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Abstract

The goal of this project was to obtain the CP-violating parameter ϕs from
the run 2 LHCb data and analyse the size of the bias and statistical un-
certainty due to the fitting method used. In order to obtain the bias toy
data sets were generated with varied parameters and results of three dif-
ferent fitting methods were compared. When compared, the performance
of the unbinned likelihood fit(ULF) method did not differ from that of the
binned asymmetry fit(BAF) and the RooFit(ROF) method for most cases.
From this analysis it became clear that the bias magnitudes of all meth-
ods depended on the value of ∆Γs, the value of S and also on σt. Fitting
the LHCb run 2 data set with the ULF method resulted in S = −0.11 ±
0.29(stat)± 0.03(syst) and C = 0.08 ± 0.33(stat)± 0.01(syst). These val-
ues were similar to that of an independent analysis of LHCb run 1 data
done by R. Aaij et al. 2013 [1], taking into account that they had access
to both the OS and SS flavor tagging. When compared to the theoretical
prediction by K. De Bruyn and R. Fleischer 2015 [2] no contradictions were
found.
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Chapter 1
Introduction

Particle physics has been a subject that has grown in size and has become
increasingly more interesting over the last decades. One of the big devel-
opments in this field of science is CERN, with their Large Hadron Collider
(LHC). This LHC allows for the detection of many different particles and
processes that involve them. One of these decay processes involves the
Beauty meson and is of particular interest since this decay process results
in what is known as CP violation, it was first detected in 1964 by James
Cronin and Val Fitch in the neutral kaon system. This was an indirect
way of measuring CP violation since then many different ways of directly
detecting these CP violating processes were conceived which also led to
the development of the LHCb (LHC beauty) experiment, that focuses pri-
marily on B-physics. It was only in 2013 that the LHCb announced the
discovery of CP violation in strange Beauty mesons [3]. Many analyses of
the LHCb run 1 and run 2 data have been done to compare the observed
CP violating parameters to their theoretical predictions. These analyses,
of which this thesis will be another example, serve as a check of the com-
pleteness of the standard model as these CP violating parameters are sen-
sitive probes of physics beyond the standard model. Any large deviation
in these parameter gives insight into the possible existence of physics be-
yond the standard model.

In this paper we will analyse the LHCb run 2 data but before that we will
explore three different methods of fitting data by analysing toy data. First
we will build up a theoretical framework in order to fully understand the
B meson decay process and understand what parameter we are trying to
obtain from the data. Then we will go over some considerations that we
made in order to correctly interpret and analyse the data. Followed by a
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2 Introduction

display of the results, a discussion of their validity and a conclusion about
the results of the analysis of the data.

2
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Chapter 2
Theory

2.1 Quarks and flavor changing

In the Standard Model (SM) quarks are fermions that serve as the building
block for all baryonic matter. In total there are six of these quarks that can
be arranged into three families as follows:(

up(u)
down(d)

) (
charm(c)
strange(s)

) (
top(t)

bottom(b)

)
(2.1)

We have the up type quarks that have an elementary charge of 2
3 e and the

down type quarks that have a charge of −1
3 e. All of these quarks (q) have

a mirror image called the anti-quark (q̄). These anti-quarks have the same
quantum numbers as their quark counterpart, except for the flavour and
charge numbers, as these are opposite. In quark-flavor physics there exists
a charged weak current that allows quarks to change flavor. Examples of
the Feynmann diagrams of this charged weak current interaction can be
seen in figure 2.1.

Figure 2.1: Examples of charged-current weak interactions of quarks. [4]

Here the W represents the W-boson, these particles mediate the weak in-
teraction. In addition d′L, uL, s′L, cL, b′L and tL are all quarks of the kind
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4 Theory

mentioned in equation 2.1. The subscript ”L” is to indicate that only quarks
with left-handed chirality partake in this interaction. Note the primes on
the d′L, s′L and b′L, these are an indication that these quarks in figure 2.1
that couple to the W-boson are not quark mass eigenstates but are instead
given by a rotation of the mass quark mass eigenstates. This rotation can
be described using the following equation[5]:d′L

s′L
b′L

 ≡ VCKM

dL
sL
bL

 (2.2)

Here VCKM, the Cabibbo-Kobayashi-Maskawa matrix, is composed of the
following elements:

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 (2.3)

The elements of this matrix tell us how strong the coupling, in other words
the magnitude, is between different quarks. On the diagonal there is cou-
pling between up-type and down-type within the same generation of quarks,
these are all approximately equal to one. The magnitudes for mixing in-
teractions involving quarks of the second and third generation are signif-
icantly lower with first and second generation mixing magnitudes being
four to five times lower and where mixing between the first and third and
between the second and third generation are suppressed even more.

We introduced the mixing for regular quarks, but the same process also
happens for anti-quarks. By replacing the left handed quarks in figure 2.1
with right handed anti-quarks one can obtain the charged-current weak
interactions of anti-quarks. In the CKM matrix this would result in all
elements being replaced with their complex conjugates. Note that these
would result in the same elements only if the elements would be real, how-
ever this is not the case. One could introduce a complex phase to describe
the elements of the matrix, and this complex phase is exactly what causes
charge-parity (CP) violation. It is not possible to observe such CP invari-
ance directly in processes that only have a single W-boson amplitude in
their description, since squaring such an amplitude would get rid of the
phase part. Hence we need interference between two (or more) processes
that have different CKM elements in order to observe CP violation, since
different CKM elements introduce different weak phases which ultimately
influence the observable magnitude of the total amplitude. In section 2.3

4
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2.2 The mixing process 5

we will see how we can use this information to derive the variable of in-
terest ϕs.

2.2 The mixing process

The particle of interest in this thesis is the so called Beauty meson B0, in
particular the version of the particle with a strange quark s in it denoted
by B0

s . The strange Beauty meson(B0
s ) consists of a combination of an anti-

bottom(b̄) and a strange(s) quark and the anti-particle counterpart(B̄0
s ) con-

sists of a bottom(b) and an anti-strange(s̄) quark. Since the B0
s particle and

the anti-particle B̄0
s are both charge-neutral particles it is possible for them

to change into each other. This process is called neutral mixing and the
leading order diagrams for this transition are the following:

Figure 2.2: Figure showing the leading order diagrams of the B0
s meson mixing

process. [6]

Note that this diagram can be read both left to right and right to left, re-
spectively for the B0

s → B̄0
s and the B̄0

s → B0
s transition. The neutral mixing

processes shown in figure 2.2 are heavily suppressed [7], they are very sen-
sitive to physics beyond the standard model. Hence this mixing process
can be used to check the quality of the SM and can even act as a probe for
physics beyond the SM. It should also be said that these different flavour
states have different masses and different lifetimes. One important conse-
quence of this mixing is that the decay time distribution is no longer an
exponential but contains additional sinusoidal terms, but we will get back
to this later.

