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Abstract

We investigate the geometric Berry phase interpretation of the intrinsic anomalous Hall
effect in a d-dimensional crystalline solid. It has three parts: (1) By the TKNN formula,
the contribution σ

(n)
xy of the n-th band to the interband Hall conductivity is the integral

over the first Brillouin zone of fFD(ϵ(k))f (n)(k), where fFD is the Fermi-Dirac distribution
and f (n) can be interpreted as a local coordinate representation of the curvature of
a connection on a principal U(1)-bundle over the d-dimensional torus T d. (2) This
connection gives rise to a notion of parallel transport on the bundle which reflects the
physical time evolution of the system in the adiabatic limit. (3) In two dimensions at
low temperatures, it follows that σ

(n)
xy is a universal constant multiplied by a geometric

phase acquired by the system when the wave vector traverses a loop in the Brillouin
zone. A classification theorem for connections on principal G-bundles in terms of their
pullbacks along local sections is proved, in order to be able to construct the connection
on the U(1)-bundle over T d. Finally, the Rashba model for ferromagnetism is discussed
to demonstrate the necessity of time reversal symmetry breaking and spin-orbit coupling
in the anomalous Hall effect.
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Chapter 1
Introduction

In 1879, American physicist Edwin Hall discovered that when a current-carrying conductor is placed in
a perpendicular magnetic field, its electrons are pressed to one side by the Lorentz force. This induces
a voltage perpendicular to both the charge current and the magnetic field, a phenomenon now known
as the Hall effect [1]. It can be summarized by saying that the material’s conductivity matrix σ, which
measures the linear response to an applied electric field E of the current density j, is not diagonal when
B is nonzero. An elementary computation in the Drude model shows that if B = Bẑ, the inverse
conductivity ρ = σ−1 (also called the resistivity) satisfies

ρxy =
B

ne
= R0B,

with n the charge carrier density and R0 := 1/(ne) the Hall coefficient [2, Section 3.1.2]. It is difficult to
overstate the importance of the discovery of the Hall effect. To this day, efforts are being made by both
experimental and theoretical physicists to precisely characterize the effect in different materials and to
better understand the theory behind it. It has practical applications as well: Hall sensors use the effect
to measure magnetic field strengths and charge carrier densities, and are common in many industrial
and consumer devices.

Only one year after his initial discovery, Edwin Hall also stumbled upon what came to be known as the
anomalous Hall effect : in ferromagnetic materials, induced voltages can get up to ten times as large as in
non-magnetic conductors [3]. In addition, the linear relation between Hall resistivity ρxy and magnetic
field strength B breaks down: ρxy initially increases steeply with B, but the curve flattens out and
“saturates” after a while. It was quickly discovered that both observations can be accounted for by
factoring in the magnetization M, i.e. the density of magnetic dipole moments in the material. Around
1930, the empirical relation

ρxy = R0B +RsM

was established, with a second term representing the anomalous Hall contribution [4]. The precise
physical origin of this second term and the nature of Rs, the anomalous Hall coefficient, were studied
extensively for the next 70 years or so. Besides an intrinsic contribution depending only on the elec-
tronic band structure, two distinct disorder related microscopic scattering mechanisms were identified
as potential influencing factors: side jumps and skew-scattering. For a long time, it remained unclear
which should dominate [5].

The discussion shifted with the discovery of the integer quantum Hall effect in the ’80s: in a two-
dimensional conductor at low temperatures in the presence of a strong magnetic field, the Hall con-
ductivity σxy is always (approximately) an integer multiple of the universal constant e2/h [6]. This
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8 Introduction

Figure 1.1: In topology, a torus T 2 is just a rectangle with opposite edges identified.

phenomenon turned out to have deep geometric and topological roots. To understand why, recall that
the potential energy function of an electron in a crystalline solid is periodic with the lattice Λ describing
the crystal structure. Bloch’s theorem then tells us that the eigenstates of the one-electron Hamiltonian
H take the form

ψn,k(r) =
1√
N
eik·run,k(r)

with N the number of unit cells making up the system and un,k a lattice periodic Bloch function. The
integer n is known as the band index, and the wave vector k can always be chosen within the first Brillouin
zone, a unit cell of the reciprocal lattice Λ∗. For any k in the first Brillouin zone, the corresponding
Bloch functions un,k are precisely the normalized eigenstates of the operator H(k) := e−ik·rHeik·r acting
on the space of lattice periodic functions, so the wave vector can be interpreted as a sort of parameter of
the system. Opposite edges of the Brillouin zone can be identified, meaning that for a two-dimensional
conductor, the parameter space takes the shape of a torus T 2.

Fixing n and assuming the Hamiltonian to be (sufficiently) nondegenerate, we thus have for each point k
on T 2 a one-dimensional complex eigenspace of H(k), namely the one spanned by un,k. The physically
relevant eigenstates are those of norm 1, giving us a copy of the circle U(1) := {z ∈ C : |z| = 1}.
Gluing to the torus at each of its points the corresponding copy of U(1), we get what is known as a
principal U(1)-bundle over T 2: a bundle of fibers, one for each point in T 2, which are all circles. Locally,
it looks like the Cartesian product T 2 × U(1), but globally, it might be “twisted” to some extent. A
lower-dimensional analog of this is the Möbius strip, shown in Figure 1.2, which is just the circle U(1)
with a line segment glued to every point. If we consider only the endpoints of each such line segment,
we get a principal C2-bundle over U(1), because each fiber looks like the discrete group of two elements,
C2. Pick a point x in the fiber of 1 ∈ U(1), then the loop t 7→ exp(2πit), t ∈ [0, 1] in U(1) has a unique
“lift” to the Möbius strip boundary which starts at x. The endpoint of that lift is precisely the other
point in the fiber of 1, because the strip is twisted.

Something similar holds for our U(1)-bundle over the Brillouin zone: when you prepare an electron in
some state ψn,k and have its wave vector k traverse a closed loop on the torus, the electron ends up in
the same copy of U(1) as it started in but perhaps not the same state; it might have acquired a nonzero

1

x

Figure 1.2: (Left) The Möbius strip can be viewed as a circle U(1) with a line segment glued to every point.
(Right) The lift to the boundary of the Möbius strip starting at x of the loop t 7→ exp(2πit) in U(1) has a different
endpoint.
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9

phase. This phase shift is measured by the Berry connection on the bundle, which gives rise to notions
of parallel transport and path lifting. When “pulled back” along a local section of the bundle, which is
just a smooth choice of a phase for un,k for all k in some open subset of T 2, this connection takes the
form of a vector valued function a(n) with components

a(n)µ (k) := −i
ˆ

dr un,k(r)∂kµun,k(r),

where the integral runs over a single unit cell of Λ. In general, a(n) depends on the chosen section, but

f (n)(k) := ∂kxa
(n)
y (k) − ∂kya

(n)
x (k)

does not, so f is a well-defined function on the whole T 2. It is also the pullback along any section of the
curvature of the Berry connection, the so-called Berry curvature.

