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Abstract

KM3NeT is a collaboration that is currently constructing a research infras-
tructure in the Mediterranean Sea, consisting of deep-sea neutrino tele-
scopes. Its main scientific goals are to probe into the cosmos for high-
energy neutrino sources, and to determine fundamental properties of
these particles. These goals are pursued by dividing the detector volume
over two sites, ORCA and ARCA, each housing a detector that is opti-
mised for a distinct energy range. To achieve the final science, KM3NeT re-
quires a time and position calibration accuracy of roughly 1 ns and 20 cm,
respectively. This study presents an examination of two independent cali-
bration methods, which utilise the detection of muons produced by cosmic
ray showers. The time calibration provides consistent results for different
cuts of data. When the movement of detection units due to varying sea
currents is low, the systematic error is entirely explained via an asymme-
try in the detector geometry. Ultimately, an accuracy of 2.5 ns is achievable.
The position calibration is a novel technique that is developed during this
project. We demonstrate its feasibility by applying it to the detector data,
and estimate the currently obtainable accuracy to be within 2 m. Although
both methods currently cannot meet the standards set by KM3NeT, their
techniques are far from perfected. Overall, a fast cross check of the exist-
ing calibration techniques can be provided, while requiring no additional
setups or measurements.
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Chapter 1
Introduction

The first chapter of this paper addresses the purpose of this study within
the larger scope of research objectives set by the KM3NeT group. The ini-
tial sections will provide an introduction to their research infrastructure
and how it is exploited to achieve the scientific goals. During this process,
a signal produced by atmospheric muons is encountered, which is typi-
cally disregarded in the study of neutrinos but forms the very foundation
of this study. We will dedicate two sections to the origin and properties
of these particles, to display their suitability for the methods presented in
this paper. The aim of this study is to provide robust methods, capable of
both time and position calibration of detection units, that may be used as
complementary to existing techniques.

1.1 KM3NeT

This research project is carried out in collaboration with the KM3NeT
group of Nikhef, based in Amsterdam. Scientists of KM3NeT have formed
a collaboration to build and operate a new research infrastructure, which
consists of a network of deep-sea neutrino telescopes in the Mediterranean
Sea [1]. When finalised, the construction will have a detector volume of
roughly a cubic kilometre of seawater, which gives birth to the group its
name (km3 Neutrino Telescope). This volume is divided over two deep-
sea sites, that is off-shore Toulon (France) and Capo Passero (Sicily, Italy)
[1]1. Each of these sites contains the so-called building blocks of the in-
frastructure: 3-dimensional arrays of optical sensors which are used to
detect Cherenkov light induced by charged particles propagating through

1In the far future, one may be realised in Pylos (Peloponnese, Greece) as well.
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2 Introduction

the seawater. These building blocks will consist of 115 vertical Detection
Units (DUs) or otherwise referred to as ‘strings’, composed of 18 Digi-
tal Optical Modules (DOMs). An individual DOM contains 31 photo-
multiplier tubes (PMTs) which are distributed almost isotropically [2]. A
more in-depth description of the research infrastructure is found in a letter
of intent written by the KM3NeT collaboration [1]. At the time of writing,
two building blocks have been realised partially: these are referred to as
KM3NeT/ARCA or ARCA (Astroparticle Research with Cosmics in the
Abyss) and KM3NeT/ORCA or ORCA (Oscillation Research with Cos-
mics in the Abyss). Both are optimised for different energy ranges and, as
their name suggests, serve a different purpose in the study of neutrinos.

Figure 1.1: An artist’s impression of the string network. To keep their alignment
as vertically as possible, the DUs are kept under tension by attaching it to the
bottom of the ocean with a base, and introducing a buoy at the top. The upper
left displays a photograph of one of the DOMs. Adapted from https://www.

km3net.org/ .

1.2 KM3NeT/ARCA

Located about 100 km offshore from Portopalo di Capo Passero, Sicily,
ARCA features DUs of about 700 metres in length, with an average hor-
izontal spacing of ∼90 metres. Along the vertical direction of the DUs,
DOMs are spaced 36 metres apart, starting at 80 metres from the sea floor.

2
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1.3 KM3NeT/ORCA 3

This design optimises ARCA in the TeV-PeV range, which makes it ideal
for detecting high-energy cosmic neutrinos. Evidence for these particles
was initially presented by the IceCube Neutrino Observatory in 2013 with
high significance [3]. This discovery served as a major landmark in the his-
tory of neutrino astronomy [1], as their energetics imply the existence of
powerful cosmic particle accelerators. Although the origin of these neu-
trinos remains unknown, the search for possible sources continues. The
first stand-alone detected neutrino source is thought to be galaxy NGC
1068, also known as Messier 77. A study of the IceCube collaboration in
2022 has provided evidence of high-energy neutrino emission from its Ac-
tive Galactic Nucleus (AGN) [4]. Galaxies that contain an AGN have long
been considered as potential neutrino emitters, as they place among the
most energetic astrophysical objects in the cosmos. Other promising can-
didate sources are Gamma-Ray Bursts (GRBs): short and powerful flashes
of electromagnetic radiation, releasing 1051 to 1054 ergs in just a few sec-
onds [5]. Even within our own galaxy, several objects have been proposed
to be neutrino production sites, with Supernova Remnants (SNRs) being
the most compelling candidates. As its geographical location allows for
an almost complete observation of the Galactic Plane, one of ARCA its
primary goals is the detection of these Galactic sources. This brings us to
one of its advantages: namely its ability to observe in the 10 TeV range, in
which the IceCube ability to detect muon neutrinos is limited [6].

Currently, 21 DUs have been installed. When realised in its entirety, i.e.
both of its building blocks have been fully constructed, ARCA will have
a wider and complementary field of view, surpassing that of the IceCube
detector. In addition to its main objective to probe into high-energy neu-
trino sources, ARCA will also aid in the study of other aspects of physics
such as dark matter, violation of Lorentz invariance (LIV), exotic particles
and multi-messenger astronomy [1].

1.3 KM3NeT/ORCA

Although similar in construction to ARCA, ORCA has an average hori-
zontal spacing of ∼20 metres between its 200 metre long DUs, with DOMs
distributed about 9 metres apart from each other. It is situated 40 km off-
shore from Toulon, starting about 40 metres from the bottom of the sea,
and is specialised in the detection of neutrinos in the GeV energy range.
Hence, the primary goal of ORCA is to determine the neutrino mass hier-
archy (NMH) [1]. Our current understanding of neutrinos considers three
known flavour eigenstates: νe, νµ, ντ (electron, muon and tau neutrinos).

Version of June 30, 2023– Created June 30, 2023 - 14:00
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4 Introduction

These flavours are superpositions of three mass eigenstates (ν1, ν2, ν3) with
corresponding masses (m1, m2, m3). While the existence of these masses
has been determined, their ordering has not. Furthermore, the mixing of
flavour eigenstates is characterised by a set of four parameters. While the
available data have provided insight, ambiguity about some of their val-
ues still remains [7]. On their current course, next-generation accelerator
experiments like DUNE and T2HK are set to solve the NMH by 2030 at its
earliest. Therefore, alternative methods like the ORCA and JUNO (Jiang-
men Underground Neutrino Observatory) detector are being considered,
as they plan to unravel the ordering of masses within a shorter time span.
Finding the NMH may also have a strong impact on the performances of
future experiments that measure other fundamental properties of neutri-
nos, such as their absolute masses, potential Majorana nature (i.e. being
their own antiparticle) and whether CP-violation occurs in the neutrino
sector [8]. Additionally, ORCA might delve even further into possible ex-
tensions of the standard model. Recent experiments have reported results
which are inconsistent with the current three neutrino framework. Such
anomalies can be eliminated by introducing a fourth neutrino that has low
mass and cannot participate in weak interactions. The latter property is
what grants it its name: the sterile neutrino. By making use of atmospheric
neutrinos, next-generation detectors like ORCA are able to test this hy-
pothesis [9].

Just like its Italy-sited counterpart, ORCA is still under construction:
when finalised, it will host one building block. As of now, 18 DUs have
been deployed, with 16 of them being operational.

1.4 Detection

Research conducted by KM3NeT relies on the detection of neutrinos: this,
however, is easier said than done. Their light mass and neutral charge
makes them (nearly) impervious to gravitational and electromagnetic in-
teractions. As a result, the only interactions they undergo are via the weak
force. Detection of neutrinos hence happens indirectly via Cherenkov ra-
diation generated by relativistic particles that arise from these weak inter-
actions [1]. We identify two distinct phenomena that may occur: shower-
and track-like events.

Shower- or cascade-like events are produced by the matter near or in-
side the detector. It can either be caused by a charged-current (CC) in-

4
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1.4 Detection 5

teraction of an electron (anti)neutrino or a neutral-current (NC)2 interac-
tion of all (anti)neutrino flavours. The result is an electron/positron and
some hadronic composition which respectively cause an electromagnetic
and hadronic shower (in the NC case, only a hadronic shower is gener-
ated). Electromagnetic cascades are driven by the emission of photons via
bremsstrahlung3, which again produces electron-positron pairs via pair
production. Hadronic cascades evolve in a similar manner, but are domi-
nated by the decay of particles. Their structure may also be more complex,
containing both hadronic and electromagnetic showers [1].

Track-like events are the result of muons produced in the matter
inside or surrounding the detector via the CC interactions of muon
(anti)neutrinos. While cascades are confined to a relatively small space,
tracks can span much greater distances, with muons at energies above 1
TeV reaching track lengths of the order of kilometres. Note that CC inter-
actions of tau neutrinos have not yet been mentioned: these have a 83%
probability of causing cascades, while the remaining 17% produces track-
like events resulting from the tau particle decaying into a muon [1].

Both signatures have something in common: they are detected via
a phenomenon known as Cherenkov radiation. When a charged par-
ticle propagates through matter, it polarises the atoms in the medium.
If the particles velocity v is larger than the phase velocity of light c/n,
where n denotes the refractive index, the environment atoms emit radia-
tion along a narrow cone that has its axis aligned with the particle’s trajec-
tory. The direction of emission is characterised by apical angle θc, defined
as cos θc = c/(vn) [10]. Projecting a two-dimensional plane perpendicular
to the particle’s trajectory results in characteristic ring patterns known as
Cherenkov rings, which are detected by the PMTs. These definite rings can
only be observed for track-like events: due to the shower structure, not all
particles propagate along the shower axis. Additionally, bremsstrahlung is
generated as these particles are deflected by the seawater nuclei. The emit-
ted photon will typically create an electron-positron pair, which is able to
produce more bremsstrahlung. As a result, an emission spectrum is mea-
sured along the shower axis. The bulk, however, can still be found around
the Cherenkov angle [11].

2Charged/neutral-current interactions are weak interactions that result from the ex-
change of a (charged) W± and (neutral) Z0 boson.

3Photons produced by the deceleration of charged particles, in this case caused by
nucleii in the sea-water or detector.
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6 Introduction

Figure 1.2: A 2D illustration of the Cherenkov wave geometry. The size of the
ring patterns observed are dependent on angle θc, and therefore directly related
to the particle velocity v (which is assumed to be uniform) and refractive index n.

