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Abstract

Primordial gravitational waves offer unique insights into the inflationary
period and subsequent thermal history of the Universe. The spectrum of
primordial high-frequency gravitational waves is highly sensitive to the
processes in the early Universe and can be significantly suppressed during
an epoch of early matter domination (EMD) induced by new long-lived
massive particles. This damping effect is studied with numerical and an-
alytic methods. The relative energy density of gravitational waves today
is found to scale with the wavenumber k as ΩGW ∝ k−2 for waves cross-
ing the horizon during the EMD epoch. The overall damping between the
start and the end of the EMD epoch is given by m4/3Γ−2/3M−2/3

Pl , where m
and Γ are the mass and decay width of the long-lived particles correspond-
ingly, and MPl is the Planck mass. For concrete examples of EMD, models
with inflaton decay and heavy neutral leptons are considered. Experimen-
tal observation of stochastic gravitational wave background could probe
early cosmological events and constrain new physics scenarios.
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Chapter 1
Introduction

The conventional cosmological paradigm is encapsulated in the ΛCDM
model, which suggests that the Universe is isotropic, homogeneous, spa-
tially flat, and filled with dark energy (cosmological constant Λ), cold
dark matter (CDM), and baryonic matter. The model is based on three
pillars: the expansion of the Universe, Big Bang nucleosynthesis (BBN),
and the cosmic microwave background (CMB) [1]. BBN predicts the pri-
mordial abundances of light elements (H, D, He-3, He-4, Li-7), while the
CMB provides a snapshot of the Universe when protons and electrons re-
combine into hydrogen atoms. Both phenomena occurred at temperatures
of O(1) MeV and depend on the baryon-to-photon number density ratio
ηB ∼ 6 · 10−10. Observational probes are consistent with ΛCDM predic-
tions [2, 3].

Despite the success of the ΛCDM model, the earliest evolution of the
Universe remains one of the major mysteries of modern physics. Some
hints about this period arise from cosmological problems in the hot Big
Bang model: the horizon, flatness, and magnetic monopole problems. The
horizon problem regards the uniformity of CMB temperature fluctuations
in regions that were not in causal contact. The flatness problem concerns
the almost zero curvature of the Universe, whose energy density increases
over time. The magnetic monopole problem, relevant in Grand Unified
Theory (GUT) scenarios, is based on the absence of magnetic monopoles,
which should make a significant energy contribution. Those problems are
naturally resolved with inflation, a brief period of accelerated expansion
before radiation domination [4–6].

Inflation not only solves these Big Bang puzzles but also predicts a
scale-invariant power spectrum of primordial density perturbations [7–
9], confirmed by large-scale structure and CMB anisotropies [10]. An-
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2 Introduction

other prediction of inflation is the existence of primordial gravitational waves
[11–13]. Their detection would prove the inflationary paradigm and pro-
vide insights into the early Universe. Due to their weak interaction with
matter, primordial gravitational waves propagate through space-time al-
most undistorted, preserving precious information from epochs before
BBN [14, 15]. However, changes in the effective number of relativistic
degrees of freedom and neutrino free-streaming leave an imprint in the
power spectrum of primordial gravitational waves, such as a 35.6% damp-
ing in amplitude due to neutrino anisotropic stress [16].

Detection of primordial gravitational waves is challenging due to their
tiny amplitudes hµν, which behaves like the second-order derivative of
the quadrupole moment of energy density [17]. Indirect detection strate-
gies focus on CMB B-mode polarization [18, 19], while direct detection
relies on Michelson interferometry. In the latter method, a laser beam
is split into two perpendicular arms, each with a test mass at the end.
The beams travel along these arms and reflect off massive mirrors hang-
ing from pendulums. A passing gravitational wave modifies arm lengths,
causing monitorable changes in the interference pattern. LIGO and Virgo
have detected gravitational waves with amplitudes of the order of 10−21

[20, 21]. To detect such tiny fluctuations, interferometers must have ex-
tremely large arms, typically several kilometers long. For ground-based
observatories, the potential is limited by the Earth’s size. However, in
space-based detectors, the arms can reach millions of kilometers, measur-
ing changes in distance between free-flying test masses via laser interfer-
ometry. For ground-based observatories, the potential is limited by the
Earth’s size. However, space-based detectors can have arms of millions of
kilometers, significantly enhancing sensitivity.

Several powerful space interferometers were proposed for the detec-
tion of primordial gravitational waves, including the Deci-Hertz Inter-
ferometer Gravitational Wave Observatory (DECIGO) [22] and Big Bang
Observer (BBO) [23], which are designed to observe frequencies around
f ∼ 0.1 − 10 Hz. Another important project is Laser Interferometer Space
Antenna (LISA) [24] with a focus on lower frequencies of 10−5 − 1 Hz.
These bands correspond to crucial events in the early Universe, such as
the reheating and phase transitions.

If primordial gravitational waves resulted from the one-field slow-roll
inflation, their relative energy density is expected to be ΩGW ∼ 10−15 −
10−14 at f ∼ 1 Hz [25]. With correlation analysis, optimized by co-aligned
detectors, achievable sensitivity can be improved to ΩGW ∼ 10−16 − 10−15.
The DECIGO/BBO project is to build two aligned detectors in the form of
a star-of-David with two additional detectors. The resulting instrument

2
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3

will have a long baseline (L ∼ 1 AU) and high angular resolution.
Figure 1.1 shows the sensitivity curves for current and future gravi-

tational wave detectors, including the constraints from the background
noise. It highlights a promising frequency range around f ∼ 1 Hz, which
can be effectively probed by DECIGO and BBO. This frequency range of-
fers valuable insights into the thermal history of the Universe immediately
after inflation.

Figure 1.1: Integrated sensitivity curves for current and future gravitational wave
detectors. Signal-to-noise ratios are included in the panel on the top of the plot.
Credit: [26].

In this thesis, we examine the properties of the stochastic primordial grav-
itational wave background (SGWB) depending on various thermal histories,
including ”non-standard” cosmologies where the equation of state in the
early Universe deviates from radiation. Specifically, we study scenarios
with early matter domination (EMD), where the unstable massive parti-
cles decay into radiation. Our results indicate a prominent step-like fea-
ture in the power spectrum at small scales, regardless of the EMD timing
and properties.

This thesis is organized as follows. In Chapter 2, we introduce the
definitions and equations for describing primordial gravitational waves,
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4 Introduction

including the stochastic gravitational wave background, wave equation,
and transfer function. Chapter 3 focuses on the radiation domination era,
describing the effective number of relativistic degrees of freedom and neu-
trino decoupling. Chapter 4 concentrates on the power spectrum of pri-
mordial gravitational waves and its properties. Chapter 5 is dedicated to
non-standard thermal histories, discussing inflation, reheating, and early
matter domination. Chapter 6 presents the numerical solutions and ana-
lytical results. Finally, Chapter 7 summarizes our findings and provides
conclusions. The appendices contain additional mathematical details, in-
cluding Bessel functions, neutrino free-streaming, transfer functions, rela-
tive spectral density, and temperature evolution.

4
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Chapter 2
Primordial gravitational waves

The essentials of General Relativity are captured by in the famous saying
by John Archibald Wheeler: ”Spacetime tells matter how to move; matter tells
spacetime how to curve.” In this framework, moving mass produces ripples
in the fabric of spacetime, known as gravitational waves (GWs), which move
with the speed of light c. These waves are solutions to linearized form of
Einstein’s equations.

GWs are produced by highly energetic cosmic events: mergers of com-
pact binary systems (e.g., binary black holes and neutron stars), super-
novae, rotating neutron stars (pulsars), and the events in the early Uni-
verse, that might produce an SGWB. This thesis focuses on the latter.

2.1 Stochastic gravitational wave background

Primordial gravitational waves are a fundamental prediction of any infla-
tion model [11–13]. They are mainly produced by the growth of vacuum
oscillations in the gravitational field during the rapid expansion of the
Universe in the inflationary period. This process produces a nearly scale-
invariant PGW spectrum with magnitude determined by the Hubble pa-
rameter during inflation. Another production option is the classical mech-
anisms, which involve interactions and perturbations, and contribute to
SGWB production. These mechanisms introduce sources in the equation
of motion for GWs, such as inflaton perturbations, scalar perturbations,
and particle production. However second-order GWs produced by these
classical mechanisms typically have smaller amplitudes than first-order
quantum ones, they can still be significant in certain parameter ranges [27].
In this thesis, we consider the first-order primordial gravitational waves.
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6 Primordial gravitational waves

The importance of primordial gravitational waves lies in the valuable
information they carry. Being weakly coupled to matter, they travel through
spacetime with minimal distortion, preserving precious knowledge about
the early Universe. PGW spectrum can probe epochs long before Big
Bang Nucleosynthesis (BBN), offering insights into the inflation mecha-
nism and physics at high energies and complementing energy-frontier col-
lider searches for physics beyond the Standard Model (SM). In addition,
the PGW spectrum facilitates an improved understanding of the thermal
history of the Universe.

2.2 Wave equation

In linearized gravity applied to our Universe, the spacetime metric gµν(x)
is expressed as the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric
with small perturbations hµν(x):

ds2 = a2(τ)(−dτ2 + (δij + hij)dxidxj), (2.1)

gµν(x) = a2(τ)(ηµν + hµν(x)), |hµν| ≪ 1, (2.2)

where ηµν is the flat Minkowski metric.
Gravitational waves are solutions to Einstein’s equations:

Rµν −
1
2

gµνR =
8πG

c4 Tµν, (2.3)

where Rµν is Ricci tensor, R is the Ricci scalar, G is the Newton’s constant,
and Tµν is the stress-energy tensor.

