 10, 2024– Created June 10, 2024 - 13:16

43

7.1 Derivation of p00
I j , p01

I j , p10
I j and p11

I j 44

Upon adding p00(~xi + ~xk; ~yj) to both sides of the above equation we end up
with a more manageable form for the initial condition

p01
{i,k},j + p00

{i,k},j = p01
ij p01

kj + p01
ij p00

kj + p00
ij p01

kj + p00
ij p00

kj =
⇣

p01(~xi, ~yj) + p00(~xi, ~yj)
⌘ ⇣

p01(~xk, ~yj) + p00(~xk, ~yj)
⌘

. (7.24)

Notice that at this point you have the same situation as you did for p00:
we have f (~xi +~xk,~yj) = f (~xi,~yj) f (~xk,~yj) and f (~xi,~yk +~yj) = f (~xi,~yk) f (~xi,~yj),
with f = p01 + p00. For this reason, the derivation of the form of f is exactly
the same as above and leads to f (~x,~y) = e�~xT

·K·~y for some matrix K. This
than gives us:

p01(~x,~y) = e�~x
T
·K·~y
� e�~x

T
·M·~y (7.25)

while the similar arguments also hold for p10: now we have f 0 = p10 + p00

with f (~x,~y) = e�~xT
·K0·~y for some matrix K0. Thus,

p10(~x,~y) = e�~x
T
·K0·~y
� e�~x

T
·M·~y. (7.26)

however, due to symmetry, p10(~xi + ~xk; ~yj) = p01(~xi; ~yj + ~yl) which leads
to K0 = KT. To conclude, for p01 and p10 we are left with the following
expressions:

p01(~x,~y) = e�~xT
·K·~y
� e�~xT

·M·~y (7.27)

p10(~x,~y) = e�~xT
·KT

·~y
� e�~xT

·M·~y (7.28)

in chapter 7.2 it will turn out that it is convenient to write K = M� A (and
similarly KT = M� AT) for some non-symmetric matrix A.

7.1.3 Derivation of p11
I j

The probability p01 is defined by

p11
I j = 1� p00

I j � p10
I j � p01

I j . (7.29)

We can plug in the above results for p00, p01 and p10 which yields the
following expression for p11

I j :

p11
I j = 1� e�~x

T
·M·~y
�

⇣
e�~x

T
·K·~y
� e�~x

T
·M·~y

⌘
�

⇣
e�~x

T
·KT

·~y
� e�~x

T
·M·~y

⌘

= 1� e�~x
T
·K·~y
� e�~x

T
·KT

·~y + e�~x
T
·M·~y.

(7.30)

Version of June 10, 2024– Created June 10, 2024 - 13:16

44

7.1 Derivation of p00
I j , p01

I j , p10
I j and p11

I j 45

7.1.4 Self-loops: Derivation of p11
I j (j 2 I) ⌘ ps

I

Assume a cluster I consisting of 2 nodes: i and j (its strength is given by
xI = Âa2I xa = xi + xj). Cluster I is said to have a self-loop when there exists
a connection form i to j, and/or from j to i, and/or node i has a self-loop,
and/or node j has a self-loop. Probability ps

I will denote the probability
that at least one of these four described edges exists within cluster I (i.e.
the probability that cluster I has a self-loop).

ps
I = 1� pno edges in I

I = 1� pn
I = 1� p00

ij (1� ps
i)(1� ps

j) (7.31)

with pno edges in I
I = pn

I for shorthand notation. Let ∂
∂a be the derivative with

respect to the in-strength of node i and let ∂
∂b be the derivative with respect

to the out-strength of node j. Side note: we can also take the derivative
w.r.t. the out-strength of i and in-strength of j in the following derivation.

Let’s start by taking the derivative with respect to xin
i (denoted by ∂

∂a)

ps
I(xI) = 1� pn

I (xI) = 1� p00(xi, xj)(1� ps
i (xi))(1� ps

j (xj))
∂

∂a
[1� pn

I (xI)] =
∂

∂a

h
1� p00(xi, xj)(1� ps

i (xi))(1� ps
j (xj))

i

∂

∂a
[pn

I (xI)] = (1� ps
j (xj))

∂

∂a

h
p00(xi, xj)(1� ps

i (xi))
i

.

