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Abstract

The BCS theory of superconductivity is associated with time reversal
symmetry. Some unconventional superconductors have shown time

reversal symmetry breaking (TRSB). Scanning SQUIDs may be used to
measure features of TRSB. However, probing TRSB using SQUIDs

requires sensitivity at zero field, which only asymmetric SQUIDs achieve.
Measurements of three SQUIDs asymmetric in arm length, one SQUID

asymmetric in arm width and one symmetric SQUID are presented.
Furthermore, the parameter values of the SQUIDs are fitted using a

neural network that simulates SQUID voltage response.





Chapter 1
Introduction

The Bardeen-Cooper-Schrieffer (BCS) theory is the first theory that attempts
to explain the superconductivity discovered by Kamerlingh Onnes’s in
1911. It explains superconductivity phenomena as a microscopic effect due
to condensation of so-called Cooper pairs. Bardeen, Cooper and Schrieffer
received the Noble prize in Physics for this theory in 1972. One feature
of the BCS theory is that the two electrons in a Cooper pair have opposite
spin and momentum. This entails that the state of the whole Cooper pair
is symmetric under reversal of time (TRS). Superconductors that are well
described by BCS theory are named conventional.

Nonetheless, experimental techniques like muon spin rotation (µSR)
and the polar Kerr effect have been used to detect time reversal symmetry
breaking (TRSB) [1–3]. For example, Mayoh, D. A. et al provide evidence
for TRSB in La7Pd3 using ÎŒSR [4]. Figure 1.1 shows increased relaxation
below Tc, indicative of internal magnetic fields which are associated with
TRSB.

Some superconductors with TRSB also shown ’domain walls’ between
areas with different orientations of the superconducting order parameter
[5]. Consequently, these domain walls exert noticable patterns in the mag-
netic field of a superconductor. Garcia Campos, P. uses a scanning super-
conducting quantum interference device (SQUID) microscope to visualise
the presence of TRSB in UPt3 [6]. Figure 1.2 shows magnetic field mea-
surements using a SQUID microscope on UPt3, indicating TRSB via the
presence of a domain wall (which appears roughly as an s-shape).

Measuring TRSB with SQUIDs requires sensitivity around zero mag-
netic field. Asymmetries in the inductances of the two SQUID arms (de-
noted by the asymmetry parameter αL) and the critical currents of the two
junctions (denoted by the asymmetry parameter αI) can create sensitivity
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6 Introduction

Figure 1.1: (a) ZF and LF-µ SR spectra collected at 0.1 (green) and 2.75 K (red), the
data is fit using the Gaussian Kubo-Toyabe model (dashed lines). (b) Temperature
dependence of the electronic relaxation rate L can be seen to increase below 1.2 K
just below Tc. (c) Temperature dependence of the nuclear relaxation rate Λ shows
no change at Tc. Figure and caption from ref. [5].

at zero field. (The SQUID used for measurements in Figure 1.2 has asym-
metric inductance.) In this thesis, I present measurements and analysis of
geometrically asymmetric SQUIDs, with the goal of finding out how to
create SQUIDs suitable for domain wall measurements of superconduc-
tors exhibiting TRSB.

The sensitivity of a SQUID around zero field can be analysed using raw
measurement data. Another method of analysis is to fit measured data
to simulated data to obtain values for αL and αI . Simulating the voltage
response of a dc SQUID involves solving a stochastic differential equation.
Fitting can therefore be a costly process. Neural networks have shown
potential to drastically speed up physics simulations [7]. In that line, I
will analyse my data of geometrically asymmetric SQUIDs using neural
network simulations.

6
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7

Figure 1.2: Scans with -400 T applied field before cooling down at a scanning
height of 350 nm. The scans were taken decreasing the temperature (from the
A-phase to the B phase). Between 450 mK and 440 mK, a sinusoidal domain
wall appears, which creates an unusual arrangement of the magnetic flux. At
the coldest temperature (250 mK), the mean f ield of the whole scan matches the
applied field, and the mean field of one of the two chiral phases (white ROI).
Figure and caption from ref. [6].
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Chapter 2
Theory

2.1 London equations & penetration depth

A fundamental feature of superconductivity is the Meissner effect, where a
superconductor expels all magnetic fields inside the superconductor. The
London equations provide an explanation of the decay of external mag-
netic fields inside of superconductors [8].

