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Abstract

We apply geometrical methods to the quantum brachistochrone problem,
whose equation of motion was recently written as a limit case of a well

known Lax pair [MC24]. First we discuss the theories of Lie groups,
Poisson geometry and Riemann surfaces in that order. This knowledge is

applied to the study of Lax equations and their integrability. The final
chapter applies these methods to the quantum brachistochrone problem

for the smallest case su(2).
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6

Version of July 17, 2024– Created July 17, 2024 - 12:17



Chapter 1
Introduction

In the eighteenth century Euler studied and solved the motion of a spin-
ning rigid body, which was subsequently generalised by Lagrange in the
case the body experiences a gravitational force. Near the end of the next
century, Kowaleski found another exotic integrable case of the spinning
top and showed that, under reasonable assumptions, this is the only other
integrable system [Kov88]. Her result still remained unsatisfactory from
a practical and theoretical point of view. Unlike many other known in-
tegrable systems, it could not be solved by a separation of variables and
required an ingenious change of variables to reduce the integrals to com-
plicated expressions involving hyperelliptic functions. Moreover, there
was no obvious reason the system had to be integrable: its configurational
symmetry combined with Noether’s theorem simply does not produce
enough integrals.

Seemingly unrelated, a small revolution took place in the 1960’s and
1970’s, centered around a differential equation introduced by Korteweg
and de Vries in 1895 which describes the motion of waves on a shallow
surface of water. By rewriting the PDE as a commutator differential equa-
tion, now known as a Lax pair, researchers could exploit the seemingly
mysterious symmetries of the system and prove the integrability of the
KdV-equation. Most significantly, these ideas lead to the development of
the inverse scattering method for solving PDE’s, which expresses the so-
lution of a Hamiltonian equation of motion in terms of a Riemann-Hilbert
problem; the integrals are given by spectral invariants of an auxiliary dif-
ferential operator.

Following this discovery, Lax pairs have shown up numerously through-
out mathematical physics and are almost always accompanied by a com-
plete integrability of the dynamical system in question. The perspective
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8 Introduction

also shed new light on many classical finite dimensional systems, such as
the Kowaleski top, whose symmetry could now be understood in terms of
a Hamiltonian reduction scheme and solutions were simplified [BRS89].
For many such systems the resulting Riemann Hilbert problem can be ex-
pressed and solved explicitly using algebraic geometric methods.

A Lax pair has recently been found by Cheianov and Malikis in their
study of the quantum brachistochrone problem [MC24]. The quantum
brachistochrone problem is concerned with finding the minimal cost of
achieving a given unitary when the driving Hamiltonians are restricted to
a subset of the allowed phase space. Such a restriction often arises out the
physical conditions of the system in question. They show that the resulting
equation of motion can be written as a limit case of the classical spinning
top and hence may be integrated completely.

In this thesis we apply these algebraic geometric methods to solve the
for quantum brachistochrone problem for small dimensions. Chapters
2-4 discuss the relevant mathematical machinery, Chapter 5 delves into
the theory of Lax equations and Chapter 6 studies the quantum brachis-
tochrone problem.

Chapter 2 is to give a brief overview of Lie groups and Lie algebras. We
first see how the additional group structure simplifies the smooth struc-
ture and introduce subgroups. Then we give a brief tour through Lie
group actions and representations, and end with a discussion of the ad-
joint and coadjoint representation of a Lie group on its Lie algebra.

In Chapter 3 we discuss Poisson manifolds for the purpose of describ-
ing Hamiltonian reduction in the fifth chapter. A Poisson structure is a
Lie algebra on the set of smooth functions of a phase space which satisfies
the Leibniz rule and represents the most general mathematical framework
where one can study Hamiltonian dynamics. We discuss their structure
theory and Lie group actions on a symplectic manifold.

Chapter 4 gives an introduction in the theory of Riemann surfaces;
there is a substantial mathematical literature and we have striven to only
introduce as many concepts as we use later. We start with a general de-
scription of complex manifolds and their smooth, holomorphic and mero-
morphic structure. Thereafter we discuss compact Riemann surfaces, di-
visors and line bundles.

The focus of Chapter 5 is a description of Lax equations that occur in
the dual Lie algebra equipped with two Poisson structures. After describ-
ing the solution of the equation of motion in terms of a factorisation prob-
lem, we discuss Hamiltonian reduction and construct integrable Lax pairs
for the classical spinning top. At the end we give a detailed overview of

8
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9

solving the factorisation problem in terms of the Baker-Akhiezer function
associated the spectral data of a Lax equation.

Chapter 6 gives a short qualitative description of the history and phys-
ical motivation behind the quantum brachistochrone problem. We follow
Cheinovs and Malikis’ derivation of the equation of motion [MC24] and
move on to solve the resulting differential equations for the simplest case.

The reader is assumed to be familiar with approximately a semesters equiv-
alent of differential geometry; concepts such tensor fields and de Rham’s
theorem should be known. In addition, we will use the notion of a dis-
tribution on occasion; a quick introduction is given in the first Appendix.
Similarly, we heavily rely on sheaf cohomology in our discussion of Rie-
mann surfaces; the second Appendix contains a refresher for basic defini-
tions of sheaves and Céch cohomology, but by no means should serve as a
first introduction to the subject.

The thesis requires a minimal knowledge of physics; where it helps,
ideas from physics help to motivate certain concepts, such as Hamiltonian
dynamical systems in Chapter 3 or the Schrödinger equation in Chapter
6. At the beginning of Chapter 6 we give a qualitative physical picture of
the quantum brachistochrone problem which relies on a basic knowledge
of quantum information.
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Chapter 2
Lie Groups and and their Lie
algebras

A Lie group is a topological group with an additional smooth structure.
They were named after Sophus Lie who developed the theory in the late
1890’s for local Lie groups, when the notion of a smooth manifold was
still mysterious. It turns out that a Lie group is closely associated with a
specific finite-dimensional vector space: a Lie algebra.

We give a modern introduction of Lie groups and Lie algebras. First
we see how the additional group structure simplifies the smooth structure.
The exponential map allows us to answer questions about a Lie group in
terms of its Lie algebra. Thereafter we give a short tour through Lie group
actions and then discuss the (co)adjoint representations.

2.1 Smooth structure of a Lie group

The additional group structure on G allows us to make more general state-
ments about the differentiable structure than in the case of a smooth man-
ifold.

Definition 2.1. A Lie group G is group that is also a differentiable manifold
such that the groups operations of multiplication m : G × G → G and
inversion ι : G → G are smooth.

Alternatively, it suffices to check that the composite map G × G ∋
(g, h) 7→ gh−1 ∈ G is smooth. This condition is also necessary.

Example 2.1. The following familiar groups are also Lie groups.

Version of July 17, 2024– Created July 17, 2024 - 12:17

11



12 Lie Groups and and their Lie algebras

(1) The Euclidean space Rn is an Abelian group, where the map (x, y) 7→
x− y is clearly smooth.

(2) Denote by GLn(C) the group of invertible n× n matrices with matrix
multiplication as group operation. Then GLn(C) is an open subset of
Cn and inherits the structure of a smooth manifold. Indeed, GLn(C) =

det−1(C \ {0}), where det : Cn2 → C is the determinant map. To check
that group multiplication and inversion are smooth one may verify
that these operations are polynomials of the matrix coefficients in local
coordinates.

Any Lie group element g ∈ G corresponds to a unique diffeomorphism of
G given by left-translation λg : h 7→ gh or right-translation ρg : h 7→ hg−1.
The differentials of these maps yield isomorphisms dλg : ThG ∼−→ TghG
and dρg : ThG ∼−→ Thg−1 G. In a certain sense, this means that is suffices to
study the tangent space at the identity. The following construction makes
this precise.

A vector field X ∈ X (G) is called left-invariant if λ∗gX = X for all
g ∈ G.

Theorem 2.1. Let g be the set of left-invariant vector fields G. Then g forms a
subalgebra of the set X (G) of vector fields on G, with respect to the commutator
bracket, and has the structure of an R-vector space naturally isomorphic to TeG.

Proof. Given two left-invariant vector fields X, Y ∈ g it is easy to show
that λ∗[X, Y] = [X, Y], where [·, ·] is the standard commutator operation
on smooth vector fields. g is thus a Lie algebra as the Jacobi identity holds
in X (G), and an R-vector space with pointwise addition and scalar mul-
tiplication.

Consider the map ϕ : g → TeG given by X 7→ Xe. Then ϕ is a homo-
morphism. If Xe = 0 then left-invariance implies Xg = dλg(Xe) = 0 for
all g ∈ G and ϕ is injective. To prove surjectivity, define for Y ∈ TeG the
vector field Z by Zg = dλg(Y). One can easily check that Z is smooth and
left-invariant. (See [Lee12, Theorem 8.37] for the details.)

Suppose X1, . . . , Xn ∈ TeG is an R-basis and by abuse of notation iden-
tify these vectors with left-invariant vector fields X1, . . . , Xn ∈ g on G. At
any point g ∈ G it follows that the n-tuple ((X1)g, . . . (Xn)g) forms a basis
of the tangent space TgG. These vector fields thus form a global frame of
G. We summarise our discussion.

Corollary 2.1. Any Lie group G admits a global left-invariant frame. Moreover,
TG ∼= G× g by left translations.

12
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2.1 Smooth structure of a Lie group 13

The integral curves of left-invariant vector fields are also well behaved.
Recall that a vector field X on a smooth manifold M is said to be complete
if the integral curve γ of X at any point extends to a smooth curve γ : R→
M.

Proposition 2.1. Any left-invariant vector field X ∈ g is complete.

Proof. See [Lee12, Theorem 9.18].

2.1.1 Lie subgroups

We discuss the notion of a Lie subgroup and methods for constructing
them.

2.1.2 Subgroups

Suppose G is a Lie group and let H ⊆ G be a subgroup. There exist var-
ious notions of subgroups. For example, it is typically not useful to only
require that H itself is a Lie group, as H can be equipped with the discrete
topology and a trivial smooth structure. Requiring a Lie subgroup to be an
immersed submanifold turns out to be the ’correct’ setting and loses little
generality for applications.

Definition 2.2. A Lie subgroup H ⊆ G is a subgroup which is also a Lie
group such that the inclusion H ↪→ G is an immersion.

If H ⊆ G is a Lie subgroup and K ⊆ H is a Lie subgroup, it is easy to see
that K ⊆ G is a Lie subgroup with the definition above.

Example 2.2. The following examples are subgroups of the Lie group G =
GLn(C) and are typically called matrix groups.

(1) The subgroup GLn(R) ⊂ GLn(C) can be identified with an open sub-
set of Rn2

and is seen to be a Lie subgroup by restricting the inclusion
Rn2

↪→ Cn2
.

(2) The special linear group SLn(R) ⊂ GLn(R) of matrices with determi-
nant 1 is the level set of the smooth determinant map. As 1 is a regular
value, SLn(R) is an embedded submanifold.

(3) Let O(n) be the orthogonal group consisting of all n× n real-entried ma-
trices A such that AAT = In with In the n-diagonal identity matrix.
Then det(A) = ±1 and O(n) ⊂ GLn(R). In fact, O(n) is the level set
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14 Lie Groups and and their Lie algebras

of the identity In of the map Ψ : GLn(R) ∋ A 7→ AAT ∈ Matn(R).
One can verify that the map Ψ has constant rank such that O(n) is an
immersed submanifold. (See Example 7.27 in [Lee12].)

(4) The subgroup SO(n) is the intersection SLn(R) ∩ O(n), or in other
words, the connected component of O(n) at the identity. In view of
this last statement it is an open submanifold of O(n) and also a Lie
subgroup.

(5) In identical fashion one can show that the unitary group U(n) of the
complex-entried matrices A with AA† = In and the special unitary
group SU(n) those matrices with determinant 1 are both Lie subgroups
of GLn(C).

2.1.3 Lie group homomorphisms

A Lie group homomorphism between two Lie groups G and H is a group
homomorphism f : G → H which is also smooth.

Theorem 2.2. Suppose G and H are Lie groups and f : G → H is Lie group
homomorphism. Then d f : g→ h is a Lie algebra homomorphism.

Proof. Suppose X, Y ∈ g and let Xe, Ye ∈ TeG be their values at the identity.
It is easy to verify that dϕ[Xe, Ye] = [dϕ(Xe), dϕ(Ye)]. Thus the vector fields
dϕ[X, Y] and [dϕ(X), dϕ(Y)] agree at the identity and in view of Theorem
2.1 these coincide.

Corollary 2.2. Let f : G → H be a diffeomorphism which is also a group homo-
morphism. Then d f : g→ h is an isomorphism.

Proposition 2.2. Let H ⊆ G be a Lie subgroup and h (resp. g) the Lie algebra
of H (resp. G). Then there exists a canonical inclusion h ↪→ g such that h is a
subalgebra of g.

Proof. First note that the group inclusion ι : H → G is a group homomor-
phism and an immersion. The corresponding Lie algebra homomorphism
dι : h → g from Theorem 2.2 is then seen to be injective and the claim
follows.

The converse also turns out to be true. One can define an involutive
distribution D given by

Dg = {Xp ∈ TPG : X ∈ h} (2.1)

14
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2.1 Smooth structure of a Lie group 15

and apply the global Frobenius theorem*. The leaf passing through the
identity is then seen to be a subgroup; for the full details we refer to [Lee12,
Theorem 19.16].

Theorem 2.3. Let G be a Lie group, g its Lie algebra and h ⊆ g a subalgebra of
g. Then there exists a unique closed subgroup H ⊆ G such that TeH ∼= h.

2.1.4 Exponential map

The exponential map of a Lie group further explores the relationship be-
tween a Lie group and its Lie algebra.

By a one-parameter subgroup H = {gt}t∈R ⊂ G we mean an R-
indexed subgroup such that g0 = e and gtgs = gt+s. It is easy to check
the following.

Proposition 2.3. There is a one-to-one correspondence between one-parameter
subgroups of G and integral curves of left-invariant vector fields.

To some degree this result makes a correspondence between group el-
ements, in terms of one-parameter subgroups, and Lie algebra elements
in g, in terms of integral curves. The exponential map makes this idea
concrete and allows us to easily translate structure on the Lie algebra g to
structure on the Lie group G.

Definition 2.3. For X ∈ g let γX(t) be the integral curve of X passing
through the identity at time t = 0. The exponential map exp : g → G is
given by:

exp(X) := γX(1). (2.2)

Note that exp : g→ G is well-defined in view of Proposition 2.1.
The following proposition describes basic properties of the exponential

map.

Proposition 2.4. Let G be a Lie group and g its Lie algebra. The following state-
ments are true.

(1) For any X ∈ g and t ∈ R, exp tX = γX(t).

(2) The exponential map is smooth.

(3) For any X ∈ g and t, s ∈ R, exp((t + s)X) = exp(tX) exp(sX).

*for a discussion of distributions and the global Frobenius Theorem see Appendix A.
We will use distributions later in Chapter 3 and Chapter 5.
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16 Lie Groups and and their Lie algebras

(4) The exponential map is smooth and restricts to a diffeomorphism of a neigh-
borhood of the origin 0 in g to a neighborhood of the identity e in G.

Proof. See [Lee12, Proposition 20.5] and [Lee12, Proposition 20.8].

The exponential map is a natural transformation.

Proposition 2.5. Suppose G and H are Lie groups, g and h the corresponding
Lie algebras and f : G → H a Lie group homomorphism. Then the following
diagram commutes:

g h

G H

d f

f

expG expH

Proof. It is clear that f takes one-parameter groups in G to one-parameter
groups in H. The claim follows from differentiation and Proposition 2.4.

The exponential map in abstracto can be difficult to work with. Fortu-
nately, for matrix groups G ⊂ GLn(C) it coincides with the ordinary expo-
nential defined as follows. Given any matrix A ∈ GLn(C) let expE(A) be
the formal power series given by:

expE(A) :=
∞

∑
n=0

An

n!
, (2.3)

where the E stands for ’Euclidean’. To see that this series actually con-
verges, denote by || · || the Frobenius norm on GLn(C) which is the inher-
ited norm from the canonical inclusion GLn(C) ↪→ R2n2

. The Frobenius
norm will make another appearance in Chapter 6. Concretely, given a ma-
trix A ∈ G with elements Ai

j it is easy to see that ||A|| = Tr(AA†). For
any m ∈ N the partial sum sm of the series in eq. 2.3 is bound from above
by ∑m

n=0 ||A||n(n!)−1 and the series converges uniformly.
Denote by γA : R→ GLn(C) the one-parameter group given by expE(tA).

By the uniform convergence demonstrated above we may differentiate to
find

d
dt

expE(tA) = A expE(tA). (2.4)

In particular d/dt|t=0 expE(tA) = A and the uniqueness of integral
curves guarantees that γA is the one-parameter group associated to the
vector A ∈ g.

16
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2.2 Lie group actions 17

We use the exponential map to compute the Lie algebra g of the Lie group
U(n), which is typically denoted u(n). Suppose X ∈ g and t sufficiently
small as in Proposition such that the exponential map is a diffeomorphism.
As exp(tX) ∈ G is a group element is satisfies the identity

exp(tX) exp(tX)† = In (2.5)

= (1 + tX + O(t2))(1 + tX† + O(t2)). (2.6)

(cf. equation 2.3.) Then differentiating eq. 2.6 on both sides and evaluating
at t = 0 yields the identity

X + X† = 0, X ∈ u(n). (2.7)

In other words, u(n) is the Lie algebra of anti-Hermitian matrices.
To find the Lie algebra su(n) of the special unitary group SU(n) we

need the following simple lemma about the determinant map.

Lemma 2.1. Let A ∈ GLn(C) be a matrix and In the identity matrix. Then
det(In + tA) = 1 + t Tr(A) + O(t2) as t→ 0.

Now suppose X ∈ su(n) and let γX(t) be the integral curve of X start-
ing at the identity. Then det(γX(t)) = 1 for all t ∈ R. Differentiating at
t = 0 with the above lemma now yields Tr(X) = 0. We summarise this
discussion.

Proposition 2.6. The Lie algebra su(n) of the Lie group SU(n) is given by:

su(n) =
{

X ∈ Matn(C) : X + X† = 0, Tr(X) = 0
}

.

2.2 Lie group actions

Lie group actions appear often and generalise ordinary group actions fa-
miliar from group theory. In the case of Lie groups the discussion becomes
more involved as the group G and the acted upon manifold M posses a
differentiable structure. We see how a group action transports smooth
structure and give general conditions when the quotient space is smooth.
Then we discuss Lie group actions on a vectorspace and the adjoint repre-
sentation.
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18 Lie Groups and and their Lie algebras

Definition 2.4. Let G is a Lie group and M a smooth manifold. A smooth
right-action of G on M is a smooth map θ : M×G → M written as G×M ∋
(p, g) 7→ p · g ∈ M that satisfies:

(p · g1) · g2 = p · (g1g2), g1, g2 ∈ G, p ∈ M,
p · e = p, p ∈ M.

We also say that the triple (G, M, θ) is a right-G-action on M or that M is
a G-space when the action is clear from the context. One can define a left-
action similarly and the theories of left- and right actions are identical up
to some signs. When not specified otherwise, we always mean a smooth
right-action by the word action.

2.2.1 Orbits and actions

Given a G-space M, fix an element p and let

Op = {x ∈ M : ∃g ∈ G with g · p = x} (2.8)

be the orbit of p in M. We call the map θ(p) : G ∋ g 7→ p · g the orbit map.
On the other hand, we can also fix an element g to obtain a smooth map
θg : M → M with inverse θg−1 . This leads to a dual map G → Diff(M) by
sending g 7→ θg.

The isotropy group Gp of G at p ∈ M is the subgroup of all g ∈ G such
that p · g = p.
There are various types of actions one might want to study. The following
appear frequently. Let (G, M, θ) be a G-action.

• The action is said to be free if p · g1 = p · g2 implies g1 = g2(∈ G). For
a free action the orbit map θ(p) : G → M is then a diffeomorphism.

• We say G acts properly if the map θ : M× G → M is a proper map,
i.e. preimages of compact sets are compact.

• The action is called transitive if the orbit map is surjective for some
p ∈ M. Equivalently, for each p, q ∈ M there exists a g ∈ G such
that p · g = q. The manifold M in this case is called a homogeneous
G-space.

18
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2.2 Lie group actions 19

Example 2.3. Suppose G is a Lie group and let g be its Lie algebra. There
exist natural left actions of G on itself by left and right multiplications:

λ : G× G ∋ (g, h) 7→ gh,

ρ : G× H ∋ (g, h) 7→ hg−1.
(2.9)

This action is free and transitive, and proper if the Lie group G is compact.