(7.32)

Now we will divide the above by pn
I :

∂
∂a [p

n
I (xI)]

pn
I

=
(1� ps

j (xj)) ∂
∂a

⇥
p00(xi, xj)(1� ps

i (xi))
⇤

p00(xi, xj)(1� ps
i (xi))(1� ps

j (xj))
∂

∂a [p
n
I (xI)]

pn
I

=
∂

∂a

⇥
p00(xi, xj)(1� ps

i (xi))
⇤

p00(xi, xj)(1� ps
i (xi))

∂
∂a [p

n
I (xI)]

pn
I

=
∂

∂a

⇥
1� ps

i (xi)
⇤

1� ps
i (xi)

+
∂

∂a

⇥
p00(xi, xj)

⇤

p00(xi, xj)
.

(7.33)

Once again we will take the derivative. However, this time the deriva-
tive will be taken with respect to the out-strength of node j (denoted by

Version of June 10, 2024– Created June 10, 2024 - 13:16

45

7.1 Derivation of p00
I j , p01

I j , p10
I j and p11

I j 46

∂
∂b)

∂

∂b

"
∂

∂a [p
n
I (xI)]

pn
I

#
=

∂

∂b

"
∂

∂a

⇥
1� ps

i (xi)
⇤

1� ps
i (xi)

+
∂

∂a

⇥
p00(xi, xj)

⇤

p00(xi, xj)

#

∂

∂b

"
∂

∂a [p
n
I (xI)]

pn
I

#
=

∂

∂b

"
∂

∂a

⇥
p00(xi, xj)

⇤

p00(xi, xj)

#
.

(7.34)

Since we already know what p00(xi, xj) looks like, we can easily calculate
the right-hand-sight of the above equation explicitly. Doing so, we end-up
with

∂

∂b

"
∂

∂a [p
n
I (xI)]

pn
I

#
= �Ma,b (7.35)

where a and b refer to the matrix element of M. In this example, a = 1
and b = 2 since we have taken the derivative first with respect to the in-
strength of node i while the second derivative was taken with respect to
the out-strength of node j. Since MT = M, the following is also true:

∂

∂b

"
∂

∂a [p
n
I (xI)]

pn
I

#
= �

1
2
(Ma,b + Mb,a) . (7.36)

Intermezzo: We will calculate the derivatives of both 1)�~xI
T
· M · ~xI

and 2) ~uT
· ~xi (with ~uT a 2-dimensional vector like ~xi)

1)

�
1
2
~xI

T
· M · ~xI = �

1
2

⇣
~xi

T + ~xj
T
⌘
· M ·

�
~xi + ~xj

�

= �
1
2

⇣
~xi

T
· M · ~xi + ~xi

T
· M · ~xj + ~xj

T
· M · ~xi + ~xj

T
· M · ~xj

⌘

= �
1
2

h
xin

i

⇣
M11xin

i + M12xout
i

⌘
+ xout

i

⇣
M21xin

i + M22xout
i

⌘

+ xin
i

⇣
M11xin

j + M12xout
j

⌘
+ xout

i

⇣
M21xin

j + M22xout
j

⌘

+ xin
j

⇣
M11xin

i + M12xout
i

⌘
+ xout

j

⇣
M21xin

i + M22xout
i

⌘

+ xin
j

⇣
M11xin

j + M12xout
j

⌘
+ xout

j

⇣
M21xin

j + M22xout
j

⌘ i
(7.37)

Version of June 10, 2024– Created June 10, 2024 - 13:16

46

7.1 Derivation of p00
I j , p01

I j , p10
I j and p11

I j 47

Apply ∂
∂a :

∂

∂a

�

1
2
~xI

T
· M · ~xI

�
= �

1
2

⇣
2M11xin

i + M12xout
i + M21xout

i +

M11xin
j + M12xout

j + M11xin
j + M21xout

j

⌘
. (7.38)

Apply ∂
∂b :

∂

∂b

∂

∂a

�

1
2
~xI

T
· M · ~xI

��
= �

1
2
(M12 + M21)

= �M12 (M = MT).
(7.39)

2)

~uT
· ~xI = ~uT

·
�
~xi + ~xj

�
= u1xin

i + u2xout
i + u1xin

j + u2xout
j (7.40)

Apply ∂
∂a :

∂

∂a

h
~uT

· ~xI

i
= u1 (7.41)

Apply ∂
∂b :

∂

∂b

∂

∂a

h
~uT

· ~xI

i�
= 0 (7.42)

With the use of the above intermezzo, we can integrate eq. 7.36 with
respect to b:

∂
∂a [p

n
I (xI)]

pn
I

= �
1
2

⇣
2M11xin

i + M12xout
i + M21xout

i +

M11xin
j + M12xout

j + M11xin
j + M21xout

j

⌘
� u1 (7.43)

∂

∂a
[pn

I (xI)] = �
pn

I
2

⇣
2M11xin

i + M12xout
i + M21xout

i +

M11xin
j + M12xout

j + M11xin
j + M21xout

j

⌘
� u1pn

I . (7.44)

Where u1 is a constant that appears upon integrating with respect to b.