In the linearized theory with curved spacetime, the propagation of
gravitational waves becomes complex. It requires accounting for the back-
ground curvature gµν when computing derivatives. IBy expanding Eq. (2.3)
to first order in hµν(x) in the the Lorentz gauge,

∂µh̄µν = 0, (2.4)

we obtain
□gh̄µν = −16πG

c4 Tµν, (2.5)

where □g = ∇µ∇µ, and ∇µ denotes the covariant derivative with respect
to the background metric gµν. The trace of hµν is denoted as h = ηµνhµν,
while h̄µν = hµν − 1

2 ηµνh is the trace-reversed perturbation. A detailed
derivation of this equation is provided in [17].

6
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2.2 Wave equation 7

This equation shows how gravitational waves interact with the curva-
ture of spacetime, resulting in phenomena such as wave scattering and
lensing by massive objects.

The Eq.(2.5) represents the system of ten equations for the perturba-
tions hµν. However, there are only two independent solutions. The Lorentz
gauge imposes four constraints, but it does not uniquely define the gauge.
The freedom in the choice of coordinates adds four more constraints. For
studying gravitational waves effectively, we use the the transverse-traceless
(TT) gauge. In this gauge, the perturbation hµν satisfies the conditions:

h0µ = 0, ∂ihij = 0, hi
i = 0. (2.6)

These conditions demonstrate that hµν has only two independent compo-
nents, corresponding to the two polarization states of gravitational waves.

To find the complete solution of Eq.(2.5), we need to specify both the
metric and the initial conditions.

To examine the behavior of primordial gravitational waves through-
out the history of the Universe, we calculate their amplitude in a Universe
filled with matter and radiation. First, we derive the equation for ampli-
tudes following the derivation from Watanabe et al. (2006) [28]. All the
computations are done in natural units c = h̄ = kB = 1.

For convenience, we use the transverse-traceless (TT) gauge without
loss of generality. In this framework, gravitational waves have only two
independent polarizations, conventionally denoted as λ = +,×. These
polarizations correspond to orthonormal tensors ϵλ

ij, satisfying ϵλ
ijϵ

σ
ij =

2δλσ.. The amplitude is the linear combination:

hij(τ, x) = ∑
λ=+,×

∫ d3k
(2π)3 hλ(τ, k)eik·xϵλ

ij, (2.7)

where hλ(τ, k) is the Fourier component of perturbation with polarization
λ.

Another important ingredient for calculations, the stress-energy tensor,
is expressed as:

Tij = pgij + a2πij, (2.8)

where p is the pressure, and πij(τ, x) is anisotropic stress.
Isotropic stress pgij does not enter the equation of motion for tensor

perturbations and changes only the diagonal components of the metric,
affecting the expansion rate of the Universe. However, the traceless and
transverse anisotropic stress can be a source of gravitational waves. With
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8 Primordial gravitational waves

those considerations, we can write Eq. (2.5) as:

−1
2

h;ν
ij;ν = 8πGπij, (2.9)

where zero-order terms were subtracted.
The explicit equation for each independent mode hλ(τ, k) ≡ hλ,k is

h′′λ,k +

(
2a′

a

)
h′λ,k + k2hλ,k = 16πGa2πλ,k. (2.10)

where πλ,k is the Fourier component of anisotropic stress tensor.

2.3 Transfer function

In this section, we explore solutions to Eq. (2.10). For superhorizon fluctu-
ations (where k ≪ Ha), the right-hand side is negligibly smaller than the
left-hand side, meaning that large waves do not feel processes on scales
smaller than the Hubble radius. This simplifies the equation to:

h′′λ,k

h′λ,k
≈ −2

a′

a
. (2.11)

The solution is

hλ,k(τ) = A1 + A2

∫ τ dτ′

a2(τ′)
, (2.12)

where A1 and A2 can be found from the initial conditions. The first term
is of interest, while the last decreases as a(τ). With the expansion of the
Universe, aH becomes smaller, and more modes re-enter the horizon. The
solution can be extended to a general case, including evolution inside the
horizon:

hλ,k(τ) ≡ hprim
λ,k T (τ, k), (2.13)

where hprim
λ,k is the primordial gravitational wave mode when left the hori-

zon during inflation. Here, we introduced the transfer function, T (τ, k),
satisfying T(τ, k) → 1 as τ → 0.

In the presence of neutrino free-streaming (see Section 3.2), the equa-
tion for the transfer function has the following form:

T ′′(u)+ 2
a′(u)

a
T ′(u)+T (u) = −24 fν(u)

(
a′(u)

a

)2 ∫ u

udec

j2(u − s)
(u − s)2 T

′(s)ds,

(2.14)

8
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2.3 Transfer function 9

Figure 2.1: Examples of transfer functions T (τ, k) for modes crossing the horizon
during RD and MD (indigo, green, and blue lines correspond to short, medium,
and long wavelength modes), including neutrino free-streaming. Vertical dashed
lines indicate entering the horizon. Short wavelengths experience more damping
by the expansion of the Universe.

where u = kτ, fν(u) is the neutrino fraction in the total energy density,
and j2(u) is the Bessel function (see Appendix A). Here and onwards ′

denotes the derivative with respect to u. The derivation of this equation
is provided in Appendix B, while analytical solutions with no anisotropic
stress are presented in Appendix C.

The solutions of Eq. (2.14) are Bessel functions. Figure 2.1 shows trans-
fer functions for modes crossing the horizon during matter domination
(MD) and radiation domination (RD), while Figure 2.2 compares the nu-
merical solution of T (kτ) accounting for neutrino free-streaming with the
analytical solutions from Appendix C. Figure 2.3 demonstrates the damp-
ing effect on the derivatives of the transfer function T ′(kτ) for modes en-
tering the horizon shortly before neutrino decoupling.

Version of June 26, 2024 – Created June 27, 2024 - 16:33
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10 Primordial gravitational waves

Figure 2.2: Examples of transfer functions T (τ, k) for modes crossing the horizon
during RD (kτ0 = 1500) and MD (kτ0 = 50), where τ0 is the present conformal
time. Analytical solutions (solid lines) for RD and MD are provided for com-
parison. Numerical solutions (dashed and dotted lines) include neutrino free-
streaming, causing noticeable damping for short-wavelength mode, which en-
tered the horizon after neutrino decoupling.

10
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2.3 Transfer function 11

Figure 2.3: Examples of derivatives of transfer functions T ′(kτ) for modes cross-
ing the horizon shortly before the neutrino decoupling. Dotted, dashed, and
dash-dotted lines correspond to k = 1/τν,dec, k = 2/τν,dec, and k = 4/τν,dec,
where τν,dec is the conformal time of neutrino decoupling. Analytical solution
without neutrino free-streaming is represented by the solid black line. Vertical
lines correspond to the moments of neutrino decoupling for each wavelength.
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Chapter 3
Radiation domination

Shortly after inflation, the Universe contains a hot plasma of elementary
particles shown in Figure 3.1. During this RD, the energy density follows
the law ρ ∝ a−4. However, this equation works only for a constant ef-
fective number of relativistic degrees of freedom. As the Universe cools
down, some particles become non-relativistic. These changes affect the
effective number of relativistic degrees of freedom, denoted as g⋆, which
influences the radiation energy density ρR.

3.1 Effective number of relativistic degrees of free-
dom

To calculate the proper expression for ρR(a), we start with entropy con-
servation, which connects equilibrium temperature T and scale factor a
[29]:

s(T)a3(T) = const, s(T) =
2π2

45
g⋆,s(T)T3, (3.1)

T ∝ a−1g−1/3
⋆,s , (3.2)

where s(T) is the entropy per unit comoving volume:

s(T) =
p + ρ

T
, p(T) = ωρ(T), (3.3)

and g⋆,s is the effective number of relativistic degrees of freedom contributing to
entropy. Here, p(T) denotes pressure, and ω is the equation of state.

To calculate g⋆ and g⋆,s, we make simplifying assumptions. First, we
assume that particles are in thermal equilibrium, implying that the inter-
action rate significantly exceeds the Hubble parameter. Second, we treat

Version of June 26, 2024 – Created June 27, 2024 - 16:33

13



14 Radiation domination

Figure 3.1: Standard Model particles with their characteristics. Credit: Wikipedia.

the system as an ideal gas, meaning that particle interactions through fun-
damental forces are negligible.

For species with mass mi, the numbers of relativistic degrees of free-
dom are given by [29]:

g∗,i(T) = gi
15
π4

∫ ∞

xi

(u2 − x2
i )

1/2

eu ± 1
u2du, (3.4)

g∗s,i(T) = gi
15
π4

∫ ∞

xi

(u2 − x2
i )

1/2

eu ± 1

(
u2 −

x2
i

4

)
du, (3.5)

where xi = mi/T, gi is the number of possible spin projections, and ” + ”
and ” − ” refer to bosons and fermions correspondingly. Here, we as-
sumed that there is no particle-antiparticle asymmetry, i.e. chemical po-
tential µi is zero. The integration goes over u = E/T, where E =

√
p2 + m2

is particle energy. Values of gi for SM particles are listed in Table 3.1.

14

Version of June 26, 2024 – Created June 27, 2024 - 16:33



3.1 Effective number of relativistic degrees of freedom 15

Table 3.1: The Standard Model particles and their numbers of helicity states.
Credit: L. Husdal, 2016 [30].

