
Studies of the Cosmic Ray shadow of the Moon using the
KM3NeT/ARCA telescope
Kingma, Tjalling

Citation
Kingma, T. (2024). Studies of the Cosmic Ray shadow of the Moon using the
KM3NeT/ARCA telescope.
 
Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master Thesis,
2023

Downloaded from: https://hdl.handle.net/1887/3766372
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/3766372


Studies of the Cosmic Ray shadow
of the Moon using the

KM3NeT/ARCA telescope

THESIS

submitted in partial fulfillment of the
requirements for the degree of

BACHELOR OF SCIENCE
in

PHYSICS

Author : T.M. Kingma
Student ID : 2648490
Supervisor : Dr. D.F.E. Samtleben
2nd corrector : Dr. M.J.A. de Dood

Leiden, The Netherlands, July 2, 2024





Studies of the Cosmic Ray shadow
of the Moon using the

KM3NeT/ARCA telescope

T.M. Kingma

Huygens-Kamerlingh Onnes Laboratory, Leiden University
P.O. Box 9500, 2300 RA Leiden, The Netherlands

July 2, 2024

Abstract

Cosmic rays produce muons that cast Cherenkov light cones in the water.
With the Cherenkov light cones, KM3NeT can reconstruct the track of the
muon across the sky, this result is named an event. Between September

22 2022 GMT and June 09 2023 GMT, the ARCA site was measuring, and
detecting Cherenkov light from any bypassing muon. From this

measurement simulations were created, containing 6 times more events
as the measurement. In this thesis, we analyse the events from the

simulation. We bin the events on one- & two-dimensional maps of the
sky, where we bin all reconstructed events relative to the location of the

Moon. Two models are fitted to the maps. One model assumes the
absence of the Moon; another model respects a valley in events at the

Moon’s location. These fits are tested with the use of χ2-tests. The
one-dimensional analysis indicates a relative amplitude of 0.65 ± 0.10

and angular resolution of 0.81◦ ± 0.12◦. The rotational calibration of the
telescope is tested. Although the χ2 values differ most for no rotational

calibration an angle of -0.2 and -0.4 are larger than expected. Quality cuts
of the data set are based on the variables’ likelihood and track

reconstruction uncertainty. It is the superposition of a likelihood of 100 or
higher and a track reconstruction uncertainty of 0.1 or smaller that causes

an increase in the difference in χ2 values.
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Chapter 1
Introduction

1.1 Cosmic rays atmosphere interaction

The Earth gets bombarded by cosmic rays from all directions. Cosmic rays
are a mixture of nuclei and charged subatomic particles but predominantly
consist of protons. These rays collide with the Earth’s upper atmosphere.
This interaction results in the creation of a pion π, which can decay into
two different particles, one of them being a neutrino νµ. The other result-
ing particle of this process is the muon µ+/−. An example of such atmo-
spheric collision, resulting in a muon and a muonic neutrino, is equation
(1.1), where a proton from the cosmic rays collides with a stable Nitrogen
molecule at the top of the atmosphere.

p+ + N2 → π+/− → µ+/− + νµ (1.1)

The muons travel through the atmosphere to eventually reach the Earth’s
surface or bottom of the seas. Below the sea surface, they can be detected
by an underground or underwater muon detector. KM3NeT/ARCA tele-
scope is one such underwater telescope. The Moon and the Sun are two
celestial objects that can stand in the pathway of cosmic rays. These objects
should cast a shadow of the muons measured on Earth.

1.2 Purpose of study

This study analysed the data received from the KM3NeT/ARCA telescope
and attempted to identify the blockage of measured muons (events) caused
by the presence of the Moon. In other words, we are trying to find the
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8 Introduction

shadow that the Moon casts over the Earth in the cosmic bombardment of
Cosmic Rays.

In the one-dimensional analysis, we bin in radii from the Moon and
thus one step in a larger radius is one bin. In the one-dimensional analy-
sis, we search for the amplitude of the shadow and the width σres of the
Moon’s shadow.

In the two-dimensional analysis, we primarily locate the position of
the Moon with the χ2-tests onto the fits. We will also test the KM3NeT’s
rotational calibration by assuming it is incorrect. In the two-dimensional
analysis, there will also be quality cuts made to the data to filter out poorly
reconstructed events.

