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Abstract

Quantum tomography is a method of reconstructing a quantum state based on information about
the probability distributions associated with the quadrature operators, linear combinations of position
and momentum. The theory says that if one knows these distributions precisely, the quantum state
can be faithfully reconstructed. This thesis delves into the mathematical formalism behind quantum
tomography, how it can be applied to quantum systems one might encounter in practice. We rigorously
define the quantum tomogram of a state and give an example of an experimental set-up which allows
one to measure the quadratures of single mode light.
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1 Introduction

In classical mechanics, measuring a physical quantity is a relatively straightforward task through which in
theory, assuming ideal measurements, one can fully describe the state of a system. In quantum mechanics,
life is not as easy. Here, (pure) states are modelled as normalised elements of a Hilbert space. The biggest
hurdle quantum phenomena poses is that these vectors are not directly observable. Instead, they determine
the probability distributions of physical quantities, i.e it tells one which values and with what probability
a measurement may return. To complicate things even more, interactions with a quantum state cause the
wave function to collapse, practically destroying the state. This makes it impossible to collect multiple data
points from the same system, resulting in the necessity to prepare the desired state again for each individual
measurement. However, consistently creating the exact same state is infeasible. Besides noise having small
effects, certain parts of the preparation might be probabilistic themselves which even in the ideal case of
zero noise creates uncertainty in the resultant state. To still consider all the data to be of identical states
they are said to be in a mixed state ρ, described by a so called density operator. This can be thought of as
a statistical mixture of all the possible pure states that might be created by the preparation process.

While for a given observable the assignment of a density operator to the corresponding probability dis-
tribution is by no means one-to-one, there are certain collections for which knowing the probability densities
uniquely determines the state. One such set is the linear combinations of position Q and momentum P of
the harmonic oscillator. In fact, the combinations Xθ = Q cos θ + P sin θ alone contain enough information
to uniquely determine the state.[1] These always have absolutely continuous probability measures thus there
is a collection of density functions Wρ(·; θ), which are called the quantum tomogram of the state.

A formula for expressing the density operator in terms of its tomogram exists.[2] So besides uniqueness,
it also allows for direct computation of the state. It should then be of no surprise that a wide range of
literature about tomograms can be found. For example, in [2] the question is asked what functions Wρ(·, θ)
can be the tomogram of a quantum state, where they show that this is quite a restrictive class. And in [3]
some examples are given where additional information about the state can reduce the number of angles for
which the probability distribution corresponding to Xθ needs to be known to a finite amount.

However, the amount of mathematical literature dedicated to quantum tomography can be unsatisfactory.
As is common with work in mathematical physics, many sources either skip a large portion of the the technical
details[4] or oversimplify the theory, or they start immediately with the most general framework possible[5]
which can make it a challenge to get into the theory. This is not without reason, as a good mathematical
description of quantum mechanics requires tools from both measure theory and functional analysis that go
further then a basic introductory course.

Another issue with most theoretical quantum tomography literature is that they solely focus on the
position and momentum operators of the harmonic oscillator, while in practice one rarely deals with this
system. The reason for this is that due to the Stone-von Neumann theorem in many cases the system one
does work with is unitarily equivalent to the harmonic oscillator, allowing one to carry over the theoretical
results about the harmonic oscillator to systems actually encountered in experiments.

This thesis aims to make a contribution towards filling both this gap in the complexity of the literature
and the gap between theory and experiment. In section 3 a quick informal introduction to the basics of
quantum mechanics is given with the aim of laying the necessary intuitive groundwork to interpret the
rigorous formalism. To notion of states is introduced and it is explained how to compute probabilities
and expectation values for physical observables with them. A brief explanation on the harmonic oscillator
and how to solve it using ladder operators is also given, as the harmonic oscillator is essential to quantum
tomography. Then in section 4 the functional analysis concepts that are necessary for a mathematical theory
of quantum mechanics are introduced. The main ingredients are self-adjoint unbounded operators and their
spectral theory. The notions of positive and trace-class operators are also briefly mentioned as they are
required to define the most general concept of a state, namely the density operator. The section ends of with
a derivation of the spectral measures of position, momentum and the Hamiltonian of the harmonic oscillator.

In section 5 an example of an experiment in quantum optics where tomography can be applied is given, so
called homodyne tomography.[6]. It begins by giving a brief explanation of the quantum theory of light and
it is shown that the quantum system of single mode light is unitarily equivalent to the harmonic oscillator.
After that the set-up used for homodyne tomography is explained and all individual components are given
some mathematical elaboration, including a simple model for their error. Then the calculations needed to
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derive the noise which is created by the set-up are performed.
This thesis then finishes by briefly explaining one of many statistical methods one might employ to

estimate the density operator given measurement data of the quadratures.
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2 Mathematical Prerequisites and Notation

The following is a list of standard notation used throughout the present work:

� R and C will denote the set of real and complex numbers respectively. We write R∗ = R \ {0} and
C∗ = C \ {0};

� The Lebesgue measure on R is written as ℓ;

� σ(A) denotes the spectrum of a linear operator A;

� For a measurable space (S,Ω) we denote the space of complex-valued measures on (S,Ω) with M(S).
For indicator functions of a set E ∈ Ω we write 1E .

� For Hilbert spaces we generally write H. We use the physicists convention where the inner product,
⟨·, ·⟩, is linear in the second argument. Furthermore, we write ∥ · ∥ for the norm on H, and the adjoint
of A is written as A∗.

� The space of bounded linear operators on H is denoted with B(H). The bounded operator norm is
written as ∥ · ∥op, where the subscript op is added since we will encounter another norm on operators.

� Given a measure space (S,Ω, µ), we write Lp(S, µ) for the space of Borel-measurable functions f : S →
R for which |f |p is integrable, up to almost everywhere equivalence. Generally the measure µ will be
clear from the context, in which case we simply write Lp(S).

� The (essential) supremum of (the absolute value of) a function f is denoted with ∥f∥∞. Of course,
this is simply the L∞ norm.

� The Schwartz space of rapidly decreasing smooth functions on R will be denoted as S (R), and the
space of smooth functions with compact support on R is C∞

c (R).

� The Fourier transform F will generally be taken to be the unitary transform L2(R) → L2(R).

� The bra-ket notation from Physics will be used a great deal throughout the present work. To not catch
the reader without any background into the discipline of quantum mechanics off guard we will give a
slight introduction to it. However, some familiarity with bras and kets will undoubtedly improve the
ease of reading.
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3 What is Quantum Tomography

This section is greatly inspired by [7].
The description of a quantum system makes use of a Hilbert space H. Generally, these are (assumed to

be) separable, giving us access to a countable orthonormal basis. Before we discuss how the Hilbert space is
used to describe quantum mechanics, a quick note on notation. In the present work we will in some places
make use of the so called bra-ket notation, commonly used by quantum physicists. Here, vectors are denoted
using kets, symbols of the form |X⟩, with X a “label” telling us which vector it is.1 For example, as vectors
will describe pure states, |n⟩ could denote the state of there being n photons, or the system being in the n-th
energy eigenstate. (This will become clearer once we start using it). And if our Hilbert space is a function
space, if we need the vector corresponding to a function ϕ, this would be |ϕ⟩ in bra-ket notation. The inner
product of two vectors |ϕ⟩ , |ψ⟩ is written as ⟨ϕ|ψ⟩. Here the part ⟨ϕ| is called a bra and interpreted as
the dual vector given by |ψ⟩ 7→ ⟨ϕ|ψ⟩.2 Note that turning kets into bras, i.e taking the dual elements, is
anti-linear: if |ψ⟩ = α |ϕ⟩ + |χ⟩, we have ⟨ψ| = α ⟨ϕ| + ⟨χ|. One can also write |ϕ⟩ ⟨ψ|, which would be the
linear operator on H given by |χ⟩ 7→ ⟨ψ|χ⟩ |ϕ⟩.

Consider an orthonormal basis {|j⟩}j∈J of our Hilbert space H. Then one can write every |ϕ⟩ as the
linear combination

∑
j∈J ϕj |j⟩, where the ϕj can be computed by taking the inner product with |j⟩. To be

precise, we have ϕj = ⟨j|ϕ⟩, hence |ϕ⟩ =
∑
j∈J ⟨j|ϕ⟩ |j⟩. Now we can also write this as |ϕ⟩ =

∑
j∈J |j⟩ ⟨j| |ϕ⟩,

suggesting to us that
∑
j∈J |j⟩ ⟨j| = 1, where the 1 here is the identity operator on H. While convergence

is a bit of an issue for this equality to hold in a rigorous sense (for example, it does not converge in the
operator norm, but does converge to 1 in the so called trace norm), as a formal manipulation this can be
quite useful and simplify the notation.

Now suppose we have an operator A and two vectors |ϕ⟩ and |ψ⟩. The inner product of |ϕ⟩ with A |ψ⟩
would then be written as ⟨ϕ|A|ψ⟩. What about the inner product of A |ϕ⟩ with |ψ⟩? Using the “standard”
notation, writing ϕ and ψ for the vectors and ⟨·, ·⟩ for the inner product, we see that ⟨Aϕ,ψ⟩ = ⟨ϕ,A∗ψ⟩, so
we could write ⟨ϕ|A∗|ψ⟩ for the inner product between A |ϕ⟩ and |ψ⟩. However, using this it is not possible
to distinguish it from the inner product of |ϕ⟩ with A∗ |ψ⟩. While in nice cases this is not a problem due
to the inner products being equal, we unfortunately will have to deal with operators that are not so nice
when we discuss unbounded operators. These have domains not equal to the entire Hilbert space, making it
possible for A |ϕ⟩ to be defined while A∗ |ψ⟩ is not. Hence, in some sections we will drop the bras and kets
for a bit and switch back to the more rigid ⟨·, ·⟩ notation. In the rare case where we want to highlight the
distinction between ⟨ϕ,Aψ⟩ and ⟨A∗ϕ, ψ⟩ one sometimes encounters ⟨A∗ϕ|ψ⟩ for the latter. However, seeing
that the insides of bras and kets are commonly just labels for states, this is not the best practise.

Given this downside to bra-ket notation, one might ask why use it at all? First, it is all over physics, so
if you want to read literature in quantum mechanics you will have to get comfortable with it anyway. And
second, it is not all bad. The notation |ϕ⟩ ⟨ψ| is much cleaner then the alternatives from Mathematics, and
it can abstract some of the “implementation” details of the theory, making it easier to let your intuition run
wild. An example of this can be seen in section 3.4.

1|X⟩ is pronounced as “ket X”
2And ⟨X| is pronounced as “bra X”.
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3.1 Pure States

A quantum system is described by a Hilbert space H. For simplicity these are generally assumed to be
separable, i.e to have a countable orthonormal basis. For the inner product we follow the physicist convention
of linearity in the second argument. Then pure states3 are described by normalized vectors |ϕ⟩ ∈ H and
physical quantities are given by self-adjoint operators on H, which are commonly called observables.

Note here our usage of the notation |ϕ⟩. This is the in physics commonly used bra-ket notation. The
expectation value of a measurement on an observable A when the system is in state |ϕ⟩ is defined as

E|ϕ⟩(A) =
⟨ϕ|A|ϕ⟩
⟨ϕ|ϕ⟩

. (1)

Note that if |ψ⟩ = α |ϕ⟩ for α ∈ C∗ we get E|ψ⟩(A) = E|ϕ⟩(A). Hence, if two vectors are collinear they induce
the same expectation values, and in general they will induce the same state. Thus, instead of working with
any non-zero element of H, we can restrict our attention to those that are normalized, simplifying equation
1 to E|ϕ⟩(A) = ⟨ϕ|A|ϕ⟩. Something else to pay attention to is that physical quantities are real valued, hence
E|ϕ⟩(A) should be real for all |ϕ⟩ ∈ H. Specifically, this means that

E|ϕ⟩(A
∗) =

⟨ϕ|A∗|ϕ⟩
⟨ϕ|ϕ⟩

=
⟨ϕ|A|ϕ⟩
⟨ϕ|ϕ⟩

= E|ϕ⟩(A) = E|ϕ⟩(A). (2)

So the physical principle that observables should have real-valued expectation value forces their operators
to satisfy ⟨ϕ|A|ϕ⟩ = ⟨ϕ|A∗|ϕ⟩ for all |ϕ⟩ ∈ H. This is why observables are required to be self-adjoint.

This tells us how to compute expectation values, but what about the probability measures themself?
Suppose A is an observable with a countable orthonormal basis of eigenvectors.4 Then for each eigenvalue
λ ∈ σ(A) the eigenspace has a countable orthonormal basis {|λ, k⟩}dim Eλ

k=1 .5 Because for self-adjoint operators
the eigenvectors of different eigenvalues are orthogonal, the collection of all |λ, k⟩ forms an orthonormal basis

of H. For |ϕ⟩ ∈ H a normalized state we can write |ϕ⟩ =
∑
λ∈σ(A)

∑dim Eλ

k=1 ⟨λ, k|ϕ⟩ |λ, k⟩, where normalisation

tells us that
∑
λ∈σ(A)

∑dim Eλ

k=1 | ⟨λ, k|ϕ⟩ |2 = 1. And due to the basis being orthonormal

E|ϕ⟩(A) =
∑

λ∈σ(A)

dim Eλ∑
k=1

∑
µ∈σ(A)

dim Eµ∑
l=1

⟨ϕ|λ, k⟩ ⟨λ, k|A |µ, l⟩ ⟨µ, l|ϕ⟩ (3)

=
∑

λ∈σ(A)

dim Eλ∑
k=1

∑
µ∈σ(A)

dim Eµ∑
l=1

⟨ϕ|λ, k⟩ ⟨λ, k|µ |µ, l⟩ ⟨µ, l|ϕ⟩ (4)

=
∑

λ∈σ(A)

dim Eλ∑
k=1

∑
µ∈σ(A)

dim Eµ∑
l=1

µ ⟨ϕ|λ, k⟩ ⟨µ, l|ϕ⟩ δ(λ,k)(µ,l) (5)

=
∑

λ∈σ(A)

dim Eλ∑
k=1

λ ⟨ϕ|λ, k⟩ ⟨λ, k|ϕ⟩ (6)

=
∑

λ∈σ(A)

dim Eλ∑
k=1

λ| ⟨ϕ|λ, k⟩ |2. (7)

Consider the point-mass measure µA|ϕ⟩ on σ(A) with its power set as σ-algebra given by µA|ϕ⟩({λ}) =∑dim Eλ

k=1 | ⟨ϕ|λ, k⟩ |2. This is a non-negative measure with total measure 1, hence a probability measure. And
the expectation of the identity function is equal to E|ϕ⟩(A). Thus we can define the probability measure
corresponding to the act of observing A to be this µA|ϕ⟩. However, this will not work in general, as we will
see in 3.4, and will resolve in 4.5. But for now we will assume we are only dealing with operators for which

3Why these are considered pure will become clear in a bit.
4The existence of such an operator is equivalent to H being separable.
5This is an example of bra-ket notation where the label within the kets carries meaning.
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this does work, deriving some properties in this case to build up some intuition which will be useful for the
more general definition.

To begin, note that any (normalized) eigenvector |λ⟩ of A also induces a state. In fact, these are rather
special states. The expectation value of A in state |λ⟩ is simply λ:

E|λ⟩(A) = ⟨λ|A|λ⟩ = ⟨λ|λ|λ⟩ = λ. (8)

Now this in itself is nothing too impressive. However, since we can take expectation values of operators, we
can also compute their variance as

Var|ϕ⟩(A) = E|ϕ⟩

((
A− E|ϕ⟩(A)

)2)
(9)

Here scalars z ∈ C are interpreted as the identity I times z. In the case of an eigenvector state |λ⟩ the
variance is

Var|λ,k⟩(A) = E|λ,k⟩

(
(A− λ)

2
)
= ⟨λ|(A− λ)2|λ⟩ = ⟨λ|0|λ⟩ = 0. (10)

This means that measuring A is deterministic if the system is in one of its eigenvector states. And this
works in both ways. Since observables are self-adjoint, ⟨ϕ|(A− λ)2|ϕ⟩ = 0 implies ∥(A− λ) |ϕ⟩ ∥2 = 0, thus
(A− λ) |ϕ⟩ = 0, i.e |ϕ⟩ is an eigenvector of A with eigenvalue λ. So we see that measuring an observable has
zero variance if and only if the system is in an eigenstate of the observable.

Given µAϕ , we now know the chance that measuring A returns λ ∈ R: if λ ∈ R \ σ(A) it is simply zero
and if λ ∈ σ(A) we get

Pϕ(A = λ) = µAϕ ({λ}) =
dim Eλ∑
k=1

|vλk|2. (11)

Using the orthogonal projection Pλ onto the eigenspace Eλ there is a cleaner way to write this. Observe that

dim Eλ∑
k=1

|vλk|2 =

∥∥∥∥∥
dim Eλ∑
k=1

vλkϕλk

∥∥∥∥∥
2

= ∥Pλϕ∥2 = ⟨Pλϕ, Pλϕ⟩ = ⟨ϕ, P 2
λϕ⟩ = ⟨ϕ, Pλϕ⟩. (12)

So we find Pϕ(A = λ) = ⟨ϕ, Pλϕ⟩. More generally, for a subset S ⊆ R we can define the subspace VS =⊕
λ∈σ(A)∩S Eλ. Then the orthogonal projection PS on VS is equal to the sum

∑
λ∈σ(A)∩S Pλ and we get

Pϕ(A ∈ S) = ⟨ϕ, PSϕ⟩. (13)

Let us check some properties of these subspaces VS and projections PS .

1. One can quickly check that Vσ(A) = H and V∅ = 0, hence Pσ(A) = I and P∅ = 0.

2. If S, T ⊆ σ(A) are disjoint then for each s ∈ S, t ∈ T the eigenspaces Es and Et are orthogonal.
So it follows that VS =

⊕
s∈S Es is orthogonal to VT =

⊕
t∈T Et. For the projections this means

PSPT = 0 = PTPS .

3. For S, T ⊆ σ(A) the intersection of VS and VT is

VS ∩ VT =

(⊕
s∈S

Es

)
∩

(⊕
t∈T

Et

)
=

⊕
s∈S,t∈T

(Es ∩ Et) =
⊕
s∈S∩T

Es. (14)

This follows from the fact that if s ̸= t, then Es ∩ Et = 0. For the projections this means PSPT =
PTPS = PS∩T .
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4. Let {Sn} be a countable collection of pairwise disjoint subsets of σ(A). Then for S =
⋃
n Sn it holds

that

VS =
⊕
n

Sn. (15)

For the projections this means PS =
∑
n PSn

.

5. For S ⊆ σ(A) the subspace VA is invariant under A. Since σ(A) \ S must then also be invariant under
A, it follows that A commutes with its projection operators.

6. Suppose we have S ⊆ σ(A) with S contained in [λ − ϵ, λ + ϵ]. Any ϕ ∈ VS =
⊕

s∈S Es then has an
expansion ϕ =

∑
s∈S ϕs with ϕs ∈ Es. Since S ⊆ [λ − ϵ, λ+ ϵ] it holds that |s − λ| ≤ ϵ, hence we can

compute

∥(A− λ)ϕ∥2 =

∥∥∥∥∥∑
s∈S

(s− λ)ϕs

∥∥∥∥∥
2

=
∑
s∈S

|s− λ|2∥ϕs∥2 ≤
∑
s∈S

ϵ2∥ϕs∥2 = ϵ2∥ϕ∥2. (16)

So we find ∥(A−λ)ϕ∥ ≤ ϵ∥ϕ∥. This has important consequences for the expectation value and variance.
Using Cauchy-Schwartz we obtain

|Eϕ(A)− λ| = |Eϕ(A− λ)| = |⟨ϕ, (A− λ)ϕ⟩|
∥ϕ∥2

≤ ∥ϕ∥∥(A− λ)ϕ∥
∥ϕ∥2

≤ ϵ∥ϕ∥2

∥ϕ∥2
= ϵ. (17)

Since A is self-adjoint, we get

Eϕ
(
(A− λ)2

)
=

〈
ϕ, (A− λ)2ϕ

〉
∥ϕ∥2

=
⟨(A− λ)ϕ, (A− λ)ϕ⟩

∥ϕ∥2
=

∥(A− λ)ϕ∥2

∥ϕ∥2
≤ ϵ2∥ϕ∥2

∥ϕ∥2
= ϵ2. (18)

So we see that for states ϕ ∈ VS it holds that Eϕ(A) = λ ± ϵ and Varϕ(A) = ±ϵ2. In fact, with the
spectral theorem we will be able to show that the n-th central moment Eϕ ((A− λ)n) is at most ϵn.