Given an action (G, M, θ) we can associate to a vector X ∈ g, a vector field
on M as follows. Suppose p ∈ M and consider the curve γ(t) in M given
by exp(tX) · p. The tangent vector of this curve at p given by

γ′(0) =
d
dt t=0

(exp(tX) · p) ∈ TpM (2.10)

is well-defined. By varying p in M we obtain a rough vector field denoted
XF called the fundamental vector field The following proposition, shows,
among other things, that this vector field is smooth.

Proposition 2.7. Let (G, M, θ) be an action and X ∈ g. Then the fundamental
vector field XF of X is smooth. Moreover, the fundamental map σ : g→ X (M)
is a Lie algebra homomorphism.

Proof. See [Lee12, Lemma 20.14] and [Lee12, Theorem 20.15].

We can state the main result. The main idea is to apply the global Frobe-
nius theorem to the distribution

Dp = Tp(G · p), (2.11)

which is involutive by the proposition above. One has to show that the
distribution is smooth and construct an atlas for the quotient space M/G;
both arguments are worked out in [Lee12, Theorem 21.20].

Theorem 2.4 (Quotient Manifold Theorem). Let (M, G, θ) be a free and
proper action. The quotient space M/G has the structure of a topological mani-
fold of dimension dim M− dim G, and a unique smooth structure such that the
quotient map M→ M/G is a smooth submersion.

This result now quickly gives a classification of homogeneous G-spaces.

Theorem 2.5 (Homogeneous Manifold Theorem). Let M be a homogeneous
G-space, p ∈ M and let Gp ⊂ G be the isotropy subgroup of G. There exists a
diffeomorphism G/Gp ∼= M

Version of July 17, 2024– Created July 17, 2024 - 12:17
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20 Lie Groups and and their Lie algebras

2.2.2 Group actions on a vectorspace

In the case M is also a vectorspace, we additionally require that the action
acts linearly on M. In other words, the action of G on M induces a map
ρ : G → Aut M as before, and this is called a representation of G on the
vectorspace M.

There is an extensive literature about Lie group representations. We
give the definition and then study the adjoint representation of a Lie group
on its Lie algebra.

Example 2.4. Let G be a Lie group and ρ : G → V a representation. We
define the dual representation ρ∗ : G → V∗ by

ρ∗(g)ϕ := ϕ ◦ ρ(g−1), g ∈ G, ϕ ∈ V∗. (2.12)

It is easy to check that ρ∗ is a group homomorphism.

The following section describes the canonical group representation of
a Lie group G on its Lie algebra g, known as the adjoint representation.

Adjoint representation of a Lie group and Lie algebra

For a group element g ∈ G let λg resp. ρg denote the left resp. right
translation maps corresponding to g. Write cg := λg ◦ ρg : G ∋ h 7→ ghg−1

for their composition. Note that cg is a group isomorphism with inverse
cg−1 , which fixes the identity e in particular. The differential of this map at
the identity is an isomorphism of TeG ∼= g to itself and is typically written
Adg : g ∋ X 7→ dcg(X) ∈ g. For arbitrary g ∈ G, this description gives
a group homomorphism Ad : G → Aut(g) called the adjoint representation
of G.

The Lie algebra g also has a natural action on itself by means of the Lie
bracket [·, ·]. That is to say, given any element X ∈ g there is an endomor-
phism adX : Y 7→ [X, Y] of g, and the map ad : g → End(g) is called the
adjoint representation of g.

The following proposition shows that the adjoint representation ad of
g is the differential of Ad. Its proof is not interesting for our applications;
we refer to [Lee12, Theorem 20.27] or [Var13, Theorem 2.3.10].

Theorem 2.6. For any X ∈ g

adX =
d
dt |t=0

Adexp(tX) (2.13)

20
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2.2 Lie group actions 21

as an element of End(g). In addition the following diagram commutes:

g g

G G

ad

Ad

exp exp

The dual g∗ and Ad-invariant functions

Let g∗ := Hom(V, F) be the dual vectorspace of g. For ξ ∈ g∗ denote
ξ(X) = ⟨ξ, X⟩. There is a natural action of G on g∗ called the coadjoint
representation by setting

⟨Ad∗g(ξ), X⟩ = ⟨ξ, Adg−1(X)⟩, ξ ∈ g∗, X ∈ g. (2.14)

One can easily verify the identity (Ad∗g ◦Ad∗h)(ξ) = Ad∗gh(ξ).
Suppose f ∈ C∞(g∗) is a smooth map and denote its differential by

d f . We can identify d f with a linear map denoted by the same symbol
d f : g∗ → g as follows. There exists a canonical linear isomorphism g ∼=
g∗∗ with respect to the vectorspace structure. Moreover, given a finite-
dimensional vector space V there is for any v ∈ V a natural isomorphism
TvV ∼= V. The differential of f at ξ ∈ g∗ written as d f (ξ) is thus a linear
functional on g∗ and an element of g. We write this as a map

d f : g∗ → g. (2.15)

Definition 2.5. A function f : g → F (resp. f : g∗ → F) is said to be
Ad-invariant (resp. Ad∗-invariant) if for all X ∈ g (resp. X ∈ g∗) and g ∈ G
we have f (Adg(X)) = f (X) (resp. f (Ad∗g(X)) = f (X).

We later need the following lemma and state it only for Ad∗-invariant
functions.

Lemma 2.2. Suppose f ∈ C∞(g∗) is an Ad∗ invariant function. Then for all
ξ ∈ g∗

ad∗d f (ξ)(ξ) = 0. (2.16)

Moreover, the following diagram commutes for any g ∈ G:

g∗ g

g∗ g

d f

d f

Ad∗g Ad∗g

Version of July 17, 2024– Created July 17, 2024 - 12:17

21



22 Lie Groups and and their Lie algebras

Proof. For any X ∈ g and ξ ∈ g∗ using Theorem 2.6 and Ad∗-invariance
yields

⟨ad∗d f (ξ)(ξ), X⟩ = −⟨(ξ), add f (ξ)(X)⟩ = −⟨ad∗X(ξ), d f (ξ)⟩

= − d
dt |t=0

f (Ad∗exp tX(ξ))) = −
d
dt |t=0

f (ξ) = 0.
(2.17)

Commutativity of the diagram is proven in [AVV13, Lemma 2.9].

A Lie algebra is called simple if it contains no non-trivial subalgebras and
semi-simple if it can be written as a direct sum of simple subalgebras. Its
proof uses far more representation theory than we have at our disposal;
a mostly self-contained discussion can be found in [Bum+04, Chapter 10,
Proposition 10.5].

Proposition 2.8. Let g be a semi-simple Lie algebra of a Lie group G. The bilinear
form

⟨X|Y⟩ := Tr(adX ◦ adY), X, Y ∈ g, (2.18)

called the Killing-form is symmetric and Ad-invariant, and non-degenerate if
and only if the Lie algebra g∗ is semi-simple.

Nearly all Lie algebras that we work with in this text are semi-simple, such
as the Lie algebras of Example 2.2.

A non-degenerate bilinear form ⟨·|·⟩ such as the Killing form allows us
to identify a Lie algebra g with its dual g∗ as follows. By differentiating the
Ad-invariance identity

⟨Adg(Y)|Adg(Z)⟩ = ⟨Y|Z⟩, Y, Z ∈ g, (2.19)

we obtain
⟨adX(Y)|Z⟩+ ⟨Y|adX(Z)⟩ = 0. (2.20)

Let ∧ denote the induced isomorphism g → g∗ by the non-degenerate
form ⟨·, ·⟩. Then the following diagram commutes for any g ∈ G:

g g∗

g g∗

∧

∧
Adg Ad∗g

Indeed, equation (2.19) implies for arbitrary X, Y ∈ g:

⟨Ad∗g(X̂), Y⟩ = ⟨X̂, Adg−1(Y)⟩ = ⟨X|Adg−1(Y)⟩

= ⟨Adg(X)|Y⟩ = ⟨Âdg(X), Y⟩.
(2.21)

22

Version of July 17, 2024– Created July 17, 2024 - 12:17
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The adjoint and coadjoint actions thus naturally become identified. This
plays an important role when we study the canonical Poisson structure of
the dual g∗ in the next chapter.
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Chapter 3
Poisson structures and integrability

A Poisson structure is the mathematical description of a mechanical sys-
tem and is a Lie-Bracket on the space of smooth functions of the phase
space, allowing for a study of Hamiltonian mechanics. They first appeared
in a Poisson’s study of conserved variables of mechanical systemsin the
following form:

{ f , g} :=
2n

∑
i=1

(
∂ f
∂xi

∂g
∂yi −

∂ f
∂yi

∂g
∂xi

)
, f , g ∈ C∞(R2n),

where (x1, . . . , xn, y1, . . . , yn) are standard coordinates. Poisson found that
{ f , H} = 0 and {g, H} = 0 implies {{ f , g}, H} = 0, for an arbitrary
smooth function H ∈ C∞(M). Indeed, Jacobi later proved that this bracket
operation satisfies the Jacobi identity, and the identity now bears his name.

We develop the structure theory of Poisson manifolds in terms of the
distribution of Hamiltonian vector fields and view a symplectic manifold
maximally regular Poisson manifold. At the end we discuss group actions
on symplectic manifold and the notion of an integrable system.

3.1 Poisson Structures

We introduce Poisson manifolds.

3.1.1 The Poisson bracket

Suppose M is a smooth manifold. A Poisson structure on M is a Lie bracket
{·, ·} on the R-vectorspace C∞(M) that satisfies the Leibniz rule in each
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26 Poisson structures and integrability

argument:

{ f , gh} = h{ f , g}+ g{ f , h}, f , g, h ∈ C∞(M). (3.1)

The pair (M, {·, ·}) is called a Poisson manifold and the bracket {·, ·} is
called the Poisson bracket. Note that the Poisson bracket of any constant
function vanishes.

In this text many Poisson structures appear on vectorspaces. Denote
by M an n-dimensional vector space. For a given set of coordinate func-
tions {xi} corresponding to some basis of M, the structure functions xij :=
{xi, xj} are the components of an anti-symmetric 2-tensor on M that satisfy
the following identities:

xij = −xji,
n

∑
m=1

(
∂xij

∂xm xmk +
∂xjk

∂xm xmi +
∂xki

∂xm xmj

)
= 0, i, j, k = 1, . . . , n.

(3.2)

The second equation is an easy consequence of the Jacobi identity.
Conversely, given an indexed set {xij}n

i,j=1 of smooth functions satis-
fying equation (3.2) the vectorspace Rn may be equipped with a Poisson
structure by setting {xi, xj} := xij, where {xi}n

i=1 are the canonical coordi-
nate projection maps.

Example 3.1. Suppose A ∈ Matn(C) is any constant skew-symmetric n×
n matrix. From linear algebra it is known that there exists a coordinate
transformation and a non-negative integer r ∈N such that

A =

 0 Ir 0
−Ir 0 0

0 0 0

 . (3.3)

The matrix A satisfies eq. (3.2) and hence determines a Poisson structure
{·, ·}A. We call the integer 2r the rank of {·, ·}A.

Example 3.2 (Kirillov bracket). Suppose G is a Lie group, g its Lie algebra
and g∗ the dual. Define the Kirillov-bracket on g∗ by

{ f , g}(ξ) := ⟨ξ, [d f (ξ), dg(ξ)]⟩, ξ ∈ g∗, f , g ∈ C∞(g∗). (3.4)

(Cf. Section 3.2.) The Leibniz property follows from the product rule
and Jacobi identity from the same identity for [·, ·]g. The pair (g∗, {·, ·})
is called the Lie-Poisson structure and plays an important role in the later
chapters of this text.

26
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3.1 Poisson Structures 27

As the Poisson bracket is a biderivation, we consider the following 2-
tensor called the Poisson tensor:

P : Ω(M)×Ω(M) −→ R,
(d f , dg) 7−→ { f , g}.

(3.5)

Note that P is well-defined as the Poisson bracket annihilates constant
functions. Also, {·, ·} can be reconstructed from the Poisson tensor P: an
easy computation shows that the components of the tensor P in local co-
ordinates (xi) are given by

P = xij ∂

∂xi ∧
∂

∂xj . (3.6)

The map P leads by duality to a smooth map P̃ : Ω(M) → X (M)
given by

P̃ : Ω(M) −→ X (M),
d f 7−→ (dg 7→ P(d f , dg)).

(3.7)

We denote the corresponding bundle homomorphism P̃ : T∗M → TM
with the same symbol.

We need the notion of a morphism between Poisson manifolds.

Definition 3.1. Let (M, {·, ·}M) and (N, {·, ·}N) be Poisson manifolds. A
Poisson morphism is a smooth mapping ϕ : M → N such that for all f , g ∈
C∞(N):

ϕ∗{ f , g}N = {ϕ∗ f , ϕ∗g}M (3.8)

A Poisson submanifold (N, {·, ·}′) of (M, {·, ·}) is then a submanifold
ι : N ↪→ M with a Poisson structure {·, ·}′ such that the inclusion ι is a
Poisson morphism. If such a structure {·, ·}′ exists, it must be unique.

3.1.2 Hamiltonian vector field

On a Poisson manifold (M, {·, ·}) we can associate a vector field to smooth
functions called the Hamiltonian vector field.

Suppose f ∈ C∞(M). The dual map to {·, ·} : C∞(M)× C∞(M) → R,
denoted X− is given by

X− : C∞(M) −→ X (M)

f 7−→ (g 7→ { f , g}) .
(3.9)
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Note that X− is well-defined as {·, ·} is a derivation in each argument.
We write X−( f ) = X f and X f is the Hamiltonian vector field of f . Observe
that X f = P̃(d f ). A Poisson manifold allows us to study Hamiltonian
mechanics in more general spaces than R2n.

Let Ham(M) = X−(C∞(M)) be the set of all Hamiltonian vector fields.
Then Ham(M) is an R-module with pointwise operations. The following
lemma shows that Ham(M) is also a subalgebra of X (M).

Lemma 3.1. Let (M, {·, ·}) be a Poisson manifold. For any f , g ∈ C∞(M):

[X f , Xg] = X{ f ,g} (3.10)

The map X− : C∞(M)→ X (M) is therefore is Lie algebra homomorphism.

Proof. This is equivalent to the Jacobi identity. Indeed, choose arbitrary
f , g, h ∈ C∞(M) and rewrite the Jacobi identity as

{ f , {g, h}}+ {g, {h, f }} = {{ f , g}, h},
X f (Xg(h))− Xg(X f (h)) = X{ f ,g}(h).

(3.11)

The claim follows.

For p ∈ M let Hamp(M) ⊆ TpM be the linear subspace spanned by the
Hamiltonian vector fields. Varying p in M gives a singular distribution
called the Hamiltonian distribution DHam. The previous lemma showed that
the distribution DHam is involutive. It is locally described by

Hamp(M) = span{X f1 , . . . , X fdim Hamp(M)
}, (3.12)

where Xi are Hamiltonian vector fields, i = 1, . . . , dim Hamp(M). Observe
that these vector fields may not be linearly independent throughout any
open set U \ {p}, with U some neighborhood of p. We give a more explicit
characterisation later (see Theorem 3.1).

Definition 3.2. Let (M, {·, ·}) be a Poisson manifold and p ∈ M. The
rank rkp{·, ·} at p is the natural number dim Hamp(M). Furthermore, a
Poisson manifold (M, {·, ·}) is called regular if rkp{·, ·} = const for all
P ∈ M.

A quick comparison shows that this notion agrees with Example 3.1.
The following two propositions display simple properties of the rank

and we refer for the proofs to [AVV13, Proposition 3.13, Proposition 3.16].

28

Version of July 17, 2024– Created July 17, 2024 - 12:17



3.1 Poisson Structures 29

Proposition 3.1. Let (M, {·, ·}) be a Poisson manifold and s ∈ N. The follow-
ing subset of M is open:

M(s) := {p ∈ M : rkp{·, ·} ≥ 2s}. (3.13)

Proposition 3.2. Let (M, {·, ·}M) and (N, {·, ·}N) be Poisson manifolds, p ∈
M and ϕ : M→ N a Poisson morphism. Then rkp{·, ·}M ≥ rkϕ(p){·, ·}N.

A Poisson structure often arises from a so-called symplectic structure. The
following section investigates symplectic structures and shows that a sym-
plectic manifold is a regular Poisson manifold with maximal rank.

3.1.3 Symplectic manifolds

A symplectic manifold (M, ω) is a smooth manifold M together with a
smooth closed non-degenerate 2-form ω. The non-degenerate property
means that for all p ∈ M the tangent space TpM has a skew-symmetric
non-degenerate bilinear form ωp that induces an isomorphism TpM ∼=
T∗p M. Globally this gives a bundle isomorphism denoted by the same sym-
bol:

ω̂ : TM −→ T∗M (3.14)

and thus an isomorphism

ω̂ : X (M) −→ Ω(M). (3.15)

Example 3.3. Let M = R2n be a smooth manifold and consider the 2-form
ω given with respect to the standard global coordinates (xi)2n

i=1 by

ω =
n

∑
i=1

dxi ∧ dxi+n. (3.16)

In other words, the components of ω in this basis are given by

ωij =

(
0 In
−In 0

)
. (3.17)

The matrix ωij is nonsingular and the 2-form ω is nondegenerate. Note
the similarity with Example 3.1.

Many symplectic structures arise in the following context.

Proposition 3.3. Let M be a smooth manifold and T∗M its cotangent bundle.
There exists a canonical symplectic closed 2-form ω on T∗M such that (T∗M, ω)
is a symplectic manifold.
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Proof. Let p ∈ M and choose (xi, ξ i) standard local coordinates in a neigh-
borhood of p in T∗M. Suppose ξ ∈ T∗p M is a covector and denote by
π : T∗M → M the canonical projection map that sends (xi, ξ i) 7→ (xi).
The map π is smooth and its differential at (p, ξ) is a linear map dπ(p,ξ) :
T(p,ξ)(T∗M) → TpM. Define the 1-form θ ∈ Ω(T∗M) in local coordinates
by T(p,ξ) ∋ X 7→ ξ(dπ(p,ξ)(X)). It is easy to show that θ is smooth and in
standard local coordinates is described by θ = ξ idxi. The 2-form ω := dθ
is clearly closed and non-degenerate by the same arguments as Example
3.3.

The 1-form θ above is called the tautological 1-form on T∗M. We actually
showed that the cotangent bundle has a symplectic structure whose form
is given by (3.16). Significantly enough, it turns out that any symplectic
manifold can locally be written in this form, known as the Darboux Theo-
rem. We will later see a generalisation of this result to Poisson manifolds
known as the Splitting Theorem.

For f ∈ C∞(M) there corresponds a vector field X f = ω̂−1(d f ) and X f is
called the Hamiltonian vector field of f for obvious reasons. We use the
convention X f (g) = ω(X f , Xg). Moreover, we can define a bracket on on
C∞(M) by setting { f , g} := ω(X f , Xg). The only non-trivial property to
show {·, ·} is a Poisson bracket, is the Jacobi identity. The following lemma
shows that this is equivalent to the requirement dω = 0.

Lemma 3.2. Suppose M is a smooth manifold with a non-degenerate two-form ω
and define the bracket { f , g} = ω(X f , Xg) for f , g ∈ C∞(M). Then (M, {·, ·})
is a Poisson manifold if and only if dω = 0.

Proof. Recall the following formula for vector fields X1, X2, X3 ∈ X (M):

dω(X1,X2, X3) =
1
3
[X1ω(X2, X3) + X2ω(X3, X1) + X3ω(X1, X2)

−ω([X1, X2], X3)−ω([X2, X3], X1)−ω([X3, X1], X2)].
(3.18)

One may now easily rewrite dω = 0 to the Jacobi identity. The converse is
the argument in reverse.

Any symplectic manifold (M, ω) is thus a Poisson manifold. The fol-
lowing proposition shows that the converse can also hold.

Proposition 3.4. Let (M2n, {·, ·}) be a Poisson manifold such that rkp{·, ·} =
2n for all p ∈ M. Then there exists a symplectic structure ω on M such that its
induced Poisson structure coincides with {·, ·}.

30
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3.1 Poisson Structures 31

Proof. Let P̃ : T∗M → TM be the bundle homomorphism from before.
Then P̃ is stalkwise invertible and there exists an inverse map P̃−1 : TM→
T∗M. Note that P̃−1 is smooth as P̃ has constant rank. We define ω̂ := P̃−1

and let ω ∈ ∧2Ω(M) be the corresponding 2-form on M. It suffices to
show that dω = 0. For any Hamiltonian vector fields using the identity
eq. (3.18) yields

3dω(X f , Xg, Xh) = X f ω(Xg, Xh)−ω([Xg, Xh], X f ) + cyclic terms

= 2 ({ f , {g, h}}+ {g, {h, f }}+ {h, { f , g}})
= 0,

(3.19)

by the Jacobi identity, where , f , g, h ∈ C∞(M). This finishes the proof.

