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Abstract

AdS/CFT gives a framework for using calculations from a weakly curved gravitational
theory to describe phenomena in strongly correlated matter. In this work we study some
holographic models this has put forward, such as the Reissner-Nordström metal and the
holographic superconductor. Of these models we observe transport properties like the
optical conductivity under both translational invariance and broken symmetry. Lastly,
we merged the two systems into the two-charge holographic superconductor and managed
to again see the phase transition, measure the optical conductivity and analyse the two-
fluid model.
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Introduction

With the discovery of the weak-strong duality between classical gravitational systems and
strongly interacting field theories in the large N-limit by Juan Maldacena [1] in 1997, he
laid the foundation for classical computations of certain quantum mechanical systems
where perturbative methods break down. This lead to Gubser, Klebanov, Polyakov [2]
and separately Witten [3] in 1998 to come up with a dictionary translating interpreta-
tions and calculations from the gravitational to the field theoretical side and vice versa.
Consequently, the holographic duality of condensed matter systems became an intense
field of study with breakthroughs of describing strongly correlated matter such as the
quark-gluon plasma (QGP) [4] for which there was no adequate model at the time.

The discovery of the holographic version of a superconductor by Hartnoll, Herzog and
Horowitz (HHH) [5] sparked hope for finally going beyond the BCS theory of supercon-
ductivity. This way, many gravitational models dual to condensed matter systems were
proposed that could one way or another describe the temperature, chemical potential,
transport properties and more, of strongly correlated systems. Holography also sparked
hope in being able to explain the right scaling behaviour of the optical conductivity [6–8] of
strange metals by introducing holographic lattices that account for momentum dissipation
in the system. Even though to date the right scaling was not able to be reproduced, the
translational symmetry breaking that comes with holographic lattices is a key ingredient
in investigating quantum critical points, cf. metallic systems [9, 10].

Further reassurance was gained by the ability of describing black hole hydrodynamics
using holography. The analytical derivation of the correct viscosity-entropy ratio of a
black hole [11] is only one example.

Studying holographic systems is a wonderful way to get a crash course in some of the
most advanced and some of the most fundamental theories in physics. It is fascinating
to see general relativity, quantum field theory, statistical physics and condensed matter
systems in general and the rather old theory of hydrodynamics intertwined in such a way.
One can make use of the recent advances in numerical GR [12] to model numerically
heavy systems [13, 14] and use the holographic duality to understand strongly correlated
systems.

This work is separated in four parts, of which the first gives the purely theoretical
basis, such that the following three do hands-on calculations and extensions to the the-
ory. The first chapter gives a brief overview of the AdS/CFT correspondence and the
GKPW dictionary, before introducing the condensed matter transport property of optical
conductivity and its field theoretical equivalent.

The second chapter mainly investigates the Reissner-Nordström metal and checks its

6
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transport properties [8, 15]. This is where we first encounter numerics in holography and
what we can expect from them. The following chapter introduces the HHH model of
holographic superconductivity and measures the relaxed optical conductivity, recreating
the holographic two-fluid model [16].

The fourth and final chapter combines all preceding systems, creating the two-charge
holographic superconductor. The impact of the superconducting phase transition on an
RN metal is tested and the foundation for further advancement in this direction is laid
out.
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Chapter 1
A brief theoretical overview

1.1 AdS, CFT and The AdS/CFT correspondence

There is a surprising correspondence between general relativity and strongly coupled
systems, where the former can be used to restate insights of the latter. Even though the
unification of the two great theories of modern physics developed in the 20th century –
general relativity and quantum field theory – has been troubling theoretical physicists for
many decades now, viewing them as two sides of the same coin, as two systems dual to
each other, has been discovered [1] to be a powerful tool in understanding strongly coupled
matter. While perturbative treatments of quantum field theories using Feynman diagrams
are extremely useful for weakly coupled systems, there are few computational tools to
fully describe strongly coupled systems. The so-called AdS/CFT duality which is at the
heart of this investigation holds specifically for weak classical gravity (which in turn is a
special low energy case of supergravity [17]) and strongly coupled quantum field theories.
So on one side we have an effective low energy field theory we understand well, whose
dynamics are governed by Einstein’s equations and have been solved in many different
circumstances. On the other side we have problems that are practically impossible to
describe by existing field-theoretical models. The correspondence between AdS (Anti-de
Sitter spacetime) and CFT (conformal field theories) also goes by the title holographic
duality or gauge gravity duality. In detail, these names address different aspects of the
same theory. Strictly speaking we are never going to consider pure AdS spacetimes or
truly conformal field theories. Naming it holography only comes from the fact that the
gravity theory lives in one dimension higher than the quantum field theory describing the
condensed matter system. For our purposes, however, it will work to use the three titles
interchangeably.

The term gauge-gravity probably addresses the most general principle of the duality: it
states that there is a connection between some gravity theory and a gauge field theory. As
most (all) of the interesting cases are not in pure AdS, this title would be more accurate
than AdS/CFT. In practice, these conventions just give us a variety of expressions to
describe the same computational tool.

8
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1.1 AdS, CFT and The AdS/CFT correspondence 9

1.1.1 Conformal field theories

But why look at QFTs and more specifically, CFTs, in the first place? Quantum field
theories are fundamental for the standard model of physics, they describe the weak,
strong and electromagnetic interactions and have been backed by countless experiments.
Conformal field theories are the subgroup of quantum field theories which are invariant
under transformations that preserve angles. In particular, this includes special relativistic
transformations (Poincaré transformations) and, most importantly, rescaling [18]. At
first glance, scale invariant theories do not seem to occur often in nature. Most physical
processes we know highly depend on the resolution at which a system is observed, or in
other words, on the energy scale at which they are probed. Observing water on a bucket-
scale, where the dynamics are governed by the Navier-Stokes equation is very different to
describing the atoms that make up the water molecules on a quantum mechanical level,
which happens at much smaller lengths and much higher energy scales.

So where is the connection to scale invariant theories? Sticking to the example of
water, we observe a second order (i.e. continuous) phase transition through a critical point
from liquid to vapour and we know from statistical physics that a system becomes scale
invariant when approaching a critical point. More specifically, the correlation of degrees
of freedoms e.g. the spin of two neighbouring electrons is just as strong as correlation
between electrons far apart in the system – in other words, the correlation length becomes
infinite [19]. This means that close to a critical point, any system will resemble a scale
invariant system and a conformal field theory will be the right tool to describe its processes.
This extends to quantum critical points (QCP) where phase transitions occur at zero
temperature and whose observables AdS/CFT tries to explain.

1.1.2 Anti-de Sitter Space

Forgetting momentarily about the duality, let us first look at AdSd+2 and its properties.
It comes as the unique solution to the Einstein-Hilbert action [20],

S =
1

2κ2

∫
dd+2x

√
−g
(
R− 2Λ

)
(1.1)

where g = det gµν . We select a certain negative cosmological constant such that it is
related to the spatial dimensions d of the boundary theory

Λ = −d(d+ 1)/2L2, (1.2)

L being the AdS radius with dimension of length. The weak-strong duality we have
hinted at, actually makes higher order derivatives in the action impossible and therefore
the simple approach up to second order derivatives contained in the fully contracted
Ricci scalar R is the right choice. A positive cosmological constant would lead to the
famous de Sitter spacetime of constant positive curvature, modelling among other things
an expanding universe [21].

Without other (matter) fields, the equations of motion describing the dynamics of the
spacetime as a field (Einstein Equations) that are derived from this action are

Rµν = −d+ 1

L2
gµν . (1.3)

Version of June 27, 2024– Created June 27, 2024 - 01:41
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10 A brief theoretical overview

A metric that solves these equations is

ds2 =
r2

L2
(−dt2 + dxidx

i) +
L2

r2
dr2 (1.4)

(1.5)

or with r = L2/z

ds2 =
L2

z2
(−dt2 + dxidx

i + dz2). (1.6)

such that r, z ∈ [0,∞). We will stick to the latter parametrisation, as it will be favourable
when doing numerics later on. The solution Eq. (1.6) is invariant under simultaneous
rescaling of

z → λz and xµ → λxµ, (1.7)

and clearly maintains the Lorentz invariance of the Minkowski metric. The metric there-
fore exhibits isometries that are the same as a CFT. Greek indices label the d+1 spacetime
dimensions (−,+,+, ..) and the additional dimension z is labelled separately. The AdS
curvature scale 1/L needs to stay small in Planck units in order to keep quantum gravi-
tational effects negligible and for the duality to hold [9].

1.1.3 AdS/CFT correspondence

As mentioned before, the gravity theory needed for this duality to work, needs to be
defined in one more dimension than the field theory it is dual to. Let us see where
this additional dimension comes from. One can get from a microscopic field theory of
small distances and high energies to one over long distances by integrating out degrees
of freedom of the microscopic theory. Take a series of springs connecting masses: instead
of considering each spring and mass individually, one can zoom out, or coarse grain, and
average over multiple spring constants and masses. What one gets is an effective (field)
theory describing the same system but from farther away – which is equivalent to probing
at lower energies. So the same underlying system leads to theories with different coupling
constants depending on the energy scale. What this means is that we actually see new
physics emerge at different probing energies and we therefore need different theories at
different scales.

The duality makes use of the fact that when we continuously change the energy scale
of our field theory and stick together all these theories, we find that the emerging manifold
can be described by classical general relativity. The way in which the field theory changes
coupling constants is geometrised in the curvature of this emergent manifold. One can
think of the field theory as constituting the high energy (UV) boundary of this curved
space. And seen the other way around, the curvature in the interior of our spacetime
encodes for what is happening in the field theory at low energies. The additional coarse-
graining, holographic or renormalisation dimension can then be used to translate from
the gravity theory into the boundary field theory. There is no sure fire way to construct
an analogy that can fully explain this, but images like the ones in [13, 22, 23] help in
getting an intuition for what is physically happening.

10
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1.2 The AdS/CFT dictionary 11

This renormalisation process is in our case labelled by the extra coordinate z. Energies
are lower (infrared: IR) for higher values of z and vice versa. The boundary field theory
lives at high energies (z → 0) and we say that it is the UV limit of our bulk gravity theory
in the interior.1

If we picture moving from a certain spacetime asymptotically into a boundary region
that possesses the symmetries of a CFT, it is only logical to expect these same symmetries
from the spacetime, too. This means that conformal transformations (inversion, rescaling,
Poincaré) need to be reflected in the geometry of a spacetime capable of building this link.
As a matter of fact, there is exactly one unique solution [17] for a metric of Minkowskian
signature with d+1 spatial and one time component that preserves conformal symmetries:
Anti-de Sitter spacetime.

