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Abstract

This thesis investigates the mathematical and physical foundations of topological defects. We first
introduce the mathematical background, which consists of the theory of Lie groups and their
corresponding Lie algebras, and fibre bundles, principal bundles and connections on principal
bundles. We also give an introduction to classical field theory, and present the Lagrangian
formalism for fields and Yang-Mills theory. We cover spontaneous symmetry breaking, and we
explain how this can lead to topological defects using the Kibble mechanism. Finally, we classify
topological defects using homotopy groups, for which we develop the underlying framework.
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Introduction

Chapter 1 | Introduction

Physics is all about describing nature. To do so, physicists formulate models to represent natural
phenomena, which often take the form of a set of partial differential equations. By imposing
appropriate boundary conditions, the equations help us understand the evolution of physical
systems. A key focus is identifying stable solutions, which remain largely unchanged under small
perturbations of the initial conditions.

In the early 19th century, the British engineer John Scott Russell observed the phenomenon
of solitary waves, stable wavefronts moving through shallow water with a constant velocity,
without losing their shape. By the end of the same century, Dutch physicists Korteweg and
de Vries discovered a partial differential equation – now called the Korteweg-de Vries equation
–, which describes Russell’s solitary waves. Their equation allowed for solitary wave solutions.
In general, solutions to partial differential equations which are stable localised waves are called
solutions.

Midway the 20th century, similar stability phenomena were predicted in solid-state physics and
condensed matter physics, in the form of stable vortices in type II superconductors and superflu-
ids. Later, these were also observed. In this case however, stable solutions derived their stability
from topological obstructions, preventing the solutions to decay to a lowest energy state. These
solutions can be formed during phase transitions and are called topological defects. During this
time, physicists started to look for topological defects in other places, such as cosmology, particle
physics and quantum field theory. The understanding of topological defects provided all kinds of
insights about physics, ranging from large-scale structures in the Universe to elementary particle
interactions.

In this thesis, we explore topological defects through differential geometry, algebraic topology and
classical field theory. Field theory describes physical fields – assignments of physical quantities to
every point in time and space – and their evolution. As topological defects are fields themselves,
field theory is foundational for their study. However, additional mathematical tools are necessary
to understand topological defects.

Topological defects are characterised by their inability to be continuously deformed into a vacuum
state – a configuration of the system with the lowest energy. Mathematically, the concept of
continuous deformations are captured by homotopies. Related to homotopies are homotopy
groups, which are algebraic invariants of topological spaces. Studying the homotopy groups of
the vacuum manifold – the set of vacuum states, which can be identified with a smooth manifold
under some conditions – gives insight into the variety of possible topological defects.

Beyond algebraic topology, we are also interested in how topological defects are formed in the
first place. An important mechanism explaining the formation of topological defects is sponta-
neous symmetry breaking. For studying symmetry breaking, some Yang-Mills theory is needed,
which relies on Lie groups and principal bundles – topics rooted in differential geometry. Thus,
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Introduction

topological defects are of great interest to both mathematically inclined physicists and topologists
interested in physical applications. The aim of this thesis is to illustrate to both the elegance of
topological defects and the underlying theory, from a mathematical perspective.

In order to describe topological defects and symmetry breaking, we establish a mathematical
framework for formulating symmetries through Lie groups and Lie algebras. Lie groups are
groups which have also a smooth structure; they capture the essence of smooth symmetries. To
each Lie group, a Lie algebra is associated, which describe infinitesimal transformations related
to the symmetries. Lie groups and their Lie algebras are discussed in chapter 2.

This lays the groundwork for understanding the symmetries of fields. Fields show up quite often
in physics, so we must develop some classical field theory. The basis for field theory is the
Lagrangian density, which is a functional depending on one or more fields, their derivatives with
respect to space and time coordinates, and possibly absolute space and time coordinates. The
Euler-Lagrange equations then give differential equations describing the evolution of the fields.

Often a field theory is much easier to describe using some redundancy, by representing a physical
state by multiple field configurations. This allows local transformations of the field, called gauge
transformations, which keep the Lagrangian density invariant. Yang-Mills theory gives a way
to construct such invariant Lagrangian densities. Geometrically, Yang-Mills theory is described
using fibre bundles, principal bundles and Ehresmann connections, which are all covered in
chapter 3. The Lagrangian formalism and Yang-Mills theory are presented in chapter 4.

With this foundation of Lie groups and field theory, we are ready for symmetry breaking and
topological defects. We introduce homotopy groups in chapter 5, which is the main tool for
studying and characterising topological defects. These serve as higher-dimensional counterparts
to the fundamental group. We also give some theorems and procedures to calculate homotopy
groups of topological spaces, such as the long exact sequence of homotopy groups related to fibre
bundles. On the way, we meet some intriguing algebraic topology when we relate homotopy
groups of the physically relevant compact Lie groups O(n), SO(n), U(n) and SU(n) to the
homotopy groups of higher dimensional spheres. These homotopy groups are only partly known
– computing these groups is one of the major unsolved problems in algebraic topology.

Afterwards, we are finally ready to delve into the fascinating realm of topological defects in
chapter 6. We first look at the spontaneous breaking of symmetries. These symmetries can
either be global symmetries or gauge symmetries, which are local. The latter is the basis for the
Higgs mechanism, which is a mechanism for mass generation of fields, which we shortly touch
upon. We will also relate the vacuum manifold to the symmetry group – describing the symmetry
of the system – and the stabiliser of a vacuum state under the symmetry group.

Then the Kibble mechanism explains how symmetry breaking happens in physics, and how
it can lead to topological defects. We end the chapter with characterising different types of
topological defects using homotopy groups. More exactly, topological defects are possible if the
n-th homotopy group of the vacuum manifold is non-trivial, for an n ∈ {0, 1, 2, 3}. We also state
some implications of their (non)-existence, by means of considering a Grand Unified theory,
which tries to unify three of the four fundamental forces: electromagnetism, the weak interaction
and the strong interaction.

At last, chapter 7 will be an outlook for further research directions and has some concluding
remarks.
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Introduction

Prerequisites
We shall assume the reader is familiar with the basics of algebraic topology (most notably homo-
topies, fundamental groups and covering maps) and differentiable geometry (smooth manifolds,
tangent spaces and the differential of a smooth map, smooth vector and tensor fields, differential
forms). While this text occasionally references singular homology and de Rham cohomology, a
background in these topics is not required for understanding the main content. The first chapter
of Algebraic Topology of Hatcher [1] is an excellent reference for an introduction to algebraic
topology. For smooth manifolds we recommend Lee’s Introduction to Smooth Manifolds [2]. The
relevant chapters are 1–4 and 8–14.

Extensive background knowledge of physics is not necessarily required, but some understanding of
classical mechanics (the Lagrangian formalism, the Legendre transforms), introductory quantum
mechanics (wave functions, wave-particle duality, spin), special relativity, and electromagnetism
(Maxwell’s equations, the potential formulation) could be advantageous for the physical context
of chapters 4 and 6. For the keen reader, Introduction to Electrodynamics by Griffiths [3] is a
recommendation. Chapter 12 of that book gives also a nice preliminary to special relativity, and
its relation to electrodynamics. For classical mechanics, Goldstein’s Classical Mechanics [4] is a
classic.

Conventions and notation
Lastly we would like to state some conventions and notation used in this thesis. A smooth
manifold M is always assumed to be Hausdorff and second-countable. Smooth in all contexts is
understood as C∞, i.e. continuous partial derivatives of all orders in the real sense. By C∞(M)
we denote the ring of smooth functions f :M → R. For another smooth manifold N , C∞(M,N)
is the set of smooth functions F : M → N . For a point p ∈ M , its tangent space at p is
denoted by TpM , and the tangent bundle by TM . The cotangent space and cotangent bundle
are denoted by T ∗

pM and T ∗M respectively. For a smooth map F : M → N between smooth
manifolds, dF : TM → TN is its differential, which at p is symbolised by dF p : TpM → TF (p)N .
For legibility, the subscript p in dF p is sometimes omitted when it is clear the differential map is
considered at p. The C∞(M)-module of smooth vector fields X :M → TM on M is denoted by
X(M), and X evaluated at a point p is indicated by Xp. At times, X is considered as a derivation
X : C∞(M) → C∞(M). In that case we write Xf or X(f) for the evaluation of a vector field X
at the smooth function f ∈ C∞(M). Likewise, the C∞(M)-module of smooth differential k-forms
ω :M →

∧k(T ∗M) on M is written as Ωk(M). ωp is the evaluation of ω at a point p ∈M . The
pullback of k-forms by F is written as F ∗ : Ωk(N) → Ωk(M).

Throughout this thesis, z denotes the complex conjugate of a complex number z ∈ C, and
A∗ = A

⊤ the adjoint of a matrix A ∈ Mat(m × n,C). Sesquilinear maps are assumed to be
conjugate-linear in the first argument and linear in the second argument. The cyclic group of n
elements is denoted Zn.
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Lie groups and Lie algebras

Chapter 2 | Lie groups and Lie algebras

Physical systems are often studied by looking at their symmetries. These could be very apparent
and geometric, such as translational and rotational symmetry, but also abstract1, such as invari-
ance under a constant rotation of the wave function ψ → eiαψ in quantum mechanics, for α ∈ R,
or the electric field in electrostatics stays the same after its potential transform as V → V + V0
for V0 ∈ R. Mathematically, symmetries are described using groups, but we also want to capture
the notion of smoothness. For instance, in the case of circular symmetry, we can smoothly vary
a rotation angle. Lie groups combine these two concepts.

Furthermore, we examine vector fields on Lie groups that remain invariant under the group
operation of the Lie group. These constitute an interesting algebraic structure, called a Lie
algebra, which is intimately linked to the tangent space at the identity of the Lie group. The
exponential map allows us to go back from the Lie algebra to the Lie group, encapsulating the
notion of infinitesimal transformations. Through the exponential map, we can identify subgroups
H of a Lie group G as Lie subgroups, where the Lie algebra of H forms a Lie subalgebra of the Lie
algebra of G. As an application we identify frequently encountered Lie groups in mathematics
and physics, and we determine their corresponding Lie algebras.

Lastly, we explore some representations of Lie groups and Lie algebras. In particular, we discuss
the adjoint representation, which is commonly used in the study of principal bundles and in
gauge theory.

This treatise on Lie groups is based on chapter 3 of Foundations of Differentiable Manifolds and
Lie Groups [5], mostly the first 3 sections and the sections “Exponential Map” and “The Adjoint
Representation”. In the following chapter, the field F can either mean R or C.

2.1 Lie groups

Definition (Lie group). A (real2) Lie group is a smooth manifold G with a group structure,
such that the map G×G→ G given by (σ, τ) 7→ στ−1 is smooth.

Note that the last condition is equivalent with the maps (σ, τ) 7→ στ and σ 7→ σ−1 being smooth.
Frequently, we shall be using the symbol e for the identity of the Lie group. Before we continue,
here are a couple of Lie groups:

1These are certain instances of gauge symmetries, which we touch upon in sections 4.3 and 4.4.
2There are also complex Lie groups, which are modelled after complex manifolds and the group operations

then must be holomorphic maps. In this thesis we only consider real Lie groups, so any reference to Lie groups
should be understood as referring to real Lie groups.
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• Rn and Cn with vector addition;

• R∗, R>0, C∗ and S1 ⊆ C∗ with multiplication;

• the general linear group GLn(F), consisting of the invertible n × n matrices over F with
matrix multiplication;

• closed subgroups of GLn(F), which are called matrix groups, such as SLn(F), O(n) and
U(n); we discuss these in section 2.3;

• the F-linear automorphisms of a finite-dimensional F-vector space V , denoted by Aut(V ),
with composition as group operation;

• for G and H Lie groups, their product manifold G×H can be given a Lie group structure
by taking the direct product of groups;

• a group G with countably many elements, with the discrete topology and the structure of
a 0-dimensional smooth manifold.

Definition (Lie group homomorphism). A map φ : G → H between Lie groups is called a
Lie group homomorphism if it is smooth and a group homomorphism. If φ is also bijective
and its inverse is also a Lie group homomorphism, then φ is a Lie group isomorphism.

Note that the composition of smooth maps is again smooth, as is the identity map of a Lie group,
so Lie groups with Lie group homomorphisms form a category, denoted by LieGrp.

The determinant map det : GLn(F) → F∗ is an example of a Lie group homomorphism. The
map ψ : R>0 × S1 → C∗, given by (r, z) 7→ rz, is an instance of a Lie group isomorphism.

Definition (Lie subgroup). Let G be a Lie group. A Lie subgroup is a Lie group H alongside
with a smooth immersion i : H → G (a smooth injective map such that diσ : TσH → Ti(σ)G
is injective for all σ ∈ H), that is also a group homomorphism. A Lie subgroup H is called a
closed subgroup if im i is closed in G.

Oftentimes, H is considered as a subset of G, i.e. i : H → G is the inclusion map. Beware that
in general, H does not carry the subspace topology of G. A special type of Lie subgroup is the
connected component of the identity (called the identity component) of a Lie group:

Proposition 2.1. Let G be a Lie group and H ⊆ G the connected component of the identity ele-
ment e. Then H is a Lie subgroup of G. Moreover, all connected components are diffeomorphic.
The set of connected components can be identified with the Lie group G/H.

Proof. Since G is locally path-connected, every point in H has an open neighbourhood in G that
is path-connected (and which is thus also contained in H), hence H is open in G. This makes
H into a smooth manifold, which is also path-connected. It then suffices to prove that the map
ψ : G × G → G, given by (σ, τ) 7→ στ−1, is closed under H, since then H will be a Lie group.
The inclusion map is then automatically a smooth immersion and a group homomorphism, and
this implies that H is a Lie subgroup. Let σ, τ ∈ H. H is path-connected, so there exists
a path γ : [0, 1] → H, such that γ(0) = e and γ(1) = τ . Then γ̃ : [0, 1] → H, defined by
γ̃(t) = ψ(σ, γ(t)), is a path from γ̃(0) = σ to γ̃(1) = στ−1. Thus στ−1 ∈ H holds indeed.

Let H̃ be a connected component of G, and choose a τ ∈ H̃. Then φ : H → H̃, given by φ(σ) =
τσ, is a diffeomorphism. In particular this means that H̃ = τH, proving the correspondence with
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the set of path-components and G/H. Since cτ : H → τHτ−1 for τ ∈ G, given by σ 7→ τστ−1,
is continuous and surjective, τHτ−1 is path-connected. Since e ∈ τHτ−1, we have τHτ−1 = H
and thus H ◁ G. G/H therefore has a group structure. Every manifold has countably many
path-components, so G/H is countable and can be given a Lie group structure with the discrete
topology. ■

2.2 Lie algebras

Call to mind that for a smooth manifold M and smooth vector fields X,Y ∈ X(M), the Lie
bracket [X,Y ] defines a new smooth vector field on M , defined by [X,Y ](f) = X(Y f)− Y (Xf)
for all f ∈ C∞(M). Additionally, the Lie bracket is R-bilinear, anti-symmetric and satisfies the
Jacobi identity

[[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

It happens that these algebraic properties are interesting in its own right. These rules form an
algebraic structure, which is called a Lie algebra:

Definition (Lie algebra). A (real3) Lie algebra is a real vector space g with a bilinear operator
[·, ·] : g× g → g (an R-algebra) with the following two additional properties for all x, y, z ∈ g:

• [x, y] = −[y, x] (anti-commutativity);

• [[x, y], z] + [y, z], x] + [z, x], y] = 0 (Jacobi identity).

[·, ·] is called the Lie bracket of the Lie algebra. A linear subspace h ⊆ g that is closed under
[·, ·] is called a Lie subalgebra. A map between Lie algebras is a Lie algebra homomorphism
if it is R-linear and preserves the Lie bracket.

It is convention to denote Lie algebras with fraktur letters, such as g. Other examples of Lie
algebras include:

• for any R-vector space g, define [x, y] = 0 for all x, y ∈ g;

• the real vector space Matn(F), with the commutator [A,B] = AB −BA;

• for V an F-vector space, the vector space End(V ) of F-linear endomorphisms f : V → V ,
with [f, g] = f ◦ g − g ◦ f ;

• R3 with the cross product;

• R2 with a basis (x, y), such that [x, y] = y.

Let G be a Lie group. Then we shall see that there is a Lie algebra g associated to it, isomorphic
as a vector space to TeG. We use the map lσ : G → G as shorthand for the left multiplication
τ 7→ στ , for a given element σ ∈ G. Likewise rσ : G→ G denotes right multiplication.

We consider maps X : G→ TG (which need not even be continuous) such that π ◦X = idG, for
π : TG → G the natural projection map. We refer to such maps as rough vector fields, since if
X is smooth, then X is a smooth vector field.

3Again, it makes sense to consider Lie algebras over any field, but we only consider R here.
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Definition (Left-invariant vector field). Let X : G → TG be a rough vector field. X is
called left-invariant if for all σ ∈ G, the following condition holds:

dlσ ◦X = X ◦ lσ.

We denote the set of all left-invariant vector fields by g.

Note that a left-invariant vector field X is completely determined by Xe, for

Xσ = (X ◦ lσ)e = dlσ(Xe), σ ∈ G.

Conversely, a rough vector field with this property is left-invariant, since for all σ, τ ∈ G, we have

(dlσ ◦X)τ = dlσ(Xτ ) = dlσ ◦ dlτ (Xe) = dlστ (Xe) = Xστ = (X ◦ lσ)τ .

This gives an identification between g and TeG. But a lot more is true:

Theorem 2.2. Let G be a Lie group, and g the set of left-invariant vector fields.

(a) g is an R-vector space of dimension dimG, which is isomorphic to TeG via X 7→ Xe;

(b) every left-invariant rough vector field is automatically smooth;

(c) g is closed under the Lie-bracket for vector fields and thus forms a Lie algebra.

Proof. See proposition 3.7 in [5]. ■

g is called the Lie algebra of the Lie group G. Per convention, the Lie algebra of a general
Lie group is written as the corresponding symbols in lower-case fraktur. Since g is a finite
dimensional vector space, g can be given a smooth manifold structure by identifying it with Rn

by a choice of basis, for n = dim g. The particular choice of a particular basis does not matter.
So at times, g is considered as a smooth manifold.

R>0

1

S1

1

R2

(0, 0)

Fig. 2.1: Examples of left-invariant vector fields for the Lie groups R>0, S1 and R2. All three
are embedded in R2, with standard coordinates x and y. The sketched left-invariant vector fields
are X = x ∂

∂x , Y = x ∂
∂y − y ∂

∂x and Z = 2 ∂
∂x + ∂

∂y respectively. These vector fields can be found
by starting with an Xe ∈ TeG, and calculating Xσ = dlσ(Xe).

For our study, one of the most important class of Lie algebras are Lie algebras of Aut(V ), for
V a finite-dimensional real or complex vector space. Often we identify Aut(V ) with GLn(F) for
n = dimF V , by choosing a basis for V .
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Proposition 2.3. The Lie algebra of the Lie group GLn(F) is isomorphic to gln(F) = Matn(F)
with [A,B] = AB − BA. Likewise Aut(V ) for V a finite-dimensional F-vector space has Lie
algebra isomorphic to End(V ) with [f, g] = f ◦ g − g ◦ f .

Proof. For GLn(R), a left-invariant vector fieldX can be identified withXe, which can be written
as Xe =

∑
ij a

ij ∂
∂xij

∣∣
e
, for xij the coordinate function for the i, j-entry of a matrix in GLn(R).

Then A = (aij)ij is the corresponding element in gln(F). For the calculation of the Lie-bracket,
see 3.10.b of [5]. The derivations of the Lie algebras of GLn(C) and Aut(V ) work similar. ■

We have seen so far that to a Lie group G, we can assign a Lie Algebra g. Let φ : G → H be a
Lie group homomorphism. Then the differential induces a map dφe : TeG → TeH. For X ∈ g,
by considering the left-invariant vector field corresponding to dφe(Xe), we get a map

dφ : g → h.

A natural question to ask is whether φ induces a Lie algebra homomorphism between g and h.
This is indeed the case:

Proposition 2.4. The assignment Lie : LieGrp → LieAlgR of a Lie group to its Lie algebra
and a Lie group homomorphism to its differential at the identity is a functor.

Proof. Let φ : G→ H be a Lie group homomorphism between Lie groups. This induces a linear
map dφe : TeG → TeH. By g ∼= TeG and h ∼= TeH, this gives us a linear map dφ : g → h. Let
X,Y ∈ g and take X̃ = dφ(X), Ỹ = dφ(Y ). We want to show that dφ([X,Y ]) = [X̃, Ỹ ]; then
dφ is a Lie algebra homomorphism. What follows is writing out a lot of definitions.

First note that for all σ ∈ G,

dφ(Xσ) = dφ ◦ dlσ(Xe) = d(φ ◦ lσ)(Xe) = d(lφ(σ) ◦ φ)(Xe)

= dlφ(σ) ◦ dφ(Xe) = dlφ(σ)(X̃e) = X̃φ(σ).