8
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Chapter 2
KM3NeT/ARCA

2.1 KM3NeT

KM3NeT is a research framework constructed by European collaboration.
The KM3NeT telescopes consist of building blocks of highly sensitive op-
tical detectors in 3D arrays, with a total volume of a cubic kilometre. That
is the reason behind its name (KM3 Neutrino Telescope). These telescopes
are placed in the Mediterranean Sea.

2.2 ARCA

There are currently two sites. Namely ORCA and ARCA. These are acronyms
for: ’Oscillation Research with Cosmics in the Abyss’ and ’Astro-particle
Research with Cosmics in the Abyss’. The two telescopes are calibrated for
different energy regimes for the neutrino. ORCA is meant to detect neutri-
nos from the atmospheric interaction of the cosmic ray.[1] ARCA is meant
to detect neutrinos from the depths of the universe.[1] ARCA is meant
to measure neutrinos within the energy range of 102 ÷ 108 GeV [2]. The
ARCA site is located at offshore Capo Passero, Sicily, Italy at the bottom of
the Mediterranean Sea[ARCApotential].

2.3 DUs & DOMs

At the time of measurement, ARCA had 21 Detection Units (DU). These
detection units consist out of 700-metre double optical fibre with 18 Digi-
tal Optical Modules (DOMs) distributed with a distance of 36 metres be-
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10 KM3NeT/ARCA

tween them [3][4][5]. DOMs are the optical sensors of the neutrino tele-
scope. Each DOM has 31 photomultiplier tubes (PMTs), and all PMTs are
connected to the central control unit named the octopus[5]. The fibre is
mounted onto the seabed 3.5 kilometres deep [4].

Figure 2.1: Copyright KM3NeT [6]; Inside of a DOM. 31 PMTs (orange) connected
to the octopus (green) within the glass vessel connected by optical fibres.

2.4 Track reconstruction

When muons travel through seawater they cast Cherenkov light. This
light is detected by multiple DOMs from different angles and with cor-
related timestamps. The algorithm will use a best-track hypothesis, which
means it will assume there is a track that matches best with the observed
hit pattern from different DOMs. This reconstructed track will be opti-
mised with a fit maximising the likelihood of the corresponding hit pat-
tern. This fitting to optimise for the maximum likelihood of the event,
results in an uncertainty of direction of the track. This uncertainty β, is in
units of degrees. The total information of the muon track reconstruction
and its direction is named an event.

10
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Chapter 3
Data from ARCA21

This research analyses a simulation dataset. This simulation corresponds
well with the real dataset. The real dataset measurement collection started
on Thursday, September 22nd, 2022, at 17:03 and ended on Saturday, June
10th, 2023, at 01:59 (Central European Summer Time). During the time of
measurement, the ARCA telescope had 21 strings with DOMs attached to
them.

In the data sets, every row is one event. Every event has multiple
columns of variables. Significant variables for this research are:

1. r: relative distance to the Moon

2. x: azimuth distance to the Moon

3. y: elevation distance to the Moon

4. lik: likelihood of the event

5. β: track reconstruction uncertainty

6. angular resolution: the angular resolution of the event.

r,x,y are all in units of degrees. Likelihood is the likelihood of fit of the
reconstructed track being optimised for corresponding to the observed
Cherenkov light at the triggered timestamps. Beta is the uncertainty of
the direction of the reconstructed track in radians.
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12 Data from ARCA21

3.1 Monte Carlo simulation

The Monte Carlo simulation has an extra variable, namely the angular res-
olution. The angular resolution is found by, together with the likelihood
and track reconstruction uncertainty, will be used to make quality cuts of
the data of the simulation. In this study, we will primarily analyse the
Monte Carlo simulation. Monte Carlo simulations have been proven to be
reliable and correspond well with the actual collected measurements [2].

12
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Chapter 4
Analysis method

The events are described as a phase space of the angular distance be-
tween the reconstructed path of the muon and the direction of the Moon.
These are conducted as a one-dimensional relative distance and a two-
dimensional distance that is dispersed into an elevation distance and an
azimuth distance.