We can count ourselves lucky that we are only looking to use AdS as a computational
tool for describing strongly correlated matter and that we are not in need of a real AdS
spacetime – as it does not describe anything of significance in our universe. Furthermore,
it is important to comment, that this does not describe actual gravity that somehow
interacts with a sort of metal or a field theory in a lower dimension. This is rather a whole
new mathematical framework, derived from string theory, to bypass difficulties posed by
strongly coupled quantum matter systems and instead use the libraries of knowledge
we have on solving problems in Einstein gravity. Classical Einstein gravity is a special
case of supergravity for weak curvature and low energies [23]. In the limit of a field
theory of infinite flavours, this classical theory is capable of describing many physical
phenomena of strongly coupled matter and is therefore an indispensable tool in describing
high temperature superconductors and strange metals.

1.2 The AdS/CFT dictionary

The duality is powerful due to a dictionary translating observables from gravity to the
field theory side and vice versa. One uses the so-called GKPW-dictionary [2, 3] named
after Gubser-Klebanov-Polyakov and Witten to shine through the CFT boundary to map
to the holographic interior gravity theory, as one would create a hologram in real life. What
this means in practice is that we do need concrete prescriptions and formulas that allow
us to express quantities on the field theory side via objects we describe our gravitational
theory with. The construction can be strictly top-down from string theory, or it can be
engineered manually from the bottom up, in order to get the observables wanted.

We will pick and present those entries that will be of use in our approaches, that is,
we will take the translations as axioms that can be taken for granted. In the following
sections of this introductory chapter we will motivate – yet not try to prove – the last
three items. Works that introduce them properly and in different circumstances include
[9, 10, 22, 24], and, rigorously in string theory [1]. The collection of GKPW dictionary
entries we will work with is as follows:

1. The large N limit of a strongly coupled field theory can be described by a classical
(weak curvature) gravity theory.

1We will use UV, boundary, field theory and IR, bulk/interior, gravity theory interchangeably in their
respective regimes.

Version of June 27, 2024– Created June 27, 2024 - 01:41
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12 A brief theoretical overview

2. The boundary of a d + 2-dimensional gravity theory gives the background fields of
a d+1-dimensional field theory. For example, the bulk metric for z → 0 will be the
spacetime of the field theory.

3. AdS curvature geometrises the renormalisation group flow, or ”RG=GR”[9].

4. Local gauge symmetries of the bulk correspond to global symmetries on the bound-
ary: The boundary value of a U(1) gauge field in the bulk field therefore sources
the conserved current associated with the global U(1) of the field theory.

5. Fields in the bulk are said to be dual to (relevant) operators in the boundary. More
specifically, the boundary value of a field in the gravity theory can be identified with
the source of its dual operator in the field theory.

6. The leading behaviour of a bulk field is identified with the source of the correspond-
ing boundary operator. The sub-leading behaviour is identified with its response,
with its vacuum expectation value. In other words, the sources of the field theory
set boundary conditions for fields in the bulk.

7. A black hole in the bulk gravity theory corresponds to a field theory at non-zero
temperature, see section 1.2.1.

8. Adding a charge to the black hole furthermore introduces matter to the field theory,
see section 1.2.2.

9. The scaling dimension of an operator on the boundary is connected to the mass of
its dual bulk field, see section 1.2.3.

1.2.1 AdS-Schwarzschild Black Hole: introducing Temperature

Pure AdSd+2 in Eq. (1.6) does not allow for much to happen, we are thus going to perform
the simple perturbation: breaking scale and Lorentz invariance in the bulk by setting
gtt = −1/gzz. One example of this is the black hole Ansatz

ds2 =
1

z2

(
− f(z)dt2 + dxidx

i +
dz2

f(z)

)
, (1.8)

that solves both a Schwarzschild- and Reissner-Nordström-type action as will be intro-
duced later. The AdS radius L is not a length scale in the dual field theory [25] and can
therefore set to be 1 in the following. To not lose scale invariance in our boundary field
theory, it is important to always recover pure AdS at high energies, or in other words,
that our metric is asymptotically AdS, i.e. f(z → 0) = 1. In the case of the simple
Einstein-Hilbert action Eq. (1.1), the emblackening factor f(z) is

f(z) = 1−
( z
z0

)d−1

, (1.9)

which clearly fulfils the required asymptotics. Furthermore, we note that it vanishes at
z0, leading to a coordinate divergence in gzz. As per usual with the Schwarzschild metric,

12
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1.2 The AdS/CFT dictionary 13

we identify z0 with the black hole horizon beyond which nothing can escape anymore. We
can analytically continue the metric to Euclidean time τ = it

ds2 =
1

z2

(
f(z)dτ 2 + dxidx

i +
dz2

f(z)

)
, (1.10)

go to polar coordinates {ρ2 = α(z − z0), φ = βτ}

ds2 =
1

(ρ2/α + z0)2

(f(ρ)
β2

dφ2 +
4ρ2dρ2

α2f(ρ)
+ dxidx

i
)

(1.11)

(1.12)

and expand around ρ = 0

ds2 ≈ 4

z0αf ′(z0)

(f ′(z0)
2

4β2
ρ2dφ2 +

dρ2

α2f(ρ)
+ . . .

)
(1.13)

to lift the coordinate singularity in f(z0) = 0. By realising the form of polar coordinates
dρ2 + ρ2dφ2 we read off the periodicity of imaginary time

β =
|f ′(z0)|

2
= 2π

|f ′(z0)|
4π

and thus τ ∼ τ +
4π

|f ′(z0)|
. (1.14)

As is done for the partition function in statistical physics, we can interpret the period of
Euclidean time as the inverse of a temperature, giving the Hawking temperature [9]

T =
|f ′(z0)|
4π

. (1.15)

We have arrived at another important duality between AdS gravity and the boundary
CFT: an AdS black hole corresponds to a conformal field theory at finite temperature.
The steps above are of course just the derivation for a diagonal metric of the form of
Eq. (1.8), but we will refer back to this solution frequently. In this simple case where
temperature is the only scale, all non-zero temperatures are equivalent and there are only
two physical states: T = 0 (no BH present) and T > 0 (BH present). This can be seen in
particular, when rescaling z → z0 z such that z0 drops out of the temperature Eq. (1.15)
making the temperature independent of the radial horizon coordinate z0. In this way, we
can equivalently describe the theory at any non-zero temperature just by rescaling z. We
will need to introduce another physical scale in order to be able to differentiate states at
different temperatures.

Beyond the formal duality, we come to see that it is not a coincidence for precisely an
object like a black hole to inherit the thermodynamic character of the theory. The second
law of thermodynamics states that the entropy of a system at non-zero temperature must
always increase and therefore that information is dissipating. The character of a black
hole horizon being a threshold of no-return for all time-and like-light particles shows the
same behaviour. Later we will see that this dissipating character of a black hole in the
AdS bulk is central to the correspondence.

Temperature is the starting point for deriving and defining thermodynamical variables
like the free energy and entropy for various gravitational models. So far, the field theory
at temperature T , however, only describes systems in vacuum and we need to further
modify the model to account for matter.

Version of June 27, 2024– Created June 27, 2024 - 01:41
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14 A brief theoretical overview

1.2.2 AdS-Reissner-Nordstrom Black Hole: Introducing density and
scale

Next to temperature, some particles, that is, a non-zero charge density or, in other words,
a conserved charge is apparent in most condensed matter systems we want to describe in
the boundary field theory. This conserved charge keeping track of matter is implied by
the global U(1) symmetry governing the boundary system. Using the dictionary as listed
above in section 1.2, we know that a global symmetry of the boundary corresponds to a
local one in the bulk. This is why introducing the U(1) gauge field Aµ to the bulk will
encode for a conserved charge (chemical potential), or simply, for matter in the boundary.
Furthermore, GKPW implies that the boundary value of the bulk gauge field sources
the boundary charge current (operator): At ↔ Jt = ρ. To describe a theory of time-and
space independent density, At = At(r) can only depend on the holographic direction. One
can think of an electrostatic potential pointing radially outwards through the boundary.
Reminding us of the potential of an electric monopole residing in the interior, this requires
a charge at the origin. We naturally think of promoting the Schwarzschild black hole to
the charged version of a static black hole, the Reissner-Nordström black hole, in the
interior, in order to unite temperature with non-zero density in the boundary.

To introduce the chemical potential, we start by setting up the system we will analyse
further in chapter 2. We extend the gravity theory by the field strength F = dA to get
the Einstein-Hilbert-Maxwell action2

SEHM =
1

2κ2

∫
dd+2x

√
−g

(
R +

d(d+ 1)

L2
− 1

4e
FµνF

µν

)
, (1.16)

where 3 = d(d+1)
2

comes from the AdS2+2 cosmological constant and Rµν and R are the
Ricci tensor and the fully contracted Ricci scalar, respectively. From this we get the
equations of motion for gµν and Aµ as

Rµν −
1

2
Rgµν − 3gµν =

1

2
TEM
µν (1.17)

∇µF
µν = 0, (1.18)

where

TEM
µν = − 2√

−g
δSEM

δgµν
(1.19)

= κ2(FµγF
γ
ν − 1

4
gµνFβλF

βλ). (1.20)

A saddle point solution to the action above is still the metric Eq. (1.8), but now with
altered emblackening factor

f(z) = (1− z)

(
1 + z + z2 − µ2z3

4

)
, (1.21)

yielding the famous Reissner-Nordström (RN) solution of a static black hole with con-
served charge. Here, we have already used scale invariance to set the black hole horizon

2Where e can be used to rescale the charge of the system.

14
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1.2 The AdS/CFT dictionary 15

to z0 = 1, i.e. where f vanishes. This means that in the following we will be using units
where the horizon sits at z = 1. The boundary naturally remains at z = 0. As dictated by
GKPW, the bulk gauge field is constrained by the chemical potential µ in the boundary.
In other words, the boundary value of the bulk gauge field sources the current density
operator of the boundary. We tune the field theory to describe a system at µ merely
by setting the boundary value to At(z → 0) = µ. We can immediately deduce another
boundary condition that in turn follows from requiring regularity of A2 = gttA2

t at the
horizon. As z → 1, the electrostatic potential At must vanish to counter the diverging
emblackening factor f(z → 1) ∼ gtt in order to ensure regularity. Put together, this
implies that the gauge field can be written as

A = µ(1− z)dt or, equivalently At(z) = µ(1− z), (1.22)

where by the dictionary we have that −A′
t(0) = µ = ρ is the response. The solution of f(z)

describing gµν(z) and At(z) are the so called background solution. They are the simplest
analytically available and static, yet meaningful solutions to the equations of motions and
can be seen as the equilibrium solution. Later on, we will introduce further variables t, x,
and y to include more effects into our model, but these will just be small perturbations
deviations around the background. Therefore, the first step of every holographic model
will be to analytically or, when necessary, numerically solve for these background fields.

