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Abstract 

This thesis presents a comparison of the seasonal Autoregressive Integrated Moving Average 

(ARIMA) model and the Gaussian Process Regression (GPR) model when predicting OV-fiets 

bicycle availability in the following 48 hours. Both the ARIMA and the GPR have been used in 

past research when predicting traffic flow data. However, a proper comparison of a seasonal 

ARIMA to the GPR is yet to be examined. OV-fiets bicycle availability data of different rental 

locations was used to make predictions of future OV-fiets bicycle availability. A rolling-origin 

cross-validation was implemented to tune the hyperparameters and train the models. Results 

suggest that the GPR performs better than the seasonal ARIMA, however, upon further visual 

inspection of the predictions, it was concluded that the hyperparameter selection process had 

faults, which led to biases in predictions. It was found that the seasonal ARIMA was over-

differenced, which gave inaccurate forecasts. Advise is given to future researchers about the 

limitations of over-differencing data. 
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1. Introduction 

Nederlandse Spoorwegen (NS) is the largest passenger railway operator in the Netherlands, 

running trains on the busiest railway network in Europe (International union of railways, 2024). 

Besides running and maintaining trains, NS provides numerous additional services, among which 

is OV-fiets, a public bike rental service. There are over 300 OV-fiets rental locations, mainly 

located at train stations, and approximately 22,500 OV-fiets bicycles actively in service 

(Nederlandse Spoorwegen, n.d). Each rental location provides a limited number of bicycles that 

users can rent. Once all bicycles are rented out, there is no option to replenish the stock besides 

bicycles being returned at the end of a rental.  

 

This poses a potential problem for OV-fiets users. If a user plans a journey involving the usage 

of OV-fiets, how can they know whether a bicycle will be available? As of now, only the current 

availability of OV-fiets is known to the user via an online application. There could be many OV-

fiets bicycles available at the time of checking the application, however, by the time the user 

arrives at the OV-fiets rental location, the number could have dropped to 0 resulting in the 

inability to continue the journey as planned.  

 

As reservations of OV-fiets bicycles are not part of the product design, one can either wait until 

someone returns a rented bicycle or choose another form of transportation like a bus to reach 

their destination. This causes delays and unpredictability in the journey of daily users of OV-

fiets. Data available to NS shows that in some OV-fiets rental locations, once the bicycles are 

rented out, it can take hours until bicycles are available again. Within these locations, users 

cannot simply wait until someone returns an OV-fiets bicycle.  

  

Many users rely on the availability of OV-fiets bicycles. A lot of OV-fiets users are travelling for 

work or study related purposes. It is not possible for users to have delays, as it could lead to 

being late for meetings, interviews, classes, etc. It is part of the mission of NS to provide a door-

to-door journey without trouble or changes in the planning. The best that NS can do is to provide 

insight into OV-fiets availability so that travellers can adapt their journey to avoid delays.  
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An approach to mitigate such delays is to predict the availability of OV-fiets in the next 48 hours 

and communicate these predictions to the users of OV-fiets. These predictions would provide 

insight to the user into the extent to which they can rely on OV-fiets during their journey. Not 

only would this save a lot of time, but it also creates less uncertainty about whether an OV-fiets 

will be available to rent. NS is currently working to provide this information to users through 

journey planning applications.  

 

A relevant field of research for the availability of OV-fiets bicycles is the study of traffic flow.  

Traffic flow is the research of travellers and the many different interactions that happen during 

travel times (Treiber & Kesting, 2013). The goal of studying traffic flow is to better understand 

the transport network and to implement better techniques to make transportation more efficient 

for travellers, allow travellers to make better route decisions, reduce carbon emissions and allow 

for better traffic management (Munoz & Laval, 2006). Within traffic flow theory, the main 

interest are roadways with vehicles such as cars, buses, bicycles, etc. Detection tools fixed on 

various locations on a roadway commonly measure flow, speed, and density of traffic 

(Elefteriadou, 2014). Flow refers to the number of vehicles that pass a specific reference point 

per unit of time, speed refers to the distance covered per unit of time, and density refers to the 

number of vehicles per unit of length of a roadway (Gerlough & Huber, 1976). For this thesis, 

the flow of traffic is measured, or in other words, the amount of people that pass through (and 

rent an OV-fiets bicycle) a specific reference point which is an OV-fiets rental location.  

 

One way to study traffic flow is using prediction models. Predicting traffic flow can be crucial 

for the improvement of transport systems and making the commuter experience more positive 

(Elefteriadou, 2014). Accurately forecasting traffic flow can give way for transportation 

authorities and companies like NS to better allocate their resources, plan for maintenance or 

construction, and ultimately reduce overcrowding. Insights into future traffic flow may allow 

travellers to plan their journey leading to better punctuality and customer satisfaction. 

Furthermore, anticipating potential disruptions in traffic flow allows companies to implement 

different strategies to overcome any upcoming troubles and allow for a more flowing 

transportation network (Munoz & Laval, 2006).   

 



6 
 

Early research of short-term traffic flow from the 1970s used an Auto-Regressive Integrated 

Moving Average (ARIMA) model to make predictions (Ahmed & Cook, 1979). From then 

onwards, a wide variety of models have been used and tested to predict short-term traffic flow by 

different areas of research such as economics, transportation engineering, machine learning or 

different branches of statistics (Lv et al., 2014). Despite a lot of different models available, the 

ARIMA is an extremely sound time-series model with a lot of variations available. Variations 

such as ARIMA with predictor variables, seasonal ARIMA, ARMA, etc. have all been used to 

predict traffic flow (Kamarianakis & Prastacos, 2003; Williams, 2001; Williams & Hoel, 2003).  

 

One recent study tested the performance of a seasonal ARIMA for short-term traffic flow 

predictions. The authors argue that a non-seasonal ARIMA is not sufficient for traffic flow 

prediction (Kumar & Vanajakshi, 2015). Instead, a seasonal ARIMA should be used to reach a 

high standard for predictions. The seasonal ARIMA model was tested through 24 hours ahead 

predictions and compared to a historic average and a naive method. It was found that the 

seasonal ARIMA outperformed both models when predicting short-term traffic flow.  

 

Another study was conducted to predict short-term traffic flow using a seasonal ARIMA model. 