These 6 properties are essentially all we need to define the probabilistic behaviour of measuring the value of
A. Properties 1 to 4 tell us that Pϕ indeed defines a probability measure while 5 and 6 are mostly important
for showing that these probability measures behave like they should. Note that we can easily push Pϕ forward
to a measure on R.

In 4.5 we introduce the spectral theorem. This provides us, for any self-adjoint operator, with a projection-
valued measure on R called a spectral measure, introduced in 4.5.1. These will satisfy the properties described
above, allowing us to define the probability measure of measuring an observable A as in equation 13.

3.2 Time Evolution

We make a quick break from the probability behind quantum mechanics to another part of the formalism:
time evolution. While in any further parts of the present work time evolution will not be of any importance,
it is still a vital part of the formalism. Furthermore, it is a stepping stone to the study of the harmonic
oscillator, the prime example quantum tomography is build upon, making it worthwhile to take a look at it.

In the majority of physics, the dynamics of a system are described by a (system of) differential equa-
tion(s). For classical mechanics this role is fulfilled by either force equals mass times acceleration, the
Euler-Lagrange equation of the Lagrangian or Hamilton’s equations. These all being equivalent formula-
tions. In electrodynamics the central equations are Maxwell’s equations and for quantum mechanics one
deals with the Schrödinger equation.

Let H be the Hilbert space describing your quantum system. Note that (our notion of) states are static,
in the sense that they describe the system at a given time. The Schrödinger equation tells you how elements
of H transform over time. Let ψ be a function from a connected subset I of R to H. Then due to the vector
structure on H together with its metric we can talk about differentiability of ψ and define its derivative, if
it exists, as the limit

dψ

dt

∣∣∣∣
t0

= lim
t→t0

ψ(t)− ψ(t0)

t− t0
. (19)
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With that the Schrödinger equation is

iℏ
dψ

dt
= Hψ. (20)

Here H is a self-adjoint operator on H called the Hamiltonian, and usually represents energy. We will look
at an example of a Hamiltonian in 3.4 but for now just treat it as any operator on the model Hilbert space.

Recall from the previous section that the eigenvalues of the self-adjoint operator corresponding to a
physical quantity are in some sense the values this quantity can take. Since the Hamiltonian represents
energy, physicists are naturally interested in the eigenvalues of the Hamiltonian. This leads us to another
equation bearing the name of Schrödinger equation6:

Hϕ = Eϕ with E ∈ R. (21)

This is simply the eigenvalue equation of the Hamiltonian. It is the problem of determining all energy
states of the system. Besides this telling us how energy behaves, knowing these also helps in solving the
time dependent Schrödinger equation. For reasons we will not go into, if H happens to have a basis of

eigenvectors
{
{ϕ}dim Eλ

λ,k

}
λ∈σ(H)

, which is far from guaranteed, and the initial state ϕ has basis expansion

ϕ =
∑
λ∈σ(H)

∑dim Eλ

k=1 vλ,kϕλ,k the solution to the Schrödinger equation becomes

ϕ(t) =
∑

λ∈σ(H)

dim Eλ∑
k=1

vλ,ke
−iλ
ℏ tϕλ,k. (22)

3.3 Mixed States

As hinted at in 3.1 the pure states, described by vectors ϕ ∈ H is not the full picture. A major complication
when performing a quantum experiment is the collapse of the wave function: once a measurement has been
performed, the system collapses to a different state. Hence, for each measurement the state needs to be
prepared again. However, it is by no means always possible to consistently produce the same state. Certain
parts of the preparation process may be probabilistic, and even if not there will always always be errors. To
circumvent this we introduce the concept of density operators.

Suppose our preparation process creates states ϕ1, ϕ2, . . . which have probabilities p1, p2, . . . to be the
state that is actually prepared. If we consider an observable A with projection operators {PS}S⊆σ(A) we can
use conditonal probability to calculate the chance of a measurement resulting in a value inside S ⊆ σ(A):

P(A ∈ S) =
∑
k

pkPϕk
(A ∈ S) =

∑
k

pk⟨ϕk, PSϕk⟩. (23)

Well, this does not bring us much further. To see what is going on, we go back to our assignment ϕ 7→ Pϕ
of a probability measure to a normalized vector and ask ourselves the question what Paϕ+ψ would look like.

One might answer ⟨aϕ+ψ,PS(aϕ+ψ)⟩
∥aϕ+ψ∥ , and while certainly a reasonable answer, if we do not normalise the

picture becomes clearer. Recall that for any B ∈ B(H) the map H ×H → C given by (ϕ, ψ) 7→ ⟨ϕ,Bψ⟩ is
sesquilinear. If we combine this with the observation that S 7→ ⟨ϕ, PSψ⟩ defines a measure for any choice
of ϕ, ψ ∈ H, all be it complex-valued now, we get a sesquilinear map µA• : H ×H → M(σ(A)). A natural
question now is if the measure from equation 23 is contained in the image of this map. The answer is yes7,
however this would in general not be independent of A. So such a pair of vectors would not be able to
describe our process.

However, there is a natural extension of µA• to a larger domain in which there is an element ρ such that
for each observable the measure µρ corresponds to the probability measure P(A ∈ S) from equation 23. We
will leave the technical details for later and only discuss the basic idea right now. For ϕ, ψ ∈ H we can define
the bounded operator ϕ⊗ ψ ∈ B(H) given by χ 7→ ⟨ϕ, χ⟩ψ. This is a sesquilinear map8 ⊗ : H×H → B(H).

6To avoid confusion, it is commonly called the time independent Schrödinger equation.
7In fact, this map is surjective due to σ(A) being discrete, making the σ-algebra on it its power set. This will not hold in

the more general case we encounter later.
8I have been using this the other way around where it is anti-linear in the right. Hopefully I do not make any mistakes due

to that.
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Given P ∈ B(H) we also have sesquilinear map τP : H×H → C given by τP (ϕ, ψ) = ⟨ϕ, Pψ⟩. Note that
for S ⊆ σ(A) the map µA• (S) : H × H → C is equal to τPS

. The image of ⊗ is precisely the set of rank 1
operators on H, so we can naturally extend τP to a map BFin(H) → C, with BFin(H) the space of bounded
finite rank operators on H. So if we let P vary according to PS we get a map BFin(H) → M(σ(A)).

This gives us a bigger collection of measures, and more importantly of probability measures, allowing us
to describe more states then just with a vector (i.e rank 1 operators). However, it turns out that this domain
is still not big enough, but we are almost there. Note that BFin(H) does not form a closed subset of B(H),
making it worth considering if we can extend τP by continuity. Unfortunately, if we equip BFin(H) with the
operator norm τP will not be bounded.

The solution to this is to introduce the space B1(H) of trace-class operators on H, being the operators
in B(H) for which the trace can be defined, together with the corresponding trace norm ∥ · ∥tr. This class
contains all finite rank operators, hence ∥ · ∥tr is also a norm on BFin(H). With that metric structure, τP is
bounded allowing us to extend it to a map defined on the closure of BFin(H) under ∥ · ∥tr, which will turn
out to be B1(H). That allows for extending µA• to a map B1(H) → M(σ(A)).

If we take the trace of operators on infinite dimensional spaces for granted, µA• will be given by

µAρ (S) = tr(ρPS) = tr(PSρ) for ρ ∈ B1(H). (24)

If ρ is assumed to be positive and to have trace 1, µAρ will always be a probability measure, no matter our
choice of observable A. In fact, this is a necessary and sufficient condition. Operators like ρ are called density
operators and they are able to represent the mixed states as described in the beginning of this section.

In this formalism the expectation value of an observable can be defined as the integral
∫
σ(A)

λdµAρ , which

turns out to be equal to tr(Aρ). In fact, one can show that this is the only way of assigning expectation
values to observables in a reasonable sense. See for example chapter 19 in [7].

3.4 A Particle on a Line

Our prime example of a quantum system will be the Hilbert space L2(R) of square-integrable complex valued
functions on the real line. One can see this as the quantum system of a single particle in 1 dimension. In this
system the operator representing position X is multiplication-by-x. Already, we encounter a problem: X is
ill-defined. There exist ϕ ∈ L2(R) for which the function x 7→ xϕ(x) is not square-integrable. And there is
another problem: X does not have an orthonormal basis of eigenvectors. In fact, it has no eigenvectors at
all! Assume we have ϕ ∈ L2(R) such that Xϕ = αϕ, thus (x− α)ϕ = 0. Since x− α = 0 has a solution set
of measure 0, this would imply that ϕ must be 0 almost everywhere, i.e ϕ = 0. Then how do we define the
probability measures corresponding to X? For this we will use the spectral theorem.

Now if we allow ourselves some leeway with rigour there is a sense in which X does have eigenvectors,
namely the delta functions δα. These are “functions” defined with the property that they are everywhere
0, except at α, where it is infinite in such a way that

∫
A
δαdℓ is 1 if α ∈ A and 0 if α /∈ A. Clearly, such a

function cannot exist. If it is 0 everywhere except at {α}, a set of measure 0, then it is simply the 0 function
in L2(R), hence

∫
A
δαdℓ = 0, no matter if α belongs to A or not.

But suppose we ignore that such eigenvectors do not exist. We switch to bra-ket notation for a bit for
convenience9 , and write |x⟩ for our proposed eigenvector of X with eigenvalue x. Even though these |x⟩’s
do not exist, they can give us an understanding of the probabilistic behaviour of measuring the position, and
there idea can be a powerful tool in discovering identities which one can then prove rigorously.

Inner products for functions |ϕ⟩ ∈ L2(R) with |x⟩ are then ⟨x|ϕ⟩ =
∫
δx(y)ϕ(y)dy = ϕ(x). This means

that if |ϕ⟩ , |ψ⟩ ∈ L2(R) satisfy ⟨x|ϕ⟩ = ⟨x|ψ⟩ for all x ∈ R (or almost everywhere) then they must be equal.
So in some sense the collection {|x⟩}x∈R can be thought of as a continuous eigenvector basis of X, and we say
that f =

∫
⟨x|f⟩ |x⟩dx. With that, we get projection operators |x⟩ ⟨x|, which will allow us to give projection

operators PS for measurable S ⊆ R akin to the operator A from the previous section. Note that(∫
S

|x⟩ ⟨x|dx
)
|ϕ⟩ =

∫
1S(x) |x⟩ ⟨x|ϕ⟩dx =

∫
1S(x)ϕ(x) |x⟩dx = |1Sϕ⟩ . (25)

9In general, when we are using bra-ket notation we will not be bothering with mathematical rigor. Those sections are meant
to give intuition. While the bra-ket notation is not the greatest for formal proofs, it is a great tool for building physical intuition.
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This gives rise to (well-defined) projections PS : ϕ 7→ 1Sϕ and subspaces VS = {ϕ ∈ L2(R) : 1Sϕ = ϕ}. One
can check that these satisfy the properties we listed in the previous section. We will not prove this here.
Rather, in the sections 4.2.1 and 4.5.4 we will do this all rigorously. However, for now we do get a good idea
how to define P|ϕ⟩(X ∈ S). It is simply ⟨ϕ|1S |ϕ⟩ =

∫
S
|ϕ|2(x)dx.

Next we introduce momentum. On L2(R) the operator P is defined as ϕ 7→ −iℏdϕ
dx . Now mathematicians

can be rather lazy, so they like to take ℏ = 1. Since we are never talking about the value of any physical
quantity we can do this by picking units for which this holds. Momentum, just like position, is ill-defined
as a bounded operator on L2(R). And it also shares the problem of no eigenvalues. Say we have ϕ ∈ L2(R)
with Pϕ = λϕ. This gives the differential equation −idϕdx = λϕ, which is well-known to have general solution
ϕ(x) = Aeipx with A ∈ C. However, this is only square-integrable if A = 0. So indeed, we again find
no eigenvectors. But like with X, we will ignore that for now. Then we have momentum eigenvectors |p⟩,
identified with Aeipx for some A. To find the correct A we normalise. To this end we introduce the formula10

δx(y) =
1

2π

∫
eiz(y−x)dz. (26)

Taking that for granted, we get for two momentum eigenvectors |p⟩ and |q⟩ that

⟨p|q⟩ =
∫

|A|2e−ipxeiqxdx = |A|2
∫
eix(q−p)dx = 2π|A|2δ0(q − p). (27)

While not a real normalisation, this suggests that we should take A = 1√
2π

. Inner products are then

⟨p|ϕ⟩ = 1√
2π

∫
e−ipxϕ(x)dx = ϕ̂(p). (28)

where ϕ̂ denotes the Fourier transform. One can quickly check that this gives another basis expansion duo
to the inverse Fourier transform:∫

⟨p|ϕ⟩ |p⟩dp =
∫

1√
2π
ϕ̂(p)eipxdp = ϕ(x). (29)

The operators |p⟩ ⟨p| then, just as with |x⟩ ⟨x|, allow us to compute the probability of measuring the mo-
mentum to be in a measurable S ⊆ R, given a state |ϕ⟩. We have(∫

S

|p⟩ ⟨p|dp
)
|ϕ⟩ =

∫
1S(p) |p⟩ ⟨p|ϕ⟩dp =

1√
2π

∫
1S(x)e

ipxϕ̂(p)dp = F−1
(
1Sϕ̂

)
(30)

where F−1 is the inverse Fourier transform. Noting that |ϕ̂⟩ = F |ϕ⟩ we get P|ϕ⟩(P ∈ S) = ⟨ϕ|F−11SF|ϕ⟩.
Let us ask the question: what defines a vector |ϕ⟩? Looking at it as an element of ϕ ∈ L2(R), the

straightforward answer would be its equivalence class of almost everywhere equal functions. However, this
says absolutey nothing about the physics. A different way of looking at |ϕ⟩ is as the state in which a

measurement of position has probability density |ϕ|2(x) and a measurement of momentum density |ϕ̂|2(x).
However, these two probability densities are not enough to uniquely determine your state. For example, if
u : R → R is any real-valued function, the element eiu |ϕ⟩ =

∫
eiu(x)ϕ(x) |x⟩dx has the same density for

position. It turns out that to uniquely specify a potentially mixed state ρ of L2(R), one needs the probability
measures µθ of the self-adjoint operators Qθ = X cos θ + P sin θ. These are called the quadratures. One
can show that µθ is always absolutely continuous with respect to the Lebesgue measure, giving us density
functions Wρ(·; θ). The collection of these functions for a state ρ is called its tomogram. Once these are
known the density operator ρ can be reconstructed using the following formula:

ρ =
1

2π

∫ 2π

0

∫ ∞

0

∫ ∞

−∞
Wρ(x; θ)e

irxe−irQθrdxdrdθ. (31)

We will refer to this as the tomographic formula11. This is not easily proven. We first need quite a bit more
tools which we will encounter throughout this article. The proof is then given in appendix ??.

10All these manipulations involving Dirac-delta functions can be formalised. However, this uses distribution theory which is
beyond the scope of this article.

11As far as the author is aware, there is no common term for this formula.
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3.4.1 The Harmonic Oscillator

To describe a full quantum system we also need a Hamiltonian. By far the most important example of one
is the harmonic oscillator, given by

H =
1

2

(
X2 + P 2

)
. (32)

Again, this is unbounded, just like X and P . Where H differs from momentum and position however, is
its eigenvalue equation. As mentioned in 3.2, finding these and the corresponding eigenvectors is of crucial
importance. Since H is self-adjoint, its spectrum/eigenvalues are real, so suppose we have E ∈ R. We want
to know if there exists a |ϕ⟩ ∈ H with H |ϕ⟩ = E |ϕ⟩. Writing this as a differential equation we get

1

2

(
x2ϕ(x)− d2ϕ

dx2
(x)

)
= Eϕ(x). (33)

While we will not solve this explicitly, we will give a brief showcase of an algebraic trick using so called
ladder operators. For a more complete treatment one can read chapter 11 in [7].

We define two operators

A =
X + iP

f
√
2

A∗ =
X − iP√

2
. (34)

Since X and P are self-adjoint, these are simply adjoints of each other. For reasons we will discuss in a bit,
A is called the raising operator and A∗ the lowering operator. But first, let us calculate A∗A. For this we
will need the so called commutator of X and P . If we have two operators U and V there commutator [U, V ]
is defined as UV − V U . With X and P we have for ϕ ∈ H:

[X,P ]ϕ = −ixdϕ
dx

+ i
dϕ

dx
(xϕ) = −ixdϕ

dx
+ i

(
ϕ+ x

dϕ

dx

)
= iϕ. (35)

So we obtain [X,P ] = i. Using that we find

A∗A =
1

2

(
X2 + P 2 + iXP − iPX

)
=

1

2
(2H + i[X,P ]) = H − 1

2
. (36)

We can also easily compute

AA∗ =
1

2

(
X2 + P 2 − iXP + iPX

)
=

1

2
(2H − i[X,P ]) = H +

1

2
. (37)

As a side effect, we find [A,A∗] = 1. Now this has an important consequence. Let us compute

HA =

(
AA∗ − 1

2

)
A = A

(
A∗A− 1

2

)
= A (H − 1) . (38)

So, suppose H has an eigenvalue E with eigenvector |E⟩. Then we find

HA |E⟩ = A (H − 1) |E⟩ = A (E |E⟩ − |E⟩) = (E − 1)A |E⟩ . (39)

Similarly, we can find that HA∗ = A∗ (H + 1), giving us that

HA∗ |E⟩ = A∗ (H + 1) |E⟩ = (E + 1)A∗ |E⟩ . (40)

In other words, if |E⟩ is an eigenvector of H with eigenvalue E, it holds that A |E⟩ is an eigenvector with
eigenvalue E − 1 and A∗ |E⟩ one with eigenvalue E + 1.

What if we keep repeating this? We get HAn |E⟩ = (E − n)An |E⟩ and H (A∗)
n |E⟩ = (E + n) (A∗)

n
.

Note that multiplying an operator by its adjoint returns a positive operator, so in particular A∗A is positive.
This means that

⟨ψ|H|ψ⟩ =
〈
ψ

∣∣∣∣A∗A+
1

2

∣∣∣∣ψ〉 = ⟨ψ|A∗A|ψ⟩+ 1

2
⟨ψ|ψ⟩ ≥ 0. (41)
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So the Hamiltonian is positive as well.
So any existing eigenvector |E⟩ must have E ≥ 0. Then there are unique n ∈ N and q ∈ (0, 1) such that

E = n+ q. We get HAn+1 |E⟩ = (E−n)An+1 |E⟩ = (q− 1)An+1 |E⟩. Since q− 1 is negative it cannot be an
eigenvalue, thus An+1 |E⟩ must be 0.12 So in particular, if we write |ψ⟩ = An−1 |E⟩ we find an eigenvector
of A with eigenvalue 0. As a differential equation this reads

1√
2

(
xϕ+

dϕ

dx

)
= 0. (42)

This is easily solved, giving general solution ψ(x) = αe−
x2

2 . And this is square-integrable! Thus we have an
actual solution of A |ψ⟩ = 0 within L2(R). Now this should be an eigenvector of H, so let us compute the
eigenvalue:

He−
x2

2 =
1

2

(
x2e−

x2

2 − d2

dx2
e−

x2

2

)
(43)

=
1

2

(
x2e−

x2

2 +
d

dx
xe−

x2

2

)
(44)

=
1

2

(
x2e−

x2

2 +
[
e−

x2

2 − x2e−
x2

2

])
(45)

=
1

2
e−

x2

2 . (46)

We find eigenvalue 1
2 .