Particle Flavor Antiparticle Color Spin gi
Quarks (u, d,c, s, t, b) 6 2 3 2 72

Charged leptons (e, µ, τ) 3 2 1 2 12
Pions (π±, π0) 1 2,1 1 1 3

Neutrinos (νe, νµ, ντ) 3 2 1 1 6
Gluons (g) 1 1 8 2 16
Photon (γ) 1 1 1 2 2

Massive bosons (W±, Z0) 2 2, 1 1 3 9
Higgs bosons (h) 1 1 1 1 1

All elementary particles 17 118

The total values of g⋆ and g⋆,s are

g∗(T) = ∑
i

g∗,i(T)
(

Ti

T

)4

, g∗s(T) = ∑
i

g∗s,i(T)
(

Ti

T

)3

, (3.6)

where the sum goes over all the relativistic species i, each of which has its
own temperature Ti that may differ from that of photons T.

These results are valid only when there are no interactions between
different particle species. If such interactions occur, we need to consider
these processes and perform particle simulations to compute g⋆ and g⋆,s.
For simplicity, we will neglect these tiny corrections. However, examples
of such calculations are given in [31, 32].

Once we have the correct temperature dependence T(a), we can use it
in the expression for entropy density s(T):

ρ(T) =
π2

30
g⋆(T)T4, ρ(T) ∝ g⋆g−4/3

⋆,s a−4. (3.7)

This result demonstrates how the change in the composition of rela-
tivistic plasma changes the radiation energy density. As a result, the scale
factor a is also influenced by the solution of the Friedman equation:

a′(τ) = H0

√√√√( g⋆
g⋆,0

)(
g⋆,s

g⋆,s0

)− 4
3

Ωr + Ωma, (3.8)

where Ωm and Ωr are normalized matter and radiation densities, and we
have used a0 = 1. Figure 3.2 shows the evolution of the Hubble parameter
for constant and changing g⋆.
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16 Radiation domination

Figure 3.2: Comparison of Hubble parameter evolution with constant g⋆ (ma-
genta line) and varying g⋆ (indigo line).

3.2 Neutrino decoupling

As the Universe cools and expands, particles must travel larger distances
to interact. When the interaction rate, determined by the number density
n and interaction cross section σ, becomes smaller than the expansion rate
of the Universe H, interactions stop. This process is called decoupling.

For neutrinos, decoupling happened around T ∼ 1 MeV, when the rate
of weak interactions Γν between neutrinos and electrons fell below the
Hubble parameter:

Γν = ne⟨σv⟩ ≈ T3(GFT)2 ≈ G2
FT5, (3.9)

where ne is the number density of electrons, σ and v are cross section and
velocity for weak interactions, and GF ≈ 1.166 · 10−5 GeV−2 is the Fermi
constant [30].

On the other hand, the Hubble parameter is

H =

√
8πG

3
ρR ≈

√
8πG

3
g⋆(T)

π2

30
T4 ≈

√
GT4, (3.10)

16
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3.2 Neutrino decoupling 17

where G = M−2
Pl = 6.9 · 10−39 GeV−2 is the Newton’s constant.

The temperature of decoupling is

Tdec ≈
(√

G
G2

F

) 1
3

≈ 1 MeV. (3.11)

After neutrino decoupling, another crucial event happened – electron-
positron annihilation. Before decoupling, neutrinos and photons had the
same temperature. However, new photons were created during annihila-
tion, resulting in the increase in photon temperature Tγ,dec. The neutrino
temperature Tν can be computed as the function of the photon tempera-
ture Tγ:

Tν(Tγ) =

(
g⋆,s(Tγ)

g⋆,s(Tdec)

) 1
3

Tγ, (3.12)

where we used the entropy conservation (3.1). Here, g⋆,s(Tdec) is the effec-
tive number of relativistic degrees of freedom just before decoupling. This
equation demonstrates that decoupling is not instantaneous, the numera-
tor steadily varies with time. Using degeneracies from Table 3.1, we can
compute Tν when decoupling is finished:

Tν =

(
4

11

)1/3

Tγ ≈ 0.71Tγ. (3.13)

Figure 3.3 shows the evolution of effective degrees of freedom for en-
tropy g⋆,s and energy g⋆, accounting for all the processes mentioned be-
fore.
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18 Radiation domination

Figure 3.3: Evolution of the effective number of relativistic degrees of freedom
for energy density g⋆(T) (blue) and entropy g⋆,s(T) (indigo) as functions of equi-
librium temperature T.

18
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Chapter 4
Energy density spectrum

The important characteristic of GWs is the energy they carry. This energy
can be calculated using the effective stress-energy tensor Tµν, for the grav-
itational field. For a GW with perturbation hµν, the energy density in the
TT gauge is given by [17]:

ρGW =
1

32πGa2(τ)
⟨h′ijh′ij⟩, (4.1)

where the angle brackets represent averaging over multiple wavelengths.
This expression shows that the energy density T00 is proportional to the
square of the time derivative of the perturbation h′ij, reflecting the wave-
like nature of gravitational waves.

The power spectrum of primordial gravitational waves ∆2
GW(τ, k) is

defined as:
⟨hij(τ, x)hij(τ, x)⟩ =

∫ dk
k

∆2
GW(τ, k), (4.2)

Performing an inverse Fourier transform gives:

∆2
GW(τ, k) =

2k3

2π2 ∑
λ

⟨|hλ,k(τ)|2⟩. (4.3)

In this form, it becomes clear that the power spectrum depends only on
the transfer function T (τ, k), while other quantities relate to inflationary
models:

∆2
GW,prim =

2k3

2π2 ∑
λ

⟨|hprim
λ,k |2⟩ = 2

π2

(
Hinf

Mpl

)2

, (4.4)

where Hinf is the Hubble parameter at the end of inflation (∼ 1014 GeV),
and Mpl = 1.2 · 1019 GeV is the Planck mass.
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20 Energy density spectrum

Generally, the value of ∆2
GW,prim is analytically calculated for chosen

inflationary models. However, it can alternatively be computed using the
slow-roll approximation [33]:

r =
∆2

GW,prim

∆2
S,prim

, (4.5)

where r is tensor-to-scalar ratio, and ∆2
S,prim is the spectra of primordial

scalar perturbations. Both parameters are constrained by combined CMB
observations, galaxy clustering data, the latest supernovae measurements,
and Lyman-alpha forest data.

The relative spectral energy density ΩGW(τ, k) is defined as:

ΩGW(τ, k) ≡ ρ̃GW(τ, k)
ρcr(τ)

=
∆2

GW,prim

12a2(τ)H2(τ)
|T ′(τ, k)|2, (4.6)

where ρ̃GW = dρGW
d ln k is the energy density of gravitational waves. The com-

plete derivation of this equation is given in Appendix D.
Since GWs are massless fields, their energy density depends on the

scale factor similarly to radiation ρ̃GW(τ, k) ∝ a−4 for modes under the
horizon Ha ≪ k. Consequently, modes entering the horizon during the
radiation epoch experience no suppression ΩGW(τ, k) = const, and start
to decay with the matter domination as ΩGW(τ, k) ∝ a−1. Hence, modes
entering the horizon at matter domination have smaller suppression.

The expressions for the relative spectral energy density, derived in Ap-
pendix C, are

ΩGW(τ < τeq, k > keq) =
a2∆2

GW,prim

12H2
eqa4

eq
k2[j1(kτ)]2, (4.7)

ΩGW(τ > τeq, k > keq) =
a∆2

GW,prim

12H2
0 a3

0
k2 τ2

eq

τ2 [A(k)j2(kτ) + B(k)y2(kτ)]2,

(4.8)

ΩGW(τ > τeq, k < keq) =
a∆2

GW,prim

12H2
0 a3

0
k2
[

3j2(kτ)

kτ

]2

, (4.9)

where aeq and Heq are scale factor and Hubble parameter at the matter-
radiation equality τeq ∼ 1015 s, while keq ∼ 10−15 Hz is the wavenumber of
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the mode entering the horizon at that moment. H0 and a0 denote present
time values. Functions j1(x), y1(x), and j2(x) are spherical Bessel function,
whose expressions are given in Appendix A.

Eq.(4.7) corresponds to energy density at RD epoch, while Eq.(4.8) and
Eq.(4.9) describe ΩGW during the MD epoch for modes that entered hori-
zon before and after matter-radiation equality, respectively. For large val-
ues of the combination kτ, coefficients A(k) and B(k) in Eq.(4.8) behave as
k−1, explaining the flattening in the spectrum. Conversely, for modes that
entered the horizon at matter domination ΩGW(τ, k) ∝ k−2, resulting in a
peak at small k.

To extract information about events preceding BBN, we need to exam-
ine the high-frequency part of the spectra. Up to this point, we assumed
that ρ ∝ a−4 at RD epoch. However, this relation does not always hold.
In the previous chapter, we mentioned that ρcr = ρr ∝ g⋆g−4/3

⋆,s a−4 for
RD, while the energy density of GWs stays ρGW ∝ a−4 inside the hori-
zon (Ha ≪ k). Consequently, for modes entering the horizon during the
radiation domination, the relative contribution to energy density is

ΩGW(τ0, k > keq) = ΩGW(τhc, k)Ωr0

(
g∗s(Thc)

g∗s0

)−4/3(g∗(Thc)

g∗0

)
, (4.10)

where Thc and τhc < τeq are the equilibrium temperature and conformal
time during horizon crossing.

Eq.(4.10), demonstrates that the sooner the mode enters the horizon,
the more significant it is suppressed due to the monotonic decrease of g⋆
and g⋆,s. Interestingly, these two quantities have the same values up to
temperatures around T ∼ 0.1 MeV, where neutrinos decouple. Then the
decrease ceases, and the behavior of ΩGW(τ0, k > keq) is described by
Eq.(4.8).

Figure 4.1 shows ΩGW(τ0, k) across frequencies from soon post-inflation
horizon entry to present, for both constant and varying g⋆. Figure 4.2
zooms in on frequencies corresponding to significant events during RD.