The authors present multiple arguments and graphs to show that traffic flow data should be 

modelled using a seasonal ARIMA instead of a non-seasonal ARIMA (Williams & Hoel, 2003). 

They compared the seasonal ARIMA model to simpler baseline models such as random walk 

forecast and historical average forecast. One-step ahead predictions of 15 minutes were made, 

and the results showed that the seasonal ARIMA model outperformed the baseline models. Both 

studies show that a seasonal ARIMA performs better than simpler baseline models. However, a 

question remains about the performance of a seasonal ARIMA in comparison to an ‘ideal model’ 

or a more robust and solid model than a simple baseline model. 

 

One model that shows robustness and solidity is the Gaussian Process Regression (GPR). It is a 

flexible machine learning tool that is used for classification, regression, and data modelling 

(Schulz et al., 2018). It is based on the idea that functions have a normal, or Gaussian 

distribution. This means that the values of the function at any collection of points also have a 

Gaussian distribution (Deringer et al., 2021). An example of this is if a point at x is taken, the 
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GPR plots out a Gaussian distribution at point x along the y-axis to visualise the different 

possibilities for x. This allows GPR to capture complex patterns in data and make probabilistic 

predictions, providing uncertainty estimates for each point on the x-axis. GPR models are widely 

used within different fields such as robotics, solving optimization problems or computer 

visualisation problems, where the ability to handle complex data is extremely useful (Nguyen-

Tuong et al., 2009).  

 

GPR has also been tested within the field of traffic flow. One study by Zhao and Sun (2016) 

looked at predicting traffic flow using a fourth-order Gaussian Process model, which is a variant 

of the GPR. The model is compared to other models such as a weighted k-NN and other machine 

learning models. The proposed variant of the GPR model outperformed most models when 

compared. Another study looked at a different variant of the GPR for traffic flow prediction and 

compared it to different models such as Bayesian network, random walk, and ridge regression 

(Sun & Xu, 2010). It was found that the variant of the GPR model outperformed the other 

baseline models.  

 

From this, both the ARIMA and GPR approaches are viable options for traffic flow prediction 

models. A comparison between the two models would be of high interest to see which model 

outperforms the other when predicting traffic flow data. One study compared the ARIMA model 

with the GPR model to see which model performs better when making forecasts of one- and two-

steps-ahead of 15 minutes per step (Xie et al., 2010). It was found that the GPR model 

outperformed the ARIMA model in the one-step-ahead forecast and the gap between the models 

was even larger for the two-step-ahead forecast.  

 

However, questionable choices were made when tuning the parameters of the ARIMA model. 

Despite stating that the “data set showed seasonal patterns” (Xie et al., 2010, p. 74), the authors 

decided to use a non-seasonal ARIMA as a result of the auto.arima function in R, which 

optimises the ARIMA parameters by trying every possible combination of parameters and 

returning the AIC and BIC values for the ARIMA models. While this is a sound method to 

choose the best fitting parameters, it is important to note that the type of the seasonality, either 

daily, weekly, monthly, etc., needs to be chosen by hand, and if the choice of the seasonality 
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does not fit the data well, then the auto.arima function may result in a non-seasonal ARIMA. In 

the end, this choice could have led to the ARIMA model underperforming in comparison to the 

GPR model.  

 

Multiple previously mentioned studies compared the performance of the seasonal ARIMA and 

GPR to other baseline models when predicting traffic flow data. One study compared the non-

seasonal ARIMA to the GPR (Xie et al., 2010). However, due to the ARIMA model being non-

seasonal, an unanswered question remains about the performance of a seasonal ARIMA 

compared to the GPR. The aim of this study is to compare the performance of the seasonal 

ARIMA model to the GPR model when predicting traffic flow, more specifically, OV-fiets 

bicycle availability. I hypothesise that the GPR will outperform the seasonal ARIMA model due 

to its flexibility and possibility to model complex data.  

 

 

2. Methods 

2.1. OV-fiets Bicycle Availability Data 

The OV-fiets bicycle availability data consists of information about the amount of OV-fiets 

bicycles available every minute in all OV-fiets rental locations in the Netherlands between the 

24th of January 2023 and the 24th of October 2023. The definition of an available bicycle is that 

it is present at a rental location and is ready to be rented. An OV-fiets bicycle can be rented for a 

total of 72 hours (costing 4,55€ for the first 24 hours, afterwards the price increases to 9,55€ per 

day) before it needs to be brought back to the rental location it was rented from. The data was 

collected using the OV-fiets Online Service API, which provides the information of the current 

availability of OV-fiets bicycles in the NS online application used by the public (NS API 

Management team, n.d.).  Every minute, a snapshot of currently available OV-fiets bicycles is 

taken, processed, and added to the dataset. Data has already been collected and is still being 

collected every minute for possible future expansions of the data.  
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At the time of writing this thesis, there are over 300 OV-fiets rental locations in the Netherlands. 

Analysing all 300 and more locations would increase the computational load too much, therefore 

only a select few locations will be analysed. The following stations will be analysed: Amsterdam 

Amstel, Amsterdam Ijzijde, Amsterdam Muiderpoort, Amsterdam Zuidplein, Breda Centrum, 

Den Haag CS, ‘s-Hertogenbosch and Utrecht Centraal. These locations are highly visited NS 

train stations and therefore NS hopes to deploy the models in these stations first. 

 

Furthermore, minute data will be re-coded to hourly data to minimise the time needed to run the 

analyses. This allows for multiple analyses to be run with fewer computational costs and saves 

time on computing different methods. However, this is done with a loss of information and 

possible patterns about bicycle availability between hours, which could lead to better predictions. 

For example, if most people start renting out bicycles around 7:10AM, this pattern would only be 

noticed at 8:00AM, when the next data point is inspected by the model. This can be crucial 

information for the models; however, a greater value was placed on decreased computational 

load over increased prediction performance of the models. 
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Figure 1. OV-fiets Bicycle Availability in Amsterdam Muiderpoort for three weeks. Data ranges from 

03/04/2023 to 24/04/2023 starting on a Monday 00:00 and ending on and not including a Monday 00:00. The 

highlighted areas represent Saturday and Sunday (weekend). 