Now, Thouless et al. showed that when exactly M energy bands are filled, the Hall conductivity of a
two-dimensional conductor at zero temperature can be written as

σxy =
e2

2πh

M∑
n=1

ˆ
T 2

dk f (n)(k).

So, in words, σxy is a sum of integrals of local forms of the Berry curvature on principal U(1)-bundles
over the first Brillouin zone [7]. Algebraic topology dictates that any such integral must in fact be an
integer. Moreover, it is a topological invariant of the bundle, its so-called top Chern number, meaning
that slight perturbations of the Hamiltonian leave the conductivity invariant. This expression for σxy
was coined the TKNN formula, and it is applicable to the intrinsic anomalous Hall effect as well: the
two phenomena share the same topological roots.

The main purpose of this thesis is to explore this connection between topology and the anomalous Hall
effect. Most of what will be said can also be read elsewhere in the literature, but not in one place.
Texts which highlight the physical side of the story often leave out a lot of the mathematics, and vice
versa. This thesis is an attempt to gather in one place the essential ingredients – both physical and
mathematical – needed to understand the geometric interpretation of the intrinsic anomalous Hall effect,
and perhaps to provide a new viewpoint for some of them or fill in some gaps.

Chapter 2 starts with the discussion of Lie groups, of which the circle U(1) and the cyclic groups Cn are
examples. The reader is assumed to be familiar with basic concepts from differential geometry, including
but not limited to smooth manifolds, smooth maps, vector bundles, smooth flows, differential forms
and de Rham cohomology. Most prerequisite knowledge is covered in Leiden University’s Differentiable
Manifolds course and can be found in [8]; that which isn’t, is listed in Appendix A. In Chapter 3, we
move on to the definition of fiber bundles. Principal bundles, such as the U(1)-bundle over the first
Brillouin zone and the Möbius strip boundary discussed above, have some particularly nice properties
and deserve special attention. The theory of vector valued differential forms is developed in Chapter 4 and
immediately applied in Chapter 5, where we rigorously define connections and curvatures on principal
bundles and discuss a way to classify them by their pullbacks along smooth local sections. In Chapter 6,
we derive the TKNN formula along with the Kubo formula for conductivity that it is based on. For this,
we assume basic knowledge of quantum statistical mechanics and solid state physics; terms such such as
statistical ensembles, density operators, Bloch’s theorem and Brillouin zones should all sound at least
somewhat familiar. Some important concepts from second quantization that the derivation relies on are
listed in Appendix B. Finally, everything comes together in Chapter 7, where we examine the geometric
Berry phase interpretation of the TKNN formula and discuss its implications in the Rashba model for
ferromagnetism.
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10 Introduction

Conventions

Listed here are some of the conventions that are used throughout this thesis, so as to prevent confusion
and make sure all symbols are interpreted the same way by both mathematicians and physicists.

• Inner products are denoted by ⟨ · | · ⟩ and are assumed to be conjugate linear in the first coordinate.

• The symbol := means “is by definition equal to”, whereas ≡ means “is identically equal to”.

• Quantum mechanical operators such as observables and creation and annihilation operators are
given a hat (̂ ) to distinguish them from other symbols.

• The complex conjugate of a complex number z ∈ C is written as z and the adjoint (also known as
Hermitian conjugate) of a linear operator Â as Â∗.

• Whenever an index variable appears twice in an expression, once as a subscript and once as a
superscript, summation over that index is implied. This is known as the Einstein summation
convention.

• If ρ is a function from a set X to a (multiplicatively written) group G, we will often use the notation
ρ−1 for the function X → G, x 7→ ρ(x)−1. This should not be confused with the inverse function
of ρ, which of course only exists when ρ is bijective.

10



Chapter 2
Lie groups

In this chapter we introduce Lie groups, which stand at the basis of the geometric interpretation of
the TKNN formula. A Lie group is a topological group endowed with a smooth structure making the
multiplication and inversion into smooth maps. A Lie group G can be studied via its tangent bundle TG
as any other smooth manifold, but TG is special for multiple reasons. One such reason is that the tangent
space TeG to G at the identity element e has a natural Lie algebra structure. Furthermore, information
about the Lie algebra TeG can be transferred back to G using the canonically defined exponential map,
which is quite a powerful tool.

Smooth group actions of Lie groups on other manifolds are crucial in many of their applications, including
principal bundles, which will be discussed in Chapter 3. If a Lie group G acts smoothly on a manifold M ,
the exponential map induces a mapping from the Lie algebra of G to the space X(M) of smooth vector
fields on M , known as the infinitesimal generator of the action. Infinitesimal generators will play a
crucial role in the treatment of connections on principal bundles in Chapter 5.

2.1 Lie groups and Lie algebras

We start with the main definitions.

Definition 2.1. A Lie group is a group G (usually written multiplicatively) that is also a smooth
manifold, with the property that the multiplication map G × G → G, (g, h) 7→ gh and the inversion
map G→ G, g 7→ g−1 are smooth.

Lie groups are examples of topological groups, i.e. groups with a topology with respect to which the
multiplication and inversion are continuous.

Example 2.2. The relevant Lie groups for us are the following; see [8, Example 7.3] for details.

(1) The general linear group GL(n,R) of invertible n × n matrices over R is an open submanifold of
the R-vector space M(n,R) of all n × n matrices over R, and an n2-dimensional Lie group under
matrix multiplication.

(2) Similarly, the complex general linear group GL(n,C) is an open submanifold of M(n,C) and a
2n2-dimensional Lie group under matrix multiplication.

(3) The circle U(1) := {z ∈ C : |z| = 1} is a 1-dimensional Lie group under complex multiplication.

(4) Any countable group with the discrete topology is a 0-dimensional Lie group. △

The natural structure-preserving maps between Lie groups are the smooth group homomorphisms.

11



12 Lie groups

Definition 2.3. A Lie group homomorphism is a smooth group homomorphism between Lie groups.

Any element g ∈ G of a Lie group G defines smooth left and right multiplication maps Lg : G → G,
h 7→ gh and Rg : G → G, h 7→ hg. These are diffeomorphisms, their inverses are Lg−1 and Rg−1 . The
pushforwards d(Lg),d(Rg) : TG → TG provide a way to “translate” tangent spaces to G along g. Of
particular importance are those vector fields on G which are invariant under any such translation.

Definition 2.4. Let G be a Lie group. A smooth vector field X ∈ X(G) is called left-invariant if it
satisfies d(Lg)h(Xh) = Xgh for all g, h ∈ G. The Lie algebra of G, denoted Lie(G), is the set of all
smooth left-invariant vector fields on G.

The differential d(Lg)h of Lg at h is linear for all g, h ∈ G, which implies that Lie(G) is a linear subspace
of X(G). The following lemma shows that more is true. Recall that the Lie bracket of two smooth vector
fields X,Y ∈ X(M) on a smooth manifold M is the vector field [X,Y ] ∈ X(M) defined by

[X,Y ]f = X(Y f) − Y (Xf) ∈ C∞(M)

for any f ∈ C∞(M).