1.5 Data acquisition

When the signal on a PMT is sufficient, the threshold is passed (which is
set to 0.3 photo-electrons) and a hit is registered. This is commonly re-
ferred to as an L0 hit, as in this stage a ‘level-zero’ filter has been applied
to the data. The L0 hit contains three pieces of information: the PMT ad-
dress, time and time over threshold, i.e. the total duration threshold has
been reached. Once the data are on shore, additional filters can be applied.
A level-one or L1 hit requires at least two L0 hits from different PMTs in
the same DOM, within a time frame that is typically set to 10 ns. Every
100th found L1 hit is stored. Within these hits, another selection is made
and stored: this considers coincidence of at least 4 PMTs, also referred to
as supernova (SN) hits4. When a coincidence of SN hits is identified to be
from the same source, a hit correlation is registered. Additionally, data are
saved when correlations of hits between at least 5 DOMs were identified
within a time period of a few microseconds. These events are consistent
with either a track or shower signature. The final filter that is utilised is a
high rate veto (HRV): when the hit rate of a single PMT exceeds 20 kHz, the
data recorded is excluded from going to shore. When combined, these fil-
ters increase the signal-to-noise ratio as background signals have a higher

4A supernova signal, which consists of many low energy neutrinos, would manifest
itself in an enhanced correlated rate measured at all DOMs.

6
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1.6 Optical background 7

chance of being excluded [1]. The resulting (mostly continuous) stream
of data is divided into runs; these periods may last a few minutes up to
several hours.

1.6 Optical background

Aside from the Cherenkov radiation generated by neutrino interac-
tions, the PMTs may register L0 hits triggered by other optical back-
ground sources. The first and foremost cause is the radioactive decay of
potassium-40, which naturally occurs in sea salt. In most cases (∼ 89%) it
decays into calcium-40 via beta decay5:

40K → 40Ca + e− + ν̄e (1.1)

The electron is able to induce Cherenkov radiation, provided its velocity
is sufficient6. Noise caused by this process can be greatly reduced by ap-
plying the L1 hit. If multiple L0 were to be registered on the same DOM,
the 40K decay data can be used to calibrate its PMTs [12]. Light may also
be produced by living organisms: this bioluminescence causes a sudden in-
crease in hit rates on a single DOM for possibly a few seconds. As this
signal serves no purpose, the HRV is introduced to the data.

The final source plays a vital role in this project. Before delving into this
subject, a brief introduction regarding its origin would be appropriate.

1.7 Cosmic rays

As their name implies, cosmic rays are high-energy charged particles that
originate from outer space. While composed of several particles such as
electrons, atomic nuclei and antiparticles, the main contributors to the ob-
served flux are protons7. Once arrived at the upper layer of Earth’s at-
mosphere, these rays interact, producing a cascade of secondary particles
which is also referred to as a cosmic ray air shower. We distinguish two
types of interactions that may occur.

5The remainder mostly decays into 40Ar via electron capture, emitting a neutrino and
gamma ray.

6About 21% produces electrons with sufficient energy [11].
7Although recent studies have shown that the highest energy cosmic rays are primar-

ily heavier nuclei [11].
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8 Introduction

Hadronuclear interactions are caused by the interactions of protons with
the surrounding matter. The most predominant ones are

p + p →
{

p + n + π+

p + p + π0 (1.2)

and

p + n →
{

p + n + π0

p + p + π− (1.3)

which are expected to produce equal amounts of charged (π+, π−) and
neutral (π0) pions. Another type of reaction that falls under this category
is the production of mesons: particles comprising a quark-antiquark pair8.
While a large range of configurations is possible, creating all sorts of exotic
mesons, most of them are short-lived, quickly decaying into one of their
lightest components: K± and K0 mesons or kaons. Kaons have a relatively
short mean lifetime as well (order 10−8 s at most) and decay into either
(anti)muons or pions (π± or π0) [13].

Alternatively, cosmic rays may undergo photohadronic interactions with
photons in the atmosphere. This produces a (virtual) ∆+ particle9, which
generates positively and neutrally charged pions via its two main decay
channels

p + γ → ∆+ →
{

p + π0

n + π+
(1.4)

that respectively have a 67% and 33% probability of being realised [11].
The last process is what gives rise to the largest contributor to optical back-
ground flux; namely the decay of charged pions into (anti):

π± → µ± +
(−)

νµ

π0 → γ + γ
(1.5)

Where
(−)

νµ denotes a muon (anti)neutrino. This happens relatively fast as
well, as the mean lifetime of pions is of the same order as kaons. Photons
resulting from the neutral pion decay are able to produce electron-positron
(e+e−) pairs, which, as mentioned in Section 1.4, cause electromagnetic
cascades. The (anti) muons produced through the decay channels of kaons
and charged pions are more commonly referred to as atmospheric muons.

8An example of these would be the pions just mentioned.
9A baryon that has the same quark composition as a proton (uud), with slightly heav-

ier mass.

8
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1.8 Atmospheric muons 9

1.8 Atmospheric muons

The cosmic ray air shower may consist of a complex network of several
secondary particles. Yet at ground level, mostly (anti) muons are detected.
This section will discuss what causes this limited detection of all other
particles produced by cosmic rays.

Charged particles in the cosmic air shower lose energy via both ioni-
sation of the surrounding matter and radiative processes, with the main
contributors being bremsstrahlung and e+e− pair production. A critical
energy Ec is introduced, which defines two regimes. For particle energies
E < Ec, interactions that cause ionisation become the main cause of the
energy loss, while for higher energies E > Ec the radiative processes dom-
inate. For both muons and electrons/positrons, ionisation losses are simi-
lar, being approximately 2 GeV once at sea level. However, the power irra-
diated by bremsstrahlung is dependent on the Lorentz factor γ = E/mc2

with at least γ4, which suppresses radiation losses for muons significantly
as mµ/me ∼ 200. As a result, electrons/positrons and muons have critical
energies Ec,e ∼ 80 MeV and Ec,µ ∼ 3 TeV, respectively [14]. The majority of
muon flux resides in the < 100 GeV range due to the decay behaviour of
pions (as will become clear shortly). For energies Eµ below ∼1 GeV, muon
decay and energy loss take over, which prohibit them from reaching the
surface of the Earth. At higher Eµ (10-100 GeV), the particles retain enough
energy to propagate to the detector before decaying. For example, a muon
with Eµ ∼ 10 GeV corresponds to γ ∼ 100. The distance traveled by a
highly relativistic unstable particle, also known as the mean decay length, is
roughly given by ld = γτc, where τ is the mean lifetime in its rest frame.
As, τµ ∼ 2 µs, muons are able to cross a distance of at least 60 km, which is
more than enough to reach the detector10. Contrarily, electrons/positrons
generated in electromagnetic cascades quickly dissipate their energy via
radiative processes, and once below Ec lose the rest via ionisation, well
before reaching sea level.

For pions, a similar reasoning follows. Having a mass similar to
muons, but a mean lifetime of roughly two orders of magnitude lower,
charged pions (π±) are much more prone to decay as ld,µ/ld,π ∼ 100 for
equal energetics. At higher energies above the threshold Ec,π ∼ 100 GeV,
π± rapidly lose their energy via interactions with air nuclei, producing
new charged pions with a typical multiplicity of 20 [14]. Once their en-
ergy exceeds below Ec,π, π± are more likely to decay than interact, as the
decay length (which is roughly 600 metres at most) surpasses the interac-

10Muons are typically produced high in the atmosphere, at a height of 15km [15].
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10 Introduction

tion length11. An analogous statement can be made about kaons: while
their lifetime is (at most) roughly the same as charged pions, the mass
ratio mK/mµ ∼ 3.5, which corresponds to an even shorter decay length.
Neutrally charged pions (π0) have τ ∼ 10−17 s, and therefore almost in-
stantaneously decay into two photons [14].

Finally, we arrive at protons and neutrons, jointly called nucleons.
These clearly need another explanation, as their mass is sufficiently high
(mp,n/mµ ∼ 9) and their lifetime12 would allow them to easily reach the
detector. The answer lies within their constituents: unlike the muon,
which is a lepton, nucleons are composed of quarks. These particles carry
so-called ‘colour charge’ which allows them to act via the strong nuclear
force, in addition to the gravitational, weak and electromagnetic inter-
actions leptons experience as well. Consequently, protons and neutrons
are more likely to interact throughout their course towards Earth, limiting
their ability to reach the surface.

Atmospheric muons have a great resemblance of track-like events,
with a signal rate several orders of magnitude higher than that of neu-
trinos. Hence, for the final science of KM3NeT, this background has to be
removed from the data in order to prevent false identification of neutrino
events. This is achieved by only selecting events that move upward, as
(anti) muons are unable to traverse the Earth [11]. However, the high sig-
nal rate and ability to travel large distances are precisely what makes this
research viable, as the required data can be gathered relatively fast. This
gives rise to one of the advantages of the methods covered in this paper,
which we will further elaborate on in Section 1.10.

1.9 Calibration

Ultimately, KM3NeT uses the acquired data to make reconstructions of the
neutrino events in order to determine the parameters of interest, that is,
their energy and direction. This is accomplished by using maximum like-
lihood (ML) methods tailored to each type of event. For optimal results,
these techniques require the DOMs to be synchronised with nanosecond
accuracy, and their position to be known within ∼ 20 cm13. To achieve
these goals, KM3NeT uses a couple of methods: this section will focus on
the ones that are currently in use.

11That is, the mean distance travelled before undergoing an interaction.
12About 15 minutes for neutrons and presumably infinite for protons.
13Light travels roughly 1 metre per 5 nanoseconds in seawater.

10
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1.9 Calibration 11

Time calibration consists of three steps: determining relative time off-
sets between PMTs within a DOM (intra-DOM), DOMs on a DU (inter-
DOM) and DUs (inter-DU). As previously mentioned, the Cherenkov light
produced by 40K decay is utilised to perform intra-DOM time calibration.
The produced electrons retain sufficient energy for a few centimetres on
average, such that a couple of PMTs register a hit. As there is not only
a natural abundance of 40K in the seawater, but in the glass sphere of a
DOM as well, this method can be applied before deployment and in situ
(i.e. after the deployment of the DUs) [16]. As of now, inter-DOM cal-
ibration solely relies on a method that is performed pre-deployment. It
considers a blue laser that illuminates 1 PMT on all DOMs simultaneously
using a splitter. When relative time offsets between DOMs are introduced,
the PMTs measure the laser at different instances. These time differences
between detection events can be used to correct all modules relative to a
reference DOM. As far as in situ methods concerned, there are currently
2 in development. The first utilises LED beacons that are located in the
top half of each DOM by sending short pulses that can be measured at
multiple modules. Expected and measured arrival time of light can be
compared to determine the relative offsets between DOMs. The second
method involves a similar analysis, but now hit times are predicted by
reconstructing muon trajectories. Both techniques require the DOM posi-
tions to be known: it is only recently that we have been able to achieve
this using acoustic data (which will be explained shortly), so as of now
inter-DOM calibration is done entirely on shore.