The full converse need not be true, i.e. not every Poisson manifold
is a symplectic manifold. It turns out that more can be said about this
relationship. We sketch the proof below and need a result about the local
structure.

3.1.4 Local structure of a Poisson manifold

The following structure result is generalisation of the Darboux theorem for
symplectic manifolds. [AVV13, Theorem 3.25]

Theorem 3.1 (Splitting Theorem). Suppose (M, {·, ·}) is a Poisson manifold
of dimension n, let p ∈ M be arbitrary and denote the rank of {·, ·} at p by 2r,
s := n − 2r. There exists a coordinate neighborhood U of p with coordinates
(q1, . . . , qr, p1, . . . pr, z1, . . . , zs) centered at p, such that on U

{·, ·} =
r

∑
i=1

∂

∂qi ∧
∂

∂pi +
1
2

s

∑
k,l=1

ϕkl
∂

∂zk ∧
∂

∂zl , (3.20)

where the components ϕkl are smooth functions that depend only on z1, . . . zs, and
vanish at p.

Sketch: proceed with induction on r. If r = 1 there exists a smooth function
p1 such that Xp1(p) ̸= 0. Moreover, there exist local coordinates such that
Xp1 = ∂/∂q1. Note that {p1, q1} = 1. Then Xp1 and Xq1 form an involutive
distribution as [Xp1 Xq1 ] = X1 = 0 and applying the Frobenius theorem
gives a decomposition of M into 2-dimensional submanifolds. The local
description of these leaves then implies eq. (3.20) and the general case
hence follows from induction.
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Let (M, {·, ·}) be a regular Poisson manifold. The Hamiltonian distri-
bution DHam is an involutive distribution and by the Frobenius theorem
there exists a foliation of the manifold M into immersed submanifolds of
dimension rk{·, ·} = 2r. Each leaf has by restriction a Poisson structure
{·, ·}′ whose rank coincides with the dimension of the leaf, and hence de-
termines a symplectic structure by Proposition 3.4. The leaves are called
the symplectic leaves of the Poisson manifold (M, {·, ·}) and the foliation a
symplectic foliation.

In fact, it turns out that the distribution need not be regular. Any Pois-
son manifold admits a decomposition into symplectic leaves with varying
dimensions. This follows from (3.1); details can be found in [AVV13, The-
orem 3.26]. To finish this section, we state a general result for determining
whether a submanifold is a Poisson submanifold that we will use later. Its
proof rather lengthy and can be found in [AVV13, Proposition 3.33].

Proposition 3.5. Let (M, {·, ·}) be a Poisson manifold and N ⊂ M an immersed
submanifold, There exists a Poisson structure {·, ·}′ on N such that N is a Pois-
son submanifold if and only if the restriction of every Hamiltonian vector field on
M to N is tangent to N.

3.2 The Lie Poisson structure g∗

The most important Poisson manifold of this text is the canonical Poisson
structure on the dual Lie algebra g∗ belonging to some Lie group G.

Example 3.2 already introduced the Kirillov bracket. We now show
how it arises in a canonical manner. The space of linear functions on g∗,
the double dual g∗∗, can be naturally identified with g. For the sake of
notation, let X∗ ∈ g∗∗ be the element corresponding to X ∈ g. g∗∗ has the
natural structure of a Lie algebra by setting [X∗, Y∗] = [X, Y]∗. As such, g∗

can be given a Poisson structure whose structure functions are precisely
the structure constants of g by setting

{X∗, Y∗} := [X∗, Y∗]. (3.21)

we claim that

{ f , g}(ξ) = ⟨ξ, [d f (ξ), dg(ξ)]⟩, f , g ∈ C∞(g∗), (3.22)

i.e. this bracket coincides with the Kirillov bracket. Indeed, the equation
is valid for linear functions on g∗ and both sides are a derivation in the
smooth functions f and g.

The integral curves of the Hamiltonian vector fields of (g∗, {·, ·}) are
easily described.

32
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3.2 The Lie Poisson structure g∗ 33

Lemma 3.3. Let f ∈ C∞(g∗) and X f its Hamiltonian vector field. Its integral
curve ξ(t) starting at ξ ∈ g∗ is given by:

d
dt

ξ(t) = Ad∗d f (ξ(t))(ξ) (3.23)

Proof. Suppose ξ(t) is a curve passing through ξ at t = 0. For the sake of
notation write ζ = ξ(t). Expanding the right-hand-side of the condition
ξ ′(t) = (X f )ξ(t) yields for arbitrary g ∈ C∞(g∗)

(X f )ζ(g) = {g, f }(ζ) = {ζ, [dg(ζ), d f (ζ)]}
= {ζ,−add f (ζ)(dg(ζ))} = {ad∗d f (ζ)(ζ), dg(ζ)}. (3.24)

On the other hand, the left-hand-side of the same condition can be written
using the chain rule as

ξ ′(t)(g) =
d
dt |t=0

(g ◦ ξ)(t) = ⟨ξ̇, dg(ζ)⟩. (3.25)

Equations (3.24) and (3.25) now imply eq. (3.23).

If the Lie algebra admits an Ad-invariant non-degenerate bilinear form,
then we can also rewrite (3.23) as a so-called Lax-equation

dξ

dt
= [ξ,−d f (ξ)], (3.26)

We will study Lax equations extensively in Chapter 5.

We describe the symplectic leaves of the Poisson manifold (g∗, {·, ·}). For
ξ ∈ g∗ let Oξ be the orbit of ξ in g∗ and Gξ the isotropy subgroup of ξ. The
orbit Oξ can be given the structure of a smooth manifold by G/Gξ

∼= Oξ

(cf. Theorem 2.5), as G clearly acts transitively on any orbit. Then TξOξ =
{ad∗X(ξ) : X ∈ g} as the tangent space is spanned by the fundamental
vector fields of the group action.

Proposition 3.6. Let G be a Lie group and g∗ its dual Lie algebra equipped with
the canonical Lie-Poisson structure. The symplectic leaves of g∗ are precisely the
coadjoint orbits in g∗.

Proof. It suffices to show for any point ϕ ∈ Oξ that

TϕOξ = Hamϕ(g
∗). (3.27)

Indeed, then Oξ is the symplectic leaf associated to the Hamiltonian dis-
tribution at ξ. By eq. (3.23) and the comment above we have

TξOξ = {ad∗d f (ξ)(ξ) : f ∈ C∞(g∗)} = Hamϕ(g
∗) (3.28)

which completes the proof.
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3.3 Hamiltonian group actions

We investigate group actions on symplectic and Poisson manifolds which
preserve the respective structure of the space.

Definition 3.3. Let G be a Lie group, g ∈ G arbitrary and (M, ω) a sym-
plectic manifold. (M, ω) is called a symplectic G-space if there exists a
right action (G, M, θ) such that θ∗gω = ω, and the quadruple is written
(G, M, θ, ω).

Often we also want the fundamental vector fields σ(g) to be Hamilto-
nian.

Definition 3.4. Let (M, ω) be a symplectic G-space and let Ham(M) de-
note the set of Hamiltonian vector fields on ω. M is called strongly sym-
plectic if σ(g) ⊂ Ham(M), where σ maps elements in g to their fundamen-
tal vector field.

Definition 3.5. For a strongly symplectic right action (G, M, θ, ω), a lift λ :
g → C∞(M) of σ is a Lie algebra homomorphism such that the following
diagram with exact row commutes:

0 R C∞(M) Ham(M) 0

g

X−

λ σ

The triple (M, ω, λ) is called a Hamiltonian G-space. One also writes λ(X) =
HX.

Note that for arbitrary X, Y ∈ g this means:

{HX, HY} = H[X,Y]g , (3.29)

where [·, ·]g denotes the Lie bracket operation in g.
To give the above concept of a lift λ more clarity, consider the following

construction. Let X1, . . . , Xn ∈ g be a vectorspace basis and let ϕ1, . . . ϕn be
smooth such that σ(Xi) = ϕi for i = 1, . . . , n. The existence of a lift is then
equivalent to the condition that the map

ψ : g −→ C∞(M)

Xi 7−→ ϕi,
(3.30)

is a Lie algebra homomorphism, i = 1, . . . , n.

34
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3.3 Hamiltonian group actions 35

Given any strongly symplectic G-space this may not be possible. How-
ever, one can replace the Lie algebra g by g×R to make the action Hamil-
tonian. For the details see [Wal18, Section 3.2].

Example 3.4. Suppose G is a Lie group and ξ ∈ g∗ such that its orbit Oξ is
non-trivial. Let ω be the symplectic structure on Oξ . It is explicitly given
as follows: for ϕ ∈ Oξ and x, y ∈ TϕOξ , with x = ad∗Xϕ resp. y = ad∗Yϕ for
X, Y ∈ g, we have

ωϕ(x, y) = ⟨ϕ, [X, Y]⟩. (3.31)

We first show that (G,Oξ , Ad∗) is a symplectic G-space. Indeed, for any
g ∈ G we have

((Ad∗g)
∗ω)ϕ(x, y) = ωAd∗gϕ(x, y) = ⟨Ad∗gϕ, [AdgX, AdgY]⟩

= ωϕ(x, y).
(3.32)

In fact, we can directly show that the G-action is Hamiltonian. To this
end, note that the inclusion ι : Oξ → g∗ is a Poisson morphism and let
λ : g→ C∞(Oξ) be the dual map of ι given by

λ : X 7−→ (ϕ 7−→ ⟨ϕ, X⟩). (3.33)

One can easily verify that λ is the desired lift. In particular, (Oξ , ω) is a
strongly symplectic G-space.

We generalise the argument of the previous example. Given any Hamilto-
nian G-space (M, ω, λ) we can construct a natural map from M to g∗.

Definition 3.6. Let (M, ω, λ) be a Hamiltonian G-space and X ∈ g. The
moment map µ : M→ g∗ is defined by the relationship

⟨µ(p), X⟩ = HX(p), p ∈ M. (3.34)

One can easily verify from (3.29) that µ is a Poisson map and G-equivariant.
Clearly, given any G-equivariant Poisson map µ : M → g∗ on a symplec-
tic G-space M, the action is Hamiltonian. In many instances it is easier to
construct a moment map, as we see below.
The following proposition shows that any G-space M can be extend to a
Hamiltonian G-space on the cotangent bundle.

Proposition 3.7. Let (G, M, θ) be an action. Then there exists a natural action
denoted θ# on T∗M which is Hamiltonian.
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Proof. Fix a group element g ∈ G and using θ identify it with a diffeomor-
phism θg : M→ M. The map θg lifts to a bundle automorphism

θ#
g : T∗M −→ T∗M (3.35)

by setting θ#
g(p, ξ) = (θg(p), (θ∗g)−1ξ), where θ∗g : Ω(M) → Ω(M) is the

pullback of 1-forms. We show that θ#
g preserves the tautological 1-form on

T∗M, which we denote ρ. For any (p, ξ) ∈ T∗M and v ∈ T(p,ξ)(T∗M) we
have

((θ#
g)
∗ρ)(p,ξ)(v) = ρ(θg(p),(θ∗g)−1(ξ))((dθ#

g)(p,ξ)v)

= (θ∗g)
−1(ξ)(dπ(θg(p),(θ∗g)−1(ξ))((dθ#

g)(p,ξ)v))

= ξ(θ−1
g (dπ(θg(p),(θ∗g)−1(ξ))((dθ#

g)(p,ξ)v)))

= ξ(dπ(p,ξ)(v))

= ρ(p,ξ)(v).

(3.36)

We next show this action by is Hamiltonian constructing a moment map.
Let σ : g→ X (M) be the fundamental map and consider its dual given by
µp : T∗p M → g∗ given by µp(ξ)(X) = ξ(σ(X)p), where ξ ∈ T∗p M. Denote
the global map by µ : T∗M → g∗. To prove µ is a Poisson mapping,
we introduce some notation. Let HX ∈ C∞(T∗M) be given by µX(p) =
µ(p)(X) and τ : g → X (T∗M) the fundamental map of the action θ#

g. We
need to show

(dHX)(p,ξ)(v) = ω(v, τ(X)), v ∈ T(p,ξ)(T
∗M). (3.37)

First note that dπ(p,ξ)(τ(X)(p,ξ)) = σ(X)p. Thus

θ(p,ξ)(τ(X)(p,ξ)) = ξ(σ(X)p) = HX((p, ξ)) (3.38)

such that with Cartan’s magic formula we have

ιτ(X)ω = ιτ(X)dθ = Lτ(X)θ − dιτ(X)θ = −d(θ(τ(X))) = −dHX (3.39)

which is the desired equation (3.37), where the Lie derivative term van-
ishes as G acts by symplectomorphisms and hence preserves θ. In addi-
tion, we also need to show that µ is equivariant with respect to the coad-
joint action. This easily follows from the naturality of the exponential map.
The action is hence Hamiltonian and the proof is complete.

36
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3.3 Hamiltonian group actions 37

Example 3.5. In Example 2.3 we discussed natural actions of G on itself.
We identify T∗G ∼= G × g∗ by means of left-translations. One can easily
verify that the induced action in the sense above is given by

lg : (h, v) 7−→ (gh, v),

rg : (h, v) 7−→ (hg−1, Ad∗g(v)).
(3.40)

Hence, the corresponding moment maps are respectively given by

µl : (h, v) 7−→ v,
µr : (h, v) 7−→ −Ad∗h(v).

(3.41)
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Chapter 4
Riemann Surfaces

This chapter gives a down to earth introduction to the theory of Riemann
surfaces. Many references to the literature are provided for the sake of clar-
ity and space. In particular, we rely heavily on [For12] and have adapted
many ideas from their presentation.

We start with the definition of a Riemann surface and study elemen-
tary properties of a complex structure in a connected space. Sheaves con-
veniently describe the holomorphic and smooth structure, and play an
important role in our discussion. Thereafter we briefly describe the Rie-
mann surface associated to an algebraic equation and go on to investigate
divisors and holomorphic line bundles.

4.1 Complex structure

Suppose X is a topological 2-manifold and x ∈ X. Let (U, z) and (V, ζ)

be coordinate neighborhoods both containing x, denote Û = z(U) ⊆ R2,
V̂ = ζ(V) ⊆ R2 and identify them with open subsets in C via the canonical
homeomorphism (x, y) 7→ x + iy. The two charts are called holomorphically
compatible if the transition function

ζ ◦ z−1 : z(U ∩V) −→ ζ(U ∩V)

is a biholomorphic map, i.e. the map is holomorphic with a holomorphic
inverse. Note that both the domain and image are subsets of C. A holo-
morphic atlas U is a collection of holomorphically compatible charts that
covers X. More precisely, one defines an equivalence class of holomorphic
atlases by

U ∼ V ⇐⇒ U ∪ V is an atlas.
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40 Riemann Surfaces

Any atlas determines a maximal atlas by applying Zorn’s lemma to the
set of atlases with partial ordering ⊆. A complex 1-manifold is a pair (X,U )
consisting of a topological 2-manifold X with a holomorphic atlas U . One
can similarly define higher dimensional complex manifolds; see for in-
stance [Sch02, Chapter 1]. Note that a complex 1-manifold is in particular
a smooth 2-manifold.

Definition 4.1. A Riemann surface is a complex connected 1-manifold.

The additional requirement of connectivity simplifies many of the ar-
guments and, crucially, leads to the Identity Theorem for Riemann sur-
faces. All complex manifolds that appear in this text are connected. Note
that an open subset of a Riemann surface has the canonical structure of a
Riemann surface in the usual manner.

A morphism in the category of Riemann surfaces is a holomorphic
map. Let X, Y be Riemann surfaces and f : X → Y a continuous. The
mapping f is called holomorphic if for every x ∈ X there exist coordinate
neighborhoods (U, z) centered at x and (V, ζ) centered at f (x) ∈ Y such
that the coordinate representation

f̂ := ζ ◦ f ◦ z−1 : z(U) −→ ζ(V)

is a holomorphic map.
A holomorphic function f : X → C is a holomorphic mapping from X

to C. We denote the set of holomorphic functions on the Riemann surface
X by O(X).

Example 4.1. The following Riemann surfaces appear frequently through-
out the text.

(1) The complex plane with the standard atlas (C, idC) is a Riemann sur-
face.

(2) We describe the Riemann sphere, denoted CP1, which is the one-point
compactification of C. Indeed, define CP1 := C ∪ {∞}, with ∞ a for-
mal symbol, and equip it with the basis consisting of (i) open subsets
of C (ii) sets of the form (C \ K) ∪ {∞}, with K ⊆ C a compact set.
With spherical projection one can show that CP1 is homeomorphic to
2-sphere S2. Consider the atlas given by

U1 = CP1 \ {∞}, z1 = idC,

U2 = CP1 \ {0}, z2 =

{
z−1 if z ̸= ∞
0 if z = ∞

.

40

Version of July 17, 2024– Created July 17, 2024 - 12:17



4.1 Complex structure 41

The maps z1, z2 are homeomorphisms and the transition function is
given by the holomorphic map z−1 : C∗ = C \ {0} → C∗. CP1 with
the standard atlas {(U1, z1), (U2, z2)} is called the Riemann sphere.

(3) Suppose w1, w2 ∈ C∗ are linearly independent over R. The lattice
spanned by {w1, w2} is given by

Γ := Zw1 + Zw2.

Define the complex-torus C/Γ as follows. We equip the space C/Γ with
the natural quotient topology inherited from the canonical projection
π : C → C/Γ. It is easy to see that π is also open and C/Γ is com-
pact and connected. The complex structure exists and is determined
uniquely from the projection π.

We state the removable singularity theorem for holomorphic functions on
a Riemann surface; it follows immediately from the same result on the
complex plane.

Theorem 4.1 (Removable Singularity Theorem). Suppose U is an open sub-
set of a Riemann surface and a ∈ U. If the function f ∈ O(U \ {a}) is bounded
in some neighborhood of a, then f may be holomorphically extended to all of U.

In addition, the following result generalises the Identity Theorem in the
plane to arbitrary Riemann surfaces. The assumption of connectivity is
necessary; for the proof we refer to [For12, Theorem 1.11].

Theorem 4.2 (Identity Theorem). Let f , g ∈ O(X) and assume that there
exists a subset A ⊆ X with an accumulation point such that f |A = g|A. Then
f = g on all of X.

The meromorphic functions, almost holomorphic functions with dis-
cretely many blowup points, often give great insight into the structure of
the Riemann surface.

Definition 4.2. A function f on a Riemann surface X is called meromorphic
if there exists a closed discrete subset A ⊆ X such that for all a ∈ A we
have limx→a | f (x)| = ∞ and f ∈ O(X \ A). Equivalently, a meromorphic
function is a non-constant holomorphic map X → CP1.

We write M (X) for the set of meromorphic functions on X. This space has
the natural structure of a C-algebra by pointwise operations and continu-
ing holomorphically across removable singularities if necessary.
The following result forms the foundation for the rest of our discussion;
any holomorphic map can locally be expressed in the simple form of eq.
(4.1). As a result, holomorphic maps are particularly well-behaved. A
direct proof can be found in [For12, Theorem 2.1].
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Theorem 4.3. Let X, Y be Riemann surfaces, f : X → Y a holomorphic map and
x ∈ X. Then there exist coordinate neighborhoods (U, z) centered at x and (V, ζ)
centered at f (x) ∈ Y such that f (U) ⊆ V and the coordinate representation of f
is given by

f̂ = zk. (4.1)

Note: the integer k in eq. (4.1) is called the multiplicity of f at x, written
v( f , x):

v( f , x) := k (4.2)

with k as in Theorem 4.3.
We state some immediate consequences and then discuss how holo-

morphic maps can be understood as covering maps.

Corollary 4.1. Suppose f : X → Y be a holomorphic map between Riemann
surfaces. Then f is open.

Corollary 4.2. Suppose f : X → Y is an injective holomorphic mapping of
Riemann surfaces. Then f maps biholomorphically onto its image f (X).

Proposition 4.1. Suppose X is a compact Riemann surface, Y a Riemann surface
and f : X → Y a non-constant holomorphic mapping. Then f is surjective and
Y is compact.

Proof. The image is open and compact, hence closed. The claim follows
from the assumptions that Y is connected and f (X) non-empty.