In our starting situation a meson is produced in either the |B0
s ⟩ or |B̄0

s ⟩
flavour eigenstate. The state of the meson will evolve over time and turn
into a mixture of these flavour eigenstates, the wavefunction as a function
of time (t) for this process can be written as follows:

|Ψ(t)⟩ = a(t)|B0
s ⟩+ b(t)|B̄0

s ⟩ (2.4)

Here the coefficients a(t) and b(t) contain the time dependency of the
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6 Theory

flavour eigenstates. Under the assumption that the time scale we are look-
ing at is much larger than the time scale of strong interactions, the evo-
lution of these coefficients can be described by the Schrödinger equation,
with a constant Hamiltonian H:

i
∂

∂t

(
a(t)
b(t)

)
= H

(
a(t)
b(t)

)
(2.5)

In this equation ∂
∂t denotes the (partial) time derivative and i is the imagi-

nary number. This equation is true given that one works with natural units
where: h̄ ≡ c ≡ 1. The Hamiltonian H can be decomposed into a Hermi-
tian and an anti-Hermitian matrix in the following manner: H ≡ M − i

2 Γ.
Where respectively both the mass matrix M and the decay matrix Γ are
Hermitian. Charge, Parity and Time reversal symmetry invariance re-
quires that M11 = M22 and Γ11 = Γ22. Furthermore since both M and
Γ are Hermitian we also have M21 = M∗

12 and Γ21 = Γ∗
12. Using this we

can rewrite the Hamiltonian H from equation 2.5 in the following manner:

H ≡
(

H0 H12
H21 H0

)
= M − i

2
Γ ≡

(
Ms M12
M∗

12 Ms

)
− i

2

(
Γs Γ12
Γ∗

12 Γs

)
(2.6)

Where Ms = M11 is the mass of the B0
s state and Γs = Γ11 is the decay

width of the B0
s state. In order for equation 2.5 to be solved and obtain the

time evolution of the |B0
s ⟩ and |B̄0

s ⟩ states we need to decouple the system.
This is done by transforming the flavor eigenstates in a manner that diag-
onalizes the Hamiltonian H. These decoupled states are called the ”mass
eigenstates” of the system, which have a definite mass and lifetime. Using
the transformation matrix P, we can define the diagonalized Hamiltonian
H′ and mass-eigenstate coefficients a′ and b′ as follows:

H′ = P−1HP and
(

a(t)
b(t)

)
= P

(
a′(t)
b′(t)

)
(2.7)

Looking back at the Hamiltonian in equation 2.6 it can be shown that it has
two eigenvalues, being H0 ±

√
H12H21 with corresponding eigenvectors of

(
√

H12 ,±
√

H21). So the eigenvalues will be the new diagonal elements of
H′ and the transformation matrix has to be built using the eigenvectors.
The new diagonalized Hamiltonian H′ becomes:

H′ =

(
H0 −

√
H12H21 0
0 H0 +

√
H12H21

)
≡
(

ML 0
0 MH

)
− i

2

(
ΓL 0
0 ΓH

)
(2.8)

6
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2.2 The mixing process 7

Where we have taken the liberty of redefining the variables using the real
matrices M and Γ similar to what we have seen before in equation 2.6.
Here the subscript L (light) and H (heavy) are used to indicate the state
with smaller and heavier mass respectively. Note that the eigenvalues for
the mass eigenstates are: ωL,H ≡ ML,H − i

2 ΓL,H. Similarly one can obtain
an expression for the transformation matrix P:

P =

( √
H12

√
H12

−
√

H21 +
√

H21

)
(2.9)

The mass and decay parameters of the states |B0
s ⟩ and |B̄0

s ⟩ are related to
the masses and decay widths of the new mass states BL and BH as defined
in equation 2.8. By taking the sum and difference of the diagonal entries
of H′ we can obtain the following expressions:

H0 =
1
2
(MH + ML)−

i
4
(ΓL + ΓH) (2.10a)√

H12H21 =
1
2
(MH − ML) +

i
4
(ΓL − ΓH) (2.10b)

Combining this with equation 2.6 it is also found that:

MS ≡ ℜ(H0) =
1
2
(MH + ML) (2.11a)

ΓS ≡ −2ℑ(H0) =
1
2
(ΓL + ΓH) (2.11b)

Useful to define for later use are the following quantities:

∆mS ≡ MH − ML = 2ℜ(
√

H12H21)

= 2ℜ
(√

(M12 −
i
2

Γ12)(M∗
12 −

i
2

Γ∗
12)

)
(2.12a)

∆ΓS ≡ ΓL − ΓH = 4ℑ(
√

H12H21)

= 4ℑ
(√

(M12 −
i
2

Γ12)(M∗
12 −

i
2

Γ∗
12)

)
(2.12b)

Where the choice for the definition of ∆ΓS is made such that it is always
expected to be a positive quantity in the standard model. With the quanti-
ties that we have just defined it is possible to write out the expression for
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8 Theory

√
H12H21 and we obtain the following:

√
H12H21 =

√
(M12 −

i
2

Γ12)(M∗
12 −

i
2

Γ∗
12) =

1
2

∆mS +
i
4

∆ΓS (2.13)

Squaring this expression and comparing the real and imaginary parts of
this equation yields the following relations:

∆m2
s −

1
4

∆Γ2
s = 4|M12|2 − |Γ12|2 (2.14a)

∆ms∆Γs = −4ℜ(M12Γ∗
12) = 4|M12||Γ12|cos(ϕ12) (2.14b)

Here the parameter ϕ12 is defined as the phase difference between M12 and
Γ12: ϕ12 = arg (−M12

Γ12
).

Coming back to the mass eigenstates of the system, we want to know how
to express these mass eigenstates in terms of the flavor eigenstates that we
started with. A general way of formulating this would be:

|BL⟩ = p|B0
s ⟩+ q|B̄0

s ⟩ (2.15a)

|BH⟩ = p|B0
s ⟩ − q|B̄0

s ⟩ (2.15b)

In this equation both p and q are complex numbers and are normalised
such that |p|2 + |q|2 = 1. The value of the ratio of these numbers can be
derived by using equation 2.6, equation 2.8 and equation 2.15 yielding:

q
p
= −

√
H21

H12
= eiϕm

√√√√ |M12|+ i
2 |Γ12|eiϕ12

|M12|+ i
2 |Γ12|e−iϕ12

(2.16)

Here |M12|, |Γ12| are the magnitudes of M12 and Γ12 respectively and ϕm ≡
arg(M12). Note that the ratio | q

p | is only different from one if ϕ12 ̸= 0, π,
which is known as CP violation in mixing. Using that |Γ12| ≪ |M12|,
which is expected to be true for B0

(s) mesons in the standard model[6], one
can obtain the following expression:

1 −
∣∣∣∣ qp
∣∣∣∣2 ≈

∣∣∣∣ Γ12

M12

∣∣∣∣ sin(ϕ12) (2.17)

Using the result obtained in equation 2.16 we can then determine the time
evolution of the mass eigenstates by solving the Schrödinger equation

8
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2.3 The decay process 9

with the diagonalised Hamiltonian as given in equation 2.8. The result-
ing evolution relation for a meson produced in either the B0

s or B̄0
s flavor

state at t = 0 can now be written as:

|B0
s (t)⟩ = g+(t)|B0

s ⟩+
q
p

g−(t)|B̄0
s ⟩ (2.18a)

|B̄0
s (t)⟩ = g+(t)|B̄0

s ⟩+
p
q

g−(t)|B0
s ⟩ (2.18b)

The functions g±(t) are defined as follows:

g±(t) =
1
2
(e−iωL ± e−iωH) (2.19)

where the ωL,H respectively, are the eigenvalues of the light and heavy
mass eigenstates of the B-meson as mentioned earlier. And with this we
have gathered the final building blocks for the decay process.