Here we have used that φ ◦ lσ(τ) = φ(στ) = φ(σ)φ(τ) = lφ(σ) ◦ φ(τ). The same relation holds
obviously for Y and Ỹ . By using the above statement, we have for all f ∈ C∞(H) that

[X̃, Ỹ ]e(f) = dφ(Xe)(Ỹ f)− dφ(Ye)(X̃f)

= Xe(Ỹ (f) ◦ φ)− Ye(X̃(f) ◦ φ)
= Xe((Ỹ ◦ φ)(f))− Ye((X̃ ◦ φ)(f))
= Xe((dφ ◦ Y )(f))− Ye((dφ ◦X)(f))

= Xe(Y (f ◦ φ))− Ye(X(f ◦ φ))
= dφ([X,Y ]e)(f),

proving dφ([X,Y ]) = [X̃, Ỹ ]. By properties of the differential of a smooth map, we have d(idG) =
idg and for ψ : H → K a Lie group homomorphism, d(ψ ◦ φ) = dψ ◦ dφ, concluding the
statement. ■

2.3 The exponential map

We have ended the previous section with the fact that a Lie group homomorphism φ : G → H
induces a Lie algebra homomorphism dφ : g → h. But is the reverse also true? That is, given a
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Lie algebra homomorphism ψ : g → h, does there exists a Lie group homomorphism φ : G→ H
such that ψ = dφ? Theorem 3.27 of [5] (whose proof goes beyond our scope) answers this
question affirmatively, in the case of G being simply connected. φ is then even unique with
this property. We will use this only for the additive Lie group G = R, which is indeed simply
connected.

Let G be a Lie group, and choose a left-invariant vector field X ∈ g. Then

ψ : r → g,

λ
∂

∂x
7→ λX

defines a Lie algebra homomorphism, for r the Lie algebra of R. By theorem 3.27 in [5], there ex-
ists a unique Lie group homomorphism expX : R → G, such that d(expX)0(

∂
∂x) = X. Generally,

a Lie group homomorphism R → G is called a one-parameter subgroup, so expX can also be
described as the unique one-parameter subgroup, such that its tangent vector at 0 is Xe.

Definition (The exponential map). Let G be a Lie group. Then the exponential map is
defined as the map exp : g 7→ G, given by X 7→ expX(1).

For G = R>0 (embedded in R), we choose a left-invariant vector field X = λx ∂
∂x , for a λ ∈ R.

Then we look for a Lie group homomorphism γ : R → R>0, such that γ′(0) = λ. Then

γ′(x) = lim
t→0

γ(x+ t)− γ(x)

t
= γ(x) lim

t→0

γ(t)− γ(0)

t
= λγ(x).

Using γ(0) = 1, we find the solution to be γ(x) = eλx. This gives exp(X) = γ(1) = eλ, which
is just the ordinary exponential map, explaining the nomenclature. A lot more properties carry
over to the exponential map between the Lie algebra and the Lie group it comes from:

Proposition (Properties of the exponential map). Let G be a Lie group and X ∈ g.

(a) for all t ∈ R, we have exp(tX) = expX(t);

(b) for all s, t ∈ R, we have exp((s+ t)X) = exp(sX) exp(tX) and (exp(tX))−1 = exp(−tX);

(c) lσ ◦ expX : R → G is the unique integral curve of X starting at σ ∈ G;

(d) exp : g → G is smooth and d(exp)0 : T0g → TeG is the identity by the identifications
g ∼= T0g ∼= TeG;

(e) for φ : G→ H a Lie group homomorphism, the following diagram commutes:

g h

G H

dφ

exp exp

φ

Proof. We refer to the proof of theorems 3.31 and 3.32 in [5]. ■

The exponential map can thus also be understood as generating the trajectory along the left-
invariant vector field X, starting at the identity e, in the direction of a chosen tangent vector
Xe ∈ TeG. In particular, this implies that left-invariant vector fields are complete.

In most practical cases, there is an easy way to evaluate the exponential map:

12
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Example (The exponential map for GLn(F)). From analysis, we know already the matrix
exponential, defined for A ∈ Matn(F) as

eA =
∞∑
k=0

Ak

k!
.

Some of its most important properties include:

• det eA = etrA for A ∈ Matn(F);

• the matrix exponential is a map Matn(F) → GLn(F);

• eA+B = eAeB for A,B ∈ Matn(F) such that [A,B] = 0.

The first point follows by writing A in its Jordan normal form (over C). det eA = etrA ̸= 0
implies that eA is also invertible, giving the second point. The third follows from rearranging
the power series. For A ∈ Matn(F), we consider the path

γA : R → GLn(F),
t 7→ etA.

For all s, t ∈ R, we have [sA, tA] = 0, so γA(s+ t) = γA(s)γA(t). Furthermore,

γ′A(0) = lim
t→0

1

t

(
etA − In

)
= A+ lim

t→0
t

∞∑
k=0

Ak+2

(k + 2)!
tk = A,

since the infinite sum is bounded in the operator norm by ∥A∥2e∥A∥ for |t| ≤ 1. So γA is a one-
parameter subgroup of GLn(F), with tangent vector A (under identification). This one-parameter
subgroup is unique, so γA = expA, thus exp(A) = eA holds in this case.

Point (d) of the above proposition implies that exp : g → G is a diffeomorphism from a open
neighbourhood of 0 in g to an open neighbourhood of e in G, by the inverse function theorem.
This allows us to prove that certain subgroups (in an algebraic sense, such subgroups we call
abstract subgroups) of Lie groups are automatically a Lie subgroup, and immediately we know
their Lie algebra as well:

Theorem 2.5. Let G a Lie group, A ⊆ G an abstract subgroup, and let a ⊆ g a linear subspace.
Let U ⊆ g and V ⊆ G be open neighbourhoods of 0 and the identity e respectively, such that
exp|U : U → V is a diffeomorphism. If

exp(a ∩ U) = A ∩ V,

then A with the subspace topology has a Lie group structure, and A is a Lie subgroup of G.
Furthermore, a is the Lie algebra of A, which forms a Lie subalgebra of g.

An important result of theorem 2.5 is the closed-subgroup theorem:

Theorem 2.6. Let G be a Lie group, and A ⊆ G a closed abstract subgroup. Then A has a
unique manifold structure such that A is a Lie subgroup of G.

The proofs of these statements are quite technical, so we refer to the proof of theorems 3.20, 3.34
and 3.42 in [5].

Theorems 2.5 and 2.6 are really useful to establish common closed subgroups of GLn(F) as Lie
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subgroups of GLn(F). These closed subgroups are called matrix groups. Additionally, theorem
2.5 enables us to determine their Lie algebras. We give the results for subgroups preserving a
sesquilinear form (which is just a bilinear form for R-vector spaces) and the subgroup of matrix
group, consisting of the matrices with determinant 1:

Proposition 2.7.

• Let M ∈ GLn(F) and let G = {A ∈ GLn(F) : A∗MA =M} be the set of linear transfor-
mations that preserve the non-degenerate sesquilinear form represented by M . Then G is
a Lie subgroup of GLn(F), with Lie algebra g = {X ∈ gln(F) :MX +X∗M = 0}.

• Let G ⊆ GLn(F) be a closed subgroup, and define SG = {A ∈ G : detA = 1}. Then SG is
a Lie subgroup of GLn(F), with Lie algebra sg = {X ∈ g : trX = 0}.

Proof. Let G and g as in the first point for an M ∈ GLn(F). It is easily checked that G is an
abstract subgroup of GLn(F), and that g is a linear subspace of gln(F). Let U ⊆ g, V ⊆ GLn(F)
be open neighbours of 0 and In respectively, such that exp|U : U → V is a diffeomorphism.
Define

Ũ = U ∩
{
−MXM−1 : X ∈ U

}
∩ {X∗ : X ∈ U} .

X 7→ −MXM−1 and X 7→ X∗ for X ∈ Matn(F) are R-linear isomorphisms between finite
dimensional vector spaces, hence homeomorphisms. This means that Ũ is an open neighbourhood
of 0. Set Ṽ = exp Ũ and let X ∈ Ũ ∩ g. Then by X∗M = −MX, we have

(eX)∗MeX = (eX)∗(MeXM−1)M = eX
∗
eMXM−1

M = eX
∗
e−X∗

M =M,

thus we see that exp (Ũ ∩ g) ⊆ Ṽ ∩ G. Now let X ∈ Ũ , such that eX ∈ Ṽ ∩ G. Then
(eX)∗MeX =M , so

eX
∗
= (eX)∗ =Me−XM−1 = e−MXM−1

.

Since X∗,−MXM−1 ∈ Ũ , we can take inverses on both sides. This gives X∗ = −MXM−1, and
thus X ∈ g, showing Ṽ ∩G ⊆ exp (Ũ ∩ g). Applying theorem 2.5 then gives the first statement.

Now we let G, SG and sg as in the second point. SG is an abstract subgroup of GLn(F), and
sg a linear subspace of gln(F). We define

U ′ = U ∩ {X ∈ g : |trX| < 2π} ,

which is also an open neighbourhood of 0. Set V ′ = expU ′. For X ∈ U ′ ∩ sg, we have
det eX = etrX = e0 = 1, so eX ∈ V ′ ∩SG. Conversely, let X ∈ U ′ such that eX ∈ V ′ ∩SG. Now
1 = det eX = etrX , so trX ∈ 2πiZ. By X ∈ U ′, we actually have trX = 0, so X ∈ U ′ ∩ g. The
statement then follows by applying theorem 2.5 again. ■

Lie subgroups of GLn(F) are also ubiquitous in physics. Proposition 2.7 shows that the following
regular occurring groups are all in fact Lie groups:

Example 2.8. The special linear group SLn(F) are the n×nmatrices over F with determinant
1. Its Lie algebra sln(F) consists of the traceless matrices in gln(F).

Example 2.9. The orthogonal group consists of the linear transformations preserving lengths
and angles, i.e. A ∈ O(n) ⇐⇒ ∀v, w ∈ Rn we have ⟨Av,Aw⟩ = ⟨v, w⟩ for the Euclidean inner
product. This requirement is equivalent with A⊤A = In. By proposition 2.7, its Lie algebra is
o(n) =

{
X ∈ gln(R) : X +X⊤ = 0

}
, which are the anti-symmetric matrices. O(n) consists of
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rotations and reflections, which have detA = ±1. Sometimes we only care about rotations –
which have determinant 1 – which constitute the special orthogonal group SO(n). Because
A + A⊤ = 0 automatically implies trA = 0, we see that so(n) = o(n). This is also evident by
the fact that SO(n) is the identity component of O(n), which we prove in section 5.3.

Example 2.10. The generalised orthogonal group O(p, q), with p + q = n, are the real
n× n matrices which preserve the bilinear form represented by the matrix

(
Ip 0
0 −Iq

)
. In special

relativity, the group O(1, 3) is of particular interest. It is called the Lorentz group, and consists
of all Lorentz transformations. The Lorentz group has 4 connected components. Most often we
only consider the orthochronous Lorentz transformations, i.e. the transformations that preserve
the direction of time, denoted by O+(1, 3). These are the matrices Λ ∈ O(1, 3) such that Λ00 > 0.
SO+(3, 1) preserves additionly the orientation of space, so it has the extra condition detΛ = 1.
All these Lie groups have Lie algebra

o(1, 3) =

{(
0 b⊤

b A

)
: A ∈ so(3), b ∈ R3

}
.

Example 2.11. The unitary group is defined as U(n) = {A ∈ GLn(C) : A∗A = In},
and it is the complex analogue of the orthogonal group. Its Lie algebra is u(n) =
{X ∈ gln(C) : X +X∗ = 0}. SU(n) is its determinant 1 counterpart, and su(n) = u(n)∩ sln(C).
SU(n) in particular appears often as symmetry group of gauge theories of the Standard Model;
we consider some in sections 6.2 and 6.5.

2.4 The adjoint representation

Often Lie groups are studied by considering their representations. This is most often done in
physics, where the representations of the Lie groups in examples 2.8, 2.9, 2.10 and 2.11 are of
special interest. For a Lie group G, a Lie group representation is a Lie group homomorphism
G → H, for H = GLn(F) or H = Aut(V ), for an n ∈ Z≥1 or V a finite-dimensional F-vector
space. Likewise, a Lie algebra representation of a Lie algebra g is a Lie algebra homomorphism
g → h, for h = gln(F) or h = End(V ). By taking the differential of a Lie group representation,
we automatically get a Lie algebra representation by proposition 2.4.

In our physical context, we are mostly interested in the adjoint representation. For a Lie group
G and an element σ ∈ G, let cσ : G → G be the conjugation map τ 7→ στσ−1. This is a Lie
group automorphism, so this induces a Lie algebra automorphism dcσ : g → g, which we denote
by Adσ. This in turn gives a map

Ad : G→ Aut(g),

σ 7→ Adσ,

where Aut(g) is the group of Lie algebra automorphisms of g (which is thus a subgroup of the
automorphism group Autvec(g) of g, where g is considered merely as a R-vector space). Since
Aut(g) is closed in Autvec(g), Aut(g) itself is a Lie group by the closed-subgroup theorem 2.6.
By theorem 3.54 of [5], its Lie algebra is the set of derivations

Der(g) = {T ∈ Endvec(g) : T [X,Y ] = [TX, Y ] + [X,TY ] ∀X,Y ∈ g} ⊆ Endvec(g).

Ad is a group homomorphism, since cστ = cσ ◦ cτ for all σ, τ ∈ G, and Ad is smooth by theorem
3.45 in [5]. Thus Ad defines a representation, called the adjoint representation. Its differential
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descends to a Lie algebra representation

ad : g → Der(g),

which is also called the adjoint representation. For Lie subgroups G ⊆ GLn(F), calculating
the adjoint representation is particularly straightforward:

Proposition 2.12. Let G ⊆ GLn(F) be a Lie subgroup. For A ∈ G and X,Y ∈ g, the adjoint
representations are given by AdAX = AXA−1 and adX Y = [X,Y ].

Proof. Let A ∈ G and X ∈ g. We can write X = d
dt

(
etX
) ∣∣

t=0
by properties of the exponential

map. Then

AdAX = dcA

(
d

dt

(
etX
) ∣∣∣∣

t=0

)
=

d

dt

(
AetXA−1

) ∣∣∣∣
t=0

= A

(
d

dt

(
etX
) ∣∣∣∣

t=0

)
A−1 = AXA−1.

Now let X,Y ∈ g. Then

adX Y =

(
d(Ad)

(
d

dt

(
etX
) ∣∣∣∣

t=0

))
(Y ) =

(
d

dt

(
Ad etX

) ∣∣∣∣
t=0

)
(Y ) =

d

dt
(AdetX Y )

∣∣∣∣
t=0

=
d

dt

(
etXY e−tX

) ∣∣∣∣
t=0

= XY + 0− Y X = [X,Y ].

■

For abelian Lie groups, the adjoint representation is trivial:

Lemma 2.13. Let G be an abelian Lie group. For A ∈ G, X,Y ∈ g, we have AdAX = X and
adX Y = 0.

Proof. Since G is abelian, cA = idG for all A ∈ G, and thus AdAX = X. Ad : G→ Aut(g) is a
constant map, so ad : g → Der(g) sends everything to 0, i.e. adX Y = 0. ■

Up to this point, we have covered quite some theory for Lie groups. While the structure of
Lie groups is a fascinating subject of study, often in mathematics and physics a Lie group acts
on other spaces. Key examples are principal homogeneous spaces and principal bundles, which
locally resemble the product of a smooth manifold and a principal homogeneous space. These
are central to the next chapter, where we also revisit the exponential map and the adjoint
representation.

In chapter 4, compact Lie groups emerge as symmetry groups in Yang-Mills theory, which gives
rise to specific gauge fields. Physical fields representing particles are acted upon by these Lie
groups in a specific Lie group representation, with the adjoint representation frequently occurring
in particle physics. In chapter 6, we encounter Lie groups in the context of spontaneous symmetry
breaking, which forms the basis for topological defects. These Lie groups are often compact,
especially when gauge fields are included. Notable examples of compact Lie groups are finite
groups, U(1), SO(n) and SU(n).

In order to study topological defects, we need to understand the homotopy groups of these com-
pact Lie groups. While the topology of finite groups and U(1) is straightforward, the homotopy
groups of the other examples exhibit a rich structure. We link their homotopy groups to those of
spheres, using Lie group actions, as illustrated in section 5.3. In this way, Lie groups provide a
foundation for studying topological defects in this thesis, and really for many areas of differential
geometry and contemporary theoretical physics.
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Chapter 3 | Principal G-bundles

Much of physics is done locally, which suffices for many purposes, but it fails to account for
global effects due to topological non-trivialities. As topological defects arise from global effects,
we need to develop some theory related to fibre bundles. These are smooth manifolds E with
a projection map π : E → M , such that E is locally diffeomorphic to the product manifold of
the base manifold M and the fibre space F . Typically, this local product structure does not
extend globally. The fibre space F can be endowed with additional structure, such as that of a
vector space, resulting in vector bundles. The tangent bundle is the most well-known example
of a vector bundle, and it is used to create all kinds of new vector bundles.

Another often occurring specialisation of a fibre bundle is that of principal G-bundles, for a Lie
group G. In this case, the fibre space is given the structure of a principal homogeneous G-space,
which is a smooth manifold that is transitively and freely acted upon by G. Important examples
include the Hopf fibrations and the projection map G→ G/H, for G a Lie group and H ⊆ G a
closed subgroup. Principal G-bundles form the basis for describing fields in field theory, which we
explore in chapter 4. Additionally, principal G-bundles are useful in calculations for homotopy
groups. This technique is used thoroughly in chapters 5 and 6.

Furthermore, in this chapter, we introduce differential k-forms that take values in a finite dimen-
sional R-vector space; we consider particularly finite dimensional Lie algebras. The primary goal
of Lie algebra-valued differential k-forms in this thesis is defining Ehresmann connections and
their curvature, which play a significant role in Yang-Mills theory, which is addressed in section
4.4.

This chapter is based on parts of chapters 21 (“Vector-Valued Forms”), 27 (“Principal Bundles”),
28 (“Connections on a Principal Bundle”) and 30 (“Curvature on a Principal Bundle”) of Differen-
tial Geometry [6] and the first two chapters of [7]; the sections about fibre bundles and principal
bundles are also inspired by the lecture notes of Meinrenken [8].

3.1 Fibre bundles

The basis for this chapter are fibre bundles and their morphisms. These readily generalise to
vector bundles and principal G-bundles.

Definition (Fibre bundle). Let F,E,B be smooth manifolds. A fibre bundle is a smooth
map π : E → B that is locally trivial, which means that there exists an open cover {Uα}α∈A
of B, with diffeomorphisms ϕα : π−1(Uα)

∼−→ Uα × F called local trivialisations, such that
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the following diagram commutes:

π−1(Uα) Uα × F

Uα

∼
ϕ

π projUα

B is called the base space, E the total space and F the fibre space. If we also want to stress
the fibre in a fibre bundle, we use the notation F −→ E

π−→ B.

Note that a fibre bundle π : E → B must be automatically surjective. For b ∈ B, we denote
Eb = π−1(b) the fibre of b in E. By local triviality, Eb is diffeomorphic to F , explaining fibre in
the word ‘fibre bundle’. We want a morphism of fibre bundles to preserve these fibres:

Definition (Fibre bundle morphism). Let π : E → B, π′ : E′ → B′ be fibre bundles. A
bundle morphism is a smooth map φ : E → E′, such that for all b ∈ B, φ(Eb) ⊆ E′

φ(b). A
bundle isomorphism is a diffeomorphism φ : E → E′, such that for all b ∈ B, φ(Eb) = E′

φ(b).

A bundle morphism φ : E → E′ as above induces a map f : B → B′ on the base spaces, such
that the following diagram commutes:

E E′

B B′

φ

π π′

f

By looking at the local trivialisations, we see that f is smooth.

For a chosen base manifold B and fibre space F , B × F with the projection map to B is a fibre
bundle, the trivial bundle. A fibre bundle π : E → B bundle isomorphic to a trivial bundle
and inducing the identity on B is called trivialisable. In figure 3.1, we give an example of a
trivialisable and two non-trivialisable fibre bundles.

Often for a fibre bundle π : E → B, we want to assign to every b ∈ B and element in its fibre
Eb, in a smooth manner. This is exactly the notion of a section of a fibre bundle.

Definition (Section of a fibre bundle). Let π : E → B be a fibre bundle, and U ⊆ B an open
subset. A smooth map s : U → E is called a local section if the following diagram commutes:

U E

U

s

id π

The set of local sections on U of π : E → B is denoted by Γ∞(U,E). A (global) section of
π : E → B is a local section with U = B.

Not every fibre bundle has sections, an example being the one in figure 3.1c.
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π

(a) The cylinder S1 × (−1, 1), mapping each line
segment to its base circle. This is a trivialisable
fibre bundle.

π

(b) The Möbius bundle. Each line segment is
again mapped to the base circle, but this fibre bun-
dle is not trivialisable1.

π

(c) The map π : S1 → S1, given by z 7→ z2, which is a double covering of
S1. The fibre space is {−1, 1}. Since the total space is connected whereas
S1 × {−1, 1} is not, this fibre bundle is non-trivialisable.

Fig. 3.1: Three non-isomorphic examples of fibre bundles with base space S1.

One can provide additional algebraic structure to the fibre F in a fibre bundle, such as Lie
groups, vector spaces or (Lie) algebras, giving rise to group bundles, vector bundles and (Lie)
algebra bundles. The local trivialisations must then respect those structures on each fibre. We
highlight vector bundles.

Definition (Vector bundle). Let F = V be a finite dimensional R-vector space (with its usual
smooth structure). A vector bundle is a fibre bundle π : E →M , such that for every p ∈M , its
fibre Ep carries an R-vector space structure, and that the local trivialisations ϕα : π−1(Uα)

∼−→
Uα × V can be chosen to be fibrewise linear, i.e. for p ∈ M , ϕα|Ep

: Ep → {p} × V is linear. A
vector bundle morphism is a fibre bundle morphism between vector bundles which is linear
restricted to the fibres.