Finally, we consider the part that is within the scope of this research: i.e.
determining the time offset and position of each DU. For both purposes,
KM3NeT has robust methods that are able to deliver the final accuracy
we need. For positioning, a system of acoustic receivers and emitters is
deployed. The receivers are located on the seabed surrounding the detec-
tor footprint, whereas the receivers are mounted on the individual DOMs.
To accurately monitor the location of the DOMs, the sway of strings due
to varying sea currents must be taken into account. Therefore, KM3NeT
makes use of ‘dynamic position calibration’, where the emitters send a re-
peated signal every 10 minutes to measure position [17]. For the inter-DU
time calibration, a ‘track quality’ approach is implemented. For a set of
detector parameters, e.g. the DU (time and position) offsets, a muon tra-
jectory is reconstructed and compared to the measurements. Agreement
between the hits produced by the hypothesised track and measured hits is
quantified using likelihood L, which is maximised by the set of parameters
that correspond to the ‘best fit’ [18]. An example of determining the time
offset of a single DU can be seen in Figure 1.3. Here, the likelihood L can be

Version of June 30, 2023– Created June 30, 2023 - 14:00
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12 Introduction

Figure 1.3: The average track likelihood in the events divided by the number of
hits as a function of assumed string time offset. Adapted from https://wiki.

km3net.de/index.php/Physics_of_muon_calibration .

approached using a polynomial, which finds its maximum at −0.17± 0.20
ns. The results are interpreted as follows: the detector geometry, where
this DU has an offset of −0.17 ± 0.20 ns, is most likely to have produced
the measured hits.

At this point, finding other methods to achieve the final science sounds
like reinventing the wheel. The calibration of both time and position can
be performed with the required accuracy and robustness, why bother
spending time on developing alternatives? The upcoming section will
highlight the relevance of the methods applied in this project, which make
use of hit correlations produced by atmospheric muons.

1.10 Goal of this study

Important to mention is that this research is not meant to replace existing
methods, but to complement them. This section will address how the hit
correlation methods aim to improve our current approach.

Starting off with their unique property: the ability to function indepen-
dently. Although muon reconstruction results in an accurate estimate of
the time offsets, an extensive set of parameters has to be known (e.g. off-
sets in position and time of each DU and the exact distribution of DOMs
along the string). This means it requires data from the acoustic method
in order to function. Using hit correlations, we can estimate time offsets

12
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1.10 Goal of this study 13

without having any knowledge of the actual position of the strings, and
provide DU positions even when time miscalibrations between strings are
introduced. Furthermore, the current implementation of reconstruction
estimates time offsets one-by-one, while a hit correlation technique esti-
mates them simultaneously.

Another advantage is their fast applicability after deployment. Need-
ing 2-3 days of optical data, these methods are able to estimate the time off-
sets and positions within 2.5-3 ns and 2 m accuracy, respectively. Although
insufficient for the final science, these estimates can be used as a quick ini-
tial guess, which can then be refined using the currently used procedures.
The methods furthermore require no additional setups or measurements,
as they utilise data which would otherwise be regarded as background
noise.

Finally, it is important to note that these methods are only in their early
stages of development. Throughout this research, we will encounter var-
ious flaws in the current approach. To resolve these problems, corners
are cut, which results in a significant loss of data and decrease in achiev-
able accuracy. Potential solutions are provided in Chapter 5: when im-
plemented, these methods will be able to perform calibration with higher
precision, while requiring shorter periods of data acquisition.

Anyhow, an abundance of available methods cannot be underesti-
mated. A hit correlation approach provides a fast cross check of the results
produced by complementary methods, while working completely inde-
pendently.

The hit correlation methods comprise two components: one that eval-
uates the individual time offset of each DU, and another that maps the
string positions in the horizontal plane of the detector footprint. A de-
tailed description of both will be provided in Chapters 3 and 4, combined
with a presentation and discussion of the key findings made during this
study. Prior to these, the SN hit correlation data will be addressed, and
how they are exploited to form the foundation of these methods. Chapter
6 ultimately presents a conclusion of this study.
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Chapter 2
Data

Both methods exploit a characteristic distributional behaviour of the SN
hit correlations measured by the detector, that is directly related to both
the horizontal distance and time offsets between DUs. The first part of this
chapter presents a brief introduction to the nomenclature used throughout
this paper and explains how this characteristic behaviour can be described
using one single parameter that can be easily extracted from the data. The
last section discusses a feature of the data that the methods are unable to
account for. As a result, a part of the data is rendered unfit for further
analysis and has to be omitted.

2.1 Correlation graphs

The DOMs on a string are ordered from bottom to top and labeled using a
floor number, ranging from 1 (closest to the seabed) to 18. They may also
be referred to as DOM1, DOM2, ..., DOM18, or DUA.1, DUA.2,...,DUA.18
when considering DOMs on string A. When the floor numbers of two
DOMs on different DUs differ by k, those modules are said to be k’th
neighbours. Correlation of SN hits between neighbouring DOMs is charac-
terised using the time difference between detection events, denoted as δt.
The vast majority of correlations will be caused by atmospheric muons,
as they are able to travel large distances before their energy reaches be-
low the Cherenkov threshold and their flux is several orders of magnitude
higher than that of signals caused by neutrino interactions. As muons en-
ter the detector at various angles and energies, over time, a distribution of
δt is measured, which is stored in a 1D histogram called a correlation graph.
Measuring a certain δt is approximately described by a Poisson process.
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16 Data

Figure 2.1: Correlation graph of second neighbours DU24.18 and DU25.16. The
error bars reflect the Poisson uncertainties for large samples.

The error bars in Figure 2.1 are therefore given by the Poisson uncertainty,
which is roughly equal to the square root of the number of counts1. Sub-
sequently, the correlation graphs of all possible DOM combinations are
saved in a 2D histogram format as a ROOT2 file.

2.2 Real data

The data concern measurements made by the ARCA detector and com-
prise two components: the before mentioned ROOT file containing the SN
hit correlation graphs for a certain combination of runs, and a detector file
that describes the assumed time and position calibrations of the detector
during these runs. In total, 3 different data sets are used, where two of
these are merged into a larger set to test the performance of the meth-
ods for increasing statistics. The ARCA REALMOV data represent a period
with significant swaying (i.e. movement) of strings: this implies an axial
tilt measured at the bottom of the string that varies roughly 0.02 radians
throughout the runs.

1For sufficiently large samples N, the Poissonian distribution of δt converges to a
Gaussian with standard deviation

√
N.

2Data processing framework created by CERN; visit https://root.cern/about/ for
a detailed documentation.

16
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2.3 Simulated Data 17

Table 2.1: Summary of the real data sets used for this project, measured by the
ARCA detector.

Reference name Runs Total length Date

ARCA REAL1
13560 ∼ 29 h 20 Oct 2022

13736-13785 6-8 Nov 2022

ARCA REAL2 13399-13409 ∼ 33 h 10 Oct 2022
ARCA REALMOV 13699-13708 ∼ 30 h 2-3 Nov 2022

ARCA REALCOM

13399-13409
∼ 62 h

10 Oct 2022
13560 20 Oct 2022

13736-13785 6-8 Nov 2022

2.3 Simulated Data

In addition to the ‘real’ data measured by the detector, this research im-
plements Monte Carlo (MC) simulations. These simulations mirror the
3 distinct sets described in Table 2.1, but slightly differ in the acquisi-
tion of data. Firstly, only the detection of events (correlation between at
least 5 DOMs) is considered, rather than SN hits. As a result, the data
contain fewer statistics, which as will turn out, influences the overall per-
formance of the methods to some degree. Secondly, the MC simulations
generate hits measured with a static geometry, which implies no string
movement. Run 13708 is furthermore excluded from ARCA SIM3, reducing
its total length to ∼ 27 h. All simulated sets are again combined to deduce
if more data lead to better results.

Table 2.2: Summary of the Monte Carlo simulated data corresponding to events
measured by the ARCA detector.

Reference name Runs Total length Date

ARCA SIM1
13560 ∼ 29 h 20 Oct 2022

13736-13785 6-8 Nov 2022

ARCA SIM2 13399-13409 ∼ 33 h 10 Oct 2022
ARCA SIM3 13699-13705 ∼ 27 h 2-3 Nov 2022

ARCA SIMCOM

13399-13409

∼ 89 h

10 Oct 2022
13560 20 Oct 2022

13699-13705 2-3 Nov 2022
13736-13785 6-8 Nov 2022

Version of June 30, 2023– Created June 30, 2023 - 14:00

17
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There is one useful property of the MC simulations that is exploited in
this project: contrary to the real data, the exact geometry and time calibra-
tions are known beforehand. The simulated data therefore function as a
tool to determine the accuracy of the methods.

2.4 Inter-DU time differences

The goal of this study is to perform calibration on an inter-DU scale. To
do so, the sum over all k’th neighbour correlation graphs of string pair
A-B is taken to again form a correlation graph that peaks at a time differ-
ence ∆tAB. For example, the first neighbour DOM combinations would
correspond to DUA.1-DUB.2, DUA.2-DUB.3,..., DUA.17-DUA.18. Analo-
gously, the same procedure is applied to conjugate pair B-A (e.g. combina-
tions DUB.1-DUA.2,DUB.2-DUA.3,...,DUB.17-DUA.18 for the first neigh-
bour) to obtain a distribution that peaks at ∆tBA.

Figure 2.2: Third neighbour summed distribution of SN hit time differences reg-
istered by string pair 14-19 in the ARCA detector. Illustrated in red is a WLS
Gaussian fit.

When sufficient symmetry in the detector geometry is assumed, mean-
ing the strings have perfect vertical alignment and share floors at equal
heights (as illustrated in Figure 2.3), the distributions produced by
string pairs A-B and B-A should be identical given an isotropic muon

18

Version of June 30, 2023– Created June 30, 2023 - 14:00



2.4 Inter-DU time differences 19

flux. Quantities ∆tAB and ∆tBA therefore serve as viable characteris-
tic measures for both distributions. Their values can be extracted in
a reproducible manner by applying a weighted least squares (WLS)
Gaussian fit to the data, and taking the mean parameter as an esti-
mate. This is achieved computationally by making use of the routine
$JPP DIR/examples/JCalibrate/JOffset extract, provided by the JPP
software framework3. We note that the errors provided to the fit are not a
true reflection of the Poisson uncertainty for small counts, as in this regime
they should be asymmetric. However, for the purpose of acquiring the pa-
rameters of interest, this approach is sufficient.

Figure 2.3: Simplified sketch of the symmetric detector geometry. String A and B
have identical floor altitudes z1 and z2, and retain a horizontal spacing h through-
out their entire length.

3This package contains a large set of C++ interfaces, classes and methods made avail-
able to the KM3NeT group [11].
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2.5 Data selection

Another important parameter produced by the Gaussian fit is the height
of the peak, i.e. the amplitude. This quantity will serve as a data qual-
ity measure, as low-amplitude correlation graphs correspond to data that
would rather be omitted from the evaluations to obtain optimal results.
An example is provided in Figure 2.4: the Gaussian fit poorly represents
the distribution for low samples, and should thus be excluded from fur-
ther analysis.