Now
∫∞
−∞

(
e−

x2

2

)2
dx =

√
π, so normalised we get ψ0(x) =

1√
π
. Through the raising operator we extend

this to ψn(x) =
(A∗)nψ0

∥(A∗)nψ0∥ . Through inductive means one can show that these are equal to

ψn(x) =
1√

2nn!
√
π
e−

x2

2 Hn(x). (47)

Here Hn is the n-th Hermite polynomial. These are given by the recurrence relation

Hn+1 = 2xHn − dHn

dx
with H0 = 1. (48)

It is a well-known fact that these Hermite functions ψn, as they are called, form an orthonormal basis for
L2(R). So, since H (A∗)

n
ψ0 =

(
n+ 1

2

)
(A∗)

n
ψ0 tells us that ψn is an eigenvector of H with eigenvalue n+ 1

2
we get an orthonormal basis of eigenvectors of H, allowing is to conclude that we found all eigenvectors of
H.

Using the recurrence relation we can compute A∗ψn explicitly:

A∗ψn =
X − iP√

2

1√
2nn!

√
π
e−

x2

2 Hn(x) (49)

=
1√

2n+1n!
√
π

(
xe−

x2

2 Hn − d

dx
e−

x2

2 Hn

)
(50)

=
1√

2n+1n!
√
π

(
xe−

x2

2 Hn + xe−
x2

2 Hn − e−
x2

2
dHn

dx

)
(51)

=
1√

2n+1n!
√
π
e−

x2

2

(
2xHn − dHn

dx

)
(52)

=

√
n+ 1√

2n+1(n+ 1)!
√
π
e−

x2

2 Hn+1 (53)

=
√
n+ 1ψn+1. (54)

12Technically, since A is an unbounded operator it could also be that An |E⟩ is not an element of the domain of An.
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For Aψn we need the identity dHn

dx = 2nHn−1:

Aψn =
X + iP√

2

1√
2nn!

√
π
e−

x2

2 Hn(x) (55)

=
1√

2n+1n!
√
π

(
xe−

x2

2 Hn +
d

dx
e−

x2

2 Hn

)
(56)

=
1√

2n+1n!
√
π

(
xe−

x2

2 Hn − xe−
x2

2 Hn + e−
x2

2
dHn

dx

)
(57)

=
2n√

2n+1n!
√
π
e−

x2

2 Hn−1 (58)

=

√
n√

2n−1(n− 1)!
√
π
e−

x2

2 Hn−1 (59)

=
√
nψn−1. (60)

Later on in section 5 we will encounter a quantum system whose Hilbert space has a basis and two operators
which behave precisely like A and A∗ do on the basis {ψn}n∈N of L2(R). This will allow us to give an
isometry between the two spaces through which we can extend the tomographic formula beyond the harmonic
oscillator.

Later on, we will use this to construct an isometry between L2(R) and another Hilbert space.
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4 The Mathematical Tools of Quantum Mechanics

4.1 Unbounded Operators

As we saw, quite a few operators one encounters in quantum mechanics are ill-defined as a function H → H.
Often there is a subset of H for which one cannot make sense of what the image should be, and if you can it
might not be bounded, thus not an element of H. To remedy this, we have to be a bit less strict about the
domains of our operators and allow them to be proper subsets of the Hilbert space.

Definition 1. 13 An unbounded operator A on a Hilbert space H is a linear map from a subspace Dom(A) ⊆
H to H.

Here the domain on which A is defined is a vital property of A. We only say unbounded operators are
equal when they map vectors to the same vectors and share the same domain. If two operators are “almost
equal” except for indifference on the domain, we can use the notion of extensions:

Definition 2. If we have two unbounded operators A and B on H such that Dom(A) ⊆ Dom(B) and for
all ϕ ∈ Dom(A) we have Aϕ = Bϕ we call B an extension of A. For this we use the notation A ⊆ B.

Let us look at some examples of unbounded operators. Of course, any bounded operator is trivially an
unbounded operator. A more interesting example is given by the earlier encountered position and momentum
operators on L2(R). But to see them as unbounded operators one has to pick a domain. And for this there
are a plethora of options. The easiest option for both is C∞

c (R), the space of infinitely differentiable functions
on R with compact support, or a bit bigger the Schwartz space S (R) of rapidly decreasing and infinitely
differentiable functions on R. And if we want to go big one might take {ϕ ∈ L2(R) :

∫
R |xϕ(x)|2dℓ <∞} for

X and {ϕ ∈ C1(R) : ϕ′ ∈ L2(R)} for P . However, nothing forbids us to take really small subspaces for the
domains. Any subspace of the ones we have mentioned satisfy our definition, including finite dimensional
spaces and even the trivial space 0. This makes the choice of a subspace seem somewhat arbitrary. To make
matters worse, assuming the axiom of choice, any subspace has a complementary subspace, allowing any
ubounded operator (with domain not the entire Hilbert space) to be extended to a linear map with domain
the whole of H. And this is by no means unique.14 Thus we need additional requirements on our operators.
To begin, we like them to be densely defined, i.e Dom(A) should be dense in H. The main result this will
give us is uniqueness of the adjoint. Another important notion is the following:

Definition 3. An unbounded operator A is called closed if it has the following property: if we have a ϕ ∈ H
with a sequence ϕn contained in Dom(A) converging to ϕ such that Aϕn converges in H, it follows that
ϕ ∈ Dom(A) and Aϕ = limn→∞Aϕn.

An operator for which there exists a closed extension is called closable.

Note that closedness is somewhat of a weakened version of continuity. While an unbounded closed
operator still allows for convergent sequences to be mapped to divergent sequences, it tells us that if we do
have convergence of Aϕn, then A acts as if it were continuous, in the way that the limit can be interchanged.

A useful notion when talking about closed operators is that of the graph of an operator:

Definition 4. For an operator A its graph is the following set:

ΓA = {(ϕ,Aϕ) ∈ H ⊕H : ϕ ∈ Dom(A)}. (61)

With the natural Hilbert space structure on H⊕H we get the following equivalence:

Lemma 1 (Theorem 2.1 in [8]). An operator is closed if and only if its graph is closed in H⊕H.

Definition 5. Let A be an operator such that the closure of ΓA in H⊕H is also the graph of an operator.
Then we call this operator the closure of A, written as A, and call A closable.

13One could make the more general definition of an unbounded operator X → Y with X and Y Banach spaces as a linear
map from a subspace of X to Y . However we are not interested in maps between different spaces and are always working in a
Hilbert space. So we restrict our exposition to unbounded maps from a Hilbert space to itself.

14One could even go as far as to say “Extremely messy”.
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One might expect the closure of a densely defined operator to have no proper closed extensions itself.
But this is not true. We will see that the class of operators we are interested in, those that are self-adjoint,
do have some form of uniqueness, in that there are no proper self-adjoint extensions of self-adjoint operators.
But other then that, uniqueness of extensions is a tough ask. For the reader who is just as baffled and/or
fascinated by this as the author, we refer to [9].

4.1.1 The Adjoint of an Unbounded Operator

Just like with bounded operators on Hilbert spaces, we would like to define the adjoint of an unbounded
operator. We will restrict ourselves to densely defined operators, since otherwise problems arise with non-
uniqueness of the adjoint.

Lemma 2 (See pages 170 and 171 of [7]). Let A be a densely defined operator. Then there exists a unique
operator A∗ on the domain

Dom(A∗) = {ϕ ∈ H : the function ψ 7→ ⟨ϕ,Aψ⟩ on Dom(A) is bounded} (62)

such that for all ϕ ∈ Dom(A∗) and ψ ∈ Dom(A) we have ⟨ϕ,Aψ⟩ = ⟨A∗ϕ, ψ⟩.

The operator A∗ here is the adjoint of A. Note that for not densely defined A there do exist adjoints,
however they are then not unique due to Dom(A)⊥ being non-zero.

An important property of adjoints is the following

Lemma 3 (Proposition 9.8 in [7]). Adjoints of operators are closed.

However, it is not always the case that adjoints are densely defined, as the following lemma shows.

Lemma 4 (Contained in theorem 3.3 in [8]). The adjoint A∗ of an operator A is densely defined if and only
if A is closable.

Given the notion of the adjoint of an unbounded operator, we can define self-adjoint unbounded operators
simply as those operators that are equal to their adjoint. However, this includes equality of the domains.
We must have Dom(A) = Dom(A∗) otherwise the operator is not self-adjoint. Unfortunately, this is not
easily proven. In fact, there are plenty of operators which are “semi” self-adjoint but where the equality of
domains causes problems. To discuss these cases, and more importantly when they do extend to self-adjoint
operators, we introduce two weaker notions, the first being:

Definition 6. An operator is called symmetric if for all ϕ, ψ ∈ Dom(A) we have ⟨ϕ,Aψ⟩ = ⟨Aϕ,ψ⟩.

Basically, this is the criteria of self-adjointness without requiring equality of domains. We again stress
that this is not sufficient for being self-adjoint. In 4.5 we will prove the spectral theorem for self-adjoint
operators, which in general will not hold for symmetric operators. This implies that requiring the domains
to be equal is the correct generalisation of self-adjoint operators to unbounded operators and that being
symmetric is too weak a property. This is not to say that symmetric operators are without redeeming
qualities.

Lemma 5 (Proposition 9.4 in [7]). A densely defined operator A is symmetric if and only if its adjoint A∗

is an extension of A.

Corollary 1. A symmetric operator is closable.

One might ask if all symmetric operators have a self-adjoint extension. Unfortunately, this is not always
the case. To determine when a self-adjoint extension does exist we make the following definition:

Definition 7. A densely defined operator is called essentially self-adjoint if it is closable and its closure is
self-adjoint.
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Essentially15, this means that the operator is almost self-adjoint, except that the domain needs to be
increased a little. But finding the right domain on which your operator is self-adjoint can be rather tricky.
However, if you know that an operator is essentially self-adjoint it is often possible to determine its spectral
measure from just its formula (in a formal sense). And if one has the spectral measure the rules of spectral
integration will tell you the domain of the self-adjoint extension.

An important property of (essentially) self-adjoint operators is that they have one and only one self-adjoint
extension, see proposition 9.11 in [7]. This gives us finally some uniqueness in this field of non-uniqueness.

To this end we close off this section with some criteria to decide when a symmetric operator allows a
self-adjoint extension.

The following lemma will be used to show that X cos θ+P sin θ is essentially self-adjoint on some domain,
from which we then start the search for its unique self-adjoint extension.

Lemma 6 (Corollary 9.22 in [7]). If A is a symmetric operator then A is essentially self-adjoint if and only
if the operators A∗ + i and A∗ − i are injective on Dom(A∗).

And this last lemma will be needed for some proofs later on.

Lemma 7. Let A be an unbounded operator and B a bounded one. Then we have natural unbounded
operators AB and BA, with Dom(AB) = B−1 DomA and Dom(BA) = DomA. Furthermore, the following
implications hold

1. If A is densely defined, BA is as well, and Dom((BA)∗) = Dom(A∗), with adjoint given by A∗B∗

2. If B−1 DomA and Dom(A)∩ ImB are both dense then AB is densely defined with Dom((AB)∗) equal
to the domain of the adjoint of A restricted to DomA ∩ ImB, where the adjoint is simply given by
B∗A∗.

3. In particular, if DomA ⊆ ImB and A is densely defined we have Dom((AB)∗) = DomA∗.

4. If A is closed, then AB is closed as well.

5. If A is closed, ImA ⊆ (kerB)⊥ and ImB is closed then BA is closed as well.

Proof. That AB and BA with the given domains are well-defined unbounded operators is obvious, so we
immediately move to proving the implications.

1. If A is densely defined, then BA is as well, so we can talk about its adjoint. We have

Dom((BA)∗) = {ϕ ∈ H : ψ 7→ ⟨ϕ,Aψ⟩ on DomA is bounded}. (63)

Since B is a bounded operator, its adjoint is bounded as well, hence for ϕ ∈ H, ψ ∈ DomA we have
⟨ϕ,BAψ⟩ = ⟨B∗ϕ,Aψ⟩. And ψ 7→ ⟨B∗ϕ,Aψ⟩ on DomA is bounded if and only if B∗ϕ ∈ Dom(A∗), so we
find Dom((BA)∗) = (B∗)−1 Dom(A∗). It follows with ease that the adjoint is given by A∗B∗.

2. From B−1 DomA being dense it immediately follows that AB is densely defined. And that DomA ∩
ImB is dense implies that A|DomA∩ImB is densely defined. We have

Dom((AB)∗) = {ϕ ∈ H : ψ 7→ ⟨ϕ,ABψ⟩ on B−1 DomA is bounded}. (64)

For ψ ∈ B−1 DomA, the elements Bψ range over DomA ∩ ImB. Thus ψ 7→ ⟨ϕ,ABψ⟩ on B−1 DomA
is bounded if and only if ψ 7→ ⟨ϕ,Aψ⟩ on DomA ∩ ImB is bounded. I.e, we have Dom((AB)∗) =
Dom(A|DomA∩ImB). It follows with ease that (AB)∗ = B∗A∗.

3. This follows directly from 2.
4. Take a sequence {ϕn}n∈N ⊆ Dom(AB) = B−1 DomA converging to ϕ ∈ H such that ABϕn converges

to ψ. Since B is bounded it is continuous, hence Bϕn → ϕ. And ϕn ∈ B−1 DomA, so Bϕn ∈ DomA,
giving us a convergent sequence {Bϕn}n∈N ⊆ DomA whose image under A converges to ψ ∈ H. By A
being closed, it follows that limn→∞Bϕn = Bϕ is contained in DomA, and thus ϕ ∈ Dom(AB), and that
limn→∞ABϕn = ABϕ. That shows that AB is closed.

15See what I did there.
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5. B induces an injective linear map B̃ : (kerB)⊥ → ImB. Since ImB is closed, this is an injective
and surjective map between Hilbert spaces, hence there exists a bounded inverse of B̃. For this inverse
it holds that B̃−1B equals 1 − PkerB , with PkerB the orthogonal projection onto kerB. Now suppose
we have a sequence {ϕn}n∈N ⊆ Dom(BA) = DomA converging to ϕ ∈ H such that BAϕn converges
to ψ ∈ H. We have B̃−1BAϕn = (1 − PkerB)Aϕn. Because ImA ⊆ (kerB)⊥, we have PkerBA = 0,
hence we find B̃−1BAϕn = Aϕn. Now B̃−1 is bounded, from which it follows that Aϕn converges to
B̃−1 limn→∞BAϕn = B̃−1ψ. By A being closed, it then follows that ϕn ∈ DomA = Dom(BA) and
Aϕn = Aϕ, which means that BAϕn = BAϕ. We have thus shown that BA is closed.

4.2 The Spectrum of an Operator

In this section we introduce the spectrum simultaneously for bounded and for unbounded operators. If your
operator A is bounded the definition is relatively straightforward: it is the set of λ ∈ C for which A − λ
does not have a bounded inverse. However, if A is unbounded we have to be a bit more specific. Obviously,
A − λ will also be unbounded and its domain is simply Dom(A). But this means that for B ∈ B(H) the
composition (A−λ)B might not be well-defined. So by definition we will require B to map H into Dom(A).
For the composition B(A− λ) no problem arises, since Dom(B) = H which of course contains the range of
A− λ. We can state the definition then

Definition 8. The spectrum σ(A) of an operator A is the set of λ ∈ C for which there does not exist a
B ∈ B(H) such that for all ψ ∈ H we have Bψ ∈ Dom(A) and (A− λ)Bψ = ψ, and for all ϕ ∈ Dom(A) we
have B(A− λ)ϕ = ϕ, i.e (A− λ) has no bounded inverse.

Recall that the spectrum of an observable represents the possible values one can measure. The following
theorem gives some mathematical motivation for this intuition.

Lemma 8 (Proposition 9.18 in [7]). Let A be an (un)bounded self-adjoint operator on H. Then a value
a ∈ R belongs to σ(A) if and only if there exists a sequence of non-zero vectors {ϕn} in Dom(A) such that

lim
n→∞

∥(A− a)ϕn∥
∥ϕn∥

= 0. (65)

Furthermore, σ(A) is a closed subset of R.

In particular, note that this means that the values in the spectrum of A an observable, there are pure
states such that the expectation value and variance can be arbitrarily close to a and 0 respectively. It seems
reasonable to consider those values that in theory could be measured with arbitrary precision to be the “real
possible” values of an experiment. This lemma then says that this is precisely the spectrum.

4.2.1 Position and Momentum as Self-Adjoint Operators

In this section we take another look at the momentum and position operators on L2(R) and give the domain
on which they are self-adjoint. For position, the correct domain is simply the biggest domain on which we
can define X “without problem”:

Lemma 9. If X has domain DomX = {ϕ ∈ L2(R) :
∫
|xϕ(x)|2dx < ∞} it is self-adjoint with spectrum

equal to R.

Taken from proposition 9.30 in [7]. We start by showing that DomX is dense. Take ϕ ∈ L2(R) and consider
the intervals [−n, n]. The functions ϕn = ϕ1[−n,n] are then contained in L2(R):∫

|xϕn(x)|2dx =

∫
[−n,n]

|xϕ(x)|2dx ≤
∫
[−n,n]

n2|ϕ(x)|2dx ≤ n2
∫

|ϕ(x)|2dx <∞. (66)

The sequence ϕn converges to ϕ in L2:∫
|ϕ− ϕn|2dx =

∫
1R\[−n,n]|ϕ|2dx (67)
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and this integral on the right converges to 0 thanks to 1R\[−n,n] converging to 0 point-wise and 1R\[−n,n]|ϕ|2
being dominated by |ϕ|2. This shows that DomX is dense.

Now observe that X is clearly symmetric. Hence, by lemma 5, A∗ is an extension of A, giving us
DomX ⊆ DomX∗. So all we have to do is show the reverse inclusion. Take ϕ ∈ DomX∗. Then for all
ψ ∈ DomX the functional f : ψ 7→ ⟨ϕ,Xψ⟩ is bounded on DomX. Since DomX is dense f can be extended
to L2(R) thus by the Riesz representation theorem there exists a unique χ ∈ L2(R) such that f (on L2(R))
is equal to ψ 7→ ⟨χ, ψ⟩. That tells us that for ψ ∈ DomX we have ⟨ϕ,Xψ⟩ = ⟨χ, ψ⟩. Writing this as integrals
we get ∫

ϕ(x)xψ(x)dx =

∫
χ(x)ψ(x)dx (68)∫ (

ϕ(x)x− χ(x)
)
ψ(x)dx = 0. (69)

If we take ψ the measurable function (ϕx − χ)1[−n,n], which by the same logic as before is contained in
DomX, we find that |ϕx − χ|21[−n,n] integrates to 0, thus implying ϕx1[−n,n] = χ1[−n,n]. Since this must
hold for all n we get ϕx = χ. And χ is an element of L2(R), thus ϕx must be as well, implying that
ϕ ∈ DomX. That shows that DomX∗ = DomX. Since we already found that X is symmetric it follows
that it is self-adjoint.

For σ(X), first note that due to X being self-adjoint lemma 8 tells us that its spectrum must be contained
in R. So we need to show that all λ ∈ R are indeed spectral elements of X, for which we will also use lemma
8. For n ≥ 1 consider the indicator function ψn = 1[λ− 1

n ,λ+
1
n ]
. Then x 7→ xψn(x) is a bounded function

whose support has finite measure, hence it is square integrable and ψn ∈ DomX. They have norm equal to
2
n , and

∥(X − λ)ψn∥2 =

∫
|xψn(x)− λψn(x)|2dx (70)

=

∫ λ+ 1
n

λ− 1
n

(x− λ)2dx (71)

=

[
(x− λ)3

3

]λ+ 1
n

λ− 1
n

(72)

=
2

3n3
. (73)

With that we find

lim
n→∞

∥(X − λ)ψn∥
∥ψn∥

= lim
n→∞

√
2

3n3

2
n

= lim
n→∞

1√
6

n

n
√
n
= 0 (74)

and thus that λ ∈ σ(X), from which it follows that σ(X) = R.

To show that the momentum operator is self-adjoint and to find the proper domain for it we make use
of the following lemma:

Lemma 10. Let A be a self-adjoint operator and U a unitary transform between two Hilbert spaces H → H.
Then the operator defined by B = UAU−1 on H′ with domain U DomA is self-adjoint as well. Furthermore,
σ(B) = σ(A).