We can deduce the scaling behaviour of µ and T when simultaneously rescaling z →
z̃ = λz and t→ t̃ = λt: The physical tensor A does not rescale, therefore

A = Atdt = At
dt̃

λ
= Ãtdt̃ = Ã⇒ Ãt = At/λ, (1.23)

and with it also µ → µ/λ. The same behaviour can be found for the temperature using3

the Hawking temperature of Eq. (1.15) such that

T =
∂/∂zf(z0)

4π
=
λ∂/∂z̃f̃(z̃0)

4π
= λT̃ (1.24)

or, equivalently, that T → T/λ. As we identified in the previous chapter, all AdS-
Schwarzschild theories that describe a non-zero temperature are equivalent. Having in-
troduced another scale, the quantity of chemical potential, however means, that we can
describe different physical states by looking at different values of the ratio of the two
scales T and µ. More concretely, this means that we have a scale invariant, dimensionless
quantity

T

µ
=
T̃

µ̃
(1.25)

uniquely defining the state of our system. In the following, the only physical results we
can get from out calculations will be in these dimensionless units. Of course, the relation
may change, as for example in the case of the charge density, which is only dimensionless
in ρ/µ2.

The Reissner-Nordström solution has been extensively studied [21] and a lot of insights
can be readily transferred to its holographic counterpart. In the case of a large mass

3Scale invariance ds2 = ds̃2 of the metric implies f(z) = f̃(z̃) and it is obvious that ∂/∂z = λ∂/∂z̃.
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16 A brief theoretical overview

compared to the charge of the RN black hole, the charge can be neglected and we return
to the regular Schwarzschild solution. In the gauge-gravity duality this corresponds to a
theory at T ≫ µ, which is not what we are interested in. In the other extreme, T < µ, on
the other hand, describes a theory at finite density and low temperature with the lower
bound of T = 0. This lower bound is exactly recovered [9] when using the appropriate
Hawking temperature Eq. (1.15) in the case of an extremal AdS-RN black hole where its
charge makes up all of the mass. In the language of black hole thermodynamics: the black
hole’s mass cannot possibly shrink by emitting Hawking radiation and without emission
the temperature of the black hole must be zero. This describes a system at finite charge
yet zero temperature and most importantly finite ground state entropy, forming a quantum
critical point.

1.2.3 Two-point correlator and field-operator duality

One example for the bottom up approach is the construction of the two-point correlator

⟨O(x)O(0)⟩ = 1

|x|2∆
(1.26)

of a scalar observable O(x) that scales in the conformal field theory as O(λx) = λ−∆O(x).
In Fourier space we can obtain the retarded correlator (cf. [9] chapter 5)

⟨O(k)O(0)⟩ ∼ k2∆−d−1. (1.27)

Correlators of scalar, vectorial or tensorial operators are important observables of any
CFT, as they can, as mentioned before, indicate phase transitions and (because) they
encode (linear) response to small perturbations describing transport processes. So in
order to engineer something that on the gravity side of things looks like the CFT-correlator
Eq. (1.26), we naively start with adding some simple field to our gravity theory: A massive
scalar field ϕ, minimally coupled to our AdS background via the action

Sϕ = −1

2

∫
dd+2x

√
−g
(
∂µϕ∂

µϕ+m2ϕ2
)
. (1.28)

Analogous to [9] chapter 1, we Fourier transform the subsequent equation of motion

(∇µ∇µ −m2)ϕ =
1√
−g

∂µ(
√
−ggµν∂µϕ)−m2ϕ = 0 (1.29)

in all non-holographic dimensions, i.e. {xµ, z} → {kµ, z} (of which x0 = t = iτ and
k0 = ω = −iωE in imaginary time and frequency)

ϕ̂′′
k(z)−

d

z
ϕ̂′
k(z)−

(
k2 +

m2

z2

)
ϕ̂k(z) = 0. (1.30)

It is important to notice, that this expression can be redefined in ζ = z k, such that
the solution is a function solely of ζ. This is a first hint to why we can think of the
renormalisation dimension as an (inverse) energy scale.

16
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1.3 Optical Conductivity and Drude Theory 17

As we proposed the field theory to live on the UV boundary of the gravity dual, we
observe the field’s dynamics close to the boundary z → 0 and see that up to leading order
the Fourier amplitude behaves as

ϕ̂k(kz) = zd+1−∆
[
A(k) +O(kz)

]
+ z∆

[
B(k) +O(kz)

]
, (1.31)

where

∆ =
d+ 1

2
+

√
(d+ 1)2

4
+m2L2 (1.32)

and A(k) = a kd+1−∆ and B(k) = b k∆. For certain values of ∆, the first term happens
to be non-normalisable, while the second term is by definition normalisable. Following
the GKPW dictionary, we see that the leading order coefficient A(k) can be seen as the
source of the dual boundary operator and the sub-leading B(k) as the response to it, that
is, the vacuum expectation value of the dual operator. Here we finally recover what we
were looking for: we constructed an observable on the gravity side that scales the same
way in momentum k as our two-point correlator of Eq. (1.27) on the CFT side:

B(k)

A(k)
∼ k2∆−d−1 (1.33)

when identifying ∆ from Eq. (1.32) with the scaling dimension of the operator O(x).
Similar steps for different types of fields coupling to gravity can be taken in order to
derive vectorial and tensorial correlators [26]. Now, by introducing the correct field into
our gravity theory and extracting its (non-) normalisable leading order behaviour at the
boundary, we can calculate the field theoretical correlator of the operator dual to the field.

1.3 Optical Conductivity and Drude Theory

Taking a step back from holographic duality, we need to look at the observable we aim to
describe on the field theory side: the conductivity. It quantifies the response of a system
to a small, externally applied perturbation. If the external field is small enough that the
physical state of the system is not altered, the response can be seen as perturbative and
therefore linear to the source of perturbation. We then get in linear response theory

J = σE. (1.34)

When the external field E is driven at a frequency ω, the density current J also depends
on ω and we call σ(ω) the optical conductivity.

1.4 Drude Theory

Drude theory explains the conductivity based on particles scattering off impurities, a
background lattice and in general interaction leading to scattering – see [8] or [27] for more
detail. The lattice in particular implies breaking of the Galilean continuum and therefore
describes systems with broken translational symmetry. The ability for the particles to
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Figure 1.1: Drude theory optical conductivity. The real and imaginary part of the
optical conductivity σ(ω) as given by Drude theory Eqs. (1.35)-(1.37). The width of Reσ and
the position of the maximum of Imσ are given by the momentum dissipation rate Γ = 0.5 and
the DC conductivity by Reσ(ω → 0) = σ0 = 3.

scatter introduces momentum dissipation, as the particles can dump their energy into
dissipative modes, just like waves rippling out from a stone thrown into water carry the
stone’s excess energy. The hydrodynamic analogy is especially accurate, as, for example,
the Navier-Stokes fluid can be derived from the holographic bulk dynamics [9].

The resulting conductivity and its real and imaginary part are

σ(ω) =
σ0

1− iωτ
+ σQ =

ω2
p

Γ− iω
+ σQ (1.35)

Reσ(ω) =
ω2
p Γ

Γ2 + ω2
+ σQ (1.36)

Imσ(ω) =
ω2
p ω

Γ2 + ω2
, (1.37)

where Γ = τ−1 is the rate of momentum dissipation and

ω2
p = σ0Γ (1.38)

the plasmon frequency. The frequency independent conductivity, the DC conductivity
σ(ω → 0) = σ0, is given by σ0 = nq2/Γm [8, 10]. The full optical conductivity σ(ω),
the AC conductivity, is referring to the equivalent of an alternating current driving the
external field. The real and imaginary parts of the conductivity are shown in Fig. 1.1. The
low frequency regime ω ≤ Γ dominated by the real part is described by a Lorentzian of
the width Γ. This is the so-called Drude peak and a conductivity that shows such a peak
at low frequencies is Drude like. At higher frequencies, the imaginary part dominates and
the conductivity approaches that of free particles due to the strongly oscillating external
field: the particle’s direction is changed by the external field before it has time to interact
with its surroundings [8]. The width of the peak Γ is directly proportional to the strength
of translational symmetry breaking and the amount/intensity of momentum dissipation.
Without dissipation of momentum, the density current is infinitely accelerated by the
constant external field at ω = 0 and the conductivity is described by a single δ-peak at
zero frequency.

18
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1.4 Drude Theory 19

These relations and figures will be the reference as to how well the field theory we set
up via the gravitational system will be able to reproduce the behaviour of a condensed
matter system that can be described by Drude theory.

Optical conductivity of a field theory

Eventually, our goal will be to calculate the optical conductivity of our our field theory
using the gravity side. In linear response theory, we obtain the conductivity via the Kubo
formula [28] and the retarded Green’s function GR. When the external field is applied in
y-direction, this takes the form

σ(ω) = − i

ω
GR

yy(ω,k = 0), (1.39)

where in Fourier space the Kubo formula gives the retarded Minkowski space Green’s
function as the current-current correlator of the form

GR
yy(ω,k) = −i

∫
dtdy e−i(ωt−k·y)Θ(t)⟨[Jy(t,y), Jx(0, 0)]⟩, (1.40)

with Θ(t) the Heaviside function and Jy the density current in y-direction. To measure
σ at non-zero k in the lab, the system would have to be probed with a non-zero wave
vector, which is experimentally challenging and we can therefore set k = 0 in Eq. (1.39).

So far we have covered basic principles of the AdS/CFT correspondence that will be
relevant to us, their application to certain systems and Drude theory describing the linear
response of a system to an externally applied field and how this can be calculated in a field
theory. The following three chapters are going to each look at a different gravitational
setup that is dual to some field theory describing strongly coupled matter. The first two
chapters deal with well studied holographic systems such that we can use them to fill our
toolbox and get used to the concepts involved. In the final chapter we will eventually
set up a new two-charge system and find out its properties applying the methods studied
before.

Version of June 27, 2024– Created June 27, 2024 - 01:41

19



Chapter 2
The RN Metal

We have already seen that by introducing not only temperature, but also chemical poten-
tial duals to our gravitational theory, we have constructed a grand canonical field theory
on the boundary that is capable of describing a metal. Following the GKPW dictionary
for a weakly coupled gravitational theory, this constitutes a strongly coupled metal which
are notoriously difficult to model. Of course strictly speaking, this describes not only a
metal, but any field theory described by a conserved U(1)-charge. We are basically using
the gravity theory to describe a field theory of something that does not vanish and whose
currents are governed by a continuity equation. Speaking of a metal in the boundary
paints a picture and eases the naming, as long as one keeps this in mind.

In the following chapters we will consider an AdS2+2 bulk, that is d = 2, including two
spatial (x, y), one temporal t and the holographic z dimension. We can start off with the
background solutions for the bulk fields gµν and Aµ obtained in section 1.2.2

ds2 = gµνdx
µdxν =

1

z2

(
− f(z)dt2 + dxidx

i +
dz2

f(z)

)
(2.1)

f(z) = (1− z)
(
1 + z + z2 − µ2z3

4

)
(2.2)

A = µ(1− z)dt (2.3)

(2.4)

that give the Hawking temperature of the RN black hole

TRN =
|f ′(1)|
4π

=
12− µ2

16π
. (2.5)

Here we can see that setting the boundary value of At, that is µ, controls the temperature
of the boundary theory. The temperature therefore decreases for increasing µ and the
chemical potential is bounded by absolute zero, i.e. µ <

√
12. The background solutions

are shown in Fig. 2.1. At is simply a straight line connecting the two boundary conditions
and f(z) is asymptotically 1 as demanded by the duality. Having set up a theory that
can describe a metal, we should measure the optical conductivity to see whether it indeed
behaves like a metal. At first, we will consider a translationally invariant model with
a homogeneous boundary of constant µ to get a feel for linear response in this kind of
system, such that later the more realistic case of translational symmetry breaking leading
to dissipation of momentum can be recreated.