2.3 The decay process

After successfully describing the formalism of the mixing of the flavor/mass
eigenstates of the system we can move on to describing the decay process
of the Beauty mesons. As stated earlier, it is known that the B-meson is
produced in either the |B0

s ⟩ or |B̄0
s ⟩ state and the state evolves as dictated

by equation 2.18. We can then label the amplitude of the state |B0
s ⟩(|B̄0

s ⟩)
that decays into the final state | f ⟩ as A f (Ā f ). For this paper we will focus
on a specific decay, B0

s → J/ψK0
s . In figure 2.3 a representation of the lead-

ing contributions to this decay are shown. Since there are two options of
decay we can define the two decay amplitudes as:

A f ≡ ⟨ f |H|B0
s ⟩ and Ā f ≡ ⟨ f |H|B̄0

s ⟩ (2.20)

Here H is the Hamiltonian that is responsible for the decay of the B-meson.
Thus for a meson produced in a state |B0

s ⟩ there are two contributions to
the decay width. One where the initial state and the state at time of decay
are the same, and one where the |B0

s ⟩ has oscillated into a |B̄0
s ⟩ before de-

caying. A graphical representation of this decay process is shown in figure
2.4 [6]. Similar to the process we have just taken a look at, there is a pro-
cess of decay into the CP conjugate of the final state, | f̄ ⟩. This process also
has two terms contributing to the decay width of the process. So overall

Version of February 12, 2024– Created February 12, 2024 - 13:36
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10 Theory

Figure 2.3: Diagrams that contribute to the B0
s → J/ψK0

s . decay[1]

Figure 2.4: Graphical representation of the contributing processes to the decay
width of a B0

s meson

we are left with four possible combinations of initial and final states and
they are given by:

A(B0
s → f ) ∝ g+A f +

q
p

g−Ā f ; A(B0
s → f̄ ) ∝

q
p

(
g−Ā f̄ +

p
q

g+A f̄

)
A(B̄0

s → f ) ∝
p
q

(
g−A f +

q
p

g+Ā f

)
; A(B̄0

s → f̄ ) ∝ g+Ā f̄ +
p
q

g−A f̄

(2.21)
Looking closely at these expressions one can see that they are very similar
in structure. For example the expressions on the right side can be obtained
from the expressions of the left hand side by interchanging p and q, by re-
placing A f with Ā f̄ and by replacing Ā f with A f̄ .

By squaring these process amplitudes one can then obtain the expressions
for the differential decay rates in time. Working this out for the |B0

s ⟩ to | f ⟩

10
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2.3 The decay process 11

amplitude gives:

dΓ(B0
s → f )
dt

∝ |A(B0
s → f )|2

∝ |g+|2|A f |2 + | q
p
|2|g−|2|Ā f |2 + 2ℜ(g∗+g−)ℜ(

q
p
A∗

f Ā f )

− 2ℑ(g∗+g−)ℑ(
q
p
A∗

f Ā f )

(2.22)

Now the equation above can be simplified by taking a closer look at g±,
since their products are given by:

|g±|2 =
1
2

e−Γst
[

cosh(
1
2

∆Γst)± cos(∆mst)
]

(2.23a)

g∗+g− =
1
2

e−Γst
[
−sinh(

1
2

∆Γst) + i sin(∆mst)
]

(2.23b)

Combining equations 2.22 and 2.23 yields:

dΓ(B0
s → f )
dt

∝
1
2
|A f |2(1 + |λ f |2)e−Γst

×
[

cosh(
1
2

∆Γst) + C f cos(∆mst)

+ D f sinh(
1
2

∆Γst)− S f sin(∆mst)
] (2.24)

Where the following definitions have been made and used:

λ f =
q
p
Ā f

A f
(2.25a)

C f ≡
1 − |λ f |2

1 + |λ f |2
D f ≡ −

2ℜ(λ f )

1 + |λ f |2
S f ≡

2ℑ(λ f )

1 + |λ f |2
(2.25b)

Note that the way we have defined these variables here might differ from
other authors, with regards to the sign of each of the variables. The ex-
pressions for the differential decay rates of the other three processes can
be obtained by applying to rules mentioned earlier to equation 2.24. In the
case of B̄0

s → f this would result in a change in the sign of both C f and S f

and multiplying by a factor of | p
q |2.

As we have seen earlier, both the B0
s and B̄0

s meson are able to decay into
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12 Theory

the final state. As a result the interference between decay and mixing gives
rise to CP-violation. Specifically in the case where all of the contributing
decay amplitudes have the same weak phase one can define the decay am-
plitude ratio as A f /Ā f = η f e2iϕD . Where η f = ±1 is the CP-eigenvalue
of the final state and ϕD = arg(A f ). In the range where the amount of CP
violation in mixing is small, |q/p| ≈ 1, one can also define the following
parameter:

λ = η f e−iϕm e2iϕD (2.26)

Here we use the ϕm parameter that we defined earlier, underneath equa-
tion 2.16. Using the equation above and equations 2.21 and 2.22 we are
able to define a time-dependent CP-violation parameter:

ACP ≡
ΓB0

s→ f − ΓB̄0
s→ f

ΓB0
s→ f + ΓB̄0

s→ f
=

η f sin(ϕ f )sin(∆mst)

cosh(1
2 ∆Γst)− η f cos(ϕ f )sinh(1

2 ∆Γst)
(2.27)

In this equation we have introduced the following quantity ϕ f , known as
the CP violating phase:

ϕ f ≡ −arg(λ f ) = ϕm − 2ϕD (2.28)

If we then measure the amplitude of the sinusoid part of the time-dependent
asymmetry we can constrain the CP violating phase ϕ f . We can use the
fact that this parameter is then related to the phase of M12, to use the CP-
asymmetry as a kind of probe for the new contributions to M12. What
this phase is exactly depends on the type of decay we look at. For decays
with a single contributing amplitude the phase ϕ f can be described using
simply the elements of VCKM. In particular, there exist so called ”golden
modes”, that occur when there is a b → cc̄s transition:

B0
s → J/ψKs : ϕ f = ϕcc̄s

s = −2βs (2.29)

Here βs is defined as[8]:

βs ≡ arg
(
−

VtsV∗
tb

VcsV∗
cb

)
(2.30)

where Vts, V∗
tb, Vcs and V∗

cb are elements of the CKM matrix as given in
equation 2.3. For this decay we can then obtain the value of ϕs from the
value of S by using that S = sin(ϕs). Having arrived at the definition of ϕs
we have completed the discussion of the theoretical framework and can
move on to the data analysis section.

12
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Chapter 3
Data Analysis

3.1 Flavor tagging

Since we know that both the B meson (B) and the anti-B meson (B̄) can
decay into the observed final state, see figure 2.4, we are left with the task
of determining the initial state. As determining the initial state is essen-
tial for performing a time-dependent CP asymmetry measurement. The
process we use for this is called ’flavor tagging’ of which there are two dif-
ferent methods, Opposite Side (OS) tagging and Same Side (SS) tagging,
see figure 3.1.