Figure 4.1: Visualisation of the one-dimensional bins. Here are shown the first
6 bins of the histogram. The bins do not have the same surface, which has to be
normalised with the area defined in equation (4.1).

The bins must be normalised as there will be an offset for the higher
angle valued bins. If one assumes an isotropic event distribution, higher-
valued bins will have more events. For the one-dimensional case, an isotropic
distribution of events is justified, unlike the two-dimensional case as we
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14 Analysis method

will see. To normalise the bins, we divide them by their area. θ1 is one bin
larger than θ2.

Area = 360◦(cosθ2 − cosθ1) (4.1)

With the normalisation, the units of the bins are now events× degree−2.
The definition in equation (4.1) comes from the fact that we want to find a
surface on a sphere *.

This sphere is the sky from the perspective of the telescope. Just as
the Sun/Moon shadows were found with the ORCA telescope, the back-
ground model is compared to a model with a negative Gaussian expected
by the shadow of the Moon. When the histogram is created, with the x-
axis the bins and the y-axis the amount of events, we fit two functions. One
function is the average. The other function is a Gauss function subtracted
from the background average.

We assume that the shadow of the Moon is shaped as a Gaussian func-
tion based on approximations. The first approximation is that the size of
the Moon is neglected. This approximation is valid, as long as the angular
resolution of the detector is larger than the angular radius of the Moon [7].
This is the case in this study. The Gaussianity is a first-order approxima-
tion.

The one-dimensional model is:

N1D
H1 = bg − A√

2πσres
e
− r2

2σ2
res (4.2)

Note that the Moon is at r = 0, therefore no offset in the exponent is re-
quired. Equation (4.2) has fitting parameters A and bg. Where A is the
amplitude of the Gauss distribution. And bg is the amplitude of the back-
ground signal, the detected muons as if there was no Moon at all. σresis
the angular resolution of the detector of the event. At the start, we assume
σres ≈ 0.8. Later in the two-dimensional analyses, we will find the true
values. We will compare the model (4.2) with the fitted average NH0 = bg.

The two-dimensional analysis uses two axes: X = (ϕ$ − ϕevent) ×
sin(θevent) and Y = θ$ − θevent. Where ϕevent, θevent are the azimuth and
elevation angles of the reconstructed track event. And ϕ$, θ$ are the az-
imuth and elevation angle of the Moon.

As the elevation angle Y becomes larger, more events are received per
degree2. The expected background is therefore no longer a constant as in
the one-dimensional case, but rather taken as a second-order polynomial:

*Note that with use of a Taylor expansion, for small θ the area becomes: Area =
πθ2

1 − πθ2
2 . This is a simple flat surface situation. This approximation is valid if we look

very close to the zenith.

14
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4.1 Relative amplitude & σres 15

Ni,H0 = ρ(1 + a1yi + a2y2
i ) (4.3)

Where ρ is the background amplitude parameter and a1, a2 are the re-
spected parameters for the powers of the polynomial.

The two-dimensional background model becomes:

N2D
H1 = ρ

[
1 + a1yi + a2y2

i − A
R2
$

2σ2
res

e
− (x−x0)

2+(y−y0)
2

2σ2
res

]
(4.4)

Where x0, y0 are the centre of the fitted function. The two-dimensional
background function (4.3) as well as our model (4.4) is similarly defined
as in KM3NeT/ORCA first observation [7].

σres is found as we allow for the one-dimensional model 4.2 to be fit for
parameters: bg, A and σres. That being said, it should be noted that in this
one-dimensional binning, information is lost. An instance of this loss of
information is the background distribution. The background is assumed
and taken to be a constant. But as we will see in the results 5, this is not
the case once we arrive at the two-dimensional analysis.

4.1 Relative amplitude & σres

The two surfaces of the integral of the Gaussian function in equation (4.2)
and the surface of the expected missing events, can be rewritten as a frac-
tion, we call the fraction the relative amplitude.