20
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2.1 Optical conductivity on a translationally invariant background 21
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Figure 2.1: RN background solutions. Background solutions for the RN metal at µ = 2
and temperature T/µ = 0.8 as functions of the holographic dimension z. The black hole horizon
is at z = 1 and the UV boundary at z = 0. As demanded, the emblackening factor vanishes at
the horizon and is asymptotically AdS. The gauge potential vanishes at the horizon and sources
the density current by setting µ ̸= 0 at the boundary.

2.1 Optical conductivity on a translationally invariant back-
ground

So how do we now calculate this optical conductivity using only the gravity theory? The
GKPW dictionary from section 1.2 states that leading and sub-leading order of the bulk
field corresponds to source and response of the dual boundary operator, respectively. Just
as we showed in section 1.2.3, where the two-point correlator ⟨OO⟩ was derived as the
ratio of sub-leading to leading order behaviour of ϕ, we will be able to get the ⟨JyJy⟩
correlator from Eq. (1.40) by the ratio of sub-leading to leading order in δAy, analogous
to chapter 7.3 in [9], as

⟨Jy(−ω)Jy(ω)⟩ ∼ δA
(1)
y

δA
(0)
y

. (2.6)

In order to get a conductivity at finite frequency and zero wave vector, we perturb the
background solution as

Aµ → Aµ + δAµ(z, t) = Aµ + aµ(z)e
−iωt (2.7)

gµν → gµν + δgµν(z, t) = gµν + hµν(z)e
−iωt (2.8)

where |aµ|, ||hµν || ≪ 1. Here, we use the radial gauge az = 0 as this direction does not
capture relevant physics. When focusing on the y-direction, we see that the dynamics
of ay only depend on the y-component of Eq. (1.18) and yz-component of Eq. (1.17).
Perturbations hty and ay decouple and we get a single second order ODE for the latter:

0 = a′′y +
f ′

f
a′y +

ω2 − z2A′2
t

f
ay, (2.9)

The near-boundary solution of this is of the form

ay(z) = A+B z + . . . , (2.10)

where A,B are constants and the ellipsis denotes negligible higher orders in z → 0. This
in turn means, that the solution to Eq. (2.9) at the boundary gives the leading and its
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22 The RN Metal

derivative at the boundary the sub-leading order of our bulk field fluctuations, formally
A = ay(0) and B = a′y(0). Via Eqs. (2.6), (1.40) and (1.39) we then get the optical
conductivity of an RN metal

σx(ω) = − i

ω

a
(1)
y

a
(0)
y

= − i

ω

a′y(z = 0)

ay(z = 0)
. (2.11)

There is, however, some ambiguity in the process of defining the retarded Green’s function
in Eq. (1.40) and its relation to our electromagnetic waves ay(z) that we need to consider
before solving for σy. We know from electrodynamics that the response to some source
field travels at the speed of light, so that the response comes some time after the effect.
Formally, there is also another solution, where the response precedes and travels towards
the source, which is of course not a physical process we observe. The same ambiguity
occurs with our AdS waves, as they can either travel towards the charged black hole or
away from it. From the no-return character of the black hole horizon which is dual to the
dissipation in a thermodynamic system, it follows, that solutions are only physical if they
are in-falling into the black hole. In the following we must therefore select the boundary
conditions that ensure regularity at the horizon and that solutions do not travel from
inside the black hole towards the AdS-boundary but the other way around. Another way
to ensure this would be to consider imaginary-time propagators on the boundary via a
Wick rotation, as Euclidean Green’s functions are uniquely defined and physical [29] such
that regularity itself would be sufficient. As the whole imaginary time via Wick rotations
introduce a lot of other difficulties, we will stick to the Minkowski space retarded Green’s
function.

Close to the horizon, the two solutions to Eq. (2.9) that dominate at leading order are

ay(z) ∼ (1− z)±
iω

4πT , (2.12)

where ”+” counts the outgoing and ”−” the in-falling wave. This can be seen by choosing
the Ansatz

ay(z) = (1− z)αainf(z) (2.13)

and demanding the leading order of Eq. (2.9) around the horizon to vanish. We then
manually rescale ay(z) → (1−z)−iω/4πT ainf(z) to ensure that the in-falling wave is selected
and the sub-leading ainf(z) cannot lead to causality issues.

The procedure of how we set up and naively solved this system of coupled differential
equations will be described in section 2.3. A more universal method using gauge invariant
variables – the one that was finally used for most computations – will be presented for
the final system in section 4.2. However, before going into detail on how to obtain them,
let us look at the optical conductivities that we can calculate for this system.

2.1.1 Results

Numerically solving Eq. (2.9) for ay(z), while respecting infalling boundary conditions,
finally gives the optical conductivities Figs. 2.2 and the temperature dependence of the
DC conductivity Fig. 2.3.

Comparing to the curves in Drude theory, Fig. 1.1, we see that both real and imaginary
part are not Drude-like. There is no Drude peak in the low frequency regime of the real

22
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Figure 2.2: Optical conductivity of the pure RN metal at different temperatures.
Real (a) and imaginary part (b) of the optical conductivity calculated for the pure RN system
at temperatures T/µ = 0.23 (blue), T/µ = 0.22 (red), T/µ = 0.19 (green). For all three temper-
atures there is no Drude peak in the low-frequency regime, as is expected by a translationally
invariant system. For ω/T ≫ 1 all curves recover the zero density CFT value of Reσ = 1. The
declining spectral weight in of the real part is recovered in the imaginary part.

part and the imaginary part seems to diverge. Only the high frequency asymptote of the
real part seems to match our expectation. For ω/T > 1 we expect the chemical potential
to be negligible and the theory therefore to look like a CFT at zero density [8]. The
high frequency conductivity of graphene measured by Li et al. [31], for example, looks
very similar. The graphene measurements show, however, that there should also be a low
frequency peak of finite width in the real part. We gain some insight about what is going
wrong at ω/T < 1 in Figs. 2.2 from the Kramers-Kronig relation[8] ensuring unitarity of
our theory. The relation can be used to state that the divergent imaginary part ∼ 1/ω
is proof of a hidden δ-peak at zero frequency in the real part. This implies that our
conductivity currently only describes a translationally invariant system that is described
at low frequencies by the conductivity

σ(ω) = ω2
p

(
δ(ω)− 1

iω

)
+ σQ, (2.14)

which is basically the Γ → 0 limit of Eq. (1.35), when we think of the real part turning
from a Lorentzian into the invisible δ-peak.

The graph of 2.2(a) clearly does not start from the origin, there is some remaining
conductivity σQ that is neither zero nor does it seem to belong to the hidden δ(ω).
Davison et al. [30] investigated this universal conductivity σQ, stating that it persists
even in clean systems with conserved momentum and a non-zero particle density. It is a
relativistic effect coming from gradient corrections to the current density. Being intrinsic
to the system, it is not related to the externally applied field. Davison et al. derived a
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Figure 2.3: DC conductivity over temperatures T/µ. The real part of the optical con-
ductivity for ω → 0 increases with temperature, exactly following the trend of the universal
conductivity σQ Eq. (2.15) found by Davison et al. [30].

closed expression for σQ as

σQ =

(
sT

sT + µρ

)2

=

(
12−µ2

4
12−µ2

4
+ µ2

)2

, (2.15)

where the latter is our case of ρ = µ, s = 4π and with the Hawking temperature of
Eq. (2.5). Our data seems to verify this behaviour up to some small numerical error
at very low T/µ as can be seen in Fig. 2.3. The DC conductivity decreases with the
temperature, i.e. the spectral weight is being depleted. This depletion is compensated by
the increase in the pole strength of the delta function at zero frequency.

As seen above, this model of a translationally invariant system does not account for
dissipation of momentum. In order to recreate the correct Drude behaviour at small fre-
quencies, we are going to break translational symmetry of the background in the following
chapter.

2.2 Translational symmetry breaking via Axion

Clearly, we are able to reproduce some metallic phenomena at relative ease using our
engineered gravity theory. Real world metals, however, consist of a lattice, explicitly
breaking the translational symmetry that persists in our gravitational model. The holo-
graphic model lives in a Galilean continuum that needs to be discretised in order to mimic
a real crystal. As mentioned before, the breaking of translational invariance will allow
for electrons to dump their momentum into a bath, leading to their slowing down and a
non-zero resistivity.

There are multiple ways to account for translational symmetry breaking in our current
setup. The most direct way is to add a gravitational background lattice by promoting the
homogeneous background chemical potential µ to a spatially modulated source µ̃(x) =
µ+ A cos(kx) as has been done by Horowitz et al. [6] in one and Balm et al. [14] in two
spatial dimensions. The problem with this approach is, however, that the introduction
of spatial dependence makes the equations of motion into a system of coupled partial

24
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2.2 Translational symmetry breaking via Axion 25

differential equations rather than ordinary ones as before, as we will come to see in section
2.4. The boundary conditions are not as straight forward and it is advisable to choose
a specific gauge using the DeTurck method [23] in order to get rid of unwanted degrees
of freedom. The resulting system of coupled PDEs is generally only solvable numerically,
which means that in that case just the background (not accounting for conductivity or
other responses) is computationally expensive and susceptible to errors.

We can engineer the relaxed RN action as an alternative to this difficulty by adding
linear axions (massless scalar fields)

Ψx = βx, Ψy = βy (2.16)

SΨ = −
∫
d4x

√
−g((∂Ψx)

2 + (∂Ψy)
2) (2.17)

SRN,rel = SEHM + SΨ (2.18)

to our model, as has been done by Andrade and Withers [15] in the RN case and Kim
et al. [16] for the holographic superconductor. Here, β dials the strength of translational
symmetry breaking. The background solutions remain homogeneous, analytically solvable
and reproduce the correct AC conductivity as we will show in the following. When
including linear axions, the bulk stress tensor remains conserved, while the boundary
stress tensor now includes dissipation of momentum [15].

The emblackening factor becomes

f(z) = (1− z)

(
1 + z +

2− β2

2
z2 − µ2z3

4

)
(2.19)

by which the temperature decreases to

TRNβ =
12− µ2 − β2

16π
. (2.20)

Therefore, also β/µ is dimensionless and we have next to T/µ and the horizon another
physical scale that changes the state of our system. The equations of motion for Ψi just
demand the second derivative to vanish and therefore Eq. (2.16) is a sufficient solution.