Proof. Since U is unitary, it is a homeomorphism H → H′. In particular, this means that it sends dense
subsets to dense subsets, hence DomB = U DomA is dense. For symmetry, take ϕ, ψ ∈ DomB. Then

⟨ϕ,Bψ⟩ = ⟨ϕ,UAU−1ψ⟩ = ⟨U−1ϕ,AU−1ψ⟩. (75)

Since DomB = U DomA, we have U−1ϕ,U−1ψ ∈ DomA so by A being symmetric we get

⟨U−1ϕ,AU−1ψ⟩ = ⟨AU−1ϕ,U−1ψ⟩ = ⟨UAU−1ϕ, ψ⟩ = ⟨Bϕ,ψ⟩. (76)
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That shows that B is symmetric.
Now DomB∗ is the set of ϕ ∈ H for which the linear functional fϕ : DomB → C given by ψ 7→ ⟨ϕ,Bψ⟩

is bounded. Consider the linear functional gϕ : DomA → C given by ψ 7→ ⟨U−1ϕ,Aψ⟩. This is bounded if
and only if U−1ϕ ∈ DomA∗ = DomA, i.e if and only if ϕ ∈ DomB. By restricting U−1 to DomB we get a
linear automorphism Ũ−1 : DomB → DomA. Taking ψ ∈ DomB, the composition gϕ ◦ Ũ−1 is given by

gϕ(U
−1ψ) = ⟨U−1ϕ,AU−1ψ⟩ = ⟨ϕ,UAU−1ψ⟩ = fϕ(ψ). (77)

So fϕ = gϕ ◦ Ũ−1. Since Ũ−1 is a linear automorphism, and in particular bounded, fϕ is bounded if and
only if gϕ is. And gϕ is bounded if and only if ϕ ∈ DomB, thus we get DomB∗ = DomB, showing that B
is self-adjoint.

Last we show equality of spectra. Suppose λ ∈ R is not an element of σ(A). Then there exists X ∈ B(H)
a bounded inverse of A. Consider Y = UXU−1 and take ψ ∈ H. Due to X being a bounded inverse of A,
we have XU−1ϕ ∈ DomA, hence Y ψ = UX

(
U−1ψ

)
∈ U DomA. Furthermore

(B − λ)Y ψ =
(
UAU−1 − λUU−1

)
UXU−1ψ (78)

= U (A− λ)U−1UXU−1ψ (79)

= U [(A− λ)X]U−1ψ (80)

= UU−1ψ (81)

= ψ (82)

and for ϕ ∈ DomB, hence U−1ϕ ∈ DomA, we get

Y (B − λ)ϕ = UXU−1
(
UAU−1 − λUU−1

)
ϕ (83)

= UXU−1U(A− λ)U−1ϕ (84)

= UX(A− λ)U−1ϕ (85)

= UU−1ϕ (86)

= ϕ. (87)

This shows that Y forms a bounded inverse for B − λ, hence that λ is also not an element of σ(B). I.e, we
have shown that C \ σ(A) ⊆ C \ σ(B). Analogously one can show that C \ σ(B) ⊆ C \ σ(A) giving equality
of the two complements. Naturally, it follows that σ(A) = σ(B).

Now for the reason we introduced this lemma: let F : L2(R) → L2(R) denote the Fourier transform. It
is well-known that this is a unitary transformation and that for sufficiently smooth and rapidly decreasing

ϕ ∈ L2(R) such that it is differentiable and ϕ ∈ DomX we have the identity F
(

dψ
dx

)
(k) = ik(Fϕ)(k). In

other words, FiP = ikF which can be rewritten as P = F−1XF . Lemma 8 then directly tells us that P
defines a self-adjoint operator on the domain F−1 DomX with σ(P ) = R.

4.3 Positive Operators

The next notion we need to define is that of positive operators. We will not make use of this too much,
but we need it to define the absolute value of an operator which is necessary to define the trace class of
operators. Hence, we will only briefly list the required results and move on to the next section.

This is mostly defined for bounded operators

Definition 9. An operator A ∈ B(H) is called positive16 if for all ϕ ∈ H the inner product ⟨ϕ,Aϕ⟩ is
non-negative.

When B(H) is seen as a R-vector space, this defines the structure of an ordered vector space on B(H).
We write B(H)+ for the cone of positive operators.

16I do not know why everyone calls this positive operators when the zero operator is not excluded from this definition. I
would call this a non-negative operator.
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Lemma 11 (Theorem 3.4 in [10]). Given A ∈ B(H) the operator A∗A is positive.

Lemma 12 (Proposition 3.3 in [10]). For A ∈ B(H)+ there exists a unique B ∈ B(H)+ such that B2 = A.

This means that we can take square roots of positive operators, which we will simply write as
√
A. With

that, we can define the absolute value.

Definition 10. For A ∈ B(H) we define the absolute value |A| as
√
A∗A.

4.4 Trace-Class Operators

In this section we generalise the trace of a matrix, i.e a bounded operator on a finite dimensional Hilbert
space, to a class of bounded operators on any Hilbert space. We will only talk about bounded operators, so
in this section only all operators are assumed to be bounded.

Recall that the trace of an n × n matrix over C is defined as the sum of its diagonal elements. If we
pick an orthonormal basis {ek}nk=1 of Cn and see a matrix as linear operator A : Cn → Cn then the matrix
elements in this basis are Ajk = ⟨ej , Aek⟩. Thus, the trace of A can be written as

trA =
n∑
k=1

⟨ek, Aek⟩. (88)

This expression can be used to generalise the trace to the infinite dimensional case. However, we do need to
avoid conditionally convergent traces, since otherwise it will not be well-defined.

Let H denote a separable17 Hilbert space. The following lemma will justify our definition of the trace of
an operator.

Lemma 13 (Corollary 18.2 in [10]). For A ∈ B(H) the sum
∑
e∈E⟨e, |A|e⟩ where E is an orthonormal basis

of H is independent of the choice of said basis.

With this we can define the trace-class of operators.

Definition 11. We say A ∈ B(H) is trace-class if there is a basis E (and hence for all bases) the sum∑
e∈E⟨e, |A|e⟩ is absolutely18 convergent. The set of trace-class operators on H is denoted by B1(H).

Lemma 14 (Theorem 18.11 in [10]). B1(H) is a vector subspace of B(H). The assignment A 7→
∑
e∈E⟨e, |A|e⟩

for some choice of an orthonormal basis defines a norm ∥ · ∥1 on B1(H) which makes it into a Banach space.

This norm ∥ · ∥1 is called the trace norm. Elements of B1(H) are, as the name suggests, the operators for
which we can define a trace. Which, after the following lemma, we are finally ready to introduce.

Lemma 15 (Proposition 18.9 in [10]). For A ∈ B1(H), the sum
∑
e∈E⟨e,Ae⟩, for an orthonormal basis E,

is absolutely convergent and independent of the choice of said basis.

This sum
∑
e∈E⟨e,Ae⟩ can then be defined as the trace of A. Note that ∥A∥1 = tr |A|. We finish this

section of with some useful properties of the trace and the trace norm.

Lemma 16 (Theorem 18.11 in [10]). 1. The trace tr : B1(H) → C is a positive definite linear functional.
I.e, for A ∈ B1(H) positive it holds that trA ≥ 0, and trA > 0 implies A ̸= 0.

2. If A is trace class and B a bounded operator, then AB and BA are both trace class.

3. The trace is cyclic: for A ∈ B1(H) and B ∈ B(H) we have trAB = trBA.

4. The trace norm is stronger then the operator norm. I.e for all A ∈ B1(H) it holds that ∥A∥op ≤ ∥A∥1.
17The assumption of separability is not necessary, but one has to introduce the notion of uncountable sums. Since we do

not need it for this article and the proofs are not significantly affected by it we make our lives a bit easier by restricting us to
separable Hilbert spaces.

18Since |A| is positive, absolute convergence here is equivalent to basic convergence.
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5. There is a sort of Hölder inequality relating the trace and operator norms: taking A ∈ B1(H) and
B ∈ B(H) we have | tr(AB)| ≤ ∥A∥1∥T∥op and ∥AB∥1 ≤ ∥A∥1∥T∥op.

6. The finite rank operators form a dense subspace of B1(H).

Let us now compute a simple yet important example of a trace. Recall the map ⊗ : H×H → B(H) from
3.3, where ϕ⊗ψ is given by χ 7→ ⟨ϕ, χ⟩ψ. It should be clear that ϕ⊗ψ has rank 1 and is thus by lemma 16
a trace class operator. To compute its trace we first need to determine |ϕ ⊗ ψ|. It is not hard to see that
(ϕ⊗ ψ)∗ = ψ ⊗ ϕ. And (ψ ⊗ ϕ)(ϕ⊗ ψ) must clearly be 0 on ϕ⊥. So we can find it just from its value on ϕ.
We have

(ψ ⊗ ϕ)(ϕ⊗ ψ)(ϕ) = (ψ ⊗ ϕ)(⟨ϕ, ϕ⟩ψ) = ∥ϕ∥2⟨ψ,ψ⟩ϕ = ∥ϕ∥2∥ψ∥2ϕ. (89)

Since (ϕ ⊗ ϕ)(ϕ) = ∥ϕ∥2ϕ this shows that (ψ ⊗ ϕ)(ϕ ⊗ ψ) = ∥ψ∥2ϕ ⊗ ϕ. Now (ϕ ⊗ ϕ)2 is also 0 on ϕ⊥ and
can thus be determined using the same trick. We find

(ϕ⊗ ϕ)2(ϕ) = (ϕ⊗ ϕ)(∥ϕ∥2ϕ) = ∥ϕ∥4ϕ (90)

thus (ϕ⊗ ϕ)2 = ∥ϕ∥2ϕ⊗ ϕ, which tells us that
√
ϕ⊗ ϕ = ϕ⊗ϕ

∥ϕ∥ So

|ϕ⊗ ψ| =
√
∥ψ∥2ϕ⊗ ϕ =

∥ψ∥
∥ϕ∥

ϕ⊗ ϕ. (91)

To then compute the trace norm of ϕ ⊗ ψ, let E be an extension of
{

ϕ
∥ϕ∥

}
to an orthonormal basis. We

obtain

∥ϕ⊗ ψ∥tr = tr(
∥ψ∥
∥ϕ∥

ϕ⊗ ϕ) (92)

=
∥ψ∥
∥ϕ∥

∑
e∈E

⟨e, ϕ⊗ ϕe⟩ (93)

=
∥ψ∥
∥ϕ∥

〈
ϕ

∥ϕ∥
, ϕ⊗ ϕ

(
ϕ

∥ϕ∥

)〉
(94)

=
∥ψ∥
∥ϕ∥3

⟨ϕ, ∥ϕ∥2ϕ⟩ (95)

= ∥ψ∥∥ϕ∥. (96)

Given P ∈ B(H) the operator P (ϕ ⊗ ψ) is of trace class. Using the same trick with orthonormal basis E
containing ϕ

∥ϕ∥ we find

tr(P (ϕ⊗ ψ)) =

〈
ϕ

∥ϕ∥
, P (ϕ⊕ ψ)

(
ϕ

∥ϕ∥

)〉
=

1

∥ϕ∥2
⟨ϕ, P∥ϕ∥2ψ⟩ = ⟨ϕ, Pψ⟩. (97)

4.4.1 Density Operators

The equality tr((ϕ ⊗ ψ)P ) = tr(P (ϕ ⊗ ψ)) = ⟨ϕ, Pψ⟩ is important. Recall the system from 3.3, where the
state preparation could create multiple states ϕ1, ϕ2, . . . with p1, p2, . . . the probabilities of each state being
the one prepared. We also had an observable A with projection operators {PS}S⊆σ(A). For the probability
measure of A we then had (see equation 23

P(A ∈ S) =
∑
k

pk⟨ϕk, PSϕk⟩. (98)

Using our new concept of the trace and our important equality we can write (ignoring convergence problems)

P(A ∈ S) =
∑
k

pk tr(PS(ϕk ⊗ ϕk)) = tr

(
PS
∑
k

pkϕk ⊗ ϕk

)
. (99)
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If we denote the operator
∑
k pkϕ⊗ ϕk with ρ we can define a measure µAρ on σ(A) given by S 7→ tr(PSρ).

From 99 we see that µAρ (S) = P(A ∈ S). And this works for any observable. So one could say that τ
describes the mixed state of our system.

With this in mind we can ask the question which trace class operators τ ∈ B1(H) can describe a state.
For this we have the following lemma:

Lemma 17. A trace class operator τ ∈ B1(H) has the property that for all orthogonal projections P the
trace tr(Pτ) is non-negative if and only if τ is a positive operator.

Proof. Suppose τ is positive and let P be a orthogonal projections, with V ⊆ H the closed subspace for
which P is the orthogonal projection, let E be an orthonormal basis of V and E an orthonormal basis for
V ⊥. Then E ∪ E is an orthonormal basis for H and we get

tr(τP ) =
∑

e∈E∪E

⟨e, τPe⟩ =
∑
e∈E

⟨e, τPe⟩+
∑
e∈E

⟨e, τPe⟩ =
∑
e∈E

⟨e, τe⟩. (100)

Since τ is positive this sum is non-negative, hence tr(τP ) ≥ 0.
Next assume that for all orthogonal projections P we have tr(τP ) ≥ 0. Take ϕ ∈ H. Then ϕ⊗ ϕ is the

orthogonal projection onto the subspace spanned by ϕ and due to our assumption we get

⟨ϕ, τϕ⟩ = tr(τ(ϕ⊗ ϕ)) ≥ 0 (101)

showing that τ is positive.

In light of this result, we can define the set of operators that correspond to a state

Definition 12. A trace class operator ρ ∈ B1(H) is called a density operator if it is positive and has trace
equal to 1. We denote the set of density operators on H with S(H).

4.5 Spectral Theorem

4.5.1 Spectral Measures

Provide the definition for spectral measures and that of spectral subspaces. Also define the complex-valued
measures defined by the trace and

Definition 13. Let (X,Ω) be a measurable space and H a Hilbert space. A spectral measure, also called
a projection-valued measure, on X taking values in B(H) is a map µ : Ω → B(H) satisfying the following
criteria:

1. For each S ∈ Ω the operator µ(S) is an orthogonal projection;

2. µ(∅) = 0 and µ(X) = 1;

3. For all S, T ∈ Ω it holds that µ(S ∩ T ) = µ(S)µ(T );

4. For a sequence S0, S1, . . . of pairwise disjoint elements of Ω the sum
∑∞
n=0 µ(Sn) converges pointwise

to µ (
⋃
n Sn), in the sense that for all ϕ ∈ H we have

∑∞
n=0 µ(Sn)ϕ = µ (

⋃∞
n=0 Sn)ϕ.

19

This last property is called σ-additivity.

Given a spectral measure µ and vectors ϕ, ψ ∈ H we can define a complex-valued measure through
the assignment S 7→ ⟨ϕ, µ(S)ψ⟩ which we denote with µϕ,ψ. Similarly, for A ∈ B1(H) the assignment
S 7→ tr(Aµ(S)) defines a complex-valued measure as well and this one is denoted with µA. Note that
µϕ,ψ = µϕ⊗ψ. Additionally, for the case of ϕ = ψ the notation µϕ for µϕ,ϕ is used. In fact, we have the
following result.

Lemma 18. The assignment A 7→ µA defines a linear map B1(H) → M(X) which is bounded when M(X)
is equipped with the total variation norm.

19In other words, we require convergence in the strong operator topology on B(H).
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Proof. Let Π be the set of finite measurable partitions π of X. The total variation of µA is then defined as
∥µA∥TV = supπ∈Π

∑
S∈π |µA(S)|. Pick an π ∈ Π, and for each S ∈ π let θS ∈ R be the argument of µA(S),

i.e µA(S) = eiθS |µA(S)|. Then we get

∑
S∈π

|µA(S)| =
∑
S∈π

e−iθS tr(Aµ(S)) = tr

(
A
∑
S∈π

e−iθSµ(S)

)
. (102)

This must be non-negative, hence

∑
S∈π

|µA(S)| =

∣∣∣∣∣tr
(
A
∑
S∈π

e−iθSµ(S)

)∣∣∣∣∣ ≤ ∥A∥1

∥∥∥∥∥∑
S∈π

e−iθSµ(S)

∥∥∥∥∥
op

(103)

Since the S ∈ π are pairwise disjoint, and all µ(S) are orthogonal projections such that
∑
S∈π µ(S) =

µ
(⋃

S∈π µ(S)
)
= µ(X) = 1, there are pairwise orthogonal closed subsets VS ⊆ H such that H =

⊕
S∈π. Take

ϕ ∈ H, and let ϕS = µ(S) be the projections onto VS , which are pairwise orthogonal. Then ϕ =
∑
S∈π ϕS

and we get ∥∥∥∥∥∑
S∈π

e−iθSµ(S)ϕ

∥∥∥∥∥
2

=
∑
S∈π

∥∥e−iθSϕS∥∥2 =
∑
S∈π

∥ϕS∥2 = ∥ϕ∥2 (104)

That shows that
∥∥∑

S∈π e
−iθSµ(S)

∥∥
op

= 1, hence we find that

∑
S∈π

|µA(S)| ≤ ∥A∥

∥∥∥∥∥∑
S∈π

e−iθSµ(S)

∥∥∥∥∥
op

= ∥A∥1 (105)

Since the total variation norm of µA is the supremum of this over all π ∈ Π we get that ∥µA∥TV ≤ ∥A∥1,
which shows that A 7→ µA is a bounded map.

The most simple examples of spectral measures come from orthonormal bases. In fact, we have the
following lemma:

Lemma 19. Let {ϕj}j∈J be an orthonormal basis for a separable Hilbert space H. Then for each S ⊆ J
define the operator PS as the orthogonal projection onto the closed subspace VS spanned by {ϕj}j∈S. The
assignment S 7→ PS then defines a spectral measure µ on (J,P (J)).

Proof. The first three requirements for µ to be a spectral measure are straightforward to verify from the
definition of µ, so we will only show σ-additivity. Take S0, S1, . . . a pairwise disjoint sequence of subsets of
J and ψ ∈ H. We write S =

⋃
n≥0 Sn. For disjoint T,U ⊆ J the spaces VT and VU are orthogonal, hence

we can consider the (internal) direct sum
⊕

n≥0 VSn ⊆ H. This must be the closed span of
⋃
n≥0{ϕj}j∈Sn =⋃

n≥0{ϕj}j∈S . In particular, this means that
⊕

n≥0 VSn = VS . Since VS is closed, H can be written as
VS⊕VJ\S , hence we find H = VJ\S⊕

⊕
n≥0 VSn

. This gives us for each n ∈ N a vector ψn ∈ VSn
together with

a vector χ ∈ VJ\S such that ψ = χ+
∑
n≥0 ψn. Note that

∑
n≥0 ψn ∈ VS , giving us PS

∑
n≥0 ψn =

∑
n≥0 ψn.

With this expression, we find

N∑
n=0

µ(Sn)ψ =

(
N∑
n=0

PSn

)χ+
∑
k≥0

ψk

 =

N∑
n=0

ψn. (106)

And this converges by construction to
∑
n≥0 ψn which is simply PSψ, from which it follows that µ is σ-

additive.
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4.5.2 Spectral Integration

Lemma 20 (Proposition 10.1 from [7]). Suppose µ is a spectral measure on (X,Ω) and f : X → C a
measurable function. Then the subspace

Wf =

{
ϕ ∈ H :

∫
X

|f |2dµϕ <∞
}

(107)

of H is dense. Furthermore, there exists a unique operator on H with domain Wf , denoted with
∫
X
fdµ, for

which for each ϕ ∈Wf we have 〈
ϕ,

(∫
X

fdµ

)
ϕ

〉
=

∫
X

fdµϕ. (108)

We call
∫
X
fdµ the spectral integral of f with respect to µ.

The equality
〈
ϕ,
(∫
X
fdµ

)
ϕ
〉
=
∫
X
fdµϕ is not restricted to just inner products. First of all, with the

polarization identity we can easily show for ϕ, ψ ∈Wf that
〈
ϕ,
∫
X
fdµψ

〉
=
∫
X
fdµϕ⊗ψ. Since Wf is dense,

continuity allows us to extend this to ϕ ∈ H and ψ ∈ Wf . Linearity then allows us to extend this even
further to trace-class operators A with range contained in Wf . Note however that, strictly speaking, for
unbounded operators B the trace tr(AB) is not defined. There are probably ways to still get meaningful
results, but we do not go into this.