Every vector bundle π : E → M has a canonical section s : M → E, called the zero section,
which assigns the additive identity element in Ep to each element p ∈ M . In fact, for an open
subset U ⊆M , Γ∞(U,E) has the structure of a C∞(U)-module, by fibrewise addition and scalar
multiplication.

One of the most important vector bundles associated to a smooth manifold M is the tangent
bundle TM → M . Sections of the tangent bundle are exactly the smooth vector fields, i.e.
X(M) = Γ∞(M,TM). For E →M , F →M vector bundles, we can apply constructions in linear

1Assume the Möbius bundle were trivialisable. In particular, the total space would be homeomorphic to
S1 × (−1, 1) ∼= C∗. By leaving out a circle in the middle of the total space, the resulting space is still connected.
However, C∗ without a simple closed curve is disconnected by the Jordan curve theorem, giving a contradiction.
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algebra to the individual vector spaces, such as taking direct sums, tensor products, k-th exterior
and symmetric powers, the dual vector space or taking the vector space of homomorphisms. These
constructions lead to new vector bundles, namely the Whitney sum E � F → M , the tensor
bundle E � F → M , the k-th exterior and symmetric bundles

∧kE → M and
∑kE → M ,

the dual bundle E∗ → M and the Hom-bundle Hom(E,F ) → M . These construction can
be applied to the tangent bundle, to get for example the cotangent bundle T ∗M → M , the
bundle

∧k(T ∗M) →M and the (k, ℓ)-tensor bundle. Sections of these are smooth covector fields
Ω1(M) = Γ∞(M,T ∗M), smooth differential k-forms Ωk(M) = Γ∞(M,

∧k(T ∗M)), and smooth
tensor fields, respectively.

3.2 Principal G-bundles

In physics, we are mostly interested in Lie groups because they do something with a space. This
is rigorously described using group actions. Let G be a Lie group. Then a smooth left action
on a smooth manifold X is a smooth map φ : G×X → X such that it is a left action, i.e.

• φ(e, x) = x, for all x ∈ X;

• φ(gh, x) = φ(g, φ(h, x), for all g, h ∈ G and x ∈ X.

Often we simply write g · x or gx for φ(g, x). A smooth right action is defined analogously. A
smooth manifold X which is smoothly acted upon by a Lie group G, is called a G-manifold.
A map f : X → Y between G-manifolds is called G-equivariant if for all x ∈ X and g ∈ G,
f(gx) = gf(x), or the appropriate variations if G acts on one or two of the spaces on the right.

We have already seen instances of smooth actions of Lie groups, namely Lie group representations
ρ : G→ Aut(V ) for a finite-dimensional F-vector space V induce a smooth left action

ρ̃ : G× V → V,

(g, v) 7→ ρ(g)(v).

We shall encounter also other smooth actions.

One of the main theorems in group theory related to group actions is the orbit-stabiliser theorem.
In this thesis, we shall be using the following specific form for smooth transitive actions. For
the proof, see theorem 3.62 in [5]. The theorem relies on the fact that for G a Lie group and
H ⊆ G a closed subgroup, G/H can be given a smooth structure such that the projection map
is smooth. For more details, we again refer to [5], theorem 3.58.

Theorem 3.1. Let φ : G×X → X be a transitive smooth left action of the Lie group G on the
smooth manifold X. Choose a point x ∈ X, and consider its stabiliser subgroup H = Stabx(G) =
{g ∈ G : gx = x}. Then the map ψ : G/H

∼−→ X, given by gH 7→ gx, defines a diffeomorphism.

For a lot of applications, besides transitivity we also demand the smooth action to be free, i.e.
if there exist g ∈ G and x ∈ X such that gx = x, then g = e:

Definition (Principal homogeneous G-space). Let G be a Lie group. A principal homo-
geneous G-space is a smooth manifold X with a transitive and free smooth G-action.
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An important example is a Lie group G, which acts on itself by left multiplication. In fact, all
principal homogeneous G-spaces are isomorphic2 to this example; let X be a principal homoge-
neous G-space and x0 ∈ X a point, then

ψ : G
∼−→ X,

g 7−→ gx0

defines such isomorphism (the fact that ψ−1 is smooth is non-trivial, but it immediately follows
from theorem 3.1).

But why would we consider principal homogeneous G-spaces for a given Lie group G in the first
place, if they turn out to be all isomorphic? They are all isomorphic, but not canonically so; we
had to choose a point x0 ∈ X after all. Due to this aspect principal homogeneous G-spaces often
occur in physics. For instance, if one drops a ball from a small height y = y0, then its velocity
on a later time at position y = y1 does not depend on the absolute coordinates y0 and y1, but
on their difference ∆y = y0 − y1. Choosing another reference point for our coordinates does
not change this fact. Thus the height of the ball can be thought of as an element in a principal
homogeneous R-space and the height difference as an element of R; the height of the ball makes
only sense upon choosing a reference point – often the floor.

Another example is in quantum mechanics, where one cannot speak of an absolute phase of a
quantum state, as multiplying with a z ∈ C with |z| = 1 does not alter the physical state. Phase
differences are measurable though, which constitute the group U(1). The absolute phase then is
an element of a principal homogeneous U(1)-space.

Often in physics, we moreover want to choose a reference point locally. Essentially, we want to
combine the notion of a principal homogeneous G-space with a fibre bundle:

Definition (Principal G-bundle and its morphisms). Let G be a Lie group. A principal
G-bundle is a fibre bundle π : P → B such that each fibre Pb for b ∈ B is also a principal
homogeneous G-space, and such that the local trivialisations ϕα : π−1(Uα) → Uα × G can be
chosen to be G-equivariant restricted to the fibres. The G-action on Uα × G is defined by
g(b, h) = (b, gh), for G ∈ g and (b, h) ∈ Uα ×G. ϕα : π−1(Uα) → Uα ×G is called G-equivariant
if for all b ∈ Uα, p ∈ Pb and G ∈ g,

gϕα(p) = ϕα(gp).

A homomorphism of principal G-bundles between principal G-bundles π : P → B and
π′ : P ′ → B′ is a bundle morphism φ : P → P ′, which is also G-equivariant on the fibres. In
other words, for every b ∈ B, p ∈ Pb and g ∈ G, we have gφ(p) = φ(gp), or equivalent expressions
if G acts on the right.

A local section of a principal G-bundle π : P → B then can be interpreted as smoothly choosing
a reference point in each principal homogeneous G-space Pb, for b in an open subset of B.
Depending on the structure of the principal bundle, this may be possible globally or only locally.

The example in figure 3.1c is a principal Z2-bundle. Another interesting example (not only
mathematically, but also in physics, see for example [9]), is the Hopf fibrations. The following
description is based on examples 4.44 up to 4.47 in [1].

Example (Hopf fibrations). The complex numbers with unit length S1 act upon the unit
sphere S2n+1 ⊆ Cn+1 by scalar multiplication. The orbit space of this action can be identified

2Two G-manifolds are said to be isomorphic if there exists a G-equivariant diffeomorphism between them.
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with CPn, making the projection map into a principal S1-bundle (it is easily checked that the
action on each fibre is smooth, free and transitive). The same procedure can be done for {±1} ∼=
S0 acting on Sn ⊆ Rn+1 and the unit quaternionic numbers of unit length3 acting on S4n+3 ⊆
Hn+1, giving principal bundles

S0 −→ Sn π−→ RPn, S1 −→ S2n+1 π−→ CPn, S3 −→ S4n+3 π−→ HPn.

The case n = 1 are called Hopf fibrations. By using stereographic projections, we find that
the projective lines RP1, CP1 and HP1 are diffeomorphic to S1, S2 and S4 respectively. Then
the principal bundles reduce to the following principal bundles:

S0 −→ S1 π−→ S1, S1 −→ S3 π−→ S2, S3 −→ S7 π−→ S4.

This example does not generalise to the octonions O, as the octonions with norm 1 do not form
a group. However, there is still a related fibre bundle S7 −→ S15 π−→ S8.

Fig. 3.2: The Hopf fibration S1 −→ S3 π−→ S2. On the right, points on S2 are chosen, the
corresponding fibres are illustrated on the left in the same colour. S3 is visualised by projecting
it stereographically onto R3, and then scaling it to the open unit ball, via r 7→ r√

∥r∥2+1
. The

circles in the left picture are disjoint, since each circle corresponds to a different point on S2.

As a surprising byproduct, the Hopf fibrations provide information of the homotopy groups of
spheres. This astonishing fact we discuss in section 5.3.

A last example is one which we shall encounter when studying topological defects in chapter 6:

Example (The induced principal H-bundle for a closed subgroup). Let G be a Lie
group, and H ⊆ G be a closed subgroup. We have already seen that the left cosets G/H can
be given a smooth manifold structure such that the natural projection map π : G → G/H is a
smooth map. It is even a fibre bundle with fibre space H, see theorem 3.58 in [5] for further
details. In fact, π : G→ G/H has a principal H-bundle structure, where H acts on the right on
fibres gH via

gH ×H → gH,

(gh, h′) 7→ ghh′.

3The group of quaternions with unit length {q ∈ H : ∥q∥ = 1} can be identified with SU(2), which in turn is
diffeomorphic to S3.
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3.3 Lie algebra-valued forms and Ehresmann connections

Having established principal G-bundles, we now turn our focus to Ehresmann connections on
principal G-bundles. These are crucial in describing Yang-Mills theory geometrically. Before
we can do that however, we have to introduce smooth vector-valued differential k-forms. This
section is solely a short overview of smooth vector-valued differential k-forms and connections
on principal G-bundles. For a thorough overview, we refer to chapters 21, 28 and 30 in [6].

Let M be a general smooth manifold, and ω ∈ Ωk(M) a smooth k-form. At every point p ∈M ,
ω can be considered as an alternating k-linear map

ωp : TpM × . . .× TpM → R.

For our discussion about connections on principal bundles, we want these alternating k-linear
maps to take values in a finite dimensional real vector space V . So we want a vector-valued
k-form induce alternating k-linear maps

ωp : TpM × . . .× TpM → V

for each point p ∈ M , in a smooth way. The way to accomplish this is by applying the tensor
product with V on each

∧k(T ∗
pM). More precisely:

Definition (Smooth vector-valued differential k-forms). Let M be a smooth manifold, V
a finite dimensional R-vector space and k ≥ 0. Define

Ωk(M,V ) := Γ∞
(
(M × V ) �

∧k
(T ∗M)

)
,

which is the set of sections of the tensor bundle of the trivial bundle M × V and
∧k(T ∗M). An

element of Ωk(M,V ) is called a smooth V -valued differential k-form. We often shorten this
to ‘V -valued k-form’ for conciseness.

Like ‘ordinary’ k-forms, a V -valued k-form ω ∈ Ωk(M,V ) can indeed be considered as a smooth
map ω :

∧k(TM) → V . At each point p ∈M , ω then can be regarded as an alternating k-linear
map ωp : TpM × . . .× TpM → V .

To do calculations with V -valued k-forms, it is often useful to choose a basis (v1, . . . , vn) for V .
Then we can write ω ∈ Ωk(M,V ) in terms of the basis (v1, . . . , vn):

ω =
n∑

i=1

vi � ωi, ωi ∈ Ωk(M).

Additionally, by choosing a local coframe (ε1, . . . , εm) on an open subset U ⊆ M , we can write
ω in terms of coordinate functions on U :

ω =
∑

ωi
j1,...,jk

vi � (εj1 ∧ . . . ∧ εjk), ωi
j1,...,jk

∈ C∞(U)

Using coordinate expressions, we can define some common operations on vector-valued k-forms:

Defining proposition (Operations on V -valued k-forms). Let ω ∈ Ωk(M,V ) be a V -valued
k-form, which we write as ω =

∑
vi � ωi after a choice of basis (v1, . . . , vn). Then the following

definitions are basis-independent:
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• The exterior derivative d : Ωk(M,V ) → Ωk+1(M,V ) is defined as

dω :=
n∑

i=1

vi � dωi ∈ Ωk+1(M,V ).

• Let f : N → M be a smooth map between smooth manifolds. Then the pullback f∗ :
Ωk(M,V ) → Ωk(N,V ) is defined as

f∗ω :=
n∑

i=1

vi � f∗ωi ∈ Ωk(N,V ).

• For an n-dimensional Lie algebra V = g, the Lie bracket [·, ·] on g induces a bilinear map
[·, ·] : Ωk(M, g)× Ωℓ(M, g) → Ωk+ℓ(M, g), via

[ω, η] :=
∑

1≤i,j≤n

[vi, vj ] � (ωi ∧ ηj).

Let π : P → M be a principal G-bundle. In this section, we assume that G acts on the right.
We denote the right action for g ∈ G by rg : P → P. By examining the local trivialisations, we
see that π : P →M is a smooth submersion, meaning that dπp : TpP → Tπ(p)M is surjective for
all p ∈ P. We define Vp ⊆ TpP as Vp = ker dπp, which is called the vertical tangent space at
p. Vectors in Vp are the tangent vectors to paths in P that map to a single fibre.

However, there is no canonical way to define a notion of moving ‘perpendicular’ to vertical
vectors. This is exactly what a connection accomplishes, by specifying a subspace Hp ⊆ TpP for
every point p ∈ P in a smooth manner and respecting the G-action, such that TpP = Vp � Hp.
Respecting the G-action is called right-invariance, and means that for all Yp ∈ Hp, we have
drg(Yp) ∈ Hpg. Then Tπ(p)M can be identified with Hp via the isomorphism theorem: Tπ(p)M ∼=
TpP/ ker dπp ∼= Hp. Hp is called the horizontal tangent space at p.

In this way, a connection ‘connects’ adjacent fibres in P; it is then possible to lift a vector field
X ∈ X(M) on M uniquely to a right-invariant horizontal vector field on P. This situation is
sketched in figure 3.3.

We can easily define vector fields on P that are always vertical:

Defining proposition (Fundamental vector field). Let π : P →M be a principal G-bundle,
and X ∈ g a left-invariant vector field on G. Then for all p ∈ P, we define

Ap :=
d

dt

(
p · etX

) ∣∣∣∣
t=0

∈ TpP.

Then A is a smooth vector field on P, called a fundamental vector field.

In fact, the vertical vectors are precisely those vectors that come from fundamental vector fields
(corollary 27.19 in [6]). Another important identity is given by proposition 27.13 in [6], which
states that for p ∈ P, A ∈ g and g ∈ G, the following holds:

drg(Ap) =
(
Adg−1 A

)
pg
. (3.1)
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M

P

π dπ

Pπ(p)

Hp
Vp

Hpg
Vpg

Tπ(p)M

Yp

Ypg

Xπ(p)

p

pg

π(p)

rg drg

Fig. 3.3: Illustration of a principal bundle π : P → M and a chosen set of right-invariant
horizontal tangent spaces. We choose a point p ∈ P. Its tangent space TpP can be decomposed in
a vertical tangent space Vp = ker dπp and a horizontal tangent space Hp, such that TpP = Vp�Hp.
G acts on the fibre Pπ(p) the point p belongs to. We have required that horizontal tangent spaces
are mapped to horizontal tangent spaces via the differential of the action. In this way, we can
identify a vector Xπ(p) ∈ Tπ(p)M with right-invariant vectors Ypg ∈ Hpg, for every g ∈ G.

An easy way to describe a connection on a principal G-bundle is through a g-valued 1-form,
called an Ehresmann connection:

Definition (Ehresmann connection). Let π : P → M be a principal G-bundle. An Ehres-
mann connection is a g-valued 1-form ω ∈ Ω1(P, g), such that

1. for all A ∈ g and p ∈ P, ωp(Ap) = A;

2. for all g ∈ G, r∗gω = Adg−1 ◦ω as maps TP → g.

For an Ehresmann connection ω ∈ Ω1(P, g), the horizontal tangent space at p ∈ P is defined
as Hp := kerωp ⊆ TpP. The first condition states exactly that Vp � Hp = TpP. The second
condition ensures that ωp is G-equivariant, with respect to the following right actions:

TpP g

g 7→drg

ωp

g 7→Adg−1

For vertical vectors, this condition is consistent with equation (3.1); for horizontal vectors Yp ∈
Hp, it states the right-invariance drg(Yp) ∈ Hpg, as

ωpg (drg(Yp)) = ωrg(p) (drg(Yp)) = (r∗gω)p(Yp) = Adg−1(ωp(Yp)) = Adg−1(0) = 0.

The curvature associated to a connection measures how the connection varies:

Definition (Curvature of a connection). Let ω ∈ Ω1(P, g) be an Ehresmann connection for
a principle G-bundle π : P →M . Then its curvature is defined as Ω = dω+ 1

2 [ω, ω] ∈ Ω2(P, g).

An important property of the curvature (see theorem 30.4 in [6]) is that dΩ = [Ω, ω] holds, which
is called the second Bianchi identity. In the next chapter, we study principal bundles in a
physical context, and we give a physical interpretation of connections, their curvature and the
second Bianchi identity.
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Chapter 4 | Fields and gauge theories

A (physical) field is an assignment of a physical quantity to every point in space and time.
Examples are ubiquitous in physics: temperature, acoustic fields describing sound waves, the
electric and magnetic field, the gravitational field, fields describing elementary particles such as
electrons and quarks, and many more. Topological defects, which we study in chapter 6, are also
fields, so it makes sense to study fields. In section 4.1, we first give a quick description of fields
and spacetime, here R4 with the Minkowski metric, on which relativistic fields are modelled.

Next is section 4.2, where we introduce classical field theory, by generalising Lagrangian mechan-
ics and Hamiltonian mechanics to fields. This allows us to construct the equations of motion
from a given Lagrangian density by an action principle. We also encounter the energy functional,
which will play a vital role in symmetry breaking in chapter 6.

Electromagnetism is one of the most prominent classical field theories. In section 4.3, we present
Maxwell’s equations in a covariant form using the language of differential geometry, unveiling
their full elegance. In this formalism, the potential formulation also immediately follows in a
natural way. We argue that this potential formulation is more descriptive, as it is able to combine
electrodynamics, special relativity and quantum mechanics, forming the basis for quantum elec-
trodynamics. This is all made possible by gauge-invariance; we can transform the four-potential
without altering observable quantities.

By requiring gauge-invariance under local U(1)-gauge transformations, electrodynamics automat-
ically emerges. Yang-Mills theory, which we cover in section 4.4, tries to generalise this principle
to invariance under compact Lie groups G. Here we use the theory about principal G-bundles,
which we have established in chapter 3. Yang-Mills theory has been incredibly successful in
physics, with the Standard Model of particle physics as its quintessence.

4.1 Fields and spacetime

First, we want to represent physical fields mathematically. For our purposes, we model space
and time after the smooth manifold M = R4 (with its usual differential structure). Then fields
can be seen as sections of some vector bundle over M , which we assume to be smooth. For
instance, a real scalar field is a section ϕ ∈ Γ∞(M,M × R), which can be identified with a
smooth function ϕ : M → R. Replacing R by C, we get a complex scalar field. Combining
multiple scalar fields will result in a field ϕ : M → Rn, for some n ≥ 2. A vector field is a
section A ∈ Γ∞(M,TM), which can be identified with a smooth map A : M → TM , for TM
the tangent bundle. Analogously, covector fields and tensor fields are sections of T ∗M and the
(k, ℓ)-tensor bundle over M .

Coordinates on M = R4 are denoted by (x0, x1, x2, x3) = (t, x, y, z). t is the temporal coordinate,
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x, y and z the spatial coordinates. Note that in reality, x0 = ct, where c represents the speed
of light. For convenience, we adopt natural units so that c = 1. While this choice is purely
administrative, it is crucial to bear in mind during calculations. A vector field X ∈ X(M) can
be decomposed in terms of the standard basis1:

X = X0 ∂

∂t
+X1 ∂

∂x
+X2 ∂

∂y
+X3 ∂

∂z
.

To shorten such expressions, we introduce the notation ∂µ := ∂
∂xµ . Furthermore, we shall be

using the Einstein summation convention, which states that if an undefined index appears both
below and above in a term, then it is implicitly summed over. For example, we would write
X = Xµ∂µ in this case, or ω = ωµdx

µ for a covector field ω ∈ Ω1(M). When Greek indices
appear, the summation is over the temporal and spatial indices, whereas for Latin indices the
summation is only over space components.

We endow M with the Minkowski metric η :M → T ∗M � T ∗M , defined by

η = ηµνdx
µ � dxν , ηµν = diag(1,−1,−1,−1).

Then for smooth vector fields X,Y ∈ X(M), we see that

η(X,Y ) = ηµνdx
µ(X)dxν(Y ) = ηµνX

µXν = X0Y 0 −X1Y 1 −X2Y 2 −X3Y 3.

η(X,Y ) is also commonly denoted as ⟨X,Y ⟩. M with the Minkowski metric is known as
Minkowski space.

At each point in M , η is a non-degenerate symmetric bilinear form on TpM , thereby endowing M
with the structure of a pseudo-Riemannian manifold. The diffeomorphisms of TpM preserving
this bilinear form and keeping the origin fixed, are precisely the Lorentz transformations in
O(1, 3), which we encountered in example 2.10. Physically, η allows measurements of ‘distances’
in spacetime, such as the proper time interval along a curve in spacetime, which corresponds to
the time measured by a clock moving along that curve. The Minkowski metric also divides a
vector v ∈ TpM into one of three categories:

• ⟨v, v⟩ > 0 (timelike). Curves in spacetime where the tangent vector to the curve (the
four-velocity) at every point is timelike represent matter, which moves slower than the
speed of light.