Reminding both bg and A are in units of events × degree−2, one can
calculate the expected amplitude by multiplying the surface of the Moon
with the background density events. Aexpected = bg. With the radius of
the Moon R$ = 0.26 ◦as taken in many other previous observatories such
as KM3NeT/ORCA, IceCube, ANTARES and many more [7][8][9]. This
combines in an expected amount of missed events: Ωexpected = bg(1 −
cos(R$)), where we take the area of the Moon in the sky (equation (4.1)
with θ2 = 0). It should be noted that the expected amplitude Ωexpected is in
units of events and A f it in events× degree−2. Thus we will also introduce a
total amount of missed events according to the fit: Ω f itted. Here we define
Ω f itted as:

Ω f itted = A f it ×
∫ ∞

0

1√
2πσ

e−
r2

f it
2σ2 dr f it (4.5)

The Gaussian integral is normalised. We define the relative amplitude as
a unitless fraction of the expected missed events:

Version of July 2, 2024– Created July 2, 2024 - 13:46

15



16 Analysis method

Arel =
Ω f itted

Ωexpected
=

A f it/2
bg × (1 − cos(R$))

(4.6)

We are interested in the relative amplitude, as this may sign the signifi-
cance of the reduction in amplitude. A high relative amplitude is a reason
to continue the investigation and show that this is not just a statistical de-
viation in the distribution of the event, but rather a shadow of an object.

4.2 ∆χ2 analysis

For both the one- as the two-dimensional analyses will the respected χ2

values of the fit of the model with the Gaussian valley be compared with
the χ2 of the background, hence we introduce ∆χ2 for both the one- as the
two-dimensional analyses. From these values, the difference can be found:

∆χ2 = χ2
NH0

− χ2
NH1

(4.7)

Here is χ2
NH0

corresponding with the χ2 value of the average in the
one-dimensional analysis, and the background model (4.3) in the two-
dimensional analysis. χ2

NH1
corresponds to the χ2-value of the one-dimensional

model (4.2) or the two-dimensional model (4.4). This value tells us how
much better the model N1D

H1 (4.2) fits than the average. The value of χ2
NH1

must not be too large. For ∆χ2 a positive value is expected as the model
has an extra parameter to make the fit suit the data better. Mind that
setting the amplitude A to zero returns the average NH0 definition. The
model has therefore an extra dimension to perform a better fit.

In the case of the two-dimensional analysis, the events will be binned in
a 2-dimensional histogram for different values of X, and Y. The model will
be the background with a two-dimensional Gaussian function subtracted
from the background. The two-dimensional analysis will differ from the 1
dimensional by assuming every bin is the Moon’s centre and thus calcu-
lating the chi-squared value of the model being centred at every bin. The
χ2-value of the model around (0,0) should be much smaller than that of
the background model. And at bins far away from (0,0), the χ2-value of
the model should be close or equal to that of the background model.

16
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4.3 Rotational calibration 17

4.3 Rotational calibration

So far we have assumed that the rotational calibration of the telescope is
correct. To test that the azimuth direction is really the azimuth direction,
we will assume the telescope is positioned incorrectly with an interval of
−2◦ ≤ α ≤ 2◦, with α the assumed rotational miscalibration in degrees.

From here we will calculate the ∆χ2
(0,0), which is the delta chi-squared

value at (0,0) for (X’, Y’), with Y’ = Y:

X′ = X + αcos(Y) (4.8)

The azimuth events are summed with an additional rotation times the
cosine of the elevation. We will fit the model (4.4) and the background
function (4.3) and find ∆χ2

(0,0) and χ2
(0,0) of the model 4.4 for all values

within this interval with a step size of 0.2. We expected the telescope to be
well rotational calibrated. If this is the case, the ∆χ2

(0,0), at α = 0 should be

larges. and drop off as α deviates from zero. Also χ2
model should be smallest

at α = 0.

4.4 Angular resolution (Quality-cut)

The data that we use here is a simulation containing 6 times more events
than the measurement. Some of these events are poorly reconstructed
or have a low angular resolution. Including these events in the analysis
methods will reduce the precision of the fits. With the use of quality cuts,
we attempt to exclude these events.

To perform such quality cuts, use two cut variables:

1. lik: Likelihood value of the track reconstruction

2. β: directional uncertainty of the track reconstruction.