Figure 3.1: Schematic overview of the flavor tagging procedure.[9]

It is known that most b quarks are produced in bb̄ pairs, which hadronise
and decay independently. Using this one can infer the flavor of the initial
state of the B before decay. This is used in OS tagging [10]. By tracking
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14 Data Analysis

the non-signal b as it hadronises and decays one can infer the flavor of the
signal B meson. Algorithms are implemented that keep track of the decay
products of the non-signal b decay.

The SS tagger makes use of that fact that the s(s̄) that is bound together
with the b̄(b) is also most likely produced in ss̄ pairs [11]. The other
quark of this pair s(s̄)also tends to hadronise into a positively(negatively)
charged kaon. This kaon charge then reveals the flavor of the B meson.
Note that for the regular B(d) meson with a down quark in it, the other
quark would hadronise into a pion. Therefore the tagging algorithm is
specialised for either of these decay products, not both.

The performance of the flavor tagging is limited, especially in busy hadronic
regions such as the LHC. This means that only a selection of NR signal B
mesons is tagged correctly, whereas there are also NW mistagged events
and NU untagged events. Using these three numbers one can define the
tagging efficiency:

εtag =
NR + NW

NR + NW + NU
(3.1)

With the mistag probability being:

ω ≡ NW

NR + NW
(3.2)

The reason for mentioning these tagging inefficiencies is that they end up
diluting the amplitude of the signal by a factor of Dtag ≡ (1 − 2ω). One
can then attach a figure of merit to these tagging algorithms, which one
should optimise to get the perfect performance. We call this the effective
tagging efficiency and it is defined as:

εe f f = εtag(1 − 2ω)2 = εtagD2
tag (3.3)

This tells us that a sample with N events that have εe f f = x have the same
statistical power as xN perfectly sampled events. Typical values for this
efficiency are around only a few percent at hadron colliders. For the OS
tagger we assumed that the b and b̄ quarks have an equal chance of hadro-
nising, in reality the chance for b and b̄ to hadronise differs slightly. This
would lead to a different εe f f for the |B0

s ⟩ and |B̄0
s ⟩ states, albeit only slight

difference.

During the analysis the OS and SS tagger each provide two variables: the
tag decision q and and estimate of the probability of the tag being incorrect

14
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3.1 Flavor tagging 15

η. The tag decision has three possible values +1, 0 and -1, meaning respec-
tively that the candidate is tagged as a Bs, untagged, or tagged as a B̄s.
The estimate η is determined by a neural-network per candidate by using
kinematic and geometrical properties of the flavor identifying particles.
The predicted mistag rate η needs to be calibrated in data to determine the
true mistag rate ω using flavor-specific B meson decays. This means that
other decay data is needed to calibrate the tagger before using it on the
data of interest. The calibration function is parameterised as:

ω(η) = p0 + p1(η − ⟨η⟩) (3.4)

Here p0 and p1 are the calibration parameters and ⟨η⟩ is the mean of the
η distribution as predicted by the tagging algorithm. If everything were
perfect, meaning η = ω, then p0 = ⟨η⟩ and p1 = 1. This calibration is
done separately for the SS and OS taggers.

For this thesis we looked at the B0
s → J/ψ KS decay and we ended up

using the OS tagger since we did not select a data sample that allowed us
to calibrate the other tagging algorithm. Taking into account the dilution
caused by the flavor tagging process we can modify the equation for ACP
(equation 2.27) into the version of the asymmetry that we observe:

Aobs
CP =

Nobs
B0

s
− Nobs

B̄0
s

Nobs
B0

s
+ Nobs

B̄0
s

= (1 − 2ω)ACP = Dtag ACP (3.5)

where in the last step we used the fact that the observed particle yields can
be modified to become:

Nobs
B0

s
= NB0

s
(1 − ω) + ωNB̄0

s
(3.6a)

Nobs
B̄0

s
= NB̄0

s
(1 − ω) + ωNB0

s
(3.6b)

For the fit of the parameter ϕs decays into three different final states are
used, these decays are:

B0
s → KS J/ψ where J/ψ → µ+µ−

B0
s → KS ψ(2S) where ψ(2S) → µ+µ−

B0
s → KS J/ψ where J/ψ → e+e−

In this project the algorithm that we use to fit the LHCb run 2 data also
contains a procedure for the tagging of the data, additional decay pro-
cesses of the Beauty meson were used for the calibration of the OS tagger.
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16 Data Analysis

These additional decays are:

B+ → J/ψ K+

B0 → J/ψ K∗0 where K∗0 → K+π−

Note that the efficiency εe f f may differ for each of the tagging procedures,
which will follow from the result of the data analysis as shown in the next
chapter.

3.2 Background subtraction

The raw data also contains a significant fraction of background events. As
we are only interested in the relevant decay modes, we need to filter out
this background. One method of doing so is by using the mass distribution
of the data and using the sPlot method [12][13]. The data contains both in-
formation about the mass of the decaying particle and decay time of the
particles, otherwise such an analysis would not be possible. An example of
how the mass distribution is fitted with the probability density functions
can be seen in figure 3.2. We should mention that the data that has been
fitted in this figure contains only the B0

s → Ks J/ψ where J/ψ → µ+µ− de-
cay, whereas the LHCb run 2 data contains all three decay processes men-
tioned in the previous section. With this method we can assign weights
to each event in the data calculated using a combined probability density
function of the B0

d (first peak), the B0
s (second peak) and an estimate of the

background. During the fit of the invariant mass, every event in the data
set is given a weight based on the likelihood that is a background contri-
bution. Using these weights from the sPlot method in combination with
flavor tagging we can obtain data with the background events statistically
removed. The parameters S and C are then obtained by fitting the decay
time distribution to the model given in equation 2.24.

Using the sweights calculated from the B meson mass one can calculate
directly the asymmetry between |B0

s ⟩ and |B̄0
s ⟩ from their decay time data.

This corresponds to one of the methods (BAF) used later on, during the
analysis of the toy decay time data.

3.3 Time resolution

In section 3.1 we saw that the tagging procedure causes dilution of the
data. This is not the only source that causes a dilution since we also have

16
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3.3 Time resolution 17

Figure 3.2: Figure showing fit (blue line) of data invariant mass distribution with
regular(top) and logarithmic(bottom) y-scale.

the dilution caused by the limited decay time resolution of the detector σt.
Assuming this resolution σt is Gaussian we can compute the dilution. The
expression for the dilution is[14]:

Dreso = exp(−1
2

σ2
t ∆m2

s ) (3.7)

Here ∆ms is the mass difference of the |BH⟩ and |BL⟩ mass states as defined
in equation 2.12a. How good the resolution is, strongly depends on the fi-
nal state. It is substantially worse for partially reconstructed decays than
for fully reconstructed decays. At the LHCb experiment it is about 0.05
ps [6]. If we then plug in all of the numbers for the B0

s oscillation we get
a dilution factor Dreso of 0.7. Hence for measurements of the CP violating
phase one must properly calibrate for this dilution. We can do this in same
way as we did for the tagging dilution in equation 3.5. Obtaining the res-
olution can be done by running simulations or looking at processes with a
so called ”zero” decay time distribution, such as ’prompt’ J/ψ production.
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3.4 Validation of the fit method

3.4.1 CP violation variable from toy data

As stated before, we are interested in the CP-violation variable that charac-
terizes the B0

s → J/ψK0
s decay. This variable can be obtained by fitting the

decay time data, the formalism of which we discussed in chapter 2. Cru-
cial to this process is understanding how the decay time data is shaped
and why it is shaped that way. Like many other decay time plots we ex-
pect there to be an exponential decay, but this is not the only contributing
factor that we need to keep in mind. The LHCb run 2 data that we will
be fitting later on has undergone some processing already, similar to the
effects we have seen in the previous sections of this chapter. An example
of what the raw data would look like can be seen in the figure 3.3.