• ⟨v, v⟩ = 0 (lightlike). Photons and other massless particles move at the speed of light,
with their four-velocity being everywhere lightlike.

• ⟨v, v⟩ < 0 (spacelike). Particles with spacelike four-velocity move faster than the speed
of light, although there is currently no evidence for their existence.

For a more comprehensive discussion of special relativity, see chapter 12 of Introduction to Elec-
trodynamics [3].

The non-degeneracy of η allows for raising and lowering indices:

Xµ = ηµνX
ν , Xµ = ηµνXν ,

1For general smooth manifolds M , this can only be done locally. Smooth manifolds that allow a set of smooth
vector fields that form a basis on each tangent space TpM for p ∈ M , are called parallelisable. Examples include
Lie groups G such as R4 (take a basis for TeG, and identify these vectors with the smooth vector fields in g), S7

and the product of parallelisable manifolds.
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for ηµν such that ηµνηνρ = δµρ . Here we are considering the Minkowski metric, for which ηµν = ηµν
holds in particular. This equivalence means that a vector X ∈ TpM with components Xµ can
be interpreted as a covector in T ∗

pM with indices Xµ, and vice versa. These transformations are
called the musical isomorphisms ♭ : TpM

∼−→ T ∗
pM and ♯ : T ∗

pM
∼−→ TpM .

In chapter 13 of [2], it is proven that these isomorphisms extend to vector bundle isomorphisms
between the tangent bundle TM and cotangent bundle T ∗M . These isomorphisms then can be
interpreted as C∞(M)-linear isomorphisms

♭ : X(M)
∼−→ Ω1(M), ♯ : Ω1(M)

∼−→ X(M),

X 7−→ Xµdx
µ, ω 7−→ ωµ∂µ.

Thus, smooth vector fields can naturally be interpreted as smooth covector fields, and vice versa.
All of this is possible whenever M has a pseudo-metric η. In general, the indices of tensor fields
can also be raised and lowered in an analogous manner.

Raising and lowering indices also allow for the following common inner product expression in
physics

⟨X,Y ⟩ = ηµνX
µY ν = XµY

µ = XµYµ, X, Y ∈ X(M).

By the above discussion, it makes sense to define η also for covector fields ζ, ω ∈ Ω1(M), via

⟨ζ, ω⟩ := ⟨ζ♯, ω♯⟩,

which is a non-degenerate symmetric bilinear form on each cotangent space T ∗
pM . η can even

be extended to a non-degenerate symmetric bilinear form on each
∧k(T ∗

pM), via〈
ζ1 ∧ . . . ∧ ζk, ω1 ∧ . . . ∧ ωk

〉
:= det

(〈
ζi, ωj

〉)
ij
, ζ1, ω1, . . . , ζk, ωk ∈ Ω1(M),

and extending this bilinearly. This allows for a natural isomorphism ⋆ : Ωk(M)
∼−→ Ωn−k(M),

which is uniquely defined by the relation

ζ ∧ ⋆ω = ⟨ζ, ω⟩ d4x, ζ, ω ∈ Ωk(M).

⋆ is called the Hodge star operator, and it has some interesting properties, notably ⋆⋆ =
(−1)k+1 idΩk(M). This operator can also be used to define differential operators in a coordinate-
free manner. For example, the four-divergence divX = ⋆d(⋆X♭), for a smooth vector field
X ∈ X(M). We encounter the Hodge star operator again when we talk about electromagnetism
and gauge fields.

It is important to note that the constructions presented in this section generalise to general
smooth pseudo-Riemannian manifolds. For a more comprehensive treatment of working with
tensor fields, manipulating indices and the Hodge star operator, we refer to chapters 12 and 13
in [10], which serve as the foundation of this section.

4.2 The Lagrangian formalism

In Lagrangian mechanics, a mechanical system is described using a Lagrangian L = L(q, q̇, t),
which is a smooth function depending on independent generalised position coordinates q =
(q1, . . . , qn), their time derivatives q̇ = (q̇1, . . . , q̇n), and time t itself. In a lot of situations, the
Lagrangian is given by L = T − V , which is the difference of the kinetic energy T and the
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potential energy V . The equations of motion are determined by Hamilton’s principle – also
known as the principle of stationary action –, which states that the evolution of the system
is such that the action integral

S[q(t)] =
∫ t2

t1

L(q(t), q̇(t), t)dt

is stationary. This gives the following equations, called the Euler-Lagrange equations:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0. (4.1)

The quantity pi := ∂L
∂q̇i

is called the generalised momentum, and rightly so. For instance, for a
particle with mass m and kinetic energy T = 1

2m(ẋ2+ ẏ2+ ż2) moving in a velocity-independent
potential V (r, t), the generalised momenta are simply the linear momenta px = mx, etc. If one
describes the movement in cylindrical coordinates (r, φ, z) instead, then pφ = mr2φ̇, which is just
the angular momentum around the z-axis. Sometimes it is more useful to express the equations
of motion in terms of q, p and t instead of q, q̇ and t. This is accomplished by the Legendre
transform

H(q,p, t) = piq̇i − L(q, q̇, t).

H is called the Hamiltonian. Hamiltonian mechanics gives a very useful framework for
quantum mechanics and statistical physics, amongst others.

By calculating dH and dL, we get the first order partial differential equations, which are called
Hamilton’s equations:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
,

dH

dt
=
∂H

∂t
= −∂L

∂t
. (4.2)

Physically, H often represents the total energy (such as the aforestated example where L = T−V ,
T = 1

2m
(
ẋ2 + ẏ2 + ż2

)
and V = V (x, y, z, t); then H = T + V ), but in general, this need not

always be the case. Nonetheless, we can deduce that when the Lagrangian does not depend on
time explicitly, then dH

dt = 0, hence the quantity H is conserved. This makes H an interesting
quantity in its own right.

The Lagrangian formalism generalises to fields. Most notably, we want to generalise equation
(4.1). Throughout this section, we follow chapter 12 of Classical Mechanics [4]. Let ϕρ be a
collection of fields, where ρ is a general index for field components (for instance, it can be an index
for a vector field, or double indices for a rank 2 tensor field, etc.). Then the Lagrangian density
L is a function of the field components, their spacetime derivatives and absolute spacetime
coordinates on M = R4:

L = L (ϕρ, ∂µϕρ, x
µ) .

The Lagrangian density L can often be expressed as the difference between the kinetic energy
density T and the potential energy density V. We use Lagrangian densities (“Lagrangian per
volume”) rather than Lagrangians themselves, because the fields have uncountable many degrees
of freedom, so it would not make any sense to attribute kinetic and potential energy to a single
degree of freedom. It is the same reason why in a material with a certain mass, we use the mass
density rather than the individual masses of the constituents. Nonetheless, colloquially the word
‘Lagrangian’ is also applied to L.

For Ω ⊆M a compact region in spacetime, the action is defined as

S[ϕ(xµ)] =
∫
Ω
L (ϕρ(x

µ), ∂µϕρ(x
µ), xµ) d4x. (4.3)
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Here d4x = dt∧ dx∧ dy ∧ dz is the volume form of M . Hamilton’s principle then states that
the variation δS must be 0, which means that the evolution of the fields ϕ(0)ρ is such that S does
not change up to first order. That is to say, for a variation ϕρ = ϕ

(0)
ρ +αζρ for smooth functions

ζρ which vanish at ∂Ω, and α a real parameter, that

d(S[ϕ])
dα

∣∣∣∣
α=0

= 0.

By solving this (for the lengthy calculation we refer to section 12.2 in [4]), one finds the Euler-
Lagrange equations for fields, which determine the evolution for the field components ϕρ:

d

dxµ

[
∂L

∂(∂µϕρ)

]
− ∂L
∂ϕρ

= 0. (4.4)

Note the apparent similarities between equations (4.1) and (4.4). To describe Lagrangian me-
chanics geometrically, all the possible configurations the system can be in forms an n-dimensional
manifold, the configuration manifoldQ. The generalised coordinates q parameterise this man-
ifold (locally). A particular instance of a pair (q, q̇) of generalised position and velocity is then
exactly an element of the tangent bundle TQ. The Lagrangian L(q,p, t) can then be interpreted
as a smooth function L : TQ× R → R.

The pair (q,p) of generalised position and momentum is an element of the cotangent bundle T ∗Q,
as can readily be seen from the definition pi =

∂L
∂q̇i

. The cotangent bundle T ∗Q can be given a
symplectic structure via specifying a non-degenerate closed differential 2-form ω ∈ Ω2(T ∗Q)closed,
which allows an isomorphism between smooth vector fields and smooth covector fields on T ∗Q.
The differential dH of the Hamiltonian H : T ∗Q→ R (which for simplicity we assume to be time-
independent) can then be interpreted as a vector field, whose flow describes the evolution of the
system. This is a geometric interpretation of Hamilton’s equations (4.2). The Legendre transform
transforms a function from the tangent bundle to a function from the cotangent bundle. Chapter
4 and 8 of [11] give a short introduction on the geometric description of classical mechanics.

However, in contrast to Lagrangian mechanics, a field has uncountably many degrees of freedom,
so this manifold description does not work. Still classical field theory can be described using
jet manifolds and jet bundles, which allow to describe partial differential equations (such as the
Euler-Lagrange equations) on fibre bundles. This reaches far beyond the scope of this thesis, but
for the very inclined reader, we refer to [12].

Like in the discrete case, we can define the generalised momentum πρ = ∂L
∂ϕ̇ρ

. Again, the
Hamiltonian density H is obtained by doing a Legendre transform

H(ϕρ, ∂iϕρ, πρ, x
µ) = πρϕ̇ρ − L(ϕρ, ∂µϕρ, xµ), (4.5)

where summation over ρ is implicit. The quantities ϕ̇ρ in the Lagrangian density are replaced by
the generalised momenta πρ in the Hamiltonian density. The equations of motion are given by

ϕ̇ρ =
∂H
∂πρ

, π̇ρ = − ∂H
∂ϕρ

+
d

dxi

(
∂H

∂(∂iϕρ)

)
,

∂H
∂t

= −∂L
∂t
,

which is a field analogue of equations (4.2). In general, we call the expression

Tµ
ν =

∂L
∂(∂µϕρ)

∂νϕρ − Lδµν ,

the stress-energy tensor, for δµν the Kronecker delta. By a quick calculation, we find

dTµ
ν

dxµ
= − ∂L

∂xν
,
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where implicit summation is over µ. If L does not depend explicitly on xµ and the fields are
confined to a compact volume K ⊆ R3 (i.e. they are 0 outside K at all times), then the quantity

Rν =

∫
K
T 0
ν d

3x

is conserved, i.e. dRν
dt = 0, which follows immediately from dTµ

ν
dxµ = 0 and the divergence theorem.

In particular, we are interested in the ν = 0 case, since T 0
0 can be identified with the energy

density (c.f. equation (4.5) and the expression for T 0
0 ). Then integrating over all space gives the

total energy, also called the energy functional:

Definition (Energy functional and vacuum states). For a Lagrangian density L =
L (ϕρ(x

µ), ∂µϕρ(x
µ), xµ), its energy functional is defined by

E[ϕ] =

∫
R3

(
∂L
∂ϕ̇ρ

ϕ̇ρ − L

)
d3x. (4.6)

A field solution ϕ (a solution to the Euler-Lagrange equations (4.4) for the Lagrangian density L)
that minimises E, is called a vacuum state. If all the vacuum states are constant in spacetime,
i.e. ∂µϕ = 0 for all µ, then we can identify the vacuum states with the constant values they map
to, which constitute the vacuum manifold M.

Note that by the above discussion, E[ϕ] is independent of time if L does not explicitly depend on
time. Under some general form of the Lagrangian, the vacuum manifold M is indeed a smooth
manifold. This is later specified in proposition 6.1.

Since space and time have an equal footing in this Lagrangian formalism (in contrast to La-
grangian mechanics with a countable degrees of freedom, and the Hamiltonian formalism), it is
much easier to make the field theory compatible with special relativity. If we assume the fields
are Lorentz covariant and the Lagrangian density L is a Lorentz scalar2, then equation (4.4) is
clearly Lorentz covariant. We end this section with an example of a relativistic field.

Example (The Klein-Gordon equations). Let ψ be a complex scalar field. Its real and
imaginary part are independent real scalar fields, so ψ and ψ are also independent. We consider
the following Lagrangian:

L = ∂µψ∂
µψ −m2ψψ, (4.7)

for m a real constant. It is clearly Lorentz covariant. Using the Euler-Lagrange equations (4.4),
we find

∂µ∂
µψ +m2ψ = 0, ∂µ∂

µψ +m2ψ = 0. (4.8)

These equations are called the Klein-Gordon equations, which describe a free spin-0 particle
with mass m (using natural units c = ℏ = 1). Solutions are superpositions of travelling waves

ψ = Aeikµx
µ
, −kµkµ +m2 = 0,

with A a constant amplitude and kµ the four-wave vector. By kµ = (ω,k), the waves have
dispersion relation ω2 = k2 +m2. For m = 0, the Klein-Gordon equations reduce to the wave
equation, with waves travelling at the speed of light.

2Let Λ ∈ O(1, 3) be a Lorentz transformation, and set Λ̃ = Λ−1. A rank (r, s)-tensor T ∈ V �r � (V ∗)�s

for V = R4 transforms (by choosing a basis for V ) via Tµ1,...,µr
ν1,...,νs → Λµ1

ρ1 · · ·Λµr
ρr Λ̃

σ1
ν1 · · · Λ̃σs

νsT
ρ1,...,ρr
σ1,...,σs

. An object
transforming in this way under Lorentz transformations, is called Lorentz covariant. For example, the four-
velocity uµ is Lorentz covariant and called a Lorentz vector, as it transforms as a vector: uµ → Λµ

νu
ν . In contrast,

uµu
µ transforms as a scalar, since uµu

µ → Λ̃ν
µΛ

µ
ρuνu

ρ = δνρuνu
ρ = uµu

µ. uµu
µ is therefore invariant under

Lorentz transformations, and called a Lorentz scalar.
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4.3 Electromagnetism as a gauge theory

In this and the following section, we mostly follow chapters 1, 2 and 4 from [13], chapter 5 of
[14] and section 2.1 of [15]. These all cover gauge theories. In this section, we present the most
well-known gauge theory, namely electromagnetism, which exhibits U(1) symmetry. In the next
section, we generalise this to general compact Lie groups G, called Yang-Mills theory.

Amongst the most well-established classical field theories is electromagnetism, which describes
the interactions between charges and the electric fields E and magnetic fields B in space and
time. The epitome of electromagnetism are the Maxwell equations, which are given by

∇ ·B = 0 (Gauß’s magnetic law), ∇ ·E = ρ (Gauß’s law),

∇×E = −∂B
∂t

(Faraday’s law), ∇×B = J+
∂E

∂t
(Maxwell-Ampère law).

Here again we have used natural units such that the permittivity of vacuum ε0 and the perme-
ability of vacuum µ0 are both 1. Here ρ is the electric charge density (“the amount of charge
per volume”), and J is the current density (“the amount of charge per unit time flowing through
a unit area, pointing in the direction the charge is flowing”). By taking the divergence of the
Maxwell-Ampère law, and substituting Gauß’s law, we derive the following

∂ρ

∂t
+∇ · J = 0.

This expression is a local version of the conservation of electric charge. Integrating over a volume
K ⊆ R3 and applying the divergence theorem yields the following result:

dQ

dt
= −

∮
∂K

J · da,

meaning that the total charge Q in the volume K can only change by moving charges across the
boundary ∂K.

Note that Maxwell’s equations can be written in a Lorentz covariant manner (for more details
than described here, we recommend chapter 12 of [3] for further reading), and even coordinate-
free. In fact, it was this observation that led to the formulation of special relativity. However, in
this form, it is not immediately apparent that Maxwell’s equations are Lorentz covariant, nor do
E and B transform in a ‘nice’ way under Lorentz transformations. The solution is describing E
and B using an alternating rank 2 tensor field, i.e. a smooth 2-form, called the electromagnetic
field tensor:

F =
1

2
Fµνdx

µ ∧ dxν

= dt ∧ (Exdx+ Eydy + Ezdz)− (Bxdy ∧ dz +Bydz ∧ dx+Bzdx ∧ dy) ∈ Ω2(M).

One can check that the components Fµν indeed transform under Lorentz transformations Λ ∈
O(3, 1) as Fµν → Λ̃ρ

µΛ̃σ
νFρσ, for Λ̃ = Λ−1. Thus F is indeed the quantity we are looking for. The

Hodge star operator gives another natural smooth 2-form:

⋆F =
1

2
F̃µνdx

µ ∧ dxµ

= − (Exdy ∧ dz + Eydz ∧ dx+ Ezdx ∧ dy)− dt ∧ (Bxdx+Bydy +Bzdz) ∈ Ω2(M).

Lastly, the quantity Jµ = (ρ,J) is a Lorentz vector, called the four-current density. The
corresponding covector is given by Jµ = (ρ,−J). Since the Maxwell equations are given by
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derivatives of quantities in F , for our presentation it is more natural to consider the four-current
density as a smooth 3-form, which we still denote with J :

J = ⋆(−Jµdxµ) = ⋆ (−ρdt+ Jxdx+ Jydy + Jzdz)

= −ρdx ∧ dy ∧ dz + dt ∧ (Jxdy ∧ dz + Jydz ∧ dx+ Jzdx ∧ dy) ∈ Ω3(M).

Then let us calculate the exterior derivatives of F and ⋆F :

dF = 0 (Gauß-Faraday law), d(⋆F ) = J (Gauß-Ampère law).

We thus have reduced the four Maxwell equations to two elegant equations which are Lorentz
covariant. The local conservation of electric charge then immediately follows, by dJ = d2(⋆F ) =
0. In coordinates, these equations are given by ∂µFµν = Jν , ∂µF̃µν = 0 and ∂µJµ = 0.

And yet, we can refine these two equations even further. The condition dF = 0 means exactly
that F must be a closed 2-form. Recall that we are still working on the smooth manifold
M = R4, which is contractible. By the Poincaré lemma, the second de Rham cohomology group
H2

dR(M) is trivial, meaning that there exists3 a covector field A ∈ Ω1(M), such that F = dA,
or Fµν = ∂µAν − ∂νAµ in coordinates. Then dF = 0 holds automatically. A is called the four-
potential. By writing Aµ = (V,A), the four-potential can be identified with the ordinary scalar
and vector potential in electrodynamics, which give the electric and magnetic fields:

E = −∇V − ∂A

∂t
, B = ∇×A.

Using the four-potential, all of the Maxwell equations can be stated in the following neat form:

d(⋆dA) = J.

Note however, that F does define A only up to a closed 1-form ω ∈ Ω1(M)closed. Since M = R4

is simply connected, ω is exact, so this means that the equations of motions are invariant under

A 7→ A+ df, f ∈ C∞(M).

This phenomenon where multiple field configurations correspond to a single physical configuration
is called gauge invariance, and f ∈ C∞(M) is said to define a gauge transformation of A.

At first glance, the four-potential and gauge transformations might appear to be merely theo-
retical constructs that provide an elegant formulation of Maxwell’s equations. However, their
significance extends far beyond formalism. For one, in order to describe electrodynamics in the
Lagrangian or Hamiltonian formalism, we have to use the four-potential. For instance, the action
integral in equation (4.3) is given by

S =

∫
Ω

(
−1

2
dA ∧ ⋆dA+A ∧ J

)
=

∫
Ω

(
−1

4
FµνF

µν −AµJ
µ

)
d4x.

The resulting Euler-Lagrange equations are then exactly the Maxwell equations, when applying
Hamilton’s principle on the field components Aµ.

Additionally, gauge equivalence classes are physically measurable. Two potentials A and A′

defined on an open subset U ⊆ M are equivalent if A′ = A + df , for some f ∈ C∞(U). Since
M is simply-connected, every closed smooth 1-form is exact, so each F corresponds with exactly
one gauge equivalence class. This is not the case however when H1

dR(U) is non-trivial, which can
be seen in the solenoidal Aharonov-Bohm effect:

3We tacitly assume that F is defined everywhere. When a solution F only exists on an open subset U ⊆ M
and represents a non-trivial element in H2

dR(U), then no A ∈ Ω1(U) can exist such that F = dA. An example is
F = − q

4π
sin θdθ ∧ dϕ for a constant q ∈ R̸=0, which is only defined on M \ ℓ, for ℓ the line ℓ = R × {(0, 0, 0)}.

[F ] is a non-trivial element in H2
dR(M \ ℓ), which can be seen by noting that M \ ℓ is homotopy equivalent with

S2, and H2
dR(S

2) ∼= R is generated by the volume form sin θdθ ∧ dϕ. F corresponds with E = 0, B = q
4πr2

r̂, and
thus represents a magnetic monopole field. For the curious reader, we refer to chapter 1 of [15].
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Example (The solenoidal Aharonov-Bohm effect). Imagine a long impermeable solenoid.
When no current is running through the solenoid, there are no electric and magnetic fields.
With a current, there is a uniform magnetic field in the solenoid, yet there is still no electric and
magnetic field outside the solenoid. So in both cases, F = 0 outside the solenoid.
The quantity

∮
Aµdx

µ, integrated over a loop in spacetime, is gauge-invariant, i.e. invariant
under A → A + df , which follows immediately from the gradient theorem. Let γ be a circular
loop in space with radius r around the solenoid. Let S be the disk with radius r, which has γ
as boundary. It turns out that in quantum mechanics, this expression (up to a scaling constant)
describes the phase difference of the wave function of a particle with charge q passing around
the solenoid:

∆φ =
q

ℏ

∮
γ
A · dℓ.