Version of June 10, 2024– Created June 10, 2024 - 13:16

47

7.2 Bound on the parameters 48

Now we will integrate with respect to a:

pn
I = e�

1
2 ~xI

T
·M·~xI�~uT

·~xI = 1� ps
I . (7.45)

Thus, we can conclude that the probability that there exists a self-loop on
cluster I (consisting of nodes i and j) is given by

ps
I = 1� e�

1
2 ~xI

T
·M·~xI�~uT

·~xI (7.46)

7.2 Bound on the parameters

The probabilities given in equations 2.11-2.14 must be non-negative and
bounded by 1. This results in a set of conditions for the values of the
parameters M, A, and u. In what follows we assume the values of the
vector elements of ~x and ~y to be always positive.

7.2.1 Boundaries on p00
I j

Non-negative probability p00 that is bounded by 1 will imply the follow-
ing:

p00
 1

e�~x
T M~y
 1

xkyl Mkl
� 0

0 M

(7.47)

and of course, after examining the shape of the function e�~xT M~y, we can
conclude that there is no real value of M which forces p00 to be smaller
than 0. Thus, we conclude the following condition on the matrix M:

0 M < •. (7.48)

7.2.2 Boundaries on p10
I j and p01

I j

First we examine 0 p10. To simplify this task, we define K = M � A
which we will use from here after.

0 e�~x
TKT~y
� e�~x

T M~y

~xT M~y � ~xTKT~y
M � KT

M � MT
� AT = M� AT

(7.49)

Version of June 10, 2024– Created June 10, 2024 - 13:16

48

7.2 Bound on the parameters 49

from which we can conclude that 0 AT.

Next, we will examine p01
 1:

e�~x
TKT~y
� e�~x

T M~y
 1

e�~x
T M~y

⇣
e~x

T AT~y
� 1
⌘
 1

e~x
T M~y
� e~x

T AT~y
� 1

lim
xkyl!•

e~x
T M~y
� lim

xkyl!•

⇣
e~x

T AT~y
� 1
⌘

e~x
T M~y
� e~x

T AT~y

AT
 M.

(7.50)

With these conclusions together with the bound on M found by condition-
ing p00 we conclude the following:

0 AT
 M < •. (7.51)

Similarly, normalizing p01
⇣

p01 = e�~xTK~y
� e�~xT M~y

⌘
yields

0 A M < •. (7.52)

7.2.3 Boundaries on p11
I j

First we examine the inequality 0 p11:

0 1� e�~x
TKT~y
� e�~x

TK~y + e�~x
T M~y

0 1� e�~x
T MT~ye~x

T AT~y
� e�~x

T M~ye~x
T A~y + e�~x

T M~y

1 � e�~x
T M~y

⇣
e~x

T AT~y + e~x
T A~y
� 1
⌘

e~x
T M~y
� e~x

T AT~y + e~x
T A~y
� 1.

(7.53)

Let’s rewrite this inequality by first defining some new parameters: let
~x = |x|x̂, ~y = |y|ŷ such that z ⌘ |x||y|. This gives

ezx̂T Mŷ
� ezx̂T ATŷ + ezx̂T Aŷ

� 1 8 z � 0 and q 2 [0,
p

2
] (7.54)

where x̂ · ŷ = cos(q). Now assume that x̂ and ŷ are fixed. This allows us to
define the following parameters:

max = max(x̂T Aŷ, x̂T ATŷ)
min = min(x̂T Aŷ, x̂T ATŷ)

�
) d ⌘ max�min (7.55)

Version of June 10, 2024– Created June 10, 2024 - 13:16

49

7.2 Bound on the parameters 50

and for the sake of notation we define m = x̂T Mŷ. The above inequality
reduces to

ez·max + ez·min
 ez·m + 1

ez·max
⇣

1 + e�z·d
⌘
 ez·m + 1

ez·(max�m)

1 + e�z·m

1 + e�z·d .