2.2.1 Results

Following the same steps towards the optical conductivity from the previous chapter while
also perturbing the axions with small ψi

Ψi(x
i) → Ψi(x

i) + ψi(z)e
−iωt, (2.21)

the linearised equation of motion for ay couples to the one for ψ such that (after eliminating
the hty-component by using the right superposition of EOMs) we have

a′′y(z)− a′y(z)
f ′(z)

f(z)
+ ay(z)

(
z2f(z)A′

t(z)
2 − ω2

f(z)2

)
− izA′

t(z)

f(z)
ψ′(z) = 0 (2.22)

ψ′′′(z) + ψ′′(z)
f ′(z)

f(z)
+ ψ′(z)

(
f ′(z)f(z)− zf(z)β2 + zω2

zf(z)2

)
− izβ2A′

t(z)

f(z)
ay(z) = 0.

(2.23)
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26 The RN Metal

theoretical fit β = 0.1 fit β = 0

ω2
p 0.48 0.482 0.480

Γ 0.00476 0.00478 -
σQ 0.27 0.33 0.289

Table 2.1: Comparing theoretically expected values of plasmon frequency, momen-
tum dissipation rate and universal conductivity to the measurement. The theoretical
values are obtained by combining Eqs. (1.35), (1.38), (2.24) and inserting the experimental pa-
rameters µ = 3/2 and βµ = 0.1. Fitting parameters are shown for both the translationally
invariant β = 0 (Fig. 2.2 red) and the broken β = 0.1µ (Fig. 2.2 blue) system.

Again, by solving these numerically, we obtain the optical conductivity shown in Figs. 2.4.
In (a) and (b) we immediately recognise the expected Drude-like low-frequency behaviour
from Fig. 1.1. By introducing the massless scalars Ψx,Ψy we therefore introduced mo-
mentum dissipation that increases with β. We see the redistribution of spectral weight
from the δ-peak of Fig.1.1(a) to the Lorentzian of finite width. The Log-Log plot 2.4(c)
shows the scale of the real part over all ω/µ. It becomes clear that the Drude part is well
matched at low frequency, while the high frequency behaviour resembles the one of the
zero density CFT. This combination looks like the trend that was measured for graphene
[31]. Furthermore, 2.4(d) shows what the scaling of a divergence in the imaginary part
(blue) looks like compared to a finite-width Lorentzian (red). We will later see that these
two scalings can coexist in a non RN phase.

Together with this, there now is a finite DC conductivity that is – unlike σQ from
Fig.2.3 – temperature independent. Fig.2.5 shows that in the case of broken translational
symmetry, σDC depends only on the dimensionless parameter β/µ

σDC = 1 + (β/µ)−2 (2.24)

as found by Andrade and Withers [15]. We can use the relations of Eqs. (1.35), (1.38),
(2.24) and the plasmon frequency

ω2
p =

ρ2

sT + µρ
(2.25)

to get a validation of our measurements, or more specifically, of the values of the fitting
parameters ω2

p, Γ, σQ. Table 2.1 shows that all fitting parameters reproduce the theo-
retically expected values quite well and therefore support our methods. Only σQ deviates
slightly, as can also be seen in the ω/µ→ 1 asymptote between the two fits.

2.3 Interlude: Computation

Even the analytical part of computations can be massively simplified by using the right
Mathematica packages that include covariant derivatives and internal calculation of the
Riemann tensor and other GR variables. Especially the Einstein equations are signif-
icantly simplified and allow for playing around with different Ansätze for the metric.
After double checking the equations of motion against the RN equations of [32] or the
superconductor equations of [16], we continue to solving them.

26
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Figure 2.4: Drude-like conductivity in an RN metal. The figures show the real (a),
imaginary (b) part and the LogLog thereof (c),(d) of the optical conductivity. Previous results
of the translationally invariant system β = 0 for comparison in blue and broken translational
symmetry β = µ/10 in red. Parameters for the blue curves fitted to Eqs. (1.36),(1.37): ω2

p =
0.48, Γ = 0.00287, σQ = 0.291. Parameters for the red curves fitted to the non-δ parts of
Eq. (2.14): ω2

p = 0.48, σQ = 0.269. The discrepancy in the two σQ is visible in (c) by the
repsective high frequency asymptote.
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Figure 2.5: DC conductivity over translational symmetry breaking strength β/µ.
The real part of the optical conductivity for ω → 0 shows the β/µ dependence of Eq. (2.24)
predicted by Andrade et al. [15], exhibiting temperature independence.

In the case of a simple RN background with relaxation, where we know that closed
solutions exist, one can solve Eqs. (1.17), (1.18) for the gauge potential At(z) and the
emblackening factor f(z) with DSolve given the right boundary conditions

f(0) = 1: asymptotically AdS A(0) = 0: regularity (2.26)

f(1) = 0: vanish at horizon A(1) = µ: source current. (2.27)

Via Eq. (1.15) we therefore also get TRNβ.
In the case of a more involved background (like the explicit lattice µ(x, y) or the

superconductor ϕ, χ) and in the case for conductivities there are no closed analytical
solutions anymore. In this case, we have to rely on NDSolve or other language’s packages.
Of course, the more computationally expensive systems are solved in Python or C++, as
for example [14] did. For this work, Mathematica is sufficient.

Let us look precisely at how one can solve a system of (coupled) differential equations
like Eqs. (2.9) or, more interestingly, (2.22) coupled to (2.23) using Mathematica. These
are second order ordinary differential equations which need two initial conditions in order
to be solved. We use the so-called shooting method [23, 32] where one boundary condition
is enough to then guess, or shoot for, the second boundary condition.

The first boundary condition for each equation is regularity at the horizon. We express
fields by their expansion in z = 1 as

ay(z) = a0 + a1(1− z) + a2(1− z)2 + · · · , (2.28)

plug them into the equations of motion and demand that non-regular parts vanish. This
way, all ai>0 can be expressed in terms of a0, such that a0 remains as the variable for
shooting. To give an example, for Eq. (2.9) this means (after replacing ay with the in-
falling boundary Ansatz of Eq. (2.13))

a1 = −4(µ6 − 3iµ4(−8i+ ω)− 48ω(3i+ 2ω) + 24µ2(6 + 2iω + ω2))

((−12 + µ2)2(−12 + µ2 + 8iω))
a0 (2.29)

28
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2.4 A different approach to momentum dissipation 29

The process can be repeated for higher orders to get more accuracy, i.e. to get a2 = a2(a0)
and more.

For any guess now, a0 = 5 for example, there is by Picard-Lindelöf one uniquely
defined solution to the second order ODE in question. We find out whether it is the
correct solution by solving with a0 = 5 and a1 = a1(a0) and seeing whether the resulting
ay(0) matches the boundary source we want it to hit. As a reminder, just as setting the
boundary value of our background field At(0) = µ, we need to source the fluctuation
ay(0) = 1 in the UV. A simple FindRoot will shoot for and find the correct 5 that
gives the right trend for ay(z). The solution can then be used to get a numerical value
for the optical conductivity of Eq. (2.11), as Mathematica allows differentiation even of
numerically interpolated functions.

This procedure can be followed for multiple coupled differential equations, as long as
the boundary conditions obtained in this way are accurate enough such that shooting for
a solution gives the expected result.

A more universal approach to solving these linearised equations of motion using gauge
invariant modes and equations is presented in section 4.2.

2.4 A different approach to momentum dissipation

There is another way to account for dissipation of momentum that is conceptually more
straight forward, physically more relevant, but computationally much more involved: a
black hole lattice. The idea is to make the black hole background inhomogeneous by
encoding an ionic lattice in the chemical potential. For the field theory, this corresponds
to adding a modulated source to the Lagrangian [8], which gives room for a more physical
interpretation of the source for momentum dissipation than the axion we used in the
previous chapter. An example for this is a harmonic two dimensional potential of the
form

µ(x, y) = µ0 + Âx cos(kxx) + Ây cos(kyy), (2.30)

where the strengths of the lattice Âx, Ây are small and kx, ky are the wave vectors
determining lattice spacing. Respecting the boundary condition that

At(z → 0) = µ(x, y), (2.31)

there no longer exists a closed solution for At. This way, the translational symmetry
in x- and y-direction is broken and therefore the background fields now depend on the
holographic and spatial dimensions. In the Reissner-Nordström case we consider the
spacetime Ansatz of [14], that was in turn adapted from [33]

ds2 =
1

z2

(
−Qttf(z)η

2
t +Qxxη

2
x +Qyyη

2
y +

Qzz

f(z)η2z

)
ηt = dt

ηx = dx+Qxydy +Qxzdz

ηy = dy +Qyzdz

ηz = dz

(2.32)
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to account for the backreaction of the lattice on the metric. Here we introduced the
tetrad formalism accounting for the coupling of various spatially dependend modes. The
functions Qµν = Qµν(x, y, z) are periodic in (x, y) and a priori only constrained by the
symmetry requirement of the metric, that is, introducing 10 new degrees of freedom.
This makes Eqs. (1.17),(1.18) into 3 dimensional partial differential equations. Solutions
to this were calculated by Balm et al. [14] for the RN and the Einstein-Maxwell-Dilaton
system. The problem with getting the optical conductivity in y-direction now is not only
that many more modes instead of just gty (see discussion around Eq. (2.9)) couple to
ay, but also that one needs to fix all the remaining degrees of freedom by choosing the
right boundary conditions in order to solve the PDEs. The requirement for Eq. (2.32)
to be asymptotically AdS gives some boundary conditions in the UV, while regularity
constraints the IR.

An approach to reduce unwanted background degrees of freedom related to the search
for gauge independent variables presented in section 4.2, is the DeTurck method. This is
based on modifying the Einstein tensor by the DeTurck vector that depends on a simpler
reference metric as shown in [6, 12]. For the conductivity we can then go into Lorenz and
De Donder gauge[10].

Following all this, we applied the same logic of finding boundary conditions constrain-
ing the near-horizon behaviour of f(z) and the Qµν(x, y, z) by demanding regularity.
Mathematica is of great help when it comes to expanding to a certain order and getting
constraints on leading orders. At a certain point, however, when the equations of motion
become even more untractable and one also wants to include for perturbations to eventu-
ally also describe the conductivity, the naive and straight forward approach we took did
not yield the results we hoped. The next step here would be to get all final equations and
the right amount of boundary conditions constraining the system and finally solve it using
the software package developed by Balm et al. [14] written in C and Python running on a
cluster. This was not the direction we chose to go and rather stuck with using the linear
axion model to account for momentum dissipation. This way, we kept the computations
smaller and handable inside of Mathematica on a personal computer.