∆φ is observable, as is seen in electron scattering experiments. ∆φ is proportional to the
magnetic flux through the surface S using Stokes theorem:

Φ =

∫
S
B · da =

∫
S
(∇×A) · da =

∮
γ
A · dℓ.

The potential A = Φ
2πs θ̂ outside the solenoid described in cylindrical coordinates satisfies the

above equation and B = ∇ × A = 0 there. When no current flows through the solenoid, A
reduces to 0, as there is no flux and thus ∆φ = 0, as one would expect. But when current is
flowing, there is a magnetic flux Φ, and so ∆φ = qΦ

ℏ ̸= 0, which can only be attributed to the
potential A, and not to the electric and magnetic fields alone, as in both situations E = 0 and
B = 0. Geometrically, the corresponding covector fields are A = 0 and A = − Φ

2πdθ, and their
difference is closed but not exact. This means that while these describe the same electromagnetic
field tensor F , they belong to different gauge equivalence classes.

Lastly, gauge transformations are essential in coupling the field of a charged particle to that
of the electromagnetic field, and by requiring invariance under local phase shifts, this coupling
arises naturally. We give an example of this, called scalar electrodynamics, which describes the
interaction between the electromagnetic field and a charged spin 0-particle, such as a charged
pion π± particle:

Example (Scalar electrodynamics). We consider a complex scalar field ψ, and a Lagrangian
density of the form

L = ∂µψ∂
µψ − V (|ψ|), (4.9)

for some potential V only depending on the amplitude of ψ. We have already seen such an
example, namely the Klein-Gordon Lagrangian (4.7), where V (|ψ|) = m2|ψ|2. We see that L is
invariant under global phase shifts ψ → eiαψ, and so are the equations of motions

∂µ∂
µψ + V ′(|ψ|)ψ = 0, ∂µ∂

µψ + V ′(|ψ|)ψ = 0.

But say we want L and the equations of motion to be invariant under local phase shifts ψ 7→
eiα(x

µ)ψ, for α ∈ C∞(M) a smooth function from spacetime M to R. For convenience, we write
α(x) := α(xµ), but we still assume that α depends on all spacetime coordinates. The potential
V (|ψ|) is invariant under this transformation ψ 7→ eiα(x)ψ, but the term ∂µψ∂

µψ is clearly not,
as it will contain partial derivatives of α. We denote a gauge transformation with a subscript
‘gt’. Since we can add a four-gradient of a scalar function to Aµ without changing any physics,
we choose the following transformations:

ψgt = eiα(x)ψ, ψgt = e−iα(x)ψ, (Aµ)gt = Aµ +
1

e
∂µα, (4.10)
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for e the electric charge. This factor is mathematically quite arbitrary, but it is used to give
physical meaning. By defining the smooth function g = eiα : M → U(1), and letting g−1 the
composition of g with the group inverse of U(1), equation (4.10) has the following form, which
is illuminating for the next section

ψgt = gψ, ψgt = gψ, (Aµ)gt = Aµ +
i

e
g∂µ(g

−1). (4.11)

We define the expression Dµ := ∂µ − ieAµ. Then by looking at the transformation rule in
equation (4.10), we see that (Dµψ)gt = eiα(x)Dµψ. This is really interesting, since this means
that DµψD

µψ is invariant under gauge transformations, exactly what we wanted. So L is gauge-
invariant, when we replace the ‘ordinary’ derivatives ∂µ with the operator Dµ. The Lagrangian

L = −1

4
FµνF

µν +DµψD
µψ − V (|ψ|) (4.12)

is invariant under local phase shifts, and so are the equations of motion (which are obtained by
varying the fields ψ, ψ and Aµ in the action integral):

DµD
µψ + V ′(|ψ|)ψ = 0, DµD

µ
ψ + V ′(|ψ|)ψ = 0, ∂µF

µν = Jν , (4.13)

where the four-current density Jµ is given by Jµ = −ie
(
ψDµψ − ψD

µ
ψ
)
, which is also gauge-

invariant. Asking for invariance for local phase shifts automatically led to an electromagnetic-like
interaction!

The above example can straightforwardly be generalised to describe spin-1/2 particles, such as
electrons and positrons. However, in this case, the Lagrangian (4.9) has to be modelled after the
Dirac equation, which makes this adaptation more complex due to the bispinor nature of the
field in the Dirac equation. The resulting Lagrangian density is crucial however, as it forms the
foundation of quantum electrodynamics, a theory that unifies the principles of electromagnetism,
special relativity and quantum mechanics. It gives a complete description of the interaction
between matter and light.

4.4 Yang-Mills theory

In the previous section, we saw that demanding local invariance under transformations ψ →
g(x)ψ, for g :M → U(1) a smooth function, leads automatically to Maxwell’s equations. Yang-
Mills theory seeks to generalise this gauge invariance to compact Lie groups G. To achieve this,
we have to provide a geometric interpretation of the generalisation of the four-potential A, the
electromagnetic field tensor F and gauge transformations. This section will heavily rely on the
theory of principal bundles discussed in chapter 3, especially section 3.3. In this section, F is the
field R or C.
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General gauge theory
In general, one would start with a compact4 Lie groupG and a principalG-bundle π : P →M , for
M a general smooth manifold representing spacetime. This setup describes the global structure of
the G-action on the fields. The g-valued 1-form A ∈ Ω1(P, g) will be an Ehresmann connection
on this principle bundle. A is also referred to as a gauge field in the physical literature. By
choosing a local gauge, which is a local section s ∈ Γ∞(U,P), we can identify A with a g-valued
1-form As ∈ Ω1(U, g) on an open subset U ⊆ M , via pulling back A via s: As = s∗A. This is
exactly the four-potential in electromagnetism (up to a factor i) when G = U(1), since g = iR.
The curvature of A is given by F = dA+ 1

2 [A,A] ∈ Ω2(P, g). Since pullbacks commute with the
bilinear form [·, ·], Fs = s∗F ∈ Ω2(U, g) is given by Fs = dAs +

1
2 [As, As]. It can be interpreted

as a generalisation of the electromagnetic field tensor on an open subset U ⊆M .

We also want to describe the interactions of fields (describing particles) with the gauge field
A. These fields can be each of a different type and are acted upon by different Lie group
representations of G, so we expect that in general, each field corresponds with a section ϕ of
a corresponding vector bundle, which depends on the principal G-bundle π : P → M . This
is exactly the notion of an associated vector bundle. Then the connection A induces a so-
called covariant derivative on each associated vector bundle, which is the Dµ operator we have
encountered earlier. A gauge transformation is a smooth map g : U → G, which can be identified
with a bundle automorphism of the principal G-bundle π|PU

: PU → U , where PU = π−1(U).
Note that some mathematicians call this bundle automorphism a gauge transformation, and a
gauge transformation is called a physical gauge transformation). Gauge transformations act on
As, Fs and ϕ according to some transformation rule.

This framework allows us to construct a gauge-invariant Lagrangian, akin to equation (4.12),
which forms the foundation of Yang-Mills theory. By adding all types of interactions, Yang-Mills
theory can even describe the Standard Model of particle physics, but some additional quantum
field theory is needed to make it work. For a detailed mathematical treatment of Yang-Mills
theory, we refer to chapters 4 and 5 of [14].

Some simplifications
For our purposes however, this presentation is a bit excessive and unnecessary, since we only
consider M = R4. Since M is contractible, all principal G-bundles π : P → M are in fact
trivialisable (corollary 4.2.9 in [14]), so there always exists a global section s ∈ Γ∞(M,P).
We can thus work on M instead of open subsets U ⊆ M (for instance, this is not possible
in the monopole example given in footnote 3). From now on, we will be only working with
As ∈ Ω1(M, g) and Fs ∈ Ω2(M, g), and we suppress the subscript s.

We also want to introduce a field ϕ, which is acted upon by G. Let ρ : G → Aut(V ) be a Lie
group representation of G, for V a finite dimensional F-vector space. In general, this is done by
letting ϕ be a section of an associated vector bundle derived from the principal G-bundle and
the representation ρ. For our purposes, fields can be simplified to smooth maps ϕ : M → V ,
where G acts on ϕ via

gϕ := ρ(g) ◦ ϕ.

When the representation ρ is clear, it is often left out. A covariant derivative is a generalisation
4Physicists prefer to work with compact Lie groups G in Yang-Mills theory, because the Killing-form, which

is a symmetric bilinear form on g given by κ(X,Y ) = tr(adX ◦ adY ), is negative-definite. Furthermore, the
representation theory of compact Lie groups is much nicer than that of general Lie groups. Oftentimes it is
presumed that g is semi-simple as well, since then κ is non-degenerate. This has certain implications for the
Lagrangian constructed in Yang-Mills theory. We do not have to worry about these details, however.
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of the directional derivative in Euclidean geometry, and in this case it is given by

∇A : X(M)× C∞(M,V ) → C∞(M,V ),

(X,ϕ) 7→ dϕ(X) + dρ(A(X))ϕ.
(4.14)

Since dρ is Lie algebra homomorphism dρ : g → End(V ), dρ also acts on ϕ in a natural way.
The covariant derivative satisfies the following properties:

• ∇A
Xϕ is C∞(M)-linear in X ∈ X(M) and R-linear in ϕ ∈ C∞(M,V );

• the Leibniz rule is satisfied: for f ∈ C∞(M), we have ∇A
X(fϕ) = (df)(X)ϕ+ f∇A

Xϕ.

Using these simplifications, there is no need to introduce associated bundles or the general theory
of connections and covariant derivatives. Once more, the interested reader is encouraged to look
at chapters 4 and 5 of [14], and the relevant chapters in [6].

We can proceed to Yang-Mills theory:

Definition (Ingredients for Yang-Mills theory on R4). We require the following data:

• A compact Lie group G, which we assume to be a matrix group, with Lie algebra g.

• A Lie group representation ρ : G→ Aut(V ), for V a finite dimensional F-vector space;

• A ∈ Ω1(M, g), which is called the gauge field.

• The field strength F of A, which is given by F = dA+ 1
2 [A,A] ∈ Ω2(M, g).

• ϕ ∈ C∞(M,V ) a smooth function representing a field;

• Smooth maps g :M → G, called gauge transformations; they act on A and ϕ via

Agt(x) = g(x)Ag(x)−1 + g(x) · d
(
g(x)−1

)
, ϕgt = g(x)ϕ := ρ(g(x)) ◦ ϕ. (4.15)

The transformation rule in equation in (4.15) needs some explanation. The first part of the
transformation rule of A can be recognised as the adjoint representation, and indeed represents
a g-valued 1-form (c.f. proposition 2.12). In the second part, g · dg−1 is understood to be
matrix multiplication of g with the componentwise exterior derivative of g−1. It is non-trivial
that g · dg−1 ∈ Ω1(M, g), but it can easily be verified for g = exp ◦α, for α a smooth function
α : M → g. Observe that the transformation rule (4.15) is a generalisation of equation (4.11),
which we met when considering electrodynamics.

We want to consider these transformation rules in coordinates. Let n = dim g be the dimension
of the Lie algebra g of G, and choose a basis (T 1, . . . , Tn) for g. Then we can write A ∈ Ω1(M, g)
and F ∈ Ω2(M, g) as follows in local coordinates:

A(x) = Aa
µ(x)T

a � dxµ, F (x) =
1

2
F a
µν(x)T

a � (dxµ ∧ dxν) , Aa
µ, F

a
µν ∈ C∞(M).

Here the summation over a is implicit. For conciseness, we define Aµ := Aa
µT

a and Fµν := F a
µνT

a;
these components can be considered as n × n matrix functions. The components of A and F
are of course related as well, which follows immediately for the component expression for the
exterior derivative for g-valued forms:

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. (4.16)
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Note that equation (4.16) reduces to Fµν = ∂µAν − ∂νAµ for abelian Lie groups G, such as U(1)
in electromagnetism. For a gauge transformation g :M → G, Aµ and Fµν transform as

(Aµ)gt = gAµg
−1 + g∂µg

−1, (Fµν)gt = gFµνg
−1. (4.17)

Again, we recognise the adjoint representation. So when G is abelian, (Fµν)gt = Fµν , which is
what we have seen for the electromagnetic field tensor, but for a general compact Lie group G,
this does not need to hold.

Looking at the transformation rule in (4.17), we see that the expression LYM = 1
2 tr (FµνF

µν)
is gauge invariant and Lorentz covariant, so it is ideal for a term in a Lagrangian density.
The resulting equations by applying the action principle are called the Yang-Mills equations5.
These are a generalisation of the Gauß-Ampère law in vacuum in electromagnetism. Note that the
second Bianchi identity (see section 3.3) already states that dF = [F,A], which is a generalisation
to the Gauß-Faraday law. In the case of the abelian group U(1), this identity reduces to dF =
0. Often in a physics context, the basis (T a)a is normalised, such that tr

(
T aT b

)
= −1

2δab.
This condition makes calculations a lot easier. In that case, LYM can be written as LYM =
−1

4F
a
µνF

µν a.

Now we introduce the field ϕ ∈ C∞(M,V ). In coordinates, the covariant derivative (c.f. equation
(4.14)) is given by

∇A
µϕ = ∂µϕ+ dρ(Aµ)ϕ. (4.18)

For the matrix group G ⊆ GLn(F), two representations are often used in physics, namely the
fundamental representation ρfund : G → GLn(F), with ρfund(X) = X, and the adjoint
representation Ad : G → End(g), which we covered in section 2.4. We can also consider the
trivial representation ρtriv : G → Aut(V ), by sending every element to the identity (then there
is no coupling between A and ϕ). In those three cases, equation (4.18) reduces to

∇A
µ,fundϕ = ∂µϕ+Aµϕ, ∇A

µ,Adϕ = ∂µϕ+ [Aµ, ϕ], ∇A
µ,trivϕ = ∂µϕ. (4.19)

In these cases, it is easily verified that (∇A
µϕ)gt = g∇A

µϕ, but this holds in general.

Lastly, we want a G-equivariant symmetric bilinear form ⟨·, ·⟩V : V × V → F on V , i.e. for all
v, w ∈ V and g ∈ G, ⟨gv, gw⟩V = ⟨v, w⟩V . These can be the usual Euclidean inner products
on Rn and Cn for the fundamental representations of SO(n) and SU(n), respectively. We then
are able to construct the gauge-invariant term Lkin = 1

2

〈
∇A

µϕ,∇µ,Aϕ
〉
V

. Putting everything
together, and adding a potential function U(ϕ) which is invariant under gauge transformations,
we get the following gauge-invariant Lagrangian density

L =
1

2
tr (FµνF

µν) +
1

2

〈
∇A

µϕ,∇µ,Aϕ
〉
V
− U(ϕ), (4.20)

which is the generalisation to equation (4.12).

In chapter 6, we will be only considering Lagrangian densities of the form (4.20), which is called a
Yang-Mills-Higgs Lagrangian density. The focus will be on the compact groups G = U(1),
G = SO(n) and G = SU(n).

5As an unrelated side node, the Yang-Mills equations are a wonderful example of a topic in physics that
later turned out to be extremely useful in mathematics. By studying moduli spaces of Yang–Mills connections,
Donaldson and Freedman proved the existence of certain topological 4-manifolds, which cannot be given a smooth
structure, as opposed to topological n-manifolds for n ≤ 3, which can always be given a smooth structure. Even
more remarkably, their theorems allowed to construct exotic R4’s, smooth 4-manifolds homeomorphic to the
Euclidean R4, but not diffeomorphic. By a theorem of Taubes, there are even uncountably many of them! [16]

38



Higher homotopy groups

Chapter 5 |Higher homotopy groups

Homotopy groups will be the final mathematical ingredient we need to understand and classify
topological defects. Homotopy groups πn(X,x0) are higher-dimensional generalisations of the
fundamental group π1(X,x0) of a pointed topological space (X,x0). They can detect ‘holes’ the
fundamental group can simply not see, but are known for their intricacy; even the homotopy
groups of such a ‘simple’ space as S2 are hard to compute. And yet homotopy groups retain
some desirable properties of fundamental groups, such as the functoriality, being invariant under
homotopies and behaving well under products. Homotopy groups are even abelian for n ≥ 2.

In chapter 3, we considered fibre bundles F −→ E
π−→ B. It turns out that the homotopy groups

of the fibre F , the total space E and base space B are related in a long exact sequence. This gives
a tool for calculating homotopy groups by considering certain fibre bundles. In particular, for G
a Lie group and H ⊆ G a closed subgroup, the fibre bundle H −→ G

π−→ G/H is considered.
As a consequence, there is a relationship between the homotopy groups of G, H and G/H. This
particular instance is worked out for the compact Lie groups O(n), SO(n), U(n) and SU(n), and
we show that their homotopy groups can be linked to the homotopy groups of k-spheres Sk.

5.1 Introduction to homotopy groups

The following section is based on section 4.1 of Hatcher’s Algebraic Topology [1].

Let (X,x0) be a pointed topological space, i.e. a topological space X with a distinguished base
point x0 ∈ X. The fundamental group π1(X,x0) can either be considered as the homotopy
classes of loops γ : [0, 1] → X starting and ending at the base point x0, or homotopy classes of
continuous maps f : (S1, s0) → (X,x0). Both viewpoints generalise to higher homotopy groups,
and each can be fruitful at times.

We start of with the first perspective. For the natural number n ≥ 1, we let In = [0, 1]n be the
n-cube with its usual Euclidean topology. Its boundary ∂In consists of all the points in In with
at least one coordinate equal to 0 or 1. For completeness, we allow n = 0 as well and define
I0 = {0}, ∂I0 = ∅.

We need a higher-dimensional analogue of the homotopy of loops used in the fundamental group,
in order to generalise the fundamental group. We give a more general definition, which we need
later.

Definition (Homotopy of continuous maps between paired spaces). Let (X,A) and
(Y,B) be paired spaces, i.e. topological spaces X and Y with A ⊆ X and B ⊆ Y subspaces with
the subspace topology. A continuous map f : (X,A) → (Y,B) is a continuous map f : X → Y ,

39



Introduction to homotopy groups

such that f(A) ⊆ B. Let f, g : (X,A) → (Y,B) be continuous maps. A homotopy of f and g
is a continuous map H : [0, 1]×X → Y such that for all x ∈ X and t ∈ [0, 1], we have

H(0, x) = f(x), H(1, x) = g(x), H(t, A) ⊆ B.

If there exists such a homotopy, we call f and g homotopic, denoted as f ≃ g.

It is not hard to see that ≃ is an equivalence relation. In particular, πn(X,x0) is defined as the
equivalence classes of continuous maps from In to X, which map ∂In to x0:

πn(X,x0) = {f : (In, ∂In) → (X,x0) continuous} /≃.

For n = 0, by identifying f : (I0, ∂I0) → (X,x0) with f(0), π0(X,x0) consists of the classes of
points that can be connected by a path, thus π0(X,x0) can be considered as the path-components
of X. For n = 1, π1(X,x0) consists of path-homotopy classes of paths which are x0 at 0 and 1,
and as a consequence, π1(X,x0) is the fundamental group.

Like loops, we can concatenate continuous maps f, g : (In, ∂In) → (X,x0):

f + g : (In, ∂In) → (X,x0)

(s1, . . . , sn) 7→

{
f(2s1, s2, . . . , sn), 0 ≤ s1 ≤ 1/2,

g(2s1 − 1, s2, . . . , sn), 1/2 ≤ s1 ≤ 1.

Likewise, inversion is defined as

−f : (In, ∂In) → (X,x0),

(s1, . . . , sn) 7→ f(1− s1, s2, . . . , sn).

Theorem 5.1. Let (X,x0) be a pointed topological space. For n ≥ 1, πn(X,x0) with the afore-
mentioned operations on the homotopy classes and identity element [x 7→ x0], forms a group,
called the n-th homotopy group. For n ≥ 2, πn(X,x0) is abelian.

Proof. The proof that π1(X,x0) is a group can be adjusted with little effort to show that in
general the addition and inversion are well-defined for homotopy classes and that these make
πn(X,x0) into a group. This is because the addition and inversion formulae only involve the first
coordinate.

Let n ≥ 2. The fact that πn(X,x0) is abelian can be wonderfully illustrated, see also figure 5.1.
Let f, g : (In, ∂In) → (X,x0) be arbitrarily given continuous maps. Then f + g : (In, ∂In) →
(X,x0) can be regarded as the map where the left part of In is mapped as f and the right part
as g. The interior of these halves can be shrunk in a continuous manner within the n-cube to two
smaller n-cubes; everything outside these smaller n-cubes is mapped to x0. But these smaller
n-cubes can be moved to each other’s initial place without intersecting each other along the way.
This is done by first moving down the n-cube mapping accordingly to f , and simultaneously
moving up the n-cube mapping accordingly to g. This can be repeated in other directions as
well, such that at the end, the two n-cubes have swapped. Then by making these two bigger
again, we have constructed a homotopy of f + g to g + f , such that ∂In is sent to x0 at every
time. Thus [f ] + [g] = [f + g] = [g + f ] = [g] + [f ], proving that πn(X,x0) is abelian. ■
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f g f g

f

g

g f g f

Fig. 5.1: Illustration why f + g ≃ g + f . The parts of In given by the image of f and g are
shrunk, are exchanged and then expanded. The white parts and the black borders are mapped
to x0.