Lemma 2.5. Let G be a Lie group and X,Y ∈ X(G) two left-invariant vector fields, then their Lie
bracket [X,Y ] ∈ X(G) is also left-invariant.

See [8, Proposition 8.33] for a proof. It follows that Lie(G) is a (non-associative) algebra over R, since
the Lie bracket is bilinear. The following definition is inspired by its other properties.

Definition 2.6. A Lie algebra is a real vector space g together with a binary operation g × g → g,
(X,Y ) 7→ [X,Y ] satisfying the following properties for all X,Y, Z ∈ g:

(i) bilinearity : for any a, b ∈ R,

[aX + bY, Z] = a[X,Z] + b[Y, Z],

[X, aY + bZ] = a[X,Y ] + b[X,Z];

(ii) antisymmetry :
[X,Y ] = −[Y,X];

(iii) the Jacobi identity :
[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

Example 2.7. Let G be a Lie group, then Lie(G) is a Lie algebra under the Lie bracket. △

As a vector space, Lie(G) is nothing more than the tangent space to G at the identity element e ∈ G.

Lemma 2.8. Let G be a Lie group, then the evaluation map

ϵ : Lie(G) −→ TeG

X 7−→ Xe

is a vector space isomorphism.

A proof can be found in [8, Theorem 8.37]. The result of Lemma 2.8 still holds if we replace e by an
arbitrary group element g ∈ G; in fact, the composition of ϵ and the isomorphism d(Lg)e is the evaluation
map Lie(G) → TgG which sends X ∈ Lie(G) to Xg.

Example 2.9. Set U := U(1)\{−1} and define θ : U → (−π, π) by eiθ(z) = z for all z ∈ U , then (U, θ) is
a smooth chart for U(1). The corresponding coordinate vector d/dθ |1 ∈ T1U(1) induces a left-invariant
vector field d/dθ := ϵ−1( d/dθ |1) on U(1). It constitutes a basis for Lie(U(1)) and is equal to the
coordinate vector field on any angle coordinate chart for U(1). △

12



2.2 Lie group actions 13

An important consequence of Lemma 2.8 is that any Lie group G admits a smooth global frame of left-
invariant vector fields, which implies that the space X(G) of all smooth vector fields on G is generated
as a C∞(G)-module by Lie(G). We refer to [8, Corollary 8.39] for a proof.

Lemma 2.10. Let G be a Lie group and X ∈ X(G) a smooth vector field on G, then X can be written
as a C∞(G)-linear combination of smooth left-invariant vector fields on G.

The relevant maps between Lie algebras are those which respect both the vector space structure and the
bracket operation.

Definition 2.11. A Lie algebra homomorphism is a linear map A : g → h between Lie algebras g and h
such that for all X,Y ∈ g, we have A[X,Y ] = [AX,AY ].

If F : G → H is a Lie group homomorphism, then via the canonical identifications TeG ∼= Lie(G) and
TeH ∼= Lie(H) from Lemma 2.8, the differential dFe can be interpreted as a linear map Lie(G) → Lie(H).
The following lemma, proved in [8, Proposition 8.44], states that it is even a Lie group homomorphism.

Lemma 2.12. Let G and H be Lie groups and F : G→ H a Lie group homomorphism. For any smooth
left-invariant vector field X ∈ Lie(G), there exists a unique Y ∈ Lie(H) such that dFg(Xg) = YF (g) for
all g ∈ G. Writing Y = F∗X, the map F∗ : Lie(G) → Lie(H) so defined is a Lie algebra homomorphism.

We call F∗ the induced Lie algebra homomorphism.

Lemma 2.13. Let G, H and K be Lie groups.

(1) (idG)∗ is the identity on Lie(G).

(2) Let F1 : G→ H and F2 : H → K be Lie group homomorphisms, then (F2 ◦ F1)∗ = (F2)∗ ◦ (F1)∗

Lemma 2.13 follows directly from the properties of the differential and can be summarized by saying
that the assignments G 7→ Lie(G), F 7→ F∗ define a covariant functor from the category of Lie groups to
the category of Lie algebras. As a consequence, if F : G → H is a Lie group isomorphism, the induced
map F∗ : Lie(G) → Lie(H) is an isomorphism of Lie algebras.

2.2 Lie group actions

Many important applications of Lie groups involve actions of Lie groups on other smooth manifolds.

Definition 2.14. Let M be a smooth manifold and G a Lie group. A smooth left action of G on M is
a left action in the group theoretical sense that is smooth as a map G×M →M . A smooth right action
of G on M is defined analogously.

Example 2.15. Let M be a smooth manifold, then a smooth global flow on M is the same as a smooth
left action of R on M , where R is considered as a Lie group under addition. △

A smooth manifold M together with a smooth left action θ : G ×M → M of a Lie group G on M is
known as a left G-manifold. We have:

• for any g ∈ G a smooth left multiplication map θg : M →M , p 7→ gp;

• for any p ∈M a smooth orbit map θ(p) : G→M , g 7→ gp.

For all g ∈ G, the map θg is a diffeomorphism with inverse θg−1 . Right G-manifolds and the corresponding
orbit and right multiplication maps are defined analogously.

Definition 2.16. Let M and N be left G-manifolds and F : M → N a smooth map. F is said to be
G-equivariant if for all p ∈ M and g ∈ G, we have F (gp) = gF (p). G-equivariant maps between right
G-manifolds are defined analogously.

13



14 Lie groups

An important example is the action of a Lie group G on itself by conjugation: the map

ad: G×G −→ G

(g, h) 7−→ ghg−1

defines a smooth left action of G on itself. For all g ∈ G, adg is a Lie group automorphism of G, which
means that it induces a Lie algebra isomorphism

Adg := (adg)∗ : Lie(G) −→ Lie(G)

X 7−→ ϵ−1(d(adg)e(Xe)), (2.1)

see Lemmas 2.12 and 2.13. The map

Ad: G −→ GL(Lie(G))

g 7−→ Adg

thus defined is often referred to as the adjoint representation. It is in fact a representation of G in the
group theoretical sense, and a smooth one if we consider GL(Lie(G)) as an open submanifold of the
vector space EndR(Lie(G)) of all linear maps from Lie(G) to itself.

Lemma 2.17. Let G be a Lie group, then Ad: G→ GL(Lie(G)) is a Lie group homomorphism.

Proof. Let g, h ∈ G, then adgh = adg ◦ adh, so Adgh = Adg ◦Adh by functoriality, i.e. Lemma 2.13. For
smoothness, we refer to [8, Proposition 20.24].

Ad being a Lie group homomorphism means that it, too, induces a Lie algebra homomorphism. Under
some canonical identifications, this map Ad∗ : Lie(G) → Lie(GL(Lie(G))) is essentially just the Lie
bracket.