The relation between the temperature at the moment of horizon cross-
ing Thc and the present frequency of the gravitational wave f0 can be de-
rived using the definition of wavelength at horizon crossing khc = Hhcahc,
entropy conservation (3.1), and the Friedman equation expressed in terms
of temperature (3.10). The result is [28, 34]:

f0 = 1.65 × 10−7
(

Thc

1 GeV

)(
g∗s(Thc)

100

)−1/3 (g∗(Thc)

100

)1/2

Hz, (4.11)
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22 Energy density spectrum

Figure 4.1: Spectrum of primordial gravitational waves at τ = τ0 as the function
of comoving wavelength k (frequency kc in Hz). The blue line corresponds to a
constant effective number of relativistic degrees of freedom g⋆, while the indigo
line accounts for changes in g⋆ and neutrino decoupling.

22
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Figure 4.2: Zoomed-in part of PGW spectrumfrom Figure 4.1, highlighting key
transitions during radiation domination. Dashed vertical lines mark QGP phase
transition (180 MeV), neutrino decoupling 2 MeV, and e+e− annihilation (0.5
MeV).

Version of June 26, 2024 – Created June 27, 2024 - 16:33

23





Chapter 5
Non-standard thermal histories

According to the cosmological standard model, the Universe was radiation-
dominated after inflation. While cooling, it switched to matter dominance.
However, this is not the only scenario consistent with observations. Cur-
rently, there are no observational probes of the Universe prior to BBN,
meaning that radiation domination at earlier times is not confirmed [35].
It leaves a possibility that the Universe experienced an additional phase of
early matter domination before the conventional RD. For example, mas-
sive metastable particles dominating the energy density of the Universe
immediately after inflation could lead to scenarios involving early radia-
tion and matter domination epochs. Another alternative is a slow reheat-
ing phase. There are multiple scenarios for the evolution of the Universe
between inflation and BBN, the elaborate review was done by Allahverdi
et al. (2020) [36]. In this thesis, we will focus on the dynamics with addi-
tional massive decaying particles (e.g., inflaton).

Non-standard thermal histories have a significant impact on the am-
plitude and polarization of primordial gravitational waves [37]. Conse-
quently, the constraints on the observed parameters of the primordial grav-
itational wave power spectrum are explicitly related to the parameters
governing the evolution of the Universe prior to BBN.

5.1 Inflation and reheating

In the conventional inflationary scenario, most elementary particles were
created during the reheating phase [38]. During inflation, the slowly chang-
ing inflaton field constitutes all the energy in the Universe. In this section,
we consider the simplest case with the only minimally coupled inflaton
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26 Non-standard thermal histories

field φ, described by the Lagrangian:

L = −1
2

∂µ φ∂µ φ − V(φ), (5.1)

where V(φ) is the potential energy of inflaton field φ.
The stress-energy tensor of the inflaton field is

Tµν = −2
∂L

∂gµν + gµνL = ∂µ φ∂ν φ + gµν

(
−1

2
gαβ∂α φ∂β φ − V(φ)

)
. (5.2)

this expression tells us that φ behaves as a perfect fluid with the energy
density and pressure:

ρφ =
φ̇2

2
+ V(φ), pφ =

φ̇2

2
− V(φ), (5.3)

where ˙ denotes the derivative with respect to the time t. The equation of
state is then

ωφ =
φ̇2 − 2V(φ)

φ̇2 + 2V(φ)
=

n − 1
n + 1

, (5.4)

where we chose the effective potential in the form V(φ) ∝ |φ|2n. In gen-
eral, this parameter can take any value from −1 ≤ ωφ ≤ 1. For n = 1,
the field behaves as matter, while for n = 2 it behaves as radiation. How-
ever, not all values lead to accelerated expansion. The acceleration of the
Universe is defined by the second Friedmann equation:

ä
a
= −4πG

3
(ρ + 3p). (5.5)

To have accelerated expansion of the Universe, the inflaton field must sat-
isfy the following equality:

ρφ + 3pφ = 2
(

φ̇2 − V(φ)
)
< 0, V(φ) > φ̇2. (5.6)

To get exponential expansion, the energy density of φ must be dominated
by potential energy:

φ̇2 ≪ V(φ). (5.7)

The most straightforward realization of this condition is the inflaton field
slowly moving to the minimum of V(φ). Figure 5.1 contains the example
of the slow-roll potential.

The Euler-Lagrange equation for φ(t) is the Klein-Gordon equation,
which in the FLRW has the following form

26
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5.1 Inflation and reheating 27

Figure 5.1: Example of slow-roll inflation potential. Credit: Guzzetti et al., 2016
[27].

φ̈ + 3H φ̇ + V′
φ(φ) = 0, (5.8)

where we took into account that the inflaton field is homogeneous during
the inflation.

Initially, φ is large (φ > Mpl), and the dynamic of the inflaton field is
governed by the ”friction” term 3H φ̇. The Hubble parameter, given by

H2 =
8πG

3

(
φ̇2

2
+ V(φ)

)
(5.9)

is dominated by the nearly constant inflaton potential energy V(φ) during
inflation, resulting in quasi-exponential expansion of the Universe.

The slow-roll conditions can be expressed in the compact form:

ϵ ≡
M2

pl

2

(
V′

φ

V

)2

≪ 1, (5.10)

η ≡ M2
pl

V′′
φφ

V
≪ 1, (5.11)

where ϵ and η are slow-roll parameters [39].
Inflation ends when the inflaton field rapidly rolls toward the mini-

mum of the effective potential, leading to oscillations near it. This tran-
sition from the inflation phase to the hot Big Bang is known as reheating
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[40]. During reheating, the inflaton field produces elementary particles,
which interact and establish thermal equilibrium. As the oscillations of
the inflaton field decrease in amplitude, the energy of φ is transferred to
these new relativistic particles. Reheating ends when this energy transfer
is complete, defining the equilibrium temperature at that moment Treh –
reheating temperature.

The equation of motion for φ with the quadratic potential V(φ) =
1
2 m2

φ φ2, during reheating is the Klein-Gordon equation:

φ̈ + (3H(t) + Γφ)φ̇ + m2
φ φ = 0, (5.12)

where mφ is the inflaton mass, and Γφ is its the decay rate. This equation
can be used only for rapid oscillations of φ.

The solution of the equation (5.12) can be written as

φ(t) = Φ(t)e−imφt, (5.13)

where Φ(t) is the amplitude of inflaton field, and e−imt is the oscillatory
part. Then energy density ρφ and number density nφ of φ are

ρφ =
1
2

m2
φΦ2, nφ =

1
2

mφΦ2. (5.14)

The equation of motion (5.12) can be expressed in terms of amplitude Φ(t):

1
a3

d
dt
(a3Φ2) = −ΓφΦ2, (5.15)

which has a straightforward interpretation in terms of energy density:

d
dt
(a3ρφ) = −Γa3ρφ. (5.16)

This indicates that the total comoving energy density decays exponentially
with Γφ.

The end of reheating occurs, when the rate Γφ becomes smaller than
the expansion rate H:

H ∼ Γφ =⇒ ρ(treh) ≈
3Γ2M2

pl

8π
. (5.17)

The energy density of early RD Universe is

ρ(treh) ≈
3Γ2

φM2
pl

8π
≈ π2g⋆

30
T4

reh, (5.18)
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5.2 Early matter domination 29

which is valid under the assumption of the instantaneous equilibrium af-
ter the reheating. At this time, all particles from Table 3.1 are relativistic,
which implies g⋆ ∼ 102 − 103. The simple estimate for the resulting re-
heating temperature is [40]

Treh ≈ 0.2
√

ΓφMpl, (5.19)

which shows that Treh depends only on the particle model of φ.

5.2 Early matter domination

When inflatons are heavy, they become non-relativistic before their decay.
This results in early radiation and matter domination epochs before φ de-
cays into SM particles.

The dynamics of two dominant components, radiation R and inflaton
field φ, is described by the two coupled Boltzmann equations [35, 41]:

dρφ

dt
+ 3Hρφ = −Γφρφ, (5.20)

dρR

dt
+ 4HρR = Γφρφ, (5.21)

where ρR is the energy density of relativistic particles defined in Eq.(3.7),
and T is the temperature of the Universe. The Hubble parameter is defined
by the Friedman equation:

H2 =
8πG

3

(
ρϕ + ρR + ρm + ρΛ

)
, (5.22)

where ρR was defined in Eq.(3.7), and ρm and ρΛ are energy densities of
matter and the cosmological constant, which comprise a tiny fraction of
the energy budget of the Universe.

To complete the system, we should add the equation of the evolution
of the energy density of matter:

dρm

dt
+ 3Hρm = 0, (5.23)

which becomes relevant at later times.
The decay width Γφ can be expressed in terms of reheating temperature

Treh using Eq.(5.17):

Γφ =

√
4π3g⋆(Treh)

45
T2

reh
Mpl

. (5.24)
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The value of Treh is constrained by BBN, requiring precise parameters. One
of those parameters is the contribution to the effective number of relativis-
tic degrees of freedom from neutrinos Ne f f = 3.046, which largely impacts
the evolution of the scale factor a. Moreover, electron neutrinos alter the
neutron-proton balance. As a result, the Treh must be greater than BBN
temperature to have time for neutrino thermalization: Treh ≳ TBBN [42–
45]. In our analysis, we will consider different values of Treh and study
their impact on the PGW spectrum.

Conservation of total comoving energy allows calculation of tempera-
ture evolution. The energy transfer Γφρφ from φ to radiation adds a term
to the differential equation relating temperature T and scale factor a:

dT
da

=

[
1 +

T
3g⋆,s

dg⋆,s

dT

]−1[
− T

a
+

Γφρφ

3H(a)sR(T)a

]
. (5.25)

The details of the derivation of this equation are in Appendix E.
Solving the system of Eq.(5.20) combined with Eq.(5.25) provides the

temperature evolution T(a) during reheating. The expansion rate is then
calculated from Eq.(5.22).