The first London equation is

∂js
∂t

=
nse
me

E (2.1)

Followed by the second London equation:

∇× js +
nse2

m
B = 0 (2.2)

This ultimately leads to

∇2 B =
1

λ2
L

B (2.3)

with the London penetration depth λL =
√

me
µ0nse2 . This means that

external magnetic fields in superconductors decay exponentially.

2.2 The Josephson effect

A Josephson junction consists of two superconducting electrodes with a
weak link connecting them [9]. The type of weak link determines the type
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10 Theory

of junction. In the cases of SNS junctions or SIS junctions, the weak link is
provided by a normal metal layer or insulating layer respectively. The first
Josephson relation provides a one-to-one relation between the supercur-
rent across two weakly linked superconducting electrodes and the phase
different between them for an SIS junction

Is = I0sinδ (2.4)

Here Is denotes the supercurrent across a SIS junction, I0 the criti-
cal current at which voltage becomes non-zero and δ the gauge invariant
phase difference. The second Josephson relation relates the voltage U that
is developed across the junction to the time derivative of the gauge invari-
ant phase difference δ̇

δ̇ =
2π

Φ0
U (2.5)

Where Φ = h/2e is the magnetic flux quantum.
The resistively- and capacitively-shunted junction (RCSJ) model of a

Josephson junction provides a differential equation relating the phase dif-
ference, current and potential difference across the junction. In this model,
we apply Kirchhoff’s law to the circuit of Figure 2.1 and get:

CU̇ +
U
R
+ I0sinδ = I + IN(t) (2.6)

where C is the capacitance, R is the resistance, I is the bias current and
IN(t) is the Nyquist noise current. Using the second Josephson relation,
we get:

Φ0

2π
Cδ̈ +

Φ0

2πR
δ̇ = I − I0sinδ (2.7)

The current-voltage characteristics of Josephson junctions can show
hysteresis: when you go from zero to a current above I0, I(V) is different
than when you go from a current above I0 to zero. Extermination of hys-
teresis is usually achieved by using an external shunt resistance in the sys-
tem with the Josephson junction. This is why the current-voltage charac-
teristics of systems without hysteresis are well explained by the resistively-
and capacitively-shunted junction (RCSJ) model.

2.2.1 DC SQUIDs

Direct current superconducting quantum interference devices (dc SQUIDs)
are superconducting loops with two arms, where each arm contains a junc-

10
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2.2 The Josephson effect 11

UINI0

I

C R

Figure 2.1: Electrical circuit of the RCSJ model. Starting from the left, the capaci-
tance is located at C, the resistance at E, followed by the Josephson junction with
critical current I0, a Nyquist noise current IN and lastly a potential difference U.

tion as shown in Figure 2.2.
The current through each junction is the sum of a contribution from

the bias current and a contribution from the circulating current. That is,
I1 = I

2 + J and I2 = I
2 − J. Combining this with Eq. 2.7 gives us

I
2
± J = I0,ksinδk +

Φ0

2πRk
δ̇k +

Φ0

2πCk
δ̈k + IN,k (2.8)

with k = 1, 2 for the separate junctions.
For any point in the loop visible in Figure 2.2, the wave function must

be single-valued. This means that when a path is traversed around the
loop from one point to itself, the sum of the phase changes along that path
must equal an integer amount of 2π. In the limit of bulk electrodes there
are two notable sources of phase change in the dc SQUID: traversing a
Josephson junction and traversing a magnetic vector potential. The latter
of these effects is commonly accredited to flux, because a closed line inte-
gral over the magnetic vector potential is equal to a closed surface integral
(Stokes’s theorem) over the magnetic field. This in turn can be simplified
to a flux quantity Φ.