(7.56)

We can examine two cases: 1) d = 0 (meaning that A = AT) and 2) d > 0
(meaning that A 6= AT). In the first scenario the above inequality reduces
to

ez·(max�m)

1
2

(1 + e�z·m) (7.57)

which naturally holds for z = 0. Also we need

d
dz

|z=0

⇣
ez·(max�m)

⌘

d
dz

|z=0

✓
1
2

(1 + e�z·m)
◆

(7.58)

to hold which is true for A 1
2 M (and since d = 0 also for AT

1
2 M). Now

it can be shown that the inequality ez·(max�m)

1
2(1 + e�z·m) also holds for

z > 0 by plugging in the minimum and maximum allowed values for
matrix A, namely A = 0 and A = 1

2 M respectively. Setting A = 0 we obtain
the inequality e�z·m

1
2(1 + e�z·m) =) e�z·m

 1 which holds for all z � 0
and m > 0. Returning to the inequality ez·(max�m)

1
2(1 + e�z·m) setting

A = 1
2 M we get e

1
2 z·m

1
2 + 1

2 ez·m which obviously is true for z � 0 and
m > 0. To conclude, for d = 0 our original inequality holds under the
condition that

A
1
2

M
✓

or AT

1
2

M
◆

. (7.59)

Now we set d > 0 (in other words A 6= AT). Again we need

d
dz

|z=0

⇣
ez·(max�m)

⌘

d
dz

|z=0

✓
1 + e�z·m

1 + e�z·d

◆
(7.60)

to hold. This inequality reduces to max�m 1
2(d�m) which means that

A + AT
 M must be satisfied. This turns out to be the final requirement

to satisfy 0 p11
I j .

Examining the inequality p11
 1:

1� e�~x
T
·M·~y

⇣
e~x

T
·AT

·~y + e~x
T
·A·~y
� 1
⌘
 1 (7.61)

Version of June 10, 2024– Created June 10, 2024 - 13:16

50

7.2 Bound on the parameters 51

The easiest way to check whether this inequality holds is by numerically
analyzing it. In order to do this we need to rewrite this inequality to be
depended on z (similar to the above inequalities).

1� e�zx̂T
·M·ŷ

⇣
ezx̂T

·AT
·ŷ + ezx̂T

·A·ŷ
� 1
⌘
 1 (7.62)

where again we will assume that x̂ and ŷ are fixed. We will also assume
that M and A are fixed while 0 A + AT

 M < • holds. Than we
plot p11 as function of z where z lives on a wide domain. The resulting
plot is given in figure 7.1 where we see that p11 grows asymptotically to
1. Therefore, the overall conclusion is that 7.61 is true as long as 0
A + AT

 M < • holds.

Figure 7.1: Probability p11
as function of z growing asymptotically to 1

7.2.4 Boundaries on p11
I j (j 2 I) ⌘ ps

I

We know that ps
I is given by

ps
I = 1� e�

1
2 ~xI

T
·M·~xI~uT

·~xI . (7.63)

Normalizing this expression leads to

0 ps
I 1

0 1� e�
1
2 ~xI

T
·M·~xI�~uT

·~xI 1

0 e�
1
2 ~xI

T
·M·~xI�~uT

·~xI 1

(7.64)

Version of June 10, 2024– Created June 10, 2024 - 13:16

51

7.3 Additional Empirical Data Plots 52

where due to the nature of the exponential, the inequality 0 e�
1
2 ~xI

T
·M·~xI�~uT

·~xI

will always be met resulting in the following upper-bound on u: u < •.
The lower-bound will be determined by the inequality e�

1
2 ~xI

T
·M·~xI�~uT

·~xI

1:

e�
1
2 ~xI

T
·M·~xI�~uT

·~xI 1

e�~u
T
·~xI e

1
2 ~xI

T
·M·~xI

�~uT
· ~xI

1
2
~xI

T
· M · ~xI

~uT
· ~xI � �

1
2
~xI

T
· M · ~xI .

(7.65)

Since 0 M •, and every element of ~xI is greater than 0 by construc-
tion, we can conclude the following regarding the right-hand-sight of the
above inequality:

�
1
2
~xI

T
· M · ~xI 0 ~uT

· ~xI . (7.66)

Using again the argument that ~xI is always positive (~xI 2 R2), we con-
clude that

0 ~u < • (7.67)

which means that every element of ~u lies in the interval [0, •).

7.3 Additional Empirical Data Plots

In this section we present several additional plots that give additional in-
sights into the empirical data. In figures 7.2, 7.3 and 7.4 we present heat
maps scatter plots to show how the degrees and strengths are related to
each other. In figure 7.2 the network contains self-loop edges and the rest-
of-the-world node, in figure 7.3 the network does not contain self-loop
edges while it does have the rest-of-the-world node, and finally in figure
7.4 the network does not contain the rest-of-the-world node or the self-
loop edges.