Figure 3.3: Histogram showing the event distribution of the unfiltered decay time
toy data of the B0

s (B̄0
s ) state, labeled B0 (Bbar).

For figure 3.3 a toy model has been used to generate data with fixed and
predetermined values of Cval = 0, Sval = −0.7, Dval = 0.51, ∆Γs = 0ns−1

and ∆ms = 17.765 ∗ 1012h̄s−1. Here we used the subscript ’val’ to indicate
that these are the predetermined values and not the fit results. The amount
of undiluted particles N was set to one million and the resolution of the
toy data fitted in this figure is set to be near perfect. In other words the
error σt in the decay time of the toy data is set to 1 f s.

We use the ’ROOT’ package to generate the toy data, but the way that
we generate the toy data does not incorporate the detector efficiency in
any way. Making the toy model closer to the actual data will require the
raw toy data to be multiplied by an efficiency factor that encompasses the

18
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3.4 Validation of the fit method 19

efficiency of the detector. This efficiency factor is chosen to be:

ε(t) =

{
1 − e−β(t−t0) If t > t0

0 If t ≤ t0
(3.8)

This means that all data is discarded below a threshold decay time of t0.
For all other decay times t there is a chance, dependent on the value of β,
of it being discarded. This chance is larger for small t and the acceptance is
higher for larger values of t. The value of t0 was chosen to be 0.3ps and β
was chosen to have a value of 1ps−1. We can then take a look at the effect
this has on the toy data from figure 3.3. The result is shown in figure 3.4.

Figure 3.4: Histogram showing the event distribution of the filtered decay time
toy data of the B0

s (B̄0
s ) state, labeled B0 (Bbar).

One can clearly see the cutoff at t0 and the reduced acceptance at low val-
ues of t. If we look at figures 3.3 and 3.4 we notice an oscillation in both
B0

s and B̄0
s toy decay time data. In equation 2.27 we defined what the CP

asymmetry is, one can then define the asymmetry that we get from the
data as follows:

Adata
CP =

Ndata
B0

s
− Ndata

B̄0
s

Ndata
B0

s
+ Ndata

B̄0
s

(3.9)

Where Ndata
B0

s
is the number of B mesons and Ndata

B̄0
s

is the number of anti-B
mesons. Using the previous equation we can then calculate the asymme-
try of the data shown in figure 3.4, the result is shown in figure 3.5.

Note that the x-axis is different from those in figures 3.3 and 3.4. Only
one oscillation period is shown out of convenience since the oscillation
frequency is very high and showing multiple oscillations would result in
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Figure 3.5: Histogram showing the asymmetry in the decay time distribution of
the toy data.

an unclear figure. In order to make such a figure we need to fit the ’folded’
decay time data instead of the decay time data. From theory we know the
oscillation period τ of the oscillations in figure 3.4 is equal to 2π

∆ms
. If we

have an event with decay time t we choose the ’folded’ decay time of that
event to be t f old = t(modτ). By doing this for the entire decay time data
set we obtain the ’folded’ decay time data set. Figure 3.5 shows the asym-
metry of the folded decay time data.

The next step is to extract the value of both C and S by fitting this asym-
metry with equation 2.24. For the rest of the paper we will call these fit
results S f it and C f it.

The toy data we generate is fitted with three different methods of fitting.
We will briefly go over these three methods and the strengths and weak-
nesses they have. The first method is an unbinned likelihood fit (ULF) of
the full model which we use later on to fit the LHCb run 2 data as well.
This method is able to properly account for the time resolution σt but it is
not able to include nonzero values of ∆Γs. The second method is a binned
asymmetry fit (BAF), which is essentially a chi squared fit, that uses the
’zfit’ package. This method is limited since it does not account for the
dilutions do to the tagging nor the tagging calibration. For the toy data
samples this does not matter as they not contain any tagging information
but this would cause a problem when fitting the LHCb run 2 data. The
third method, called the RooFit (ROF) method, uses the ’root’ package to
fit the entire model and is able to properly fit data with a nonzero ∆Γs.
After making the toy data we improve the model by adding the effects of
the efficiency, but this effect is not in the RooFit model. Therefore, the ROF
method can not account for it. If we would have used RooFit to model the

20
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3.4 Validation of the fit method 21

efficiency, then RooFit would work perfectly. However, it is not easy to
model the actual efficiency on the data.

We want to know how well the methods perform compared to each other.
As we are going to use a method similar to ULF to fit the actual data. By
then comparing the results we can check the influence of the toy data pa-
rameters on the result and accuracy of the toy data fits and check how well
the models, the ULF in particular, perform. In chapter 4 we will show and
discuss the result of these decay time toy data fits. The toy data fitting
process can be summarised as follows:

1. Generate decay time toy data with 100000 pre-filter events with fixed
parameters

2. Apply efficiency to the toy data

3. Fit for the parameters S and C using the three different fit methods

4. Repeat step 1-3 100 times and calculate the average value of the fit
results

By repeating this process multiple times and varying the toy data genera-
tion parameters ∆Γs, σt and Sval we can then infer the biases and influence
of each of the parameter values on the fit accuracy. In the next section we
will look more into the bias and uncertainty the methods have and we will
discuss how to calculate them.

3.4.2 Bias and uncertainty of the fit

We want to estimate with the use of toy data how a mistake in the fitting
model affects S and C. In order to achieve this we want to obtain a measure
of the bias, which is defined as the estimate of the average error. This bias
can be due to a limitation of the model, but it can also be because there are
parameters in the model that are incorrect. An example of this would be:
Fitting the data with the wrong resolution or tagging calibration. Besides
the bias we also have the ’(estimated) uncertainty’. This is an estimate of
the Root Mean Square(RMS) of the error. Even though we do not know the
true value, the variance of the observations still allow us to get an estimate
of the RMS of the error. In this project we will use ’pull’ distributions in
the simulations to test if our fitting procedures estimate the statistical error
correctly. So, essentially we use the pull to find a bias in the estimated
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uncertainty. A pull value of a data set is calculated as follows:

P(S) =
S f it − Sval

σS
(3.10)

Where the pull of S has been used as an example here, this is also the same
for the pull of C as one simply replaces all the S terms with their respective
C counterparts. Furthermore, as the names imply S f it is the value of S from
the fit, Sval is the S value of the generated toy data and σS is the estimated
uncertainty in the fit of the S value. From these parameters another useful
quantity called the ’root mean square’ (RMS) can be calculated and it is
given by:

RMS(P(S)) =
√
(P(S)− ⟨P(S)⟩)2 (3.11)

Here ⟨P(S)⟩ is the mean value of P(S), taken over 100 different toy data
fits. Once again we have used S in this example but the equation for the
RMS is also the same for P(C). Ideally the fit of the data should give a
value of S f it(C f it) that is close to the value of Sval(Cval) that we used to
generate the toy data with. We can calibrate the estimated uncertainty by
using the width of the pull as a scale factor. A pull width of one would
correspond to a correct estimation of the statistical error. The statistical er-
ror of the bias that we would calculate in that case would be error/(N)0.5,
where N is the amount of measurements that we average over. For a pull
width of 2 this would mean that we have to multiply the estimated uncer-
tainty by a factor of 0.5

We know from equation 2.27 that the asymmetry also has terms that de-
pend on the value of ∆Γs. So far only the example where this parameter
is equal to zero has been shown, but the value of this parameter in the
actual data is nonzero. This means that we must also take a look at toy
data where ∆Γs is nonzero. To be more specific, we want to look at the
case where ∆Γs = 84.5ns−1, since this is the newest estimate of the actual
value [15]. An overview of the fit values of S f it and of C f it and their pull
plots are given in figures 3.6 and 3.7 for data generated with Sval = −0.7,
Cval = 0 and ∆Γs = 84.5ns−1. For the toy data generation we have cho-
sen to use multiple values, 0 and −0.7, for Sval and to fix Cval at a value
of zero. This allows to check the influence that the parameter Sval has on
the bias and estimated uncertainty by comparing the two cases. For σt the
choice of the three values was also straightforward, an ideal resolution of
1 f s, a realistic value of 50 f s and a significantly worse than realistic value
of 100 f s. For these experiments ∆ms being set equal to the latest estimate

22
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3.4 Validation of the fit method 23

which has a value of 17.765h̄s−1.

Three different fit models have been used to determine whether the toy
data is generated and fitted properly as seen in figures 3.6 and 3.7. In these
figures it becomes clear that the ULF and BAF method are not able to in-
clude the non-zero ∆Γs properly resulting in a large bias in S. Whereas the
ROF method, that does account for nonzero ∆Γs, does not seem to have a
large bias. With this we have enough information to understand the influ-
ence that a nonzero value of ∆Γs has for the ULF method.

(a) S value plot.

(b) Pull of S plot.

Figure 3.6: Figures showing an example of fit results from toy data fitting of S
where ∆Γs = 84.5ns−1, Sval = −0.7 and σt = 1 f s.
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(a) C value plot.

(b) Pull of C plot.

Figure 3.7: Figures showing an example of fit results from toy data fitting of C
where ∆Γs = 84.5ns−1, Sval = −0.7 and σt = 1 f s.

24
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3.4 Validation of the fit method 25

3.4.3 Toy data fitting

We want to take a look at the performance of the three different fitting
methods in order to get an idea of the size of the bias, if there is any. To
achieve this we used the recipe described in chapter 3.4.1 to generate 100
toy decay time data sets of 100000 pre filter events each. This was done for
every combination of the toy data parameters Sval, ∆Γs and σt. The results
of this toy decay time data fitting are shown in tables 3.1, 3.2, 3.3, 3.4 and
3.5. In order these contain, the fit errors ⟨σS⟩ and ⟨σC⟩, the ⟨S⟩ data, the
width of the pull of ⟨S⟩, the ⟨C⟩ data and the width of the pull of ⟨C⟩.

We can briefly go over all of the elements of each table column per col-
umn by looking at the items in the top row. Starting from the left we have
the decay width ∆Γs given in units of ns−1, followed by Sval which is the
value for S of the toy data set, third is the time resolution σt with the units
of f s and after that is ’Param’ which indicates what result is shown in the
next three columns. Here ⟨S⟩(⟨C⟩) corresponds to the average value of the
one hundred fit results S f it(C f it) and ⟨RMS(P(S))⟩(⟨RMS(P(C))⟩) cor-
responds to the averaged width of the pull of S f it(C f it). The final three
columns contain the relevant results for each of the three fitting methods.

3.4.4 Bias due to ∆Γs

With that said and done it is time to take a look at the influence that the
parameters have on the bias of S f it and C f it, starting off with the influence
of ∆Γs. From table 3.2 we can conclude that none of the methods have a
bias in S when Sval and Cval are zero, irrespective of the value of ∆Γs. The
previous statement also holds for C upon closer inspection of table 3.4.
This is something that we would have expected for the ULF method and
the BAF method as they are unable to take into account the influence of
∆Γs.

In the case where Sval is equal to −0.7 both the ULF method and the BAF
method have an increase in the bias size of S f it but for the ROF method
there is hardly any change. The bias in C f it does not seem to change for
any of the three methods. This makes sense for the ROF method as it takes
∆Γs into account but there is also little to no effect for the other two meth-
ods. It seems that the influence of ∆Γs contributes more when the values of
both Sval and Cval are zero. Which could mean that there are other effects
at play that also lead to increases in the magnitude of the bias.
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3.4.5 Influence of σt

This brings us to the parameter σt, here we compare the results of
〈
S f it
〉

and
〈
C f it

〉
with different values of σt that have the same ∆Γs and Sval.

Starting with S f by checking the results shown in table 3.2 it is clear, for
every method, that there is an increase in the bias magnitude in the case
where Sval = 0 irrespective of the value of ∆Γs. This means that even
though the ULF and BAF method correct for the value of σt it still results
in a worse fit which means that these methods do not remove the effect
of σt entirely. For the case where Sval = −0.7 we barely see an increase in
the bias in S f for any of the three methods, once again irrespective of the
value of ∆Γs, since the largest increase in the magnitude of the bias is 0.001.

Doing the same analysis of C f by inspecting table 3.4 we see that in the
case where Sval = 0 there is a significant increase of the bias magnitude
as σt becomes larger. This increase is bigger for the BAF and ROF method
than it is for the ULF method. When Sval = −0.7 we see that the bias in-
creases as the value σt increases, but this increase in bias is much larger
for the ULF and the BAF model than it is for the ROF model. When ∆Γs
is nonzero this difference becomes even more apparent as the ROF model
does not seem to be effected by the value of σt at all.

3.4.6 Pull width results

So far we have looked at the bias in both S f it and C f it but in order to
gauge how well we have estimated the statistical uncertainty in the fit we
must also look at tables 3.3 and 3.5. In an ideal scenario the analysis of
the data would return a value that is one for the RMS of both P(S) and
P(C), as this would mean that we have correctly estimated the statistical
uncertainty in our fit of the data. When we inspect table 3.3 we see that
for all three models most of the cases that the RMS of the pull is between
0.8 and 1.0. Which means that the statistical uncertainty has been slightly
overestimated resulting in a narrower pull width. It is only in the case
where ∆Γs = 0, Sval = 0 and σt = 1 f s that we underestimate the statistical
uncertainty slightly for all methods. The BAF method in particular seems
to overestimate the statistical uncertainty as the pull width is even smaller
than 0.8 in some cases. In table 3.5 we can see that the pull width of C f
is mostly between 0.9 and 1 for all three methods. This means that the
statistical uncertainty is estimated better for C f compared to S f , although
there is still a slight overestimation of the statistical uncertainty. So for
most cases the three different methods are able to correctly evaluate the
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statistical uncertainty.