In a simple case with no change in the number of relativistic degrees
of freedom, energy conservation equations can be solved analytically. The
radiation energy density during inflaton φ domination is [35]:

ρR ∝


a−4 for a ≪ astart,
a−

3
2 for astart ≪ a ≪ areh,

a−4 for areh ≪ a,
(5.26)

where astart and areh are the scale factors at the start of early matter domi-
nation and reheating.

The evolution of temperature is computed from Eq. (3.7):

T(a) ∝


a−1 for a ≪ astart,
a−

3
8 for astart ≪ a ≪ areh,

a−1 for areh ≪ a.
(5.27)

Figure 6.5 demonstrated temperature evolution for realistic model in-
flaton of mass mφ = 2 GeV and decay width Treh = 40 MeV.

30
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Chapter 6
Results

In this section, we numerically solve the equation for transfer function
T (u) in the presence of anisotropic stress (2.14):

T ′′(u)+ 2
a′(u)

a
T ′(u)+T (u) = −24 fν(u)

(
a′(u)

a

)2 ∫ u

udec

j2(u − s)
(u − s)2 T

′(s)ds.

We explain the method used for solving the equation and present analytic
results for different thermal histories of the Universe.

6.1 Numerical solution

To solve Eq.(2.14), we need to know the evolution of scale factor a(τ) and
its derivative a′(τ) obtained by solving the Friedman equation with the
proper energy composition of the Universe. The neutrino fraction in the
total energy density fν(u) depends on u through the scale factor as shown
in Eq.(B.25). Thus, all the necessary ingredients are determined by a(τ).

To compute the transfer function with neutrino damping, we must
solve the integro-defferential equation, which is a complicated task be-
cause the integration must be done over the whole history of the grav-
itational wave. In addition, the integrand in the right-hand side of the
Eq. (2.14) depends on the upper limit of integration, meaning that the in-
tegral can not be precomputed, and one must solve the equation for each
value of u = kτ and k [46].

To deal with those problems we used an iterative approach: solve the
equation without an integral to obtain T (0)(u), then treat the integral solu-
tions as corrections. Each nth order correction to T (n)(u) is the solution of
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the Eq. (2.14) with previous correction T (n−1)(u) in the integral and zero
initial conditions:

T (u) = T (0) +
N

∑
n=1

T (n) (6.1)

T (0)(0) = 1,
dT (0)

dτ
(0) = 0, (6.2)

T (n)(0) = 0,
dT (n)

dτ
(0) = 0, n = 1, 2, .., N. (6.3)

Here, N denotes the number of performed iterations. This method allows
us to precompute the integral and then solve an ordinary differential equa-
tion. However, its complexity is O(N2) for each mode k. The cycle stops
when The correction reaches the required precision. For our purposes, the
precision of percent is sufficient, which results in N ∼ 5 − 10.

In the previous chapter, we demonstrated that solutions of Eq.(2.14)
are Bessel functions with oscillatory behavior and rapidly decreasing am-
plitude, making integration for large u computationally expensive. For
high-frequency modes entering the horizon during radiation domination,
we integrated up to some large u and matched the result with the WKB
approximation [28, 47]:

T (u) = A(u) sin (u + δ), A(u) =
C

a(u)
, C = const. (6.4)

In our calculations, we solved the equation up to uend = 200, corre-
sponding to ∼ 50 oscillations.Since we are only interested in the ampli-
tude A(u), the process can be simplified. To obtain the amplitude, we
compute T (u) and its derivative at the end of the integration, then extract
the amplitude and rescale it using a(τ):

A(u) =
√
T 2(uend) + T ′2(uend)

aend

a(u)
. (6.5)

Having T ′(u), we insert it into Eq. (4.6) to calculate ΩGW(τ, k). The
normalization ∆2

GW,prim is defined based on the chosen inflation model.
For convenience, we use a slow-roll inflationary model, where primordial
power spectrum ∆2

GW,prim is given by Eq.(D.16).
We used the same calculation parameters as in [28] for comparison.

The parameter values are shown in Table 6.1.
First, we checked our numerical routine by comparing our results with

those of Watanabe&Komatsu (2006) [28]. The comparison of present-day

32
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6.2 Results for early matter domination 33

Table 6.1: Parameters we used for calculations.

h 0.7
Ωrh2 4.15 × 10−5

Ωmh2 1 − 4.15 × 10−5

Hinf 2.41 × 1013 GeV
T0 2.34 × 10−4 eV

Tν,dec 2 MeV

power spectra ΩGW(τ0, k) for the full frequency kc range is shown in Fig-
ure 6.1, while the closer look is given in Figure 6.2. The relatively small
differences can be attributed to the details of the implementation of phase
transitions and neutrino decoupling. Cavities and peaks in [28] originate
from discontinuities in anisotropic stress πij [37] under the assumption of
instantaneous neutrino decoupling [47].

We then examined the PGW spectrum for a model incorporating addi-
tional particle content. Since changes in g⋆ slightly affect the spectrum,
we needed a model with the maximum number of additional degrees
of freedom. The supersymmetric extension of the SM, which is known
as [2], doubles the effective number of relativistic degrees of freedom at
high energies. In this model, each particle is paired with a superpartner
based on its spin (bosons have fermionic superpartners, while fermions
have bosonic superpartners). Using current constraints on superparticle
masses [2], we set their freeze-out temperature at approximately 10 TeV.
Figure 6.3 shows, that this transition results in the slight (∼ 20%) damp-
ing at k corresponding to supersymmetry breaking.

Nevertheless, varying g⋆ does not create a significant suppression of
the spectrum. To get a notable effect, we shall look at EMD scenarios.

6.2 Results for early matter domination

In the early matter domination model described in Section 5.2, we have
three parameters: the scalar field φ mass mφ, its decay width Γφ, and its
relative contribution to the energy budget of the Universe ρφ/ρR.

To calculate the scale factor, we solved the coupled Boltzmann equa-
tions (5.20) and (5.21), using variables that change slowly with the scale
factor a: R = ρRa4 and Φ = ρφa4. Additionally, we used a logarithmic
scale for better efficiency. Initial conditions were set to match the observed
present radiation energy density ρR = π2g⋆(TCMB)T4

CMB/30. Initially, we
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Figure 6.1: Spectrum of primordial gravitational waves at τ = τ0 as the function
of comoving wavelength k (frequency kc in Hz). The solid line represents our
numerical solution, while dots are the results of Watanabe&Komatsu (2006) [28].

assumed that after reheating, the radiation energy density primarily orig-
inated from the φ field energy: R(areh) = Φ(aEMD)areh/aEMD, where areh
is the scale factor at the end of reheating and aEMD is the scale factor when
φ becomes non-relativistic. Here, we interchangeably use EMD and freeze-
out (the moment when φ becomes non-relativistic) defining it as when the
Universe’s equation of state deviates from radiation. We solved the Boltz-
mann equations, rescaled the results to match the observed present values
at a0 = 1, and then solved these equations again with proper initial con-
ditions. Figure 6.4 shows ρa4 for a scenario with specified mφ and Γφ.
Figure 6.5 represents temperature T as a function of scale factor a for the
same model.

With the evolution of all energy components as functions of a, we cal-
culated the scale factor time dependency a(τ) using the Friedmann equa-
tion (5.22). This allowed us to generate the PGW spectrum using the algo-

34
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Figure 6.2: Zoomed-in part of PGWspectrum from Figure 6.1, featuring key tran-
sitions during radiation domination. The solid line represents our numerical so-
lution, while dots are the results of Watanabe&Komatsu (2006) [28].

rithm from the previous section. The result is shown in Figure 6.6.
We first considered unstable massive particles φ constituted 1% of the

total energy budget of the Universe before becoming non-relativistic. This
assumption is based on g⋆: the total g⋆ ∼ 100 at T ≳ 102 MeV, with new
physics particles contributing approximately gφ ∼ 1 degree of freedom.

Figure 6.7 shows the PGWspectrum for particles with various masses
and reheating temperature Treh = 1 GeV. Figure 6.8 depicts the PGWspec-
trum for particles with a mass of mφ = 106 GeV and different decay
widths. We also varied the initial (right after inflation) R

Φ = ρR
ρφ

ratio while

keeping mφ = 102 GeV and Treh = 1 GeV constant. These results are
shown in Figure 6.9.

All plots exhibit a distinct step-like feature caused by the energy trans-
fer from the φ field to radiation. This property appears in all models with
massive unstable particles, regardless of whether they dominate the en-
ergy density of the Universe. The width and height of the step depend on
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Figure 6.3: Spectrum of primordial gravitational waves at τ = τ0 as the function
of comoving wavelength k (frequency kc in Hz). The solid blue line represents our
numerical solution for SM particle content, while the indigo line also accounts
for SUSY particles. The dashed vertical line marks the SUSY phase transition at
T ∼ 10 TeV.

mφ, Γφ, and ρR
ρφ

and can be expressed analytically.