 

Figure 1 shows the OV-fiets bicycle availability data in Amsterdam Muiderpoort over a period of 

three weeks. A steady pattern is observable in the data, where each day the availability goes 

down to 0 or near 0 between 7:00 AM and 9:00 AM, and then has a large peak back to near full 

availability between 5:00 PM and 7:00 PM. Figure 2 zooms in on the data by only showing one 

week. The difference between weekdays and weekends becomes more visible. During weekends 

(highlighted) the pattern changes slightly with availability being low during the whole day. One 

reason for this pattern is that people commute to work on workdays, which is why, during peak 

hours, availability drops to near zero, and then after work hours, the availability increases again 

when people return their bicycles. During weekends, a slightly different pattern is seen, possibly 

due to people using OV-fiets bicycles for leisure day trips rather than work-related trips. This 

leads to bicycles being mostly unavailable during weekends. 
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Figure 2. OV-fiets Bicycle Availability in Amsterdam Muiderpoort for one week. Data ranges from 

03/04/2023 to 10/04/2023 starting on a Monday 00:00 and ending on and not including a Monday 00:00. The 

highlighted area represents Saturday and Sunday (weekend). 

 

2.2. Seasonal ARIMA Model 

2.2.1. Non-Seasonal Orders 

The Autoregressive Integrated Moving Average model, or ARIMA for short, is a versatile and 

easy to implement family of models, often used for time-series data analysis. It looks at past 

observations and errors to predict the next observation and its error (Shumway et al., 2017). One 

advantage of an ARIMA model is the ability to adapt it to various complex data. Non-linearity, 

seasonality or varying volatility are all possible to model with an ARIMA model.  

A simple non-seasonal ARIMA model is composed of the Autoregressive model (AR), an 

Integrated part (I) and the Moving Average model (MA). The AR(p) model looks at the p past 

observations and based on these, predicts the next observation in the time series. It is defined as 

𝑥𝑡 = 𝜇 + 𝛽1𝑥𝑡−1 + 𝛽2𝑥𝑡−2+. . . +𝛽𝑝𝑥𝑡−𝑝 + 𝜖𝑡, 

where 𝑥𝑡 is an observation of a time series at time point t, 𝜇 is the mean of the time series, 

𝛽
1
, 𝛽2, . . . , 𝛽𝑝 are the coefficients, 𝜖𝑡 is the error at time point t, and p is the order of the AR 

model. If the value for p is 1, then it will look at one past observation to predict 𝑥𝑡, if the value 

for p is 2, then it will look at two past observations to find 𝑥𝑡.  

 

The I(d) part of ARIMA represents the differencing part of order d. If there is data that is non-

stationary around the mean and variance, it is necessary to take the difference of the data to reach 

stationarity. This is defined as 

𝑋′𝑡 = 𝑋𝑡 − 𝑋𝑡−1, 

where 𝑋′𝑡 is a differenced time series. The order d (not used in the equation) represents the 

number of times the data should be differenced to reach stationarity. In the cases where a linear 

trend is present in a time series, one order of differencing makes data mostly stationary around 

the mean (Weisang & Awazu, 2008). Making data stationary is an extremely important step of 

ARIMA modelling. Stationary data is more predictable and easier to model because it no longer 
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has effects of a trend or seasonality. This way, a model can make better and more accurate 

forecasts (Cheng et al., 2015). 

 

Lastly, the MA(q) part, which looks at the q number of past errors and based on these errors, 

predicts the next observation in a time series. It is defined as 

𝑥𝑡 = 𝜇 + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2+. . . +𝜃𝑞𝜖𝑡−𝑞 + 𝜖𝑡, 

where 𝑥𝑡 is an observation of a time series at time point t, 𝜇 is the mean of the time series, 

𝜃1, 𝜃2, . . . , 𝜃𝑝 are the coefficients, 𝜖𝑡 is the error at time point t, and q is the order of the MA 

model. If the value for q is 1, then it will look at one past error to find 𝑥𝑡, if the value for q is 2, 

then it will look at two past errors to find 𝑥𝑡. The combination of AR(p), I(d) and MA(q) 

compose an ARIMA model. The full model first differences the data and then applies the AR(p) 

and MA(q) parts, which can be seen as 

𝑥𝑡 = 𝜇 + 𝛽1𝑥𝑡−1 + 𝛽2𝑥𝑡−2+. . . +𝛽𝑝𝑥𝑡−𝑝 + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2+. . . +𝜃𝑞𝜖𝑡−𝑞 + 𝜖𝑡. 

Simplified, it is just an AR(p) model added with a MA(q) model performed on differenced data.  

 

2.2.2. Seasonal Orders 

In the case that the OV-fiets bicycle availability data contains seasonal effects, there would be an 

interest in modelling a seasonal ARIMA. Besides the non-seasonal parameters, it also contains 

an extra four parameters P, D, Q, s, one of each for seasonal AR, seasonal I, seasonal MA, and 

the periodicity, respectively. Firstly, a choice of the periodicity/seasonality s is required. If the 

data displays yearly seasonality, then a periodicity order of s=12 would be used in the case of a 

monthly time series data. Continuing with this example, the seasonal AR(P) and the seasonal 

MA(Q) of P, Q order 1 would look at the observations and errors at time 𝑡 − 𝑠 − 1. In basic 

terms, it looks at the values of observations and errors one periodicity in the past plus the value 

of P (for AR) or Q (for MA) in the past to predict the next observation. 

 

The seasonal I(D) part of ARIMA represents the differencing part of order D. In the case where 

data has a seasonal effect, it means the data is not stationary around the mean and variance. To 

make data stationary when there are seasonal effects, the seasonal differencing part of seasonal 

ARIMA would be implemented. This is defined as 
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𝑋′𝑡 = 𝑋𝑡 − 𝑋𝑡−𝑠, 

where 𝑋′𝑡 is a differenced time series. The order D (not used in the equation) represents the 

number of times the data should be seasonally differenced to reach stationarity. However, it 

should never be the case where data is seasonally differenced more than once within the seasonal 

ARIMA (Nau, 2016). This is not the same with non-seasonal I(d) and it is also possible to have 

both a non-seasonal differencing and a seasonal differencing. In the end a specification of a 

seasonal ARIMA (p, d, q) (P, D, Q, s) model with 7 parameters is required.  