Lemma 2.18. Let G be a Lie group, g ∈ G and DAdg
: EndR(Lie(G)) → TAdg

EndR(Lie(G)) the iso-
morphism from Lemma A.3, then for all X,Y ∈ Lie(G),

(D−1
Adg

◦ d Adg)(Xg)Y = Adg([X,Y ]) ∈ Lie(G),

where we interpret Ad as a map G→ EndR(Lie(G)).

Proof. First, note that if g = e, the claim follows from [8, Proposition 20.25]. For the general case, observe
that Lemma 2.17 implies Ad ◦Lg = LAdg ◦Ad, where LAdg is the endomorphism of EndR(Lie(G)) which
sends any B to its composition Adg ◦B with Adg. With Lemma A.3, we now find

(D−1
Adg

◦ d Adg)(Xg)Y = (D−1
Adg

◦ d Adg)(d(Lg)e(Xe))Y = (D−1
Adg

◦ d(Ad ◦ Lg)e)(Xe)Y

= (D−1
Adg

◦ d(LAdg ◦ Ad)e)(Xe)Y = (LAdg ◦D−1
id ◦ d Ade)(Xe)Y

= (Adg ◦ (D−1
id ◦ d Ade)(Xe))Y = Adg([X,Y ])

for any X,Y ∈ Lie(G).

Lie(G) Lie(GL(Lie(G)))

TeG Tid EndR(Lie(G)) EndR(Lie(G))

TgG TAdg EndR(Lie(G)) EndR(Lie(G))

Ad∗

∼

ϵ

∼

ϵ

dAde

∼

d(Lg)e

∼

d(LAdg )id

∼

Did

∼

LAdg

dAdg ∼

DAdg

14



2.3 The exponential map 15

The proof is summarized in the above commutative diagram, in which we have identified the tangent
spaces of GL(Lie(G)) and EndR(Lie(G)). The content of Proposition 20.25 in [8] is that the dotted arrow
sends X ∈ Lie(G) to [X, · ] = (Y 7→ [X,Y ]) ∈ EndR(Lie(G)).

We now introduce some notation which will be useful later. Let M and N be smooth manifolds and θ
a smooth right action of a Lie group G on N . Let F : M → N and ρ : M → G be smooth maps and
let q ∈ N , g ∈ G, then we define

F · ρ := θ ◦ (F × ρ) : M −→ N, p 7−→ F (p)ρ(p),

F · g := θg ◦ F : M −→ N, p 7−→ F (p)g, (2.2)

q · ρ := θ(q) ◦ ρ : M −→ N, p 7−→ qρ(p).

With this notation, we get the following product rule for the differential.

Lemma 2.19. Let p ∈M , then

d(F · ρ)p = d(F · ρ(p))p + d(F (p) · ρ)p.

Proof. Define the injections j1 : N → N × G, q 7→ (q, ρ(p)) and j2 : G → N × G, g 7→ (F (p), g) and
let π1 : N ×G→ N , π2 : N ×G→ G be the projections, then

d(F × ρ)p = (d(j1 ◦ π1)(F (p),ρ(p)) + d(j2 ◦ π2)(F (p),ρ(p))) ◦ d(F × ρ)p

= d(j1 ◦ π1 ◦ (F × ρ))p + d(j2 ◦ π2 ◦ (F × ρ))p

= d(j1 ◦ F )p + d(j2 ◦ ρ)p

by Lemma A.1, so

d(F · ρ)p = dθ(F (p),ρ(p)) ◦ (d(j1 ◦ F )p + d(j2 ◦ ρ)p)

= d(θ ◦ j1 ◦ F )p + d(θ ◦ j2 ◦ ρ)p

= d(θρ(p) ◦ F )p + d(θ(F (p)) ◦ ρ)p

= d(F · ρ(p))p + d(F (p) · ρ)p.

2.3 The exponential map

By Lemma 2.8, the Lie algebra of the circle U(1) ⊆ C∗ is isomorphic as an R-vector space to the tangent
space T1U(1) at 1. Heuristically, T1U(1) is just a vertical line, i.e. a shifted copy of iR. The complex
exponential function C → C∗ maps iR to the circle, so it can be interpreted as a map Lie(U(1)) → U(1).
It provides a way to go from the Lie algebra, which is a “linear approximation” of U(1), back to U(1).

A similar map can be constructed for general Lie groups. The construction is based on the following
observation. For any s ∈ R, is corresponds to sX ∈ Lie(U(1)) with X := d/dθ the angle coordinate
vector field from Example 2.9. The map γs : R → U(1), t → eist is an integral curve of sX starting
at 1 ∈ U(1), i.e. its velocity vector γ′s(t) ∈ Tγs(t)U(1) at γ(t) is equal to sX|γ(t) for all t ∈ R, and it
is maximal since it is defined on the whole real line. We know that such maximal integral curves are
unique, so is 7→ γs(1) = eis gives us an alternative, intrinsic definition of the exponential map on iR.
This one we can generalize, provided that left-invariant vector fields on arbitrary Lie groups generate
large enough flows.

Lemma 2.20. Let G be a Lie group and X ∈ Lie(G), then X generates a global flow.

A proof can be found in [8, Theorem 9.18]. Now, let G be a Lie group and denote the flow of any
left-invariant vector field X ∈ Lie(G) by θ(X). Lemma 2.20 states that the domain of θ(X) is R×G for

15



16 Lie groups

all X ∈ Lie(G), so we can define the exponential map of G as

exp: Lie(G) −→ G

X 7−→ θ
(e)
(X)(1) = θ(X)(1, e).

In words, exp sends X ∈ Lie(G) to the value at 1 of the maximal integral curve θ
(e)
(X) of X starting at e.

The exponential map has a number of useful properties, as the next lemma shows; see [8, Proposition
20.8] for a proof.

Lemma 2.21. Let G be a Lie group.

(1) The exponential map exp: Lie(G) → G is smooth.

(2) Let X ∈ Lie(G) and s, t ∈ R, then exp((s+ t)X) = exp(sX) exp(tX).

(3) Let X ∈ Lie(G), then exp(−X) = exp(X)−1.

(4) Let X ∈ Lie(G) and n ∈ Z, then exp(nX) = exp(X)n.

(5) Let X,Y ∈ Lie(G) with [X,Y ] = 0, then exp(X + Y ) = exp(X) exp(Y ).

(6) The differential of exp at 0 is d exp0 = ϵ◦D−1
0 with ϵ : Lie(G) → TeG and D0 : Lie(G) → T0 Lie(G)

the isomorphisms from Lemmas 2.8 and A.3, respectively. That is, d exp0 is the identity under the
canonical identifications T0 Lie(G) ∼= Lie(G) ∼= TeG.

(7) Let X ∈ Lie(G), then θ(X)(t, g) = g exp(tX) for all t ∈ R and g ∈ G.

Example 2.22.

(1) Under the identification of Lie(U(1)) with iR (which maps d/dθ to i), the exponential map of U(1)
is just the complex exponential map.