30
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Chapter 3
Holographic Superconductor

The proposal of the holographic version of a superconductor in 2008 by Hartnoll, Herzog
and Horowitz [5] sparked some new hope in the validity and applicability of holography
to condensed matter systems. The so called HHH model is considered a superconductor,
or more precisely, a superfluid in the most fundamental way, that a global U(1) is spon-
taneously broken in the boundary field theory. They found a way to trigger an instability
that would break the local U(1) of the bulk in the infrared while keeping the UV symme-
try intact. By the global-local symmetry stated in GKPW, we see that the break down of
the local U(1) must be immediately connected to that of the global one. More precisely,
the field triggering the instability in the bulk is be dual to the boundary operator whose
vacuum expectation value (VEV) can be seen as the order parameter of the superfluid
phase transition. In this way, they managed to spontaneously create an asymmetric VEV
in the boundary without explicitly sourcing the operator.

The holographic superconductor has been studied in the probe limit [5], including
backreaction on the background [34], under translational symmetry breaking using linear
axions [16], [35], in the zero temperature limit [36], as a bona fide superconductor [37]
(not just a superfluid) and many more. We gain insights from each direction of research
but will introduce the holographic superconductor not as the main subject of our study,
rather as another building block of our RN system. We introduce the superfluid in order
to augment the field theory by its characteristic low-energy excitations. More specifically,
with breaking the global U(1) comes an additional Goldstone mode [37] that we hope will
mimic the role of phonons in a real strongly interacting metal. Before we test the effect of
this, however, we should lay some theoretical and numerical groundwork and understand
how the Holographic Superconductor by itself works. Only after we have done this will
we look at its effect on our relaxed RN model.

3.1 Preliminaries

Let us look at how a RN to superconductor phase transition is engineered in a gauge-
gravity dual system. In section 1.2.3 we already looked at the mass-scaling duality in
Eq. (1.32) of a scalar bulk field. From there we can see that something funny happens for

m2 < −(d+ 1)2

4
= −9

4
, (3.1)
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32 Holographic Superconductor

where again d counts the number of spatial dimensions that are not holographic (d = 2
for us). Eq. (3.1) is known as the Breitenlohner-Friedman bound [38] beyond which AdS
space becomes unstable. Therefore, the mass squared can be negative, but not more
negative than the BF bound. The near-horizon geometry of our AdS space with RN
black hole, however, looks different. As we have mentioned before, the most interesting
deviations from pure AdS/CFT happen close to the horizon at z = 1. When expanding
the metric, we see [9] that the geometry actually resembles AdS2 × R2 instead of AdS4,
having the result that the BF bound of Eq. (3.1) increases to −1/4 at the horizon. For
O to be a relevant operator, ∆ < d + 1 and therefore m2 < 0, which together with the
raised BF bound close to the IR becomes quite the narrow window. Furthermore, the
term in Eq. (3.6) proportional to AµA

µ = gttA2
t further decreases m, or rather raises the

BF bound by some b. This means that a field of mass

−9

4
< m2 < −1

4
+ b (3.2)

triggers an instability in the IR but not the UV. When the instability is triggered, we
say that ϕ condenses. One can think of the scalar field as a cloud of charged particles
surrounding the black hole, in balance between being repelled by the charge of the black
hole and the potential barrier naturally given by AdS space. A more rigorous picture is
painted by [9] in chapter 10.

3.2 The setup

We start off with the relaxed RN action in Eq. (2.18) from before and couple a scalar field
ϕ to the U(1)-gauge potential Aµ, such that the former triggers a Higgs mechanism [9],
[37] in the deep IR. This way, the action and equations of motion become

SHHH,rel = SRN,rel −
∫
d4x

√
−g
(
|(∂µ − iqAµ)ϕ|2 +m2|ϕ|2

)
(3.3)

and

Rµν −
1

2
Rgµν − 3gµν =

κ2

2
(TMax

µν + TΨ
µν + T ϕ

µν) (3.4)

∇µF
µν = −iq

[
ϕ∗(∂ν − iqAν)ϕ− ϕ(∂ν + iqAν)ϕ∗

]
(3.5)

(∇µ − iqAµ)(∇µ − iqAµ)ϕ−m2ϕ = 0, (3.6)

respectively. By introducing this, a lot has changed in the way we can solve the dynamics
for this system. Where the solutions to our previous systems were analytically available,
we do not know of a closed solution to Eqs. (3.4)-(3.6). We do know that the Ansatz for
the background metric has to be changed in order to allow for deformations in the IR to

ds2 =
1

z2

[
− f(z)e−χ(z)dt2 +

dz2

f(z)
+ dxidx

i
]
. (3.7)

32
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3.3 Superconducting phase transition 33

For ϕ, χ → 0 the RN equations of motion and their solutions are recovered. We assume
ϕ = ϕ(r) to depend only on the holographic dimension. With this we can deduce from
the z-component of Eq. (3.5) that ϕ has a constant phase and can therefore be chosen to
be real. This will change when considering perturbations in the scalar field around the
background solution. Expanding the metric at the horizon, we find the temperature of
the holographic superconductor as

TSC = e−
χ(1)
2

(
12− 2β2 + 4ϕ(1)2 − eχ(1)A′

t(1)
2
) 1

16π
, (3.8)

where all fields are evaluated at the horizon z = 1. The temperature agrees with [34].
Due to f, χ, it can only be calculated numerically. In the following, we always choose the
mass of the scalar field as m2 = −2, that is, a naive scaling dimension of Eq. (1.32) ∆ = 2
for the dual operator O. We rescale by to get the desired UV leading and sub-leading
order behaviour

ϕ/z = ϕ̃ ∼ A+Bz, (3.9)

such that

ϕ̃(0) = A = JO and ϕ̃′(0) = B = ⟨O⟩, (3.10)

where in the last equalities we have used the dictionary translation of (sub-)leading bulk
field behaviour in the UV to (response) source of the dual operator O. We will see that
⟨O⟩ is the order parameter of the superfluid phase transition in the boundary theory. The
idea is to tune ϕ such that the sub-leading order B spontaneously becomes non-zero, while
the leading order stays zero throughout. A non-zero leading order would imply explicit
sourcing of O and therefore explicit and not spontaneous symmetry breaking. To get
explicit values, we need to solve the coupled differential equations Eqs. (3.4)-(3.6).

3.3 Superconducting phase transition

The same procedure we followed in section 2.3 for numerically solving for the optical
conductivity can now be applied to finding background solutions, as both just boil down
to solving coupled differential equations. Remember that the background was analytical
up until here, making all following computations that include ϕ, χ ̸= 0 much more in-
volved and computationally expensive. From here on out, therefore, we will work with
background functions f, χ,At, ϕ in the form of functions interpolated by Mathematica.
These solutions are shown at T/µ = 0.144 below the critical temperature 0.157 = Tc/µ
in Fig. 3.1.

Figs. 3.2 show the ratio of the background fields of the SC solution relative to the RN
solution. More specifically, Fig. 3.2(a) confirms that the numerics work, that is, above
the condensation temperature numerics and analytical solution agree. In Fig. 3.2(b) we
see how below the critical temperature, the scalar field becomes non-zero in the IR and
backreacts on the all other fields. Asymptotically, both solutions still agree and the ratio
is 1. The only exception being At, as µ has to be tuned differently in the RN phase to
get the backgrounds at the same temperature.
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Figure 3.1: Numerical solution for the bulk fields of the holographic superconductor.
Below the critical temperature of Tc/µ = 0.157, there is a clear condensation of the scalar field
ϕ in the IR. The fields asymptotically agree with the RN solution in the UV and start to deform
for z → 0.
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(a) Above condensation at T/µ = 0.354 > Tc,
numerical and analytical solution are identical.
All field ratios are superposed at 1.
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(b) Below condensation at T/µ = 0.1444 < Tc,
ϕ immediately backreacts on the entire back-
ground and the numerical solution becomes dif-
ferent to the analytical background everywhere
z > 0. The slight deviation of Ãt(0) ̸= 1 stems
from µRN ̸= µSC , see also Fig.3.3(b).

Figure 3.2: Ratio of numerical to analytical background solutions above and below
Tc. Fields with tilde represent the respective ratio numerical/analytical solution for the holo-
graphic dimension z going from the UV to the horizon: Ãt = ASC

t /ARN
t . A constant was added

to ϕ to avoid division by zero in the RN phase.

34
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3.4 Conductivity of the relaxed Holographic Superconductor 35

In Fig. 3.3(a) we see the second order phase transition for the response of the field
operator O dual to ϕ, while the source stays zero throughout: We have succeeded in
replicating the HHH model of a holographic superconductor. Fig. 3.3(b) shows, that the
condensation – ϕ becomes non-vanishing – increases the field theory temperature, agreeing
with Eq. (3.8). It shows, that when comparing the two different phases RN and SC, we
need to tune the chemical potential of one in order to guarantee a constant physical
temperature T/µ. This will become important in the next chapter where we want to
measure the impact of the superconducting state on the coexisting normal state.
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(a) Phase transition of ⟨O⟩ without explicitly
sourcing O. The critical temperature in units
of the chemical potential is Tc/µ = 0.157. The
other physical parameter β/µ = 0.1 is kept con-
stant. We are considering standard quantisa-
tion, where m2 = −2 and q = 3.
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(b) Temperature T/µ over chemical potential
µ in the SC phase (red) deviates from the ana-
lytical RN temperature (blue). In concordance
with Eqs. (3.8), the condensed ϕ increases the
temperature. To be able to compare an SC to
RN system, one must look some constant phys-
ical temperature T/µ, i.e. at different chemical
potential following the dotted line.

Figure 3.3: Spontaneous symmetry breaking of the SC order parameter and the
change in temperature at phase transition. The phase transition is observed for varying
chemical potential µ (directly related to the temperature) and keeping β/µ = 0.1 fixed.

3.4 Conductivity of the relaxed Holographic Supercon-
ductor

On top of the numerical background solution to the equations of motion, we can again
look at the linear response of the system. Next to the perturbations of the gauge potential
Eqs. (2.7), the metric (2.8) and the axions (2.21), we also consider

ϕ→ ϕ(z) + δϕ(z)e−iωt. (3.11)
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Figure 3.4: Conductivity of the relaxed holographic superconductor. (a) Real and
(b) imaginary part of the conductivity over the frequency ω/µ. The normal RN phase (blue) in
comparison to the condensed SC phase (red). The data is fitted to Eq. (3.13) with values for SC:
σ0 = 97, Γ = 0.003, σs = −0.01 and RN: σ0 = 101, Γ = 0.003, σs = 10−10. At high ω/µ both
conductivities approach the zero density CFT description and diverge from the Drude model.

In this case (no momentum dependence), the fluctuation in ϕ decouples from ay(z) and
the dynamics of ay(z) in Eq. (2.22) are only changed with respect to the previous chapter
by the different background solution where ϕ, χ ̸= 0. From here, it would be an interesting
investigation to vary the phase of the fluctuation δϕ and see how its dynamics couple in
the finite k sector.