Corollary 4.3 (Liouville). Suppose f : C→ C is a holomorphic bounded func-
tion. Then f is constant.

Proof. The map f is bounded in a neighborhood of ∞ ∈ CP1 and hence can
be extended to a holomorphic function f : CP1 → C. The result follows
from Proposition 4.1.

4.2 Branching points and covering maps

Following from our description above, holomorphic mappings turn out
to be local homeomorphisms at most points of the domain and behave as
covering maps; this only fails on a closed discrete subset of the domain,
called the branching points of the holomorphic map. To make the descrip-
tion more precise, we turn to the theory of covering spaces.

42
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4.3 Smooth structures on a Riemann surface 43

Definition 4.3. A holomorphic map f : X → Y between Riemann surfaces
X and Y is called unbranched at p ∈ X if f is locally injective at p, i.e. f is
a local homeomorphism (cf. Corollary 4.2). On the other hand, the point
q ∈ X is called a branching point if f is not unbranched at q. The map is
called unbranched if there exist no branching points, and called branched
otherwise.

Example 4.2. Suppose k ∈N>1 and consider the monic polynomial f = zk

as a meromorphic function on CP1. The branching points of f are pre-
cisely 0, ∞ ∈ CP1 where the polynomial equation zk = a ∈ C fails to have
k solutions. One can easily see that the multiplicity of f at these points is
precisely k, such that with multiplicities counted any element has k solu-
tions *.

Recall that a continuous map between topological spaces f : X → Y is
called proper if the preimages of compact sets are compact. The following
result generalises the above example. Its proof relies on elementary prop-
erties of covering maps. See [For12, Sections 4.21-4.24] for a discussion.

Theorem 4.4. Let X and Y be Riemann surfaces and f : X → Y a proper non-
constant holomorphic map. There exist a, possible empty, closed discrete set of
branching points A ⊂ X and an integer n, called the number of sheets, such that
(i) the restriction f ′ : X \ f−1( f (A)) → Y \ f (A) is a holomorphic n-sheeted
covering map (ii) for any element in the image y ∈ Y, the fiber f−1(y) consists of,
counting multiplicities, n points. Elements of the subset f (A) are called critical
points for f .

Corollary 4.4. Suppose X is a Riemann surface and f : X → CP1 is a mero-
morphic function. Then, counting multiplicities, the number of poles coincides
with the number of zeros.

4.3 Smooth structures on a Riemann surface

Any Riemann surface also carries a smooth structure. In some instances
this smooth structure is easier to work with and gives more direct perspec-
tives.

Suppose X is a Riemann surface and U a holomorphic atlas for X. Let
(U, z) be a chart and identify z(U) ⊆ C with an open subset of R2 via the

*For the complex surfaces associated to level sets, one can show that the implicit func-
tion generalises with the same assumptions as the real case. For a direct proof see for
example [Dub09, Lemma 2.1.5]
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canonical homeomorphism x + iy 7→ (x, y). A function f on a Riemann
surface is said to be smooth if it is smooth in a coordinate representation
at any point, and we write E for the sheaf of smooth functions on a Riemann
surface X. Moreover, it is well known that the holomorphic functions f in
C are precisely those for which ∂z f = 0, where we define

∂

∂z
=

1
2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z
=

1
2

(
∂

∂x
+ i

∂

∂y

)
. (4.3)

In other words, there is an equality O(X) = ker E(X)
∂z−→ E(X). Also, the

pair (z, z) is sometimes called complex coordinates.
One key difference between holomorphic and smooth functions is the

existence of the partition of unity. The failure of existence of a ’holomor-
phic partition of unity’ suggests that the extension of holomorphic func-
tions is a more subtle question. This plays an important role when we
discuss meromorphic functions on and sheaf cohomology. The following
result makes this more concrete: the first cohomology group of E vanishes.

Theorem 4.5. For any Riemann surface X: H1(X, E) = 0.

Sketch: for any open cover U = (Ui)i∈I and 1-cocycle f = ( fij)i,j∈I ∈
Z1(U , E) define the cochain gi = ∑j ψj fij on Uij that then satisfies δg =

f , where (ψi)i∈I is a partition of unity subordinate to U . The claim then
follows.

The tangent and cotangent space are easily expressed in terms of a
smooth structure. Let X be a Riemann surface, p ∈ X and denote by TpX
(resp. T∗PX) the ordinary tangent space (resp. cotangent space) when X is
considered as a smooth manifold. Given any smooth function f ∈ E(X),
we may define the differential d f in the usual way. The following propo-
sition shows that the T∗p X can also be understood in terms of the complex
coordinates.

Proposition 4.2. Suppose X is a Riemann surface, p ∈ X and (U, z = x +
iy) is a coordinate neighborhood centered containing p. Then both {dpx, dpy}
and {dpz, dpz} form a basis of T∗p X. Moreover, for any f ∈ E(X) we have the
following equality:

d f =
∂ f
∂x

dx +
∂ f
∂y

dy

=
∂ f
∂z

dz +
∂ f
∂z

dz.
(4.4)

44
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4.3 Smooth structures on a Riemann surface 45

Suppose (U, z) and (V, z′) are coordinate neighborhoods centered at
p ∈ X, then we have:

∂z
∂z′

= c,
∂z
∂z′

= c,

∂z
∂z′

= 0,
∂z
∂z′

= 0,

where c ∈ C∗. Thus, the linear spaces T1,0
p X := Cdpz ⊂ T∗p X and T0,1

p X :=
Cdpz remain invariant under a change of coordinates.

Let E (1) denote sheaf of smooth 1-forms on a Riemann surface X. We
define the subsheaf E1,0 (resp. E0,1) as the subset of smooth 1-forms such
that on any open neighborhood U ⊆ X, E1,0(U) (resp. E0,1(U)) consists
of ω ∈ E (1)(U) with ω = f dz in any local coordinates (resp. ω = f dz),
with f ∈ E(U). E1,0 and E0,1 have the standard restriction maps, and
there exists a natural sheaf isomorphism E (1) ∼= E1,0 ⊕ E0,1. Moreover, let
Ω be the sheaf of holomorphic 1-forms ω of the form ω = f dz in local
coordinates on an open set U, where f ∈ O(U).

Definition 4.4. Suppose U is an open subset of a Riemann surface, p ∈ U
and f ∈ E(U). The holomorphic differential d′ (resp. antiholomorphic differ-
ential d′′) is the homomorphism E(U) → E (1,0) (resp. E(U) → E (0,1)(U))
given by f 7→ ∂z f dz (resp. f 7→ ∂z f dz).

Note that d = d′ + d′′ with the canonical isomorphism E (1) ∼= E1,0 ⊕
E0,1.

Denote by E (2) the sheaf of smooth 2-forms on a Riemann surface X
and let d : E (1) → E (2) be the standard differential that sends smooth k-
forms to smooth k+ 1-forms. It is easy to check that for any p ∈ X we have
dpz ∧ dpz = −2idpx ∧ dpy. One can similarly define the (anti)holomorphic
operators d′, d′′ on smooth 1-forms in terms of local coordinates.

We may interpret holomorphic 1-forms as the kernel of a differential
operator.

Lemma 4.1. Suppose U is an open subset of a Riemann surface and ω ∈ E1,0(U).
Then ω ∈ Ω(U) if and only if d′′ω = dω = 0.

Suppose (U, z) is a coordinate neighborhood on a Riemann surface
centered at p ∈ U and ω ∈ Ω(U \ p) a holomorphic 1-form. We may
assume that z(U) ⊂ C is the open disk of radius 1. In local coordinates we
can write ω = f dz, where f can be identified with a holomorphic function
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on z(U \ {0}) which has a Laurent expansion f = ∑∞
n=ν cnzn, ν ∈ Z. The

residue of ω at p is defined

Resp(ω) := c−1. (4.5)

For the proof of the following lemma see [For12, Section 9.9].

Lemma 4.2. The residue of a holomorphic 1-form is independent on the choice of
coordinates.

Definition 4.5. A 1-form ω on a Riemann surface X is called meromorphic
if there exists a closed discrete subset A such that ω ∈ Ω(X \ A) and ω has
a pole at every a ∈ A. The vectorspace sheaf of meromorphic 1-forms is
written M (1). Elements ω of M (1)(X) are also called Abelian differentials,
that are (i) of the first kind if ω is holomorphic everywhere, i.e. A = ø (ii)
of the second kind if the residue of ω is zero at every pole (iii) of the third
kind otherwise.

Note: The theory of complex integration can be constructed analogously
to that on smooth manifolds and we omit a discussion here. Generalising
integration of complex functions on the plane, holomorphic and meromor-
phic functions are well-behaved. We give a short discussion at the end of
Section 4.4.

4.4 Analytic continuation and more sheaves

We have seen above that the problem of extending holomorphic functions
presents many subtleties. Analytic continuation studies this problem by
investigating such extensions as multi-valued functions. We later need
the notion of analytic continuation along a curve.

Given a Riemann surface X, suppose p, q ∈ X and recall that the stalk
of O at p or q can be identified with the ring of series of series expansions:
Op ∼= C{z − p}. Let ϕ ∈ Op be a function germ and γ : [0, 1] → X a
piecewise smooth curve, γ(0) = p, γ(1) = q ∈ X. ψ ∈ Oq is said to be the
result of analytic continuation along γ if there exists a one parameter group
of function germs ϕt ∈ Oγ(t), 0 ≤ t ≤ 1, such that:

(i) ϕ0 = ϕ and ϕ1 = ψ;

(ii) for each t ∈ [0, 1] there exists an open interval T ∋ t, an open neigh-
borhood U of γ(T) and a holomorphic function f ∈ O(U) such that
for all t ∈ T

fγ(t) = ϕt, (4.6)

where fp denotes the function germ of f at p ∈ X.

46
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4.4 Analytic continuation and more sheaves 47

We will see an example of analytic continuation in Example 4.3.
A classical ’continuation’ is that of closed differential forms. For any

closed 1-form ω the function p 7→
∫ p

ω is in general multi valued. We
have the following more precise statement.

Proposition 4.3. Suppose X is a Riemann surface and suppose ω is a smooth
closed 1-form on X. There exist a connected topological space X̂, a covering map
p : X̂ → X and a smooth function f ∈ E(X̂) such that d f = p∗ω.

If the space M is simply connected then any closed form has a primitive.
The following construction gives a less restrictive condition.

Definition 4.6. Suppose ω is a a closed differential form on a Riemann sur-
face X. The integrals

∫
a ω, where a runs through the fundamental group

of X, are called the periods of ω and denoted pσ.

We have the following useful condition.

Proposition 4.4. A closed smooth 1-form ω on a Riemann surface has a primitive
if and only if all periods pσ vanish.

Proof. It is well-known that any exact 1-form has vanishing periods. Con-
versely, suppose ω is exact and let f ′ be a primitive on the universal cover
π : X̃ → X of π∗ω. As all periods vanish, f ′ is constant on the fibers of
π and hence determines a smooth primitive f on X which is the desired
function. This completes the proof.

Note: These statements are also clearly true on arbitrary smooth manifolds.

Let O be the sheaf of holomorphic functions on a Riemann surface X. We
have seen above that H1(X, E) = 0 and there exists an injective sheaf ho-
momorphism O ↪→ E . We can say somewhat more. To this end we need
the following important lemma. [For12, Theorem 13.2]

Lemma 4.3 (Dolbeoult’s Lemma). Suppose g ∈ E(X), where X = DR(0) is
the open disk centered at 0 of radius R ∈ (0, ∞]. There exists a smooth function
f ∈ E(X) such that

∂ f
∂z

= g.

It is now easy to prove the following.
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Proposition 4.5. Suppose X is a Riemann surface. There exist short exact se-
quences of sheaves

0 −→ O −→ E d′′−−→ E1,0 −→ 0,

0 −→ Ω −→ E1,0 d−→ E (2) −→ 0.
(4.7)

As a consequence, we have isomorphisms

H1(X,O) ∼= E1,0(X)/d′′E(X),

H1(X, Ω) ∼= E (2)(X)/dE1,0(x).
(4.8)

The dimension g := dim H1(X,O) is called the genus of a Riemann
surface X and plays an important role in the rest of our discussion. For
compact Riemann surfaces one can proof with some analytical machinery
that g < ∞; a discussion can be found in [For12, Chapter 14]. We now de-
scribe its relation to the familiar genus of compact topological manifolds,
the latter being understood as the number of ’holes’ of a topological space.

Let X be a compact Riemann surface and let H1(X, Z) be the first smooth
homology group of X. Recall that

a ∼ b ∈ H1(X, Z)⇐⇒
∫

a
ω =

∫
b

ω ∀ω ∈ Z1(X, E), a, b ∈ Z1(X, Z),

(4.9)
i.e. de Rham’s theorem applied to the first smooth homology group of X,
where Z1(X, E) denotes all closed smooth 1-forms on X. (Note: we iden-
tify the de Rham cohmology and Céch cohomology groups.) Indeed, de
Rham’s theorem gives an equality dim H1(X, Z) = dim H1(X, E). Con-
sider the following short exact sequence of sheaves:

0 −→ C −→ O d′′−−→ Ω −→ 0. (4.10)

The resulting long exact sequence is given by

0 −→ H0(X, C) −→ H0(X,O) −→ H0(X, Ω)

−→ H1(X, C) −→ H1(X,O) −→ H1(X, Ω)

−→ H2(X, C) −→ H2(X,O).
(4.11)

It turns out that H2(X,O) = 0 and dim H0(X, Ω) = dim H1(X,O) by a
remarkable result; in other words, there exist precisely g linearly indepen-
dent holomorphic differentials on a compact Riemann surface of genus

48
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4.4 Analytic continuation and more sheaves 49

g. These are consequences of the so-called Serre duality theorem. We do
not have the means and time to discuss this; for a neat introduction see
[AVV13, Section 5.1].

These dimensions imply dim H1(X, C) = 2g. With some work one
can show that there exists an isomorphism H1(X, C) ∼= H1(X, E); see for
example [For12, Chapter 19, Theorem 19.14]. We have thus recovered the
familiar equality dim H1(X, Z) = 2g.

H1(X, Z) can be given the structure of symplectic space, with a two
form given by the intersection number of two curves, denoted by a · b, a, b ∈
H1(X, Z). For a more detailed discussion see for example [FM11, Section
6.1]. This intersection number does not depend on the choice of repre-
sentatives. Most importantly, we will use later that there exists a basis
a1, . . . , ag, b1, . . . bg ∈ H1(X, Z) such that ai · aj = 0, ai · bj = δij and bi · bj =

0 called a canonical basis of cycles. Given any basis ω′1, . . . ω′g ∈ H1(X, Ω)
there exist matrices

2πiAij :=
∫

ai

ω′j, B′ij :=
∫

bi

ω′j, (4.12)

where the factor 2πi is placed for convenience. One can show that the ma-
trix Aij is invertible and after changing to a basis ω1, . . . , ωg where Aij = δij
we define the period matrix B by

Bij =
∫

bi

ωj. (4.13)

One can show that Bij is a symmetric matrix. For a more detailed discus-
sion see [AVV13, Section 5.2]. The subset Λ in Cg of γ running through∫

γ
−→ω is called the period-lattice. From our description above, it is clear that

Λ is actually a lattice. One can similarly show as above that a different
basis leads to an isomorphic lattice.

Definition 4.7. Suppose X is a compact Riemann surface of genus g and
let Λ ⊂ Cg be the period lattice of X. The quotient space Cg/Λ is called
the Jacobian of X.

We discuss the Jacobian again at the end of this chapter.

Integration of meromorphic 1-forms

Suppose X is a Riemann surface and ω ∈M (1)(X) a meromorphic 1-form.
Denote its set of poles by A. It is well known that for any ω̃ ∈ E (1)(X) with
compact support we have ∫∫

X
dω̃ = 0. (4.14)
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In view of the second isomorphism of equation (4.8), let ξ ∈ E (2)(X \ A)
be a representative of the holomorphic 1-form ω ∈ Ω(X \ A) and define

Res(ξ) =
1

2πi

∫∫
X

ξ. (4.15)

We show that (4.15) can be computed in terms of the residues of ω. A
Mittag-Leffler distribution for an open cover U = (Ui)i∈I is a 0-cohain µ =

(ωi)i∈I ∈ C0(U , M (1)) such that the difference ωi − ωj is holomorphic. In
other words, δµ ∈ Z1(X, Ω). The residue of µ at aıUi is defined

Resa(µ) := Resa(ωi). (4.16)

Note that this is well-defined as the difference is holomorphic. On a com-
pact Riemann surface, we define Res(µ) = ∑x∈X Resx(µ). The following
generalises the residue theorem from complex analysis.

Theorem 4.6. Suppose X is a compact Riemann surface and µ ∈ C0(X, M (1))
is a Mittag-Leffler distribution. Let δµ denote the cohomology class of δµ. The
residues of equations (4.15) and (4.16) agree:

Res(δµ) = Res(µ). (4.17)

A proof can be found in [For12, Theorem 17.3].

4.5 Riemann surface of an algebraic function

We state how the solution sets of algebraic equations over C can be inter-
preted as a Riemann surface.

The following result describes how singular Riemann surfaces may be
completed. A direct proof can be found in [For12, Theorem 8.4].

Lemma 4.4. Let X be a Riemann surface, A ⊆ X a closed discrete subset and
let X′ = X \ A. Suppose Y′ is another Riemann surface and π′ : Y′ → X′

a proper unbranched holomorphic covering. Then there exist a Riemann surface
Y, a proper branched holomorphic covering π : Y → X and a fiber-preserving
biholomorphic map ϕ : Y \ π−1(A)→ Y′ such that π′ = π ◦ ϕ−1.

The following is the main result of this section. One can show that
for regular values of a polynomial, i.e. its coefficients do not blow up
and the polynomial factors linearly, there is a local Riemann surface as-
sociated to such an algebraic equation. The proof of the following glues

50
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4.5 Riemann surface of an algebraic function 51

together a surface on |O|, where the critical points of the above lemma are
the blowup loci of the meromorphic functions and the points where the
discriminant vanishes; |O| denotes the discrete sheaf of O (see Appendix
B). Details are given in the reference [For12, Theorem 8.9].

Theorem 4.7. Suppose X is a Riemann surface and

P(T) = Tn + c1Tn−1 + · · ·+ cn ∈M (X)[T] (4.18)

is an irreducible polynomial of degree n. Then there exist a Riemann-surface,
a branched holomorphic n-sheeted covering π : Y → X and a meromorphic
function F ∈ M (Y) such that (π∗P)(F) = 0. The triple (Y, π, F) is uniquely
characterised by the following property. Given any other triple (Z, τ, G) such
that (τ∗P)(G) = 0, there exists a unique fiber-preserving map σ : Z → Y such
that G = σ∗F.

Note: the triple (Y, π, F) is called the algebraic function associated to the
polynomial P(T).

Example 4.3. [For12, Example 8.10] Suppose a1, . . . , ak ∈ C \ 0 are distinct
and consider the Laurent polynomial

P(z) = λ−m(z− a1) · · · (z− ak), m ∈N<k. (4.19)

We interpret P(z) as a meromorphic on the Riemann sphere and describe
the Riemann surface constructed from the algebraic equation

T2 − P(z) ∈M (CP1)[T]; (4.20)

its algebraic function is commonly denoted
√

P(z). We describe the be-
haviour near the critical points A = {0, ∞, a1, . . . , ak}.
(i) choose r > 0 such that the open disk Uj = Dr(aj) contains no other
singular points, r = 1, . . . , k. As Uj is simply connected and the function
g(z) = λ−mΠi ̸=j(z − ai) does not vanish, there exists a function germ h
such that h2 = g. We can write

f = (z− aj)h2(z). (4.21)

Let 0 < ρ < r, θ ∈ R and let ζ = aj + ρeiθ. As the function f is regular on
Uj, there exists a function germ ϕzζ ∈ Oζ such that

ϕ(z) =
√

ρeiθ/2h. (4.22)
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Hence, analytically continuation along the curve aj + ρeiθ, 0 ≤ θ ≤ 2π,
results in the negative of the original function germ. The map π : Vj →
Uj is a connected two-sheeted covering and aj has one original; otherwise
analytic continuation along the curve aj + ρeiθ would produce the same
germ.
(ii) We describe a neighborhood of π near ∞. Let U∞ ∋ ∞ be a sufficiently
small simply connected neighborhood containing no other critical points.
Then

(a) there exists a function h such that f = h2 if k−m is even;

(b) there exists a function h such that f = zh2 if k−m is odd.