4.5.3 Spectral Theorem

Do something with the map H ×H → M(S), expand it to a map B1(H). Not sure where to do this. The
subsection about trace class operators seems like a natural choice, however I want to discuss it for spectral
measures as well. Then I have to wait until after the Spectral theorem part. Hmm...

We have now finally arrived at the point where we can state the spectral theorem.

Theorem 1 (Spectral theorem). Suppose A is a potentially unbounded self-adjoint operator20 on H. Then
there exists a unique spectral measure on σ(A) with the Borel σ-algebra for which

A =

∫
σ(A)

λdµ(λ). (109)

Note that one can always extend this spectral measure to one on R using the push-forward from the
inclusion σ(A) ⊆ R. I.e, µ̃(S) = µ(S ∩ σ(A)). This way one could replace “a unique spectral measure on
σ(A)” with “a unique spectral measure on R with support σ(A)”.

Equipped with the spectral theorem, we can finally state the general formalism for quantum mechanics
we use. The states are described by the set of density operators S(H) on a Hilbert space, and observables by
potentially unbounded self-adjoint operators. For an observable A, the value obtained from measuring the
corresponding physical quantity when the systme is in state ρ is described by a probability measure µAρ on

R with support σ(A). This probability measure is defined using the spectral measure µA of A by assigning
a measurable subset S ⊆ R to tr(ρµA(S ∩ σ(A))).

Using the spectral theorem, for self-adjoint operators A we can define a functional calculus, i.e a way of
“applying functions” to A. For f : σ(A) → C measurable we simply have f(A) =

∫
σ(A)

f(λ)dµ(λ). This has

powerful applications. For example, we can define the operators U(t) = eitA, which gives rise to the theory
of strongly continuous one-parameter unitary groups, of crucial importance to theoretical Physics. Later on,
we will make a brief mention of this.

The spectral theorem also has the following corollary:

Corollary 2. If a self-adjoint operator has bounded spectrum the operator itself is also bounded.

20This theorem can be stated more generally to also include unbounded normal operators.
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4.5.4 The Spectral Measure of Position and Momentum

In this section we quickly derive the spectral measures of the operators X and P on L2(R). Due to the
importance of the quadratures X cos θ + P sin θ we also derive their spectral measures. However, since this
one is a bit less obvious to guess this is a bit more involved then for X and P , so we refer for this to the
appendix A.

Thanks to the spectral theorem we know that the spectral measures of X and P exist. Let µ denote that
of X. By definition, X =

∫
R λdµ(λ), so equation 108 tells us that for ϕ ∈ DomX we have∫
R
λdµϕ(λ) = ⟨ϕ,Xϕ⟩ =

∫
ϕ(x)xϕ(x)dx =

∫
x|ϕ|2(x)dx. (110)

This suggests (and nothing more) that µϕ has Radon-Nikodym derivative |ϕ|2. By definition, µϕ(S) =

⟨ϕ, µ(S)ϕ⟩ =
∫
ϕ(x)(µ(S)ϕ)(x)dx. Assuming

dµϕ

dx = |ϕ|2 we would get∫
ϕ(x)(µ(S)ϕ)(x)dx =

∫
S

|ϕ|2(x)dx =

∫
1S(x)|ϕ|2(x)dx (111)

which naively suggests

ϕ(x)(µ(S)ϕ)(x) = 1S(x)ϕ(x)ϕ(x) (112)

(µ(S)ϕ)(x) = 1S(x)ϕ(x). (113)

If it were to be true that (µ(S)ϕ)(x) = 1S(x)ϕ(x) we would have that µ(S) = 1S , multiplication with the
indicator function of S. The following lemma makes this all precise.

Lemma 21. The spectral measure µ of X is given by S 7→ 1S.

Proof. We begin by showing that µ is indeed a spectral measure. That multiplication by indicator functions
forms a bounded operator on L2(R) follows quickly from indicator functions being bounded:

∥1Sϕ∥2 =

∫
|1Sϕ|2dℓ =

∫
1S |ϕ|2dℓ ≤ ∥1S∥∞

∫
∥ϕ∥2dℓ. (114)

In fact, we see ∥1S∥op = 1 (as long as ℓ(S) ̸= 0).
Clearly µ(∅) = 1∅ = 0 and µ(R) = 1R = 1. And the operator “multiplication by 1S” is an orthogonal

projection: we have 12S = 1S and for ϕ, ψ ∈ L2(R) that

⟨ϕ, 1Sψ⟩ =
∫
ϕ(x)1S(ϕ)ψ(x)dx =

∫
ϕ(x)1S(x)ψ(x)dx = ⟨1Sϕ, ψ⟩. (115)

In general, for two sets U and V we have 1U1V = 1U∩V , hence for any measurable S, T ⊆ R we have
µ(S)µ(T ) = 1S1T = 1S∩T = µ(S ∩ T ).

For the last property, take {Sn}∞n=0 a sequence of pairwise disjoint measurable subsets of R, and ϕ ∈
L2(R). For any collection Tjj∈J of pairwise disjoint subsets it holds that

∑
j∈J 1Tj

= 1⋃
j∈J Tj

. So if we

write AN =
⋃N
n=0 Sn and A =

⋃∞
n=0 Sn we have

∑N
n=0 1Sn

= 1AN
. We need to show that 1AN

ϕ → 1Aϕ
in norm. I.e, that limN→∞ ∥1Aϕ − 1AN

ϕ∥2 = 0. Since AN ⊆ A we have 1A − 1AN
= 1A\AN

. And for
S, T disjoint measurable sets we have ⟨1S , 1T ⟩ =

∫
1S(x)1T (x)dx =

∫
1S∩T (x)dx = 0, hence 1S ⊥ 1T .

So in particular, we have 1AN
⊥ 1A\AN

. That implies that ∥1Aϕ∥2 = ∥1AN
ϕ∥2 + ∥1A\AN

ϕ∥2, and thus
∥1A\AN

ϕ∥2 = ∥1Aϕ∥2 − ∥1AN
ϕ∥2.

Now ∥1AN
ϕ∥2 =

∫
|1AN

ϕ|2dℓ. The sequence of functions |1AN
ϕ|2 converges pointwise to 1Aϕ and is

clearly dominated by the integrable function |ϕ|2. The dominated convergence theorem then tells us that

lim
N→∞

∥1AN
ϕ∥2 = lim

N→∞

∫
|1AN

ϕ|2dℓ =
∫

|1Aϕ|2dℓ = ∥1Aϕ∥2. (116)

And this tells us that

lim
N→∞

∥1Aϕ− 1AN
ϕ∥2 = lim

N→∞

(
∥1Aϕ∥2 − ∥1AN

ϕ∥2
)
= 0. (117)
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Hence we find 1AN
ϕ→ 1Aϕ in norm, giving the final property needed to say that µ is a spectral measure.

To prove that it is indeed the spectral measure of X we need to show
∫
λdµ(λ) = X. Note that for any

ϕ ∈ L2(R) we have

µϕ(S) = ⟨ϕ, 1Sϕ⟩ =
∫
S

|ϕ|2dℓ thus
dµϕ
dℓ

= |ϕ|2. (118)

In particular,
∫
|λ|2dµϕ(λ) =

∫
|λϕ(λ)|dλ. The domain of

∫
λdµ(λ) is the set

W =

{
ϕ ∈ L2(R) :

∫
|λ|2dµϕ(λ) <∞

}
=

{
ϕ ∈ L2(R) :

∫
|λϕ(λ)|2dλ <∞

}
= DomX. (119)

So the domain of
∫
λdµ(λ) equals that of X.

Now take ϕ ∈ DomX = Dom
∫
λdµ(λ). We have〈

ϕ,

(∫
λdµ(λ)

)
ϕ

〉
=

∫
λdµϕ(λ) =

∫
λ|ϕ|2(λ)dλ =

∫
ϕ(λ)(Xϕ)(λ)dλ = ⟨ϕ,Xϕ⟩. (120)

And that proves that µ is the spectral measure of X.

We will now mimic lemma 10, where we exploit the fact that P = F−1XF to deduce the spectral measure
of P .

Lemma 22. Let A be a self-adjoint operator with spectral measure µ and U a unitary transform between two
Hilbert spaces H → H′. Then the self-adjoint operator B = UAU−1 on H′ has spectral measure ν = UµU−1.
Furthermore, for any measurable f : σ(A) → C we have that f(B) = Uf(A)U−1.

Proof. The values of ν are easily shown to be orthogonal projections:

ν(S)2 = Uµ(S)U−1Uµ(S)U−1 = Uµ(S)2U−1 = Uµ(S)U−1 = ν(S) (121)

and

ν(S)∗ =
(
Uµ(S)U−1

)∗
=
(
U−1

)∗
µ(S)∗U∗ = Uµ(S)U−1 = ν(S). (122)

We also quickly have ν(∅) = U0U−1 = 0 and ν(σ(B)) = Uµ(σ(A))U−1 = UU−1 = 1.
Taking S, T ⊆ σ(B) measurable we have

ν(S)ν(T ) = Uµ(S)U−1Uµ(T )U−1 = Uµ(S)µ(T )U−1 = Uµ(S ∩ T )U−1 = ν(S ∩ T ). (123)

And that ν is σ-additive follows simply from U and U−1 being bounded and thus continuous:

∞∑
n=0

ν(Sn)ϕ =

∞∑
n=0

Uµ(Sn)U
−1ϕ = U

∞∑
n=0

µ(Sn)(U
−1ϕ) = Uµ

( ∞⋃
n=0

Sn

)
U−1ϕ = ν

( ∞⋃
n=0

Sn

)
ϕ. (124)

Note that

νϕ(S) = ⟨ϕ, ν(S)ϕ⟩ = ⟨ϕ,Uµ(S)U−1ϕ⟩ = ⟨U−1ϕ, µ(S)U−1ϕ⟩ = µU−1ϕ(S). (125)

So νϕ = µU−1ϕ.
Next up, let us consider the domain W of

∫
λdν(λ). We have ϕ ∈ W if and only if

∫
|λ|2νϕ(λ) =∫

|λ|2µU−1ϕ(λ) < ∞, which holds if and only if U−1ϕ ∈ Dom
∫
λdµ(λ) = DomA, hence we get W =

U DomA.
Then we have for ϕ ∈W = U DomA that〈

ϕ,

(∫
λdν(λ)

)
ϕ

〉
=

∫
λdνϕ(λ) =

∫
λdµU−1ϕ(λ) = ⟨U−1ϕ,AU−1ϕ⟩ = ⟨ϕ,Bϕ⟩. (126)

With that we have shown that ν is indeed the spectral measure of B.
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Last let f : σ(A) → C be a measurable function. We want to show that f(B) = Uf(A)U−1. We begin
with the domain. Let Wf be the domain of f(B) and Vf that of f(A). Because of νϕ = µU−1ϕ for ϕ ∈ H′

we have

Wf =

{
ϕ ∈ H′ :

∫
|f |2dνϕ <∞

}
=

{
ϕ ∈ H′ :

∫
|f |2dµU−1ϕ <∞

}
= UVf . (127)

So the domains of f(B) and Uf(A)U−1 are indeed equal.
Now f(B) is the unique operator on Wf such that for all ϕ ∈Wf we have

⟨ϕ, f(B)ϕ⟩ =
∫
f(λ)dνϕ(λ) (128)

Let us check if Uf(A)U−1 satisfies this.

〈
ϕ,Uf(A)U−1ϕ

〉
=
〈
U−1ϕ, f(A)U−1ϕ

〉
=

∫
f(λ)dµU−1ϕ(λ) =

∫
f(λ)dνϕ(λ). (129)

We see it does, thus we conclude f(B) = Uf(A)U−1.

Corollary 3. The spectral measure of P is given by S 7→ F−11SF .

4.6 The Hamiltonian of the Harmonic Oscillator

Recall from section 3.4.1 that we encountered the Hamiltonian H given by 1
2

(
X2 + P 2

)
. In this section we

will show that this gives a self-adjoint operator, and find its spectral measure.
We will apply the same procedure as in A: we first find a dense domain on which H is essentially self-

adjoint. This justifies the hunt for its spectral measure21 which will give us the proper domain. The former
step is a bit too technical for this article, so instead we will provide a reference.

Lemma 23. The Hamiltonian operator H = 1
2

(
X2 + P 2

)
is essentially self-adjoint on the domain C∞

c (R).

Reference. This is a simple corollary from theorem X.29 in [11].

That covers the first step.
Let H from now on denote the unique self-adjoint extension of 1

2

(
X2 + P 2

)
with domain C∞

c (R). Since
we managed to find an orthonormal basis of eigenvectors {ψn}n∈ 1

2+N in 3.4.1 finding its spectral measure is

quite straightforward. Here we label the vectors with elements of the set 1
2 + N =

{
1
2 + n ∈ R : n ∈ Z

}
to

use the eigenvalues of these elements as there label. This is necessary to get the correct spectral integral.
Using lemma 19 we get a natural spectral measure which will (by no means coincidentally) turn out to be
the one we need.

Lemma 24. Let µ be the spectral measure as defined in lemma 19 with basis {ψn}n∈N. Then the spectral
measure ν of H is the measure with support 1

2 + N given by ν (n) = µ
(
n− 1

2

)
.22

Proof. By lemma 19 µ is a well-defined spectral measure, giving us a self-adjoint operator23

Ĥ =
∑
n∈N

(
n+

1

2

)
µ(n) =

∑
n∈ 1

2+N

nν(n). (130)

For ϕ ∈ L2(R) we can compute

µψ(n) = ⟨ϕ, µ(n)ϕ⟩ = ⟨ϕ, ⟨ψn, ϕ⟩ψn⟩ = ⟨ϕ, ψn⟩⟨ψn, ϕ⟩ = |⟨ψn, ϕ⟩|2. (131)

21Or to be precise, the spectral measure of the unique self-adjoint extension of H.
22A more measure theoretical way of saying this is that ν is the pushforward measure of µ under the translation x 7→ x+ 1

2
.

23For spectral measures with discrete support we like to write integrals as sums.
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The domain of Ĥ can then be written as

Dom Ĥ =

{
ϕ ∈ L2(R) :

∑
n∈N

(
n+

1

2

)2

|⟨ψn, ϕ⟩|2 <∞

}
. (132)

Let us start by showing that the Schwartz space S (R) is contained in Dom Ĥ. What makes this space so
nice is that for any ϕ ∈ S (R) we can apply X and P as many times as we want. In particular, we have
ϕ ∈ DomX, Xϕ ∈ DomX, ϕ ∈ DomP and Pϕ ∈ DomP . Note that the Hermite functions ψn are also
Schwartz, hence similar inclusions hold for them. That allows us to use X and P without much concern
about domains. Take χ ∈ S (R). By {ψn}n∈ 1

2+N forming an orthonormal basis we have χ =
∑
n∈ 1

2
χnψn,

where the numbers χn are given by χn = ⟨ψn, χ⟩. Since ψn is an eigenvector of 1
2

(
X2 + P 2

)
with eigenvalue

n+ 1
2 we have that

(
n+ 1

2

)
ψn = 1

2

(
X2 + P 2

)
ψn. We get

∑
n∈N

(
n+

1

2

)2

|⟨ψn, χ⟩|2 =
∑
n∈N

∣∣∣∣〈(n+
1

2

)
ψn, χ

〉∣∣∣∣2 (133)

=
∑
n∈N

∣∣∣∣〈1

2

(
X2 + P 2

)
ψn, χ

〉∣∣∣∣2 (134)

=
∑
n∈N

∣∣∣∣〈ψn, 12 (X2 + P 2
)
χ

〉∣∣∣∣2 . (135)

Since χ is a Schwartz function, ζ = 1
2

(
X2 + P 2

)
χ is well-defined and a proper element of L2(R). Now ζ

also has an expansion in ψn, namely
∑
n∈N⟨ψn, ζ⟩ψn. Taking the norm of that we get

∥ζ∥2 =

∥∥∥∥∥∑
n∈N

⟨ψn, ζ⟩ψn

∥∥∥∥∥
2

=
∑
n∈N

|⟨ψn, ζ⟩|2 =
∑
n∈N

∣∣∣∣〈ψn, 12 (X2 + P 2
)
χ

〉∣∣∣∣2 =
∑
n∈N

(
n+

1

2

)2

|⟨ψn, χ⟩|2. (136)

And ∥ζ∥2 is a finite number, thus we find χ ∈ Dom Ĥ, resulting in S (R) ⊆ Dom Ĥ.
Let Hc be the essentially self-adjoint operator 1

2 (X
2 + P 2) with domain C∞

c (R) from lemma 23. The
second step is to show that S (R) is contained in the domain of H, the closure of Hc. Take χ ∈ S (R) and
let hn be a C∞ function that is equal to 1 on [−n, n], lies between 0 and 1 on [−n− 1, n+ 1] \ [−n, n] and
is zero on R \ [−n − 1, n + 1]. Existence of such a bump function follows from lemma 26 in the appendix.
Since Hn has compact support, so does χn = χhn, giving us a sequence of functions in C∞

c (R). We claim
that χn converges to χ in L2(R). Since hn = 1 on [−n, n] we have

∥χ− χn∥22 =

∫ ∞

−∞
|(1− hn)χ|2dℓ =

∫ −n

−∞
|1− hn|2|χ|2dℓ+

∫ ∞

n

|1− hn|2|χ|2dℓ. (137)

Since for x ∈ R \ [−n, n] it holds that 0 ≤ hn(x) < 1, on this set we have 0 < |1− hn| ≤ 1, so∫ ∞

n

|1− hn|2|χ|2dℓ ≤
∫ ∞

n

|χ|2dℓ. (138)

By definition, χ being Schwartz implies that for all supx∈R |xχ(x)| is finite, thus there exists K ∈ R>0 such
that for all x ∈ R∗ we have |χ(x) ≤ K

|x| . That gives us

lim
n→∞

∫ ∞

n

|χ|2dℓ ≤ lim
n→∞

∫ ∞

n

K

x2
dℓ = lim

n→∞

[
−2K

x

]∞
n

= lim
n→∞

2K

n
= 0. (139)

Analogously we can show that limn→∞
∫ −n
−∞ |(1 − hn)χ|2dℓ = 0 and thus we find that ∥χ − χn∥22 → 0, i.e

χ→ χn.
Let us now consider the sequence Hχn. Since χn ∈ C∞

c (R) we get

Hχn =
1

2

(
X2 + P 2

)
χn =

1

2

(
X2χn − d2

dx2
χhn

)
=

1

2

(
X2χn − d2χ

dx2
hn − 2

dχ

dx

dhn
dx

− χ
d2hn
dx2

)
. (140)
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Since Hn is constant on [−n, n], the sequences dhn

dx and d2hn

dx2 both converge to 0, giving us

lim
n→∞

Hχn =
1

2

(
X2 − d2χ

dx2

)
=

1

2

(
X2 + P 2

)
χ. (141)

SoHχn is convergent. SinceH is a closed operator, it follows that χ ∈ DomH and thatHχ = 1
2

(
X2 + P 2

)
χ.

With that we have S (R) ⊆ DomH and we know that H still acts as 1
2

(
X2 + P 2

)
on S (R).

We will now show that Ĥ and H agree on S (R). Take χ ∈ S (R) and ϕ ∈ L2(R). Then

⟨ϕ, Ĥχ⟩ =
∑
n∈N

(
n+

1

2

)
⟨ϕ, ψn⟩⟨ψn, χ⟩. (142)

Furthermore,Hχ exists, so we can expand it in the orthonormal basis {ψn}n∈N, givingHχ =
∑
n∈N⟨ψn, Hcχ⟩ψn.