(2) We know GL(n,R) is an open submanifold of M(n,R), so there are canonical R-vector space
isomorphisms Lie(GL(n,R)) ∼= TIn GL(n,R) ∼= M(n,R). Under this identification, the exponential
map of GL(n,R) is the matrix exponential A 7→ eA (see [8, Example 20.6]). △

2.4 Infinitesimal generators

Now let G be a Lie group and M a right G-manifold, and denote the right action by θ : M × G → M .
Following [8, pp. 525–527], any element X ∈ Lie(G) induces a map

θ(X) : R×M −→M

(t, p) 7−→ p exp(tX)

via the exponential map of G, which is a smooth global flow on M by Lemma 2.21. Denoting by X
the infinitesimal generator of this flow, i.e. the smooth vector field on M whose value at p ∈ M is the
velocity at t = 0 of the curve θ

(p)
(X), we obtain a map θ : Lie(G) → X(M) given by θ(X) = X. We can

characterize X in two different ways.

First of all, for any p ∈M and f ∈ C∞(M),

Xpf = θ
(p)′
(X)(0)f = d

(
θ
(p)
(X)

)
0

(
d

dt

∣∣∣∣
0

)
f =

d

dt

∣∣∣∣
0

f(p exp(tX))

by definition of X. Second, we have θ
(p)
(X) = θ(p) ◦ γ with γ := exp ◦ c, where c : R → Lie(G) is defined

as c(t) := tX. Under the identification T0 Lie(G) ∼= Lie(G), c′(0) corresponds to X, so by Lemma 2.21,

γ′(0) = d exp0(c′(0)) = Xe.

16



2.4 Infinitesimal generators 17

We also know γ(0) = p, so

Xp = θ
(p)′
(X)(0) = d(θ(p))e(γ

′(0)) = d(θ(p))e(Xe). (2.3)

From this, it is easy to see that θ is R-linear. In fact, more is true.

Proposition 2.23. The map θ : Lie(G) → X(M) defined above is a Lie algebra homomorphism.

See [8, Theorem 20.15] for a proof. We call θ the infinitesimal generator of θ and for all X ∈ Lie(G),
X is the fundamental vector field on M associated to X. The next example shows that, in some sense,
fundamental vector fields are a generalization of left-invariant vector fields on Lie groups.

Example 2.24. Suppose M = G and θ : G×G→ G is just the group operation, so that θ(g) = Lg and
θg = Rg for any g ∈ G. Let X ∈ Lie(G), then

Xg = d(θ(g))e(Xe) = d(Lg)e(Xe) = Xg

for any g ∈ G since X is left-invariant, so X = X. In other words, the infinitesimal generator of θ is just
the inclusion Lie(G) ↪→ X(G) in this case. △

We know from Lemma 2.8 that evaluation at any point g ∈ G defines a vector space isomorphism
Lie(G) → TgG. The following lemma, adapted from [9, Corollary 27.16], generalizes this fact.

Lemma 2.25. Let p ∈M and suppose p has a trivial stabilizer, then the map Lie(G) → TpM , X 7→ Xp

is injective.

Proof. Let X ∈ Lie(G) with 0 = Xp = d(θ(p))e(Xe), then the constant map γ : R → M , t 7→ p is
an integral curve of X starting at p. Since X is by definition the infinitesimal generator of the global

flow θ(X) on M , θ
(p)
(X) is too, so p = θ

(p)
(X)(t) = p exp(tX) and thus exp(tX) = e for all t ∈ R. We know

t 7→ exp(tX) is the maximal integral curve of X starting at e, so Xe = 0 and X = 0.

Finally, it is worth noting that infinitesimal generators behave well under pushforwards of G-equivariant
maps.

Lemma 2.26. Let N be another smooth manifold, ϑ : N ×G→ N a smooth right action of G on N and
ϑ : Lie(G) → X(N) the corresponding infinitesimal generator. If F : M → N is a smooth G-equivariant
map and X ∈ Lie(G), then θ(X) and ϑ(X) are F -related. That is, dFp(θ(X)p) = ϑ(X)F (p) for any
point p ∈M .

Proof. Let p ∈M , then
ϑ(F (p))(g) = F (p)g = F (pg) = (F ◦ θ(p))(g)

for any g ∈ G by the G-equivariance of F , so ϑ(F (p)) = F ◦ θ(p). Using (2.3), we find

ϑ(X)F (p) = d(ϑ(F (p)))e(Xe) = dFp(d(θ(p))e(Xe)) = dFp(θ(X)p),

as required.

17





Chapter 3
Fiber bundles

This chapter kicks off the discussion of fiber bundles, which play a central role in the geometric inter-
pretation of the anomalous Hall effect. Heuristically, if M and F are smooth manifolds, a fiber bundle
over M with typical fiber F is a smooth manifold E obtained by gluing to M at every point x a copy Ex
of F , in such a way that E locally looks like the Cartesian product M×F . That is to say, we can cover M
with open sets Uα and find for each α a diffeomorphism from

⋃
x∈Uα

Ex to Uα × F which “preserves
the fibers”. Two such fiber-preserving local diffeomorphisms differ on any copy of F by an element
of Diff(F ). If each of these elements is contained in a (finite-dimensional) Lie group G ⊆ Diff(F ), we say
that E is a G-bundle. Of particular importance are those G-bundles whose typical fiber F is precisely G;
these so-called principal G-bundles are the main object of study in this chapter. Given a Lie group G and
a smooth manifold M , the principal G-bundles over M can be classified via so-called universal bundles.
This classification scheme has an intuitive physical interpretation in the context of the Hall effect, which
we will return to in Chapter 6. Finally, the fiber structure of a principal G-bundle gives rise to a notion
of vertical tangent vectors, but there is no natural horizontal analog. This leads to the definition of a
connection, which will be discussed in Chapter 5.

3.1 Principal bundles

Definition 3.1. Let G be a Lie group. A principal G-bundle is a smooth surjection π : P →M between
smooth manifolds P and M together with a smooth right action of G on P such that there exist an open
cover {Uα}α∈A of M and for every α ∈ A a diffeomorphism ϕα : π−1Uα → Uα ×G with the properties:

(i) ϕα is G-equivariant, where Uα ×G is considered as a right G-manifold under right multiplication
in the second coordinate;

(ii) π1 ◦ ϕα = π, with π1 : Uα ×G→ Uα the projection onto the first coordinate.

Such a pair (U, ϕ) of an open subset U ⊆ M and a G-equivariant fiber-preserving diffeomorphism
ϕ : π−1U → U × G is known as a local trivialization for the bundle, and a collection {(Uα, ϕα)}α∈A of
local trivializations such that the Uα cover M is a bundle atlas or G-atlas. We call P the total space of
the bundle, M its base space and π the projection. The projection of any principal G-bundle is a smooth
submersion.

Lemma 3.2. Let π : P →M be a principal G-bundle,1 then π is a submersion.