 

2.2.3. Wold Decomposition  

To minimise the computational power needed to estimate the parameters of an ARIMA model, 

different theories and analyses can be used to predetermine certain parameters. One theorem that 

helps determining the AR(p) and MA(q) parts of ARIMA is the Wold decomposition. The Wold 

decomposition theorem states that if a time series {Xt} is stationary around the mean and 

variance, then   

𝑋𝑡 = ∑ 𝑏𝑗𝜀𝑡−𝑗 + 𝜂𝑡
∞
𝑗=0  , 

where 𝜀𝑡−𝑗 is a white noise process, bj is a weight coefficient and 𝜂𝑡 is a deterministic time 

series. In other words, it can be separated into a stochastic series and a deterministic series. The 

stochastic series can be regarded as a moving average, while the deterministic series can be seen 

as a sine wave (Williams & Hoel, 2003). The main interest is in the stochastic part because if the 

time series data is stationary, a moving average model can be applied to make forecasts. If the 

differencing parameters of the ARIMA is set in a way to make data stationary, a moving average 

can be modelled. Therefore, the hyperparameter tuning of the (S)AR and (S)I can be ignored, 

and only tuning the (S)MA hyperparameters is required.  

 

2.3. Gaussian Process Regression 

2.3.1. Bayesian Approach and Introduction of Gaussian Process Regression 

Gaussian Process Regression (GPR) is a Bayesian approach to modelling that works based on a 

mean function and a covariance (kernel) function. One advantage of Gaussian process regression 
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is the ability to choose and derive your own kernel functions (Wang, 2020). Finding the right 

kernel function can be quite challenging, however, this freedom gives way to adapt the model to 

the nuances and peculiarities of the OV-fiets bicycle availability data. A disadvantage of the 

GPR is that it can take a lot of computational power to run it on a large data set (Corani et al., 

2021). This makes the model run very slowly and it can take a significant amount of time to train 

the model.  

 

GPR is a Bayesian approach to regression that works by inferring a probability distribution over 

all possible values in the data.  Let’s assume the data is defined by a linear function: 𝑦 = 𝑤𝑥 +

𝜖 . Firstly, the Bayesian approach works by specifying a prior distribution, p(w), and then 

recalculating probabilities based on the observed data. This works through the usage of the 

Bayes’ Theorem, which updates the predicted probabilities of an event by incorporating new 

information and generating a posterior probability. The same principal works in GPR to compute 

a posterior distribution and is defined as 

𝑝(𝑤|𝑦, 𝑋) =
𝑝(𝑦|𝑋,𝑤)𝑝(𝑤)

𝑝(𝑦|𝑋)
, 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑∗𝑝𝑟𝑖𝑜𝑟

𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
. 

The posterior distribution 𝑝(𝑤|𝑦, 𝑋) is calculated by incorporating both the prior and the 

observations from a dataset. In the case of predicting new unseen observation, 𝑥*, within the 

dataset, a calculation of the predictive distribution is done by finding a function of all possible 

predictions and multiplying it by its calculated posterior distribution. This is defined as 

𝑝(𝑓∗|𝑥∗, 𝑦, 𝑋) = ∫ 𝑝(𝑓∗|𝑥∗, 𝑤)𝑝(𝑤|𝑦, 𝑋)𝑑𝑤
⬚

𝑤
, 

where 𝑓∗ is the predicted function and 𝑥∗ is the predicted test value. The prior and likelihood are 

assumed to have a normal distribution (Gaussian). With this assumption, when solving for the 

predictive distribution, the end product is a Gaussian distribution of all possible values for 𝑥∗. 

The mean is the point estimate of 𝑥∗ and the variance is the uncertainty measurement.  

 

The Gaussian process regression is a non-parametric model, so instead of calculating the 

probability of all possible parameters of a specific function, it calculates the probability 

distribution of all possible functions that fit the data. Specify a prior function, calculate the 
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posterior distribution using training data and then compute the predictive posterior distribution to 

make predictions. The Gaussian process prior is defined as  

𝑓(𝑥) ~ 𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′)), 

where 𝑚(𝑥) is the mean function that is usually set to be equal to 0, and 𝑘(𝑥, 𝑥′) is the 

covariance function also known as the kernel function because it tends to consist of a kernel or a 

combination of multiple kernels. 

 

2.3.2. Kernel Function 

Choosing an appropriate kernel function comes down to determining an appropriate linear 

combination of candidate kernel functions and tuning the hyperparameters of said kernel 

functions to fit the data. Three different kernel functions will be analysed: radial basis function 

(RBF) kernel, periodic kernel and the linear kernel. One of the most widely used kernel functions 

in GPR is the RBF also known as the Squared Exponential (SE) (Rasmussen & Williams, 2006). 

It is defined as 

𝑘𝑅𝐵𝐹(𝑥, 𝑥′) = 𝜎2𝑒𝑥𝑝 (−
(𝑥−𝑥′)2

2ℓ2 ), 

where ℓ is the length-scale or the length in width of the ‘wiggles’ in a function and 𝜎2 is the 

average distance of a function away from the mean, it can also be seen as the scale factor. 

 

One observation made about OV-fiets bicycle availability data is the presence of seasonal 

effects, either daily or weekly. For this purpose, implementing a kernel that measures seasonality 

is of interest. One such kernel is the periodic kernel (Rasmussen & Williams, 2006) which is 

defined as 

 

𝑘𝑃𝑒𝑟(𝑥, 𝑥′) = 𝜎2𝑒𝑥𝑝 (−
2𝑠𝑖𝑛2(𝜋|𝑥−𝑥′|/𝑝

ℓ2 ), 

where ℓ is the length-scale, p is the periodicity that measures the distance between each period 

and 𝜎2 is the scale factor. With this kernel a choice of daily or weekly periodicity can be made.  
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It is also possible to combine kernels either through addition or multiplication, which yields 

different properties. A kernel that is often combined with other kernels is the linear kernel 

defined as  

𝑘𝐿𝑖𝑛(𝑥, 𝑥′) = 𝜎2𝑥𝑥′, 

where 𝜎2 is the scale factor which controls the vertical length-scale of the function.  

 

The kernels will be tested in different combinations to see which ones predict OV-fiets bicycle 

availability best. Further explanations of the kernel selection process will be explained in section 

2.5. about cross-validation. 