Comparing the conductivity on the analytical RN background with the conductivity
on the numerical SC background at the same temperature T/µ, we observe that the latter
can be described as a two fluid system

σ2FL(ω) =
σ0 Γ

Γ− iω
+
σs
iω

(3.12)

Imσ2FL(ω) =
σ0 Γ

2

Γ2 + ω2
− σs
ω
, (3.13)

(3.14)

as was also observed by Kim et al. [16] and Andrade et al. [35]. The conductivity shows
that just as in condensed matter superfluid systems, parts of the fluid remain normal
while others are superfluid. In Fig. 3.4, we see this as the superposition of a δ-peak with
the finite-width Lorentzian, one describing perfect conductivity and the other a normal
metal, respectively. Looking more closely at the DC-behaviour of σ in Fig. 3.5 at β = 0,
we see that the real part in fact does decrease with condensation, while the imaginary part
increases. The loss in spectral density is compensated by the increase of the imaginary
part. Combining the translationally invariant conductivity Eq. (2.14) with the two fluid

36
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3.4 Conductivity of the relaxed Holographic Superconductor 37

model gives

σ(ω) = (Ks +Kn)

(
δ(ω)− 1

iω

)
, (3.15)

with Kn, Ks the strength of the respective normal and superfluid part of the δ. Taking
that the spectral weight must be conserved [16] for some constant Z(Λ → ∞) we have

Z(Λ) =

∫ Λ

0

Reσ(ω)dω = Ks +Kn + σQΛ (3.16)

⇔ Reσ(ω) =
Z(Λ)−Kn −Ks

Λ
(3.17)

while

Imσ(ω) =
Kn +Ks

ω
. (3.18)

Therefore, going from RN to SC, that is, Ks = 0 → Ks > 0, means that the real part
decreases and the imaginary part increases, confirming our observations from Fig. 3.5.
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Figure 3.5: Change of spectral weight from RN to SC phase at β = 0. Low frequency
ω/µ ≪ 1 asymptote of (a) Reσ and (b) ω Imσ. The real part shows a drop in DC conductivity,
indicating a loss of spectral density that is compensated by the increase in the imaginary part.
The imaginary part is multiplied by ω to counter the divergence and therefore to better compare
the respective DC behaviour. Here, the translationally invariant system at β = 0 is considered
and both solutions are obtained at the same T/µ below Tc/µ. The SC conductivity being
based on a numerical background is more unstable than the RN conductivity on the analytical
background.

Following, one could further investigate properties of the holographic superconductor,
like the dependence of Tc on the charge q [34], the phase transition at different strengths
of translational symmetry breaking β [16] and conductivity [35]. As mentioned before, we
will only use the superconductor as a means to introduce new modes our charge carriers
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38 Holographic Superconductor

can interact with and not to test properties of the superconductor itself. Therefore, we
are not really interested in the two fluid itself, but the effect it will bring onto another
charge we add to the system. Let us now go into realms that have not been tested before
and consider the impact of adding a holographic superconductor on top of an RN metal,
such that the system consists of said two U(1)-charges.

38
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Chapter 4
The Two Charge Holographic
Superconductor

We are now in a position to combine the approaches of the previous two chapters to
get the Two-Charge Holographic Superconductor. One charge Aµ, associated with the
Reissner-Nordström phase, being the one under investigation and another one Bµ that
comes coupled to a scalar field ϕ constituting the holographic superconductor. We will
call the normal phase RN2 and the superconducting SC2 to not confuse them with the
previous system’s phases.

4.1 The Set Up

By now we know how to add to our system to get the expected field theory behaviour.
The full action we are considering is therefore the sum of all the previous ones

S =
1

2κ2

∫
d4x

√
−g

[
R + 6− 1

4
FµνF

µν − 1

4
WµνW

µν

−1

2

∑
i=x,y

(∂Ψi)
2 − |(∂µ − iqBµ)ϕ|2 −m2|ϕ|2

]
,

(4.1)

where F = dA, W = dB and again 2κ2 = 16πG = 1. The equations of motion are

Rµν −
1

2
Rgµν − 3gµν =

κ2

2

(
TMax,A
µν + TMax,B

µν + TΨ
µν + T ϕ

µν

)
(4.2)

∇µF
µν = 0 (4.3)

∇µW
µν = iq

[
ϕ∗(∂ν − iqAν)ϕ− ϕ(∂ν + iqAν)ϕ∗

]
(4.4)

(∇µ − iqAµ)(∇µ − iqAµ)ϕ = m2ϕ. (4.5)

One has to pay attention to the renaming, as now Bµ is coupled to ϕ and Aµ has the
same role it had in chapter 2. Above the critical temperature, therefore we have a system
of equivalent RN1 setups, together RN2. Below the critical temperature, ϕ again triggers
an instability of AdS close to the horizon, such that the gauge U(1) associated with Bµ

is broken and therefore also the global U(1) associated with OB dual to Bµ. The phase
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40 The Two Charge Holographic Superconductor

below Tc is therefore made up of RN1 plus holographic superconductor and we call it SC2
– keeping in mind that only one of the two metals can transition into a superconducting
state.

Looking close to the horizon, we find the temperature

TSC2 = e−
χ(1)
2

(
12− 2β2 + 4ϕ(1)2 − eχ(1)

(
A′

t(1)
2 +B′

t(1)
2
)) 1

16π
, (4.6)

which reduces to Eq. (3.8) for Bt = 0. It also recovers the RN2 temperature for χ = ϕ = 0
and At(z) = µA(1− z), Bt(z) = µB(1− z) where

TRN2 =
|f ′(1)|
4π

=
12− (2β2 + µ2

A + µ2
B)

16π
, (4.7)

from the emblackening factor

f(z) = (1− z)

(
1 + z +

2− β2

2
z2 − µ2

A + µ2
B

4
z3

)
. (4.8)

4.2 Interlude: Gauge invariant modes

Having introduced all the fields of our system, let us find a more universal way to solve
for the dynamics of their their time dependent perturbations

gµν + hµν(z)e
−iωt, Aµ + aµ(z)e

−iωt, Bµ + bµ(z)e
−iωt,

ϕ+ φ(z)e−iωt, Ψx + ψx(z)e
−iωt, Ψy + ψy(z)e

−iωt,
(4.9)

where ||hµν || ≪ ||gµν || and so on. We collectively call the lower case fields πi(z). Now,
instead of manually choosing – as for ay(z) in Eq. (2.9) – which modes are of interest, we
can zoom out a bit and rely on first principles: the physics cannot be gauged away and
will therefore be described by gauge invariant variables and equations. There are certain
superpositions of our perturbations and their equations of motion that are gauge invariant.
Finding these superpositions reduces the number of coupled differential equations and
the fields we have to solve for drastically. Furthermore, the resulting modes are more
comparable to other’s work, because we can all agree on first principles. They will also
allow for a more physical interpretation of the modes we are looking at. We will see that,
for example, the fields ay, by remain gauge invariant, underlining their physical relevance
and ensuring that we don’t have to consider other conductivities.

For the fields πi to be invariant under simultaneous coordinate transformation (dif-
feomorphism invariance) of the metric and gauge invariance of the gauge potentials, they
must be invariant under

hµν → hµν −∇µξν −∇νξµ

bµ, aµ → aµ − ∂µλ
(a) − ξγ∇γaµ − aγ∇µξ

γ

ψx, ψy, φ→ φ− ξγ∂γφ

ξµ(z, t) = ξ̃µ(z)e−iωt

λ(a,b)(z, t) = λ̃(a,b)(z)e−iωt

(4.10)
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4.2 Interlude: Gauge invariant modes 41

with the diffeomorphism |ξµ(z, t)| ≪ 1 and scalar fields
∣∣λ(a,b)(z, t)∣∣ ≪ 1. We follow

the procedure laid out in [39] in order to find combinations of πi for which ξ, λ vanish.
To do this, we look at decoupling sectors, classified by their behaviour under parity

inversion y → −y in our AdS2+2 system. The so-called spin 0 sector stays invariant and
the spin 1 flips sign. Simply put: we separate such that perturbations that appear in the
spin 0 sector have an even amount of y-indices and the ones in spin 1 an odd amount.
Without a momentum term ∼ eikx in Eq. (4.9), the terms will further decouple but it is
not as straight forward as with the sectors to see how. The 21 fields split into sectors as

Spin 0 at, ax, az, bt, bx, bz, φ, ψx, htt, htx, htz, hxx, hxz, hyy, hzz : 15 (4.11)

Spin 1 ay, by, ψy, hty, hxy, hyz : 6. (4.12)

The 6 components of {ξµ, λ(a), λ(b)} together with the z-gauge where all z components
vanish, we get 21 − 6 − 6 = 9 degrees of freedom. Of these, 5 go into the spin 0 and 4
into the spin 1 sector.

We first consider the spin 1 sector, that is, where only Eq. (4.12) can couple to one
another. To get the gauge invariant variable

Γ =
6∑

i=1

αiπi, (4.13)

we need to find αi such that for Γ
(4.10)−−−→ Γ′(ξt, ξx, ξz, λ(a), λ(b)) we have

Γ′ − Γ =
6∑

i=1

αi

(
π′
i(ξ

µ, λ(a,b))− πi

)
= 0. (4.14)

In other words: Γ needs to be independent of {ξt, ξx, ξz, λ(a), λ(b)}. Choosing gauges this
way still does not fully fix our system and one can express the 6 αi’s by 4 free variables.
We get the following four gauge independent variables in the spin 1 sector:{

A = ay, B = by, C = hxy, D = hty +
iω

β
ψy

}
, (4.15)

where we have already rescaled such that the leading order is constant on the boundary,
that is,

A(z → 0) = A(0) +A(1)z + . . . (4.16)

B(z → 0) = B(0) + B(1)z + . . . (4.17)

C(z → 0) = C(0) + C(1)z3 + . . . (4.18)

D(z → 0) = D(0) +D(1)z3 + . . . , (4.19)

(4.20)

where the ellipses denote higher order terms. Following the GKPW dictionary, this means
for example, that the boundary two-point correlator dual to C is easily obtained via

⟨OCOC⟩ ∼
C ′′′(z)

C(z)

∣∣∣∣
z=0

. (4.21)
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42 The Two Charge Holographic Superconductor

For our purposes, we therefore express the conductivity with respect to the A gauge
potential Eq. (2.11) in terms of A as

σA(ω) = − i

ω

A′(z = 0)

A(z = 0)
(4.22)

One can re-state the equations of motion depending only on the background and the gauge
invariant variables. The equations are reduced to the number of degrees of freedom: 4.
The dynamics of ay(z) – now A(z) – are described by

0 = A′′ +A′ −12 + 2z2β2 + 12f − 4z2ϕ2 + eχz4(A′
t)

2 + eχz4(B′
t)

2

4zf

+A eχω2 (eχω2 − f (β2 + eχz2(A′
t)

2))

f 2 (eχω2 − β2f)
− B e2χz2ω2A′

tB
′
t

eχω2f − β2f 2
−D′ eχβ2A′

t

eχω2 − β2f
,

(4.23)

and of course the other gauge invariant’s equations (see Appendix A). We see that C
completely decouples and can restrict our investigation to A, B, D and their equations.
It becomes clear immediately, that at finite k this would become vastly more complicated.