There is also another way to look at homotopy groups. For n ≥ 1, a continuous map f :
(In, ∂In) → (X,x0) can also be regarded as a continuous map g : (Sn, s0) → (X,x0) for a chosen
point s0 ∈ Sn. The reason is that Sn is homeomorphic to the quotient space under the following
equivalence relation on In:

x ∼ y ⇐⇒ x = y ∨ x, y ∈ ∂In.

So we are really identifying the boundary ∂In with a single point s0. We reobtain f (up to
homotopy) from g by ‘opening up’ Sn at s0 and sending the boundary ∂In to x0. In this way, we
can regard πn(X,x0) also as homotopy classes of continuous functions from (Sn, s0) to (X,x0):

πn(X,x0) = {f : (Sn, s0) → (X,x0) continuous} /≃.

This is also an equivalent definition for n = 0.

For f, g : (Sn, s0) → (X,x0) continuous, f+g can be understood as (f∨g)◦ψ : (Sn, S0) → (X,x0).
ψ : Sn → Sn ∨ Sn takes an equator of Sn passing through s0 (which is an Sn−1) and squeezes it
to the point s0, resulting in two copies of Sn, kissing each other at the point s0. The resulting
space is the wedge sum Sn∨Sn. Then f and g are combined into one map f ∨g, which is possible
since f(s0) = g(s0) = x0:

Sn−1s0

Sn

Sn ∨ Sn

s0ψ

f

g

(X,x0)

Fig. 5.2: Sketch of f + g. Sn is split into two n-spheres by shrinking the equator to a point.
Then the upper n-sphere maps to X according to f , the lower n-sphere according to g.

As for the fundamental group, if X is path-connected, then for all n ≥ 1 we have that πn(X,x0)
and πn(X,x1) are isomorphic for two base points x0, x1 ∈ X. In most situations we then simply
speak of πn(X). For the proof we refer to section 4.1 of Algebraic Topology [1]. Functoriality
also carries over:

Proposition 5.2. Let φ : (X,x0) → (Y, y0) be a continuous map. Then for all n ≥ 0, this
induces a well-defined map

φ∗ : πn(X,x0) → πn(Y, y0),

[f ] 7→ [φ ◦ f ].
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Moreover, (idX)∗ = idπn(X,x0) and for ψ : (Y, y0) → (Z, z0) continuous, one has (ψ◦φ)∗ = ψ∗◦φ∗.
For n ≥ 1, φ∗ is a group homomorphism.

Proof. For n ≥ 0, let f, g : (Sn, s0) → (X,x0) be continuous, such that [f ] = [g] in πn(X,x0).
Then there exists a homotopy H : [0, 1]×Sn → X from f to g, which sends s0 to x0 at all times.
Then φ ◦H is a homotopy from ϕ ◦ f to ϕ ◦ g, sending s0 to y0 at all times. So φ∗[f ] = φ∗[g],
and hence it is well-defined. (idX)∗ = idπn(X,x0) and (ψ ◦φ)∗ = ψ∗ ◦φ∗ follow immediately from
the definition.

Now let f, g : (Sn, s0) → (X,x0) be continuous. Then by definition of the addition, φ◦ (f + g) =
(φ ◦ f) + (φ ◦ g), so

φ∗([f ] + [g]) = φ∗([f + g]) = [(φ ◦ f) + (φ ◦ g)] = φ∗[f ] + φ∗[g],

concluding the proof. ■

Proposition 5.2 tells us exactly that the following assignments are functors

π0 : Top• → Set•, π1 : Top• → Grp, πn : Top• → Ab, n ≥ 2.

This immediately implies that homeomorphic topological spaces have isomorphic homotopy
groups. But we can do better:

Proposition 5.3. Let φ,ψ : (X,x0) → (Y, y0) be continuous such that φ ≃ ψ. Then φ∗ = ψ∗.

Proof. LetH : [0, 1]×X → Y such a homotopy, i.e. H is continuous such that for all t ∈ [0, 1] and
x ∈ X, we have H(0, x) = φ(x), H(1, x) = ψ(x) and H(t, x0) = y0. Let f : (Sn, s0) → (X,x0)
be continuous, and define H̃ : [0, 1] × Sn → Y via (t, s) 7→ H (t, f(s)). Per construction, H̃ is
continuous and H̃(0, s) = φ ◦ f(s), H̃(1, s) = ψ ◦ f(s) and H̃(t, s0) = y0. Thus H̃ is a homotopy
from φ ◦ f to ψ ◦ f . In particular, φ∗[f ] = ψ∗[f ], hence φ∗ = ψ∗. ■

Corollary 5.4. Let φ : (X,x0) → (Y, y0) be a homotopy equivalence fixing the base points. Then
φ∗ : πn(X,x0) → πn(Y, y0) is an isomorphism for all n ≥ 1.

This corollary states amongst other things that all contractible spaces (X,x0) (where the homo-
topy keeps the base point x0 fixed) have the same homotopy groups as the space consisting of a
single point, an important example being Rn for n ≥ 1. Since there is only a single pointed map
from (Sk, s0) to the singleton space, πk(X,x0) is trivial for all k ≥ 1.

By looking at the fundamental group, another expected property of homotopy groups is that it
respects products. This is indeed the case:

Theorem 5.5. Let {(Xα, xα)}α be a collection of pointed spaces and (X,x) the pointed product
space. Then πn(X,x) ∼=

∏
α πn(Xα, xα) for all n ≥ 0.

Proof. Let pα : (X,x) → (Xα, xα) and qα :
∏

β πn(Xβ, xβ) → πn(Xα, xα) be the projection
maps. By the universal property of the product of pointed sets / groups / abelian groups, there
exists a unique morphism q : πn(X,x) →

∏
β πn(Xβ, xβ) such that qα ◦ q = (pα)∗. It thus only

remains to show that q is a bijection.
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Let f, g : (Sn, s0) → (X,x) be continuous maps, such that q([f ]) = q([g]). Then (pα)∗[f ] =
(pα)∗[g] for all α, so there exist homotopies Hα : [0, 1]×Sn → Xα from pα ◦f to pβ ◦g, such that
Hα(t, s0) = xα. The universal property of products gives a continuous map H : [0, 1]×Sn → X,
such that H(0, s) = f(s), H(1, s) = g(s) and H(t, s0) = x. This follows from the uniqueness of
the map H(0,_) : Sn → X, such that pα ◦H(0,_) = pα ◦ f ; f clearly satisfies this condition.
H(1, s) = g(s) and H(t, s0) = x follow similarly. We conclude that [f ] = [g] holds, proving
injectivity.

Now let fα : (Sn, s0) → (Xα, xα) be arbitrarily given continuous maps. The universal property
of products gives use a continuous map f : (Sn, s0) → (X,x0), such that pα ◦ f = fα. Then
qα ◦ q([f ]) = (pα)∗[f ] = [fα], concluding surjectivity. ■

Covering maps give also an easy way to calculate homotopy groups:

Proposition 5.6. Let p : (Y, y0) → (X,x0) be a covering map. Then p∗ : π1(Y, y0) → π1(X,x0)
is injective and p∗ : πn(Y, y0) → πn(X,x0) is an isomorphism for n ≥ 2.

Proof. For n ≥ 1, let f : (Sn, s0) → (Y, y0) such that [f ] ∈ ker p∗. Then there exists a homotopy
H : [0, 1]×Sn → X between p◦f and the constant map s 7→ x0. By the homotopy lifting property
of covering maps, there exists a homotopy H̃ : [0, 1]×Sn → Y such that H = p◦H̃ from f to the
constant map s 7→ y0, hence p∗ is injective. For n ≥ 2, a continuous map f : (Sn, s0) → (X,x0)
can be lifted to a continuous map f̃ : (Sn, s0) → (Y, y0) such that p ◦ f̃ = f proving surjectivity
(such a lift exists because Sn is simply connected and locally path-connected for n ≥ 2). ■

For instance, this proposition gives isomorphisms of homotopy groups for k ≥ 2 for several
standard spaces, such as the circle S1, the n-torus Tn = S1 × . . .× S1︸ ︷︷ ︸

n

for n ≥ 1 and the real
projective space RPn for n ≥ 1:

πk(S
1) ∼= πk(R) ∼= 0, πk(T

n) ∼= πk(Rn) ∼= 0, πk(RPn) ∼= πk(S
n).

Moreover, the homotopy groups of connected compact surfaces Σ can also easily be calculated,
considering these are all classified, alongside with their universal covers1. If Σ is not homeo-
morphic to S2 or RP2, the universal covering space of Σ is contractible, giving πk(Σ) ∼= 0 for
k ≥ 2.

5.2 The long exact sequence for fibre bundles

This section takes inspiration from the fibre bundle section in Hatcher’s Algebraic Topology [1].

In this section, we study the relation between the homotopy groups of the fibre space F , the total
space E and the base space B of a fibre bundle, as defined in section 3.1. Let F −→ E

π−→ B be
a fibre bundle2, and choose a base point b0 ∈ B in the base manifold and a point x0 ∈ F = Eb0

in the corresponding fibre of b0. Then we can relate the homotopy groups πn(F, x0), πn(E, x0)
1A compact surface is either homeomorphic to S2, a connected sum of tori T 2 or a connected sum of real

projective planes RP2 (see theorems 6.15 and 10.22 in [17]). S2 is the universal covering space of S2 and RP2, R2

of T 2 and RP2#RP2 (the Klein bottle) and the hyperbolic disk B2 of the remaining compact surfaces (theorem
12.29 in [17]).

2The construction in this section works in general for so-called Serre fibrations, but these go beyond our scope;
a fibre bundle is a special kind of Serre fibration, see proposition 4.48 in [1].
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and πn(B, b0) for n ≥ 1. Note that the inclusion map i : F → E already induces a group
homomorphism i∗ : πn(F, x0) → πn(E, x0), and the projection π : E → B induces a group
homomorphism π∗ : πn(E, x0) → πn(B, b0).

We would like to link πn(B, b0) and πn−1(F, x0) as well. This is a lot more intricate, however.
First, we consider In−1 as a face of ∂In, namely the side with sn = 0. Then we define

Jn−1 = ∂In \ In−1 ⊆ ∂In,

which is just the union of all sides but In−1. We define the map ∂ : πn(B, b0) → πn−1(F, x0)
as follows. For a continuous map f : (In, ∂In) → (B, b0), we lift it to a continuous map
f̃ : (In, ∂In) → (E,F ), such that f̃(Jn−1) = {x0} and π ◦ f̃ = f . Then by restricting f̃ to
In−1 ⊆ In, the result is a continuous map g := f̃

∣∣∣
In−1

: (In−1, ∂In−1) → (F, x0). We set
∂[f ] = [g].

The existence of a lift f̃ that satisfies the above conditions and the fact that ∂:πn(B, b0) →
πn−1(F, x0) is well-defined and a group homomorphism for n ≥ 2 is non-trivial. For details on
this and the proof of the forthcoming profound theorem, we refer to [1].

Theorem 5.7. Let F −→ E
π−→ B be a fibre bundle. For base points b0 ∈ B and x0 ∈ F = Eb0,

the following long sequence is exact:

· · · πn+1(E, x0) πn+1(B, b0)

πn(F, x0) πn(E, x0) πn(B, b0)

πn−1(F, x0) πn−1(E, x0) · · ·

· · · π1(E, x0) π1(B, b0)

π0(F, x0) π0(E, x0) π0(B, b0) 0

π∗

∂∗

i∗ π∗

∂∗

i∗

π∗

∂∗

i∗ π∗

Note that π0(F, x0) and π0(E, x0) are merely pointed sets, and not groups. Exactness at
π0(F, x0), π0(E, x0) and π0(B, b0) is understood as the image of the incoming arrow is pre-
cisely those elements that map under the outgoing arrow to the homotopy class of the constant
map.

Theorem 5.7 allows us to relate homotopy groups of the fibre, total space and base space in a
fibre bundle. For instance, for the fibre bundle S1 −→ S2n+1 π−→ CPn for n ≥ 0, which we
have seen in section 3.2, we get πk(CPn) ∼= πk(S

2n+1) for k ≥ 3, since πk(S1) ∼= 0 for k ≥ 2. In
particular, for the the complex Hopf fibration, we find πk(S2) ∼= πk(S

3) for k ≥ 3.

Recall that for a Lie group G and a closed subgroup H, there is a natural principal-H bundle
H −→ G

π−→ G/H. Applying theorem 5.7, we get the following:

Corollary 5.8. Let G be a Lie group and H ⊆ G be a closed subgroup. Then the following
sequence is exact:

· · · πn(H, e) πn(G, e) πn(G/H,H) πn−1(H, e) · · · π0(G/H,H) 0
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5.3 Homotopy groups of spheres and O(n), SO(n), U(n) and SU(n)

A few of the most used Lie groups in physics are O(n), SO(n), U(n) and SU(n), for n ≥ 1.
These are all compact Lie groups, and thus have an elegant representation theory, making them
especially well-suited for physical applications such as describing particles in particle physics. A
natural question to ask – notably in the context of topological defects and symmetry breaking,
which are covered in the next chapter – is what are the homotopy groups of these Lie groups?

We start with SO(n), which is the group of rotations in Rn. We choose a point v ∈ Rn, say
v = (0, . . . , 0, 1). The orbit of v under the action of SO(n) is precisely Sn−1. Thus by restricting
the SO(n)-action to Sn−1, we see that SO(n) acts transitively on Sn−1. Matrices A ∈ SO(n)
that stabilise v are the matrices of the form A =

(
B 0
w 1

)
, for B ∈ Matn−1(R) and w ∈ Rn−1.

A⊤A = In implies B ∈ SO(n − 1) and w = 0. Thus the stabiliser of v can be associated with
SO(n − 1). By theorem 3.1, we have that SO(n)/ SO(n − 1) is diffeomorphic to Sn−1. Then
corollary 5.8 relates the homotopy groups of SO(n − 1), SO(n) and Sn−1. Particularly, since
Sn−1 is path-connected for n ≥ 2 and SO(1) ∼= {e}, we see that SO(n) is path-connected as well
for n ≥ 1.

O(n) is not connected, which can be seen by looking at the determinant map det : O(n) → R,
which has image {±1}. By taking only the matrices with determinant 1, we get SO(n), which
is path-connected. SO(n) then must be the identity component of O(n). O(n)/ SO(n) ∼= Z2 by
proposition 2.1, so corollary 5.8 gives πk(O(n), e) ∼= πk(SO(n), e) for k ≥ 1.

Now we turn our focus to U(n) and SU(n). Note that U(n) is diffeomorphic to SU(n)× S1 via
the map (for n ≥ 2 this is not a Lie group homomorphism!)

ψ : SU(n)× S1 → U(n),

(A, z) 7→ diag(z, 1, . . . , 1)A.

Then by theorem 5.5, πk(U(n), e) ∼= πk(SU(n), e), for k ≥ 0, k ̸= 1, and π1(U(n), e) ∼=
π1(SU(n), e) × Z. As a consequence, we only have to focus on the homotopy groups of SU(n).
In this instance, SU(n) acts on Cn. As in the SO(n) case, we now get in a comparable manner
SU(n)/ SU(n− 1) ∼= S2n−1. Therefore the homotopy groups of SU(n), SU(n− 1) and S2n−1 are
related in an exact sequence.

The previous examples illustrate the necessity of the homotopy groups of n-spheres, so what are
they? This turns out to be a really complicated problem in algebraic topology. The first few are
given in table 5.1:

π1 π2 π3 π4 π5 π6 π7 π8 π9

S1 Z 0 0 0 0 0 0 0 0

S2 0 Z Z Z2 Z2 Z12 Z2 Z2 Z3

S3 0 0 Z Z2 Z2 Z12 Z2 Z2 Z3

S4 0 0 0 Z Z2 Z2 Z � Z12 Z2
2 Z2

2

S5 0 0 0 0 Z Z2 Z2 Z24 Z2

S6 0 0 0 0 0 Z Z2 Z2 Z24

S7 0 0 0 0 0 0 Z Z2 Z2

S8 0 0 0 0 0 0 0 Z Z2

S9 0 0 0 0 0 0 0 0 Z

Table 5.1: The first 9 homotopy groups of Sn, for 1 ≤ n ≤ 9, from section 4.1 in [1].
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A few intriguing patterns are visible in table 5.1:

• πn(S
n) ∼= Z for n ≥ 1 and below that diagonal, all entries are 0. Spaces (X,x0) such

that πk(X,x0) ∼= 0 for all 0 ≤ k ≤ n for a given n, are called n-connected. The fact
that Sn+1 is n-connected is a consequence of the Hurewicz theorem, which states that
for an n-connected topological space (X,x0) for n ≥ 1, Hk(X) ∼= 0 for 1 ≤ k ≤ n, and
Hn+1(X) ∼= πn+1(X,x0), where Hk(X) is the k-th singular homology group of X.

• Along the coloured diagonals, the homotopy groups are the same. These are called the
stable homotopy groups, and are due to the Freudenthal suspension theorem.

• The only non-trivial homotopy group of S1 is the fundamental group; this is a consequence
of proposition 5.6, since the universal covering space of S1 is contractible.

• πn(S
2) ∼= πn(S

3) for n ≥ 3, which is a result of the complex Hopf fibration S1 −→ S3 π−→
S2. The quaternionic Hopf fibration S3 −→ S7 π−→ S4 also turns up in the table. Note
that the inclusion i : S3 → S7 is homotopic to the constant map, by virtue of π3(S7) ∼= 0.
Then proposition 5.3 implies that i∗ maps everything to the identity, so the long exact
sequence in theorem 5.7 gives short exact sequences

0 πn+1(S
7) πn+1(S

4) πn(S
3) 0

This short exact sequence splits, resulting in πn+1(S
4) ∼= πn(S

3) � πn+1(S
7) for n ≥ 0.

Calculating non-trivial homotopy groups of spheres goes far beyond the scope of this thesis.
However, Hatcher provides an extensive coverage of theorems related to the calculation of homo-
topy groups of spheres in [1] and [18]. We end this chapter with stating some homotopy groups
of SO(n) and SU(n) – we shall need them later in chapter 6. Using table 5.1 and the facts
that SO(n)/SO(n − 1) ∼= Sn−1 and SU(n)/ SU(n − 1) ∼= S2n−1, one can calculate some of the
homotopy groups in the following two tables. For instance, the homotopy groups πk(SO(n)) and
πk(SU(n)) for a fixed k stabilise for n big enough, because Sn+1 is n-connected. To calculate all
homotopy groups of SO(n) and SU(n) however, one has to resort to advanced algebraic topology
machinery. For further details, we refer to section 3 of [19].

π1 π2 π3 π4 π5 π6

SO(1) 0 0 0 0 0 0

SO(2) Z 0 0 0 0 0

SO(3) Z2 0 Z Z2 Z2 Z12

SO(4) Z2 0 Z2 Z2
2 Z2

2 Z12
2

SO(5) Z2 0 Z Z2 Z2 0

SO(6) Z2 0 Z 0 Z 0

SO(7) Z2 0 Z 0 0 0

SO(8) Z2 0 Z 0 0 0

Table 5.2: The first 6 homotopy groups of
SO(n). The coloured cells indicate where
the homotopy group stabilises.

π1 π2 π3 π4 π5 π6

SU(1) 0 0 0 0 0 0

SU(2) 0 0 Z Z2 Z2 Z12

SU(3) 0 0 Z 0 Z Z6

SU(4) 0 0 Z 0 Z 0

SU(5) 0 0 Z 0 Z 0

SU(6) 0 0 Z 0 Z 0

SU(7) 0 0 Z 0 Z 0

SU(8) 0 0 Z 0 Z 0

Table 5.3: The first 6 homotopy groups of
SU(n). The coloured cells indicate where
the homotopy group stabilises.
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Chapter 6 | Topological defects

We are finally ready to tackle the main topic of this thesis: topological defects. All previous
chapters come together here. Before we can consider topological defects, we first must dive
into spontaneous symmetry breaking using some field theory. While a given Lagrangian remains
invariant under some action of a Lie group G, the vacuum states need not to. In general a vacuum
state is invariant under a Lie subgroup H ⊆ G. We demonstrate that the vacuum manifold M
can be identified with the homogeneous space G/H.

We can also break local symmetries. Unlike the breaking of global symmetries, which has physical
implications, breaking local symmetries is purely a theoretical construct. This construction is
crucial, however, as massless fields can acquire mass; this is the essence of the Higgs mechanism.

The Kibble mechanism explains how spontaneous symmetry breaking happens in nature, and
that it can lead to topological defects. These are field solutions that cannot be continuously
deformed into a trivial vacuum solution. We will give an exact definition in section 6.4. We
list a couple of topological defects: domain walls, strings, monopoles and textures. Homotopy
groups then come up naturally, as they describe whether these topological defects can form or
not. Finally, to bring these concepts to life, we present a detailed example of a Grand Unified
theory using the developed homotopy theory. We prove that it allows for monopoles, and give
some profound physical implications.

6.1 Breaking of global symmetries

Spontaneous symmetry breaking is the phenomenon in which a Lagrangian density is in-
variant under a certain action of a Lie group (called the symmetry group in this context), but
the vacuum states are not. This happens quite often in physics, for instance:

• Ferromagnets. Above the Curie temperature, the spins in a ferromagnetic material are
essentially randomly oriented. But below the Curie temperature, neighbouring spins align
in the same direction, breaking the rotational symmetry, i.e. invariance under SO(3).

• Crystallisation. When crystals form, continuous translational symmetry is broken to
discrete translational symmetry.