Figure 2.4: Third neighbour correlation graph of string pair 9-19 in the ARCA
detector. The red curve again represents a Gaussian fit on the distribution, which
has a small but non-zero amplitude.

A final selection is imposed on the time differences to filter out ‘patho-
logical’ data that gravely decrease the performance of the methods. This
is achieved by requiring that ∆tAB is roughly equal to ∆tBA. One selection
that has proved to be successful is the 30% cut:∣∣∣∣∆tAB − ∆tBA

∆tBA

∣∣∣∣ < 0.3 (2.1)

Which, when combined with an amplitude selection, improves the quality
of the data used in further analysis.

20
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2.6 Excluding the first (and second) neighbours 21

2.6 Excluding the first (and second) neighbours

To intuitively understand the results produced by the methods, and ex-
plain possible deviations from what is expected, it is always best to ques-
tion the fundamentals. In our case, this means returning to the inter-DU
correlation graphs that are used to extract the time differences ∆tAB and
∆tBA. During this process, a Gaussian function is fitted over the data to
extract the parameter of interest. In most cases, a distribution can be re-
garded as Gaussian, and using a small exercise one may even show that an
arbitrary (possibly asymmetric) density function f (x) with a maximum at
x = 0 can be approximated with a normal distribution [19]. This approx-
imation fails, however, when a large amount of skewness is introduced.
The bell-shaped curve poorly represents the actual form of the distribu-
tion, and the estimated mean shifts towards its so called ‘fat tail’. As a re-
sult, the mean parameter retrieved from the fit inaccurately estimates the
true maximum ∆tAB of the distribution. For distributions that are roughly
normal, such as the one illustrated in Figure 2.5(b), this causes no signif-
icant complications. The equal shapes of the distributions of both string
pairs A-B and B-A can still roughly be characterised using the Gaussian fit.
Hence, the mean parameters suffice to explain any deviation between the
two graphs. Performance starts to decrease, however, for heavy-tailed cor-
relation graphs like Figure 2.5(a). In this regime, the fit does such a poor
job in describing the distribution that the mean parameter can no longer
be used as a characteristic measure.

(a) (b)

Figure 2.5: A comparison between the correlation graphs produced by the first
(a) and fourth (b) neighbour data of string pair 19-24 (d19−24 ≈ 80 m). The red
curve depicts the Gaussian fit applied on the distributions.

Since the negative skewness of the correlation graphs is a natural re-
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22 Data

sult of the angular distribution of muons4 and geometry of the detector
[20], an additional data selection has to be made (aside from the ampli-
tude and 30% cut) that rules out distributions which are considered being
‘too skewed’. In the context of this project, this concerns all correlation
graphs in which the estimated mean of the Gaussian fit has an offset from
the true maximum of the graph that is larger than an expected 5-10 ns. This
offset is directly linked to the width of the graph, as a broader distribution
implies an increase in the length of the fat tail. As a result, the estimate
of ∆tAB provided by the fit shifts further away from the true maximum.
The width itself is dependent on the neighbour configuration that is con-
sidered within a given string combination A-B, as the spread of registered
time differences decreases for increasing neighbours k. Consequently, the
skewness is most prominent in the lower neighbour regime of each string
combination. For the real data, this implies that only the first neighbour
fits produce offsets that are substantially larger than the 5-10 ns threshold.
The MC simulations, however, are unable to completely reflect the angu-
lar and energy distribution of muons, causing a slightly larger spread of
data with a heavier left tail. As a result, the second neighbour evaluation
has to be excluded in order to optimise results. For higher neighbours, the
offsets remain roughly equal, which makes the data suitable for further
analysis. From now on, ‘all neighbours’ refers to neighbours 2-8 and 3-8
for the real and simulated data, respectively, unless otherwise stated.

Omission of the first and second neighbour data is clearly a repercus-
sion of the inability to accurately estimate the distribution of time differ-
ences. The assumption of a bell-shaped correlation graph is incorrect, and
only approximately valid in the higher neighbour regime. Both methods
would, therefore, benefit from implementing a fit that accounts for skew-
ing. A possible solution that can be applied in future iterations of the
methods will be discussed in Section 5.1.

4That is, the zenith angle θ dependence of the incoming muon flux.

22
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Chapter 3
Time offset evaluation

The time offset evaluation utilises the notion that for a given string pair in
the detector, each neighbour configuration measures a correlation graph
that is identical to what its conjugate neighbour measures. Miscalibration
of the strings therefore manifests itself as a horizontal shift between the
correlation graphs produced by equal neighbours. The time offsets can
subsequently be extracted from the data by implementing a least squares
approach that utilises this shift. Using simplified sketches of the detector,
systematics resulting from asymmetries in the geometry can be quantified.
The analysis of the data consists of three steps. A valid amplitude cut and
an additional data reduction have to be considered in order to produce
accurate results. Once this has been established, the evaluated time offsets
are used to test the robustness of this method. Finally, a correlation is
found between the systematic error and uppermost DOM altitude. By
correcting for this correlation, a rough estimate can be provided of the
accuracy that is currently obtainable by the method.

3.1 Methodology

Time differences ∆tAB and ∆tBA are directly linked to the relative off-
set between the two strings. Provided inter-DOM offsets are negligible
and there is a symmetric detector geometry, a perfectly calibrated system
should result in equal distributions for string pair A-B and conjugate B-A,
with ∆tAB = ∆tBA. However, when a time offset between the two strings
is introduced, the distributions experience a shift relative to each other. We
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24 Time offset evaluation

denote the average shift, otherwise referred to as the relative offset, as

oAB =
∆tAB − ∆tBA

2
(3.1)

which can be converted to the individual offsets of the strings. For exam-
ple, if string A and B experience an offset of tA = 30 ns and tB = −20 ns
respectively, their relative offset is 50 nanoseconds. This is generalised by
the following equation:

tA − tB = oAB (3.2)

Expanding to a detector that considers n strings forms a system of N =
1
2 n(n − 1) + 1 equations1:

t1 = 0
t1 − t2 = o1,2

· · ·
t1 − tn = o1,n

t2 − t3 = o2,3

t2 − t4 = o2,4

· · ·
t2 − tn = o2,n

· · ·
tn−1 − tn = on−1,n

(3.3)

Where all offsets are defined with respect to a reference string, which is
implied by setting t1 = 0. This set of equations may be written more
neatly by introducing matrix A and vectors t = (t1, t2, . . . , tn)T and o =
(0, o1,2, . . . , on−1,n)

T:
At = o (3.4)

Which describes an overdetermined system, as there are more equations
than unknowns. In general, this does not have a unique solution. Rather,
only a ‘best estimate’ can be provided. Several methods may be used to
obtain the desired result, each having its own measure to quantify the
‘goodness’ of the fit to the data. The two methods most commonly used
to estimate linear models like Equation 3.4 are that of maximum likelihood
(ML) and least squares (LS). Both approaches are equally valid and provide

1Corresponding to the amount of string combinations, plus one restriction for the ref-
erence DU.

24
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3.1 Methodology 25

the same solution. In this study, the latter of the two is implemented. Ap-
pendix A will provide a more in-depth examination of the LS method. For
now, it will suffice to mention that the estimator of t, which we will denote
as t̂, is derived to be

t̂ = (AT A)−1ATo (3.5)

The variance of its component t̂i is given by the i’th diagonal of the
variance-covariance matrix

Var(t̂) = σ2(AT A)−1 (3.6)

where all components of vector o are assumed to share a common variance
σ2. A popular choice for an unbiased estimator2 of σ2 is

s2 =
eTe

N − n
=

1
N − n

N

∑
i=1

e2
i (3.7)

in which e = o − At̂ denotes the vector of residuals [19]. While running
the time offset evaluations, this quantity consistently produces uncertain-
ties that are most likely an overestimation of the true measurement error.
Preferably, standard deviation σ is estimated using a degrees of freedom
corrected mean absolute error (MAE):

MAE =
1

N − n

N

∑
i=1

|ei| (3.8)

Its value has a straightforward interpretation: that is, the average
deviation of the results from what is measured, where accuracy im-
proves for increasing ratios between the number of equations and un-
knowns N/n. To execute this method computationally, the JPP soft-
ware package is utilised once again, this time by running the script
$JPP_DIR/examples/JCalibrate/JMatrix_sol.

Note that, so far, no specific neighbour configuration is mentioned
to produce the data required for oAB. In the case of ideal geometry, the
time offsets evaluated in Equation 3.5 should remain equal regardless of
which neighbour combinations are considered. Hence, to test the robust-
ness of this method, the time offset evaluation is run for each neighbour
configuration separately, and the results are examined for (dis)agreement.
All neighbours may also be used synchronously in this method: this in-
creases the amount of equations in System 3.3 proportional to the amount
of neighbours considered. Again, a robust method should be able to re-
produce the results evaluated for individual neighbours.

2Which implies that its expected value equals the true value of the parameter, i.e.
E(s2) = σ2.
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3.2 Systematics

Unavoidably, the geometry of the detector is far from symmetric. Al-
though 36 metres on average, inter-DOM distances differ, and the ocean
bottom is uneven. As a result, the DOM heights shift relative to each other.
Furthermore, the swaying of strings due to alternating sea currents im-
poses asymmetry between floors. These effects cause an additional rela-
tive shift to be measured, which implies that, in general, the assumption
oAB = tA − tB does not hold in the experiment. For simple geometries,
i.e. small deviations from the symmetric one, this systematic error can be
predicted. We sketch two scenarios, presented in Figure 3.1: one where
two subsequent DOM floors on a DU experience a respective altitude shift
∆z1 and ∆z2, and another in which curved strings impose a horizontal
offset ∆x from their vertical axis. In both cases, a (anti)muon propagates
downwards through the seawater at an angle ϕ with respect to the zenith,
emitting Cherenkov radiation towards the DOMs at equal angles θc rela-
tive to its trajectory. Since the time of arrival of signals at the shifted DOMs

(a) (b)

Figure 3.1: Simplified sketch of hit correlations registered between strings A and
B, when either vertical (a) horizontal (b) displacements are introduced to the
DOMs. The shaded DOMs and photon (blue; γ) trajectories illustrate a symmet-
ric geometry in which the systematics are not taken into account.

changes, the relative offset experiences an increase ∆oAB linearly propor-

26
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3.3 Cutoff amplitude 27

tional to the shifts. In the case of a vertical displacement, this is equal to

∆oAB =
1
2
(∆z1 + ∆z2)

(
sin (θc − ϕ)

v sin θc
+

sin ϕ

(c/n) sin θc

)
∝

1
2
(∆z1 + ∆z2)

(3.9)

where v denotes the muon velocity, which is close to c for most muons
passing the detector. So even in a perfectly calibrated system, such as
the MC simulations, we expect to observe a shift between the correlation
graphs of string pair A-B and conjugate B-A that is proportional to some
average height difference. Similarly, for the curved string, one derives:

∆oAB = cos ϕ

(
1

(c/n) sin θc
− 1

v tan θc

)
∆x ∝ ∆x (3.10)

Note that these equalities not only hold for the first neighbouring DOMs
displayed in Figure 3.1, but for general k’th neighbours. As the strings
move during the runs, the time difference distribution shifts correspond-
ingly, which makes its peak ill-defined. This leads to a less accurate es-
timate of ∆tAB and ultimately the time offsets. A final asymmetry is im-
posed by malfunctioning DOMs, which cause ‘gaps’ in the detector geom-
etry. Even when all previously mentioned systematics are accounted for,
these pose a fundamental limit on the accuracy of the method.