Following a path around a loop in the dc SQUID, we find that the di-
rection with which the first junction is encountered differs from the second
junction. That is, as a path is traversed around the loop, the first junction
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12 Theory

I I

I1

I2

J

B

Figure 2.2: A schematic of the dc SQUID. I represents the external bias current.
I1 and I2 represent the portions of the bias current going through each arm (and
junction). The circulating current induced by the junctions is J. The Josephson
juntions are visualised by two black strokes.

contributes to a phase change of δ1 while the second junction contributes
to a phase change of −δ2. The phase change due to flux has contributions
from both the external magnetic field and the current density J. Then, the
single-valuedness of the wave function at any point in the loop requires
that

δ1 − δ2 +
2π

Φ0
(Φa + LJ) = 0 (2.9)

with Φa being the applied flux, L being the total inductance. This may
be rewritten as

δ2 − δ1 =
2π

Φ0
ΦT (2.10)

with ΦT = Φa + LJ.
Eq. 2.8 may be normalized using I0 = (I0,1 + I0,2)/2 for the average

critical current, R = 2R1R2/(R1 + R2) for twice the parallel resistance and
C = (C1 + C2)/2 for the capacitance. Defining the Stewart-McCumber
parameter βc = 2π

Φ0
I0R2C and the screening parameter (also called nor-

12

Version of July 4, 2024– Created July 4, 2024 - 14:55



2.2 The Josephson effect 13

malised inductance) βL = 2LI0
Φ0

, we may write Eq. 2.8 in normalised form:

i
2
± j = sinδk + δ̇k + βcδ̈k + iN,k (2.11)

with k = 1, 2 for two junctions and

δ1 − δ2 + 2π

(
ϕa +

1
2

βL j
)
= 0 (2.12)

where ϕa =
Φa
Φ0

.
One last note about the dynamics of (dc) SQUIDs is that the effect of

the Nyquist noise term on IV’s is characterised by the noise parameter Γ

Γ =
kbT
EJ

=
2πkbT
Φ0 I0

(2.13)

In practice, Γ leads to a rounding of the superconducting transition at
the critical current. Figure 2.3 shows how rounding occurs in the voltage-
current characteristics of a dc SQUID, which is particularly pronounced at
the critical current.

2.2.2 Asymmetry parameters

The two junctions in a dc SQUID may have different critical currents, resis-
tances and capacitances. Furthermore, the different arms of the SQUID to
which the junctions are attached may have different inductances. SQUIDs
with such differences may be called asymmetric. Asymmetry is modelled
by the parameter α. It is defined such that

I0,1 = I0(1 − αI), R1 =
R

1 − αR
, C1 = C(1 − αC) (2.14)

I0,2 = I0(1 + αI), R2 =
R

1 + αR
, C2 = C(1 + αC) (2.15)

for the critical currents, resistances and capacitances of the two junc-
tions. Adding these parameters to Eq. 2.11, we get

i
2
± j = (1 ∓ αI)sinδk + (1 ∓ αR)δ̇k + βc(1 ∓ αC)δ̈k + iN,k (2.16)

Furthermore, for asymmetric arm inductance, Eq. 2.12 changes into:
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14 Theory
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Figure 2.3: Simulated normalised voltage-current characteristics of a dc SQUID
with two different levels of voltage noise. The red scatter plot has Γ = 0.05,
whereas the black scatter has Γ = 0.00.

δ2 − δ1 = 2π

(
ϕa +

1
2

βL j − 1
4

αLβLi
)
= 2πϕa + πβL

(
j − αL

2
i
)

, (2.17)

These equations should suffice for modelling the dynamics of a dc
SQUID with asymmetric critical current, resistance, capacitance and in-
ductance according to the RCSJ model.

Correspondingly, the shift between the maxima of the negative and
positive critical current oscillations due to asymmetry is given by [10]:

∆Φ
Φ0

= βL(αL + αI) (2.18)

Figure 2.4 shows how asymmetry leads to a shift in measured voltages
as a function of current and flux.

14
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2.2 The Josephson effect 15

Figure 2.4: Simulated SQUID interference pattern with αL = 0.25 and βL = 1
(with symmetrical critical currents and resistances) operating in the over damped
limit (βc → 0). The color transition from black to red points to the critical current.
The combination of parameters induces a shift between corresponding peaks in
negative and positive critical current oscillations. The shift is 1

4 normalised flux
units.
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Chapter 3
Design and methods

We are interested in dc SQUIDs that are shifted in this manner as to create
a field-sensitive dc SQUID around a magnetic field/flux of zero. I provide
a two-component definition of ’field-sensitive’ at a given field Bg:

1. There must be some current for which there is a non-zero transfer
function δV/δB at Bg.

2. For such a current the transfer function δV/δB must behave linearly
within a range ρ around Bg, such that ρ is approximately equal to the
desired range of field measurements.