By our description above, π is unbranched over z = ∞ in the first case
as π is locally a disconnected two-sheeted cover; in the second case π is
branched over z = ∞ with multiplicity 2.
(iii) The same argument for z = ∞ works for z = 0, with two different
cases: m is odd or m is even.

The Riemann surface associated to an algebraic equation can also be com-
pactified. Although we do not have the space and algebraic-geometric
means to discuss the details of normalisation, the following proposition
summarises the results we need for later.

Proposition 4.6. Suppose P(T) ∈ M (C)[T] is an irreducible polynomial and
let X′ be the Riemann surface associated to it. There exists a projective embedding
of X′ into CP2. Let X′ denote its closure. Then the normalisation X of X′ is a
compact Riemann surface.

Note that normalisation and nonsingularity are equivalent in complex di-
mension one.

4.6 Divisors

Divisors generalise the order of a meromorphic function at a point. Many
invariants of a Riemann surface are neatly described by its set of mero-
morphic functions and divisors describe the meromorphic functions.

Definition 4.8. A divisor D on a Riemann surface X is a mapping

D : X → Z

such that for any compact subset K ⊆ X, D(x) = 0 for all but finitely many
x ∈ K. It is typical to write Dx = D(x).

52
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Suppose U is an open subset of a Riemann surface and f ∈ M (U) \
{0}. The following generalises the order of meromorphic functions on the
plane.

ordx( f ) :=


0 if f is holomorphic in a neighborhood of x
k if zero of order k at x
-k if pole of order k at x
∞ if f is zero in a neighborhood of x

(4.23)

Define the map ( f )(x) := ordx( f ). By the Identity Theorem ( f ) is a divi-
sor. A divisor D is said to be principal if there exists a meromorphic func-
tion f ∈M (X) with ( f ) = D. Moreover, two divisors D, D′ are said to be
equivalent if their difference is principal. Clearly, any two meromorphic
1-forms are equivalent.

Given a divisor D on a compact Riemann surface X there exist only
finitely many points x ∈ X where Dx ̸= 0. The following notion is there-
fore well-defined:

deg D := ∑
x∈X

Dx (4.24)

Any principal divisor therefore has degree 0. The converse need not be
true; this question is investigated later in section 4.7. We now describe
in some detail how divisors can describe the meromorphic structure of a
Riemann surface. Define the divisor sheaf OD of D as follows: for any open
subset U of a Riemann surface let

OD(U) := { f ∈M (U) : ( f )x ≥ −Dx ∀x ∈ U}. (4.25)

With the standard restriction mapsOD is a sheaf. The minus-sign is placed
for convenience and makes the resulting expressions easier to read. Note
that for the zero divisor D = 0 we haveOD = O as an equality of sheaves.
Given two equivalent divisors D, D′ such that D − D′ = ( f ), the map
OD(U) ∋ g 7→ f g ∈ OD′(U) is an isomorphism for any subset U and
hence determines a sheaf isomorphism OD

∼= OD′ .

Example 4.4. Let U be some open subset of a Riemann surface and a ∈ U.
We define the skyscraper divisor Pa at a to be following divisor:

Pa(x) =
{

1 if x = a
0 if x ̸= a .

Then OPa is the sheaf of meromorphic functions with a simple pole at a.
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The Riemann-Roch theorem gives an extremely useful relation between
the cohomology groups ofOD and can often be rewritten to find either the
degree of a divisor or the genus of a Riemann surface (cf. Theorem 4.9).
One proof relies induction, starting with D = 0 and adding skyscraper
divisors in each induction step. Details as usual are found in [For12, The-
orem 16.9].

Theorem 4.8 (Riemann-Roch). Let D be a divisor on a compact Riemann sur-
face X and . Then H0(X,OD) and H1(X,OD) are finite dimensional vector
spaces and

dim H0(X,OD)− dim H1(X,OD) = 1− g + deg D. (4.26)

Closely related is the Riemann-Hurwitz formula, which relates the gen-
era† of two compact Riemann surfaces if there exists a holomorphic map
between them. A proof which uses Serre’s duality theorem can be found
in [For12, Theorem 17.14].

Recall that v( f , x) denotes the multiplicity of f at x.

Theorem 4.9 (Riemann-Hurwitz). Let X and Y be compact Riemann surfaces
of genus g and g′ respectively and f : X → Y a branched holomorphic n-sheeted
covering map. There is an equality

g =
1
2 ∑

x∈X
(v( f , x)− 1) + n(g′ − 1) + 1. (4.27)

We will use this formula to calculate the genera of some algebraic curves
later in Chapter 6. The following elaborates on Example 4.3.

Example 4.5. Let X be the Riemann surface determined from the algebraic
equation (4.20) and π : X → CP1 the associated 2-sheeted cover. We have
proven in Example 4.3 that π is branched (i) over aj with multiplicity 2 (ii)
over λ = ∞ and λ = 0 precisely when k−m is odd respectively m is odd,
with multiplicity 2. The Riemann-Hurwitz formula gives

g =
1
2 ∑

x∈X
(v( f , x)− 1)− 1, (4.28)

as π is a two-sheeted cover, where g is the genus of X. By our discussion
above we have

g =


k−2

2 if m is even and k is even,
k−1

2 if m is even and k is odd,
k−1

2 if m is odd and k is odd,
k
2 if m is odd and k is even.

(4.29)

†’genera’ is the plural of genus.
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4.7 Abel’s theorem, line bundles and the Picard group 55

4.7 Abel’s theorem, line bundles and the Picard
group

Any principal divisor has degree zero, but the converse may not be true.
Abel’s theorem gives a necessary and sufficient condition for the converse
to hold. This discussion of principal divisors naturally leads to the intro-
duction of the Jacobian of a compact Riemann surface.

Let C1(X, Z) denote the free Abelian group of piece-wise smooth curves
and denote the boundary operator by ∂. It is well known that ∂ : C1(X, Z)→
C0(X, Z) is surjective. We identify C0(X, Z) with the set of divisors Div(X)
in the following natural manner: given any piece-wise smooth curve γ,
define the divisor D := ∂γ which takes the value 1 at γ(1) and −1 at γ(0).

Theorem 4.10. Suppose D is a divisor on a compact Riemann surface X with
deg D = 0. Let γ be a curve such that ∂γ = D. Then D is principal if and only
if for all closed 1-forms ω we have ∫

γ
ω = 0. (4.30)

The proof is rather technical, see [For12, Theorem 20.7].

We now discuss holomorphic line bundles and their relation to divisors.
By a complex n-vector bundle we mean a vector bundle where the fibers
consist of Cn.

Definition 4.9. Let E be a complex n-vector bundle and U = (Ui, Ψi)i∈I a
collection of local trivialisations, i.e., an atlas for E. The atlas is called holo-
morphic and E a holomorphic vector bundle of dimension n if the transition
functions are holomorphic:

gij = Ψi ◦Ψ−1
j ∈ GLn(O(Uij)). (4.31)

A holomorphic line bundle is a complex vector bundle of dimension 1.

Given a holomorphic vector bundle E it is easy to verify the cocycle
relation gijgjk = gik on Uijk. The converse also turns out t be true. To this
end, let GLn(O) be the sheaf of invertible holomorphic matrices such that
for any open set U ⊆ X, GLn(O(U)) consists of n × n invertible matri-
ces with holomorphic functions on U as coefficients. For the proof of the
lemma below, one can define an appropriate equivalence relation on the
trivial bundle X×Cn; see [For12, Theorem 29.7].
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Lemma 4.5. For every 1-cocycle g = (gij)i,j∈I ∈ Z1(X, GLn(O)) there exists a
holomorphic n-vector bundle E such that the transition function of E is given by
g.

Definition 4.10 (Sheaf of holomorphic sections). Suppose E is a holomor-
phic n-vector bundle on a Riemann surface X and let p ∈ X. A section
f : X → E is called holomorphic if there exists a local trivialisation (Ui, Ψi)
at p such that the map

Ψi ◦ f : p 7−→ (p, fi(p))

is holomorphic, i.e. fi : U → Cn is a holomorphic map. Note that fi
satisfies the relationship

fi = gij f j, (4.32)

where gij is the transition function corresponding to E. We denote the sheaf
of holomorphic sections by OE.

One can similarly construct the sheaf of meromorphic sections of a line
bundle and we leave this to the reader.

We now describe the relation between holomorphic line bundles and di-
visors. To this end we cite a result about the existence of meromorphic
functions on a compact Riemann surface. See [For12, Corollary 14.13].

Proposition 4.7. Let X be a compact Riemann surface and p1, . . . , pn ∈ X dis-
tinct. For any n-tuple c1, . . . , cn ∈ C, there exists a meromorphic function f such
that f (ai) = ci, i = 1, . . . , n.

Let D be a divisor on a Riemann surface X and U = (Ui)i∈I an open
cover of coordinate neighborhoods of X for which there exist meromor-
phic functions ψ = (ψi)i∈I with ψi ∈ (M)(Ui), such that (ψi) = D on Ui.
Consider the 2-cochain

gij = ψi/ψj ∈ O(Uij). (4.33)

Indeed, at any point p ∈ X with Dp ̸= 0 the singularity at gij at p may
be removed. Clearly (gij) ∈ Z1(U ,O) and hence determines a holomor-
phic line bundle L. We claim that OD

∼= OL as sheaves. Indeed, given a
function f ∈ OD(U), U ⊆ X open, there exist holomorphic functions fi on
Ui ∩U such that f = fi/ψi. Conversely, given any local section fi one may
show with eq. (4.32) that fi/ψi is independent of the choice of index and
hence determines an element f ∈ O(U).

On the other hand, suppose we are given a line bundle L on a compact
Riemann surface. We want to construct a divisor D with OD

∼= OL We
first the following result about the existence of meromorphic sections.
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Theorem 4.11. Suppose E is a holomorphic vector bundle on a Riemann surface
X and Y ⊂ X a relatively compact open subset of X. Given any a ∈ Y there
exists a meromorphic section which has a pole at a.

Proof. See [For12, Theorem 29.16].

Now, there exists a global meromorphic section ψ of L that is nontriv-
ial. For a local chart on L define the divisor D = (ψi), where ψi is the
coordinate representation of ψ. It is easy to see that D is independent of
the choice of coordinates. We now show OL

∼= OD. For every holomor-
phic section f ∈ OE(U) we have ( f /ψ) ≥ −D on Ui ∩ U. Conversely,
given any holomorphic function with( f ) ≥ −D the function f ψ is a holo-
morphic section of E. This proves the claim.
We summarise our discussion with the following Theorem.

Theorem 4.12. Suppose X is a compact Riemann surface. For every divisor D
there exists a holomorphic line bundle L such that OD

∼= OL. The converse is
also true.

Note : in view of the correspondence above, we may define the degree of a
holomorphic line bundle as the degree of the associated divisor.

Definition 4.11. Suppose X is a compact Riemann surface of genus g. The
Picard group is the quotient group Pic(X) := Div(X)/DivP(X), where
DivP(X) is the set of principal divisors on a Riemann surface. We also
define Pic0(X) = Div0(X)/DivP(X), where Div0(X) consists of the divi-
sors of degree 0. Equivalently, Pic(X) can be characterised as the sets of
isomorphism classes of holomorphic line bundles.

Consider the map Ψ : Pic0(X)→ Jac(X) given as follows. For a divisor
D let γ be a smooth curve such that ∂γ = D. Consider the map

D 7−→
(∫

γ
ω1, . . . ,

∫
γ

ωg

)
. (4.34)

Abel’s theorem has already shown that the kernel of this map is precisely
given by PicP(X). It turns out the map Ψ is also surjective, known as
Jacobi’s inversion problem.

Proposition 4.8. For any compact Riemann surface X the map Ψ constructed
above is a group isomorphism Pic0(X) ∼= Jac(X).
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Chapter 5
Integration of Lax equations

A Lax equation is a commutator differential equation

L̇ = [L, M],

for some appropriate objects L and M. The pair (L, M) is called a Lax pair.
Besides linear differential equations, these often turn out to be completely
integrable dynamical systems and appear frequently throughout mathe-
matical physics, such as in the KdV-equation and in motion of a classical
spinning top. The present chapter is devoted to studying Lax equations
in the dual Lie algebra g∗, which we use in the next chapter to study the
quantum Brachistochrone problem.

We first discuss Lie algebras with an additional Lie bracket, an R-bracket,
and see how Lax equations naturally appear as the integral curve of the
Hamiltonian vector field of a Casimir. Finding a solution to such a Lax
equation turns out to be equivalent to solving a matrix Riemann Hilbert
problem. To this end, we introduce twisted loop algebras that are later
used to attack this problem with algebraic geometric methods. Before do-
ing so, we present a large class of integrable dynamical systems, among
which is a Lax pair that generalises the equation of motion of a spinning
top. We closely follow Chapters 2-6 and Chapter 8-10 of [RS94].

5.1 The R-bracket and loop algebras

The R-bracket is a simple scheme for constructing an additional Lie bracket.

Definition 5.1. Let g be a Lie algebra and fix an endomorphism R ∈ End(g).
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The R-bracket [·, ·]R is the bilinear map given by

[X, Y]R :=
1
2
([X, RY] + [RX, Y]) . (5.1)

It is easy to verify that [·, ·]R is skew-symmetric. In general the bracket
in eq. (5.1) may not satisfy the Jacobi identity. There exist several easy to
check sufficient conditions for this to hold, known as the condition.

The simplest and most important examples occur when there exists
a Lie algebra decomposition g = g+ ⊕ g−, where g± ⊂ g are nontrivial
subalgebras of g. Let P± be the projection operators on the subspaces g±
and define the endomorphism R = P+ − P−. Then it is easy to verify that
[·, ·]R satisfies the Jacobi identity, and we denote the double Lie algebra by

gR = g+ ⊖ g−. (5.2)

This R-bracket will make another appearance in Section 5.3.
Given a double Lie algebra gR as above, we can equip the dual g∗R with

two Poisson brackets. Let I(g∗) be the ring of Casimirs in g∗. I.e. I(g∗) ⊂
C∞(g∗) is the ideal consisting the smooth functions such that

{ϕ, f } = 0, ϕ ∈ I(g∗), f ∈ C∞(M), (5.3)

with {·, ·} the canonical Poisson structure in g∗.
The following theorem describes the integral curves of Casimirs in g∗.

Theorem 5.1. Let ϕ ∈ I(g∗). The integral curves of the Hamiltonian vector field
Xϕ in g∗R starting at L ∈ g∗ are given by

dL
dt

= ad∗g(M)(L), M =
1
2

R(dϕ(L)). (5.4)

Note: The pair (L, M) is called a Lax pair for the Hamiltonian ϕ. If g admits
an Ad-invariant non-degenerate bilinear form, such as the Killing form,
equation (5.4) can be written as the Lax equation

dL
dt

= [L, M]. (5.5)

In the case of the projection decomposition R = P+− P−, it is more conve-
nient to write (5.4) as a set of two equations

dL
dt

= [L, M±], M± =
1
2

P±dϕ(L). (5.6)
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Proof. The proof follows Lemma 3.3 and uses Lemma 2.2. We can write
the R-bracket of ϕ and ψ ∈ C∞(g∗) as

{ϕ, ψ}R(L) =
1
2
⟨L, [Rdϕ(L), dψ(L)] + [dϕ(L), Rdψ(L)]⟩

= −1
2
⟨ad∗g(Rdϕ(L))(L), dψ(L)⟩,

(5.7)

in view of Lemma 2.2. The claim now follows as in Proposition 3.3.

One can write down an explicit solution of the equation of motion
(5.4) in the case that the R-bracket is given by the simple form (5.2). This
amounts to a factorisation in the Lie group G. Let G± ⊆ be the unique
subgroups corresponding to the subalgebras g± (cf. Theorem 2.3).

Theorem 5.2. Let ϕ ∈ I(g∗) and write X(t) = dϕ(L(t)). Let g±(t) be smooth
curves in G± that solve the Riemann problem

exp tX = g+(t)−1g−(t), (5.8)

with g±(0) = e. The integral curve of eq. (5.4) with L(0) = L is explicitly given
on G± by

L(t) = Ad∗G(g±(t))(L). (5.9)

Proof. After differentiating eq. (5.9) at time t we get

dL
dt

(t) = ad∗g(∂tg+(t)g+(t)−1)(L) = ad∗g(∂tg−(t)g−(t)−1)(L). (5.10)

It suffices to show ∂tg±(t)g±(t)−1 = −M±(t), where M±(t) = P±X.
Rewriting (5.8) as ∂tg+(t) exp tX = g−(t) and differentiating gives us

d
dt

g+(t)g+(t) + ad∗g(g−(t))(X(t)) =
d
dt

g−(t)g−(t)−1. (5.11)

The Ad∗G-invariance of the Hamiltonian ϕ implies X(t) = Ad∗G(g±(t))(X(t))
and the identities ∂tg+g−1

+ ∈ g± with the uniqueness of integral curves
prove the claim.

5.1.1 Z-grading and loop algebras

The classical spinning top systems admit a Lax representation in terms
of an associated twisted loop algebra. We introduce the notion of a Z-
grading.

Version of July 17, 2024– Created July 17, 2024 - 12:17

61



62 Integration of Lax equations

Definition 5.2. A Z-grading of a Lie algebra g is a Z-indexed collection of
subalgebras (gi)i∈Z such that

g =
⊕
i∈Z

gi, (5.12)

with [gi, gj] ⊂ gi+j.

Any Z-graded Lie algebra admits a natural decomposition into subal-
gebras

g+ :=
⊕
i≥0

gi, g− :=
⊕
i<0

gi, (5.13)

following the decomposition in eq. (5.2). Denote the corresponding Lie
brackets by [·, ·]±. For any integers n, m ∈ N we can easily describe the
dual of g′ = ⊕n

i=−mgi by the identification (g′)∗ ∼= ⊕n
i=−mg

∗
i , where g∗i is

the dual to gi.
Formally, the dual g∗ of g+ ⊖ g− is the projective limit of the subspaces⊕m

i=0 g
∗
i and

⊕−1
i=−n g

∗
i . For simplicity, we restrict this limit to always mean

finite dimensional subspaces and any element ξ ∈ g∗ can be written as a
finite sum of elements in g∗i .

Let g = g+ ⊖ g− be a decomposition as in eq. (5.2) and fix an element
ξ = ξ+ + ξ− ∈ g∗ with ξ± ∈ g± such that ξ+ ∈ ⊕n

i=0g
∗
i for some n ∈ N

(resp. ξ− ∈ ⊕−n−1
i=−1 gi for some m ∈ N). Let P± be the projection operator

onto the subalgebras g±. One can easily verify the following equation:

ad∗g(X)(ξ) = ad∗g+(X+)(ξ+)− ad∗g−(X−)(ξ−), X± = P±X. (5.14)

Lemma 5.1. Fix n ≥ m ≥ 0 and ξ ∈ g∗m−1. The subspace f +
⊕−n−1

i=−m g∗i is a
Poisson subspace.

Proof. In view of Proposition 3.5 we need to show that the integral curve
of any Hamiltonian vector field remains this subspace. According to The-
orem 5.4 this amounts to showing that it is closed under the coadjoint
action. The result now follows from equation (5.14).

5.1.2 Twisted loop algebras

The additional algebraic structure of the twisted loop algebra later plays
the role of a spectral parameter when tackling the associated factorisation
problem to a Lax equation.
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Let g be a complex Lie algebra. The loop algebra L(g) consists of all
Laurent polynomials with coefficients in g:

L(g) := g[λ, λ−1] :=

{
∑

i
xiλ

i, xi ∈ g

}
, λ ∈ C. (5.15)

For some fixed endomorphism σ : g → g with σm = idg, we define the
twisted loop algebra as

L(g, σ) := {p(λ) ∈ L(g) : σp(λ) = p(exp(2πi/m)λ)} . (5.16)

Clearly both L(g) and L(g, σ) admit a Z-grading with respect to pow-
ers of λ. Let Pi the projection operator on the i-subspace and denote the
corresponding decomposition of the twisted loop algebra as L±(g, σ) (cf.
(5.13)). Given a non-degenerate AdG-invariant bilinear form ⟨·, ·⟩ on g, the
Lie algebra L(g, σ) can also be equipped with a non-degenerate bilinear
form as the next simple lemma shows.

Lemma 5.2. Let ⟨·|·⟩ be a bilinear mapping on L(g, σ) given by

⟨X(λ)|Y(λ)⟩ := Resλ=0λ−1⟨X(λ), Y(λ)⟩dλ. (5.17)

Then ⟨·|·⟩ is non-degenerate.