• The Higgs mechanism. At very high energy, the force carriers of the electroweak inter-
action, the photon and the W±- and Z0-bosons, are all believed to be massless. Below a
critical temperature, the W±- and Z0-bosons gain mass whereas the photon stays massless.
This process is described by the Higgs mechanism. In this case, the Lagrangian is invariant
under SU(2) × U(1), but a vacuum state under a subgroup isomorphic to U(1) (this is a
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different U(1) than the right factor in the product Lie group). A more detailed description
is given in section 6.2.

As can be seen in these examples, there is some phase transition going on. We explain this
phenomenon in section 6.3. In this section, we illustrate three examples of spontaneous symmetry
breaking, adapted from chapter 5 of [13], where the Lagrangian is invariant under certain global
transformations (in contrast to local gauge transformations, which we cover in section 6.2).

Breaking a discrete symmetry
One of the simplest examples where symmetry breaking occurs is the following Lagrangian density
for a real scalar field φ:

L =
1

2
∂µφ∂

µφ− V (φ), V (φ) =
λ

4

(
φ2 − η2

)2
, (6.1)

for positive constants λ and η. L is invariant under φ 7→ ±φ, thus invariant under an action of
Z2. The Euler-Lagrange equations (4.4) give the following equation of motion:

∂µ∂
µφ+ λ

(
φ2 − η2

)
φ = 0. (6.2)

The potential V is bounded from below, so it makes sense to look at the vacuum states – the
field solutions with minimal energy. The energy functional (c.f. equation (4.6)) is given by

E[φ] =

∫
R3

(
(∂tφ)

2 + (∂iφ)
2 + V (φ)

)
d3x,

where (∂iφ)
2 is shorthand for (∂xφ)

2 + (∂yφ)
2 + (∂zφ)

2. Since (∂tφ)
2, (∂iφ)2 and V (φ) are all

non-negative, minimising E[φ] is equivalent to minimising each term individually. This gives
that ∂µφ = 0 and that V (φ) must be minimal, so φ2 = η2 (since we assume φ to be smooth, in
particular continuous, these equations must hold everywhere). Equation (6.2) is automatically
satisfied with these conditions. Thus the vacuum states are the constant fields

φ(xµ) = ±η.

These fields can be identified with the smooth manifold M = {±η}, which we recall from chapter
4, is called the vacuum manifold. A chosen vacuum state, say φ(0)(xµ) = η, is not invariant under
Z2, as −φ(0) is another state than φ(0).

In quantum field theory, particles correspond with small perturbations χ around the vacuum
state φ(0). This means that we write the field as φ(xµ) = φ(0)+χ(xµ), for χ a small scalar field.
The Euler-Lagrange equations for this field are

Lχ = L[φ(0) + χ] =
1

2
∂µχ∂

µχ− Vχ(χ), Vχ(χ) = λη2χ2 + ληχ3 +
λ

4
χ4.

Thus the Lagrangian for perturbations is not invariant under Z2 either, which was to be expected.
When χ is really small, the Lagrangian Lχ reduces to

Lχ =
1

2
∂µχ∂

µχ− 1

2
m2χ2, m =

√
2λη.

This is exactly the Klein-Gordon Lagrangian for a real scalar field (c.f. (4.7) for the Lagrangian
of a complex scalar field). In this sense, m can be interpreted as the mass of the particle described
by the field χ.
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Breaking a U(1) symmetry
We make the previous example a little bit complicated, by considering a complex scalar field ψ,
and the following Lagrangian density

L = ∂µψ∂
µψ − V (|ψ|), V (|ψ|) = λ

4

(
|ψ|2 − η2

)2
. (6.3)

Here λ and η are again positive constants. Once more, ψ and ψ are independent fields, as in the
Klein-Gordon equations (4.8), yielding the following equation of motion:

∂µ∂
µψ +

λ

2
(|ψ|2 − η2)ψ = 0, (6.4)

and the same equation with ψ replaced by ψ. This Lagrangian density is invariant under global
phase rotations ψ → eiαψ, for α ∈ R, so invariant under the Lie group U(1). Minimising the
energy functional, taking into account that equation (6.4) must hold, gives the vacuum states

ψ(xµ) = ηeiβ, β ∈ R.

Thus the vacuum manifold is M = S1
η . Again, a vacuum state ψ(0) is not invariant under U(1)

anymore. We shortly consider perturbations again around a vacuum state; we choose ψ(0) = η.
The perturbations can be written as

ψ(xµ) =

(
ψ(0) +

1√
2
ρ(xµ)

)
eiα(x

µ),

The new Lagrangian in terms of the fields ρ and α has a term 1
2λη

2ρ2 and no α2 term. This
means that ρ has a mass of

√
λη, whereas α is massless. A theorem by Goldstone states that

massless fields always occur in spontaneous symmetry breaking of a continuous symmetry. To
be exact, the number of massless fields occurring in spontaneous symmetry breaking is at least
the dimension of the vacuum manifold M.

Partial breaking of a symmetry
In the previous two examples, the Lagrangian is invariant under a Lie group G, whereas a
vacuum state is only invariant under the trivial group. Symmetry can also be partly broken,
thus a vacuum state is still invariant under a non-trivial closed subgroup H of G. We now
consider such an example.

Let ϕ be an n-tuple field, so a field ϕ :M → Rn for n ≥ 2, and a Lagrangian density

L =
1

2
⟨∂µϕ, ∂µϕ⟩ − V (∥ϕ∥), V (∥ϕ∥) = λ

4

(
∥ϕ∥2 − η2

)2
. (6.5)

Here we have used the standard Euclidean norm ⟨·, ·⟩ on Rn and the induced norm ∥·∥. This
Lagrangian is invariant under the transformations ϕ 7→ Aϕ for A ∈ SO(n), as

⟨∂µ(Aϕ), ∂µ(Aϕ)⟩ = (A∂µϕ)
⊤A∂µϕ = ∂µϕ

⊤A⊤A∂µϕ = ∂µϕ
⊤∂µϕ = ⟨∂µϕ, ∂µϕ⟩ .

An analogous derivation gives ∥Aϕ∥ = ∥ϕ∥. The vacuum states are

ϕ(xµ) = v, v ∈ Sn−1
η ,

where Sn−1
η is the (n − 1)-sphere with radius η. We identify these fields with the vacuum

manifold M = Sn−1
η . We now choose a vacuum state, say ϕ(0) = v, v = (0, . . . , 0, η) ∈ Sn−1

η .
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Which A ∈ SO(n) keep ϕ(0) invariant? These form exactly the stabiliser of ϕ(0) of the action of
SO(n) on the vacuum manifold Sn−1

η . A brief computation provides

Stabv(SO(n)) =

{(
A 0

0 1

)
: A ∈ SO(n− 1)

}
,

which we identify with SO(n − 1). Thus we see that a vacuum state is only invariant under
SO(n− 1); we say SO(n) is spontaneously broken to SO(n− 1). This can easily be visualised
for n = 3, see figure 6.1.

Note that SO(n) acts transitively on the vacuum manifold Sn−1
η , so by theorem 3.1,

Sn−1
η

∼= SO(n)/SO(n− 1),

i.e. the vacuum manifold is diffeomorphic to the quotient of the whole symmetry group SO(n)
by the stabiliser SO(n − 1). By the transitiveness of the action, all stabilisers are Lie group
isomorphic by conjugation, so by the above diffeomorphism, it does not matter which vacuum
state we chose. Furthermore, by knowing that the symmetry group SO(n) acts transitively
on the vacuum manifold, and the stabiliser is SO(n − 1), we find the vacuum manifold M ∼=
SO(n)/SO(n− 1).

z

v

S2
η

Fig. 6.1: Sketch for n = 3: SO(3) is spontaneously broken to SO(2). The vacuum manifold is
S2
η . We can see that the vacuum state ϕ(0)(xµ) = v, for v = (0, 0, η), remains invariant under

rotations around the z-axis, corresponding to the group of 2D rotations SO(2). However, v is
not invariant under rotations around any other rotation axis.

The general case
The above results generalise to the ordinary case where the Lagrangian density is invariant under
a Lie group G, where we assume that G acts transitively on the vacuum manifold M. Even gauge
fields can be added (but this is not necessary):

Proposition 6.1. Let ϕ be a field, which we consider as a smooth map ϕ :M → Rn. We assume
that G acts smoothly on Rn, via some Lie group representation. Let L be a Yang-Mills-Higgs
Lagrangian density of the form (4.20), which is invariant under the Lie group G. We assume
that U takes on a global minimum value xmin ∈ R somewhere. Assume furthermore that G acts
transitively on the vacuum manifold M, and that G spontaneously breaks down to a subgroup
H ⊆ G. Then the vacuum manifold M is indeed a smooth manifold, and M ∼= G/H.

Proof. The energy functional associated to the Lagrangian density (4.20) is at a minimum when
Fµν = 0 (we then choose Aµ = 0) and ∂µϕ = 0. ϕ must thus be a constant function, hence we
can identify the set of vacuum states with the set

M = {ϕ(0) : ϕ is a vacuum state} = U−1(xmin) ⊆ Rn.

50



Breaking of local symmetries: the Higgs mechanism

We choose a vacuum state v ∈ M, and let H = Stabv(G) be the stabiliser under the smooth
G-action on Rn. It is easily shown that H is a closed subgroup of G. When we restrict the G-
action to M (this action need not be smooth, as M has no manifold structure yet), the stabiliser
of v is still H. Since G acts transitively on M, by theorem 21.20 in [2], M has a unique smooth
structure, such that the G-action on M is smooth. By transitiveness, we can use theorem 3.1,
which states that M ∼= G/H. ■

Proposition 6.1 is most apparent in the SO(n) example, but it also holds in the Z2 and U(1)
example; there H is trivial.

6.2 Breaking of local symmetries: the Higgs mechanism

In the same manner, we can ‘break’ local symmetry like a global symmetry. This breaking has –
opposed to the breaking of global symmetry, which we shall see in the next section – no physical
manifestation; it is purely a theoretical device. This mechanism, called the Higgs mechanism, is
really important however, as it allows describing gauge fields with mass, such as the W±- and
Z-bosons in the weak interaction. This section is based on chapter 6 in [13].

Breaking a local U(1) symmetry
We consider an instance of the Lagrangian (4.12), which is the Lagrangian for electromagnetism
with a complex scalar field ψ:

L = −1

4
FµνF

µν+DµψD
µψ−V (|ψ|), V (|ψ|) = λ

4

(
|ψ|2 − η2

)2
, Dµψ = ∂µψ− ieAµψ. (6.6)

This is essentially the same Lagrangian density as in equation (6.3), but a U(1) gauge field is
added. L is invariant under local gauge transformations (Aµ)gt = Aµ + 1

e∂µα(x), ψgt = eiα(x)ψ,
for a smooth function α : M → R. We can ask ourselves the same question as we did in
the previous section: what are the vacuum states, and are they invariant under these gauge
transformations? The energy functional this time depends both on the fields A and ψ:

E[Aµ, ψ] =

∫
R3

(
1

4
(Fij)

2 +
1

2
(F0i)

2 +D0ψD0ψ +DiψDiψ + V (|ψ|)
)
d3x. (6.7)

Equation (6.7) is obtained by using the definition of the energy functional in (4.6). This integral
is further simplified by using the divergence theorem and the equations of motion, given by
equation (4.13).

Again, we can minimise each term individually, which gives Fµν = 0, Dµψ = 0 and |ψ| = η.
Note that the gauge invariance implies that when (A

(0)
µ , ϕ(0)) is a vacuum state, that (A

(0)
µ +

1
e∂µα, e

iαϕ(0)) is also a vacuum state, for α ∈ C∞(M) a smooth function. Since Fµν = 0, we can
write Aµ = 1

e∂µβ, for a β ∈ C∞(M). This implies that ∂µ(e−iβψ) = 0, so the vacuum solutions
are of the form

Aµ(x
ν) =

1

e
∂µβ, ψ(xν) = ηeiβ(x

ν), β ∈ C∞(M).

Like in previous section, we consider perturbations around the a vacuum state. We choose
A

(0)
µ = 0 and ψ(0) = η. Needless to say, these are not invariant under U(1) anymore. Per-

turbations around A
(0)
µ are described by Aµ itself, perturbations around ψ(0) are described by
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ψ(xµ) =
(
ψ(0) + 1√

2
ρ(xµ)

)
eiα(x

µ). Filling in these expressions in (6.6), we find the following
long Lagrangian:

Lρ,α =

(
1√
2
∂µρ+ ie

(
Aµ − 1

e
∂µα

)(
η +

1√
2
ρ

))(
1√
2
∂µρ− ie

(
Aµ − 1

e
∂µα

)(
η +

1√
2
ρ

))
− 1

4
FµνF

µν − λ

2
η2ρ2 − λ

2
√
2
ηρ3 − λ

16
ρ4.

In order to simplify this expression, we define new fields Bµ := Aµ− 1
e∂µα, Gµν = ∂µBν − ∂νBµ.

Note that both Bµ and Gµν are gauge-invariant. The Lagrangian then becomes

L = −1

4
GµνG

µν +
1

2
∂µρ∂

µρ+
1

2
M2BµB

µ − 1

2
m2ρ2 + Lint, M =

√
2eη, m =

√
λη,

where Lint contains higher order interaction terms. Two things are important to notice: the
field α is not present in the Lagrangian anymore, and the vector field Bµ has a mass M . Note
that terms of the form m2AµA

µ are in general not gauge-invariant, so these do not appear in
Lagrangian. However in this way, we can construct massive vector fields.

The above mechanism, called the Higgs mechanism, describes how a massless field Aµ ‘absorbs’
the massless field α, and becomes massive. The number of degrees of freedom stay the same
however. Before symmetry breaking, the massless Aµ field has two degrees of freedom (compare
this with the two transverse polarisation states of a photon), and α has a single degree of freedom,
so in total there are three. When α gets ‘eaten up’, the massive vector field Bµ has three degrees
of freedom; the mass allows for an extra longitudinal polarisation mode.

The Higgs mechanism is possible due to the particular potential for the field φ; if φ = 0 were the
only vacuum state, perturbations around the vacuum state would result in the same Lagrangian.
In this context, the field φ is called the Higgs field.

The electroweak force
The Higgs mechanism is really significant in the Standard Model. During the 1950’s and 1960’s,
physicists tried to combine electromagnetism and the weak interaction (the force attributable
to radiactive decay) into an electroweak interaction, in order to explain parity non-conservation
in weak interactions. The Lagrangian describing the electroweak interaction is invariant under
SU(2)L × U(1)Y , where the subscripts tell something about how the representations of these
groups act on the corresponding fields. The ‘L’ means that SU(2) acts only on so-called ‘left-
handed’ particles, whereas the ‘Y ’ is the weak hypercharge, which is a certain property of el-
ementary particles. These details do not matter for the discussion, however. Initially, at very
high temperatures before SU(2)L × U(1)Y is broken, there are four massless fields (a single one
for each generator of su(2) � u(1), so 3 + 1 = 4 in total). The symmetry group SU(2)L ×U(1)Y
breaks down to a the subgroup U(1)em via the Higgs mechanism. Then linear combinations of
the original four fields give rise to three massive vector fields – describing the W±- and Z-bosons,
mediating the weak interaction –, and a single massless vector field – corresponding with the
photon in electrodynamics.

For a thorough discussion on this unification of electromagnetism and the weak interaction,
called Weinberg–Salam theory, chapter 6 of [13] is certainly recommended. Most notably,
the electroweak interaction is indeed observed, as well as the masses of W±- and Z-bosons. In
2012, CERN announced the groundbreaking discovery of the Higgs boson – the particle associated
to the Higgs field – based on experiments in the Large Hadron Collider [20].
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6.3 The Kibble mechanism

The Lagrangian densities discussed so far are simple models, but describing fields representing
true physical particles and their interactions in nature is of course far more intricate and complex.
In reality, different kind of corrections must be added to the classical potential V , in order to
describe the real interactions. This new potential is called the effective potential Veff. For
instance, quantum effects have to be taken into account, such as quantisation of fields. For
example, quantum mechanically the electromagnetic field consists of packets of discrete energy,
called photons.

Furthermore, thermal interactions are also important, especially in cosmology, where the universe
was much hotter in the past. These interactions depend on the number of different types of
fermions and bosons, as identical fermions cannot occupy the same quantum state by the Pauli
exclusion principle, whereas bosons can. In [21], a simplified correction model, leaving out most
of quantum corrections, is calculated for the U(1)-invariant Lagrangian in equation (6.3) (without
gauge field) and (6.6) (with gauge field). For brevity we only consider the U(1)-model without
a gauge field, but this example generalises to other models, also including gauge fields. The
effective potential is given by

Veff(|ψ|) = V (|ψ|) +
(
α|ψ|2 − β

)
T 2 − γT 4, V (|ψ|) = λ

4

(
|ψ|2 − η2

)2
,

for α, β, γ some positive constants, and T the temperature. The nature of α, β and γ is not really
important for our discussion (for the interested reader, see [21]). What is important though, is
the different temperature régimes:

Veff(|ψ|) ≈
λ

4

(
|ψ|2 − η2

)2
, T ≪ η, Veff(|ψ|) ≈

λ

4
|ψ|4 +

(
α|ψ|2 − β

)
T 2 − γT 4, T ≫ η.

In the first régime, we have already seen that the vacuum manifold is M = S1
η . This form of the

potential is to be expected, as at low temperature there is not much thermal interactions. At
high temperatures however, the temperature contributions dominate, and the vacuum manifold
is M = {0}, so the field takes on values near 0 everywhere. So there is a phase transition
from ψ = 0 being a stable minimum of the effective potential, to ψ = 0 being an unstable local
maximum and |ψ| = η being stable for constant complex scalar fields ψ. This is illustrated in
figure 6.2. The critical temperature in this model is Tc =

√
6η.
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η/Tc
0

λ/144

T = 0

T = Tc/2

T = Tc

T = 3/2Tc

u/Tc

Veff/T
4
c

Effective potential for different temperatures

Fig. 6.2: Sketch of effective potential Veff(u) for the different temperature régimes, for u ∈ R≥0.
For the Lagrangian L = ∂µψ∂

µ−Veff(|ψ|), minimising the energy gives that ψ is a constant field
with magnitude u, such that Veff(|ψ|) is minimal. It thus suffices to look at the minima of Veff(u).
u = 0 is stable for T > Tc and unstable for T < Tc. In this range, there is a non-zero vacuum
expectation value.

When cooling down from T > Tc to T < Tc, the field takes on values near the new vacuum
manifold M. There is no physical reason to believe that this field takes on the same value
everywhere in space; as in general the field is uncorrelated at large distances. This is especially
true in cosmology, where the speed of light determines a bound on causality. So we expect local
regions where the field takes on nearby values in the vacuum manifold. However, this need not
be globally so, it would be very well possible that the field cannot relax to a vacuum state due to
a topological obstruction. This field is called a topological defect, and the formation process of
topological defects by means of spontaneous symmetry breaking from a Lie group G to H, where
the field takes on values in the vacuum manifold M ∼= G/H, is called the Kibble mechanism
[21, 22].

Lastly, note that by heating up, we can resolve the topological defects by adding enough energy,
so that the field takes on values near the vacuum manifold everywhere. This is nonviable in
cosmological contexts, but it explains amongst others why ferromagnets lose their magnetic
properties above the Curie temperature in the absence of an external magnetic field.

6.4 Different types of topological defects

We first give a mathematical definition of topological defects:

Definition (Topological defect). Let L be a Lagrangian density with vacuum manifold M.
A topological defect is a static field solution ϕ (in some Lorentz frame), such that there exists
a suitable non-empty subset A ⊆ R3 with ϕ(A) ⊆ M, such that ϕ|A : A→ M is not homotopic
to a constant map.

This definition captures the essence of a topological obstruction preventing a field to decay to
a vacuum solution. However, in practice this definition is quite impractical and too precise to
work with in a physical context, as fields are never static in reality, and they never exactly take
on values in the vacuum manifold M. Yet for theoretical idealisations, this definition suffices.
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We now shall look at some common topological defects. In our examples, A ⊆ R3 will be a closed
embedded submanifold of R3. This section is based on [21].

Domain walls
We first consider the Lagrangian in equation (6.1) again with a real field φ :M → R, which has
the vacuum manifold M = {±η}. By the Kibble mechanism, we would expect that there are
regions where φ takes on the values near +η, and regions near −η, as illustrated in figure 6.3.

+η −η

−η

+η

+η

−η

−η
+η

Fig. 6.3: There are clear regions where φ assumes the vacuum value +η, and regions where φ
assumes −η. Between them the field φ must leave the vacuum manifold by continuity. At these
places, the field has a higher energy density, called domain walls.

We choose two different points a, b ∈ R3, which together form a 0-sphere S0 = {a, b}, such that
φ(S0) ⊆ M. Then it could be that φ|S0 : S0 → M is not null-homotopic, and thus represents a
topological defect. This is exactly the case when φ maps to two different path-components, i.e.
the one with +η and −η. This is possible because π0(M, x0) is non-trivial, for a chosen base
point x0 ∈ M. In general, a domain wall is a topological defect ϕ, such that ϕ|S0 : S0 → M
represents a non-trivial element in π0(M, x0). The possibility of domain walls is thus reduced
to the question whether π0(M, x0) is trivial.

In the particular case of a Lagrangian of the form

L =
1

2
∂µϕ∂

µφ− V (φ) (6.8)

for φ a real field and the potential V bounded from below, there are exact solutions for domain
walls. For simplicity, we assume that φ (which is already static per definition) does not depend
on the y- and z-coordinates. Then φ is a solution1 to(

∂φ

∂x

)2

= 2V (φ)

For the ‘kink’ potential Vkink(φ) = λ
4

(
φ2 − η2

)2 and the the so-called sine-Gordon potential
VsG(φ) = λ (1− cos(2πφ/η)), with vacuum manifolds Mkink = {±η} and MsG = ηZ respec-
tively, exact solutions can be calculated using separation of variables.