Since H is self-adjoint and ψn ∈ S (R) ⊆ DomH we get

⟨ψn, Hχ⟩ = ⟨Hψn, χ⟩ =
〈
1

2

(
X2 + P 2

)
ψn, χ

〉
=

〈(
n+

1

2

)
ψn, χ

〉
=

(
n+

1

2

)
⟨ψn, χ⟩. (143)

I.e, we have Hχ =
∑
n∈N

(
n+ 1

2

)
⟨ψn, χ⟩ψn, with which we find

⟨ϕ,Hχ⟩ =

〈
ϕ,
∑
n∈N

(
n+

1

2

)
⟨ψn, χ⟩ψn

〉
=
∑
n∈N

(
n+

1

2

)
⟨ϕ, ψn⟩⟨ψn, χ⟩ = ⟨ϕ, Ĥχ⟩. (144)

And since this holds for all ϕ ∈ L2(R) we find Ĥχ = Hχ for all χ ∈ S (R), allowing us to conclude that

H =
∑

n∈ 1
2+N

nν(n) (145)

which finishes the proof.
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5 An Applied Example of the Theory

In the previous sections we have seen that a quantum system is described by a Hilbert space H, where
states correspond to density operators ρ ∈ S(H). When performing an experiment, one would of course like
to determine the state of your system. Unfortunately it is not possible to measure this directly. The only
objects one can measure are physical quantities, which are random variables whose probability measures
are determined by the state. But this is not done uniquely in the sense that multiple differing states can
induce the same measure for a given physical quantity. Now as mentioned in 3.4, in the case of a particle in
1 dimension, with Hilbert space L2(R), knowing the measures of all the quadratures Qθ = x̂ cos+p̂ sin θ is
sufficient, thanks to the tomographic formula (equation 31). Seeing that µθρ is continuous in both θ and ρ,
one could reduce the problem of reconstructing ρ into an experimental problem and a statistical one. The
experimental problem is simply to obtain as much measurements of the quadrature at as many different
angles as possible. And the statistical problem would then be to use these measurements to estimate ρ, with
the tomographic formula as justification for it all.

There is however one problem with this approach: one rarely deals with a single particle moving in
1 dimension. For this, the Stone-Von Neumann theorem comes to our aid. If our system has operators
satisfying the requirement of the theorem we can extend our results on L2(R) to the Hilbert space describing
the quantum system, giving us once again access to the tomographic formula.

The aim of this section is to give a simple example of this: a single mode photon systems. We begin by a
small introduction to quantum optics, where we will briefly introduce the concept of photon modes, followed
by a construction of the Hilbert space of a single photon mode. It turns out that this is unitarily equivalent
to L2(R), giving us the simplest case possible allowing direct application of the tomographic formula. For
what we want to do after that we need to briefly discuss coherent states and the displacement operator. We
then move on to describe a simplistic experimental set-up to measure the quadratures of a single photon
mode state, as laid out in [6]. This will not be without error, showing us that the results of measurements
are actually the “real” values of the quadratures plus some Gaussian noise.

5.1 Basic Quantum Optics

This section will mainly focus on the mathematical structure behind photons. While the quantum mechanics
of light are absolutely worth reading into, it is rather involved and requires too much prerequisites for this
article. The interested reader can check out [12].

Photons come in many, many different shapes. They have a frequency, polarisation and wave vectors,
which in the case any of them differs all allow to distinguish photons. Photons are bosons, meaning that
multiple photons in the same system can have the same parameters, i.e we can have identical, and thus
indistinguishable, photons Two identical photons are said to be in the same mode.

Now suppose we have a system of photons, where we know all of them to be in the same mode. If
besides that the number n of them where to be known it would uniquely determine the system. Hence, the
corresponding Hilbert space Hn has dimension 1. We pick a normalised element and call it |n⟩.

And how about a system where all photons are of the same mode, but we know that there are either n or
k many of them. Since “there are n photons” and “there are k photons” are mutually exclusive possibilities,
the Hilbert space Hn,k of this system has dimension 2. One could write |n⟩ for a normalised vector describing
the “there are n photons” state, and |k⟩ respectively. Let N be the self-adjoint operator corresponding to
measuring the amount of photons. Clearly, we must have E|n⟩(N) = ⟨n|N |n⟩ = n, and Var|n⟩(N) = 0,
and similarly for |k⟩. After all, counting the number of photons (without error) when there are precisely
n photons should always result in n. But this implies that N |n⟩ = n |n⟩ and N |k⟩ = k |k⟩. We have that
|n⟩ and |k⟩ are eigenvectors of N for different eigenvalues, hence by N being self-adjoint we find ⟨n|k⟩ = 0.
Thus, |n⟩ and |k⟩ form an orthonormal basis for Hn,k together.

The generalisation to this for a system of identical photons where there is no information about the
quantity of them is straightforward. The Hilbert space simply becomes the direct sum H =

⊕
n≥0 Hn,

which has orthonormal basis {|n⟩}n≥0. On this space, the counting operator, which is unbounded, can be
easily constructed using our spectral theory. For S ⊆ N, let VS denote the subspace spanned by {|n⟩}n∈S ,
and PS the orthogonal projection onto VS . Lemma 19 then tells us that S 7→ PS defines a spectral measure
#. It is not hard to see that

∫
nd#(n) =

∑
n∈N n#(n) is the counting operator N , which by the spectral
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theorem must thus have domain

Dom(N) =

{ ∞∑
n=0

ϕn |n⟩ ∈ H :

∞∑
n=0

n2|ϕn|2 <∞

}
. (146)

Besides N , there are two other commonly defined operators on H, the so called annihilation and creation
operators â and â∗, given by â |n⟩ =

√
n |n− 1⟩ and â∗ |n⟩ =

√
n+ 1 |n+ 1⟩ respectively. As the notation

suggests, â∗ is the adjoint of a. However, these are unbounded operators, and not even self-adjoint this time,
so we cannot find its proper domain through a spectral measure trick like with N . To be specific, we would
like â and â∗ to have domains such that the adjoint of â∗ is again â, including equality of domains.

Consider the bounded operator L on H given by

L |n⟩ =

{
|n− 1⟩ if n ≥ 1

0 if n = 0
. (147)

If one identifies H with ℓ2(N), the space of square-summable sequences one can see that this is the left shift
operator. In particular, we see that L∗ is the right shift operator R, i.e L∗ |n⟩ = R |n⟩ = |n+ 1⟩. Through
the functional calculus of spectral integration, we have self-adjoint operator

√
N =

∫ √
nd#(n). This is

given by
√
N |n⟩ =

√
n |n⟩. That allows us to write â = L

√
N and â∗ =

√
NR.

We now apply lemma 7. We get Dom â = Dom(L
√
N) = Dom

√
N and Dom(â∗) = R−1 Dom

√
N , where

the adjoints are equal to
√
NR and L

√
N respectively.24 We have

∑∞
n=0 ϕn |n⟩ ∈ R−1 Dom

√
N if and only if

R
∑∞
n=0 ϕn |n⟩ =

∑∞
n=0 ϕn |n+ 1⟩ ∈ Dom

√
N , i.e if and only if

∑∞
n=1

√
n
2|ϕn−1|2 =

∑∞
n=0(n+1)|ϕn|2 <∞.

Since
∑∞
n=0 |ϕn|2 must already be finite, this holds iff

∑∞
n=0 n|ϕn|2 < ∞, i.e iff

∑∞
n=0 ϕn |n⟩ ∈ Dom

√
N .

Thus we see Dom a∗ = Dom
√
N as well.

Since
√
N is self-adjoint, it must be closed. So the fourth implication of lemma 7 tells us that a∗ is

closed. And kerL = span{|0⟩}, so (kerL)⊥ = |0⟩⊥. Because
√
N sends |0⟩ to 0, we have Im

√
N ⊆ (kerL)⊥.

Furthermore, the image of L is simply all of H and thus closed. So we find by the fifth implication of lemma
7 that a is closed as well.

Something else we can obtain from â = L
√
N and â∗ =

√
NR is a formula for N in terms of â and â∗.

Note that the right shift R is a right inverse for the left shift, i.e LR = 1, hence

â∗â =
√
NLR

√
N =

√
N1

√
N =

√
N
√
N = N. (148)

And for |n⟩ we have

ââ∗ |n⟩ = L
√
N
√
NR |n⟩ = LN |n+ 1⟩ = (n+ 1)L |n+ 1⟩ = (n+ 1) |n⟩ (149)

which tells us that ââ∗ = N + 1. As a bonus we find the commutator of â and â∗ to be [â, â∗] = 1.
Our goal is to find a way to turn measurements of physical quantities of this single mode photon system

into an estimator for the state. For the harmonic oscillator, we have one in the tomographic formula, relating
the densities of the quadrature operators to the density operator. If one looks back at 3.4.1 the operators
A and A∗ might remind them of our annihilation and creation operators â and â∗. In fact, using the basis
{ψn}n∈N of Hermite functions we encountered we can get a unitary equivalence/isometry U : H → L2(R)
such that â = U−1AU and â∗ = U−1A∗U−1, where we will ignore domains of definition for a bit. More
importantly, recall that A = X+iP√

2
and A∗ = X−iP√

2
. If we reverse this we get X = A+A∗

√
2

and P = −iA+iA∗
√
2

.

This suggests that we should consider x̂ = â+â∗√
2

and p̂ = −iâ+iâ∗√
2

. These turn out to be x̂ = U−1XU and

p̂ = U−1PU . By exploiting the fact that we already studied the unbounded properties of X and P , we
could find domains on which x̂ and p̂ become self-adjoint operators. Simply take Dom x̂ = U−1 DomX and
Dom p̂ = U−1 DomP . But that is not our interest right now. Recall the tomographic formula for a state
ρ ∈ S(L2(R)):

ρ =
1

2π

∫ 2π

0

∫ ∞

0

∫ ∞

−∞
Wρ(x; θ)e

irxe−irQθrdxdrdθ. (150)

24Thus, we avoid a conflict of notation.
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Here Qθ = X cos θ+P sin θ was the quadrature at angle θ. If we define q̂θ = x̂ cos θ+ p̂ sin θ, the quadratures
in our photon system, we of course get q̂θ = U−1QθU .

Now consider ϱ ∈ S(H), and transform it to L2(R): ρ = UϱU−1 To this we can apply the tomographic
formula, giving

UρU−1 =
1

2π

∫ 2π

0

∫ ∞

0

∫ ∞

−∞
Wρ(x; θ)e

irxe−irQθrdxdrdθ. (151)

If we want to transform this to an integral within H we have two elements to take care of: the exponential
of the quadrature Qθ and the tomogram Wρ(x; θ). Due to lemma 22 we have e−irQθ = e−irUq̂θU

−1

=
Ue−irq̂θU−1. And the tomogram is the Radon-Nikodym derivative of µθρ with respect to the Lebesgue

measure ℓ. As one can see in the proof of lemma 22 we have for ϕ ∈ L2(R) that µθϕ = νθU−1ϕ, where ν
θ is

the spectral measure of q̂θ. We want to extend this to trace-class operators. For this, define the function
f : B1(L

2(R)) → M(R) given by T 7→ νθU−1TU . Since both the unitary transform B1(L
2(R)) → B1(H) :

T 7→ U−1TU and the assignment B1(H′) → M(R) : R 7→ νθR are continuous, f is as well. Furthermore,
for ϕ ∈ L2(R), consider the Pϕ the orthogonal projection onto the linear span of ϕ. Then U−1PϕU is the
orthogonal projection PU−1ϕ onto the linear span of U−1ϕ, hence we get

f(Pϕ) = νθU−1PϕU
= νθPU−1ϕ

= νθU−1ϕ = µθϕ. (152)

So f and µθ· : B1(L
2(R)) → M(R) agree on the 1-dimensional orthogonal projections. Since their linear

span is dense in B1(L
2(R)), it follows from continuity that f = µθ· , i.e that for all T ∈ B1(L

2(R)) we have
νθU−1TU = µθT . Using that we obtain

Wρ =
dµθUϱU−1

dℓ
=

dνθϱ
dℓ

= Wϱ. (153)

With that we can transform the tomographic formula on L2(R) to one in H, finding for ϱ ∈ B1(H) that

ϱ =
1

2π

∫ 2π

0

∫ ∞

0

∫ ∞

−∞
Wϱ(x; θ)e

irxe−irq̂θrdxdrdθ. (154)

5.2 The Stone-von Neumann Theorem

What we saw in the previous section is an example of a broader phenomenon. If one has a Hilbert space
H equipped with annihilation and creation operators â and â∗ which behave “similar enough” to A and A∗

the space H will look like L2(R). In our example we showed this in a rather explicit way, where the creation
operator â∗ gave us a basis arising from the single state |0⟩. A natural question to ask then is if any Hilbert
space H with operators â and â∗ satisfying [â, â∗] = 1 is unitarily equivalent to L2(R) in a way that sends â
and â∗. An immediate counterexample would be the direct sum L2(R)⊕ L2(R) of two copies of L2(R) with
â⊕ 0 and â∗ ⊕ 1 as annihilation and creation operators respectively. This suggests that we need to require
the operators to act invariant on H, or otherwise allow direct sums of L2(R).

It is standard to work with the linear combinations x̂ and p̂ instead of with the annihilation and creation
operators since they resemble position and momentum, together with them being self-adjoint making things
easier. Unfortunately, since we are dealing with unbounded operators serious domain issues arrive. A way
to avoid this is by looking at the maps U, V : R → {A ∈ B(H) : A is unitary} given by

U(t) = eitx̂ and V (s) = eisx̂. (155)

These are so called strongly continuous one-parameter continuous groups. Strongly continuous here means
that for all t0 ∈ R and ψ ∈ H it holds that limt→t0 U(t)ψ = U(t0)ψ and the group part relates to the fact
that these are group morphisms from the additive group R to the group of unitary operators on H. The (1
dimensional) Stone-von Neumann states that if on a Hilbert space H two strongly continuous one-parameter
continuous groups U and V satisfy the identity

U(t)V (s) = e−istV (s)U(t) (156)
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that then there must exist closed subspaces {Sj}j∈J such that H =
⊕

j∈J Sj , each Sj is invariant under all

U(t) and V (s), and that there exist unitary operators Al : Sl → L2(R) such that

AlU(t)A−1
l = eitX and AlV (s)A−1

l = eisP (157)

with X and P the position and momentum operators, which by virtue of this theorem also satisfy eitXeisP =
e−isteisP eitX . For a relatively straightforward treatment of the Stone-von Neumann theorem, including some
examples showing why care with the domains is necessary, we refer the reader to chapter 14 of [7].

5.3 Multi-mode light

Now that we can describe the quantum system if single mode light we can extend this to multi mode light.
Say we have two modes with Hilbert spaces Ha and Hb, each being isomorphic to

⊕
n≥0 span{|n⟩}. We

write a and b for the annihilation operators of the two modes respectively. Which Hilbert space describes
the combined system? Since photons of differing modes are distinguishable, the direct sum is not the way to
go. While a single mode space can be determined by a single observable, namely the photon count, in the
case of two modes a and b we need two numbers, the number of photons in mode a and the number in mode
b. If we know both of these, the state is fully determined. So a system in the state “there are n photons in
mode a and k in mode b” has dimension 1. We write |n, k⟩ for a normalised vector of this system. What
about “we do not know the number of a photons, but there are precisely k photons in mode b”? Since we
now again have only one count to consider, this would simply be (isomorphic to) Ha. The states “there are
k photons in mode b” and “there are l photons in mode b” where k ̸= l are all mutually exclusive and span
the remaining options, so the combined Hilbert space Hab should be isomorphic to

⊕
n≥0 Ha,k=n. This is a

way of constructing Hab, but there is a cleaner way of doing this. Note that
⊕

n≥0 Ha has as orthonormal
basis {|n, k⟩}n,k≥0. One might recognise this as the basis for the tensor product Ha ⊗Hb. Indeed, the best
way of describing the combined system of two quantum systems with Hilbert spaces H1 and H2 is through
the tensor product H1 ⊗H2. I.e, we have Hab = Ha ⊗Hb.

The annihilation and creation operators of Ha and Hb extend naturally to Hab. We simply have

a |n, k⟩ =

{√
n |n− 1, k⟩ if n ̸= 0

0 if n = 0
and b |n, k⟩ =

{√
k |n, k − 1⟩ if k ̸= 0

0 if k = 0
(158)

with adjoints given by a∗ |n, k⟩ =
√
n+ 1 |n+ 1, k⟩ and b∗ |n, k⟩ =

√
k + 1 |n, k + 1⟩. These four operators

then have commutation relations

[a, a∗] = [b, b∗] = 1 (159)

with all the other commutators zero because a and b commute.
In a single mode system you have a self-adjoint count operator N given by N |n⟩ = n |n⟩. Similarly,

for a two mode system Hab there are two self-adjoint count operators, Na and Nb that count the number
of photons in each respective mode, simply given by Na |n, k⟩ = n |n, k⟩ and Nb |n, k⟩ = k |n, k⟩. And also
like the single mode system, these are equal to a∗a and b∗b respectively. For each mode we can also define
x̂a = a+a∗√

2
and p̂a = −ia+ia∗√

2
which gives quadrature operators aθ = x̂ cos θ + p̂ sin θ, with x̂b, p̂b and bθ

defined analogously.

5.4 The set-up

We here describe a simplistic toy example of a set-up with which one can measure the quadratures of a single
mode photon state, as found in [6]. In figure 5.4 a schematic overview of the system is shown. While this
model is still a bit idealistic in its way of estimating errors and assuming single mode light, it serves as a
good proof of principle that the tomographic formula can indeed be used to reduce the physical problem of
reconstructing the state of single mode light to the two independent25 problems of obtaining measurement
data and doing the statistical analysis.

25These two problems are not really independent, in the sense that the way one performs the experiment influences the
behaviour of the noise, which in a real, advanced application should be taken into account.
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Figure 1: A slightly altered version of figure 1 in [13].

Here the input signal is single mode light, meaning its quantum system can be described by the Hilbert
space from 5.1. Our goal is to measure a single mode state, thus the input signal is single mode light, whose
mode we will denote with a. The other input is a local oscillator in a different mode b. This is prepared to

be in a so called coherent state |z⟩b, defined as ezb
∗−zb |0⟩ = ei|z|

√
2(x̂b sin θ−p̂b cos θ), where |0⟩ is the vacuum

state and z = |z|eiθ a complex number. We will not go into any detail about why these states are interesting
and instead refer the reader to chapter 5.3 of [12].

The modes a and b then enter a beam splitter which mixes the two modes into two new modes c and
b. We will elaborate on this in a bit in section 5.4.1. c and d then move into photon-count detectors which
simply count the number of photons in mode c and d respectively. The final result is then the difference of
the c count and the d count, scaled by a factor of 2|z|, i.e

D =
c∗c− b∗b

2|z|
. (160)

With some effort it can be shown that in the limit as |z| this experiment, ignoring any kind of noise, results
in the quadrature aϕ, precisely what we want to measure.

5.4.1 Beam splitters

Here we only discuss the specific example in our interest, where we ignore phase information. For a more
general treatment, including derivations, one could read 5.7 in [12].

Figure 2: A schematic drawing of a beam splitter.
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We consider a beam splitter whose inputs are photon beams of differing single mode photon states. One
can think of the splitting as either reflecting an incoming photon away or simply letting it pass through.
This way the output light modes become linear combinations of the input modes. Let c and d denote the
annihilation operators of these new modes. If we assume the beam splitter does not affect the phase of the
light c and d are given by (see equation 52 in [6])(

c
d

)
=

( √
γ

√
1− γ

−
√
1− γ

√
γ

)(
a
b

)
. (161)

We write U for this matrix. Here γ is a number between 0 and 1 called the transmissivity of the beam
splitter. Essentially, this is the change a single photon will get reflecting.

Important to note is that c and d themself are linearly independent. A good way to test this is by
checking if they commute, since linearly dependent modes do not. We get

[c, d] =
(√

γa+
√
1− γb

)(
−
√

1− γa+
√
γb
)
−
(
−
√
1− γa+

√
γb
)(√

γa+
√

1− γb
)

(162)

= −
√
γ(1− γ)a2 + γab− (1− γ)ba+

√
γ(1− γ)b2 (163)

+
√
γ(1− γ)a2 + (1− γ)ab− γba−

√
γ(1− γ)b2 (164)

= γ (ab− ba) + (1− γ)(ab− ba) (165)

= 0. (166)

Due to c and d being linear combinations of a and b, the Hilbert space Hcd of combined light of modes c and
d is (naturally isomorphic to) Hab. In particular, no new modes are introduced by the beam splitter! To
distinguish between the state of “there are n photons in mode a and k in mode b”, which until now we have
denoted with |n, k⟩, and the state “there are n photons in mode c and k in mode d”, we will write |n, k⟩ab
for the former and |n, k⟩cd for the latter. Both vacuum states |0, 0⟩ab and |cd⟩ are simply the same, so for
this we can write |0⟩.