 

2.4. Stationarity and Seasonality 

2.4.1. Inspection of Data 

As seen in Section 2.2.3., having data that is stationary around the mean and variance is of key 

importance for the Wold decomposition. If the data is not stationary, there could be a seasonal 

pattern present within the data. There are many different types of seasonality, such as daily, 

weekly, monthly, etc. Some data might even have multiple occurrences of seasonality. To detect 

whether OV-fiets bicycle availability data has one or more seasonal patterns, a visual inspection 

of data can be required. Oftentimes, seasonal patterns can be obvious from first glance. Upon 

inspection of OV-fiets bicycle availability in the rental location Amsterdam Muiderpoort in 

Figure 3, on every weekday there is a peak in bicycle availability and then a dip close to zero. 

During weekends, a slightly different pattern is present where availability of bicycles stays close 

to zero for most of the day. This presents a possibility for a weekly seasonal pattern in the data. It 

is also likely that there is a daily seasonal effect, however due to the differences between 

weekdays and weekends, this effect should be weaker than the weekly seasonality. Besides 

looking at data, correlational analyses can be made to determine whether the data is stationary.  
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Figure 3. Bicycle availability aggregated by every hour of the day over the period of 4 months from March to 

August. Workdays are on the right, and weekends are on the left. Darker colour indicates more data points, 

lighter colour indicates fewer data points. The straight line represents the mean availability. 

 

2.4.2. Autocorrelation Analyses 

Inspections of autocorrelations may give a better insight into the stationarity of data (Perraudin & 

Vandergheynst, 2017). The autocorrelation plot is computed by finding the correlations between 

a data point at time t and the lagged data point at time t-1, then t-2, t-3 until t-n. These 

correlations are then plotted on a graph which gives an overview of the randomness within the 

data. Ideally, the data would spread out randomly around 0, which would indicate that data is 

stationary (Cressie, 1988; Perraudin & Vandergheynst, 2017). Figure 4 shows six different plots. 

The left three graphs show OV-fiets bicycle availability data at Amsterdam Muiderpoort plotted 

undifferenced and then with a 1st order differencing and then a 2nd order differencing. The right 

three graphs see the autocorrelation plots of said undifferenced/differenced data. Inspecting the 

autocorrelation plot 4b show that every 24 lags, the correlation reaches a peak and the largest 

peak is seen after 168 lags, more specifically, after 1 week. This means there is similarity 

between data points every 24 hours and every 168 hours (1 week). This indicates that there is 
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both a daily and a weekly seasonality present in the data, however, the weekly seasonality seems 

stronger than the daily seasonality.  

 

Figure 4. 4a (top left) Undifferenced data for 1 week. 4b (top right) Autocorrelation plot of undifferenced 

data. 4c (middle left) 1st weekly seasonal differencing. 4d (middle right) Autocorrelation plot of 1st 

differencing data. 4e (bottom left) 2nd hourly non-seasonal differencing after seasonal differencing. 4f 

(bottom right) Autocorrelation plot of 2nd differencing data. X-axis represents the hour. 

 

Inspection of plot 4b gives a better insight of the seasonal differencing order for the ARIMA that 

should be chosen to achieve stationarity. With 2 occurrences of seasonality present, a choice was 

made to go with the seasonal differencing order of 168 lags, which composes the larger, weekly 
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seasonality. This was chosen over daily seasonality due to plot 4b, which showcased a stronger 

weekly seasonality than daily seasonality. Plot 4c shows the data after differencing the data 

shown in 4a by an order of 168 lags, and plot 4d shows the autocorrelation plot of the 1st 

differenced data. While the autocorrelation plot looks better after differencing, it is not entirely 

stationary. There is a linear trend present, where the correlation starts off very high and then 

steadily decreases into the minus with a peak at the 168th lag. 

 

A similar plot to 4d was found by Williams and Hoel (2003) when they observed the 

autocorrelation plot after weekly differencing traffic flow data. In their case, the data they 

observed was the week with Christmas and New Year’s holidays, which caused unusual patterns 

in the data. After they observed the autocorrelation plot at a different time, the data was 

stationary after weekly differencing. In this study, after observing a different time as seen in 

Figure 5, the data after weekly differencing stayed non-stationary with the same linear trend as 

seen in plot 4d. This meant that another differencing order is needed to reach stationarity. 

However, it should be noted that performing 2 or more seasonal orders should never be done as it 

will not reach stationary data (Nau, 2016). Instead, a non-seasonal differencing order should be 

implemented along the seasonal differencing order. When a linear trend is present in the 

autocorrelation graph, typically, a first order differencing is enough to make the data stationary 

(Weisang & Awazu, 2008).  

 

Plot 4e shows what the data looks like after double differencing. There is a big sharp peak in 4e, 

this could be due to an outlier which is also seen in 4a. Inspecting the autocorrelation data in 4f, 

after a 1-lag difference as well as a seasonal differencing order, the data is now mostly 

stationary. Therefore, a seasonal ARIMA with a differencing order, d=1, and a seasonal 

differencing order, D=1, should make OV-fiets bicycle availability data mostly stationary, and a 

moving average can be modelled as was seen with the Wold decomposition theorem. Following 

this reasoning, for the seasonal ARIMA, after seasonal and non-seasonal differencing, only the 

MA and SMA parts will be modelled without the AR or SAR parts. This is a common model 

often used for time series analysis (Nau, 2016). 
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Figure 5. Autocorrelation plot for 168-hour (1 week) lagged difference of the OV-fiets rental location 

Amsterdam Muiderpoort. Data ranges from 10/04/2023 to 17/04/2023 

 

2.5. Cross-Validation Methods  

Cross-validation is one of the most widely used methods to tune model parameters and estimate 

prediction error (Berrar, 2019). For the models, cross-validation will be used to tune 

hyperparameters and determine model performance.   

  

2.5.1. k-fold Cross-Validation  

Cross-validation works by splitting data into training and testing sets. The model is built using 

the training set and then tested against the test set to evaluate the performance of the model. 

Different model parameters are tested to see which parameter combination performs best. One 

common cross-validation method is k-fold cross-validation. It works by splitting the data into k 

‘folds’ or subsets. The training set is composed of k-1 subsets and the remaining 1 fold acts as a 

validation set, which is used to test model performance. The model is built with the training set 

and tested against the validation set. This process is repeated until each fold is used as a 
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validation set. The final model performance is the average of all model performances achieved 

across all validation sets.   