If a dc SQUID obeys (1) but not (2), field measurements (through voltage
measurements) will fail to measure at the complete desired range of field
measurements. Thus, a positive transfer function (δV/δB > 0) at Bg is
necessary but insufficient for field-sensitivity at Bg.

Figure 3.1 illustrates how asymmetry induces a shift towards a positive
transfer function at zero field (for some dc currents).

3.1 Geometry design and kinetic inductance

For a straight wire of length l with cross section A, the kinetic inductance
is given by [11]:

Lk =
ml

nq2A
=

µ0λ2
Ll

A
(3.1)

With λL the London penetration depth from Eq. 2.3.
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18 Design and methods

Figure 3.1: Transfer function δv
δϕ of the normalised voltage v = V/I0Rn as a func-

tion of the normalised current i and the normalised flux ϕ with Γ = 0.0 and
βL = 1.0. (a) shows the simulated interference pattern for a symmetric SQUID. In
(b), αL = 0.25. The white dashed lines are positioned at zero field/flux. For (b),
but not for (a), there are currents for which there is a positive transfer function at
zero field.

According to Eq. 2.18, asymmetry in the inductance of the two arms
of a dc SQUID induces a shift. For thin films, it may be hypothesized
that the kinetic inductance is the main term in the total inductance, and
that magnetic inductance is negligible. As Eq. 3.1 shows, the inductance
of a wire with an approximately uniform cross section has two geometric
components: the length l and the cross section A. In the case of a thin film,
the cross section can further be divided into a thickness t and a width w, as
to approximate a rectangular cross section. Whereas Lk is proportional to l,
it is inversely proportional to t and w. Nonetheless, inductance asymmetry
in any of these geometric parameters should theoretically translate to an
asymmetry in inductance according to Eq. 3.1.

I therefore attempt to design inductively asymmetric SQUIDs. In thin-
film nanofabrication process, the thickness of the film is generally kept
constant. Therefore, I design SQUIDs that are asymmetric in the lateral
dimensions l and w of each arm of the SQUID. Figure 3.2 shows two sam-
ple geometrically asymmetric SQUID designs that are intended to induce
a non-zero value for the inductance asymmetry parameter αL.

3.2 Methods

To test the designs, two SQUIDs devices are made on top of Si/SiO sub-
strates. Before deposition, lithography is used to prepare device patterns

18
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3.2 Methods 19

(a) (b)

Figure 3.2: geometrically asymmetric SQUID designs. In (a), the lengths of the
two arms are symmetric (l1 > l2). In (b), the arms lengths are symmetric, but
the arm widths are asymmetric (w1 < w2). If we approximate the loop wire as
a straight wire with uniform cross sections, the kinetic inductance will be asym-
metric according to Eq. 24.

that allow wire-bonding of the devices. The used method of deposition is
ultra-high vacuum (UHV) sputtering. The first layer deposited is Cu, fol-
lowed by Nb and lastly Pt. The Cu layer will function as the normal metal
layer separating Nb superconducting electrodes. Lastly, Pt has been used
as a capping layer, to provide protection for the Nb layer.

After deposition, SQUID patterns are milled out of the metal layers
using focused ion beam (FIB) milling. We use a ThermoFisher Aquilos
dual beam-FIB, provided by NeCEN [12].

Lastly, the contact pads of the devices containing the SQUIDs are wire-
bonded onto the contact pads of the insert puck.

We perform our measurements inside a TeslatronPT cryostat by Oxford
Instruments, with a base temperature of 1.5 K. All transport measurements
are carried out using standard lock-in techniques with a SynkTek MCL1-
540.
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Chapter 4
Results

Five SQUIDs have been measured in total. The next sections will show the
devices and the measurements.