To get the influence of the mass of the φ on the suppression, we fixed Γφ

and used the definition of ΩGW(τ, k) and energy density evolution laws.
As a result, we get:

ΩGW(τ, k) =
ρ̃GW(τ, k)

ρcr(τ)
∝

a−4

ρm(a)
∝

1 GeV
mφ

a−1 (6.6)

during matter domination. This means suppression is inversely propor-
tional to mφ. The heavier the φ component, the faster the expansion of the
Universe and the greater the damping effect. In addition, mφ unequivo-

36
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Figure 6.4: Evolution of the energy density ρa4 as a function of the scale factor
in a model with EMD induced by mφ = 2 GeV particle with decay width Treh =
40 MeV. Solid lines represent radiation (blue), φ (magenta), matter (green), and
the total energy density of the Universe (indigo). Dashed vertical lines indicate
transitions to EMD (magenta), reheating (blue), and MD (green).

cally determines the beginning of EMD, in terms of wavelength:

kEMD ∝ a−1/2
EMD ∝

(
TEMD

Tr

)1/2

∝
(

mφ

Tr

)1/2

, (6.7)

where Tr is some reference temperature from the early radiation domina-
tion. However, kEMD can be calculated using only the characteristics of φ,
as they are the only dimensional parameters in the model.

Figure 6.7 supports our conclusions.
Decay width Γφ controls the reheating temperature, as Treh ∝

√
ΓφMPl,

neglecting the change in γ⋆. Fixing the mass mφ and using the temperature
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Figure 6.5: Temperature evolution as a function of scale factor in a model with
EMD induced by mφ = 2 GeV particle with decay width Treh = 40 MeV. Dashed
vertical lines mark start of EMD aEMD and reheating aφ,dec. Dashed horizontal
lines represent the temperatures at neutrino Tν,dec = 2 MeV and the present CMB
temperature TCMB = 2.34 · 10−10 MeV.

evolution during RD and EMD (5.27), we find:

kreh =
τ0

τreh
k0 =

a0

areh
k0 =

Treh

T0
k0 = C(Treh)

√
ΓφMPl

T0
k0, (6.8)

kEMD =
τreh

τEMD
kreh =

(
areh

aEMD

)1/2

kreh =
T4/3

EMD

T1/3
reh T0

k0 =
C−1/3(Treh)m

4/3
φ

Γ1/6
φ M1/6

Pl T0
k0,

(6.9)
where T0 = TCMB and k0 = τ−1

0 are the present day values, and

C(Treh) =

(
45

4π3g⋆(Treh)

)1/4

.

Therefore, a larger decay width results in earlier reheating. Figure 6.8 illus-
trates this statement. Shifts in the beginning of the EMD can be attributed

38
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Figure 6.6: Spectrum of primordial gravitational waves at τ = τ0 as the function
of comoving wavelength k (frequency kc in Hz). The blue line corresponds to the
conventional radiation domination, while the red line describes the scenario with
EMD induced by mφ = 2 GeV particle with reheating temperature Treh = 40 MeV.
Dashed vertical lines mark the start of the EMD (red) and reheating (blue).

to changes in initial conditions due to rescaling to match the observed ra-
diation energy density.

The magnitude of suppression µ can be expressed as a function of both
mφ and Γφ:

µ =
ΩEMD

GW

Ωreh
GW

=
areh

aEMD
=

( m2
φ

ΓφMPl

)2/3

. (6.10)

Hence, the longer particles live (smaller decay width) and the higher their
masses, the greater suppression is.

In the calculation above, we assumed that particles φ constitute ∼ 1%
of the initial energy density as a realistic scenario. However, we var-
ied this parameter as well. Figure 6.9 shows results for different initial
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Figure 6.7: Spectra of primordial gravitational waves at τ = τ0 as functions of
comoving wavelength k (frequency kc in Hz). Different colors (green, magenta,
violet, orange, seagreen) represent scenarios with EMD induced by particles of
varying masses: 101 GeV, 102 GeV, 103 GeV, 104 GeV, and 106 GeV, all with a
reheating temperature Treh = 1 GeV.

R/Φ = Ωinit
r /Ωinit

φ ratios, where φ is always subdominant. A more pre-
cise expression for the beginning of EMD, which accounts for the energy
distribution between φ and radiation, is:

aprecise
EMD =

Ωinit
r

Ωinit
φ

afreeze-out , (6.11)

where afreeze-out is the scale factor at freeze-out. The smaller the energy
fraction of the φ field, the later it starts to dominate. For fixed mφ and Γφ,
the suppression is ∝ Ωinit

r /Ωinit
φ . Interestingly, this ratio impacts ΩGW(τ0, k)

as mφ, that generalizes as the influence on ρcr.
As a result, measuring the magnitude of the suppression and EMD du-

ration could facilitate inferring the mass and decay width of particles caus-

40
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Figure 6.8: Spectra of primordial gravitational waves at τ = τ0 as functions of
comoving wavelength k (frequency kc in Hz). Different colors (green, magenta,
violet, orange, seagreen) represent scenarios with EMD induced by particles of
varying reheating temperatures: 100 GeV, 102 GeV, 103 GeV, 104 GeV, and 105

GeV, all with a mass mφ = 106 GeV.

ing EMD, potentially excluding some new physics particles (e.g., heavy
neutral leptons) unreachable by current and proposed collider experiments.

Heavy neutral leptons

One attractive beyond Standard Model scenario is the minimal standard
electroweak gauge model with heavy neutral leptons (HNLs) [48, 49]. These
particles are the right-handed partners of SM neutrinos, characterized by
a Dirac mass matrix mN and a matrix of mixing angles between HNLs and
SM neutrinos Uα, where α = e, µ τ denotes the flavor of active neutrinos,
and N denotes the HNL.

The decay width can be expressed in terms of mixing angles and masses
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Figure 6.9: Spectra of primordial gravitational waves at τ = τ0 as functions of
comoving wavelength k (frequency kc in Hz). Different colors (green, magenta,
violet, orange, seagreen) represent scenarios with EMD induced by particles with
a mass mφ = 100 GeV, reheating temperature Treh = 1 GeV, and varying initial
radiation-to-φ ratios: Ωr = 2 · 100Ωφ, Ωr = 2 · 101Ωφ, Ωr = 2 · 102Ωφ, Ωr =
2 · 103Ωφ, and Ωr = 2 · 104Ωφ.

as [50]:

Γ ≈ U2 G2
Fm5

N
192π3 ∼ 10−21 MeV

mν

0.05 eV

[ mN

1 GeV

]4
. (6.12)

A crucial aspect of models with HNLs is the seesaw mechanism, where
an effective dimension-five operator produces neutrino masses [51]. The
following equations describe this mechanism:

U = mN M−1
M , mν = UMMUT, U2 ≈ mν

mN
, (6.13)

where MM is the Majorana mass matrix for HNLs, and mν is the SM neu-
trino mass. The increase in Majorana masses MM leads to the growth of

42
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SM neutrino masses and a decrease of HNL masses like they are on a see-
saw.

In this framework, the minimal value of mixing angles is called the
seesaw limit Useesaw:

Useesaw ∼

√
∆m2

atm.

mN
, (6.14)

where ∆m2
atm. = 50 meV2 is the mass scale of the active neutrinos. HNLs

with smaller mixing angles cannot generate neutrino masses, providing
strong constraints on the HNL parameter space.

PGW spectrum can validate or exclude HNL models. By deducing
Γα and mN from the spectrum damping characteristics, we can compute
Uα. If this value is smaller than the seesaw limit, the particle responsible
for the phenomenon is not an HNL. Conversely, if the step-like feature
predicted by an HNL model is absent in the PGW spectrum, the model
can be excluded. If the predicted damping is observed, it can be attributed
to this scenario, hinting at new physics.

Figures 6.4, 6.5, and 6.6 demonstrate energy density evolution, tem-
perature evolution, and PGW spectrum for a realistic model of a 2 GeV
HNL at the seesaw limit, with a reheating temperature of 40 MeV. In this
scenario, the damping is about ∼ 90%.
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Chapter 7
Conclusions

Primordial gravitational waves, predicted by any inflation model, are the
promising frontier in cosmology for probing the earliest stages of the Uni-
verse and physics at energies far beyond the capabilities of current collider
experiments. Detecting this nearly scale-invariant stochastic gravitational
wave background would validate the inflationary paradigm and provide
unique insights into the processes occurring before BBN. Recent advance-
ments in gravitational wave detection technology have made this topic
more relevant.

Due to their weak coupling with matter, primordial GWs propagate
through spacetime with minimal distortion, preserving precious informa-
tion about their origins. However, changes in the effective number of rela-
tivistic degrees of freedom and neutrino free-streaming leave imprints on
the PGW spectrum. For example, a damping effect neutrino anisotropic
stress causes 35% damping. By analyzing these features, we can infer de-
tails about the thermal history of the Universe and put constrain physics
beyond the Standard Model (e.g., properties of heavy neutral leptons).

In this thesis, we focused on non-standard thermal histories of the Uni-
verse, particularly scenarios with early matter domination induced by un-
stable long-lived massive particles φ. By examining the imprints of these
epochs left on the PGW spectrum, we aimed to distinguish between vari-
ous cosmological models. We accomplished this task by numerically solv-
ing the gravitational wave equation in the presence of anisotropic stress
and analyzing its solutions in the form of power spectrum ΩGW(τ0, k).

Our main results indicate that the spectrum of primordial gravitational
waves receives a step-like feature as a result of the EMD. This feature is
highly sensitive to the parameters of the EMD model: the mass mφ, decay
width Γφ, and the fraction in the energy density of the field φ. Changes in
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these parameters create distinct signatures in the PGW spectrum, which
allows us to put constraints on the properties of these particles φ.

The extent of the suppression of the spectrum of primordial gravita-
tional waves is inversely proportional to the mass of the field as m−4/3

φ and
directly proportional to the decay width as ∝ Γ2/3

φ . In addition, the damp-
ing is also inversely proportional to the initial fraction of energy density
of φ relative to that of the radiation Ωinit

φ /Ωinit
r . Heavier and more dom-

inant particles cause a faster expansion of the Universe, which increases
the damping effect. The shorter the lifetime of φ is, the less they affect the
power spectrum.