  

2.5.2. Rolling-Origin Cross-Validation  

Due to working with time-series data, a typical k-fold cross-validation is not possible. This is 

because the data is not statistically independent, therefore, values in the past can predict values in 

the future, or in other words, future data is dependent on past data. Multiple different methods 

have been proposed to perform cross-validation with time-series data, such as fixed-origin, 

rolling-origin, rolling-window, etc. (Bergmeir & Benítez, 2012; Tashman, 2000). Typically, 

researchers would use 10-folds, and subsequently assign each fold to be a test set, while the rest 

of the data is trained on. With time-series methods, the test set is only the last block and 

subsequently, new data is added to the end of the previous data to act as the new test set 

(Bergmeir & Benítez, 2012). Each method for time series cross-validation is a viable option with 

only slight differences.  

 

For this study, rolling-window cross-validation is used. The key point of this method is to keep 

the amount of data in the training set constant. With each new fold or loop, as new data is added 

to act as the test set, the old validation set becomes part of the training set and the beginning of 

the training data is discarded. This is done multiple times over multiple loops. The training set 

consists of 30 days, with each day being 24 hours long, a validation set consists of 48 hours, and 

a test set of 48 hours for fitting the model, hyperparameter tuning and model evaluation, 

respectively. Afterwards, the next loop will be performed, where the last test set becomes the 

new validation set, the last validation set becomes part of the training set, the beginning 48 hours 

of the previous training set are discarded, and new data is added to act as the new test set. This 

process loops over 7 times, to account for the 7 days of the week.  

 

The prediction periods are intervals of 48 hours. It is natural to assume that predictions furthest 

away from the training set will be worse than predictions closest to the training set. Furthermore, 

there can exist differences between different days. This was seen in Figure 3 when comparing 

availability data during weekdays and weekends. For these reasons, the loop is repeated 7 times, 
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sliding the test set by 48 hours. This way, the origin of the prediction period will start on every 

day of the week over the span of 2 weeks. For example, if the origin of the test set is Monday, 

during the next loop, the origin will be Wednesday, then Friday, etc. until the origin ends with 

and not including a Monday.  

 

After the 7-day loop, a new sample of the data is taken starting at the end of the last test set and 

run the 7-day loop once again. In such a way, a total of 3 samples of data will be run through the 

7-day loop as can be seen in Figure 6. This is done to consider different timepoints of the year 

and avoid overfitting the model to a certain time of the year. A similar method of cross-

validation was previously done by a group of student interns at NS during the summer of 2023. 

One key difference they had in their cross-validation method is instead of having a 7-day loop, 

they performed one loop, then took a new sample of data 48 days ahead to perform the second 

loop and then repeated this once more for a total of 3 times. This leads to missing out on 

information about the model’s performance on certain days of the week. If the model performs 

worse on weekends than on weekdays, this information could be overlooked and will not be 

observed by the model evaluation metrics. To account for that, the cross-validation with a 7-day 

loop at different times of the year will take this into consideration and improve on the previously 

used method for cross-validation. This whole process will be repeated with all 8 OV-fiets rental 

locations. 

 

 

Figure 6. Rolling-Origin Cross-Validation where training set is displayed in red, validation set is displayed in 

blue and testing set is displayed in green 

 

One small adjustment will be made for the GPR model. There is no need for hyperparameter 

tuning via cross-validation within GPR because by default the hyperparameters are tuned via 

model evidence maximisation using only the training set by the python library sklearn which is 

used to run the GPR model. Instead of hyperparameter tuning, cross-validation will be used to 
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pick the best kernel combination. Out of all the individual kernel functions, every possible 

combination of kernel functions will be tested on the validation set. The best performing 

combination will then be selected and used with the test set.  

 

2.5.3. Model Evaluation Metrics  

After obtaining model predictions, computation of prediction errors to evaluate model 

performance follows. Two model evaluation metrics will be used to compare the predictive 

performance of the models: root mean square error (RMSE) and mean absolute error (MAE). A 

larger focus is placed on the MAE, as it is easier to interpret and understand than other error 

measures, especially from a business point of view like NS (Hewamalage et al., 2023). 

Furthermore, MAE has already been used before at NS for similar projects using OV-fiets 

bicycle availability data, which gives possibility for future comparisons between the results 

found in this thesis and previous work done by NS. For these reasons, MAE will be used as an 

error measure for hyperparameter tuning as well as model evaluation. Only the final models will 

have both RMSE and MAE model evaluation metrics, which have been found to be a good 

combination reflecting robustness, and generalisability of the overall models (Hewamalage et al., 

2023).  

 

2.6. Baseline Models 

Additionally, 2 different models will be analysed in this study to act as baseline models. One 

model is a simple ARIMA with (0,0,1) (0,1,1,24) order. It has a seasonal differencing order 

s=24, to model for daily seasonality. The second model predicts the mean for the whole testing 

period of 48 hours. Both models are trained using the cross-validation method mentioned 

previously. Using these two models, a baseline is given for the predictions with the simplest of 

models. This way, when comparing the seasonal ARIMA to the GPR, it is also possible to see 

whether these models are performing well in comparison to simple baseline models. 
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3. Results 

Table 1. 

Forecast Performance Comparison for Different Locations 

 

 

Note: ARIMA = Autoregressive Integrated Moving Average. GPR = Gaussian Process Regression.  
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MAE = Mean Absolute Error. RMSE = Root Mean Squared Error. Numbers in bold indicate the lowest 

error value within that location. 

 

Table 1 shows the results of the seasonal ARIMA, simple ARIMA, GPR and the Mean baseline 

models on all the OV-fiets bicycle rental locations that were tested. The average MAE and 

RMSE values were calculated using the values of MAE and RMSE from each test set that was 

described in the method section about rolling-origin cross-validation (21 in total). Before 

analysing the results, it is important to note that the values of MAE and RMSE are not 

comparable between locations. This is because for locations where the total number of bicycles 

is larger, the MAE and RMSE is going to be larger, and for locations where the total number of 

bicycles is fewer, the MAE and RMSE is going to be lower. For this reason, a comparison can 

only be made for MAE and RMSE within locations between models. Note that lower MAE and 

RMSE values indicate better predictive performance of the models. 