Further, more in figures 7.5 and 7.6 we present the cumulative incom-
ing and outgoing number of payments distributions per node, and the cu-
mulative number of payments distribution per edge.

Version of June 10, 2024– Created June 10, 2024 - 13:16

52

7.3 Additional Empirical Data Plots 53

Figure 7.2: Out-degree vs. out-strength (left) and in-degree vs. in-strength (right)

for a financial transaction network including connections towards and from the

ROTW-node and including self-loop connections. Both plotted on double log

scales including a log scale for the density scale.

Figure 7.3: Out-degree vs. out-strength (left) and in-degree vs. in-strength (right)

for a financial transaction network including connections towards and from the

ROTW-node while excluding self-loop connections. Both plotted on double log

scales including a log scale for the density scale.

Version of June 10, 2024– Created June 10, 2024 - 13:16

53

7.3 Additional Empirical Data Plots 54

Figure 7.4: Out-degree vs. out-strength (left) and in-degree vs. in-strength (right)

for a financial transaction network excluding connections towards and from the

ROTW-node and excluding self-loop connections. Both plotted on double log

scales including a log scale for the density scale.

Figure 7.5: Complementary cumulative incoming payments (left) and outgoing

payments (right) distributions for financial transaction networks including the

rest-of-the-world node (ROTW) and self-loop connections (blue triangles), ex-

cluding ROTW-node and including self-loops (orange dot), including ROTW-

node and excluding self-loops (green diamante), and excluding ROTW-node and

self-loops (red upside down triangle) on a double log scale.

Version of June 10, 2024– Created June 10, 2024 - 13:16

54

7.4 Empirical and Expected Degree Distribution Plots 55

Figure 7.6: Complementary cumulative distribution of the number of payments

(number of transactions) per edge for financial transaction networks including

the rest-of-the-world node (ROTW) and self-loop connections (blue triangles),

excluding ROTW-node and including self-loops (orange dot), including ROTW-

node and excluding self-loops (green diamante), and excluding ROTW-node and

self-loops (red upside down triangle) on a double log scale.

7.4 Empirical and Expected Degree Distribution

Plots

In this section we provide the figures containing the cumulative degree
distributions described in chapter 5. Subsections 7.4.1, 7.4.2, 7.4.3 and 7.4.4
provide the plots for the networks at scales 1, 2, 3 and 4 respectively.

Version of June 10, 2024– Created June 10, 2024 - 13:16

55

7.4 Empirical and Expected Degree Distribution Plots 56

7.4.1 Network Scale 1

(a) Cumulative expected conditional in-

degree distribution (orange) rounded to in-

teger valued degrees (green) and cumula-

tive empirical conditional in-degree distri-

bution (blue) on a double log scale.

(b) Cumulative expected conditional out-

degree distribution (orange) rounded to in-

teger valued degrees (green) and cumula-

tive empirical conditional out-degree distri-

bution (blue) on a double log scale.

(c) Cumulative expected conditional

reciprocated-degree distribution (orange)

rounded to integer valued degrees (green)

and cumulative empirical conditional

reciprocated-degree distribution (blue) on

a double log scale.

Figure 7.7: Expected (orange and green) and empirical (blue) conditional degree

distributions on double log scales for the transaction network at scale 1.

Version of June 10, 2024– Created June 10, 2024 - 13:16

56

7.4 Empirical and Expected Degree Distribution Plots 57

(a) Cumulative expected unconditional in-

degree distribution (orange) rounded to in-

teger valued degrees (green) and cumula-

tive empirical unconditional in-degree dis-

tribution (blue) on a double log scale.

(b) Cumulative expected unconditional

out-degree distribution (orange) rounded

to integer valued degrees (green) and

cumulative empirical unconditional out-

degree distribution (blue) on a double log

scale.

Figure 7.8: Expected (orange and green) and empirical (blue) conditional degree

distributions on double log scales for the transaction network at scale 1.

Figure 7.9: Cumulative expected undirected degree distribution (orange)

rounded to integer valued degrees (green) and cumulative empirical undirected

degree distribution (blue) on a double log scale for the transaction network at

scale 1.

Version of June 10, 2024– Created June 10, 2024 - 13:16

57

7.4 Empirical and Expected Degree Distribution Plots 58

7.4.2 Network Scale 2

(a) Cumulative expected conditional in-

degree distribution (orange) rounded to in-

teger valued degrees (green) and cumula-

tive empirical conditional in-degree distri-

bution (blue) on a double log scale.