4.1 Febricated devices

Two chips are fabricated. Chip α has a 20 nm Cu layer on the bottom,
stacked by 60 nm Nb and 4 nm Pt. Chip α has a 20 nm Cu layer on the
bottom, stacked by 80 nm Nb and 4 nm Pt. Figure 4.1 shows scanning
electron microscope (SEM) images of the FIB fabricated SQUIDs for chip
α & β. Figure 4.1 shows a total of five SQUIDs: one of which is symmet-
rically designed (7a), one is designed with asymmetric arm thickness (7c),
and three are designed with asymmetric arm lengths (7b, 7d and 7e).

4.2 Resistance versus temperature

Figure 4.2 shows the measured resistances as a function of temperature
(RT) for all three SQUIDs from chip α (left plot), and SQUID A from chip
β (right plot).

In the left plot, the symmetric SQUID A has a significantly lower resis-
tance above Tc. The critical temperature can be roughly read off by looking
at the point where the resistance goes below 10−2. For SQUID αA this is at
3 K, for SQUID αB this is at 2.5 K and for SQUID αC this is at 2.7 K. SQUID
βA has a notably higher Tc than all of these at 5 K. This can be attributed
to wider arms than those on chip α (see Figure 4.1) and greater thickness.
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22 Results

300 nm 300 nm

400 nm 300 nm

500 nm

Chip α SQUID A Chip α SQUID B

Chip α SQUID C Chip β SQUID A

Chip β SQUID B

(a) (b)

(c) (d)

(e)

Figure 4.1: SEM images of FIB milled SQUIDs on chip α & β, with SQUIDs named
following the Latin alphabet for each chip. (a)-(c) show SQUIDs from chip α,
whereas (d) and (e) show SQUIDs from chip β. (b)-(e) are asymmetric: (b), (d)
and (e) have asymmetric arm lengths, whereas (c) has asymmetric arm thickness.
(a) is symmetric.

4.3 SQUID interference patterns

SQUID interference (SQI) patterns are measured by taking IV’s over a lin-
ear space of magnetic fields. Figure 4.3a-e show SQI’s for all five SQUIDs
presented in this thesis. Figure 4.3a and 4.3b show the same range of mag-
netic fields, and their Ic oscillations show a similar period. If one looks at

22

Version of July 4, 2024– Created July 4, 2024 - 14:55



4.3 SQUID interference patterns 23
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Figure 4.2: Resistance as a function of temperature for (left) all SQUIDs on chip
α, and (right) for SQUID A of chip β.

Figure 4.3c-e, one notes that there is a red border around the Ic oscillations
that has roughly uniform thickness throughout the oscillation. This en-
tails that the voltage increases at roughly the same rate starting at Ic for all
magnetic fields. However, for Figure 4.3a-b (showing SQUIDs αA and αB),
this is not the case. Simulations show that the uniform ’border thickness’
(i.e. rate of voltage increase around Ic) is typical in the RCSJ model (see for
example Figure 2.4). As Figure 4.1 shows, the arms of SQUIDs αA and αB
have relatively thin arms. This may lead to a superconducting transition
in the arms at a current close to I0, the maximum critical current of the
junctions. This would lead SQUIDs αA and αB to less closely resemble the
RCSJ model.
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Figure 4.3: SQUID interference patterns for SQUIDs on chip α & β.
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Chapter 5
Fitting neural network simulations
to data

The differential equations provided by the RCSJ model can be simulated
to obtain voltages given a set of parameters, currents and fluxes. These
simulations can however be temporally costly, requiring over one second
to simulate a single voltage. Thus, if one wants to fit measured SQUID
data, there is a strenuous contraint on the amount of simulations that one
can compare with one’s measurements.

Neural networks can speed up this process, because they consist of lay-
ers of functions that connect their inputs and outputs, and thereby remove
the need to directly solve differential equations. In the next sections, I shall
share the training process and architecture of neural networks that I have
trained to simulate the RCSJ model, and use it to fit my measured SQUID
data.