1Strictly speaking, the right G-action on P is part of the data, but we will usually leave it implicit.
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20 Fiber bundles

Proof. Let p ∈ P and choose a local trivialization (U, ϕ) for π with π(p) ∈ U , then π1 ◦ ϕ = π implies
dπp = d(π1)ϕ(p) ◦ dϕp. We know know dϕp is an isomorphism since ϕ is a difeomorphism, and π1 is a
smooth submersion, which implies d(π1)ϕ(p) is surjective. It follows that dπp is surjective, as required.

As a consequence, the fiber Px := π−1{x} of π over any point x ∈M is an embedded submanifold of P .
If (U, ϕ) is a local trivialization for π, then the requirement π1◦ϕ = π essentially means that for all x ∈ U ,
the restriction ϕ|Px

of ϕ to Px is a diffeomorphism onto {x} × G ∼= G. We can therefore think of the
total space P as the base space M with a copy of G glued to every point x, namely Px. In other words,
P is a “bundle of fibers”, one for each point in M and all diffeomorphic to G via local trivializations.
The G-equivariance of the local trivializations now implies the following, see also [9, Proposition 27.6].

Lemma 3.3. Let π : P →M be a principal G-bundle. The right action of G on P is free, and transitive
on each fiber of π.

Proof. Let p ∈ P and choose a local trivialization (U, ϕ) for π with x := π(p) ∈ U , then ϕ(p) = (x, g) for
some g ∈ G. Let h ∈ G and suppose ph = p, then

(x, g) = ϕ(p) = ϕ(ph) = ϕ(p)h = (x, g)h = (x, gh)

since ϕ is G-equivariant, so g = gh and h = e. To show that G acts transitively on the fibers, let q be
any point in the fiber Px = π−1{x} of π over x, so that ϕ(q) = (x, h) for some h ∈ G. It follows that

pg−1h = ϕ−1(x, g)g−1h = ϕ−1(x, h) = q,

which proves the claim.

The simplest example of a principalG-bundle over a smooth manifoldM is the projection π : M×G→M .

Example 3.4. Let M be a smooth manifold and G a Lie group, then the projection π : P := M×G→M
onto the first coordinate together with the smooth right action of G on P given by right multiplication
in the second coordinate is a principal G-bundle. The pair (M, idP ) is a global trivialization for π. △

One could say that the definition of a principal G-bundle was conjured up precisely to describe spaces
that look like the Cartesian product M × G locally, but have some sort of twist globally. This is re-
flected in the concept of transition functions. Let π : P → M be a principal G-bundle, choose a bundle
atlas {(Uα, ϕα)}α∈A and let α, β ∈ A. For any x ∈ Uα ∩ Uβ , there exists ραβ(x) ∈ G such that the
composition

ϕα ◦ ϕ−1
β : (Uα ∩ Uβ) ×G −→ (Uα ∩ Uβ) ×G

maps (x, e) to (x, ραβ(x)), since

π1((ϕα ◦ ϕ−1
β )(x, e)) = (π ◦ ϕ−1

β )(x, e) = π1(x, e) = x.

We also know ϕα ◦ ϕ−1
β is G-equivariant, so

(ϕα ◦ ϕ−1
β )(x, g) = (ϕα ◦ ϕ−1

β )(x, e)g = (x, ραβ(x))g = (x, ραβ(x)g) (3.1)

for all g ∈ G. The maps ραβ : Uα ∩ Uβ → G thus defined are known as the transition functions of the
bundle relative to the chosen bundle atlas, and it is straightforward to show that they are smooth.

Lemma 3.5. Let π : P →M be a principal G-bundle, then the transition functions relative to any bundle
atlas are smooth.

Proof. Let {(Uα, ϕα)}α∈A be a G-atlas for π and denote the corresponding transition functions by ραβ .
Let α, β ∈ A, then by definition, ραβ is the composition of the map Uα ∩Uβ → (Uα ∩Uβ)×G sending x
to (x, e), ϕα ◦ ϕ−1

β and the projection (Uα ∩Uβ)×G→ G onto the second coordinate. All three of these
are smooth, so ραβ is too.
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3.1 Principal bundles 21

They also satisfy the following important property: for all α, β, γ ∈ A and x ∈ Uα ∩ Uβ ∩ Uγ , we have

(x, ραγ(x)) = (ϕα ◦ ϕ−1
γ )(x, e) = (ϕα ◦ ϕ−1

β ◦ ϕβ ◦ ϕ−1
γ )(x, e)

= (ϕα ◦ ϕ−1
β )(x, ρβγ(x)) = (x, ραβ(x)ρβγ(x))

by Equation (3.1), so
ραγ(x) = ραβ(x)ρβγ(x). (3.2)

This is known as the cocycle condition. The following properties are immediate consequences of it.

Lemma 3.6. Let π : P →M be a principal G-bundle, then the transition functions ραβ of π relative to
a bundle atlas {(Uα, ϕα)}α∈A satisfy the following properties for all α, β ∈ A and x ∈ Uα ∩ Uβ:

(i) ραα(x) = e;

(ii) ραβ(x) = ρβα(x)−1.

The transition functions ραβ describe how the locally trivial pieces Uα × G glue together to form the
total space P of the bundle. As the next example illustrates, that means they often indicate the extent
to which the bundle is twisted.

Example 3.7. Let k ∈ Z≥1 and denote by Ck = ⟨g⟩ the cyclic group of order k. Define ζ := eπi/k ∈ C∗,
then the right action of Ck on the circle S1 ⊆ C∗ given by z · g = zζ2 is smooth. With it, the k-sheeted
covering π : S1 → S1, z → zk of S1 is a principal Ck-bundle. A bundle atlas can be constructed as
follows. Write U := S1 \ {1} and V := S1 \ {−1}, then U ∩ V = S1 \ {±1} is the disjoint union of W+

and W−, where W± := {z ∈ S1 : ± Im(z) > 0}. Set Wj := {e2πi(j+t)/k : t ∈ (0, 1)} for all j ∈ Z, then
Wj = Wj+k for all j ∈ Z and

π−1U =

k−1⋃
j=0

Wj , π−1V =

k−1⋃
j=0

ζWj .

Note that the restrictions π|Wj are all diffeomorphisms onto U . If ϕU : π−1U → U ×Ck is defined on Wj

by ϕU (z) = (π(z), gj), it follows that (U, ϕU ) is a local trivialization for π. Similarly, there is a local
trivialization (V, ϕV ) with ϕV defined on ζWj by ϕV (z) = (π(z), gj); together, these two constitute a
bundle atlas for π. It is straightforward to check that the composition ϕU ◦ϕ−1

V is given for all w ∈ U ∩V
and gj ∈ Ck by

(ϕU ◦ ϕ−1
V )(w, gj) =

{
(w, g · gj) if w ∈W+

(w, e · gj) if w ∈W−,

so the transition function ρUV is g on W+ and e on W−. See Figure 3.1 for an illustration. △

1
V

U

−1

1

iW1

iW2

W2

W1

ϕU (W1)

ϕU (W2)

e

g

e

g

ϕV (iW1)

ϕV (iW2)

π

ϕU ϕV

Figure 3.1: Illustration of the bundle atlas for the 2-sheeted covering S1 → S1, z 7→ z2, as constructed in
Example 3.7. The open subsets U and V of S1 have been drawn slightly smaller for clarity.
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22 Fiber bundles

One useful property of principal bundles is that the right G-action induces a natural one-to-one corre-
spondence between local trivializations and local sections of the bundle.