Moreover, we related model parameters to the scale factors a and fre-
quency kc at the key transitions – the beginning of the EMD and reheat-
ing. We provided the precise expressions corrected for the time required
to reach EMD from the freeze-out.

In addition, we considered a specific model of particles φ – heavy neu-
tral leptons. The analysis showed that there is a potential to constrain HNL
models by studying the properties of the PGW spectrum at high frequen-
cies. The presence or absence of specific features in the PGW spectrum
can validate or exclude certain HNL scenarios. This issue required further
investigation.

To conclude, primordial gravitational waves have a complex connec-
tion to the thermal history of the Universe. Exploration of the properties
of their power spectrum could provide unique information about the early
Universe and offer hints for New Physics.
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Appendix A
Bessel Functions

This appendix presents expressions for spherical Bessel functions and their
properties. Each Bessel function zn(x) satisfies following differential equa-
tions:

d
dx

[
zn(x)

xn

]
= −zn+1(x)

xn , (A.1)

d
dx

[
xn+1zn(x)

]
= xn+1zn−1(x). (A.2)

Bessel functions can be redefined in terms of basic trigonometric func-
tions:

j0(x) =
sin x

x
, (A.3)

j1(x) =
sin x

x2 − cos x
x

, (A.4)

j2(x) =
1
x

(
3
x2 − 1

)
sin x − 3

x2 cos x, (A.5)

y0(x) = −cos x
x

, (A.6)

y1(x) = −1
x

(
1
x

cos x + sin x
)

, (A.7)

y2(x) = −1
x

(
3
x2 − 1

)
cos x − 3

x
sin x, (A.8)
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h(1)1 (x) = −1
x

(
1 +

i
x

)
e−ix, (A.9)

h(2)1 (x) = −1
x

(
1 − i

x

)
e−ix. (A.10)

The connection between spherical Bessel jn(x) and Neumann yn(x)
functions is:

yn(x) = (−1)n+1 j−n−1(x). (A.11)

The approximations For large arguments x ≫ 1 are:

jn(x) ≈ sin(x − nπ/2)
x

, yn(x) ≈ −cos(x − nπ/2)
x

. (A.12)
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Appendix B
Neutrino free-streaming

In this appendix, we present the derivation of the equation for the transfer
function T (τ, k), which accounts for the anisotropic stress tensor πij due
to neutrino free-streaming. Our derivation follows the approach outlined
by Weinberg, 2004 [16] and Watanabe et al., 2006 [28].

We begin by introducing the desired quantity, the anisotropic stress
tensor πij. In a curved space, the amplitude and stress-energy tensor for
perturbations are given by

hij(τ, x) = ∑
λ=+,×

∫ d3k
(2π)3 hλ(τ, k)eik·xϵλ

ij(x), (B.1)

δTν
ij = a2 ∑

λ=+,×

∫ d3k
(2π)3 πλ,keik·xϵλ

ij(x), (B.2)

where ϵλ
ij(x) are tensor harmonics that depend on the spatial coordinate x.

These quantities satisfy the Helmholtz equation:

ϵ
λ |a
ij|a (x) + k2ϵλ

ij(x) = 0, ∂αϵλ
ij = iklϵ

λ
ij, (B.3)

and have the following properties:

ϵλ
ij(x) = ϵλ

ji(x), ϵ
λ |j
ij = a2 ḡijϵλ

ij = 0, (B.4)

where | denotes the covariant derivative with respect to the unperturbed
metric γij = a2 ḡij.
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52 Neutrino free-streaming

To calculate perturbations in the neutrino distribution function, we
must determine its exact form. For neutrinos after decoupling, the dis-
tribution function f (x, p, t) satisfies the Vlasov equation:

d f (x, p, t)
dt

=
∂ f
∂t

+
dxi

dt
∂ f
∂xi +

dpi

dt
∂ f
∂pi = 0, (B.5)

f0(p0) =
gν

ep0/T + 1
, f (x, p, t) = f0(x, p) + δ f (x, p, t), (B.6)

where f0(p0) is the equilibrium distribution function, while δ f (x, p, t) ac-
counts for perturbations. The real time is denoted by t, and gν represents
the number of possible spin projections for neutrinos. We neglect neutrino
masses and treat them as photons:

pα =
d
ds

xα, gαβ pα pβ = 0, p0 =
√

gij pi pj. (B.7)

The derivative ∂ f
∂xi is linear in perturbation (since ( f0 depends only on

pα), implying that dxi

dt must be unperturbed:

dxi

dt
=

dxi

ds
ds
dt

=
pi

p0 . (B.8)

The last term in the Vlasov equation is more complicated. Its first factor is
given by:

dpi

dt
=

dpi

ds
ds
dt

= −Γi
jk

pj pk

p0 =
pj pk

2p0

∂gjk

∂xi , (B.9)

where we have used the geodesic equation and the expression for Christof-
fel symbols:

Γi
jk =

gil

2

(
∂gjl

∂xk +
∂gkl

∂xj −
∂gjk

∂xl

)
, (B.10)

and g00 = −1, g0i = 0.
To understand the interaction between gravitational waves and neutri-

nos, we examine the energy component associated with neutrinos:

dp0

dt
1
p0 = −Γ0

jk
pj pk

(p0)2 = − a′

a
− a2 pj pk

2(p0)2

∂hjk

∂t
. (B.11)

The first term represents energy loss due to the expansion of the Universe.
The second term describes the interaction between gravitational waves
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and neutrinos. Depending on the sign of
∂hjk
∂t , neutrinos either give or re-

ceive energy from the wave. This effect manifests as damping or enhance-
ment. Particularly, for massive particles, the last term is proportional to
velocity squared v2, implying that massive neutrinos are less affected by
gravitational waves.

Now, we express the Vlasov equation in a simplified form. Using ap-
propriate transformations, we obtain:

∂ f
∂t

+
∂ f
∂xi

pi

p0 +
∂ f
∂pi

pj pk

2p0

∂gjk

∂xi = 0. (B.12)

In the linear order of perturbations, Eq.(B.12) becomes:

∂δ f (x, p, t)
∂t

+
∂δ f (x, p, t)

∂xi
p̂i

a(t)
= (B.13)

= − p
2a(t)

∂ f0(P)
∂P

p̂i p̂j p̂k
∂

∂xk

(
hij(x, t)− hij(x, tdec)

)
.

Here, we have used pi = a−2pi, p0 = a−1√pi pi = a−1p, pi = p̂i p, and
expanded the distribution function f0(x, p) into Taylor series:

f0(x, p) = f0(P)− 1
2

∂ f0(P)
∂P

hij(x, t)
pi pj

p
, (B.14)

where P = p · a.
When neutrinos decouple at t = tdec, their distribution function re-

mains unperturbed δ f = 0. We can find the solution to Eq.(B.13) using
Fourier transformation:

fk(p, u) = e−i p̂·k̂(u−udec) fk(p, udec)−
i
2

p
∂ f0(P)

∂P
( p̂ · k̂) p̂i p̂j (B.15)

×
∫ u

udec

dse−i p̂·k̂(s−u)(hij(s)− hij(udec)
)
.

The resulting distribution function is then given by:

fk(p, u) = e−i p̂·k̂(u−udec) fk(p, udec) +
p
2

∂ f0(P)
∂P

∫ u

udec

dse−i p̂·k̂(s−u)h′k(s),

(B.16)
where we introduce the dimensionless variable u = kτ.

Simultaneously, the stress-energy tensor can be expressed in terms of
the distribution function f (x, p, t):

Tν
ij =

1√−g

∫ d3k
k0

kik j fk(p, t), (B.17)
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where g represents the determinant of the metric tensor. The energy per-
turbation is then:

δTν
ij = a−4

∫ d3k
k0

(
k̄i k̄ jδ f + (k̄iδk j + k̄ jδki) f0

)
. (B.18)

Combining this equation with Eq.(B.16), and taking into account that
the last two terms vanish in the first-order expansion, we arrive at:

πλ,kϵλ
ij(x) =

1
2a4

∫ d3p
p2

∂ f0(P)
∂P

pi pj pk pl

∫ u

udec

dse−i p̂·k̂(s−u)h′k(s). (B.19)

We also use the following formula:∫
d3p p−2pi pj pk ple−i p̂·k̂uϵλ

kl =
1
4

∫
d3p p−4(1 − 2µ2 + µ4)e−iµuϵλ

ij, (B.20)

where we applied the properties of tensor ϵλ
kl and introduced µ = cos θ =

p̂ · k̂. Finally, the anisotropic stress is given by:

πk =
1

4a2

∫
d3pp(1 − 2µ2 + µ4) fk(p, u). (B.21)

By integrating in spherical coordinates by parts and using the identity:

1
16

∫ 1

−1
dµ(1 − 2µ2 + µ4)e−iµu =

j2(u)
u2 , (B.22)

we obtain the expression for the anisotropic part of the stress-energy ten-
sor:

πk = −4ρ̄ν(u)
∫ u

udec

ds
j2(u − s)
(u − s)2 h′k(s), (B.23)

where ρ̄ν(u) = a−4
∫

d3pp f0(p).
Given the expression for the anisotropic part of the stress-energy ten-

sor, we can derive the equation for tensor fluctuations:

h′′ij + 2
a′(u)

a
h′ij(u) + hij(u) = −24 fν

(
a′(u)

a

)2 ∫ u

udec

j2(u − s)
(u − s)2 h′ij(s)ds,

(B.24)
where the neutrino fraction in the total energy density fν(u) is defined as:

fν(u) =
ρ̄ν(u)
ρ̄(u)

=
fν(0)

1 + a(u)/aeq
. (B.25)
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Its initial value is [28]:

fν(0) =
Ων

Ων + Ωγ
= 0.40523. (B.26)

Introducing the transfer function T (u) as

hij(u) = hij(0)T (u), (B.27)

we can write the equation for T (u):

T ′′(u) + 2
a′(u)

a
T ′(u) + T (u) = −24 fν

(
a′(u)

a

)2 ∫ u

udec

j2(u − s)
(u − s)2 T

′(s)ds.