5.1 Neural network training and architecture

I have trained two neural networks. The first, which I shall name SQUID-
net 1.0, is trained on a dataset of simulated voltages, where the parame-
ters αL, αI , βL, βc and Γ are varied. The second model, which I shall call
SQUIDnet 1.1, is trained on a dataset where αL, αI , βL and Γ are varied, as
well as the amplitudes of the second to fourth harmonics of the current-
phase relations of each junction (separately). The amplitude of the first
harmonic is constant at unity, so the total amount of varying higher order
harmonic terms is six (three for each of two junctions). βc is kept constant
in the training data of SQUIDnet 1.1, as it came to my attention that sim-

Version of July 4, 2024– Created July 4, 2024 - 14:55

25



26 Fitting neural network simulations to data

ulated voltages were invariant to changes in βc in the overdamped limit.
Lastly, because of computational constraints, the training data for SQUID-
net 1.1 has been created on the ALICE supercomputer.

The SQUIDnet 1.0 model takes αL, αI , βL, βc, Γ, i and ϕ as inputs. It then
consists of five layers of nodes, followed by a predicted voltage output
layer of a single node. The activation functions for the five hidden layers
are (respectively) ReLu, Sigmoid, ReLu, Sigmoid and lastly ReLu. Each of
these layer contains 64 nodes. The mean squared error (MSE) of SQUIDnet
1.0 on a validation dataset (randomised sample of dataset that has not been
used for training) was in the order of 10−5 v = V

I0Rn
units.

The SQUIDnet 1.1 model takes αL, αI , βL, Γ, a12, a13, a14, a22, a23, a24,
i and ϕ as inputs, where aij represents the jth sine harmonic of the ith
junction. It has five hidden layers with the same activation functions as
SQUIDnet 1.0, and also a single voltage prediction output node. Next to
difference in input parameters, SQUIDnet 1.1 differs from its predecessor
in that each hidden layer contains 256 rather than 64 nodes. This also
makes SQUIDnet 1.1 significantly slower at prediction than 1.0. The MSE
of SQUIDnet 1.1 on a validation dataset was in the order of 10−4 v = V

I0Rn
units.

5.2 Fits of SQUID data

A gradient descent algorithm has been applied to minimize the mean
squared error (MSE) between measured and simulated data. Figures 5.2-
5.6 illustrate fits for SQUIDs αC, βA and βB. Estimation of error on pa-
rameters has shown tedious if not unachievable. Instead, Figures 5.2-5.6c
show histograms of the absolute errors with regards to measured data for
each respective fit.

Table 5.1 shows fitted values for αL, αI , βL, Γ, the period, I0, Rn and the
slope of the linear fits in figures 5.2-5.6d (which should approximate Rn
when Idc is well over I0. These parameter values need to be interpreted
with the error of the measured data, the neural network and the computa-
tional constraints of the gradient descent in mind.

It may be noted that although four out of five SQUIDs are geometri-
cally asymmetric, the biggest absolute value of αL is 0.1 (for SQUID βA,
see table 5.1). Furthermore, the SQUID with asymmetric arm widths has
a large αI of 0.696. One way to explain the unexpectedly low αL is that
the contribution to the total inductance from the geometric inductance is
greater than expected. It was hypothesized that kinetic inductance domi-
nates, which is proportional to length. However, our fitted αL values don’t
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match the asymmetry in arm length, which should have an αL of approxi-
mately 0.3. At the same time, SQUIDs αB, βA and βB, which are the only
SQUIDs with asymmetric arm lengths, also have the highest fitted abso-
lute values for αL.

Parameter αA αB (As. l) αC (As. w) βA (As. l) βB (As. l)
αL 0.008 0.082 0.002 -0.100 -0.030
αI 0.096 0.050 0.696 0.013 0.028
βL 0.862 1.195 0.239 1.32 1.34
Γ 0.009 0.006 0.011 0.035 0.109

Period (mT) 28.7 29.0 13.0 15.6 20.9
I0 (µA) 86 15 12 52 31
Rn (Ω) 3.12 23.28 24.99 5.39 8.43

a 2.59 17.13 21.44 7.64 4.66
Table 5.1: Fitted parameters for all five SQUIDs. The variable a refers to the slope
of the linear fit in figures 5.2-5.6(d). In the top row, asymmetric SQUIDs have a
note with ’As’ (followed by l or w, denoting asymmetry in either arm length or
arm width respectively). Figure 5.1 (below) shows SEM images of the SQUIDs.