It would be nice if we can write the cd states in terms of the ab and vice versa. Through the equalities

|n, k⟩ab =
1√
n!k!

(a∗)n(b∗)k |0⟩ and |n, k⟩cd =
1√
n!k!

(c∗)n(d∗)k |0⟩ (167)

this is not too hard to do. Remark that a∗ and b∗ commute, allowing us the usage of the binomial formula
for powers of linear combinations of them. We find

|n, k⟩cd =
1√
n!k!

(c∗)n(d∗)k |0⟩ (168)

=
1√
n!k!

(√
γa∗ +

√
1− γb∗

)n (
−
√
1− γa∗ +

√
γb∗
)k

|0⟩ (169)

=
1√
n!k!

n∑
m=0

(
n

m

)
√
γ
m
(a∗)m

√
1− γ

n−m
(b∗)n−m (170)

×
k∑
l=0

(
k

l

)(
−
√

1− γ
)l

(a∗)l
√
γ
k−l

(b∗)k−l |0⟩ (171)

=
1√
n!k!

n∑
m=0

k∑
l=0

(
n

m

)(
k

l

)
√
γ
k+m−l

(−1)l
√
1− γ

n+k−m−l
(a∗)m+l(b∗)n+k−m−l |0⟩ (172)

=

n∑
m=0

k∑
l=0

(
n

m

)(
k

l

)
√
γ
k+m−l

(−1)l
√
1− γ

n+k−m−l
√

(m+ l)!
√
(n+ k −m− l)!√
n!k!

|m+ l, n+ k −m− l⟩ab .

(173)

So in some sense a beam splitter does not alter the state. But that is only if you do not take the direction of
propagation of the light into account26, which we do when looking at the states as elements of Hab = Hcd. If

26A different direction of propagation means a different mode of light.
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you do take direction into account, c and d are in fact different modes from a and b. c is then a mixture of a
and a rotated b mode, and d a mixture of b and a rotated a mode. The more simplistic view of Hab = Hcd is
sufficient for our usage so we will continue with that. But it is good to keep in mind that the beam splitter
does in fact change the state. Why would we otherwise bother using them in our set-up!

5.4.2 Photon-count detectors

An ideal photon-count detector does precisely what is sounds like: it counts photons. Of course, by doing
this it alters the state. What the state looks like after a measurement is a tricky subject. In figure 5.4
we see that we have two photon-count detectors. One which counts photons in mode c, the other counting
photons in mode d. These operations are described by the number operators Nc = c∗c and Nd = d∗d.
Fortunately, we can avoid this because after the photon counting we are done with our state. To see what
the probability density of the photon-count is for a measurement given a quantum state ρ ∈ S(Hcd), all we
need is the spectral measures #c and #d of Nc and Nd respectively. If we restrict #c to the single mode
space Hc we found in section 5.1 that it is given by #c(S) = Pc,S , where Pc,S is the projection onto the span
of {|n⟩c}n∈S . Since the number operators on the mixed Hilbert space Hcd do not affect the other mode, this
simply generalises to #c(S) = Pc,S ⊗ 1d, which is the projection onto the span of {|n, k⟩cd}n∈S,k∈N. And
analogously, #d(S) = 1c ⊗ Pd,S .

If we then define Nρ to be the N2-valued combined measurement (Nc, Nd) of both photon-count detectors,
we find for S, T ⊆ N that

Pρ(N ∈ S × T ) = tr(ρ#c(S)#d(T )). (174)

This gives us all the statistical information we need to describe the result of two ideal photon-count detectors.
But the unfortunate truth is that ideal detectors simply do not exist. For example, there is always a

chance that a photon that does exist is missed by the detector, or that electromagnetic waves from outside of
the experiment cause false positives. Before we talk about the way we will model the noise, a small word on
spectral measure. Until now all our probabilities have been described by the spectral measure of an operator
A. However, these are inherently “not noisy”, in the sense that, thanks to lemma 8 we can always find a
state to make the variance as small as we want. In the case of discrete spectra, it is even possible to find
states for which the measurement has zero variance. If there is noise involved, this is not possible, meaning
that these spectral measures are not sufficient to describe noisy measurements. To solve this we introduce,
without too much detail, a weaker notion of spectral measures.

Given a measurable space (X,Ω) and a Hilbert space H a map µ : Ω → B(H) is called a positive
operator-valued measure27, abbreviated to POVM, taking values in B(H) if it satisfies the following criteria:

1. For each S ∈ Ω the operator µ(S) is positive;

2. µ(∅) = 0 and µ(X) = 1;

3. For a sequence S0, S1, . . . of pairwise disjoint elements of Ω the sum
∑∞
n=0 µ(Sn) converges pointwise

to µ (
⋃
n Sn), in the sense that for all ϕ ∈ H we have

∑∞
n=0 µ(Sn)ϕ = µ (

⋃∞
n=0 Sn)ϕ.

One quickly sees that this is the definition of a spectral measure but with the requirement that µ(S ∩ T ) =
µ(S)µ(T ), which more importantly means that all the values commute, dropped and instead of requiring
the operators to be orthogonal projections they simply need to be positive. It then still holds that for ρ a
density operator the assignment S 7→ tr(ρµ(S)) forms a probability measure µρ, hence these POVM’s are a
way to assign a probability measure to each state.

We continue discussing the photon-count detector for which we will now introduce some noise. One of the
simplest ways of doing so is to say that a counter might miss a photon, and that the chance of this happening
is constant and independent of the state. I.e, a photon-count detector which has for each individual photon a
probability η to detect it, which is called its efficiency. This is the type of detector used in our toy experiment.
The possibility of failing to count a photon can be modelled as putting a beam splitter with transmissivity
η, where the second input is the vacuum state of a new mode e, in front of the detector. This beam splitter

27Some authors do not include the “valued” in the term, simply calling them positive operator measures.
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then has a probability of 1 − η to reflect an incoming photon away from the detector. This is sketched in
figure 5.4.2

Figure 3: An inefficient photon-count detector modelled as an ideal detector preceded by a beam splitter.

Here the output modes are labelled f and g. The result of the inefficient photon-count detector is then
the photon count Nf of f . Since the detector here is ideal, Nf is described by the spectral measure #f . And
the beam splitter #f can be taken to act either on the single mode space Hf or the mixed Hfg, but not on
Hc, which is what we need. The assumption that the e mode is in its vacuum state induces an inclusion τ
of Hc into Hce = Hc ⊗He as |ϕ⟩ 7→ |ϕ⟩ ⊗ |0⟩e, i.e |n⟩c 7→ |n, 0⟩ce. For |ϕ⟩ ∈ Hc the POVM of the inefficient
photon-count detector µ must then satisfy µ|ϕ⟩ = #f,|ϕ⟩⊗|0⟩e . This gives us

µ|ϕ⟩(k) = ⟨τϕ|c#f (k)τ |ϕ⟩ = ⟨ϕ|cτ∗#f (k)τ |ϕ⟩ . (175)

From this it follows that µ|ϕ⟩ = τ∗#f (k)τ . The adjoint τ∗ : Hce → Hc is given by |n, k⟩ce 7→ δ0k |n⟩c.
Since #f (k) is the projection onto the subspace span{|k,m⟩fg} it is (with weak convergence) equal to∑∞
m=0 |k,m⟩fg ⟨k,m|fg. Using our annihilation creation trick to expand mixed fg modes into mixed ce

modes we get

#f (k) =

∞∑
m=0

|k,m⟩fg ⟨k,m|fg =
∞∑
m=0

1

k!m!
(f∗)k(g∗)m |0⟩ ⟨0| fkgm. (176)

Now expanding this fully became a bit ugly, but fortunately for us we can avoid this. Note the following for
|ϕ⟩ ∈ Hc

eτ |ϕ⟩ = e(|ϕ⟩ ⊗ |0⟩e) = |ϕ⟩ ⊗ (e |0⟩e) = 0 (177)

and

τ∗e∗ |n, k⟩ce =
√

(k + 1)!τ∗ |n, k + 1⟩ce =
√
(k + 1)!δ0(k+1) |n⟩c = 0. (178)

So both τ∗e∗ and eτ are 0. With that we find

fkgmτ =
(√

ηc+
√
1− ηe

)k (
−
√
1− ηc+

√
ηe
)m

τ (179)

=

k∑
l=0

m∑
p=0

(
k

l

)(
m

p

)
(−1)p

√
η
l+m−p√

1− η
k−l+p

cl+pek+m−l−pτ. (180)

Due to τe being zero, these terms are non-zero if and only if k+m− l−p = 0, i.e k+m = l+p. The bounds
of the sum tell us that this is only possible if l = k and p = m so this simplifies to

τfkgm =

(
k

k

)(
m

m

)
(−1)m

√
η
k
√
1− η

m
ck+m = (−1)m

√
η
k
√
1− η

m
ck+m. (181)
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For τ∗(f∗)k(g∗)m we get something similar

τ∗(f∗)k(g∗)m = τ∗
(√

ηc∗ +
√
1− ηe∗

)k (
−
√
1− ηc∗ +

√
ηe∗
)m

(182)

= τ∗
k∑
l=0

m∑
p=0

(
k

l

)(
m

p

)
(−1)p

√
η
l+m−p√

1− η
k−l+p

(c∗)l+p(e∗)k+m−l−p (183)

=

k∑
l=0

m∑
p=0

(
k

l

)(
m

p

)
(−1)p

√
η
l+m−p√

1− η
k−l+p

τ∗(e∗)k+m−l−p(c∗)l+p (184)

= (−1)m
√
η
k
√
1− η

m
(c∗)k+m. (185)

Combining this we end up with

µ(k) = τ∗#f (k)τ (186)

= τ∗
∞∑
m=0

1

k!m!
(f∗)k(g∗)m |0⟩ ⟨0| fkgmτ (187)

=

∞∑
m=0

1

k!m!
(−1)2m

√
η
2k
√

1− η
2m

(c∗)k+m |0⟩ ⟨0| ck+m (188)

=

∞∑
m=0

ηk (1− η)
m

k!m!

√
(k +m)! |k +m⟩c

〈
(c∗)k+m0

∣∣ (189)

=

∞∑
m=0

ηk (1− η)
m

k!m!

√
(k +m)!

2
|k +m⟩c ⟨k +m|c (190)

=

∞∑
m=k

m!

k!(m− k)!
ηk(1− η)m−k |m⟩c ⟨m|c . (191)

With that we have found the POVM for the inefficient detector.
Let us calculate the probability density of Nc, the number of photons in mode c, for a number state |n⟩c.

Since the mode is clear from the context now, we drop the subscript of the kets for a bit. We get

P|n⟩(Nc = k) = ⟨n|µ(k)|n⟩ =
∞∑
m=k

(
m

k

)
ηk(1− η)m−k ⟨n|m⟩ ⟨m|n⟩ =

∞∑
m=k

(
m

k

)
ηk(1− η)m−kδnm. (192)

Because the sum starts at m = k, if n < k all the terms will be zero. And for n ≥ k only one term survives,
giving us the answer

P|n⟩(Nc = k) =

{(
n
k

)
ηk(1− η)n−k if k ≤ n

0 if k > n
. (193)

This is precisely a binomial distribution with parameters n and η, which checks out with our interpretation
of there being a chance η for each individual photon to be counted.
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5.5 Measuring the quadrature

Recall from section 5.4 that the measured quantity is given by

D =
c∗c− b∗b

|z|
√
2

. (194)

Using equation 161 for a beam splitter with transmissivity γ = 1
2 we see that c = a+b√

2
and d = −a+b√

2
, which

turns D into

D =
(a∗ + b∗)(a+ b)− (−a∗ + b∗)(−a+ b)

2|z|
√
2

(195)

=
a∗a+ a∗b+ b∗a+ b∗b− a∗a+ a∗b+ b∗a− b∗b

2|z|
√
2

(196)

=
a∗b− b∗a

|z|
√
2

. (197)

In [6], equation 66, we see that in the limit as |z| → ∞, keeping the angle θ constant, we get

lim
|z|→∞

D =
1√
2

(
a∗eiθ + ae−iθ

)
= x̂a cos θ + p̂a sin θ = aθ. (198)

Now this is when perfect photon-count detectors are used. If instead both detectors have equal efficiency η,
the previous section tells us that we get “error modes” c̃ =

√
ηc+

√
1− ηf and d̃ =

√
ηd+

√
1− ηg, where

f and g are vacuum modes. This gives us

c̃∗c̃− d̃∗d̃ =
(√

ηc∗ +
√
1− ηf∗

)(√
ηc+

√
1− ηf

)
−
(√

ηd∗ +
√
1− ηg

)(√
ηd+

√
1− ηg

)
(199)

= η (c∗c− d∗d) + (1− η) (f∗f − g∗g) +
√
η(1− η) (c∗f + cf∗ − d∗g − dg∗) . (200)

Due to the extra factor η in front of the c∗c − d∗d term, instead of dividing by 2|z| we divide by 2|z|η. A
measurement including error is then described by

D̃ =
1

|z|
√
2

(
(c∗c− d∗d) +

1− η

η
(f∗f − g∗g) +

√
1− η

η
(c∗f + cf∗ − d∗g − dg∗)

)
. (201)

To get our quadrature aθ we again consider the limit |z| → ∞. Since the f and g states do not depend on
z, the term f∗f − g∗g vanishes. The third term we split up. We have

c∗f + cf∗∗ =
(a∗ + b∗)f + (a+ b)f∗√

2
=
a∗f + af∗√

2
+
b∗f + bf∗√

2
(202)

d∗g + dg∗∗ =
(−a∗ + b∗)g + (−a+ b)g∗√

2
= −a

∗g + ag∗√
2

+
b∗g + bg∗√

2
. (203)

The a mode also does not depend on z, thus

1

|z|
√
2

√
1− η

η
(c∗f + cf∗ − d∗g − dg∗) → 1

|z|
√
2

√
1− η

η

(
b∗f + bf∗√

2
− b∗g + bg∗√

2

)
. (204)

And the way bf∗+bf∗

2|z| behaves in the limit |z| → ∞ we already know. It is simply equation 198 with the f

mode instead of the a mode. The same holds for b∗g+bg∗

|z|
√
2

giving us

1

|z|
√
2

√
1− η

η
(c∗f + cf∗ − d∗g − dg∗) →

√
1− η

2η
(fθ − gθ) (205)
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where fθ and gθ are the quadratures of the f and g modes. Combining this we find

D̃ → aθ +

√
1− η

2η
(fθ − gθ). (206)

Finding the probability distribution of this can be done by considering the characteristic function λ 7→
Eρ
(
eiλD

)
. To see why, note that a self-adjoint operator A acting on a Hilbert space K with spectral measure

µ induces a probability measure µρ for each ρ ∈ S(K). Thus we can also think of A inducing a random
variable Aρ with distribution µρ. For its characteristic function we then get

E
(
eiλAρ

)
=

∫
eiλxdµρ(x) = tr

(
ρeiλx

)
= Eρ

(
eiλA

)
. (207)

So the characteristic function of operator A in state ρ is equal to the characteristic function of the random

variable Aρ. This justifies the study of D̃ through the expectation of eiλD̃.

Since aθ, fθ and gθ all commute pairwise, we can split the exponential of aθ +
√

1−η
2η (fθ − gθ) into

products:

e
iλ

(
aθ+

√
1−η
2η (fθ−gθ)

)
= eiλaθe

iλ
√

1−η
2η fθe

−iλ
√

1−η
2η gθ . (208)

Note that aθ only acts on Ha. In fact, equation 208 is technically a slight abuse of notation, as aθ was
defined as an operator on Ha. If we were precise we should write aθ ⊗ 1f ⊗ 1g instead, with 1f and 1g the
identity operators on Hf and Hg respectively. This separation into operator tensor products is preserved
under exponentiation, meaning that eiλaθ⊗1f⊗1g = eiλaθ ⊗ 1f ⊗ 1g. A similar identity holds for the other
two exponentials on the right side of equation 208. Together with the fact that (A⊗ 1)(1⊗B) = A⊗B we
get With that we get

eiλaθe
iλ

√
1−η
2η fθe

−iλ
√

1−η
2η gθ = eiλaθ ⊗ e

iλ
√

1−η
2η fθ ⊗ e

−iλ
√

1−η
2η gθ . (209)

We have ρ a state of the a mode, i.e ρ ∈ S(Ha). Since f and g are assumed to be in the vacuum mode,
the combined state is ρfg = ρ ⊗ |0⟩f ⟨0|f ⊗ |0⟩g ⟨0|g. Suppose we have two Hilbert spaces H and K with
operators A ∈ B1(H) and B ∈ B1(K). Then A⊗B defines a trace-class operator on H⊗K. To compute its
trace, let {|i⟩}i∈I be an orthonormal basis for H and {|j⟩}j∈J , giving H⊗K basis |i, j⟩(i,j)∈I×J . Then

tr(A⊗B) =
∑
i∈I
j∈J

⟨i, j|A⊗B|i, j⟩ =
∑
i∈I
j∈J

⟨i|A|i⟩ ⟨j|B|j⟩ =
∑
i∈I

⟨i|A|i⟩
∑
j∈J

⟨j|B|j⟩ = tr(A) tr(B). (210)

With that we find

Eρfg

(
e
iλ

(
aθ+

√
1−η
2η (fθ−gθ)

))
= tr

((
ρ⊗ |0⟩f ⟨0|f ⊗ |0⟩g ⊗ |0⟩g

)(
eiλaθ ⊗ e

iλ
√

1−η
2η fθ ⊗ e

−iλ
√

1−η
2η gθ

))
(211)

= tr

(
ρeiλaθ ⊗ |0⟩f ⟨0|f e

iλ
√

1−η
2η fθ ⊗ |0⟩g ⟨0|g e

−iλ
√

1−η
2η gθ

)
(212)

= tr
(
ρeiλaθ

)
tr

(
|0⟩f ⟨0|f e

iλ
√

1−η
2η fθ

)
tr

(
|0⟩g ⟨0|g e

−iλ
√

1−η
2η gθ

)
. (213)

The trace of ρeiλaθ is simply Eρ
(
eiλaθ

)
. To compute the second trace, let µ be the spectral measure of fθ.

Then we have

tr

(
|0⟩f ⟨0|f e

iλ
√

1−η
2η fθ

)
=

∫
e
iλ

√
1−η
2η x

dµ|0⟩f ⟨0|f (x). (214)

Using the unitary equivalence to the Harmonic Oscillator L2(R) the state |0⟩f ⟨0|f is the ground state of this
oscillator, giving us that the Radon-Nikodym deriative of µ|0⟩f ⟨0|f with respect to the Lebesgue measure is

the tomogram of this ground state, which is given in equation 30 of [2]. We get∫
e
iλ

√
1−η
2η x

dµ|0⟩f ⟨0|f (x) =

∫
e
iλ

√
1−η
2η x 1√

π
e−x

2

dx. (215)



43

Using the integral ∫
eiαx−x

2

dx =
√
πe−

α2

4 where α ∈ C (216)

we find

tr

(
|0⟩f ⟨0|f e

iλ
√

1−η
2η fθ

)
= e−λ

2 1−η
8η . (217)

Analogously we can show that

tr

(
|0⟩g ⟨0|g e

−iλ
√

1−η
2η gθ

)
= e−λ

2 1−η
8η . (218)

Substituting this back into 213 we get

Eρfg

(
e
iλ

(
aθ+

√
1−η
2η (fθ−gθ)

))
= Eρ

(
eiλaθ

)
e−λ

2 1−η
4η . (219)

This factor e−λ
2 1−η

2η we can recognise as the characteristic function of the normal distribution with mean 0
and variance 1−η

2η .