 

Looking at all values within different locations, there is a similar trend. The MAE and RMSE for 

the seasonal ARIMA model are consistently larger for all locations than the MAE and RMSE of 

the GPR. This means that across all locations, the GPR has outperformed the seasonal ARIMA 

model when predicting OV-fiets bicycle availability. Furthermore, calculating the average 

percent difference between the error estimates of the two models shows that on average, the 

MAE of the GPR model is 35.35% lower than the MAE of the seasonal ARIMA model. On 

average, the RMSE of the GPR model is 29.10% lower than the RMSE of the seasonal ARIMA 

model. 

 

Looking at the baseline simple ARIMA, it was found that across all except one location, the 

baseline model has outperformed the GPR in terms of MAE and RMSE. The only location where 

the GPR outperformed the simple ARIMA was in Den Haag CS. Otherwise, the simple ARIMA 

has shown consistently better results than either model. Calculating the average percent 

difference between the error estimates of the simple ARIMA and the GPR shows that on 

average, the MAE of the simple ARIMA is 24.63% lower than the MAE of the GPR model. In 

terms of RMSE, the error of the simple ARIMA is 25.36% lower than the GPR. Furthermore, on 

average, the MAE of the simple ARIMA is 52.13% lower than the MAE of the seasonal 
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ARIMA. Lastly, the RMSE of the simple ARIMA is 48.09% lower than the RMSE of the 

seasonal ARIMA. 

 

Looking at the mean baseline model, across all locations, it outperforms both the seasonal 

ARIMA and the GPR in terms of MAE and RMSE. Only in 2 different locations does the mean 

baseline outperform the simple ARIMA. In Den Haag CS, the mean baseline model outperforms 

all other models in terms of MAE and RMSE. In Breda Centrum, the mean baseline model 

outperforms all other models in terms of RMSE only. 

 

 

 

 

Figure 7. Predictions of OV-fiets bicycle availability for 48 hours. Comparing the seasonal ARIMA, simple 

ARIMA and GPR to the true availability of OV-fiets bicycles. 

 

Upon inspection of Figure 7, contrary to the results, the seasonal ARIMA seems to be predicting 

OV-fiets bicycle availability much better than the GPR. The shape of the seasonal ARIMA 

predictions matches quite well with the actual availability values. While the shape of the GPR 

predictions seems to be random and centred around the mean, Figure 8 shows a different type of 
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story. The seasonal ARIMA is predicting way off target, while the GPR predictions stay quite 

random around the mean. Furthermore, the simple ARIMA still predicts quite well, as was seen 

in the results table. 

 

 

 

Figure 8. Predictions of OV-fiets bicycle availability for 48 hours. Comparing the seasonal ARIMA, simple 

ARIMA and GPR to the true availability of OV-fiets bicycles. Taken specifically at a time when the seasonal 

ARIMA predictions are significantly worse than actual OV-fiets availability. 

 

This pattern was present in all locations and at different time points. The seasonal ARIMA would 

sometimes make very accurate predictions and other times the predictions would be very far 

from actual data. The GPR also consistently had random predictions around the mean in all 

locations. The predictions were never as accurate as some of the seasonal ARIMA predictions, 

however, they were also never as inaccurate as some of the seasonal ARIMA predictions. Thus, 

while the results in Table 2 indicate that GPR performs better than the seasonal ARIMA, 

inspecting Figure 7 and Figure 8, makes it less clear which model is better at predicting OV-fiets 

bicycle availability overall. 
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After looking at the results, further new analyses were made with the data to help understand 

why the seasonal ARIMA is underperforming compared to the GPR and the simple ARIMA. The 

following figures were made with the idea in mind that the seasonal ARIMA model was 

overfitting to the data, which led to unsatisfactory predictions at different times and locations. 

 

 

 

Figure 9. OV-fiets bicycle availability on the week during King’s Day (left) compared to one week before 

(right). King’s day (Thursday) is highlighted on the left graph, while a typical Thursday is highlighted on the 

right graph. 

 

Figure 9 shows a comparison of OV-fiets bicycle availability during the week of King’s Day to 

the week before it. A big difference is seen in bicycle availability between the two weeks. On the 

day before King’s Day and on King’s Day, the availability goes down to 0 bicycles available. In 

comparison, the week before showed a more stable pattern with bicycle availability decreasing in 

peak hours and increasing during non-peak hours. These types of fluctuations in data could lead 

to improper fitting of the models to the data, which could lead to worse predictions than 

expected.  
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Figure 10. Data of Amsterdam Amstel. 4a (top left) Undifferenced data for 1 week. 4b (top right) 

Autocorrelation plot of undifferenced data. 4c (middle left) 1st weekly seasonal differencing. 4d (middle right) 

Autocorrelation plot of 1st differencing data. 4e (bottom left) 2nd hourly non-seasonal differencing after 

seasonal differencing. 4f (bottom right) Autocorrelation plot of 2nd differencing data. X-axis represents the 

hour. 

 

Furthermore, it is possible that for different locations, different hyperparameters fit the data 

better. Looking at Figure 10, by the first differencing, the data is already mostly stationary 

around the mean. Visually, it looks very similar to the autocorrelation plot after seasonally 

differencing that was found by Williams and Hoel (2003). For this reason, the authors decided to 

choose one order of differencing as opposed to the choice of weekly and daily differencing. In 

this study, the data of Amsterdam Muiderpoort was used to find the optimal differencing 
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hyperparameters for the seasonal ARIMA. When running the model for other locations, the 

differencing hyperparameter was not readjusted for the new data. It is highly likely that the 

model overfits to the sample of data used for model fitting, therefore, it does not transpose well 

to data on other days or other locations. This could be a big reason why the predictions of the 

seasonal ARIMA are sometimes far from actual bicycle availability as was seen in Figure 8. 

 

 

4. Discussion 

The following section focuses on the research question and discussion of the results of this 

thesis. Furthermore, limitations of the thesis will be mentioned and recommendations for future 

research will be given. 

 

4.1. Interpretation of Results 

The purpose of this thesis was to evaluate which of the two models, seasonal ARIMA and GPR, 

would predict OV-fiets bicycle availability better. It was hypothesised that the GPR would have 

better predictions due to its flexibility to adapt to different types of data. The results showed that 

between all locations that were tested, the GPR outperformed the seasonal ARIMA in both 

model evaluation metrics MAE and RMSE. However, upon further inspection of the 

visualisations of the predictions, some days, the seasonal ARIMA would predict with a lot of 

accuracy and on other days it would have extremely poor predictions, while the GPR mainly had 

random predictions around the mean. 