300 nm 300 nm 400 nm

300 nm 500 nm

Chip α SQUID A Chip α SQUID B Chip α SQUID C

Chip β SQUID A Chip β SQUID B

(a) (b) (c)

(d) (e)

Figure 5.1: SEM images of FIB milled SQUIDs on chip α & β. (a)-(c) show SQUIDs
from chip α, whereas (d) and (e) show SQUIDs from chip β. (b)-(e) are asymmet-
ric: (b), (d) and (e) have asymmetric arm lengths, whereas (c) has asymmetric arm
thickness.
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Figure 5.2: Snippet of measured data (a) for SQUID αA versus fitted data (b)
using SQUIDnet 1.0. (c) shows the frequency distribution of the absolute errors
between data from (a) and (b) in µV. (d) shows overlap between measurement
and fit for a single IV (located in (a) and (b) at vertical lines). (d) also includes a
linear fit on the measured IV above IC, so that its slope a approximates the sheet
resistance Rn.
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Figure 5.3: Snippet of measured data (a) for SQUID αB versus fitted data (b) using
SQUIDnet 1.0. (c) shows the frequency distribution of the absolute errors between
data from (a) and (b) in µV. (d) shows overlap between measurement and fit for
a single IV (located in (a) and (b) at vertical lines). (d) also includes a linear fit
on the measured IV above IC, so that its slope a approximates the sheet resistance
Rn.
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Figure 5.4: Snippet of measured data (a) for SQUID αC versus fitted data (b)
using SQUIDnet 1.1. (c) shows the frequency distribution of the absolute errors
between data from (a) and (b) in µV. (d) shows overlap between measurement
and fit for a single IV (located in (a) and (b) at vertical lines). (d) also includes a
linear fit on the measured IV above IC, so that its slope a approximates the sheet
resistance Rn.
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Figure 5.5: Snippet of measured data (a) for SQUID βA versus fitted data (b)
using SQUIDnet 1.0. (c) shows the frequency distribution of the absolute errors
between data from (a) and (b) in µV. (d) shows overlap between measurement
and fit for a single IV (located in (a) and (b) at vertical lines). (d) also includes a
linear fit on the measured IV above IC, so that its slope a approximates the sheet
resistance Rn.
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Figure 5.6: Snippet of measured data (a) for SQUID βB versus fitted data (b)
using SQUIDnet 1.0. (c) shows the frequency distribution of the absolute errors
between data from (a) and (b) in µV. (d) shows overlap between measurement
and fit for a single IV (located in (a) and (b) at vertical lines). (d) also includes a
linear fit on the measured IV above IC, so that its slope a approximates the sheet
resistance Rn.
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Figure 5.7: Asymmetry parameters for fits in figures 5.2-5.6. On the horizontal
axis, asymmetric SQUIDs have a note with ’Asym’ (followed by l or w, denoting
asymmetry in either arm length or arm width respectively).
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Chapter 6
Conclusion

It can first be concluded that neural networks are apt to speed up simu-
lations of the RCSJ model. This allows for fitting measured SQUID data
within an acceptable time span. SQUIDs have been made by varying the
lengths and widths of the SQUID arms. Varying the lengths of the two
arms does not change the fitted αL values as much as one would expect
with the hypothesis that kinetic inductance dominates. Still, the SQUIDs
with asymmetric arm length did have the highest fitted αL values. It may
be concluded that asymmetric arm length did affect αL to some extent,
but that kinetic inductance does not dominate other effects like geometric
inductance. In addition, asymmetric arm width induced a large αI .

Furthermore, the SQUID with asymmetric arm widths also showed a
kink in its critical current oscillation. This is due to the presence of the
second harmonic in the current phase relation. It would be interesting to
see whether this presence of higher harmonics can be reproduced. If so,
this would require a new theoretical explanation for the relation between
asymmetric arm or junction width and the presence of higher harmonics.
If not, then variation of the arm widths is a highly effective way to make a
SQUID suitable for TRSB measurements at zero field, because it creates a
large αI .
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