5.2 Hamiltonian reduction and
spinning top systems

In many applications of interest the phase space of a dynamical systems
can be obtained via a so-called Hamiltonian reduction. A Hamiltonian
reduction consists of a Hamiltonian group action on a smooth manifold
such that the resulting quotient is the phase space under study. Typically
the larger space is more symmetric and easier to work with. We construct
a class of integrable systems which describe Lax pairs for spinning top
systems.

The difficult part often is to describe the symplectic leaves of the result-
ing phase space. The notion of a dual pair helps us with this.

Definition 5.3 (Dual pair). Let M be symplectic manifold and U, V two
Poisson manifolds. Two Poisson maps f : M→ U and g : M→ V are said
to be a dual pair if the Lie algebras f ∗C∞(U) and g∗C∞(U) are centralisers
of each other in C∞(M);

{ξ, ζ}M = 0, ξ ∈ f ∗C∞(U), ζ ∈ g∗C∞(V). (5.18)
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Without loss of generality, the maps f and g may be assumed to be
surjective. A surjective Poisson map f : M → U is also called a symplectic
realisation.

We have the following general result.

Theorem 5.3. Let U
f←− M

g−→ V be a dual pair. The connected components of
the sets f (g−1(v)), v ∈ V a regular value, and g( f−1(u)), u ∈ U a regular
value, are symplectic leaves in U and V respectively.

Proof. We only prove the first claim as the second is identical. Suppose
v ∈ V and let FU be the foliation in M determined from the involutive
distribution

Dp = {Xh : h ∈ f ∗C∞(U)}, p ∈ M. (5.19)

Consider now g−1(v) and recall that {Xh1 , Xh2}M = Xh1 h2. By assumption
g−1(v) is a properly embedded submanifold of M. As f and g form a dual
pair we have {h1, h2} = 0 for all h1 ∈ f ∗C∞(M) and h2 ∈ g∗C∞(M). This
means that all h2 are constant on any leaf of the foliation FU and hence
that g is constant on every leaf. This implies that g−1(v) ⊃ FU,p for some
p ∈ g−1(v), where FU,p is the leaf starting at p. Hence

g−1(v) =
⋃

p∈g−1(v)

FU,p. (5.20)

Applying the surjective map f and passing to the connected components
completes the proof.

We specialise the above situation to Hamiltonian group actions. Given
a symplectic G-space M such that the quotient manifold is smooth, we
may identify smooth functions on M/G with G-constant functions on M.
As G acts by symplectomorphisms, the set of G-constant smooth functions
on M is a subalgebra of C∞(M), such that C∞(M/G) inherits a Poisson
structure from M. We now have the following proposition.

Proposition 5.1. Let M× G → M be a Hamiltonian group action with lift λ,
π : M→ M/G the canonical projection map and µ : M→ g∗ the moment map.
Then M/G π←− M

µ−→ g∗ is a dual pair.

Proof. Let p ∈ M and recall that TpOp = {Xλ(X) : X ∈ g}. Then for
any g ∈ C∞(M/G) and f ∈ C∞(M) we have by G-invariance {π∗g, f } =
X f π∗g = 0 and the claim follows.

Corollary 5.1. Symplectic leaves in M/G are the connected components of the
sets π(µ−1(ξ)), ξ ∈ g∗.
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Let ρ : G → Aut(V) be a Lie group representation and let S = G×ρ V
be the semi-direct product of G and V with a group operation given by

(g, v) · (h, w) = (gh, v + ρ(g)w).

It is easy to check that S is a Lie group of dimension dim G + dim V by
componentwise differentiation.

Lemma 5.3. There exists a natural Lie algebra isomorphism s ∼= g⊕ρ V, where
the Lie bracket of the latter in given by

[(X1, v1), (X2, v2)] = ([X1, X2], ρ(X1)v2 − ρ(X2)v1). (5.21)

Below we describe the Poisson structure of the dual s∗ in terms of Pois-
son mappings from cotangent bundles to s∗.

Suppose now G acts on a manifold M and denote the induced Hamil-
tonian action on T∗M by (cf. Proposition 3.29). Let µ : T∗M → g be the
corresponding momentum map. Suppose additionally that there is map
j : M→ V∗ which is equivariant with respect to the dual action ρ∗ of G on
V∗ . I.e. for . Let π : T∗M→ M be the natural projection.

Proposition 5.2. The map ϕ : T∗M→ s∗ given by

ϕ(p) = µ(p)⊕ j(π(p)) (5.22)

is a Poisson morphism.

Proof. Suppose X, Y ∈ ∫ are two linear function on ∫ ∗. We need to show:

{X ◦ ϕ, Y ◦ ϕ}T∗M = [X, Y] ◦ ϕ. (5.23)

In view of the linearity and skew-symmetry we can consider three sepa-
rate cases. If both X and Y are in g the claim follows from the fact that
µ is a Poisson mapping. When X and Y are in V the right side of (5.23)
vanishes trivially. Finally, when X ∈ g and Y ∈ V the claim follows from
the equivariance of j.

We now specify Proposition 5.2 in the case M = G. Indeed, let G act on
itself by left-multiplication. By Example 3.5 the moment map T∗G → g∗

in local coordinates is given by (g, ξ) 7→ ξ. Denote the dual representation
of ρ by ρ∗ and for a fixed element a ∈ V∗ let j(g) = ρ∗(g)a. The map j is
G-equivariant by construction. Let Ga ⊆ G be the isotropy subgroup of a
and Oa the G-orbit of a in V∗.

Theorem 5.4. Let µa : T∗G → s∗ be the map

µa(g, ξ) = ξ + ρ∗(g−1)a. (5.24)

Then µa is a Poisson mapping by Proposition 5.2.
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5.2.1 Integrable top systems

We finally begin a construction of a Lax pair for the spinning top, using
the twisted loop algebra from before.

Let G be a connected Lie group, g its Lie algebra and σ a Cartan invo-
lution of g. Let f ⊂ g be the subalgebra of fixed points of σ and K ⊂ G the
corresponding Lie group such that TeK ∼= f. Write the Cartan decomposi-
tion g = f⊕ p, where σ|p = − idp. The dual decomposition can be written
as g = f∗ ⊕ p∗.

Let L(g, σ) be the twisted loop algebra of g and σ and fix an element
a ∈ p∗. Consider the subspace of L(g, σ)∗ generated by Lax matrices

L(λ) = aλ + l + sλ−1, l ∈ f∗, s ∈ p∗. (5.25)

Then the Lax matrices (5.25) form a Poisson subspace of L∗(g, σ) by Lemma
5.1. We specify the construction of Section 5.1. Let K act on itself by right
multiplication, fix an element f ∈ p∗ and define j(k) = Ad∗k−1( f ). Then

(l, ξ) 7→ L(λ) = aλ + l + Ad∗k−1( f )λ−1 (5.26)

is a Poisson mapping from T∗K to L∗(g, σ).
From now on we assume that the group K is compact and g is semi-

simple, so that we can identify g with its dual g∗. Suppose ϕ is a polyno-
mial on g which is Ad-invariant and define the function

Hϕ(L(λ)) := Resλ=0λϕ(λ−1L(λ))dλ. (5.27)

Then one can easily check that Hϕ is also Ad-invariant. We want to find the
corresponding Lax pair associated to the Casimir Hϕ and introduce some
notation. Let ϕa(l) = ϕ(a+ ξ) where a ∈ p∗ is some fixed element as above
and define b := dϕ(a). Let fa be the centraliser of a and f⊥ the orthogonal
subspace with respect to the Killing form. Furthermore, denote the second
differential of ϕa at g = 0 by d2ϕa : fa → fa.

ω(l) :=
{

ϕ′′a (l) if l ∈ fa
adb(ada)−1(l) if l ∈ f⊥

. (5.28)

Note that ker ada ⊂ ker adb.

Theorem 5.5. The Hamiltonian Hϕ(L) is given by

Hϕ(l, ξ) =
1
2
⟨l|ω(l)⟩+ ⟨b|ξ⟩ (5.29)
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The corresponding Lax pair in L+(g, σ) is then

L(λ) = aλ + l + ξλ−1.
M+(λ) = bλ + ω(l).

(5.30)

Proof. We want to compute the coefficient of λ−2 in the term ϕ(a + lλ−1 +
ξλ−2). A Taylor expansion shows that Hϕ = (b, ξ) + 1

2 d2ϕa(l). To compute
the second differential we split l = l0 + l1, with l0 ∈ fa, l1 ∈ f⊥ and observe
that [a, p] = f⊥. Indeed, [a, p] ⊂ f and a simple argument with the Jacobi
identity shows [a, p] ∩ fa = {0}. Choose X ∈ p such that [a, X] = l1 and
define g = exp Xλ−1. We find:

adg(a + λ−1l) = a + l0λ−1 +
1
2
[X, l + l0]λ−2 + . . . (5.31)

where the other terms are of order λ−3. By the Ad-invariance of ϕ we have
ϕ(a + lλ−1) = ϕ(adg(a + lλ−1)). By Lemma 2.2, we have ⟨b|[X, l0]⟩ = 0.
Taylor expanding the RHS and calculating the λ−2 coefficient and compar-
ing gives

ϕ′′a (l) = ⟨d2ϕa(l0)|l0⟩+ ⟨b|[X, l]⟩
= ⟨d2ϕa(l0)|l0⟩+ ⟨[b, X]|l⟩ = ⟨ω(l)|l⟩

(5.32)

by the invariance of ⟨·|·⟩. To determine M+ we need to find the positive
powers of λ of the derivative of Hϕ. We have dHϕ = λdϕ(λ−1L(λ)) =
bλ + ω(l) + . . . from our calculation above. The claim then follows.

The Lax equation L̇ = [L, M] corresponding to (5.30) is given by

l̇ = [l, ω(l)] + [s, b],
ṡ = [s, ω(l)].

(5.33)

We now discuss the factorisation problem of (5.8).

5.3 Factorisation in L(g, σ)

It turns out that the factorisation problem of eq. (5.8) can be answered
completely when the Lie algebra g is a twisted loop algebra. The following
section develops this program.

Let L(g, σ) be the twisted loop algebra determined by the complex Lie
algebra g of the complex group G and the automorphism σ of order n. We
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have seen that L(g, σ) is a Lie algebra. Let L(G, σ) be the set of functions
g : CP1 → G holomorphic in CP1 \ {0, ∞} such that

g(exp(2πi/n)λ) = σg(λ), (5.34)

where σ here denotes the induced automorphism σ : G → G. The Lie
algebra of L(G, σ) can clearly be identified with L(g, σ). The subalgebras
L±(g, σ) thus correspond to the subgroups L±(G, σ) of G-valued functions
that are holomorphic in CP1 \ {0} and CP1 \ {∞} respectively.

Consider the Lax equation (5.4) in L(g, σ) and let (L, M) be the Lax
pair associated to a Hamiltonian ϕ. Let X(λ) = dϕ(L(λ)) and g±(·, t) ∈
L±(G, σ) be smooth curves that solve the factorisation problem

exp tX(λ) = g−1
+ (λ, t)g−(λ, t) (5.35)

such that g±(λ, 0) = e. We have proven that the solution of the Lax equa-
tion in L±(g, σ) is given by

L(λ, t) = Ad∗g±(λ,t)L(λ). (5.36)

From a geometric point of view, equation (5.35) can be interpreted as a
transition function of a holomorphic G-bundle over CP1 *. This perspec-
tive allows to show the existence of solutions to the factorisation problem;
a short discussion is given in [RS94, Proposition 8.1 and 8.2].

Equation (5.36) linearises if we translate the problem to the Jacobian of
a spectral curve, allowing us to write down an explicit solution.

Let g ⊆ gl(n, C) be an m-dimensional complex matrix Lie subalgebra
and L(λ) ∈ L(g, σ), with σ an automorphism of order k. The Lax matrix
determines an algebraic curve Γ0 given by

0 = det(L(λ)− νIn)

= νm + p1(λ)ν
m−1 + · · ·+ pm(λ),

(5.37)

where pi(λ) ∈ C[λ, λ−1], i = 1, . . . , m. Let λ, ν : Γ0 → CP1 be the coor-
dinate projection maps. If p ∈ Γ0 is not a branching point of λ and the
spectrum of L(λ(p)) is simple, there exists a one-dimensional eigenspace
E(p) ⊂ Cm. This gives a holomorphic line bundle EL on the subset Γ̃0 ⊆ Γ0
for which these conditions hold. EL is called the eigenbundle of L.

*A discussion of fiber bundles falls outside of the scope of this text. See for example
[Hus66].
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Let Γ be the nonsingular compactification of Γ0 as described in Propo-
sition 4.6. Then EL extends to a line bundle on Γ also denoted EL. Indeed,
the map p 7→ E(p) is a meromorphic map on Γ0 and hence a holomorphic
map Γ→ CPn−1. Moreover, λ and µ extend to meromorphic functions on
Γ in the same manner.

We introduce some more terminology. The ’set’ consisting of the spec-
tral curve Γ, the eigenbundle EL and projection maps λ, ν is called the spec-
tral data for L(λ). We now discuss how eq. (5.36) linearises on the Jacobian
Jac(Γ) and the matrix L(λ) can be recovered from its spectral data, up to
some freedom. In turn, this later allows us to rephrase the factorisation
problem (5.35) in terms of this spectral data.

5.3.1 Reconstruction from spectral data

Let X(λ) = dϕ(λ) as before. Then [L(λ), X(λ)] = 0 by Proposition 2.2.
The following simple lemma shows that the spectral curve (5.37) remains
invariant under the time-evolution of the Lax equation. Its proof is de-
layed until the end of this section.

Lemma 5.4. Suppose dL/dt = [L, M] is a Lax equation where the matrix M
possibly depends on time. Then for every ν ∈ C and t

d
dt

det(L(t)− ν) = 0. (5.38)

In view of the identity [L(λ), X(λ)] = 0, the eigenvectors of L(λ) are
also eigenvectors of X(λ):

X(λ)v = µ(p)v, , p ∈ Γ, v ∈ E(p), (5.39)

where µ : Γ→ CP1 is a meromorphic function; let U± = {p ∈ Γ : λ±(p) ̸=
∞}, then U+ ∪U− = Γ and µ is holomorphic in the intersection U+ ∩U−.

We describe the time evolution of the eigenbundle on Γ. Denote by
EL(t) the line bundle at time t and let Ft be the one-parameter family of
line bundles associated to the transition function exp tµ with respect to
the open cover {U+, U−}. From section 4.7 there exists a canonical iden-
tification of the line bundles with elements of JacΓ. Let JacdΓ denote the
shifted Jacobi variety of divisors of degree d = deg E.

Theorem 5.6. Let EL(t) be the line bundle, viewed as an element of JacdΓ. Then
Eλ(t) = EL ⊗ Ft.
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Proof. As g is a matrix algebra, L(λ, t) = g±(λ, t)L(λ)g−1
± (λ, t) from (5.36).

Hence on U± there exist bundle isomorphism EL(t)(p) = g+(λ(p), t)EL(p)
resp. EL(t)(p) = g−(λ(p), t)EL(p). The transition function is then pre-
cisely given by

g−1
+ (λ(p), t)g−(λ(p), t)|E(p) = exp tM(λ(p))|E(p) = exp tµ(p). (5.40)

This completes the proof.

Let V be the velocity vector of the Lax equation as described above.
In view of the Serre duality theorem, the tangent space to PicdΓ may be
identified with the dual of the space of meromorphic 1-forms on Γ. Let
ω be such a differential; then the ω-component of the velocity vector V is
given by

ω(V) = ∑
p:λ(p)=0

Resp(µω) (5.41)

For a proof we refer to [RS94, Section 10.2, eq. ]; some of its ideas appear
later in this text.

We can now discuss the reconstruction L(λ) from its spectral data,
which requires regularity.

Definition 5.4. The Lax matrix L(λ) ∈ L(g, σ) is said to be strongly regular
if the following conditions hold:

(i) The spectral curve (5.37) is irreducible;

(ii) The spectral curve Γ0 is irreducible;

(iii) The coefficients of the highest and lowest powers of λ are matrices
with a simple spectrum.

Condition (iii) ensures that the bundle is well-behaved near the critical
points where λ = 0, ∞ as we shall see below.

We need some more notation. For a line bundle F on Γ letOF(Γ) denote
the space of global holomorphic sections of Γ. In general the eigenbundle
EL may not have any global holomorphic sections. On the other hand,
as a subbundle EL ⊂ Γ× Cn the linear coordinates on Cn give n linearly
independent sections of the dual bundle E∗L. As such, it is more convenient
to work with the dual eigenbundle E∗L.

Let D be a divisor on Γ and let OF(Γ, D) be the space of global mero-
morphic sections ψ of Γ such that (ψ) ≥ −D. For a ∈ CP1 let Pa be the
divisor that takes the value 1 at all points p ∈ Γ such that λ(p) = a. These
points p where Pa(p) = 1 are said to lie over a.

70

Version of July 17, 2024– Created July 17, 2024 - 12:17



5.3 Factorisation in L(g, σ) 71

Definition 5.5. Let F be a line bundle on the compact Riemann surface Γ.
F is called λ-regular if dimOF(Γ) = n and for all a ∈ CP1 \ {0, ∞}we have
OF(Γ, Pa) = {0}.

The following proposition shows that the dual eigenbundle E∗L is λ-
regular if the matrix L(λ) is regular.

Proposition 5.3. Suppose L(λ) is regular. Then E∗L is λ-regular.

Proof. Suppose ψ ∈ OE∗L(Γ) is a global holomorphic section. We will
show that ψ can be expressed as a linear combination of linear coordi-
nates on Cn. Fix a value a ∈ CP1 \ {0, ∞} which is not a ramification
point of λ and let p1, . . . , pn ∈ Γ be points that lie over a. The linear spaces
E(p1), . . . E(pn) span Cn as the spectrum is simple and the linear function-
als ψ(p1), . . . ψ(pn) now determine a linear function ψ(a) on Cn. Varying
a gives a (Cn)∗-valued function ψ(λ). As ψ is holomorphic the function
ψ(λ) remains bounded near the ramification points . The regularity con-
dition (iii) of L(λ) ensures that ψ(λ) is also bounded near a = 0, ∞. Hence
by Liouville’s theorem, the function ψ(λ) = const and linear coordinates
span the space of holomorphic section on E∗L.

To show OF(Γ, Pa) = {0}, if ψ(λ) vanishes for a single value of λ then
ψ(λ) = 0. This completes the proof.

We introduce more notation. Let Γ′ = Γ \ λ−1({0, ∞}) and OE∗L(Γ
′) the

space of meromorphic sections that are holomorphic in Γ′. Moreover, let
R = C[λ, λ−1]. Multiplication by Laurent polynomials defines a mapping
r : OE∗L(Γ)⊗ R→ OE∗L(Γ

′).

Proposition 5.4. The mapping r : OE∗L(Γ)⊗ R → OE∗L(Γ
′) is an isomorphism

of R-modules.

Proof. We first prove injectivity. Suppose ∑i ψiλ
i = 0, where ψi ∈ OE∗L(Γ).

After multiplying with λ−k−1 we obtain ψkλ−1 = ∑i ψiλ
i−k−1 and thus

ψk ∈ OE∗L(P0) means ψk = 0. The same argument shows ψi = 0 for the
other i.

To prove surjectivity, suppose ψ ∈ OE∗L(Γ
′). By the regularity there

exists natural numbers n and m and holomorphic functions ψ1, ψ2 such
that ψ − ψ1λn − ψ2λ−m has poles at λ = 0 and λ = ∞ of at most order
n− 1 respectively m− 1. The claim follows by induction.

Note: the same claim follows by letting Γ′ = Γ \ λ−1({∞}) (resp.Γ′ =
Γ \ λ−1({∞})) and instead choosing R = C[λ] (resp. R = C[λ−1]).
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We can finally discuss the reconstruction of L(λ) from the spectral data.
Recall the spectral data consists of a compact Riemann surface Γ, an n-
sheeted covering λ : Γ → CP1, a dual eigenbundle E∗L and meromorphic
function ν : Γ → CP1 which is regular in Γ′. Indeed, this follows from
the regularity of L(λ) and multiplication by ν therefore gives an R-linear
operator in OE∗L(Γ

′). By Proposition 5.4 there exists an R-linear operator
in ∈ OE∗L(Γ)⊗ R. Let ψ = (ψ1, . . . , ψn) be a basis for OE∗L(Γ). ψ is called a
Baker-Akhiezer function for the spectral curve Γ. With respect to this basis
there exist matrix coefficients cij ∈ R such that νψj = ∑i cijψi. Since ν is the
eigenvalue of L(λ) by eq. (5.37), we have L(λ)ψ = νψ and the coefficients
of L(λ) are therefore given by cij.