(b) Cumulative expected conditional out-

degree distribution (orange) rounded to in-

teger valued degrees (green) and cumula-

tive empirical conditional out-degree distri-

bution (blue) on a double log scale.

(c) Cumulative expected conditional

reciprocated-degree distribution (orange)

rounded to integer valued degrees (green)

and cumulative empirical conditional

reciprocated-degree distribution (blue) on

a double log scale.

Figure 7.10: Expected (orange and green) and empirical (blue) conditional degree

distributions on double log scales for the transaction network at scale 2.

Version of June 10, 2024– Created June 10, 2024 - 13:16

58

7.4 Empirical and Expected Degree Distribution Plots 59

(a) Cumulative expected unconditional in-

degree distribution (orange) rounded to in-

teger valued degrees (green) and cumula-

tive empirical unconditional in-degree dis-

tribution (blue) on a double log scale.

(b) Cumulative expected unconditional

out-degree distribution (orange) rounded

to integer valued degrees (green) and

cumulative empirical unconditional out-

degree distribution (blue) on a double log

scale.

Figure 7.11: Expected (orange and green) and empirical (blue) conditional degree

distributions on double log scales for the transaction network at scale 2.

Figure 7.12: Cumulative expected undirected degree distribution (orange)

rounded to integer valued degrees (green) and cumulative empirical undirected

degree distribution (blue) on a double log scale for the transaction network at

scale 2.

Version of June 10, 2024– Created June 10, 2024 - 13:16

59

7.4 Empirical and Expected Degree Distribution Plots 60

7.4.3 Network Scale 3

(a) Cumulative expected conditional in-

degree distribution (orange) rounded to in-

teger valued degrees (green) and cumula-

tive empirical conditional in-degree distri-

bution (blue) on a double log scale.

(b) Cumulative expected conditional out-

degree distribution (orange) rounded to in-

teger valued degrees (green) and cumula-

tive empirical conditional out-degree distri-

bution (blue) on a double log scale.

(c) Cumulative expected conditional

reciprocated-degree distribution (orange)

rounded to integer valued degrees (green)

and cumulative empirical conditional

reciprocated-degree distribution (blue) on

a double log scale.

Figure 7.13: Expected (orange and green) and empirical (blue) conditional degree

distributions on double log scales for the transaction network at scale 3.

Version of June 10, 2024– Created June 10, 2024 - 13:16

60

7.4 Empirical and Expected Degree Distribution Plots 61

(a) Cumulative expected unconditional in-

degree distribution (orange) rounded to in-

teger valued degrees (green) and cumula-

tive empirical unconditional in-degree dis-

tribution (blue) on a double log scale.

(b) Cumulative expected unconditional

out-degree distribution (orange) rounded

to integer valued degrees (green) and

cumulative empirical unconditional out-

degree distribution (blue) on a double log

scale.

Figure 7.14: Expected (orange and green) and empirical (blue) conditional degree

distributions on double log scales for the transaction network at scale 3.

Figure 7.15: Cumulative expected undirected degree distribution (orange)

rounded to integer valued degrees (green) and cumulative empirical undirected

degree distribution (blue) on a double log scale for the transaction network at

scale 3.

Version of June 10, 2024– Created June 10, 2024 - 13:16

61

7.4 Empirical and Expected Degree Distribution Plots 62

7.4.4 Network Scale 4

(a) Cumulative expected conditional in-

degree distribution (orange) rounded to in-

teger valued degrees (green) and cumula-

tive empirical conditional in-degree distri-

bution (blue) on a double log scale.

(b) Cumulative expected conditional out-

degree distribution (orange) rounded to in-

teger valued degrees (green) and cumula-

tive empirical conditional out-degree distri-

bution (blue) on a double log scale.

(c) Cumulative expected conditional

reciprocated-degree distribution (orange)

rounded to integer valued degrees (green)

and cumulative empirical conditional

reciprocated-degree distribution (blue) on

a double log scale.

Figure 7.16: Expected (orange and green) and empirical (blue) conditional degree

distributions on double log scales for the transaction network at scale 4.

Version of June 10, 2024– Created June 10, 2024 - 13:16

62

7.5 Empirical and Expected Weight Distribution Plots 63

(a) Cumulative expected unconditional in-

degree distribution (orange) rounded to in-

teger valued degrees (green) and cumula-

tive empirical unconditional in-degree dis-

tribution (blue) on a double log scale.