3.3 Cutoff amplitude

Introducing an amplitude parameter provides the method with a means
to filter inaccurate data. This raises the question of which cutoff amplitude
should be chosen to run the evaluation at. When the cut is set too high,
the system presented in Equation 3.3 becomes underdetermined due to
a lack of correlations. Additionally, we need each string included in the
measurements. When setting it too low, poor fits from low sample dis-
tributions, such as displayed in Figure 2.4, ‘pollute’ the evaluation. This
implies a range in which the estimates of the time offsets agree, which
means the uncertainty does not ‘explode’. An example is displayed in
Figure 3.2: we note that similar graphs are observed for all strings in the
detector. The results in amplitude range 0.2-2.0 vary no more than the es-
timated uncertainty. As the data in this range are highly correlated3, the

3Note that increasing the amplitude corresponds to selecting a subset of the data at
lower amplitudes.
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(a) (b)

Figure 3.2: Offsets of strings 12 (a) and 21 (b) evaluated at several amplitudes for
the second neighbour data. For amplitudes greater than 2.0, the evaluation fails
due to a lack of statistics.

method retrieves valid estimates for all cuts chosen in this interval. For in-
dividual neighbour evaluation, an amplitude is chosen such that its value
is contained within these ‘stable regions’ of all the data sets.

28
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3.4 Neighbour selection 29

3.4 Neighbour selection

Aside from the exclusion of the first (and second) neighbour from the anal-
ysis, an additional note regarding data set ARCA_REALMOV has to be made.
The second neighbour correlation graphs of these runs contain a large frac-
tion of distributions originating from distant (ds > 200 m) DU correlations
that produce erroneous fits. The amplitude parameters retrieved, how-
ever, are sufficiently high to pass the cut. Figure 3.3 presents two of such
correlation graphs. Consequently, the second neighbour evaluation pro-

(a) (b)

Figure 3.3: Correlation graphs of string combinations 13-22 (a) and 25-32 (b), with
inter-DU distances d13−22 ≈ 360 m and d25−32 ≈ 260 m. Both graphs produce
erroneous Gaussian fits, that estimate peaks at -2276 and −2218 ns , respectively,
at an amplitude of 2.

duces unreliable results, with time offsets fluctuating strongly (∼ 100 ns)
between different amplitudes at which the method is run. At amplitudes
higher than 2, these fluctuations decrease to roughly 10 ns, with an un-
certainty of at least 18 ns. The results in this range, however, cannot be
compared with other neighbours, as most evaluations (neighbour 4-8) fail
due to a shortfall in statistics. Since the set does produce consistent results
for all other neighbours, ARCA_REALMOV is still considered adequate when
the second neighbour data is excluded. Similarly, data set ARCA_SIMCOM
produces these erroneous fits for the fourth neighbour. We provide two
examples in Figure 3.4. The estimated mean parameters, however, are still
similar to the true maxima of the correlation graphs. This causes the un-
certainty produced by the separate fourth neighbour evaluation to remain
somewhat bounded (< 10 ns). Additionally, these erroneous fits occur in
a smaller fraction of the correlation graphs than for the second neighbour
of ARCA_REALMOV. The fourth neighbour of ARCA_SIMCOM is hence kept in

Version of June 30, 2023– Created June 30, 2023 - 14:00

29



30 Time offset evaluation

(a) (b)

Figure 3.4: Correlation graphs found for the fourth neighbour of string pair 19-27
(a) and 22-19 (b), with horizontal spacings d19−27 ≈ 250 m and d22−19 ≈ 260 m.
The erroneous fits estimate peaks at 1044 and 1009 ns, respectively, at high enough
amplitudes (>3) to pass the cut.

the overall evaluation. Data sets ARCA SIM1, ARCA_SIM2, and ARCA_SIM3

contain insufficient data to be analysed at individual neighbour level, and
hence can only be used to determine the accuracy of the method once ro-
bustness has been established.

The erroneous fits were discovered near the end of this project. In Sec-
tion 5.2 we will explain their cause, and how they are prevented in future
research.

3.5 Results

This section presents an analysis of the evaluated time offsets. We first con-
sider those for individual neighbour configurations to test for consistency
of the method. Subsequently, an evaluation is performed on the overall
data set. The resulting offsets are examined for linear correlation with two
variables obtained from the detector geometry.

3.5.1 Neighbour analysis

Both the simulated and real data are used to test consistency of the results.
To examine for agreement between the results of separate neighbours, a
chi-square goodness-of-fit test is implemented. The null hypothesis H0
states that the time offsets estimated for string i are normally distributed
around a common value. That is, the weighted mean ti taken over the
individual results produced by the neighbours. The weights are chosen to

30
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3.5 Results 31

be 1/σ2
k,i, where σ2

k,i denotes the uncertainty of time offset ti,k as estimated
by the k’th neighbour. We construct the chi-square statistic for each data
set:

χ2
DATA = ∑

i
∑
k

(
ti,k − ti

σi,k

)2

(3.11)

Under the assumption of H0 : ti,k ∼ N(ti, σi,k), the statistic is χ2(ν) dis-
tributed4. Quantity ν represents the degrees of freedom, which is equiva-
lent to the amount of evaluated time offsets subtracted by the parameters
estimated, i.e. the weighted means. In a data set considering K neighbours
and N strings, ν = N(K − 1). The p-value is defined as the probability of
obtaining a test statistic χ2 at least as extreme as χ2

DATA:

p = P(χ2 ≥ χ2
DATA) = 1 − Fχ(χ

2
DATA; ν) (3.12)

Where Fχ(.; ν) is the cumulative distribution function of χ(ν). The result-
ing χ2

DATA statistics and their corresponding p-values are provided in the
table below:

Table 3.1: Chi-square goodness-of-fit test results for the data sets. The second and
third column respectively report the applied amplitude cut A and neighbours
used for the evaluation.

ARCA data A Neighbours χ2
DATA p

REAL1 1.0 2-8 80.05 1.00
REAL2 1.0 2-8 108.52 0.99
REALMOV 0.5 3-8 82.62 1.00
REALCOM 1.0 2-8 119.34 0.95
SIMCOM 3.0 2-8 130.62 0.37

For all real data sets, the tests indicate a match between the data and
null hypothesis, which demonstrates consistency of the method. The
lower p-value of ARCA_SIMCOM is mostly explained via the third neighbour
estimates of string 9 and 13, which are the only data points in the set that
deviate more than two σi,k from the weighted mean. The most consider-
able part of the chi-square statistic originates from string 9, with a contri-
bution of 55.01. Taking a closer look at the time difference data produced
by this DU, only 2 correlations are found that have sufficient amplitudes
to pass the cut. One of these correlations, string 9 and 10, produces an

4Recall, the chi-squared distribution χ(ν) describes the sum of squares of ν indepen-
dent standard normal random variables.
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erroneous fit for combination 10-9, returning an estimate for ∆t10−9 that
is roughly 80 ns off from the true maximum of the distribution. Pair 9-10,
however, has no trouble fitting and yields a value for ∆t9−10 that has the
expected 5-10 ns offset due to the skewness of the distribution. The com-
puted relative offset o9−10 therefore poorly represents the shift between
correlation graphs. Since the sample size considers only one additional
correlation, namely that of 9 and 13, the OLS estimate of individual time
offset t9 inaccurately represents the actual value. This error propagates
and affects the estimate of t13, as for string 13 only 2 correlations are found
as well.

(a) (b)

Figure 3.5: Correlation graph for the third neighbour configuration of string pair
10-9 (a) and conjugate 9-10 (b). The means of the Gaussian fits (red curve) are
estimated to be 418 and 471 ns, respectively.

The simulated sets evidently suffer from the lack of statistics. Fewer
correlation graphs per string are measured, which makes the individual
neighbour evaluation more prone to erroneous fits on the correlations that
we do measure, such as Figure 3.5(a). For smaller sets like ARCA_SIM1-3,
the evaluation cannot be run at all. When the neighbours are combined,
the sets contain sufficient correlation graphs to accurately estimate the
time offsets. For this reason, all MC simulations serve a purpose in the
final part of the results.

3.5.2 Linear correlation

The exact geometry and time calibrations of the strings in the simulated
data are predetermined, which means individual offsets of strings are set
to zero. This is not what the method evaluates in most cases. As men-
tioned in Section 3.2, a height difference between DOMs causes a shift be-
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tween the measured correlation graphs that is linearly proportional, given
a symmetric geometry throughout the detector. To establish a linear cor-
relation, the time offsets for each string are evaluated by making use of
the combined neighbour data set. Only for ARCA_SIM3, neighbour 4,5 and
7 are omitted as they produce results similar to what is found for the sec-
ond neighbour of ARCA_REALMOV in Section 3.4. The results are compared
against the height of DOM1 and DOM18, which are provided by the de-
tector file. In the ideal symmetry, both of these variables would classify
as a measure of the vertical shift between strings. This is achieved in Fig-
ure 3.1(a) by imposing identical shifts ∆z1 = ∆z2 = ∆z on all floors. As
the true detector geometry deviates from this configuration, the question
remains whether these 2 variables are able to predict a systematic trend
in the time offsets measured for the MC simulations. To infer potential
correlation, two WLS linear fits are estimated for each string. Figure 3.6
provides a graphical depiction of the analysis: the graphs of the remain-
ing data sets can be found back in Appendix B.1. The analysis is repeated
for the real data sets, in order to determine the systematic effect of swaying
strings.

Figure 3.6: Evaluated time offsets of the combined neighbour set as a function of
DOM1 (a) and DOM18 (b) height. The error bars reflect the estimated uncertain-
ties, while the red curve depicts a WLS linear fit applied to the data.

A chi-square test is again performed to determine how well the fit
matches the data. The null hypotheses now states, for the evaluated time
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offset ti of string i with estimated uncertainty σi:

H j
0 : ti ∼ N(Ti(z

j
i), σi) (3.13)

Index j is used to represent either the DOM1 or DOM18 height, and Ti(z
j
i)

denotes the corresponding time offset predicted by the linear fits. The chi-
square statistics are constructed for each data set as:

χ2
j = ∑

i

(
Ti(z

j
i)− ti

σi

)2

(3.14)

From which the p-values can be computed:

pj = 1 − Fχ(χ
2
j ; ν) (3.15)

As the linear fit requires two parameters to be estimated, the degrees of
freedom are now given by ν = N − 2 for a set of N strings.

Table 3.2: Chi-square goodness-of-fit test results for each data set. The second
and third column respectively report the applied amplitude cut A and neighbours
used for the evaluation.