As opposed to the process of numerically solving the EOMs in Mathematica as de-
scribed in section 2.3, we later solved them using a finite-differences method. After nu-
merically solving the gauge invariant equations of motion for A, B, D in the general case
χ, ϕ ̸= 0 and not forgetting about the infalling boundary conditions, we can observe that
the main properties of the previous chapters persist.

4.3 RN2 conductivity

With adding a second gauge potential to the system, we have to choose which potential
to source and which conductivity to measure. When solving the linearised equations of
motion, we either set

A(0) = 1, B(0) = 0 or A(0) = 0, B(0) = 1, (4.24)

and respectively measure either

σA(ω) = − i

ω

A′(z = 0)

A(z = 0)
or σB(ω) = − i

ω

B′(z = 0)

B(z = 0)
. (4.25)

In the following we have to be careful which conductivity we are talking about, because
they play crucially different roles when in different phases. In general, we will refer to
σA as the conductivity of interest, because, as we stressed, the superconductor is only a
building block added on top of the RN system of interest. In Fig. 4.1 we show that in the
non-condensed phase (RN2), the conductivities σA (blue) and σB (red) do not differ, as
long as we choose to source the background at the same µA = µB. The width Γ (rate of
momentum dissipation) is greater for RN1 than for RN2 at the same T/µA = 0.099.

4.4 Two-Charge phase transition and the two-fluid

For a fixed µA we can decrease the temperature of the system by increasing µB adi-
abatically, until ϕ will condense and we again get the spontaneous transition into the
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Figure 4.1: RN2 conductivity compared to RN1 at constant T/µ. (a) Real and (b)
imaginary part of conduvtivies in the RN2 system compared to RN1. The index σX indicates
which field was sourced at the boundary and which conductivity measured, see Eqs. (4.24),(4.25).
The blue curves are exactly covered by the red. µA = 1.77 to tune to the same ratio T/µA =
0.099. RN1 is fitted with ω2

p = 0.479, Γ = 0.0066, σQ = 0.535 and RN2 with ω2
p = 0.353, Γ =

0.0035, σQ = 0.624 to Eqs. (1.36),(1.37).

ω2
p Γ σs

RN2 A (blue) 0.194 0.00037 −2.3 · 10−9

RN2 B (red) 0.213 0.00037 −2.4 · 10−9

SC2 A (green) 0.211 0.00035 3.6 · 10−10

SC2 B (yellow) 0.197 0.00035 −0.018
Table 4.1: Two-fluid fitting parameters of the RN2/SC2 conductivities. Parameters
used for fitting the curves of Figs. 4.3 to the two-fluid conductivity Eq. (3.12).

superconducting phase without explicitly sourcing the boundary operator, as is shown in
Fig. 4.2. The critical temperature with respect to the source T/µB decreased from 0.157
in SC1 to 0.132 in SC2. Adding another charge to the system decreases the temperature
and therefore also the critical temperature. One could investigate further what influence
µA has on the phase transition, but this is again not our main focus. Even at temperatures
below TC , the RN2 phase is still a solution to the equations of motion. It is, however,
energetically less favourable and therefore more unstable. One can, via the temperature,
calculate the free energy and show that the SC solution has the lower free energy at those
temperatures. We can still compare the RN2 conductivity to the SC2 conductivity at
the same temperature T/µA. We do this by either hand-selecting the numerical solution
we get at low T by setting χ = ϕ = 0 (no superconductor) or by using the analytical
background solution that comes without χ and ϕ in the first place.

The resulting optical conductivities σA and σB of the condensed SC2 compared to
RN2 system are shown in Fig. 4.3. Qualitatively, all curves behave the same way as in
the separate RN1 and SC1 systems. A non-zero β/µA leads to translational symmetry
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Figure 4.2: Phase transition from RN2 to SC2. Phase transition of ⟨O⟩ without explicitly
sourcing O. The critical temperature in units of the chemical potential of the second gauge
potential Bt is Tc/µB = 0.157. The other physical parameter β/µB = 0.1 is kept constant. We
are considering standard quantisation, where m2 = −2 and q = 3.
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(a) Now the two RN2 conductivities do not
overlap, as µA ̸= µB in the RN background.
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(b) In the condensed phase, σB (yellow) again
exhibits two-fluid behaviour of a δ in ω = 0.

Figure 4.3: Optical conductivities σA, σB of the RN2 and SC2 systems. The (a) real
and (b) imaginary part of the optical conductivity for low ω/µA is shown for different sourcings
of RN2 and SC2. The SC background is at equal µA = µB = 2.4. The RN is background at
µA = 2.29, µB = 2.4 to keep T/µB = 0.008. The parameters fitting to Eq. (3.13) are given in
Tab. 4.1.
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4.4 Two-Charge phase transition and the two-fluid 45

breaking and a finite-Γ Lorentzian in the real and imaginary parts. The superconductor is
best described by a two-fluid model – one part normal, one part superfluid. An important
point being, that even though there is a holographic superconductor present in the SC2
case, when measuring σA in Fig. 4.3 (green), we do not get a δ-peak of infinite conductivity.
This is because, as we have repeated, the A-system is not coupled to an unstable scalar
field and therefore remains an RN metal at all temperatures. All curves, be it fitting to
a simple Drude or to the two-fluid model, deviate from their fit for ω ≥ µA, where they
slowly approach the behaviour of the zero density, that is zero µA, µB CFT. The fitting
parameters in Tab. 4.1 underline the appearance of the σs/iω term with condensation
in the σB conductivity, while the rate of momentum dissipation Γ decreases almost not
notably. The impact of the condensation on the height σ0 of the Lorentzian of σA is
exactly what we were looking for. As seen in the previous chapter, we expect the DC-
value of the real part (proportional to σ0) to decrease with condensation. This clearly
happens for the B-conductivity. This can be seen both from the change of the red and
yellow curves in Figs. 4.3 or by the change in σ0 in Tab. 4.1.

In the A-system, however, we see no such inversion of relationship with condensation,
that is, both the real and imaginary part of σA are greater when ϕ is condensed. Further
investigation could be made whether this impact comes from the translational symmetry
breaking parameter β or whether there is a fundamental difference when considering the
two-charge rather than the one-charge system of Figs. 3.4.
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Conclusion

The goal of this work was twofold: firstly, exploring the AdS/CFT duality and with it
well-known holographic models like the Reissner-Nordström metal and the holographic
superconductor, to then become familiar with the numerical techniques to describe them.
Secondly, fusing the two explored models into a new setup with the hope of seeing low
energy excitations missing so far in the standard RN setup.

The brief theoretical framework for the duality and basics of Drude conductivity of the
first chapter is by far not exhaustive, but gives a solid foundation on which holographic
systems can be investigated and which could easily be expanded upon. On the example
of the thoroughly studied Reissner-Nordström metal we were able to set up and test
the impact of translational symmetry breaking and calculate the optical conductivity.
Comparing to closed expressions derived in other studies, we could verify our methods
quantitatively, gaining some reassurance on the numerical methods for obtaining transport
properties applied.

We studied the Hartnoll, Herzog and Horowitz model of the holographic equivalent of a
superconductor in detail. Due to the lack of a closed description of the static background,
we managed to instead numerically solve for it. Not only were we able to see the phase
transition and study its impact on the system’s temperature and spectral density, we also
succeeded in reproducing the two-fluid model of a relaxed superconductor, where normal
and superfluid parts coexist.

Finally, bringing the basics together with the RN and superconducting phase, we man-
aged to construct a model comprising of a metal that stays normal at any temperature
with one that transitions into a superconductor: the two-charge holographic supercon-
ductor. Here again, we managed to numerically obtain the background with its black hole
temperature and the optical conductivity. To reduce the degrees of freedom for solving
the system and to transform into more universal variables, we re-expressed our system
with respect to certain gauge invariant variables of the spin 1 sector. Most notably, does
the two-fluid behaviour persist in the two-charge holographic superconductor only for the
superconductor’s conductivity while the conductivity of the RN system remains normal
at all temperatures. The condensation however, does impact the spectral density of the
RN system.

An outlook and suggestion for future work would be to also consider the spin 0 sector,
which includes fluctuations of the condensed scalar field’s phase. There we suspect low
energy excitations to appear with condensation, signalling the appearance of phonons in
the boundary that would improve upon the applicability of the basic RN system.
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Appendix A
Gauge invariant variables and equations of
motion

The gauge invariant equations of motion for the spin 1 gauge independent variables of
Eq. (4.15) are

0 = A′′ +A′ −12 + 2z2β2 + 12f − 4z2ϕ2 + eχz4(A′
t)

2 + eχz4(B′
t)

2

4zf

+A eχω2 (eχω2 − f (β2 + eχz2(A′
t)

2))

f 2 (eχω2 − β2f)
− B e2χz2ω2A′

tB
′
t

eχω2f − β2f 2
−D′ eχβ2A′

t

eχω2 − β2f
,

(A.1)
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4eχ(A′

t)
2 + z4eχ(B′

t)
2 + 12f + 2β2z2 − 4z2ϕ2 − 12)

4zf

+ B

(
f
(
−ω2z2e2χ(B′
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2

ω2eχ−β2f
− 2ϕ2

)
+ ω2eχ

)
f 2
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(A.2)
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52 Gauge invariant variables and equations of motion

Analogously, for spin 0 we get the gauge independent variables{
V = ax, W = bx, X = hxx − hyy, Y =

φ

z
+
hyy
2z

(ϕ+ zϕ′), Z = htx +
iω

β
ψx

}
. (A.4)

The equations depending solely on these variables have not been readily derived by the
time of finishing this work. This could be a next step in getting a better understanding
of the system and its longitudinal spin 0 sector.

52

Version of June 27, 2024– Created June 27, 2024 - 01:41


	Introduction
	A brief theoretical overview
	AdS, CFT and The AdS/CFT correspondence
	Conformal field theories
	Anti-de Sitter Space
	AdS/CFT correspondence

	The AdS/CFT dictionary
	AdS-Schwarzschild Black Hole: introducing Temperature
	AdS-Reissner-Nordstrom Black Hole: Introducing density and scale
	Two-point correlator and field-operator duality

	Optical Conductivity and Drude Theory
	Drude Theory

	The RN Metal
	Optical conductivity on a translationally invariant background
	Results

	Translational symmetry breaking via Axion
	Results

	Interlude: Computation
	A different approach to momentum dissipation

	Holographic Superconductor
	Preliminaries
	The setup
	Superconducting phase transition
	Conductivity of the relaxed Holographic Superconductor

	The Two Charge Holographic Superconductor
	The Set Up
	Interlude: Gauge invariant modes
	RN2 conductivity
	Two-Charge phase transition and the two-fluid

	Conclusion
	Gauge invariant variables and equations of motion