Each event has a value for these two cut variables. We perform quality
cuts of the data set based on these two variables, as these two variables
tell us about the quality of their track reconstruction. We will use 6 differ-
ent values for both the likelihood and the track reconstruction uncertainty,
resulting in 36 combinations. For each combination of likelihood (lik) and
uncertainty β, we will cut the data set and include only the events for
which the likelihood is equal or larger than the conditioned cut value and
the uncertainty equal or smaller than the conditioned cut value.
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18 Analysis method

Each event has a value for the variable ’angular resolution’. Each qual-
ity cut will have the median angular resolution calculated. We take the
median angular resolution of the quality cut as the value σres. Each qual-
ity cut will be fitted with 4.4, with the value of σres calculated from that
quality cut.

We then will find the ∆χ2
(0,0) and χ2

(0,0), using only the events in their
respective quality cut and their corresponding σres. From these quality
cuts, we can find for each (lik, β) combination, the value of σres, ∆χ2

(0,0)

and χ2
(0,0)model.

18
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Chapter 5
Data analysis results

(i) An azimuth side view of the two-
dimensional histogram, with a fitted aver-
age and a fitted order two polynomial.

(ii) An elevation side view of the two-
dimensional histogram, with a fitted linear
function as a fitted order two polynomial.

Figure 5.1: Summed side views of the two-dimensional histogram.

In figure 5.1i we fit both a constant fitted average and a second-order
polynomial, as we expect a small but negligible reduction at the edges.
With the χ2 values of both the fits, we can determine if the events’ reduc-
tion is insignificant. The χ2 value of the constant is 59.61 and the second-
order polynomial is 58.76, this small difference between the two χ2-values
indicates that we can neglect the expected drop-off of events at ±5 degrees
in the azimuth direction.

In figure 5.1ii we fit both an order one polynomial as well as a second-
order polynomial, as the elevation grows larger we see the elevation in-
crease. The χ2 value of the first-order polynomial is valued at 267.73 and
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20 Data analysis results

that of the second-order is valued at 63.14. We determine from the differ-
ence of the χ2 values that the increase is more likely a second-order poly-
nomial. This revelation is of great importance. It shows us that the back-
ground is not a constant but a polynomial for the elevation as expected
with equation (4.3). Thus for the model, we require equation (4.4).

(i) The raw data of events in each
bin.

(ii) The data normalised with regards to the
second-order polynomial.

Figure 5.2: The difference between the raw and normalised data.

Figure 5.2i is the raw data, over which the background (4.3) and model
(4.4) will be fitted. Figure 5.2ii is the figure with the subtracted fitted
second-order polynomial. With the polynomial background subtracted,
we should see only deviations such as the presence of the Moon.

20
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5.1 Relative amplitude & σres 21

5.1 Relative amplitude & σres

The relative amplitude and σres are extracted from the one-dimensional
analysis, as the amplitude and the sigma are both fitting parameters.

Figure 5.3: The one-dimensional histogram of events over the relative distance
to the Moon. The fitted χ2 of the two fitted models indicate a viable reason to
believe that there is a statistical valley in events at the location of the Moon.

The value of σres = 0.81◦± 0.122◦. This supports the assumption for the
two-dimensional analysis, which we assumed that σres ≈ 0.8 degrees. As
in the two-dimensional analysis, σres is a constant and not a fitting param-
eter. During the quality cuts will the angular resolution be recalculated for
each different cut.

The relative amplitude is 0.65 ± 0.01 which is significant enough to ex-
pect an object at the location of the Moon.

We already fit all parameters in the one-dimensional model in the one-
dimensional analysis. We can compare this to the two-dimensional model
if we allow the two-dimensional model to also fit for all parameters. This
is of interest as information is lost in the one-dimensional analysis.

We allow the one-dimensional analysis fit for the parameters: bg, A, &
σres. Where bg is the background. A is the amplitude and σres is the angular
resolution as described in (4.2). We can do the same thing and compare the
two methods. In the two-dimensional model 4.4 we fit for the parameters:
ρ, Arel, σres, x0, & y0. Where ρ is the scaling factor in events/degrees2. A is
the relative amplitude. x0, y0 are the position of the Gaussian function.
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22 Data analysis results

The found parameters of the Moon:

Parameters Moon 1D Moon 2D
σres 0.81◦ ± 0.12◦ 0.53◦ ± 0.07◦

Relative amplitude (Arel) 0.65 ± 0.01 0.56 ± 0.11
∆χ2 95.20 56.29

events × degree−2 12189 ± 8 14395 ± 19
Table 5.1: The parameters at (x0, y0) = (0, 0) for the one-dimensional fit and the
two-dimensional fit. Allowing to fit 1d for (bg,A,σres) and 2d for: (ρ,Arel ,σres,x0,y0)

The two dimensional location of the Moon (x0, y0) is (0.213◦± 0.100◦, 0.002◦±
0.100◦). It is notable that the angular resolution of 0.53◦ ± 0.07◦ is signifi-
cantly smaller than the one-dimensional case. The fact that ∆χ2 in the one-
dimensional analysis is larger than the two-dimensional analysis, is likely
correlated to the fact that the one-dimensional binning does not contain all
the information.

22
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5.2 ∆χ2 analysis 23

5.2 ∆χ2 analysis

Figure 5.4: This is a contour diagram of the ∆χ2 values where the location of the
(x0, y0) in model (4.4) is positioned at each bin.

From figure (5.4) we determine that around the (0,0) the ∆χ2 value is
highest, valued at 49.28. This indicates that the model (4.4) is a much better
fit around (0,0) than the background model (4.3). The centre of the Moon
does not seem to be at (0,0), but rather at (0.2,0).

It should be noted that there are negative ∆χ2 for some bins. This
should not be statistically possible, as the only added parameter is an am-
plitude, which if set to zero, returns the background function. Thus ∆χ2,
as defined in equation (4.7), should always be larger or equal to zero.
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24 Data analysis results

5.3 Rotational calibration

We made the plot for a rotational miscalculation α ∈ [−2, 2] with steps of
0.2.

Figure 5.5: ∆χ2 for every step of rotational calibration α with steps of 0.2 degrees.

From figure 5.5 we notice firstly that at α = 0 the ∆χ2 value is at its
largest, which is as expected. That being said, we do also notice that for
miscalibration of −0.2◦ and −0.4◦, the ∆χ2 are still higher than expected.
We expect a second-order polynomial with the peak at α = 0◦. This invites
us to look at the χ2 value of the fitted model (4.4).

24
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5.3 Rotational calibration 25

Figure 5.6: The χ2-values of the background model as well as the inverse Gauss
model.

We notice a dominant statistical fluctuation in figure 5.6 for all values
of α within the range of ±2.0◦. Besides the statistical fluctuations, it is also
noticeable that the χ2 values of the model (4.4) and that of the background
model (4.3) are correlated to each other. This is visible as both models obey
the same statistical fluctuation in figure 5.6.
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26 Data analysis results

5.4 Angular resolution (Quality-cut)

The quality cuts have been made for 6 different values of likelihood and
6 different values of the track reconstruction uncertainty β. Before we can
indicate the values of the conditions, we must first see the distribution
between likelihood and track reconstruction uncertainty.

(i) The total distribution of the likeli-
hood and the track reconstruction un-
certainty. (ii) The amount of events in each quality cut.

Figure 5.7: The distribution between the track reconstruction uncertainty (β) and
the likelihood (lik).

The knowledge we achieved from figure 5.7i is to find the order of mag-
nitude of the values and with that also the starting values for the condition
of the quality cuts. From figure 5.7i we notice that the majority of the like-
lihood is below 250, and the uncertainty is below 2◦.

Figure 5.7ii shows us that the smallest bin, which is the quality cut with
the highest likelihood and smallest track reconstruction uncertainty, is still
in the order of millions of events. This allows us to choose the largest
likelihood condition of 100 and the largest uncertainty of 2◦.

26
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5.4 Angular resolution (Quality-cut) 27

Figure 5.8: The σres, which we have taken as the median angular resolution of the
quality cut. We take σres values from the quality cut, which will be used for fitting
the cut data with the model (4.4).

From figure 5.8 we can deduce that for smaller allowed track recon-
struction uncertainty and a high likelihood, the σres becomes smaller. The
figure indicates that the median angular resolution is proportional to the
likelihood and inversely proportional to the track reconstruction uncer-
tainty.

(i) The χ2 of the model for each quality cut. (ii) The ∆χ2 value for each quality cut.

Figure 5.9: The χ2 & ∆χ2 values for every quality cut, with the Gauss function in
equation (4.4) (x0, y0) centred at (0,0).