ARCA data A Neighbours χ2
DOM1 pDOM1 χ2

DOM18 pDOM18

SIM1 1.0 3-8 9.68 0.96 5.18 1.00
SIM2 1.0 3-8 30.77 0.04 7.80 0.99
SIM3 1.0 3,6,8 21.38 0.32 7.70 0.99
SIMCOM 3.0 3-8 33.85 0.02 11.09 0.92

REAL1 1.0 2-8 79.33 0.00 14.94 0.73
REAL2 1.0 2-8 68.41 0.00 14.98 0.72
REALMOV 1.0 3-8 119.32 0.00 56.50 0.00
REALCOM 1.0 2-8 88.95 0.00 18.30 0.50

The test results of the simulated data suggest a linear correlation be-
tween the evaluated time offsets and DOM18 altitude, while the DOM1
altitude seems to be unrelated. For sets ARCA_REAL1, ARCA_REAL2 and
ARCA_REALCOM, the test still suggests a match between the data and null
hypothesis, but with lower confidence. The results of ARCA_REALMOV find
no correlation with either of the variables. Systematics imposed by the
movement of strings are clearly a significant contributor to the overall er-
ror, and dominate for runs with significant movement. Therefore, only for
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data that comprise runs with low or no movement, an accuracy of roughly
1 estimated uncertainty can be achieved by correcting for the time offset
caused by the difference in DOM18 height. Table 3.3 reports the uncertain-
ties provided by the evaluation. Only those of the simulated data give a
measure of accuracy, and are hence included.

Table 3.3: Summary statistics of the estimated time offset uncertainties σi. The
last column contains the sample mean of σi, taken over the set of strings.

ARCA data min (σi) [ns] max (σi) [ns] σ [ns]

SIM1 3.31 4.07 3.92
SIM2 2.39 2.7 2.63
SIM3 2.36 3.13 2.95
SIMCOM 2.24 2.57 2.51

So why do we only observe a correlation with DOM18 height? Let us
return to Equation 3.9, and note that the detector mostly deals with highly
relativistic (v ∼ c) muons for which the Cherenkov angle θc is close to 90
degrees. The expression simplifies to:

∆oAB ≈ 1
2
(∆z1 + ∆z2) ·

1
c
(cos ϕ + n sin ϕ) (3.16)

Assuming a refractive index n ∼ 1.3 for seawater, this means a unit in-
crease in average displacement 1

2(∆z1 + ∆z2) causes a relative shift of
roughly 3-4 ns. This implies the following: firstly, the relative shift be-
tween correlation graphs produced by the k’th neighbours of DUA.18 and
DUB.18 is closely related to the height difference ∆z1

.
= zDOM18

A − zDOM18
B ,

as it differs at most 1 metre from quantity 1
2(∆z1 + ∆z2) for virtually

all combinations. Secondly, the k’th neighbours of DOMs lower in the
strings produce distributions that peak at roughly the same time differ-
ence as those of DOM18, as quantity 1

2(∆z1 + ∆z2) remains approximately
equal for all combinations. As DOM18 is the largest contributor to the
overall distribution of string pair A-B and conjugate B-A, the peaks of
the summed k’th neighbour correlation graphs will approximately coin-
cide with those of DUA.18 and DUB.18. On the contrary, DOM1 con-
tributes substantially less to the summed k’th neighbour distributions,
which means the shift between its individual correlation graphs is a poor
representative of the actual relative time difference between the DUs.
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Chapter 4
Position calibration

The position calibration method utilises a rather unique behaviour of the
correlation graphs. We construct a quantity that is nearly unaffected by
all sources of time offsets, and is completely dependent on the horizontal
distance between strings. Similar to the time offsets evaluation, the string
positions are estimated using a least squares approach, this time numeri-
cally rather than analytically. Comparing these to the true locations gives
a measure of the accuracy of the method. Prior to the analysis, a suitable
cutoff amplitude and additional data reduction have to be considered. In
the last section of this chapter, the results of both the simulated and real
data are analysed to provide a first impression of the accuracy achievable,
and how this is affected by sample size and string movement.

4.1 Methodology

We start by defining the average time difference as µt,AB
.
= ∆tAB + ∆tBA.

Introducing individual time offsets tA and tB increases ∆tAB and ∆tBA by
tA − tB and tB − tA, respectively. Quantity µt,AB is therefore independent
of real time offsets. It is furthermore virtually impervious to offsets caused
by detector asymmetries, as will be demonstrated in Section 4.2. A third
order polynomial relationship can be empirically derived between µt,AB
and the inter-DU horizontal distance for all neighbours. These polynomi-
als give a distinct correlation between the relative positions of the strings
and the time differences they measure. We start by defining the horizon-
tal (x, y) (Easting-Northing) plane in the Universal Transverse Mercator
(UTM) coordinate system, where the point of reference is taken to be in
grid zone N33 at 587 600 m Easting and 4 016 800 m Northing, 3450 me-
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38 Position calibration

Figure 4.1: The k’th neighbour average time differences of string pairs in the
ARCA detector as a function of their horizontal distance. Fit through the data,
to which an amplitude cut of 1 has been applied, are third order polynomials for
each individual neighbour.

tres below sea level. The horizontal positions of the strings are provided
by the detector file. They vary slightly between the real and simulated
data, mostly with a distance of 10 m, and are assumed constant during all
runs. To give an impression of the detector footprint, a graphical depic-
tion of the DU locations is provided in Figure 4.2. Say a new string was
to be deployed, and its whereabouts in the (x, y) plane are still unknown
or only estimated roughly. As the DU becomes operational right after de-
ployment, time differences with respect to all other strings can already
be measured. Assuming all other string locations are known, horizontal
distances ds(x, y) are calculated of all possible string pairs s with the new
DU for a given range of potential (x, y) positions. Subsequently, we esti-
mate the average time differences using the polynomials estimated from
the data of the remaining strings:

Mt(ds(x, y)) .
= Mt(ds) = a3d3

s + a2d2
s + a1ds + a0 (4.1)

For each potential location (x, y), an unweighted chi-square can be con-
structed:

χ2(x, y) = ∑
s
(Mt(ds)− µt,s)

2 (4.2)

Where µt,s is the average time difference as measured by the string combi-
nations. Unlike a conventional chi-square, quantity χ2(x, y) is not scaled
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4.1 Methodology 39

Figure 4.2: Map of the horizontal string coordinates, relative to the UTM point of
reference.

using a measurement error. Note that this process can be repeated for a
given set of neighbours K. The combined chi-square is then given by

χ2
K(x, y) = ∑

k∈K
∑

s
(Mt,k(ds)− µt,k,s)

2 (4.3)

with Mt,k(ds) and µt,k,s being the estimated and measured average time
difference of the k’th neighbour string pair configuration, respectively. The
result is a two-dimensional data structure, which is visualised using a heat
map in Figure 4.3. We expect the true position of the string, denoted as
(x0, y0), to minimise the unweighted chi-square. This represents a numer-
ical approach to the LS optimisation:

argmin
x,y

χ2
K(x, y) (4.4)

Which produces estimates (x̂, ŷ) for the location of the new string. The
accuracy of the method is quantified by defining a residual distance:

dDU
r =

√
(x̂ − x0)2 + (ŷ − y0)2 (4.5)

Note that this method can be applied to all existing strings in the detector,
by assuming their position to be unknown and using the remainder of the

Version of June 30, 2023– Created June 30, 2023 - 14:00

39



40 Position calibration

Figure 4.3: An example of the 2D data produced by evaluating χ2
K for neighbours

3-8. The true and estimated position of string 9 are indicated with a red cross and
yellow plus sign, respectively. Note that χ2

K has been computed without taking
into account the resolution of ∆tAB measurements, which grants it units ns2. An
amplitude selection of 1 has been imposed on the data to improve accuracy.

DUs to perform the polynomial fit. It is crucial to distinguish the utility of
the real and simulated data in this method. For the real data, only an esti-
mate of the detector geometry is provided by the acoustic method, while
the locations of strings are known for simulations. Hence, only the MC
data serve as a means to measure the accuracy of the position estimation.
To test the performance of this method, both serve a purpose.

4.2 Systematics

For the position calibration, altitude shifts ∆z1 and ∆z2 as displayed in
Figure 3.1(a) cause an increase in average time difference µt,AB equal to

∆µt,AB = (∆z1 − ∆z2)

(
sin (θc − ϕ)

v sin θc
+

sin ϕ

(c/n) sin θc

)
∝ (∆z1 − ∆z2)

(4.6)

As quantities ∆z1,∆z2 are roughly equal for most DOM combinations in
the detector, the systematic effect imposed by vertical displacements is
negligible compared to the time offset evaluation. For the string move-
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4.2 Systematics 41

ment, this contribution is equal to

∆µt,AB =
2 sin ϕ

v
∆x ∝ ∆x (4.7)

where ∆x denotes the horizontal shift defined in Figure 3.1(b). As the
largest fraction of the incoming flux consists of muons propagating down-
wards (ϕ ∼ 0), the accuracy of the method is again affected to a much
smaller degree than that of its counterpart. The average time difference
is therefore nearly unaffected by time offsets, whether real or imposed by
asymmetry. Even when no offsets are introduced to the geometry of the
detector, the accuracy of the method is again limited due to the asymmetry
caused by malfunctioning DOMs.
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4.3 Cutoff amplitude

Equivalent to the time evaluation, a stable region of cutoff amplitudes has
to be established for the method to function properly. In this region, the
computed residual distances dDU

r should remain roughly equal, as we are
again working with correlated data sets. If the cut is set too low, poorly
estimated time differences obtained from small sample distributions, like
Figure 2.4, take over. This produces a third order polynomial fit that
does not represent the actual relation between average time difference and
inter-DU distance.

Figure 4.4: Third order polynomial estimated for the fourth neighbour time dif-
ference data and inter-DU distance. The cutoff amplitude is set to 0, which causes
an outlier produced by a small sample distribution to interfere with the fit.

Alternatively, setting the amplitude too high results in a shortage of
string correlations. As a result, the unweighted chi-square data has no
global minimum. This typically happens first for strings located near the
detector boundary, as there are less neighbouring strings in their proxim-
ity. An example is shown for DU5 in figure 4.5, which in a 150 m radius
only neighbours to DU12. Evaluating its position at high amplitudes pro-
duces a ring-like pattern in the heat map of χ2

K, as it is minimised solely
for a certain distance from the true position of string 12.

42
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4.4 Neighbour selection 43

Figure 4.5: Heat map of χ2
K, computed for string 5 after applying an amplitude

cut of 2 to the time difference data. The exact location of DU12, which follows
from the MC simulation, is at (−137.980 m, 197.710 m).

A time difference may still be measured by several neighbour configu-
rations (in Figure 4.5 these were the 5th and 6th neighbours) of the same
string pair, but as these all correspond to roughly the same distance in the
third order polynomials, only the band of the ring experiences an increase
in size. To accurately perform, the method requires correlation with at
least 3 strings, with multiple neighbour configurations involved for each
pair. We quantify the spread of residuals and average accuracy of the
method by computing the root mean squared error (RMSE):

RMSE =

√
1
N ∑

i
(di

r)
2 (4.8)

Where the sum is evaluated over a set of N strings. The RMSE is preferred
here over the MAE, as it is more sensitive to outliers, which are typically
produced by strings at the boundary of the detector (e.g. DU9). A similar
reasoning follows as for the time offsets: the amplitude should be chosen,
such that the RMSE does not blow up.