3.4.7 Fit error in S f it and C f it

In addition to the pull width and mean value of the fit of S f and C f we
have also calculated the average statistical uncertainty for all the toy data
sets as seen in table 3.1. Using these values we can make an estimate of
the error in the fit of S f it and C f it that is different from the bias we looked
at earlier. Also of importance is the spread of the average statistical un-
certainty as this tells us how much each toy data set varies and how big
the difference in accuracy of the methods is. An example of this statisti-
cal uncertainty spread for both S f and C f is shown in figure 3.8. In these
figures we can clearly see that all of the generated data sets differ, albeit
only slightly and we see that all of three methods do indeed have an error
of a similar magnitude for both S f and C f . We want to know the statis-
tical uncertainty of the fit as this is important to know for the LHCb run
2 data analysis, for which we will use the statistical uncertainty value of
the ULF method since this method is used for the LHCb run 2 data anal-
ysis. Looking at table 3.1 we see that there is a statistical uncertainty in
S of σS = 6.30e-3 and a statistical uncertainty in C of σC = 6.30e-3, here
∆Γs = 84.5ns−1, Sval = −0.7 and σt = 50 f s. We use these values since they
are most representative of the expected parameter values of the LHCb run
2 data.

∆Γs Sval Param ULF BAF ROF
0 0 ⟨σS⟩ 6.30e-3 5.98e-3 6.29e-3
0 0 ⟨σC⟩ 6.30e-3 5.98e-3 6.36e-3

84.5 -0.7 ⟨σS⟩ 5.67e-3 5.98e-3 5.54e-3
84.5 -0.7 ⟨σC⟩ 6.09e-3 5.98e-3 6.02e-3

Table 3.1: Table containing the toy decay time data fit results of the statistical
uncertainty σS and σC with varying parameters.

3.4.8 Method bias comparison

When we combine the results of the influence that the different parameters
have on the bias in both S f and C f and the size of pull width of S f and
C f we can gauge the performance of each model. In particular we want
to know how well the ULF method has performed at fitting the toy data
samples. For the fitting of S the ULF model performed comparable to the
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(a) σS values for toy data

(b) σC values for toy data

Figure 3.8: Figures showing the spread of the statistical uncertainty for the toy
data fit with ∆Γs = 84.5ns−1, Sval = 0 and σt = 50 f s.

other two models in the case where Sval = 0 but for the toy data with
Sval = −0.7 and ∆Γs = 84.5ns−1 it became apparent that both the ULF and
BAF method performed worse than the ROF method with the largest bias
being 0.033. This can not be caused solely by the statistical uncertainty
of the fit as the value of this parameter for S is one order of magnitude
smaller. Looking at the results for the fit value of C tells us that that all
three methods performed similar when Sval = 0 with the ULF method
being slightly less biased. For the case where Sval = 0.7 it becomes clear
that the ULF and BLF methods had a very large bias compared to the ROF
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method both when ∆Γs was zero and nonzero. We found that the size of
the bias in C is 0.010 for the ULF model and it is close to the statistical
uncertainty of the fit in C, σC = 6.30e-3. Having completed the toy data
analysis we can now move on to the LHCb run 2 data analysis.

∆Γs Sval σt Param ULF BAF ROF
0 0 1 ⟨S⟩ 0.000 0.000 0.000
0 0 50 ⟨S⟩ 0.000 0.000 0.000
0 0 100 ⟨S⟩ -0.001 -0.001 -0.001

84.5 0 1 ⟨S⟩ 0.000 0.000 0.000
84.5 0 50 ⟨S⟩ 0.000 0.000 0.000
84.5 0 100 ⟨S⟩ -0.002 -0.002 -0.002

0 -0.7 1 ⟨S⟩ -0.700 -0.670 -0.700
0 -0.7 50 ⟨S⟩ -0.699 -0.699 -0.699
0 -0.7 100 ⟨S⟩ -0.699 -0.699 -0.699

84.5 -0.7 1 ⟨S⟩ -0.667 -0.667 -0.700
84.5 -0.7 50 ⟨S⟩ -0.667 -0.667 -0.700
84.5 -0.7 100 ⟨S⟩ -0.667 -0.667 -0.700

Table 3.2: Table containing the toy decay time data fit results ⟨S⟩ with varying
parameters.

∆Γs Sval σt Param ULF BAF ROF
0 0 1 ⟨RMS(P(S))⟩ 1.102 1.107 1.112
0 0 50 ⟨RMS(P(S))⟩ 0.987 1.020 1.030
0 0 100 ⟨RMS(P(S))⟩ 1.012 0.991 1.042

84.5 0 1 ⟨RMS(P(S))⟩ 0.872 0.816 0.818
84.5 0 50 ⟨RMS(P(S))⟩ 0.874 0.876 0.880
84.5 0 100 ⟨RMS(P(S))⟩ 1.011 0.942 0.953

0 -0.7 1 ⟨RMS(P(S))⟩ 0.904 0.729 0.890
0 -0.7 50 ⟨RMS(P(S))⟩ 0.893 0.784 0.911
0 -0.7 100 ⟨RMS(P(S))⟩ 0.947 0.928 1.021

84.5 -0.7 1 ⟨RMS(P(S))⟩ 0.908 0.750 0.946
84.5 -0.7 50 ⟨RMS(P(S))⟩ 0.898 0.758 0.837
84.5 -0.7 100 ⟨RMS(P(S))⟩ 0.879 0.889 0.902

Table 3.3: Table containing the toy decay time data fit results of the pull width of
⟨S⟩ with varying parameters.
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∆Γs Sval σt Param ULF BAF ROF
0 0 1 ⟨C⟩ 0.000 0.000 0.000
0 0 50 ⟨C⟩ 0.001 0.000 0.000
0 0 100 ⟨C⟩ 0.001 0.002 0.001

84.5 0 1 ⟨C⟩ 0.000 0.000 0.000
84.5 0 50 ⟨C⟩ -0.001 -0.001 -0.001
84.5 0 100 ⟨C⟩ -0.001 -0.002 -0.002

0 -0.7 1 ⟨C⟩ -0.089 -0.087 -0.076
0 -0.7 50 ⟨C⟩ 0.010 0.011 0.000
0 -0.7 100 ⟨C⟩ 0.018 0.017 0.001

84.5 -0.7 1 ⟨C⟩ 0.001 0.001 0.000
84.5 -0.7 50 ⟨C⟩ 0.010 0.010 0.000
84.5 -0.7 100 ⟨C⟩ 0.014 0.015 0.000

Table 3.4: Table containing the toy decay time data fit results ⟨C⟩ with varying
parameters.