From figure 5.9i we can deduct that the model (4.4) has a smaller χ2

for the quality cut with the minimum likelihood of 100 and a maximum of
track reconstruction uncertainty of 5 × 10−3. Figure 5.9ii tells us that the
χ2 of the background model (4.3) does not reduce as much as the χ2 of the
model (4.4).
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28 Data analysis results

We expected that a higher likelihood would result in a better track re-
construction. The improved track reconstruction should cause a better an-
gular resolution. For the uncertainty of the direction of the track recon-
struction, we expect that a lower uncertainty should result in a higher an-
gular resolution of the event. Both of these expectations are supported by
the found results. We notice that for higher likelihood conditions the me-
dian angular resolution σres becomes smaller in figure 5.8. As a result, we
see χ2 of the model become smaller (see figure 5.9i) and ∆χ2 increase (see
figure 5.9ii) as the likelihood condition become stricter. The directional
uncertainty of the track reconstruction shows the same trend. As the un-
certainty conditions become smaller and stricter the angular resolution σres
becomes smaller in figure 5.8. The result of the smaller angular resolution
σres is that the χ2 of the model reduces (see figure 5.9i and ∆χ2 increases
(see figure 5.9ii). We expected that the combination of both stricter quality
cut conditions would result in a supper position of reduced angular reso-
lution σres. In figure 5.8 we notice that it is indeed the combination of the
strictest likelihood of 100 or higher and an uncertainty of 0.1◦ or lower.
The resulting χ2 of the model in figure 5.9i, is also lowest at the combina-
tion of the two conditions’ strictest quality cut. The ∆χ2 in figure 5.9ii is
the biggest with the strictest quality cut.
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Chapter 6
Conclusion

6.1 Conclusion

From the one-dimensional analysis, we found that an angular resolution
of σres ≈ 0.8◦ is a viable value. in addition, the relative amplitude from the
fit clearly indicates the valley of measured events for a small distance to
the Moon. From the two-dimensional analysis, we found with the use of
χ2-analysis a shadow at the position of the Moon as shown in figure 5.4.
We also found that the rotational calibration of the telescope is well, except
for an odd occurrence for a rotation for -0.2◦and -0.4◦. The quality cuts 5.4
shows us that if we filter out any impurity, and maintain only the likeli-
hood of 100 or higher and track reconstruction uncertainty of 0.1 or lower
the quality of the ∆χ2 value significantly increases. It is the combination
of both a very low track reconstruction uncertainty and a high likelihood
that causes a high quality in events.

The purpose of this research was to analyse the simulation data which
was based on the ARCA21 real data set measurement from 2022-2023. In
this analysis, the purpose was to first find a one-dimensional indication of
the Moon shadow with the use of fitting a flat model and a model with an
indent. In the two-dimensional analysis, we extended the research to also
test the rotational calibration of the ARCA detector site, as well as to find
suitable quality cuts in the two cut variables: the likelihood and the track
reconstruction uncertainty.
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30 Conclusion

6.2 Discussion

The ∆χ2 value found around the expected value of (0,0) is higher than that
further away from the Moon’s location. What puts the analysis in 5.2 and
in particular figure 4.7 in question, is the fact that there are also negative
values. That should not be the case and is likely a coding error or a lack
in understanding of the data and methods used during the course of this
project. In section 4.4 we used the median angular resolution of the quality
cut as the angular resolution σres in the model 4.4. While these two are not
the same thing. They are heavily correlated.

There are many questions yet to be answered. Future research might
be able to apply deeper statistical analysis to the Monte-Carlo simula-
tions. This research does not apply the log-likelihood function nor men-
tions Poisson likelihood anywhere. This study assumed a Gaussian dis-
tribution based on the approximations of previous research. Future re-
search should also, compare complete KM3NeT/ARCA simulations with
the KM3NeT/ORCA. The simulated data should also be compared to the
KM3NeT/ORCA telescope to notice and investigate any difference in mea-
surement accuracy and track reconstruction accuracy. The DOMs from the
KM3NeT/ARCA telescope are further from each other located from one
another than that of KM3NeT/ORCA, and therefore should have a differ-
ent accuracy in the track reconstruction and the angular resolution.
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