The following theorem summarises this result.

Theorem 5.7. Let Γ be a compactified nonsingular algebraic curve, λ : Γ→ CP1

an n-sheeted covering, E∗ a λ-regular line bundle on Γ and ψ = (ψ1, . . . ψn)
a basis for OE∗(Γ). For each meromorphic function ν that is regular on Γ′ =
Γ \ λ−1({0, ∞}) there exists a Lax matrix L(λ) such that Lψ = νψ.

We now use reconstruction to express the factorisation g±(λ, t) in terms
of a Baker-Akhiezer function ψ for E∗L.

5.3.2 Baker-Akhiezer functions

Let L(λ) be a Lax matrix with its associated spectral data as before. More-
over, let (ψ1, . . . , ψn) be a Baker-Akhiezer function for E∗. We have seen
that

L(λ(p))ψ(p) = ν(p)ψ(p). (5.42)

The evolution equation (5.36) implies the identity

ψ±(p, t) = g±(λ(p), t)ψ(p.0), (5.43)

where ψ±(p, t) is the Baker-Akhiezer vector for L(λ, t) in the domain U± =
{p ∈ Γ : λ±(p) ̸= ∞}. This implies

ψ+(p, t) = etµ(p)ψ−(p, t). (5.44)

The Baker-Akhiezer function is seen to evolve in the following manner
with time. Let M± = P±dϕ(L), where ϕ is the Hamiltonian and P± are the
projection operators. Using the identity ∂tg±g−1

± = −M± from the proof
of Theorem :

d
dt

ψ±(p, t) = −M±(λ(p))ψ±(p, t). (5.45)
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Thus in order to solve the Riemann-Hilbert problem, it suffices to com-
pute the Baker-Akhiezer function. This whole approach is justified by the
fact that one can do so purely in terms of the associated spectral data.

Let (ψi
±) be a Baker-Akhiezer function for the spectral data that satisfy

the regularity condition
ψi
−(p, t) = const (5.46)

for any p that lies over λ = ∞. Suppose a ∈ CP1 \ {0, ∞} is not a ramifica-
tion point λ and let p1, . . . , pn ∈ Γ be points that lie over a. We define the
n× n matrices:

Ψ±(a, t)ij = ψi
±(pj, t) (5.47)

and now define:
g±(a, t) := Ψ±(a, t)Ψ−1

± (a, 0). (5.48)

Note that (5.48) does not depend on the ordering of points p1, . . . , pn as
there is a sum over this index.

The following is the main result of this chapter.

Theorem 5.8. The functions g±(λ, t) in equation (5.48) are entire functions of
λ±1, analytic for all t and solve the factorisation problem (5.35).

Proof. Let L(λ, t) and X(λ, t) be the matrices recovered from the Baker-
Akhiezer function ψ and the function ν resp µ. Denote X± = P±X. We
show the validity equation (5.45) for these matrices. Equation (5.44) im-
plies ∂tψ± = e±tµ(∂tψ∓ ± µψ∓), so that ∂tψ± are regular in U±. By Propo-
sition 5.4 there exist polynomials −X′± ∈ g ⊗ C[λ±] such that ∂tψ± =
−X′ψ±. The same equation can be rewritten as −X′±ψ = e±tµ(−X∓ ±
µ)ψ∓, which imply (X′± − X′∓)ψ± = µψ± = Xψ± and hence X′± = X±.

The proven equation (5.45) now shows that the chosen g± satisfy the
differential equation ∂tg± = −X±g± with the initial condition g±(λ, 0) =
In.

We finally give the proof Lemma 5.4.

Proof. For simplicity we assume g = gln(C) equipped with the commuta-
tor bracket. We first consider the differential equation L̇ = [L, M] where
M is a constant matrix. The Ansatz

L(t) = e−tMLetM (5.49)

is easily seen to solve the differential equation. This implies that det(L(t)−
νI) = det(L − νI). For the general case with a time-dependent matrix
M(t), by Taylor expansion we have L(t) = exp(−tM)L exp(t) + O(t2) as
t→ 0 and the claim hence follows.
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74 Integration of Lax equations

Explicit formulae may be obtained for the Baker-Akhiezer functions;
Reyman et. al. outline a description in [RS94, Section 10.2], and explicit
calculations are given in [BRS89]. We incorporate their method directly
in the next chapter when we calculate the Baker-Akhiezer function for a
specific set of spectral data.
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Chapter 6
The quantum Brachistochrone
problem

Quantum computers are at the forefront of scientific development. Still,
controlling quantum states represents many difficulties given the unique
behaviour of quantum mechanics at the smallest scale. From a theoretical
point of view, quantum control is concerned with finding a unitary trans-
formation that drives the given state to the desired state. One of the most
successful descriptions is in terms of representations of Lie groups and Lie
algebras [DP10], which is the focus of this chapter.

In this language, the system evolves on the Lie group SU(n) where n
the dimension of the system, being acted upon by some time-dependent
Hamiltonian operator Ĥ(t) ∈ −isu(n). For many applications the Hamil-
tonian is restricted a linear subspace of the Lie algebra g, by conditions
such as energy constraints or external magnetic fields. The quantum brachis-
tochrone (QB) problem attempts to minimise the cost of the evolution pro-
cess and corresponds to finding the most efficient evolution algorithm for
such restrained systems.

Its first formulation as a variational problem with flexible boundary
conditions was recently given in [YC22]; Yang et. al. find solutions when
the orthogonal subspace to the allowed subset of Hamiltonians is a subal-
gebra. Most recently, Cheianov and Malikis extended the set of integrable
solutions when this orthogonal subspace is not a subalgebra, and were
able to write the equation of motion as a limit case of integrable spinning
top systems [MC24]. Such integrable solutions turn out to be much more
numerically contractible.
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76 The quantum Brachistochrone problem

6.1 Overview

We discuss the derivation of the equation of motion of the QB problem
and realise it as a limiting case of a Lax pair for the spinning tops seen in
Chapter 5 following [MC24].

6.1.1 Introduction

We introduce the QB problem. Throughout this discussion let G = SU(n)
and g = su(n) unless stated otherwise. We equip g with the Frobenius
norm which coincides with the Killing form (cf. Proposition 2.8); recall
that ||A|| =

√
Tr(AA†). Moreover, identify g hereby with its dual g∗ and

elements of g with the defining representation.

Definition 6.1. A quantum evolution consists of a smooth curve Ĥ(t), called
the driving Hamiltonian, and an initial unitary operator U0 ∈ G. The unitary
state of the system is the solution of the Schrödinger equation in natural
units with an initial condition:

i∂tÛ(t) = Ĥ(t)Û(t), Û(0) = Û0, t ≥ 0. (6.1)

We assume that the time domain I of (6.1) is a closed interval I = [0, t f ],
where t f is the final time. Û f := Û(t f ) is called the final unitary.

As outlined above, we want to realise the final unitary in an optimal
manner. To this end, we are interested in the choice of Hamiltonians that
minimise the functional

S[Ĥ] =
∫ t f

0
||Ĥ(t)||dt, (6.2)

i.e. we want to solve this variational problem with the boundary con-
ditions Û(0) = Û0, Û(t f ) = Û f . With (6.1) one can check that a different
choice of time parameterisation leads to the same functional equation (6.2).
We hence assume without loss of generality t f = 1 and can also assume
Û0 = In ∈ G.

Under specific physical conditions such as energy constraints are the
presence of external forces, the Hamiltonian may not be able to access
the whole space g. Let a be a linear subspace consisting of the accessi-
ble Hamiltonians and b = a⊥ the orthogonal subspace. We require that a
generates the whole Lie algebra g, i.e. any unitary should be ’achievable’
from a physical point of view*.

*It is unclear whether this assumption guarantees that the evolution equation (6.1)
achieves all U = U f ∈ G; it is well-known that the exponential map of a compact con-
nected manifold is surjective, but this situation requires a different perspective.
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6.1 Overview 77

To find the minima of the functional (6.2) we can apply the Euler-
Lagrange formalism with Lagrange multipliers †. More specifically, choose
a basis Â1, . . . , Âr of a and B̂1, . . . B̂s of b, and let (λi(t))s

i=1 be Lagrange
multipliers. The orthogonality constraint may be written as

Tr(Ĥ(t)B̂i) = 0, i = 1, . . . , s. (6.3)

The length functional can now be rewritten using (6.1) as

S =
∫ 1

0

[√
Tr(∂tÛ∂tÛ†) +

m

∑
i

λi Tr(B̂i∂tÛÛ†)

]
dt. (6.4)

Define the smooth curve D̂ = ∑i λi(t)B̂i. The EL-equations given the
following differential equation; a derivation is given in Appendix A of
[MC24].

d
dt
(Ĥ + D̂) + i[Ĥ, D̂] = 0. (6.5)

Note that in the absence of constraints, D̂ = 0, we recover a constant
Hamiltonian ˙̂H = 0 and the solutions of (6.1) is the familiar exponential.

In fact, (6.5) can be written as a Lax equation. Let t̂ := −i(Ĥ + D̂) and
Pb : g→ b the projection onto the b subspace. Then

d
dt

t̂ = [t̂, Pb t̂]. (6.6)

The symmetry of equation (6.6) can be exploited to to a great extend; a
discussion can be found in [MC24, Page 4]. In particular, when b is a sub-
algebra, one can write down an explicit solution in terms of the initial
conditions. See for example equation (22) of [MC24].

Remarkably, (6.6) can be written as a limiting case of the Lax pair for
spinning top systems we constructed in Section 5.2. This allows us to ap-
ply the machinery of Section 5.3 to solve attack this differential equation.

To this end, let g = l⊕ p be a non-trivial pseudo-Cartan decomposition
of g. That means:

[l, l] ⊆ l, [p, p] ⊆ l, [p, l] ⊆ p. (6.7)

In particular, l is a subalgebra.
The following is the main result of this section [MC24, Theorem 1]. We

use the same notation as in Theorem 5.5.
†A more formal treatment would require Sobolev spaces and falls outside the scope of

this text.
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Theorem 6.1. Suppose p̂ ∈ p arbitrary, let â = ϵ p̂ with ϵ ∈ R. Let

la = l
(A)
a ⊕ l

(B)
a (6.8)

be some, possibly trivial, decomposition of the centraliser of â into subalgebras of
la. Then there exists a invariant polynomial ϕ(z) such that eq. (6.5) is the limit
ϵ→ 0 of the Lax system eq. (5.33) where g is decomposed as:

a = p+ l
(A)
a , b = l⊥ + l

(B)
a . (6.9)

Proof. The goal of the proof is to construct a polynomial such that dϕ(a) =
b. To this end, let (a1, . . . , aQ) denote the spectrum of â as acting canon-
ically on the vectorspace V = Cn and Vi ⊆ V the eigenspace of ai. Let
lia ⊆ la be the largest subalgebra preserving Vi. Then there exists a decom-
position

la =
Q⊕
i

lia (6.10)

of the centraliser la of â into the subalgebras lia. Without loss of generality
we can rearrange indices such that

l
(A)
a =

q⊕
i=1

lia, l
(B)
a =

Q⊕
i=q+1

lia. (6.11)

Consider now the following polynomial:

ϕ(z) := Tr

(
z2

2
+

1
2

ψ(z)
Q

∏
i=1

(z− ai)
2

)
, (6.12)

where

ψ(z) = −
Q

∑
k=q+1

Q

∏
s=1,s ̸=k

(z− as)2

(ak − as)3 . (6.13)

An easy calculation shows that the eigenvalues of b̂ coincide with â. Hence
b̂ = â. Thus ω(l̂) acts as the identity on l⊥ (cf. eq. (5.28)). It follows from
the definition that

ω = P⊥ +P(B) = Pb, (6.14)

where P(B) = P(q+1) = · · ·+P(Q). Substituting these identities in (5.33)
and comparing powers of λ yields:

[â, b̂] = 0, [â, ω(l̂)] = [b̂, l̂],
d
dt

l̂ = [l̂, ω(l̂)] + [ŝ, b̂],
d
dt

ŝ = [ŝ, ω(l̂)].
(6.15)
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6.2 An analysis of su(2) 79

The first two equations are satisfied by construction. Equation (6.14) im-
plies

d
dt

t̂ = [t̂, PB t̂] + ϵ[ŝ, p̂]. (6.16)

Taking ϵ→ 0 completes the proof.

We now solve an example case su(2) and take the limit ϵ→ 0 to recover
a solution of the original problem. For later use, recall that we proved in
chapter 5 that dHϕ = λϕ(λ−1L(λ)). With the proof above we thus have
dHϕ = L(λ), using notation from Chapter 5, we thus have µ(p) = ν(p) for
the problem below.

6.2 An analysis of su(2)

We solve eq. (6.16) and take the limit ϵ → 0, utilising the techniques from
chapter 5. This calculation is inspired by the approach of [BRS89].

Let G = SU(2) and g = su(2) be the corresponding Lie algebra with
the standard basis given by the Pauli matrices:

σx = i
(

1 0
0 −1

)
, σy = i

(
0 1
1 0

)
, σz =

(
0 1
−1 0

)
. (6.17)

Consider the pseudo-Cartan decomposition p = sp{σx, σy} and l = sp{σz},
such that g = p⊕ l. We fix an arbitrary element p̂ ∈ p:

p̂ =

(
ia1 ia2
ia2 ia1

)
, (6.18)

for some arbitrary a1, a2 ∈ R and let â = ϵ p̂. Note that {0} = la ⊂ l. for
any choice of constants a1, a2 ∈ R. This leads to a decomposition a = p and
b = l. As the choice of p̂ does not influence the resulting decomposition or
equation of motion (eq. (6.16)), we can simplify our calculation by setting
a2 = 0 and normalise a1 = 1. We want to solve the Riemann-Hilbert
problem for the following Lax matrix:

L(λ, t) = âλ + l̂(t) + ŝ(t)λ−1 (6.19)

= âλ + α(t)σz + (β(t)σx + γ(t)σy)λ
−1. (6.20)

Denote α = α(0), β = β(0) and γ = γ(0). We can also write:
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80 The quantum Brachistochrone problem

L(λ, 0) =
(

ϵλi + βiλ−1 α + iγλ−1

−α + iγλ−1 −ϵλi− βiλ−1

)
. (6.21)

Similarly, we have:

M(λ, 0) =
(

ϵλi α
−α −ϵλi

)
. (6.22)

Note that the terms of highest and lowest order in λ have a simple spec-
trum. The spectral curve of L = L(λ, 0) is given by:

0 = det(L− νI2) = ν2 + (ϵλa1 + βλ−1)2 − (−(γλ−1)2 − α2) (6.23)

=: ν2 + p(λ), (6.24)

where:

p(λ) = ϵ2λ2 + λ0(α2 + 2ϵa1β) + λ−2(β2 + γ2)

= ϵ2λ−2(λ− a1) · · · (λ− a4),
(6.25)

where

ai = ±

√
δϵ ±

√
δ2

ϵ −
β2 + γ2

ϵ2 , i = 1, . . . , 4, δϵ := −α2 + 2ϵβ

2ϵ2 . (6.26)

Let Γ0 ⊆ C∗ ×C be the set of all pairs (λ, ν) satisfying this identity.

6.2.1 Algebraic surfaces for su(2)

The spectral curve Γ0 has the symmetries (λ, ν)
τ1−→ (−λ, ν) and (λ, ν)

τ2−→
(λ,−ν) that determine involutions of Γ0. Denote by Γ the nonsingular
compactification of Γ0 and let C = Γ/(τ1), E = C/(τ2) be reduced curves.
The two coordinate substitutions z = λ2 and y = ν2 give two two-sheeted
covering maps Γ→ C resp. C → E.

We can interpret Γ as the Riemann surface determined by the algebraic
function

√
z on C, and similarly C as determined by the algebraic function√

y on E. By our arguments in Example 4.5, the surface Γ and C both have
genus 1 and E has genus 0, under the assumption that either β or γ is
nonzero.

We follow the argument given in [BRS89, Lemma 5.1] and apply it to
this situation. Let π : Γ → C denote the projection map induced by τ1. It
follows from Riemann-Hurwitz that the two-sheeted cover π : Γ → C is
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6.2 An analysis of su(2) 81

unramified: hence, there exists a cycle Z such that any loop on C lifts to Γ
if and only if ⟨γ, Z⟩ = 0, where ⟨·, ·⟩ denotes the intersection number. The
same argument applied to the projection κ′ : C → E implies that there are
4 branching points of ρ of multiplicity 2 which we give below.

From Example 4.3, we know that two points lie over λ = ∞, denote
them ∞+ and ∞−, and moreover two points lie over λ = 0, denoted
0+, 0−. It is easy to see with eq. (6.25) that both poles are simple and
both zeros are therefore simple as well. Furthermore, (6.25) implies that ν
has simple poles at ∞±, 0± and four simple zeros at a1, . . . , a4.

Similarly, on C there is one simple pole ∞ that lies over z = ∞ and
another simple zero 0. Furthermore, ν has two simple poles at ∞, 0 and
two simple zeros at two points p± given by

p± = δϵ ±
√

δ2
ϵ −

β2 + γ2

ϵ2 . (6.27)

Repeating the argument on E yields a simple poles ∞ and 0 for µ; likewise
simple poles of y =

√
ν at ∞ and 0 and simple zeros at p±. Hence, the

branching points of κ : C → E are given by these four points. Thus C
can be obtained from gluing two copies of E along suitable cuts [∞, 0] and
[p+, p−].

Note that the function z =
√

λ now considered with domain E \ [∞, 0]
becomes unramified, as ∞, 0 are the ramification points of z.

Let a, b ∈ H1(C, Z) be a canonical basis of cycles on C. We claim that
a and b can be chosen such that κa = −a κ′b = −b and a = Zmod 2.
Indeed, E is genus 0 and can topologically be identified with a sphere CP1;
the location of the ramification points, (6.27), then shows that cuts can be
chosen in the following manner: the first [∞, 0] along, say, the x = 0 axis
and [p+, p−] counterclockwise in the z = const plane. Geometrically, a
simple analytic continuation argument shows z changes sign along both a
and b. Hence setting a = Z proves the claim.

We also need to describe the behaviour of the covering κ : Γ → E
which has 4 ramification points by the same Riemann-Hurwitz argument.
It is clear that these are given by ∞± and p±. Let the cut [∞+, ∞−] pass
through both points 0±. We can choose a canonical basis as before.

The following lemma summarises our discussion above.

Lemma 6.1. There exists a choice of canonical basis a, b ∈ H1(Γ, Z) such that
κa = −a, κb = −b.

Note that eq. (6.21) has the symmetry

L(λ) = IL(−λ)I, (6.28)
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where I = iσz. For the purpose of later computations, we transform to a

basis where I is diagonal by conjugating with the matrix C =
√

2
−1
(
−i 1
−1 i

)
;

in this basis diag(1,−1) = C−1 IC. For the sake of notation write L(λ) in-
stead of C−1L(λ)C. Then:

L(λ) =
(

−iα −ϵλ− (β + γ)λ−1

−ϵλ + (β + γ)λ−1 iα

)
=: L1λ + L0 + L−1λ,

M(λ) =

(
−iα −ϵλ
−ϵλ iα

)
=: M1λ + M0.

(6.29)

We obtain the new symmetry:

L(−λ) = ηL(λ)η (6.30)

The involution τ1 can be extended to the bundle E∗L by setting:

ψ(τ1p) = ηψ(p), p ∈ Γ, ψ(p) ∈ E∗L(p). (6.31)

in view of the equation above.

6.2.2 Analytical expressions for su(2)

We begin the program of computing the Baker-Akhiezer function of E∗L(t).
This requires the singular behaviour of the meromorphic projection ν(λ)
with respect to λ on the spectral curve Γ. Let λ± be local coordinates on
the λ sphere CP1 near 0 resp. ∞. It follows from eq. 6.24 that near λ = 0:

ν(λ) ∼ ±λ−1(
√

β2 + γ2,−
√

β2 + γ2) + o(1), (6.32)

where the sign can be chosen later for convenience. Near λ = ∞ we have:

ν(λ) ∼ ±iϵλ(1,−1) + O(1). (6.33)

Fix a basis {(ψi
±)} of sections of E∗(L(t)). The Baker-Akhiezer function ψ

satisfies the following analytical properties:
(i) ψ is meromorphic on Γ except at the points that lie over λ = ∞;
(ii) ψ exp(−tν) is meromorphic on Γ except at λ = 0 by (5.44);
(iii) the divisor D̂ of poles of ψ has degree 4 and is time independent;
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6.2 An analysis of su(2) 83

(iv) ψ is subject to the symmetry condition of eq. 6.31.
The divisor D̂ is not completely determined from this condition, as

given a meromorphic function on Γ with f (τ1p) = f (p) and ( f ) ≤ D̂ we
can replace f ψ by f ψ. With this freedom we can find a divisor D on C such
that D̂ is the pullback of the divisor P∞ +D .