∆Γs Sval σt Param ULF BAF ROF
0 0 1 ⟨RMS(P(C))⟩ 0.930 0.914 0.913
0 0 50 ⟨RMS(P(C))⟩ 0.902 0.890 0.884
0 0 100 ⟨RMS(P(C))⟩ 0.913 0.923 0.923

84.5 0 1 ⟨RMS(P(C))⟩ 1.095 1.136 1.139
84.5 0 50 ⟨RMS(P(C))⟩ 1.027 1.051 1.057
84.5 0 100 ⟨RMS(P(C))⟩ 1.067 1.049 1.056

0 -0.7 1 ⟨RMS(P(C))⟩ 0.928 0.879 0.928
0 -0.7 50 ⟨RMS(P(C))⟩ 1.004 0.984 1.005
0 -0.7 100 ⟨RMS(P(C))⟩ 1.140 1.075 1.022

84.5 -0.7 1 ⟨RMS(P(C))⟩ 1.020 0.968 1.036
84.5 -0.7 50 ⟨RMS(P(C))⟩ 0.979 0.961 0.990
84.5 -0.7 100 ⟨RMS(P(C))⟩ 1.038 1.043 1.035

Table 3.5: Table containing the toy decay time data fit results of the pull width of
⟨C⟩ with varying parameters.
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Chapter 4
Results

Using the ULF method we fitted the LHCb run 2 data. This data contains
the B0

s → J/ψK0
s decays, the B+ → J/ψ K+ decay and the B0 → J/ψ K∗0

decay where K∗0 → K+π− decay. Where the last two decays are needed
to calibrate the OS tagger. With this fit we obtained the following results:

KS J/ψ µ+µ− (total yield) = 3827 ± 102

KS J/ψ µ+µ− (tagged yield) = 97.3 ± 7.63

KS J/ψ µ+µ− (εe f f ) = 0.025 ± 0.002

KS ψ (2S)µ+µ−(total yield) = 246 ± 34.7

KS ψ (2S)µ+µ−(tagged yield) = 7.49 ± 2.65

KS ψ (2S)µ+µ−(εe f f ) = 0.030 ± 0.010

KS J/ψ e+e− (total yield) = 488 ± 56.9

KS J/ψ e+e− (tagged yield) = 11.9 ± 5.17

KS J/ψ e+e− (εe f f ) = 0.024 ± 0.010

C = 0.08 ± 0.33
S = −0.11 ± 0.29

The first thing we can look at is the yield of all the different decay pro-
cesses. We see that the B0

s → J/ψ µ+µ− makes up most of the data. Com-
bining all of the different processes we are left with a tagged yield of 116.9
events which is much smaller than the amount of events we used in the
toy data analysis. The fact that the total amount of events is not a round
number is caused by two factors. The first factor being the background
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subtraction process and the second factor is the tagging efficiency εe f f be-
ing included in the ’tagged’ yields. This low yield is due to the OS flavor
tagging efficiency that, for all of the different processes, is between 2% and
3% which results in most events being filtered out. This efficiency would
have been better if the SS tagging method was also used but for this project
that was not done for reasons mentioned earlier.

Since we have fewer events than in the toy data we expect the statisti-
cal uncertainty from the fit to be much larger than the bias resulting from
the toy data fitting. We know that the statistical uncertainty depends on
the amount of events in the following manner σstat ∝ 1/

√
Nevents. For the

toy data measurements we had 100 data sets with 49000 events each, after
applying the efficiency. Plugging in these numbers tells us that the statis-
tical uncertainty is expected to be about 60 times larger for the LHCb run
2 data.

When we look the value of the fit results for S and C this is exactly what
we see, as we obtain a value of 0.08±0.33 for S and -0.11± 0.29 for C. The
decay time distribution of the weighted B0

s data from which we obtained
these results is shown in figure 4.1 where we can see that the data has a
shape similar to that of figure 3.4. Two plots showing the asymmetry of
the LHCb run 2 J/ψ → µ+µ− decay data with fits of the complete decay
data are shown in figure 4.2. The unfolded asymmetry shows multiple os-
cillations and the folded asymmetry shows only one for the same reason
as mentioned in section 3.4.1. Note also, that the tagging calibration has
not been taken into account for these asymmetry plots.

From theory it is expected that value of both S and C are very close to
zero[2]. We see that results of both S and C differ within one σ from zero,
therefore the result agrees with what the theory predicts. If we compare
the errors of these results with those obtained from the toy data analysis
done in the previous section we can indeed see that they are larger than
the bias for both S and C which, in the worst case, was around ±0.033
for S and ±0.010 for C. Hence the biggest contribution to the total error
magnitude in S and C is due to statistics and not the bias resulting from
the fit model(ULF) that was used. It also possible to explore the statistical
uncertainty of the model by generating toy data samples with a number
of events similar to that of the actual data but this would take significantly
more time to do which was not possible for this project of short duration.

An additional way to judge the results is to compare them to results for
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S and C that others obtained. We can compare it to an independent anal-
ysis of the same decay process but for LHCb run 1 data done by R. Aaij et
al. 2013[1] where they found values of −0.08 ± 0.40(stat)± 0.08(syst) for
S and −0.28 ± 0.41(stat)± 0.08(syst) for C. These results are comparable
to ours as both their results for S and C are within one σ different from
zero and have an uncertainty of a similar magnitude. The fact that our
uncertainty is smaller can be explained by the fact that our data set was
larger than theirs was. But our statistical uncertainty would have been
even smaller had we been able to calibrate and use the SS tagger.

Figure 4.1: Weighted B0
s and B̄0

s event distribution of LHCb run 2 data.
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(a) Unfolded LHCb run 2 J/ψ → µ+µ− decay time data asymmetry with full asymmetry
data fit.

(b) Folded LHCb run 2 J/ψ → µ+µ− decay time data asymmetry with full asymmetry
data fit.

Figure 4.2: Figures showing the unfolded(a) and folded(b) LHCb run 2 J/ψ →
µ+µ− decay data uncorrected for the tagging calibration, with a fit of the complete
Bs meson asymmetry data.
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Chapter 5
Conclusion

Overall we see that we are able to successfully extract S and C from the
LHCb run 2 data by using the ULF method where we obtained that S =
−0.11± 0.29(stat)± 0.03(syst) and C = 0.08± 0.33(stat)± 0.01(syst). When
comparing these results to their theoretical predictions we find no incon-
sistencies and if we look at another older analysis for the same parameters
the size of the statistical uncertainty in both S and C was smaller in our
analysis but the estimates were comparable. During this project we also
looked into the effect that the value of Sval and ∆Γshave on the toy data fit
results of S and C. We found that there is a bias in both S and C caused
by the fit method(ULF), being ±0.033 for S and ±0.010 for C, even though
this is small compared to the statistical uncertainties of S and C. The bias
can not be discarded as it is independent from the statistical uncertainty
of the fitting method.

To improve the efficiency of future analysis of the same LHCb run 2 data
there is much to be gained by reducing the statistical uncertainty. A key
factor in this improvement is the flavor tagging efficiency which is about
2%-3% in our analysis since we only used the OS flavor tagging proce-
dure. Using the SS tagging procedure will increase the efficiency of the
flavor tagging procedure. Doing so in future projects one would need to
generate more toy data samples, or look at the B0

s → J/ψ ϕ as the angle βs
can be measured here with more precision[9].
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