Definition 3.8. Let π : P → M be a principal G-bundle and U ⊆ M an open subset. A smooth local
section of π over U is a smooth map σ : U → π−1U such that π ◦ σ = idU .

Lemma 3.9. Let π : P → M be a principal G-bundle and U ⊆ M an open subset. There is a natural
one-to-one correspondence between smooth local sections and local trivializations of π over U .

Proof. Given a smooth local section σ : U → π−1U , we define a map

ψσ : U ×G −→ π−1U

(x, g) 7−→ σ(x)g.

This is clearly a G-equivariant diffeomorphism. Conversely, given a diffeomorphism ψ : U ×G → π−1U
which respects the G-action, we can define a local section

σψ : U −→ π−1U

x 7−→ ψ(x, e).

These two operations are inverses of each other; details are left to the reader.

This proof is based on [10, Proposition 1.1.6]. Given a local trivialization of a principal bundle, we will
often speak of the associated or corresponding local section, and vice versa.

The structure-preserving maps between principal G-bundles are defined as follows.

Definition 3.10. Let π1 : P1 →M1 and π2 : P2 →M2 be principal G-bundles. A smooth map F : P1 →
P2 is a principal G-bundle morphism if it is G-equivariant and there exists a smooth map f : M1 →M2

such that π2 ◦ F = f ◦ π1. We say F covers f , and call F

(i) a principal G-bundle isomorphism if F is a diffeomorphism, and

(ii) a principal G-bundle morphism over M if M := M1 = M2 and f = idM .

P1 P2 P1 P2

M1 M2 M

F

π1 π2

F

π1 π2

f

Note that the map f covered by F is uniquely determined by F . If F is a principal G-bundle morphism
over a smooth manifold M , it is automatically an isomorphism.

Lemma 3.11. Let π1 : P1 → M and π2 : P2 → M be principal G-bundles and F : P1 → P2 a principal
G-bundle morphism over M , then F is a diffeomorphism.

Proof. Let p ∈ P1, set x := π1(p) and choose an open neighborhood U ⊆ M of x admitting local
trivializations ϕ1 : π−1

1 U → U ×G and ϕ2 : π−1
2 U → U ×G. Note that this is always possible, since there

exist such neighborhoods for both bundles separately and we can take U to be their intersection.

Note that π2(F (q)) = π1(q) ∈ U for any q ∈ π−1
1 U since π2 ◦F = π1 by definition of a principal G-bundle

morphism over M , so F restricts to a map π−1
1 U → π−1

2 U . Hence, F̂ := ϕ2 ◦ F ◦ ϕ−1
1 : U ×G→ U ×G

is smooth, and so too is the map ρ : U → G defined by ρ(x) = πG(F̂ (x, e)), with πG : U × G → G
the projection. Now, note that π2 ◦ F = π1 implies πU ◦ F̂ = πU with πU : U × G → U the other
projection, so F̂ (x, e) = (x, ρ(x)) for all x ∈ U . We also know F̂ is G-equivariant as a composition of
G-equivariant maps, so F̂ (x, g) = (x, ρ(x)g) for any x ∈ U , g ∈ G. It follows that F̂ is bijective with
inverse (x, g) 7→ (x, ρ(x)−1g), which is smooth by the smoothness of ρ, so F̂ is a diffeomorphism. It
follows that ϕ−1

2 ◦ F̂ ◦ ϕ1 = F |π−1U is a diffeomorphism too, and we are done.
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3.2 Pullback bundles 23

3.2 Pullback bundles

An important way to generate new principal G-bundles out of old ones, along with principal G-bundle
morphisms between them, is through the following construction. Let π : P → N be a principal G-bundle,
M a smooth manifold and F : M → N a smooth map, then we define the pullback of P by F as

F ∗P := {(x, p) ∈M × P : F (x) = π(p)} =
⋃
x∈M

{x} × π−1{F (x)} ⊆M × P. (3.3)

It is the inverse image of

∆N := {(y, y) : y ∈ N} ⊆ N ×N

under the smooth map F × π : M ×P → N ×N . The diagonal ∆N is just the graph of the identity idN
and thus an embedded submanifold of N ×N . Together with the next lemma, this implies that F ∗P is
an embedded submanifold of M × P .

Lemma 3.12. For any x ∈M and p ∈ P such that y := F (x) = π(p) ∈ N ,

d(F × π)(x,p)(T(x,p)(M × P )) + dj(y,y)(T(y,y)∆N ) = T(y,y)(N ×N),

where j : ∆N ↪→ N ×N is the inclusion.

Proof. Define inclusions j1 : N ↪→ N × N , y′ 7→ (y′, y) and j2 := N ↪→ N × N , y′ 7→ (y, y′) and set
Ti := d(ji)y(TyN) for i ∈ {1, 2}, then T(y,y)(N ×N) = T1 ⊕ T2 by Theorem A.2. By that same theorem,
T1 = ker d(π2)(y,y) and T2 = ker d(π1)(y,y) with πi : N ×N → N the projections.

Define i : P ↪→M × P , p′ 7→ (x, p′) and let v ∈ TpP , then

d(F × π)(x,p)(dip(v)) = d((F × π) ◦ i)p(v) = d(j2 ◦ π)p(v) = d(j2)y(dπp(v)).

By Lemma 3.2, π is a submersion, so dπp(TpP ) = TyN and T2 ⊆ d(F × π)(x,p)(T(x,p)(M ×M)).

Now, let v ∈ dj(y,y)(T(y,y)∆N ) with v ∈ T2 = ker d(π1)(y,y), then also v ∈ ker d(π2)(y,y) = T1 since
π1 ◦ j = π2 ◦ j. We know T1 and T2 intersect trivially, so v = 0 and T2 ∩ dj(y,y)(T(y,y)∆N ) = {0}. Both
these subspaces of T(y,y)(N ×N) have dimension dimN , so together, they span the whole tangent space
and we are done.

Lemma 3.12 can be summarized by saying that the smooth map F×π is transverse to the diagonal ∆N , so
that F ∗P = (F × π)−1∆N is an embedded submanifold of M × P by [8, Theorem 6.30]. Equation (3.3)
shows that it is a disjoint union of fibers of π and of course, each such fiber is diffeomorphic to G.
Therefore, the following result is perhaps not entirely unexpected.