4.4 Neighbour selection

The results from Section 2.6, 3.4 and 3.5.2 indicate that a third data se-
lection has to be made in order for the methods to function optimally,
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aside from the amplitude and 30% cut. Just like the time offset evaluation,
the position calibration requires a more thorough analysis of the separate
neighbour data sets to produce accurate results. The first hint is given
by data set ARCA_SIM3: Section 3.5.2 suggests that neighbour 4, 5 and 7
should rather not be used in the offset evaluation due to pathological fits
that have reached a high enough amplitude to pass the cutoff. These inac-
curate estimates of ∆tAB manifest themselves in an estimated uncertainty
that explodes when evaluating the neighbours separately. Likewise, when
implementing these data sets in the position calibration, outliers can be
seen when plotting the polynomial fits:

Figure 4.6: Third order polynomials estimated for the 4th, 5th and 7th neighbour
time difference data and inter-DU distance. The cutoff amplitude is set to 0.5,
which is insufficient to rule out the outliers.

Resultantly, the RMSE computed from the residuals blows up. We note
that the outliers of the fifth neighbour are small compared to those of the
fourth and seventh, but significant enough to decrease the accuracy by
nearly a factor 2 when included. By excluding neighbour 4,5 and 7, the
outliers disappear and the accuracy of the method improves. In data set
ARCA_SIMCOM, outliers are found for neighbour seven. The largest one orig-
inates from time difference distributions that both have an amplitude of 1.
Setting the cutoff this high results in a shortfall in statistics, which means
the method does not have a stable region. To resolve this, the seventh
neighbour data is excluded from the analysis.

44
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4.5 Results

In the first part of this section, we illustrate the similarities between real
and simulated data, to demonstrate that both function as a viable tool to
test the performance of the position calibration. Subsequently, the residual
distances are analysed to provide a first estimate of the accuracy achiev-
able, and to determine the effects of sample size and moving strings on the
predictive power of this method.

4.5.1 Polynomial fits

The real and simulated data produce polynomial fits that are very similar
in shape. Only for large inter-DU distances (ds > 200 m), deviations start
to occur, especially for the third, fourth and fifth neighbour. A plausible
cause for this is the inability of the MC simulations to completely reflect
the angular and energy distribution of the incoming muon flux, as previ-
ously mentioned in Section 2.6. A comparison between fits of data sets
ARCA_REAL1 and ARCA_SIM1 is displayed in Figure 4.7. The corresponding
coefficients are provided in Table 4.1. Overall, the MC simulations prove
to be accurate reflections of the real data.

Figure 4.7: Third order polynomials estimated for real and simulated data. An
amplitude cut of 0.5 is applied to both sets to prevent outliers from interfering
with the fit.
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Table 4.1: Estimated coefficients for the third order polynomial fits displayed in
Figure 4.7. Quantities a0,a1,a2 and a3 are as given by Equation 4.1.

Data Neighbour a3 [ns/m3] a2 [ns/m2] a1 [ns/m] a0 [m]

ARCA SIM1

3 −7.17 · 10−5 3.64 · 10−2 -0.38 720
4 −5.47 · 10−5 3.03 · 10−2 -0.49 970
5 −4.61 · 10−5 2.78 · 10−2 -0.84 1231
6 −1.43 · 10−5 1.52 · 10−2 0.23 1439
7 −9.33 · 10−6 1.20 · 10−2 0.37 1678
8 −1.79 · 10−5 1.59 · 10−2 -0.44 1959

ARCA REAL1

2 6.50 · 10−7 9.19 · 10−3 3.81 345
3 −1.85 · 10−5 1.56 · 10−2 2.09 635
4 −3.26 · 10−5 2.27 · 10−2 0.32 946
5 −1.79 · 10−5 1.70 · 10−2 0.43 1187
6 −2.02 · 10−5 1.79 · 10−2 -0.17 1458
7 −1.52 · 10−5 1.51 · 10−2 −7.71 · 10−2 1698
8 −1.22 · 10−5 1.35 · 10−2 -0.14 1950

4.5.2 Residuals

The residual analysis serves two purposes. We first estimate the accuracy
of the method and how this is affected by the sample size of the data. This
can only be achieved using the MC simulations, as for these, the exact po-
sitions of the DUs are known. The residual distances computed for the real
data do not function as a measure of accuracy, as the detector file provides
only rough estimates of the true string positions. Finally, the real data is
utilised to convey if the effect of swaying strings on the predictive power
of the method is truly negligible. A graphical depiction of all residual dis-
tances calculated is provided in Appendix B.2. Insufficient correlations
for string 9 and 32 were registered in ARCA_SIM2, causing their estimates
to be inaccurate. Results seem to improve for increasing statistics; the dif-
ferences between SIM3 and SIMCOM, however, are rather small, considering
the sample size is roughly 3 times as large for the combined set. It seems
that the method is reaching the limit set by malfunctioning DOMs. To test
this hypothesis, data sets ARCA_SIM1 and ARCA_SIM3 are merged and eval-
uated. Analogous to ARCA_SIMCOM, the seventh neighbour is excluded to
improve results. The statistics of each evaluation are reported in Table 4.2.

46
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Table 4.2: Summary statistics of the residual distances computed for each data
set. The second and third column respectively report the applied amplitude cut
A and neighbours used for the evaluation.

ARCA data A Neighbours min (dDU
r ) [m] max (dDU

r ) [m] RMSE [m]

SIM1 0.5 3-8 0.21 3.58 1.30
SIM2 0 3-8 0.39 13.77 3.48
SIM3 0.5 3,6,8 0.14 2.61 1.35
SIMCOM 0.5 3,4,5,6,8 0.14 1.83 0.87
SIM1&3 0.5 3,4,5,6,8 0.14 1.83 0.97

REAL1 0.5 2-8 0.16 1.36 0.62
REAL2 0.5 2-8 0.21 1.97 0.89
REALMOV 0.5 3-8 0.12 2.33 0.93
REALCOM 0.5 2-8 0.12 1.22 0.64

Indeed, the additional 33 hours of runs in ARCA_SIMCOM have little to
no added benefit; selecting a subset of roughly 2.5 days of data results in
equally accurate estimates. We observe something similar for the real data:
the residuals of ARCA_REAL1 are nearly as large as for ARCA_REALCOM. Lastly,
the data hints at a slight decrease in accuracy as a result of swaying strings.
To state this with full certainty, a more extensive analysis should be per-
formed on both moving and non-moving data sets, as differences between
ARCA_REALMOV and ARCA_REAL2 are slight, while the latter set covers 3 more
hours of runs.
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Chapter 5
Future extensions

Throughout this study, various deficiencies in the current method have
come to light. The two most prominent are found in the analysis and re-
duction of the time difference data. The Gaussian fit is unable to com-
pletely characterise the heavily skewed correlation graphs, which results
in the omission of all first (and second) neighbour data. Implementing
only the amplitude and 30% cut still results in pathological data, which in
most cases gravely decreases the performance of both methods. The first
part of this chapter presents possible solutions to both problems, by op-
posing a new class of correlation graph fits and third data reduction. In
the final section, an extension of the time offset and position calibration
method is considered, which implements an uncertainty in the measure-
ment of time difference ∆tAB. Ultimately, this allows for a measurement
error to be estimated for the evaluated string positions.

5.1 Skew distributions

Skewed distributions have been an active field of study over the past
decades, as they occur in several fields of science. Financial assets, for
example, are known to exhibit extreme tails, which call for the need of al-
ternative methods to measure risk. The energy loss of relativistic charged
particles due to ionisation in a thin film was theoretically described by
Landau in 1944 [21], which was achieved by introducing an asymmetric
probability density now known as the Landau distribution. Determining
an accurate fit for the data can be a cumbersome process, as it is highly de-
pendent on their typically elusive nature. One straightforward approach
would be to extent commonly used distributions, such that they can ac-
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count for skewing. In 1985, a study published by A. Azzalini proposed
a new class of probability density functions, in which the skewness is
parametrised using a shape factor λ [22]. In his paper, he demonstrated that
for any symmetric density function f (.) defined on R with corresponding
cumulative distribution function F(.), a third function may be constructed
such that for any real λ

2 f (x)F(λx) (5.1)

is a density function. Note that setting λ = 0 retrieves the original dis-
tribution, which by definition implies no skewing. Additionally, location
parameter m and scale parameter1 s are introduced to make these skew
distributions applicable to the data. The skew density transforms to:

p(x; m, s, λ) =
2
s

f
(

x − m
s

)
F
(

λ
x − m

s

)
(5.2)

Intuitively, the first step to take here would be to extend the normal dis-
tribution, and fit this over the correlation graphs using a WLS approach.
We repeat this step for the logistic, Cauchy and t distribution. Each of
these has practical applications and deserves its own dedicated chapter.
This section merely functions as a suggestion for possible extensions of
the current method used to estimate time difference ∆tAB.

The skew distribution fits display visible improvement, especially for
the first and second neighbour. An example is provided in Figure 5.1. For
each fit, ∆tAB is estimated using the argument of the mode. In the higher
neighbour regime, discrepancies between estimates diminish, as was to
be expected from previous observations. The skew-Cauchy distribution is
found to be the most promising candidate, as it visually produces a bet-
ter fit than the skew-normal and logistic distributions while requiring as
much parameters to estimate using WLS. While the skew-t distribution
yields similar results, an additional degrees of freedom parameter n has
to be included, which unnecessarily complicates the fitting process. Note
that these are just a handful of popular skew distributions: Equation 5.2
functions as a gateway to a whole new set of possible fits for the corre-
lation graphs. Alternatives would be intrinsically skewed densities, such
as the Landau or Weibull distribution. One may even define a unique
distribution tailored to each graph using spline functions: the possibili-
ties are endless. Statistical methods to determine the best fit include the
Kolmogorov-Smirnov test and Akaike Information Criterion (AIC)2.

1These are similar in utility to the mean µ and standard deviation σ of the Gaussian
distribution, but in most cases no longer serve as a direct measure of the first and second
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(a) (b)

Figure 5.1: Popular skew distribution WLS fits applied to the first (a) and second
(b) neighbour data of string pair 24-25 versus the Gaussian fit (red curve) cur-
rently utilised to estimate the time difference ∆tAB. The mode of each graph is
indicated with a dashed line.