(b) Cumulative expected unconditional

out-degree distribution (orange) rounded

to integer valued degrees (green) and

cumulative empirical unconditional out-

degree distribution (blue) on a double log

scale.

Figure 7.17: Expected (orange and green) and empirical (blue) conditional degree

distributions on double log scales for the transaction network at scale 4.

Figure 7.18: Cumulative expected undirected degree distribution (orange)

rounded to integer valued degrees (green) and cumulative empirical undirected

degree distribution (blue) on a double log scale for the transaction network at

scale 4.

7.5 Empirical and Expected Weight Distribution

Plots

In this section we provide the figures containing the cumulative weight
distributions plots described in chapter 5. Subsections 7.5.1, 7.5.2, 7.5.3

Version of June 10, 2024– Created June 10, 2024 - 13:16

63

7.5 Empirical and Expected Weight Distribution Plots 64

and 7.5.4 provide the plots for the networks at scales 1, 2, 3 and 4 respec-
tively.

7.5.1 Network Scale 1

Figure 7.19: Expected (orange diamonds, green triangles and red squares), empir-

ical (purple stars) and average (blue dots) weight distribution (in units of e·10�2
)

for directed edges for the transaction network on scale 1 on a double log scale.

Figure 7.20: Expected (orange dots), empirical (green stars) and average (blue

dots) weight distribution (in units of e·10�2
) for undirected edges for the trans-

action network on scale 1 on a double log scale.

Version of June 10, 2024– Created June 10, 2024 - 13:16

64

7.5 Empirical and Expected Weight Distribution Plots 65

7.5.2 Network Scale 2

Figure 7.21: Expected (orange diamond, green triangle and red squares), empiri-

cal (purple stars) and average (blue dots) weight distribution (in units of e·10�2
)

for directed edges for the transaction network on scale 2 on a double log scale.

Figure 7.22: Expected (orange dots), empirical (green stars) and average (blue

dots) weight distribution (in units of e·10�2
) for undirected edges for the trans-

action network on scale 2 on a double log scale.

Version of June 10, 2024– Created June 10, 2024 - 13:16

65

7.5 Empirical and Expected Weight Distribution Plots 66

7.5.3 Network Scale 3

Figure 7.23: Expected (orange diamond, green triangle and red squares), empiri-

cal (purple stars) and average (blue dots) weight distribution (in units of e·10�2
)

for directed edges for the transaction network on scale 3 on a double log scale.

Figure 7.24: Expected (orange dots), empirical (green stars) and average (blue

dots) weight distribution (in units of e·10�2
) for undirected edges for the trans-

action network on scale 3 on a double log scale.

Version of June 10, 2024– Created June 10, 2024 - 13:16

66

7.5 Empirical and Expected Weight Distribution Plots 67

7.5.4 Network Scale 4

Figure 7.25: Expected (orange diamond, green triangle and red squares), empiri-

cal (purple stars) and average (blue dots) weight distribution (in units of e·10�2
)

for directed edges for the transaction network on scale 4 on a double log scale.

Figure 7.26: Expected (orange dots), empirical (green stars) and average (blue

dots) weight distribution (in units of e·10�2
) for undirected edges for the trans-

action network on scale 4 on a double log scale.

Version of June 10, 2024– Created June 10, 2024 - 13:16

67

Bibliography

[1] “Homepage ING Bank N.V.” https://www.ing.com/Home.htm. Ac-
cessed: 01-2024.

[2] L. N. Ialongo, C. de Valk, E. Marchese, F. Jansen, H. Zmarrou,
T. Squartini, and D. Garlaschelli, “Reconstructing firm-level inter-
actions in the dutch input–output network from production con-
straints,” Scientific reports, vol. 12, no. 1, p. 11847, 2022.

[3] N. Goldenfeld, Lectures on phase transitions and the renormalization
group. CRC Press, 2018.

[4] E. Garuccio, M. Lalli, and D. Garlaschelli, “Multiscale network renor-
malization: scale-invariance without geometry,” Physical Review Re-
search, vol. 5, no. 4, p. 043101, 2023.

[5] “Homepage CBS.” https://www.cbs.nl/. Accessed: 01-2024.

[6] M. Di Vece, F. P. Pijpers, and D. Garlaschelli, “Commodity-specific
triads in the dutch inter-industry production network,” Scientific Re-
ports, vol. 14, no. 1, p. 3625, 2024.

[7] D. Garlaschelli and M. I. Loffredo, “Patterns of link reciprocity in
directed networks,” Physical review letters, vol. 93, no. 26, p. 268701,
2004.