(B.28)
Before entering the horizon, perturbations do not evolve in time. Their
amplitude is the same as it was at the end of inflation [16, 28]. These prop-
erties define the initial conditions for Eq.(B.28):

T (0) = 1, T ′(0) = 0. (B.29)
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Appendix C
Transfer functions

This appendix provides solutions for the gravitational wave equation (2.14)
in the absence of anisotropic stress. Perturbation amplitudes during dif-
ferent cosmological phases are [52]:

hk(τ) =


√

16πG
2k

1
a

(
1 − i

kτ

)
e−ikτα(k) de Sitter inflation,

j0(kτ)hprim(k) radiation domination,
3j1(kτ)

kτ hprim(k) matter domination,

(C.1)

where α(k) is a function normalized by ⟨α(k)α∗(k′)⟩ = δ3(k − k′).
Amplitudes for modes outside the horizon kτ ≪ 1 are time-independent

and their dimensionless power spectrum is:

∆2
GW(k) ≡ 4k3 |hprim(k)|2

2π2 =
64πG
(2π)2 H2

inf

(
kτ

2π

)2(
1 +

1
k2τ2

)
≈ 2

π2

(
Hinf

MPl

)2

,

(C.2)
where we inserted the amplitude at the end of inflation hprim(k) from
Eq.(C.1). This quantity depends on the inflation potential V(φ) through
Hubble parameter:

∆2
GW(k) =

2
π2

(
Hinf

MPl

)2

=
5V(φ)

32π2M4
Pl

. (C.3)

In the exponential inflation scenario, ∆2
GW(k) is scale invariant.

The amplitude hλ,k(τ), within the formalism of transfer function, be-
haves as:

T (kτ) =


j0(kτ) τ < τeq, k > keq,
τeq
τ [A(k)j1(kτ) + B(k)y1(kτ)] τ > τeq, k > keq,

3j1(kτ)
kτ k < keq.

(C.4)
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where keq = τ−1
eq is the wavenumber corresponding to the moment of

matter-radiation equality.
The derivatives of the transfer function T are:

T ′(kτ) =


−kj1(kτ) τ < τeq, k > keq,
−k τeq

τ [A(k)j2(kτ) + B(k)y2(kτ)] τ > τeq, k > keq,

−3 j2(kτ)
τ k < keq.

(C.5)

Matching the solutions at matter-radiation equality τeq provides coef-
ficients A(k) and B(k):

A(k) =
3

2kτeq
−

cos 2kτeq

2kτeq
+

sin 2kτeq

(kτeq)2 , (C.6)

B(k) = −1 +
1

(kτeq)2 −
cos 2kτeq

(kτeq)2 −
sin 2kτeq

2kτeq
. (C.7)
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Appendix D
Relative spectral density

In this appendix, we derive the energy density of gravitational waves, fol-
lowing Misner, Thorne, and Wheeler [53].

We start by expanding the Ricci curvature tensor Rµν in perturbations
h:

Rµν = R̄µν + R(1)
µν + R(2)

µν + O(h3). (D.1)

n vacuum, with no sources of perturbations, Rµν = 0. Due to the non-
linearity of Einstein’s equations, the linear term disappears:

R(1)linear
µν = 0. (D.2)

This is the same as Eq. (2.14).
The remaining terms can be divided into high-frequency (large-scale)

and long-frequency (small-scale) modes. For the former, gravitational waves
are the source of curvature:

R̄µν + ⟨R(2)
µν ⟩ = 0. (D.3)

The small-scale part fluctuates due to propagation through matter:

R(1)nonlinear
µν + R(2)

µν − ⟨R(2)
µν ⟩ = 0. (D.4)

Einstein equations,

Gµν = Rµν −
1
2

Rgµν = 8πGT(GW)
µν , (D.5)

result into:

T(GW)
µν ≡ − 1

8πG

(
⟨R(2)

µν ⟩ −
1
2

gµν⟨R(2)⟩
)

. (D.6)
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The Ricci tensor in the linearized theory is [17]:

R(2)
µν =

1
2

ḡρσ ḡαβ

[
1
2

hρα|µhσβ|ν + hνα|ρ(hµβ|σ − hµσ|β)+ (D.7)

+ hρα(hσβ|νµ + hµν|βσ − hµσ|βν − hνσ|βµ)+

+

(
1
2

hρσ|α − hασ|ρ

)
(hµβ|ν + hνβ|µ − hµν|β)

]
,

where | denotes the covariant derivative with respect to the unperturbed
metric.

Averaging over several wavelengths and using integration by parts,
while accounting for the equation of motion □hµν = 0, Lorentz gauge
∂µhµν = 0, and tracelessness h = 0, we obtain:

⟨R(2)
µν ⟩ = −1

4
⟨hαβ|µhαβ

|ν ⟩. (D.8)

Then stress-energy tensor for gravitational waves is:

T(GW)
µν =

1
32πG

⟨hαβ|µhαβ

|ν ⟩ =
1

32πG
⟨hαβ,µhαβ

,ν ⟩+ O(h3). (D.9)

The energy density of gravitational waves in the TT gauge is:

ρGW(τ) ≡ T(GW)
00 =

1
32πGa2(τ)

⟨h′ijh′ij⟩. (D.10)

The independent modes of gravitational waves, which are convention-
ally denoted + and ×, moving in z direction, are:

hij =

h+ h× 0
h× −h+ 0
0 0 0

 . (D.11)

As a result,

ρGW(τ) =
1

16πGa2 ⟨h
′2
+ + h′2×⟩ =

1
16πGa2

∫ d3k
(2π)3

∫ d3k′

(2π)3 ⟨(h
′
+,kh′+,k′+

(D.12)

+ h′×,kh′×,k′)ei(k+k′)·x⟩,

where we used Fourier transform h∗λ,k = hλ,−k.

60

Version of June 26, 2024 – Created June 27, 2024 - 16:33



61

Averaging over a range of wavelengths is equivalent to ensemble av-
eraging:

⟨h′λ,kh′λ′,k′⟩ = (2π)3δλ,λ′δ(3)(k + k′)|h′λ,k|2, (D.13)

we get:

ρGW(τ) =
1

16πGa2

∫ d3k
(2π)3

[
|h′+,k(τ)|2 + |h′×,k(τ)|2

]
. (D.14)

For unpolarized primordial spectra |h×,k|2 = |h+,k|2, we obtain:

ρGW(τ) =
1

32πGa2

∫
d ln k∆2

h,prim
[
T′(kτ)

]2 , (D.15)

where we applied definitions of transfer function T(kτ) and primordial
spectra ∆2

GW,prim:

∆2
GW,prim ≡ 4

k3

2π2 |hprim(k)|2 =
16
π

(
Hinf

mPl

)2

. (D.16)

For superhorizon modes (|kτ| ≪ 1), the amplitude is |hprim(k)|2 as it
was during inflation. For subhorizon modes (|kτ| ≫ 1), the evolution
of the power spectra [T′(kτ)]2 is defined by [T′(kτ)]2. This factor behaves
as τ−2 ∝ a−2 at the radiation era and ∝ τ−4 ∝ a−2 during the matter
era. Hence, ρGW ∝ a−4, indicating that gravitational waves are radiation
(gravitons are massless particles).

The relative spectral density is:

ΩGW(τ, k) ≡ ρ̃GW(τ, k)
ρcr(τ)

, (D.17)

where ρ̃GW(τ, k) is the energy density per logarithmic scale:

ρ̃GW(τ, k) ≡ dρGW(τ)

d ln k
. (D.18)

Here, ρcr(τ) denotes the critical density of the Universe.
Combining this definition with Eq. (D.15), we get:

ΩGW(τ, k) =
∆2

GW,prim

32πGa2ρcr(τ)

[
T′(τ, k)

]2 . (D.19)

Or,

ΩGW(τ, k) =
∆2

GW,prim

12H2(τ)a2

[
T′(τ, k)

]2 , (D.20)

where we used H2 = 8πGρcr
3 .
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Appendix E
Temperature evolution

In this appendix we derive the Eq.(5.25), beginning with the energy con-
servation:

Td(ρRa3) = −pRd(a3) + Γφρφa3dt. (E.1)

By applying the definition of entropy (3.3), this equation is transformed
to:

1
a3

d(sRa3)

dt
=

Γφρφ

T
. (E.2)

3H(a)sR +
dsR

dt
=

Γφρφ

T
. (E.3)

Using the temperature dependency of entropy (3.1), the derivative be-
comes:

dsR

dt
=

2π2

45

(
dg⋆,s

dT
T3 + 3g⋆,sT2

)
dT
dt

. (E.4)

Substituting this into Eq.(E.2), we get:

3H(a)sR +
2π2

45

(
dg⋆,s

dT
T3 + 3g⋆,sT2

)
dT
dt

=
Γφρφ

T
. (E.5)

Eliminating the time t from the equation results in

3H(a)sR +
2π2

45
H(a)a

(
dg⋆,s

dT
T3 + 3g⋆,sT2

)
dT
da

=
Γφρφ

T
. (E.6)

This leads to the final equation for temperature evolution:

dT
da

=

[
1 +

T
3g⋆,s

dg⋆,s

dT

]−1[
− T

a
+

Γφρφ

3H(a)sR(T)a

]
. (E.7)
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