If we consider aθ and D̃ now as inducing random variables Aρ andDρfg
, and let ϵ be a normally distributed

random variable with mean 0 and variance 1−η
2η we get

E(eiλDρfg ) = E(eiλAρ)E(eiλϵ) (220)

which tells us that Dρfg
= Aρ + ϵ. We can thus conclude that the result of a measurement of our set-up is

the quadrature plus normal noise with variance 1−η
2η .
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6 Statistical Methods

Now that we know how to measure the quadrature and the noise we have to keep in mind, there is only one
small detail we still need to think about: for what angles do we measure the quadrature? From a theoretical
perspective there is no reason to prefer one over the other. The most common and straightforward way of
tackling this is by simply picking an angle at random according to a uniform distribution on either [0, π].28

With that we get the experimental part can be described by the following procedure:

1. We start with a device that can create the same unknown state ρ numerous times, allowing for a large
amount of measurements.29

2. For each measurement pick an angle Θk distributed with uniform distribution on [0, π].

3. Measure the quadrature at angle Θk.

The result of this will then be a sequence of independent and identically distributed (i.i.d) random variables
(D1,Θ1), . . . , (Dn,Θn) taking values in R×[0, π]. The Θk have the uniform distribution on [0, π] and each Dk

is the sum of the “real” quadrature value and Gaussian noise. I.e, we have i.i.d random variables A1, . . . , An
having unknown probability density function Wρ(·,Θk) and i.i.d normally distributed variables ϵ1, . . . , ϵn
such that Dk = Ak + ϵk. The statistical problem one needs to solve is then to estimate ρ. We will now
briefly discuss some existing literature on this subject.

We begin with [14]. There a kernel density estimation (KDE) method is employed the construct an
estimator of the so called Wigner function Wρ of the state. Loosely speaking, Wρ can be thought of as the
joint probability distribution of position and momentum. However, this is only for intuition, as the fact that
the position and momentum operator do not commute means that no such probability density can exist.
Due to this, it is possible for the Wigner function to take negative values. We will not go into any detail
about the Wigner function and instead refer the interested reader to chapter 1.8 of [15].

Kernel density estimation (KDE) can be thought of as a generalisation of the histogram. Rather then
using indicators, i.e rectangles, to approximate the density of a distribution one uses a more advanced
function called the kernel. In equation 21 of [14] a specific example for the Wigner function is given by

Ŵ γ
h (q, p) =

1

2πn

n∑
k=1

Kγ
h([z,Θk]−Dk). (221)

Here γ = 1−η
4η , z = (q, p), [z, θ] = q cos θ + p sin θ and Kγ

h is such that its Fourier transform is

K̃γ
h(t) = |t|eγt

2

1|t|≤ 1
h
. (222)

Note that h in Ŵ γ
h is not set. It is called the bandwidth parameter and an important part of kernel density

estimation is to find the h for which Ŵ γ
ρ is the best estimator, where best is commonly taken to mean fastest

rate of convergence. I.e, the h for which Ŵ γ
h approaches the real Wρ the fastest in the norm one wishes to

minimise, which is the supremum norm on L2(R2) in the paper.
In the article they specifically consider a class of density operators whose “matrix elements” ρn,m =

⟨n|ρ|m⟩ for the number state basis decrease exponentially. More rigorously, the class

R(C,B, r) =
{
ρ ∈ S(H) : |ρn,m| ≤ Ce−B(m+n)r/2

}
. (223)

where C ≥ 1, B > 0 and 0 < r ≤ 2. The reason they consider ρ ∈ R(C,B, r) class is that it has smoothness
consequences for the Wigner function, implying that there exist not explicitly known β, L > 0 such that Wρ

is an element of

A(β, r, L) =

{
f : R2 → R |

∫∫
|F(f)(u, v)|2e2β(u

2+v2)
r/2

dudv ≤ 4π2L

}
. (224)

28Since aθ+π = −aθ, just knowing the distribution of aθ for θ ∈ [0, π] is sufficient to reconstruct the density operator. Because
this reduces the size of the parameter space most authors restrict the angle to [0, π].

29Any inconsistency in the preparation of the state can be absorbed into the density operator, thus the assumption that the
same state is created each time is not all that strong.
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They go on to prove convergence results for their kernel estimator but run into the issue that the optimal
h they find depends on β and r, which are not always known. They solve this by using a Lepskii-type
procedure to select a bandwidth based on the data, for which they refer to [16] and [17].

7 Conclusion

As we have seen quantum mechanics can be formalised using the spectral theory of self-adjoint unbounded
operators. Using the tomographic formula it is then possible to reconstruct the state if one knows the
probability densities of the quadrature operators of position and momentum, justifying statistical approaches
to estimating the density operator based on measurements of these quadratures. We went on to describe
an experimental set-up to which this theory can applied. Thanks to the Stone-von Neumann theorem the
single mode photon system came out to be unitarily equivalent to the harmonic oscillator, enabling us to
use these tomographic methods. We found that the homodyne tomography set-up was capable of measuring
the quadratures with a normally distributed noise, which could then be tackled by statisticians to construct
estimators for the density operator.
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A Deriving the Spectral Measure of aX + bP

In this appendix we derive the spectral measure of the quadrature operators Qθ = X cos θ + P sin θ. The
approach used is mainly the same as for X and P themselves. Since we will encounter division by sin θ
abundantly we assume θ /∈ πZ.

Like with the position and momentum operator, a good start when analysing operators one suspects to
be self-adjoint is to solve its eigenvalue equation, where at first you ignore domain conditions and the like.
For Qθ this is

xϕ cos θ − i
dϕ

dx
sin θ = λϕ. (225)

Using standard trickery from ordinary differential equations it follows that this has general solution

ϕ(x) = Ae
iλx
sin θ−

ix2

tan θ . (226)

For all λ ∈ C this will not be square-integrable, hence Qθ has no eigenvalues in L2(R). However, knowing
these “generalised” eigenvectors will help tremendously with deriving the spectral measure, just as with
position and momentum. But first, let us begin by proving essentially self-adjointness to confirm that our
hunt for a spectral measure is justified.

Lemma 25. If Qθ has domain C∞
c (R) it is essentially self-adjoint.

Proof. This proof is inspired by the proof of proposition 9.29 in [7].
Suppose we have ψ ∈ ker(Q∗

θ − iI). Thus ψ ∈ Dom(Q∗
θ) and Q

∗
θψ = iψ. This holds if for all ϕ ∈ C∞

c (R)
we have

⟨ψ,Qθϕ⟩ = ⟨Q∗
θψ, ϕ⟩. (227)

Now ⟨iψ, ϕ⟩ = −⟨ψ, iϕ⟩ so we can rewrite this as〈
ψ, xϕ cos θ − i

dϕ

dx
sin θ + iϕ

〉
= ⟨ψ,Qθϕ+ iϕ⟩ = 0. (228)

Write u(x) = e
x

sin θ−
ix2

2 tan θ . Because ϕ is smooth with compact support the function ϕu−1 also belongs to
C∞
c (R), thus we have χ ∈ C∞

c (R) with ϕ = χu. That gives

Qθϕ = Qθ(χu) (229)

= xχu cos θ − i sin θ
dχu

dx
(230)

= xχu cos θ − i sin θ

(
dχ

dx
u+ χu

(
1− ix cos θ

sin θ

))
(231)

= u

[
−i sin θdχ

dx
− iχ− xχ cos θ + xχ cos θ

]
(232)

= −u
(
i
dχ

dx
sin θ + iχ

)
. (233)

Filling this into equation 228 we get

0 =

〈
ψ,−u

(
i
dχ

dx
sin θ + iχ

)
+ iχu

〉
=

〈
ψ, iu

dχ

dx
sin θ

〉
=

〈
−iuψ sin θ,

dχ

dx

〉
. (234)

And this holds for all χ for which χu belongs to C∞
c (R), thus for all χ ∈ C∞

c (R). But that shows that the

weak derivative of iuψ must be 0, thus uψ must be a constant, giving ψ(x) = Ae−
x

sin θ−
ix2

2 tan θ for some A ∈ C.
But ψ must be square-integrable, requiring A = 0, thus we find ker(Q∗

θ − iI) = 0. Similarly one can show
that ker(Q∗

θ + iI) = 0 and thus with lemma 6 we find that Qθ is essentially self-adjoint on C∞
c (R).
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This result tells us that there exists a unique self-adjoint extension of X cos θ + P sin θ when it is given
the domain C∞

c (R). From now on, Qθ will refer to this extension.
The next step is to determine the spectrum of Qθ.
We already saw that Qθ does not have any eigenvectors since the solutions to the differential equation

are not square-integrable. However, these solutions can be used to construct approximate eigenvectors in the
sense of lemma 8, which will allow us to show that σ(Qθ) = R. But before we do that we need the following
lemma:

Lemma 26. The function f : R → R given by

f(t) =

{
e

−1
t t > 0

0 t ≤ 0
(235)

is smooth. Furthermore, for real a < b the function ha,b : R → R given by

ha,b(x) =
f(b− x)

f(b− x) + f(x− a)
(236)

is also smooth, is equal to 1 on (−∞, a], has 0 < ha,b(x) < 1 for x ∈ (a, b) and is equal to 0 on [a,∞). If a
and b are both positive, the function Ha,b : R → R given by Ha,b(x) = ha,b(|x|) is smooth, is equal to 1 on
[−a, a], has 0 < Ha,b(x) < 1 for x ∈ [−b, b] \ [−a, a] and equal to 0 on R \ [−b, b].

Proof. See lemmas 2.20, 2.21 and 2.22 in [18].

Armed with this construction tool we are able to tackle σ(Qθ).

Lemma 27. σ(Qθ) = R

Proof. Take a, b ∈ R>0, λ ∈ R, f , ha,b, Ha,b as above and ϕλ(x) = e
2iλx−ix2 cos θ

2 sin θ . Note that Ha,b is smooth
and has compact support, thus φa,b,λ = ϕλHa,b ∈ C∞

c (R). We have

(Qθ − λI)φa,b,λ = xϕλHa,b cos θ − i sin θ
dϕλ
dx

Ha,b − iϕλ sin θ
dHa,b

dx
− λϕλHa,b (237)

=

(
xϕλ cos θ − i

dϕλ
dx

sin θ − λϕλ

)
Ha,b − iϕλ sin θ

dHa,b

dx
(238)

= −iϕλ sin θ
dHa,b

dx
. (239)

Here we used that ϕλ solves the differential equation xϕλ cos θ− i sin θ dϕλ

dx − λϕλ. Note that since λ ∈ R we
have |ϕλ| = 1, so together with the properties of Ha,b we get

∥φa,b,λ∥2 =

∫ ∞

−∞
H2
a,bdx =

∫
R\[−b,b]

0dx+

∫
(−a,a)

1dx+

∫
[−b,b]\(−a,a)

H2
a,bdx. (240)

Since Ha,b(x) is given by ha,b(|x|) it is an even function, hence we get ∥φa,b,λ∥2 = 2a+ 2
∫ b
a
H2
a,bdx.

Since Ha,b is constant on (−a, a) ∪ R \ [−b, b] its derivative is zero there. So for (Qθ − λI)φa,b,λ we get

∥(Qθ − λI)φa,b,λ∥2 = | sin θ|
∫ ∞

−∞

dHa,b

dx

2

dx = | sin θ|
∫ −a

−b

dHa,b

dx

2

dx+ | sin θ|
∫ b

a

dHa,b

dx

2

dx. (241)

The derivative of an even function is odd, and the square of an odd function is even, hence ∥(Qθ −
λI)φa,b,λ∥2 = 2| sin θ|

∫ b
a

dHa,b

dx

2
dx.

There is one useful property of the functions ha,b and Ha,b we have not discussed yet which we will now
employ. Notice that

ha+c,b+c(x+ c) =
f(b+ c− (x+ c))

f(b+ c− (x+ c)) + f(x+ c− (a+ c))
=

f(b− x)

f(b− x) + f(x− a)
= ha,b(x). (242)



48

For x and c positive this translates to Ha,b:

Ha+c,b+c(x+ c) = ha+c,b+c(|x+ c|) = ha+c,b+c(x+ c) = ha,b(x) = Ha,b(x). (243)

And this equation carries over to the square and the square of the derivative. In particular, this implies that∫ b

a

H2
a,bdx =

∫ b+c

a+c

H2
a+c,b+cdx and

∫ b

a

dHa,b

dx

2

dx =

∫ b+c

a+c

dHa+c,b+c

dx

2

dx. (244)

So these two integrals only depend on the difference b− a (as long as 0 < a < b).
To close off, consider for each n ∈ N the function ψn = φn,n+1,λ. Clearly this gives a sequence in

C∞
c (R) ⊆ Dom(Qθ) for which we have

lim
n→∞

∥(Qθ − λI)ψn∥2

∥ψn∥2
= lim
n→∞

2| sin θ|
∫ n+1

n
dHn,n+1

dx

2
dx

2n+ 2
∫ n+1

n
H2
n,n+1dx

(245)

= lim
n→∞

| sin θ|
∫ 2

1
dH1,2

dx

2
dx

n+
∫ 2

1
H2

1,2dx
(246)

= 0. (247)

And that shows that λ ∈ σ(Qθ)

Now that we know the spectrum of Qθ we know that its spectral measure µθ has support equal to R. To
get a good guess for µθ we do some formal manipulations where we shortly ignore that the functions ϕλ do
not belong in L2(R). Using bra-ket notation for a bit, write |λ⟩ = 1√

2π
ϕλ and suppose that {|λ⟩}λ∈R forms

a (fake) orthonormal basis for L2(R). Similar to equation 25 we can then formally define

µθ(E) =

∫
S

|λ⟩ ⟨λ|dλ thus µθ(E) |ψ⟩ =
∫
E

|λ⟩ ⟨λ|ψ⟩dλ. (248)

This inner product ⟨λ|ψ⟩ is given by

⟨λ|ψ⟩ = 1√
2π

∫ ∞

−∞
e

−2iλx+ix2 cos θ
2 sin θ ψ(x)dx =

1√
2π

∫ ∞

−∞
e−iλ

x
sin θ e

ix2

2 tan θψ(x)dx. (249)

This seems to be a Fourier transform.30 Write uθ(x) = e
ix2

2 tan θ . Since this is bounded, uθψ is still square-
integrable, so indeed, we can say that ⟨λ|ψ⟩ = F (uθψ)

(
λ

sin θ

)
. Note that we can see uθ as a bounded

operator on L2(R) this way. Similarly, if we write equation 248 without bra-kets, while introducing the
bounded operator Sθ : L

2(R) → L2(R) given by Sθψ(x) = ψ(x sin θ), we get

µθ(E)ψ(y) =

∫
E

ϕλ(y)F (uθψ)

(
λ

sin θ

)
dλ (250)

=
1√
2π

∫ ∞

−∞
1E(λ)e

iλ y
sin θ e

−iy2

2 tan θ

(
S−1Fuψ

)
(λ)dλ (251)

= u−1
θ (y)F−1

(
1ES

−1Fuψ
) ( y

sin θ

)
(252)

= u−1
θ (y)S−1F−1

(
1ES

−1Fuψ
)
(y). (253)

In other words, if we note that 1E is also bounded and can thus be seen as a multiplication operator on
L2(R), we find that µθ(S) = u−1

θ S−1F−11ES
−1Fu. The scaling behaviour of the Fourier transform tells us

that S−1
θ F = | sin θ|FSθ. If we define the operator Fθ =

√
| sin θ|FSθuθ, where the factor

√
| sin θ| will turn

out to be needed for unitarity, we can write

µθ(E) = F−1
θ 1EFθ. (254)

30Note that on L2(R) the formula F(ψ)(k) = 1√
2π

∫∞
−∞ e−ikxψ(x)dx holds for Schwartz functions, but not necessarily for all

square-integrable functions.
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Lemma 28. The operator Fθ is unitary.

Proof. The inverse of Fθ is easily computed to be F−1
θ = 1√

| sin θ|
u−1
θ S−1

θ F−1. Note that F is unitary, and

since uθ as function takes values on the unit circle, it is unitary as well. However, Sθ is not. Its inverse is
simply given by S−1

θ ψ(x) = ψ
(

x
sin θ

)
. Taking ψ, ϕ ∈ L2(R) we get

⟨ψ, Sθϕ⟩ =
∫ ∞

−∞
ψ(x)ϕ(x sin θ)dx =

∫ ∞

−∞
ψ
( x

sin θ

)
ϕ(x)

dx

| sin θ|
=

〈
1

| sin θ|
S−1
θ ψ, ϕ

〉
. (255)

So S∗
θ = 1

| sin θ|S
−1
θ . With that we find

F∗
θ =

√
| sin θ|u−1

θ

1

| sin θ|
S−1
θ F−1 =

1√
| sin θ|

u−1
θ S−1

θ F = F−1
θ (256)

showing that Fθ is unitary.

This enables us to apply lemma 22 to see that µθ is indeed a spectral measure, all be it that of F−1
θ XFθ. Of

course, it will turn out to be the spectral measure of Qθ, which actually gives us as bonus that Qθ = F−1
θ XFθ.

Lemma 29. For any ψ, ϕ ∈ L2(R) we have µθψ,ϕ = FθψFθϕdℓ.31

Proof. This follows akin to the proof of lemma 22:

µθψ,ϕ(E) = ⟨ψ,F−1
θ 1EFθϕ⟩ = ⟨Fθψ, 1EFθϕ⟩ =

∫
S

FθψFθϕdℓ. (257)

Lemma 30. η is the spectral measure of Qθ.

Proof. Let A be the self-adjoint operator
∫
R xdµ

θ(x) Note that F , Sθ and uθ all send the Schwartz space
S (R) onto itself, from which it follows that Fθ does so as well. Thus, for ϕ ∈ S (R) we find using lemma
29 that ∫

R
|λ|2dµθϕ(λ) =

∫ ∞

−∞
λ2Fθϕ(λ)Fθϕ(λ)dλ =

∫ ∞

−∞
λ2|Fθϕ|2(λ)dλ. (258)

And since ϕ ∈ S (R) we have Fθϕ ∈ S (R), hence x2|Fθϕ|2 is also a Schwartz function and in particular
it must be integrable, thus ϕ ∈ DomA. The space C∞

c (R) is a subset of S (R), so C∞
c (R) is contained

inDomA. We will show that A equals to Qθ on C∞
c (R).

Take ϕ ∈ C∞
c and ψ ∈ L2(R). Then we have

⟨ψ,Aϕ⟩ =
〈
ψ,

∫
R
λdµθ(λ)ϕ

〉
=

∫
R
Fθψ(λ)λFθ(λ)ϕdλ = ⟨Fθψ,XFθϕ⟩ = ⟨ψ,F−1

θ XFθϕ⟩ (259)

The operator X does not commute with Fθ, however we can derive commutation relations which allow is
to transfer X to the right. For the Fourier transform it is well-known that XF = FP , for S we have
PSθ = SθP sin θ and for u we have Puθ = uθP + cos θ

sin θXuθ, and X does commute with uθ. To avoid
any domain complications, we only look at these operators and there action on C∞

c (R), where all these
manipulations are allowed. We find

F−1
θ XFθ =

√
| sin θ|√
| sin θ|

u−1
θ S−1

θ F−1XFSθuθ (260)

= u−1
θ S−1

θ F−1FPSθuθ (261)

= u−1
θ S−1

θ sin(θ)SθPuθ (262)

= u−1
θ sin θ

(
uθP +

cos θ

sin θ
Xuθ

)
(263)

= P sin θ +X cos θ (264)

31µθψ,ϕ is the complex-valued measure given by E 7→ ⟨ψ, µθ(E)ϕ⟩.
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So for ϕ ∈ C∞
c (R) it holds for all ψ ∈ L2(R) that ⟨ψ,Aϕ⟩ = ⟨ψ,Qθϕ⟩ from which it follows that A and

Qθ coincide on C∞
c (R). And since Qθ is the unique self-adjoint extension of X cos θ + P sin θ restricted to

C∞
c (R) and with A being self-adjoint we find A = Qθ, hence µ

θ is the spectral measure of Qθ.

With that done we show one more small result needed for the definition of tomograms:

Lemma 31. µθ is absolutely continuous with respect to the Lebesgue measure ℓ.

Proof. Take E ⊆ R measurable such that ℓ(E) = 0. Then within L2(R) we have 1E = 0. Thus, if ν ̸= 0 we
have η(E) = F−1

θ 1EFθ = 0. Now for any E ∈ Ω we have ℓ(aE) = |a|ℓ(E), so if ℓ(E) = 0, then ℓ(µ−1E) = 0,
thus η(E) = 1µ−1E = 0.

This has as corollary that the quantum tomograms as density functions are well-defined.

Corollary 4. For all ρ ∈ S(L2(R)) the complex-valued measure µθρ is absolutely continuous with respect to

ℓ and thus has a Radon-Nikodym derivative
dµθ

ρ

dℓ = Wρ(·; θ).
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