[8] M. Lalli and D. Garlaschelli, “Geometry-free renormalization of di-
rected networks: scale-invariance and reciprocity,” arXiv preprint
arXiv:2403.00235, 2024.

[9] L. P. Kadanoff, Statistical physics: statics, dynamics and renormalization.
World Scientific, 2000.

Version of June 10, 2024– Created June 10, 2024 - 13:16

68

https://www.ing.com/Home.htm
https://www.cbs.nl/

BIBLIOGRAPHY 69

[10] “ING Wholesale Banking Advanced Analytics.” https://www.

ingwb.com/en/insights/empowering-with-advanced-analytics/

what-does-ing-wholesale-banking-advanced-analytics-do.
Accessed: 02-2024.

[11] “NAICS-codes.” https://www.census.gov/programs-surveys/

economic-census/year/2022/guidance/understanding-naics.

html#:~:text=The%20North%20American%20Industry%

20Classification,to%20the%20U.S.%20business%20economy.

Accessed: 02-2024.

[12] W. C. Thacker, “The role of the hessian matrix in fitting models
to measurements,” Journal of Geophysical Research: Oceans, vol. 94,
no. C5, pp. 6177–6196, 1989.

Version of June 10, 2024– Created June 10, 2024 - 13:16

69

https://www.ingwb.com/en/insights/empowering-with-advanced-analytics/what-does-ing-wholesale-banking-advanced-analytics-do
https://www.ingwb.com/en/insights/empowering-with-advanced-analytics/what-does-ing-wholesale-banking-advanced-analytics-do
https://www.ingwb.com/en/insights/empowering-with-advanced-analytics/what-does-ing-wholesale-banking-advanced-analytics-do
https://www.census.gov/programs-surveys/economic-census/year/2022/guidance/understanding-naics.html#:~:text=The%20North%20American%20Industry%20Classification,to%20the%20U.S.%20business%20economy.
https://www.census.gov/programs-surveys/economic-census/year/2022/guidance/understanding-naics.html#:~:text=The%20North%20American%20Industry%20Classification,to%20the%20U.S.%20business%20economy.
https://www.census.gov/programs-surveys/economic-census/year/2022/guidance/understanding-naics.html#:~:text=The%20North%20American%20Industry%20Classification,to%20the%20U.S.%20business%20economy.
https://www.census.gov/programs-surveys/economic-census/year/2022/guidance/understanding-naics.html#:~:text=The%20North%20American%20Industry%20Classification,to%20the%20U.S.%20business%20economy.

Acknowledgement

In this section I would like to thank Dr. Diego Garlaschelli for the amazing
opportunity this project was. I am very gratefully he went out on a limb
to setup a research project outside of the university.

I also want to thank Dr. Fabian Jansen and the rest of the wholesale
banking data science team. They made me feel welcome at ING which
encouraged me to learn as much as possible during my time there at the
office. Dr. Jansen especially invested a lot of time to supervise me on a
daily basis. Thanks to him I learned so much about the financial industry
and data science which overall resulted in a fantastic learning experience
during the coarse of this project.

Version of June 10, 2024– Created June 10, 2024 - 13:16

70

	Introduction
	Directed Scale-Invariant Model
	Scale Invariance
	Renormalization

	Data
	Financial Transactions
	Financial Transaction Network

	Method
	Network Generator
	Parameter Estimation
	Prepare Data
	Optimization Problem
	Error Measurement

	Coarse Graining

	Results and Discussion
	Estimated Parameter Values
	Degree distributions
	Weight distributions

	Summary and Conclusion
	Appendix
	Derivation of p^00_Ij, p^01_Ij, p^10_Ij and p^11_Ij
	Derivation of p^00_Ij
	Derivation of p^01_Ij and p^10_Ij
	Derivation of p^11_Ij
	Self-loops: Derivation of p^11_Ij (j I) p^s_I

	Bound on the parameters
	Boundaries on p^00_Ij
	Boundaries on p^10_Ij and p^01_Ij
	Boundaries on p^11_Ij
	Boundaries on p^11_Ij (j I) p^s_I

	Additional Empirical Data Plots
	Empirical and Expected Degree Distribution Plots
	Network Scale 1
	Network Scale 2
	Network Scale 3
	Network Scale 4

	Empirical and Expected Weight Distribution Plots
	Network Scale 1
	Network Scale 2
	Network Scale 3
	Network Scale 4

	Bibliography
	Acknowledgement