5.2 Additional selections

It is evident that the amplitude and 30% cut do not filter the data enough
to produce accurate results. During this research, a third data reduction
is performed which rules out neighbours that contain incorrect measure-
ments of the time difference ∆tAB. Both the separate neighbour time offset
evaluation and third order polynomial graphs function here as a global
quality scan of the data. Note, however, that this procedure also throws
out information that could be of use to the method. For example, exclud-
ing the seventh neighbour of ARCA_SIMCOM results in a less accurate estima-
tion of the time offsets, as only a few outliers occur in the data that mostly
influence the position calibration. This brings us to potential extensions
that apply to both methods, where techniques are implemented that ex-
amine the results for inaccurate estimates of ∆tAB. It is found near the very
end of this project that a fourth parameter is included in the Gaussian fit,
namely a shift in the vertical direction. This shift has negative values for
all erroneous fits, such as the ones presented in figures 3.3, 3.4 and 3.5(a).

central moment.
2Contrary to the likelihood function, the AIC accounts for the number of parameters

estimated.
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Excluding it from the WLS fitting process provides two advantages: first of
all, the correlation graph in Figure 3.5(a) is now correctly estimated. This
will cause a significant improvement in the estimated time offset of string
9 in data set ARCA_SIMCOM, implying better chi-square test results for the
individual neighbour analysis. Second of all, the fit now produces high
uncertainties on the estimates of the mean and width of poorly defined
distributions as displayed in Figure 3.3 and 3.4. An additional selection
could therefore be based on the relative uncertainty of those parameters,
e.g. by imposing the restriction σµ/µ < 0.01 for the mean. If one imple-
ments a skew distribution fit, an equivalent condition can be set for the
scale (s) and location (m) parameter.

(a) (b)

Figure 5.2: The correlation graph of third neighbour string pair 10-9 (a) shows
an improved fit (red curve) compared to Figure 3.5(a), with an estimate of ∆t10−9
(‘Mean’ parameter) closer to the true maximum. The fourth neighbour distribu-
tion of pair 19-27 (b) has high relative uncertainties on both the mean and width
(‘Sigma’ parameter) estimates.

5.3 Weighted measurements

Both methods can be extended by including an error in the measurement
of time difference ∆tAB. For the time offset evaluation, this introduces a
weight wi = 1/σ2

i to each relative offset oi measured, which alters the me-
chanics of the LS method. The variance-covariance matrix of the estimated
time offsets is now formulated as

Var(t̂) = (ATWA)−1 (5.3)

where W is a diagonal matrix that contains weights wi. The position esti-
mation is modified in a similar manner, by weighing the chi-square from
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Equation 4.3:

χ2
K = ∑

k∈K
∑

s

(Mt,k(ds)− µt,k,s)
2

σ2
k,s + σ2

k,s

.
= ∑

k∈K
∑

s

(
Mt,k(ds)− µt,k,s

σµk,s

)2

(5.4)

Where σk,s and σk,s are the errors of the time differences estimated for the
k’th neighbour of string pair s and its conjugate s̄, respectively. A viable
measure of σAB,k may be provided by the WLS skew distribution fit pro-
posed in Section 5.1, as the estimated uncertainty of location parameter
m. Equivalently, the Gaussian fit provides an error for the mean. Typi-
cal values that occurred for the skew-Cauchy fit were around 1 ns, as for
the Gaussian fit. This most likely underestimates the actual measurement
errors: alternative methods to estimate uncertainty should therefore be
considered in future studies. Once an accurate estimate for σµk,s is estab-
lished, χ2

K is properly normalised. Assuming a sufficiently large set of
time differences ∆tAB is measured, a confidence region around the mini-
mum χ2

K(x̂, ŷ) .
= χ2

K,min can now be defined as the set of coordinates (x, y)
such that

χ2
K(x, y) ≤ χ2

K,min + ∆χ2
K (5.5)

where values of ∆χ2
K for 3 popular coverage levels are provided in the

table below [15]:

Table 5.1: Values of ∆χ2
K at frequently used significance levels α.

1-α (%) ∆χ2
K

68.27 2.30
95.45 6.18
99.73 11.83

Subsequently, an estimate of the error of the evaluated position (x̂, ŷ)
can be determined. Important to note is that this region may have several
shapes, and in general cannot be regarded as circular3. In later iterations of
the position calibration method, one may examine for (dis)agreement be-
tween results by developing statistical tests that implement the confidence
region ∆χ2

K.

3In this case, a measure of the uncertainty could be the radius of the circle.
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Chapter 6
Conclusion

This study presents an examination of two detector calibration methods,
capable of evaluating offsets in time and position independently. Both
techniques are based on the correlation of Cherenkov photon hits between
detection units, caused by the traversal of atmospheric muons through
the seawater. They rely on the assumption of symmetries in the detector
geometry and use a least square method to provide estimates of the string
positions and time offsets.

The time calibration method has already been proven plausible in pre-
vious investigations [23]. In this research, we establish a robust method by
running the evaluation for several cuts of data (i.e. neighbours), and per-
forming a chi-square goodness-of-fit test to demonstrate consistency of the
results. For data sets that consider minor to no string movement, the most
prominent source of systematic error is caused by an asymmetry in the de-
tector geometry, which is linearly correlated to the height differences be-
tween the uppermost modules of each DU. Ultimately, an accuracy of 2.5
nanoseconds is obtained in this project, which requires roughly 3.5 days
of optical data. This requires an additional data reduction, which rules
out neighbours that contain inaccurate measurements of the true relative
offsets between detection units.

A hit correlation approach to estimate string positions is developed
during this project. We show the feasibility of the method by applying
it to both measured and Monte Carlo simulated data. The latter of the
two is utilised as a means to provide an estimate of the accuracy currently
achievable, that is within 2 metres of the true string positions. Further
analysis uncovers that 2.5 days of data is sufficient to provide these results.
For larger sample sizes, a fundamental limit seems to be imposed on the
accuracy of the method by asymmetries in the detector geometry caused
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56 Conclusion

by malfunctioning DOMs.
To reach its scientific goals, KM3NeT requires nanosecond accuracy

throughout the detector, which corresponds to a positional accuracy of
roughly 20 cm. Although both methods are unlikely to reach these levels
of precision, they are only in their early stages of development and are far
from reaching their full potential. A hit correlation method furthermore
functions as an ideal complementary to the existing calibration techniques,
as it implements the background noise from already acquired data. This
eliminates the need for additional setups or measurements.

A hit correlation method has been proven feasible for the ARCA de-
tector. Future research can therefore aim to further fine-tune the current
techniques used to obtain the time difference data, such that they are able
to successfully characterise correlation graphs for lower neighbours. Ad-
ditionally, the data reduction may be extended to effectively account for
pathology. This improves accuracy and preserves valuable data, which
ultimately leads to a more efficient method. Another interesting follow-
up study would be to apply this method to the ORCA detector, which has
a geometry that is much more densely packed with DOMs and has a flat-
ter seafloor than ARCA. Performance of the method is therefore expected
to increase, while requiring shorter periods of data acquisition.
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Appendix A
Multiple Linear Regression: Least
Squares

Consider a system which contains n linear equations of the form

yi = β1xi1 + β2xi2 + · · ·+ βkxik + ui (A.1)

which in matrix notation can be written as:

y = Xβ + u (A.2)

Vector y = (y1, y2, . . . , yn)T contains n observations on a random variable,
also referred to as the dependent variable. These are correlated to a set of k
explanatory variables or regressors, used to describe each observation. The
result is an n × k matrix containing nonrandom elements. Possible devi-
ations from the linear model, commonly referred to as the disturbances or
errors, are described within the random n × 1 vector u. The least squares
(LS) method aims to estimate the set of parameters β = (β1, β2, . . . , βk)

T

such that deviations ui are as ‘small’ as possible. This smallness is quanti-
fied using the LS objective function:

S(β) =
n

∑
i=1

u2
i = (y − Xβ)T(y − Xβ) (A.3)

Which is simply the sum of squared deviations. Subsequently, it is min-
imised with respect to vector β:

argmin
β

S(β) (A.4)
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58 Multiple Linear Regression: Least Squares

Applying some vector calculus results in the following solution:

β̂ = (XTX)−1XTy (A.5)

Where a hat is used to distinguish the LS estimator of β from its true value
[19]. Some questions that might arise now are: why use the squared devi-
ations to define the ‘goodness’ of the fit, and e.g. not the absolute value or
higher powers? And what is the uncertainty of β̂? It turns out that the two
are related. Namely, in the class of all possible unbiased estimators β̃ of β,
which means E(β̃) is equal to the true value of β, we choose the one with
the smallest variance. To do so, certain restrictions have to be imposed
on this class by making assumptions about the model described in Equa-
tion A.2. Aside from linearity in the parameters β and nonrandomness of
matrix X, we require the observations to have mean E(y) = Xβ and com-
mon variance Var(y) = σ2 In, where In denotes the identity matrix. When
these conditions are met, the Gauss-Markov theorem states that the best lin-
ear unbiased estimator (BLUE) of β is the LS solution β̂. Consequently, its
variance is derived to be

Var(β̂) = σ2(XTX)−1 (A.6)

which as earlier stated, is the lowest of all linear unbiased estimators of β.
Additionally, if the data is assumed to be drawn from a multivariate nor-
mal distribution, i.e. y ∼ N(Xβ, σ2 In), we find that the β̂ provides the best
estimate of all unbiased estimators of β, rather than only those that consist
of linear combinations of the data yi. The last thing to consider is how to
estimate variance parameter σ2. The model has insufficient restrictions to
provide one distinct candidate, and only for the class of unbiased quadratic
estimators one can show that

s2 =
(y − Xβ̂)T(y − Xβ̂)

n − k
=

eTe
n − k

(A.7)

has the lowest variance [19]. This leaves open more room for negotiation
about how we estimate the actual uncertainty of the data. The residual vec-
tor e is used to describe the difference between the observed and estimated
values of y, and therefore serves as a measure of accuracy.
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Appendix B
Supplementary graphs

This chapter provides graphical representations of the data used to obtain
the results in Section 3.5.2 and 4.5.2. We present the remaining time offsets
and estimated uncertainties used to obtain the chi-square goodness-of-fit
test results as displayed in Table 3.2, and lastly, the residual distances as
summarised in Table 4.2.
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60 Supplementary graphs

B.1 Linear fits

B.1.1 Real data

Figure B.1: Time offsets evaluated for the real data as a function of DOM1 (a) and
DOM18 (b) height. The error bars reflect the estimated uncertainties, while the
red curve depicts a WLS linear fit applied to the data.
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B.1 Linear fits 61

Figure B.2: Time offsets evaluated for the real data as a function of DOM1 (a) and
DOM18 (b) height. The error bars reflect the estimated uncertainties, while the
red curve depicts a WLS linear fit applied to the data.
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62 Supplementary graphs

B.1.2 Simulated data

Figure B.3: Time offsets evaluated for the MC simulations as a function of DOM1
(a) and DOM18 (b) height. The error bars reflect the estimated uncertainties,
while the red curve depicts a WLS linear fit applied to the data.
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B.2 Residual plots 63

B.2 Residual plots

B.2.1 Real data

(a) (b)

(c) (d)

Figure B.4: Residual distances for the real data sets. The shaded red area depicts
the 68% confidence interval spanned by the RMSE.
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64 Supplementary graphs

B.2.2 Simulated data

(a) (b)

(c) (d)

(e)

Figure B.5: Residual distances for the simulated data sets. The shaded red area
depicts the 68% confidence interval spanned by the RMSE.
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