1The equation of motion is ∂2φ
∂x2 = V ′(φ). By multiplying by ∂φ

∂x
, using the chain rule and integrating we find(

∂φ
∂x

)2
= 2V (φ) + c, for a constant c. By assuming that lim

x→±∞
φ(x) ∈ M, lim

x→±∞
∂φ
∂x

= 0, we find c = 0.
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)
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Fig. 6.4: Sketch of topological defect solutions φ(x) = η tanh

(
η
√

λ
2 (x− x0)

)
to the kink

potential Vkink and φ(x) = nη + 2η
π arctan

(
e−2π

√
λ(x−x0)/η

)
, for n ∈ Z, to the sine-Gordon

potential VsG. Both solutions cannot be continuously deformed to a constant solution. In both
models, the energy density E is concentrated near x0, forming the domain wall.

Strings
When the vacuum manifold M is connected, no domain walls can form. However, there can
be higher dimensional analogues. For instance, we consider the U(1)-model as described by the
Lagrangian in equation (6.3) for a complex scalar field ψ. In that case, M = S1

η . We embed a
large circle S1

R with radius R in R3. Then we expect that ψ(S1
R) ⊆ M for a static field solution ψ

and large R (recall that nature prefers minimising energy, so far away ψ must take on values near
M). It could be that the field ‘winds around’ at large distances and that ψ|S1

R
: S1

R → M is not
homotopic to a constant map. This is exactly the case if and only if ψ|S1

R
represents a non-trivial

element in π1(M, x0). Such topological defects are called strings or vortices. Fields describing
strings must necessarily attain values outside the vacuum manifold in the ‘middle’ of the circle
S1
R; otherwise, we could shrink R to 0, resulting in a homotopy to a constant map. Thus in

the middle, there is an accumulation of energy which extends as a string in 3-space, explaining
the nomenclature for strings (3 spatial dimensions) and vortices (2 spatial dimensions). A string
cannot have endpoints because if it did, the string would tend to relax and attain values within
the vacuum manifold near its ends. This relaxation would progressively pull the entire string into
the vacuum manifold, eventually causing the string to vanish. Thus strings are either infinite or
a closed loop.

The U(1)-models allows strings, since π1(M, x0) ∼= Z, and an example is given by figure 6.5.
However, in comparison to the domain walls examples, it is impossible to come up with exact
solutions for strings. For example, consider an ansatz such as ψ(xi) = ηf(s)einθ for f : R≥0 → R
a smooth function. This ansatz describes a string around the z-axis in cylindrical coordinates,
winding around n ∈ Z times. Substituting this into equation (6.4) describing the equation of
motion, we find

f ′′(s) +
1

s
f ′(s)− n2

s2
f(s)− λη2

2

(
f(s)2 − 1

)
f(s) = 0,

which is a highly non-linear ordinary differential equation. Such solutions have to be found using
numerical methods with a computer.
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x

y

Non-string solution for the U(1)-model

x

y

String solution for the U(1)-model

Fig. 6.5: Sketches of what a field solution for the U(1)-model might look like. On the left, there
is a ‘trivial’ solution, i.e. it is homotopic to a vacuum solution, and to the right there is a string
solution. Only the field in the xy-plane is drawn. All arrows are of unit length, and represent
an element in M = S1

η . Note that the string solution must leave the vacuum manifold M at the
core, where the phase is not defined at certain locations.

Monopoles
The natural next step is considering a Lagrangian L with a field ϕ and a vacuum manifold M,
and a large embedded sphere S2

R ⊆ R3, such that ϕ(S2
R) ⊆ M. Then ψ|S2

R
: S2

R → M could
‘wrap around’ in M, i.e. it represents a non-trivial element in π2(M, x0). Such a topological
defect is called a monopole. Again, energy is concentrated in the middle of S2

R. An example
model where these monopoles are allowed is the Lagrangian density in equation (6.5) for n = 3,
since then M = S2

η , and π2(M, x0) ∼= Z.

Textures
Can we also use π3(M, x0) to identify topological defects for a Lagrangian density L with field
ϕ? After all, S3 cannot be embedded in R3 2. A solution is when we assume that the field ϕ
satisfies imϕ ⊆ M and that it is asymptotically constant, which means that the following limit
exists:

L = lim
r→∞

ϕ(r).

Then we can extend ϕ to a continuous function ϕ : S3 → M, and then we can ask whether it is
homotopic to a constant map. If [ϕ] is non-trivial in π3(M, x0), we call ϕ a texture. Note that
technically, a texture is not a topological defect according to our definition.

When a symmetry group G is spontaneously broken to a subgroup H, the vacuum manifold M is
diffeomorphic to G/H, as shown in proposition 6.1. Then the homotopy groups of M determine
what kinds of topological defects are possible during breaking this symmetry:

• if π0(M, x0) is non-trivial, then domain walls can form; different regions in space can attain
different values of the vacuum manifold;

• if π1(M, x0) is non-trivial, then the field can loop around in the vacuum manifold, such
that it cannot be contracted to a trivial solution; strings can arise;

2Assume that f : S3 ↪→ R3 is an embedding. By compactness of S3, a corollary of the invariance of domain
theorem (see corollary 2B.4 in [1]) states that f is a homeomorphism. This is a contradiction as R3 is not compact.
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• if π2(M, x0) is non-trivial, then the field can wrap around in the vacuum manifold, and
monopoles can form;

• if π3(M, x0) is non-trivial, textures can form.

Corollary 5.8 is really useful to determine πn(M, x0), as these homotopy groups are linked with
the homotopy groups of G and H in an exact sequence.

However, a significant caveat hinders the interpretation of these topological defect models as
representations of nature. Specifically, all the models discussed in this section so far possess
infinite total energy. While this can be demonstrated for each model individually by calculating
the energy density and integrating over all space, we will instead use a cute scaling argument,
attributed to Derrick:

Proposition (Derrick’s theorem). Let ϕ = (ϕ1, . . . , ϕk) be a real field with k components, in
(n, 1)- spacetime. Consider the general form Lagrangian

L =
1

2
Fab(ϕ)∂µϕ

a∂µϕb − V (ϕ),

for Fab smooth functions depending on the field components ϕa, such that the matrix F is positive-
definite for every field ϕ. We also assume that V is bounded from below and takes on this
minimum value somewhere. Then when n > 2, the only static field solutions with finite energy
are the vacuum solutions.

Proof. We consider static field solutions ϕ, so these satisfy ϕ̇a = 0. In that case, the energy
density is given by

E =
∂L
∂ϕ̇a

ϕ̇a − L = −L.

Since ϕ is a solution to the Euler-Lagrange equations, this means that E[ϕ] is also stationary. In
our case, the energy functional is given by

E[ϕ] =

∫
Rn

(
1

2
Fab(ϕ)∂iϕ

a∂iϕ
b + V (ϕ)

)
dnx =

∫
Rn

1

2
Fab(ϕ)∂iϕ

a∂iϕ
bdnx︸ ︷︷ ︸

I[ϕ]

+

∫
Rn

V (ϕ)dnx︸ ︷︷ ︸
J [ϕ]

.

By positive-definiteness of F , Fab(ϕ)∂iϕ
a∂iϕ

b is always non-negative. Then I[ϕ] ≥ 0. Without
loss of generality, we can assume that the minimal value V takes on is 0; else we could add a
constant to the Lagrangian, which does not change the equations of motion. This then gives
that J [ϕ] ≥ 0.

Now, we consider a static field solution ϕ with finite energy, and set I = I[ϕ] and J = J [ϕ]. For
λ > 0, we consider the scaled fields ϕλ, given by ϕaλ(x

µ) = ϕa(λxµ). Then by doing a linear
change of variables in the integrals, we see that

E[ϕλ] = I[ϕλ] + J [ϕλ] = λ2−nI + λ−nJ.

ϕ is a stationary solution, so

∂E[ϕλ]

∂λ

∣∣∣∣
λ=1

= (2− n)I − nJ = 0.

Note again that I, J ≥ 0. The above equation can only hold for n ≥ 3, when I = J = 0. Then
the total energy is minimal, and thus ϕ is a vacuum state. ■
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Since we often work in (3, 1)-spacetime, Derrick’s theorem effectively states that topological
defects have infinite energy. Even in (2, 1)-spacetime, there are huge restrictions, as can be seen
in the proof. Evidently, Derreck’s theorem does not hold for n = 1, as there are topological
defects in (1, 1)-spacetime with finite energy. For instance, the kink model and sine-Gordon
model in (1, 1)-spacetime have finite energy, as can be seen in figure 6.4.

There are, however, ways to circumvent Derrick’s theorem. For instance, we could allow for
time-depend fields, model spacetime after different manifolds or by allowing infinite energies as
in the previous examples. Then the energy of strings and monopoles is cut off at a certain radius
for physical applications. Yet an even more natural bypass is using gauge fields, of which we give
an example:

Local monopoles
We consider a real 3-tuple field ϕ and we add a SO(3) gauge field to the Lagrangian. We assume
that SO(3) acts on ϕ by the adjoint action, so ϕ takes values in so(3). By example 2.9, the Lie
algebra so(3) is generated by the matrices

T 1 =
1

2

0 0 0

0 0 −1

0 1 0

 , T 2 =
1

2

 0 0 1

0 0 0

−1 0 0

 , T 3 =
1

2

0 −1 0

1 0 0

0 0 0

 .

Then tr
(
T iT j

)
= −1

2δ
ij , and [T i, T j ] = 1

2ε
ijkT k, for εijk the Levi-Civita symbol. We write

ϕ = ϕaT a. Then the Lagrangian is given by (c.f. equations (4.16), (4.19) and (4.20))

L = −1

4
F a
µνF

µν +
1

2

(
∂µϕ

a +
1

2
εabcAb

µϕ
c

)(
∂µϕa +

1

2
εabcAb,µϕc

)
− λ

4

(
ϕaϕa − η2

)2
,

F a
µν = ∂µA

a
ν − ∂νA

a
µ +

1

2
εabcAb

µA
c
ν .

Here the summation over a, b and c is also implicit. In this case, M ∼= S2
η holds as well and

thus π2(M, x0) ∼= Z. We thus expect monopoles, called ’t Hooft-Polyakov monopoles in this
model. In [21], a topological defect solution is described for ϕa and Aa

µ, such that the fields ϕa

and Aa
µ decay exponentially to 0 at large distances. This means that these solutions have finite

energy.

6.5 Applying topological defects: Grand Unified Theories

In section 6.2, we have seen that at high temperatures, electromagnetism and the weak force
unite into the electroweak force. The symmetry breaking pattern is SU(2)L ×U(1)Y → U(1)em.
Note that M ∼= (SU(2)L ×U(1)Y ) /U(1)em ∼= S3 [23], so no domain walls, strings or monopoles
can form (see table 5.1 for the homotopy groups of S3).

Another fundamental force is the strong interaction, which plays a crucial role in binding quarks
within hadrons, such as protons and neutrons, and in holding hadrons together. This interaction
explains the stability of most atomic nuclei. Despite the electromagnetic repulsion between the
positively charged protons and the neutrality of neutrons, the strong interaction ensures that
these nuclei remain stable. Mathematically, the theory of the strong interaction is described by
quantum chromodynamics and the gauge symmetry group of the strong interaction is SU(3),
which we denote SU(3)C (the ‘C’ stands for colour charge, the electric charge equivalent in
quantum chromodynamics). It would be very appealing if electrodynamics, the weak and the
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strong force can be combined into one force at an even higher temperature than the electroweak
unification temperature. This is exactly what Grand Unified Theories seek to accomplish.

More specifically, we want some Lagrangian density with symmetry group G, which breaks down
in one or more steps to SU(3)C × SU(2)L × U(1)Y . Then we can look at what topological
defects can occur. For reasons related to the representation theory of the Standard Model, we
take G to be compact, connected and simple (the only proper closed normal subgroups of G
are of dimension 0, and G is non-abelian). Candidates include G = SU(5), G = SO(10) and
the exceptional compact Lie group G = E6 of dimension 78 [24]. Here we shall be considering
G = SO(5) (called the Georgi–Glashow model), but the following discussion generalises mostly
to other compact, connected and simple Lie groups G, since by theorems of Cartan and Bott
[19], π2(G) ∼= 0 and π3(G) ∼= Z.

In what sense is SU(3)C × SU(2)L ×U(1)Y , which we denote by GSM, a subgroup of SU(5)? We
can construct the following faithfull Lie algebra representation

σ : su(3)C � su(2)L � u(1)Y → su(5),

(P,Q,w) 7→

(
P − 2wI3 0

0 Q+ 3wI2

)
.

Then σ is the induced map of the following Lie group representation

ρ : SU(3)C × SU(2)L ×U(1)Y → SU(5),

(A,B, z) 7→

(
z−2A 0

0 z3B

)
.

The only problem is that this representation is not faithful, but ker ρ = ⟨(ζ3I3,−I2, ζ6)⟩ ∼= Z6.
So it is really SU(5) breaking down to GSM/Z6. This is no problem, as long as we use only
representations of GSM which factor through GSM/Z6.

We now determine the homotopy groups of the vacuum manifold M ∼= SU(5)/ (GSM/Z6). The
homotopy groups of GSM can be easily found, using table 5.3 and theorem 5.5. Applying the long
exact sequence in corollary 5.8 to π : GSM → GSM/Z6, we find that π induces an isomorphism
between πn(GSM) and πn(GSM/Z6) for n ≥ 2. The tail looks like

0 Z π1(GSM/Z6) Z6 0

We cannot calculate π1(GSM/Z6) from this short exact sequence without looking at the maps,
since Z6 is merely a set here and not a group. But at least we see that π1(GSM/Z6) is non-trivial
– it has at least an element with infinite order – which is enough information for our discussion.
Then the long exact sequence of the homotopy groups for M looks like

· · · π4(M)

Z2 Z π3(M)

0 0 π2(M)

π1(GSM/Z6) 0 π1(M)

0 0 π0(M) 0

i∗
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We thus see that π0(M) ∼= 0, π1(M) ∼= 0 and π2(M) ∼= π1(GSM/Z6) ̸= 0. So this model allows
for monopoles, but not for domain walls or strings. In fact, textures do not form either, since
π3(M) ∼= 0. This can be seen by looking at the following commuting diagram:

GSM GSM/Z6 SU(5)

SU(3) SU(4)

π

ρ

i

j

i3

i4

Here i3, i4 and j are the natural inclusion maps. By applying the π3 functor, we note that (i3)∗
and (i4)∗ are isomorphisms – which is exactly the stabilising of homotopy groups of SU(n) which
we have seen in section 5.3. Then (i4)∗ ◦ (i3)∗ is an isomorphism and thus i∗ must be surjective.
Looking back at the long exact sequence, this implies that π3(M) ∼= 0.

As of 2022, no monopoles from this symmetry breaking pattern are observed. The expected abun-
dance of monopoles exceeds the observed bounds by far, a discrepancy known as the monopole
problem in cosmology [24, 25]. This raises intriguing questions: Are Grand Unified Theories
incorrect, suggesting that monopoles never existed in the first place? Have monopoles dissipated
over time, or is there another mechanism at play that explains their absence?

The existence of Grand Unified Theories and monopoles is still an ongoing debate in present-
day particle physics and cosmology. In 1980, Guth proposed the theory of cosmic inflation, the
idea of exponential expansion of the Universe immediately after the Big Bang, in order to solve
the monopole problem [26]. Simultaneously, it solved several other cosmological problems, and
this theory continues to be a cornerstone of contemporary cosmology. So whilst the search for
topological defects such as monopoles remains unfulfilled, their theoretical exploration has led
to significant advancements in our understanding of the Universe.
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Chapter 7 | Concluding remarks

In this thesis, we have developed the theory of topological defects from the ground up. First we
began by introducing fundamental concepts such as Lie groups and Lie algebras, which turned
up in every forthcoming chapter. The exponential map, which we primarily used as a way to
calculate Lie algebras of common matrix groups in chapter 2, turned out to be really useful to
describe infinitesimal Lie group actions in chapter 3, particularly for fundamental vector fields.
The adjoint representation emerged prominently in Yang-Mills theory, illustrating how gauge
fields transform under gauge transformations, and in the action of the Lie group SU(2) on fields
describing ’t Hooft-Polyakov monopoles.

Chapter 3 provided mostly definitions and examples of fibre bundles, principal G-bundles and
Ehressmann connections. Their significance became evident, such as in Yang-Mills theory or the
role of the principal H-bundle H −→ G

π−→ G/H in determining the homotopy groups of the
the vacuum manifold in chapter 6.

In chapter 4, we introduced spacetime as R4 with the Minkowski metric, alongside with the
Lagrangian formalism. It set the stage for studying spontaneous symmetry breaking and topo-
logical defects in chapter 6 and a simplified version of Yang-Mills theory, with electromagnetism
as a nice preview.

In chapter 5, we developed a lot of theory related to homotopy groups. The long exact sequence
of homotopy groups of a fibre bundle was of particular importance in this thesis, but meanwhile
we met the richness of homotopy groups when considering the homotopy groups of n-spheres
and compact Lie groups.

Lastly, we explored spontaneous symmetry breaking from a Lie group G to a closed subgroup
H ⊆ G. When G acts transitively on the vacuum manifold M, we concluded that M ∼= G/H.
We also covered the Higgs mechanism, and we have seen how spontaneous symmetry breaking
can lead to topological defects, by the Kibble mechanism. Sections 6.4 and 6.5 finally brought
topological defects and homotopy groups together; topological defects are possible if πn(M, x0)
is non-trivial, for an n ∈ {0, 1, 2, 3}. We also explored some examples of topological defects, and
calculated the homotopy groups of the vacuum manifold M. Here, the long exact sequence of
homotopy groups for the fibre bundle H −→ G

π−→ M came into good use.

This thesis really represents an exploration rather than a straight path towards topological de-
fects. One could introduce the topic with just some field theory and basic theory about homotopy
groups alone, without going into details about Lie groups and Lie algebras, principal bundles and
connections, the geometry of spacetime and the deep theorems of algebraic topology. They would
do fine most of the time, and this would suffice for most practical purposes. However, one walk-
ing this path misses the opportunity to fully understand what is really going on mathematically
and to appreciate the beauty of the theory.
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Still, the exploration is far from complete. In chapter 4, we already concluded that describing
the Lagrangian formalism geometrically would surpass the scope of this thesis. This approach
is followed in [12] however, where jet manifolds, jet bundles and variational bicomplices are
introduced to define the calculus of variations and the Euler-Lagrange equations on fibre bundles.
This method also easily allows for gauge fields, so Yang-Mills theory integrates naturally into
the theory. Although this may be a feast to geometrists, for physical applications this has no
additional benefits.

In section 4.4, we made some simplifications to Yang-Mills theory. For instance, we skipped
over associated bundles, and assumed the principal bundles was trivialisable, since the spacetime
manifold M = R4 is contractible. In contrast to a geometric Lagrangian formalism, considering
Yang-Mills theory in its full form would have physical advantages. For instance, the Dirac
monopole [13] can only be defined on R × (R3 \ {0}), which is homotopically equivalent to S2,
which is not contractible. Principal bundles over R× (R3 \{0}) in general do not allow for global
sections. In this case of the Dirac monopole, the electromagnetic four-potential is defined on two
different patches of R×(R3\{0}), which together cover R×(R3\{0}). Here the full machinery of
principal bundles has to be utilised. In addition, a complete description of the principal bundle
theory allows for a lot more different interactions possible in the Lagrangian; such as fermion
interactions with gauge bosons and Yukawa interactions between fermions and the Higgs boson,
which describe the mass generation mechanism for fermions. For this, we additionally would
have to introduce spinor bundles. This is described in chapters 6, 7 and 8 in [14].

Although this thesis explores topological defects, their physical (non)-appearance is somewhat
lacking in our discussion. This would be an excellent start for future research. In [21], topological
defects are considered in a cosmological context. For instance, it is shown that domain walls
cannot form above a critical temperature of about 0.1MeV, as it would imply gravitational effects,
measurable in the cosmic microwave background. This suggests that no discrete symmetries
in particle physics are broken above this temperature. Another phenomenon that would be
observable if topological defects exist, is gravitational lensing: light is bend due to presence of
topological defects. In future research, such phenomena could be explored. Topological defects
in other physical disciplines, such as condensed matter physics and solid-state physics, could
also be an interesting topic of study. As opposed to cosmology, topological defects are indeed
observed in these disciplines [27].

Lastly, we used homotopy groups to study topological defects, but we did not fully exploit their
information; basically we only considered whether the homotopy groups πn(M, x0) were trivial
or not. What does the group πn(M, x0) tell us in general? Is there a physical interpretation of
the group addition in the homotopy group? When π1(M, x0) is non-abelian, does this complicate
the interactions? These are interesting research questions for follow-up research.

Almost 130 years after the Korteweg-de Vries equation, which marked the beginning of the study
of solitons and topological defects, topology has finally made its way into mainstream physics.
Topological insulators, topological phase transitions and the quantum hall effect are state of
the art topics in modern theoretical physics, which all rely on topology. In 2016, Thouless,
Haldane and Kosterlitz were awarded the Nobel Prize in Physics for their groundbreaking work
on topological phase transitions, which are also related to topological defects. We expect many
interesting physical discoveries to be made on the edge of theoretical physics and topology.
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