Let Ψ−(λ, t) be the matrix of equation (5.47). It follows from the ana-
lycity properties (i) and (ii) that

Ψ(λ, t) = ±
(

Φ(t) + S(t)λ−1 + . . .
)

diag(ϵλe−iϵλt,−ϵλeiϵλt) (6.34)

where Φ(t) and S(t) do not depend on λ. In view of the equations

L(λ(p), t)ψ(p, t) = ν(p)ψ(p, t),
∂

∂t
ψ(p, t) = −M(λ(p), t)ψ(p, t), (6.35)

we obtain the following conditions with (6.33):

L1 = iϵΦ
(

1 0
0 −1

)
Φ−1, (6.36)

L0 = [SΦ−1, L1], (6.37)

M1 = −Φ
(

1 0
0 −1

)
Φ−1, (6.38)

M0 = −∂tΦΦ−1 + [SΦ−1, M1]. (6.39)

Additionally, the symmetry condition (iv) takes the following form. Recall
that the involution τ1 flips sheets:

Ψ(−λ, t) =
(

1 0
0 −1

)
Ψ(λ, t)

(
0 1
1 0

)
. (6.40)

A simple calculation then shows that Ψ and S are subject to the following
symmetry conditions:(

1 0
0 −1

)
Φ
(

0 1
1 0

)
= Φ,

(
1 0
0 −1

)
S
(

0 1
1 0

)
= −S. (6.41)

Combining this with (6.36) gives

Φ(t) =
(

1 1
i −i

)
. (6.42)

Furthermore, the symmetry equation combined with (6.37) gives s11(t) =
−s12(t), s21(t) = s22(t) and

α(t) = 2ϵs11(t) + 2ϵis22(t). (6.43)
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The symmetry condition (6.40) also yields at λ = 0

Ψ(0, t) =
(

Ψ11(t) Ψ11(t)
−Ψ22(t) Ψ22(t).

)
(6.44)

Our next goal is to find explicit formulae for the Baker-Akhiezer functions.
This can miraculously be done in terms of the so-called Riemann-theta func-
tions.

6.2.3 Baker-Akhiezer function for su(2)

The 1-dimensional Riemann theta function with characteristics ξ, χ ∈ C

has the following properties:

θ[(ξ, χ)](z|B) = ∑
m∈Z

exp
[

1
2

B(m + ξ)2 + (z + 2πiχ)(m + ξ)

]
,

θ(z + 2πin) = θ(z),

θ(z + Bn) = exp
[
−1

2
Bn2 − nz

]
θ(z), n ∈ Z,

(6.45)

where B is the period matrix. We introduce functions that have the same
meromorphic behaviour as the Baker-Akhiezer functions. Let σ be an
Abelian differential of the second kind on C with a double pole at ∞+,
such that σ + dν is regular at ∞+ and we have the normalisation condition∫

a
σ = 0. (6.46)

Define the function
Ω(p) =

∫ p
σ (6.47)

where the constant of integration is fixed by the condition

Ω(p) = ϵλ + O(λ−1) as p→ ∞+. (6.48)

We recall some results from above: λ has a well-defined branch on Γ \ a,
specified by its sign ν ∼ iϵλ; κ acts on C by (z, ν) 7→ (z,−ν). The following
is an analogue of [BRS89, Lemma 7.1] and the proof is identical.

Lemma 6.2. We have the the following identity:

κ∗σ = −σ. (6.49)

Moreover, let
V :=

∫
b

σ. (6.50)

Then V coincides with the velocity vector of on JacC (cf. equation (5.41)).
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6.2 An analysis of su(2) 85

Let dρ be an Abelian differential of the third kind which has simple
poles at ∞+ and ∞− with residues 1 resp. −1. Choose l a path from ∞+ to
∞− which does not intersect a and such that∫

a
dρ = 0. (6.51)

We soon specify the curve l further. Note that dρ can be written as the
pullback to Γ of a holomorphic differential on E given by

dρ =
zdz

y−
√
(z− p+)(z− p−)

, (6.52)

Define
ρ(p) =

∫ p
dρ (6.53)

with the constant of integration fixed by the condition

eρ(p) = ϵλ + O(1) as p→ ∞+. (6.54)

Finally, define the function

ω(p) =
∫ p

∞+

ω, (6.55)

where ω is a holomorphic 1-form on C.
The functions Ω(p), ρ(p) and ω(p) are multi-valued. We need their

behaviour near the points ∞−, 0± and use the path l to do so. To this end
we can require that:

(a) l passes through 0+;

(b) the cycle l − κl is homologous to a.

By hypothesis the periods of σ and dρ over a are 0 and hence the functions
Ω(p) and ρ(p) have single-valued branches in a neighborhood of l ∪ κ′l,
given by the conditions (6.48) and (6.54). Moreover, we assumed ω(p) has
a period 2πi along a.

We have the following analogue of [BRS89, Lemma 7.2].

Lemma 6.3.
ω(∞−) = πi,

∫
b

dρ = πi. (6.56)
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Proof. We have l − κ′l = a, κ′∗ω = −ω and hence∫
l
ω =

∫
l−a

κ′∗ω = −
∫

l
ω + 2πi.. (6.57)

By (4.6) again we have
∫

b dω =
∫

l ω and the claim follows.

We describe the other values near the critical points and then give ex-
pressions for the Baker-Akhiezer functions. [BRS89, Lemma 7.3]

Lemma 6.4. The following hold:

Ω(∞−) = 0; (6.58)

eρ(p+) = eρ(p−); (6.59)

eρ(p) = −q2

λ
+ O(1) as p→ ∞−, (6.60)

where q = eρ(0+).

Proof. For the first identity note that Ω(κ′p) = Ω(p) in a neighborhood
of l ∪ κ′l in view of (6.48); the claim then follows from the observation
κ′∞− = ∞−. Secondly, note that eρ(κ′p) = −eρ(p) by the previous lemma
and the identity is clear. The third claim takes a bit more work.

Consider dρ as a differential on E. From the description at the start
of the section, we can choose l such that it is symmetric with respect to
the involution κ′. We have κ′∗dρ = −dρ, such that

∫ κ′p
0 dρ = −

∫ p
0 dρ,

λ(κ′p) = −λ(p) and κ′∞+ = ∞−. This completes the proof.

Let c ∈ C such that the divisor of θ(ω(p) + c) agrees with that of D̂
which we defined above. We obtain the following expressions for the
Baker-Akhiezer functions; the proof relies on the analycity properties we
have described above and the behaviour of the θ functions. More details
are given in [RS94, Section 10.2] and[BRS89, Proposition 7.4]

Proposition 6.1. The functions ϕi(p, t) given by

ϕ1(p, t) =
θ[v](ω(p) + Vt + c)θ(c)
θ(ω(p) + c)θ[v](Vt + c)

eρ(p)+Ω(p)t,

ϕ2(p, t) = −θ(ω(p) + Vt + c)θ(c)
θ(ω(p) + c)θ(Vt + c)

eρ(p)+Ω(p)t,
(6.61)

where v = (0, 1/2), have the following analycity properties:
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6.2 An analysis of su(2) 87

(i) ϕ2 is double-valued and acquires a factor (−1)⟨γ,a⟩ when continued analyt-
ically along a closed curve γ.

(ii) We have

(ϕ1, ϕ2)(∞−) = (0, 0),

(ϕ1, ϕ2)(p) = ((iϵλ,−iϵλ) + O(1))eiϵλt as p→ ∞+.
(6.62)

(iii) The divisor of poles of (ϕ1, ϕ2) coincides with D̂ .

We now give an expression for α(t) and follow the proof of [BRS89,
Lemma 7.5]. We get from (6.43) the identity

α(t) = lim
p→∞+

λ(2ϵϕ1(p, t) + 2ϵiϕ2(p, t))

= 2ϵ
∂
∂k θ[v](ω(p) + Vt + c)

θ[v](Vt + c)
− 2ϵi

∂
∂k θ(ω(p) + Vt + c))

θ(Vt + c)
,

(6.63)

where k = λ−1 is a local parameter at p = ∞+. Write ω = f (k)dk near
p = ∞+. Then V = f (0) by (5.41). Moreover, the function ω(p) is given
near p = ∞+ by

ω(p) = f (0)k + O(k2). (6.64)

As such, the derivative in eq. (6.63) may be replaced by a time derivative.
We have proven the following.

Proposition 6.2. The time evolution of the function α(t) is given by

α(t) = 2ϵ
∂

∂t
log θ[(0, 1/2)](Vt + c)− 2ϵi

∂

∂t
log θ(Vt + c). (6.65)

We can now combine equation (6.44) and (6.61) to calculate the matrix
Ψ(0, t).

Ψ(0, t) = qeΩ(0+)t θ(c)
θ(ω(0+) + c)

 θ[v](ω(0+)+Vt+c)
θ[v](Vt+c)

θ[v](ω(0+)+Vt+c)
θ[v](Vt+c)

− θ(ω(0+)+Vt+c)
θ(Vt+c)

θ(ω(0+)+Vt+c)
θ(Vt+c) .


(6.66)

We use the symmetry condition (6.44) to determine the evolution of β(t)
and γ(t). A discussion identical to Section 6.2.2 yields

L−1 =
√

β2 + γ2Ψ(0, t)
(

1 0
0 −1

)
Ψ(0, t)−1 (6.67)
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88 The quantum Brachistochrone problem

and we now obtain

.
(

β(t)
γ(t)

)
=
√

β2 + γ2
(

1 −1
−1 −1

)(
Ψ2

11(0, t)
Ψ2

22(0, t)

)
(6.68)

where Ψ11(0, t) and Ψ22(0, t) are given by (6.66).
This rounds off our calculation, with results (6.65) and (6.68). We sum-
marise our discussion.

Theorem 6.2. The solutions of the equations of motion are given by (6.65) and
(6.68), where

1. θ[ξ, χ](z) denotes the 1-dimensional theta function with characteristics
ξ, χ ∈ C (6.45), and period matrix B given by the integral

B =
∫

b
ω; (6.69)

2. V is the velocity vector determined from the meromorphic function ν (6.24)
on Γ and equation (5.41);

3. ω(0+) is the Abel transform ∫ 0+

∞+

ω (6.70)

cut along the canonical cycles;

4. c is a constant such that the divisor of θ(ω(p) + c) agrees with the divisor
D̂ of poles of the Baker-Akhiezer function.
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Chapter 7
Conclusion and outlook

To come to a conclusion, we have studied the simplest version of the quan-
tum brachistochrone for su(2), by writing the equation of motion as the
limit case of a spinning top system [MC24].

Chapter 2 introduced Lie groups and their Lie algebras, at the end dis-
cussing the canonical representation of a Lie group on either its Lie algebra
or dual thereof. In Chapter 3 we gave an account of Poisson manifolds that
represent the most general context for studying Hamiltonian dynamics.
We developed structure theory of Poisson manifolds and applied that to
the canonical Poisson structure on the dual Lie algebra and Hamiltonian
group actions. In Chapter 4 we presented an introduction to Riemann sur-
faces. First we discussed various properties of a complex structure and
integration. Using the language of sheaves then simplified our discussion
and helped us study divisors and line bundles on a compact Riemann sur-
face.

Lax equations were studied in Chapter 5, particularly in the dual Lie
algebra equipped with the canonical Poisson structure. First we discussed
how the integration of the equation of motion can be rephrased in terms of
a factorisation problem, analogous to the inverse scattering method. We
looked at Hamiltonian reduction and used those ideas to construct inte-
grable spinning top systems. Thereafter we extensively studied the fac-
torisation problem in terms of the spectral data of a Lax equation, yield-
ing an explicit solution in terms of algebraic geometric means. Chapter
6 focused on the quantum brachistochrone (QB) problem and solved the
resulting equation of motion for the simplest case of su(2).

This project was initially aimed at solving the QB problem for a non-
trivial decomposition of the Lie algebra su(3). That calculation was ulti-
mately scrapped in the final version of this project in view of many dif-
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90 Conclusion and outlook

ficulties: the resulting expressions quickly become convoluted and the
higher dimensionality introduces too much complexity to handle. More-
over, it seems highly unlikely that an algorithm can be produced for find-
ing higher dimensional solutions in this manner, as suggested in [MC24];
the algebraic geometry seems too specific and difficult to find a general
solution, as suggested by the lengthy computation in Section 6.2.

Furthermore, it remains unclear to what extend the limit ϵ → 0 can
actually be taken in the resulting solutions; one would need to describe
the asymptotic behaviour of the relevant integrals and θ functions, which
seems analytically intractable and goes beyond the scope of this text.
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Appendix A
Appendix

A Distributions and the Frobenius theorem

A distribution generalises the notion of a frame of vector fields. Whereas
any vector field on a smooth manifold leads to a decomposition into inte-
gral curves, the global Frobenius theorem states that any smooth smooth
distribution admits a decomposition into integral manifolds, as long as it
is involutive.

We follow [Var13, Section 1.3]; all smooth structures in that text are
replaced by smooth structures.

Definition A.1. A singular distribution D on an open subset U ⊆ M assigns
to every point p ∈ U a subspace Dp ⊆ TpM. The distribution is called
nonsingular if dim Dp = dim Dq for all p, q ∈ U and in this case dim Dp is
called the dimension of D.

All distributions are assumed to be nonsingular unless stated otherwise.
A distribution D of dimension m is said to be smooth if for every p ∈ U

there exists a coordinate neighborhood containing p and a set of vector
fields {X1, . . . , Xm} ⊂ U such that for all q ∈ U

TqM = span{(X1)q, . . . , (Xm)q}.

The vector fields X1, . . . , Xm is called a local frame for the distribution.

Example A.1. Any nonvanishing vector field on a smooth manifold deter-
mines a smooth distribution of dimension 1.

An integral manifold of D is an immersed submanifold N ⊆ M such that
TpN = Dp for all p ∈ N. The distribution is then said to be integrable if
each point is contained in an integral manifold.
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94 Appendix

Definition A.2. A distribution D is said to be involutive at p ∈ M if there
exists a neighborhood U and a local frame of vector vector which is invo-
lutive.

Any integrable is then clearly involutive. The Frobenius Theorem shows that
the converse is also true; in fact, it shows that any involutive distribution
is completely integrable: any point p ∈ M admits a local frame of vector
fields X1, . . . , Xdim Dp such that Dp = span((X1)p, . . . (Xdim Dp)p). A simple
coordinate argument shows that completely integrable implies integrable.

The straightening theorem gives a simple local form for vector fields;
the following result generalises this to involutive frames. A direct proof
with induction can be found in [Var13, Lemma 1.3.2].

Proposition A.1. Suppose M is a smooth manifold, p ∈ M and U a neighbor-
hood of p. Given a set of linearly independent vector fields X1, . . . , Xk ∈ X (U)
such that [Xi, Xj] = 0, 1 ≤ i, j ≤ k, then there exist coordinates (xi) around p
such that

Xi =
∂

∂xi + ∑
1≤j<i

aj
∂

∂xj ,

where the aj are smooth functions in a coordinate neighborhood of p.

The reader is now invited to use Proposition A.1 to proof a local version
of the Frobenius theorem. Alternatively, a proof of the following is given
in [Var13, p. 1.3.3].

Theorem A.1 (Local Frobenius Theorem). Let D be an involutive distribu-
tion on a smooth manifold M. For any p ∈ M there exists a coordinate neighbor-
hood U such that the restriction D|U is a completely integrable distribution.

The remarkable statement of the global Frobenius theorem is that these
integral can be extended maximal immersed submanifolds, called the leaves
of the distribution; the smooth manifold then admits a decomposition into
these leaves and is called a D-foliation, or simply foliation. More precisely,
this amounts to the following construction: (i) define a system of open sets
of unions of integral manifolds (ii) show that this induces a finer topology
and that this space satisfies the second axiom of countability (iii) the leaves
are then the connected components of the resulting manifold (iv) specify
a smooth structure on these integral manifolds. Details can be found in
[Var13, Lemma 1.3.4, Lemma 1.3.5 and Theorem 1.3.6]. We only state the
final result.

Theorem A.2 (Frobenius Theorem). Let M be a smooth manifold and D an
involutive distribution. Then there exists a collection of disjoint maximal integral
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A Distributions and the Frobenius theorem 95

submanifolds, which are immersed submanifolds, called a foliation F = (Fi)i∈I ,
such that

M =
⋃
i∈I

Fi.

Moreover, integral manifolds of D are open submanifolds of exactly one leaf Fi.
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B Elementary sheaves and Céch cohomology

Sheaves conveniently describe the local algebraic structure of a topologi-
cal space. We introduce these objects and their natural cohomology. Céch
cohomology allows us to resolve the topological space. We discuss [For12,
Chapter 6, Chapter 15]. This serves as a refresher for the relevant defini-
tions we encounter in the text.

Definition B.1. A presheaf of Abelian groups F on a topological space X
is for any collection of open sets U = (Ui)i∈I

(i) An Abelian group F (Ui) for each I ∈ I;

(ii) A collection of restriction maps (ρij)i,j∈I such that

ρii = idF(Ui)
for all i ∈ I,

ρij ◦ ρjk = ρikfor every i, j, k with UK ⊂ Uj ⊂ Ui.

A sheaf has additional regularity conditions which are essential in all ap-
plications. We use the notation Uij = Ui ∩Uj.

Definition B.2. A sheaf F of Abelian groups on a topological space X is a
presheaf of Abelian groups that satisfies the following properties: for any
open collection U = (Ui)i∈I and open set U =

⋃
i Ui we have

(i) if f , g ∈ F (U) and f |Ui = g|Ui for all i ∈ I, then f = g;

(ii) given any elements fi ∈ F (Ui) such that

fi|Uij = f j|Uij

for all i, j ∈ I, then there exists an element f ∈ F (U) such that f |

Definition B.3 (coboundary operator). Suppose X is a topological space,
F a sheaf of Abelian groups and U = (Ui)i∈I an open cover of X. Denote

Ui0,...,ik = Ui0 ∩ · · · ∩Uik , k ∈N, i0, . . . , ik ∈ I.

Let Ck(U ,F ) denote the free Abelian group given as follows: Ck(U ,F ) is
generated by the elements f called k-cochains:

f = ( fi0...ik) ∈ Πj=i0,...,ikF (Uj).

96
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The coboundary operator δ : Ck(U ,F )→ Ck+1(U ,F ) sends any k-cochain ()
to the k + 1-cochain

(δ f )i0...ik+1 =
k

∑
j=1

∑
ij≤im≤ik+1

(−1)m( fi0...îm ...ik+1
),

where ·̂means that the index is forgotten.

In particular we have

δ : C0(U ,F ) −→ C1(U ,F ),
( fi)i 7−→ ( fi − f j)ij,

and

δ : C0(U ,F ) −→ C1(U ,F ),
( fij)i 7−→ ( fij − fik + f jk)ijk.

One can show that δ2 = 0. It is therefore natural to define

Zk(U ,F ) := ker
(

Ck(U ,F ) δ−→ Ck+1(U ,F )
)

,

Bk(U ,F ) := im
(

Ck(U ,F ) δ−→ Ck+1(U ,F )
)

,

and consider the k-th Céch cohomology groups

Hk(U ,F ) :=
Zk(U ,F )
Bk(U ,F )

Elements of Zk(U ,F ) resp. Bk(U ,F ) are called k-cocycles resp. k-coboundaries.

Definition B.4. The k’th Céch cohomology group of the sheaf F on the space
X is the projective limit of Abelian groups

Hk(X,F ) = lim−→
U

Hk(U ,F ),

with respect to a refinement of open covers

Definition B.5. Let F be a sheaf of Abelian groups on the topological
space X and U a neighborhood of x ∈ X. The stalk of F at x is the projec-
tive limit of Abelian groups

Fx = lim−→VρUV(F (U))

with respect to inclusion of neighborhoods V ∋ x, where ρUV denotes the
restriction map.
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Definition B.6. Let X be a topological space. A short exact sequence of
sheaves F , G andH on X, written

0→ F → G → H → 0,

is for every x ∈ X a stalkwise short exact sequence

0→ Fx → Gx → Hx → 0.

A short exact sequence of sheaves gives rise to a long exact sequence
of their cohomology groups via connecting homomorphisms; we omit a
discussion here, some details can be found in [For12, Theorem 15.12] for
k = 1 and k = 2.
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