 

Ideally, the predictions would closely resemble the actual OV-fiets bicycle availability data. The 

results show that the seasonal ARIMA can predict with high accuracy, but falls short on other 

days. The reason for this shortcoming of the seasonal ARIMA comes down to the choice of 

hyperparameters. Despite making autocorrelation plots to find the best fitting hyperparameters, it 

is very likely that during some days or weeks, the data acts differently from the data that was 

inspected using the autocorrelation plots. Which could mean that a different set of 
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hyperparameters is needed to make accurate predictions using the seasonal ARIMA for different 

times of the year. 

 

One such day when data acts completely different from usual is on April 27th, which is known as 

King’s Day in the Netherlands because it is the day on which the King of the Netherlands was 

born. It is a national holiday in the Netherlands and people celebrate it by dressing up in orange 

colours, going out to parties, enjoying different fairs, flea markets, or just being outside and 

socialising with others (Editors Holland.com, 2023, November 8). When inspecting OV-fiets 

bicycle availability on King’s Day as opposed to the week before it, there is a big shortage of 

OV-fiets on the day before King’s Day and on King’s Day. This could be seen as an outlier, 

nevertheless, the week of King’s Day was used for model training. These types of 

inconsistencies in data could lead to worse predictions than expected. 

 

Another reason which could have led to a bias in the predictions is over-differencing. One study 

showed that while differencing could be a good way to make data stationary, it could also lead to 

over-differencing (Hossain et al., 2019). The authors differenced their data twice and found that 

the forecasting results of an AR model were significantly worse. They conclude that for non-

stationary data it is important to not over-difference the data to reach stationarity. As was seen in 

Figure 10, there is no need to difference the data twice to reach stationarity. It is highly likely 

that for most locations, only one type of differencing would have proved to be sufficient. 

However, this was not inspected in advance when building the model on different locations. 

Over-differencing is the likely reason why the seasonal ARIMA underperformed when 

forecasting OV-fiets bicycle availability. 

 

Furthermore, when comparing the seasonal ARIMA with 2 types of differencing, weekly and 

hourly to the simple ARIMA with only 1 type of differencing, daily, a big difference is seen in 

the results. The simple ARIMA with one differencing outperforms not only the seasonal ARIMA 

but the GPR and mean baseline models. Furthermore, when inspecting the 48-hour forecasts, 

only the seasonal ARIMA with 2 types of differencing has a big bias in forecasts, while the 

simple ARIMA with 1 type of differencing does not have such a bias and stays consistent in its 
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predictions. This means that an ARIMA that has too many differencing hyperparameters can lead 

to a large bias in predictions.  

 

The results of the GPR in terms of model evaluation metrics are better, but visually not 

promising. It seems that the GPR is mainly predicting around the mean with a periodic effect. 

This is largely due to the choice of the kernel function and tuning of the hyperparameters for the 

GPR model. There have been attempts made by multiple authors to make the choice of a kernel 

function easier through automation or other means (Micchelli et al., 2005; Song at al., 2008; 

Abdessalem et al., 2017). However, these methods prove to be difficult to implement and use 

with different data sets. 

 

Multiple attempts were made to find a proper kernel combination and fitting hyperparameters for 

the GPR, however the results proved to be inaccurate. This is the case due to the GPR being an 

overly complex model, needing a good understanding of the inner works and mathematics 

behind it to implement a fitting kernel function. It is important that not only a proper selection of 

kernel functions is made, but also a proper selection of hyperparameters. If either of these is 

insufficient, it could lead to similar results as seen in Figure 7 or Figure 8. 

 

Comparing these results to previous research is not a fair comparison due to the limitations of 

this study, however, it is important to look at the results of other authors despite not finding 

accurate results. Firstly, the research by Xie et al. (2010) found that when predicting traffic flow 

data, the GPR outperformed the non-seasonal ARIMA model when comparing the values of 

RMSE. Furthermore, they tested one-step ahead predictions and two-step ahead predictions. The 

GPR performed significantly better than the ARIMA model when predicting two-steps ahead, 

while one-step ahead predictions were only slightly better than the ARIMA model (Xie et al., 

2010). 

 

Another study looking at short-term wind speed forecasting found that the GPR predicted wind 

speed better than the ARIMA model in terms of MAE and RMSE (Wang, & Hu, 2015). One-step 

ahead, two-step ahead and three-step ahead predictions were made and, in all cases, the GPR 

outperformed the ARIMA model. However, when predicting three-steps ahead, the difference 
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between prediction errors was very small (0.86 for the GPR, 0.87 for the ARIMA). A study 

about forecasting the concentration of particulate matter in the atmosphere of Seoul, Korea found 

that in terms of RMSE, the GPR model outperformed the ARIMA model (Jang et al., 2020). 

Different kernel functions were tested separately, including the Matern, RBF and Matern + RBF. 

All three kernel functions outperformed the ARIMA model in terms of RMSE (Jang et al., 2020). 

 

Previous literature shows that overall, the GPR outperforms the ARIMA model and different 

variations of the ARIMA model. It is highly likely that the complexity of the model allows for 

better adjustments to the data and therefore, better results. However, as seen from the current 

thesis, there can be pitfalls to using the GPR and likewise, the ARIMA model. With improper 

hyperparameter tuning or kernel selection, despite the simplicity or complexity of the model, it is 

possible to get results that do not meet one’s expectations or do not match previous literature. 

For these reasons it is important to take careful consideration when running different models. 

 

Future research is advised to make sure not to over-difference the data when performing an 

ARIMA analysis. If any form of biases is present in the results, careful consideration towards the 

differencing order is advised.  

 

 

5. Conclusion 

In conclusion it was found that the GPR performed better than the seasonal ARIMA model when 

predicting OV-fiets bicycle availability in the next 48 hours. However, the results prove to be 

unsatisfactory for both models due to the limitations found when tuning the hyperparameters of 

both models. The results of the seasonal ARIMA display a bias when looking at the predictions 

making the prediction error much higher than usual. The GPR model showed better predictions, 

however, visually, it is seen that further improvements could be made to the kernel function. 

Further research needs to be conducted with careful hyperparameter tuning considered. 
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