Proposition 3.13. The projection π1 : F ∗P →M onto the first coordinate together with the right action
of G on F ∗P given by right multiplication in the second coordinate is a principal G-bundle, and the second
projection π2 : F ∗P → P is a principal G-bundle morphism covering F .

Proof. It is clear that π1 is a smooth surjection, so it remains to prove the existence of a G-atlas. To this
end, let {(Vα, ψα)}α∈A be a G-atlas for π and set Uα := F−1Vα for all α ∈ A, then {Uα}α∈A is an open
cover of M . Write gα := πG ◦ψα : π−1Vα → G for all α ∈ A, with πG : Vα×G→ G the projection. Note
that π(p) = F (x) ∈ Vα for all (x, p) ∈ π−1

1 Uα since x = π1(x, p) ∈ Uα = F−1Vα, so π−1
1 Uα ⊆ Uα×π−1Vα.

It follows that we can define a map

ϕα : π−1
1 Uα −→ Uα ×G

(x, p) 7−→ (x, gα(p)),
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24 Fiber bundles

which is smooth since gα is smooth. We know gα is G-equivariant, so ϕα is G-equivariant too, by
definition of the G-action on F ∗P . It also clearly preserves the fibers and it has a smooth inverse

Uα ×G −→ π−1
1 Uα

(x, g) 7−→ (x, ψ−1
α (F (x), g)),

so {(Uα, ϕα)} is a bundle atlas and π1 is a principal G-bundle. The projection π2 is G-equivariant by
definition of the G-action on F ∗P and it covers F by definition of the space F ∗P , so the second claim is
immediate.

F ∗P P

M N

π2

π1 π

F

The above diagram shows an overview of the situation. Denoting the transition functions of π relative
to the bundle atlas {(Vα, ψα)}α∈A by ραβ , it is easy to see that the transition functions of π1 relative to
the induced bundle atlas {(Uα, ϕα)} are precisely the compositions ραβ ◦ F .

3.3 The tautological bundle

Using the pullback construction, the principal G-bundles over any smooth manifold M can be classified
in a natural way. For G = U(1), this classification scheme will prove particularly useful in the context
of the anomalous Hall effect later on in Chapter 7.

For any C-vector space V , the complex projective space P(V ) is defined as the quotient of V \ {0} by the
equivalence relation ∼ defined by

z ∼ w ⇐⇒ there exists λ ∈ C∗ such that z = λw.

The equivalence class of any point z ∈ V \ {0} is denoted by [z], and can be identified with the 1-
dimensional (complex) subspace of V spanned by z. Now let n ∈ Z≥0 and set H := Cn+1. Supply H
with the Euclidean norm ∥ · ∥, then P(H) with the quotient topology and the unit sphere

S := {z ∈ H : ∥z∥ = 1}

in H with the subspace topology are compact topological manifolds of dimension 2n+ 1 and 2n, respec-
tively. Additionally, they admit smooth structures with respect to which the inclusion j : S ↪→ H is a
smooth embedding and the quotient map q : H\{0} → P(H) a smooth submersion. For details, we refer
to [8, Example 5.15, Exercise 1-9, Exercise 4-5]. It follows that the composition

γn := q ◦ j : S −→ P(H)

z 7−→ [z]

is smooth, and it is clearly surjective. Note that for any z ∈ S, the fiber π−1{[z]} of π is diffeomorphic
to the circle U(1) since the elements of S being mapped to [z] are precisely those of the form λz for
some λ ∈ U(1), so one might suspect that we are dealing with a principal U(1)-bundle here.

Proposition 3.14. The map γn : S → P(H) together with the right action of U(1) on S by scalar
multiplication is a principal U(1)-bundle.

Proof. Let e0, . . . , en be the standard basis for H and set Vk := Sp{e0, . . . , êk, . . . , en} for all 0 ≤ k ≤ n,
where the hat denotes that we omit that particular basis vector. Define Uk := P(H) \ P(Vk), then

q−1Uk = {z ∈ H : [z] /∈ P(Vk)} = {z ∈ H : z /∈ Vk} = H \ Vk
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3.3 The tautological bundle 25

since Vk is a linear subspace of H. We know Vk is closed in H since it is finite-dimensional, so q−1Uk is
open in H and Uk open in P(H). Clearly, the Uk cover P(H): for any z = (z0, . . . , zn) ∈ H \ {0}, there
is a k with zk ̸= 0, which implies z /∈ Vk and thus [z] ∈ Uk.

Now let 0 ≤ k ≤ n, then
γ−1
n Uk = {z ∈ S : z /∈ Vk} = {z ∈ S : zk ̸= 0},

so we can define maps

ϕk : γ−1
n Uk −→ Uk × U(1) ψk : Uk × U(1) −→ γ−1

n Uk

z 7−→
(

[z],
zk

|zk|

)
, ([z], λ) 7−→ |zk|z

zk ∥z∥
λ.

Note that the definition of ψk does not depend on the choice of representative. Both maps are smooth
and by a straightforward calculation, they are inverses of each other, so ϕk = ψ−1

k is a diffeomorphism.
Clearly, π1 ◦ ϕk = γn with π1 : Uk × U(1) → Uk the projection since ϕk is just γn : z 7→ [z] in the first
coordinate. Also,

ϕk(zλ) =

(
[zλ],

zkλ

|zkλ|

)
=

(
[z],

zk

|zk|
λ

)
= ϕk(z)λ

for all z ∈ γ−1
n Uk and λ ∈ U(1), so (Uk, ϕk) is a local trivialization for γn and we are done.

We call γn the tautological bundle over P(H). It has a special universal property that allows us to classify
the principal U(1)-bundles over any sufficiently low-dimensional manifold, see [10, Theorem 3.4.10] and
[10, Theorem 3.6.7] for a proof. By an isomorphism class of principal U(1)-bundles over a smooth
manifold M , we mean an equivalence class under the equivalence relation on the set of all principal
U(1)-bundles defined by isomorphism over M . That is, two bundles belong to the same class if and only
if there exists a principal G-bundle (iso)morphism between them which covers idM .

Theorem 3.15. Let M be a smooth manifold of dimension m ≤ 2n, then the assignment F 7→ F ∗S
induces a bijection from the set of homotopy classes of smooth mapsM → P(H) to the set of isomorphism
classes of principal U(1)-bundles over M .

But what if we want to construct a bundle over a smooth manifold M using a map F from M to
the projectivization P(H) of an infinite-dimensional Hilbert space H, instead? Does there also exist a
tautological bundle in this case, which we can pull back along F? This question opens the door to the
realm of topological and smooth manifolds modeled not on Rn, but on general Banach spaces. There
still exists a notion of differentiability for maps between such spaces, which allows for the generalization
of a large portion of the theory of finite-dimensional manifolds to this more general setting; see for
instance [11]. However, we will not attempt to do that here. In order to still be able to make sense of
bundles over infinite-dimensional projective spaces, we take a different approach.

The definition of a principal bundle we gave in Section 3.1 can be generalized to arbitrary topological
spaces. By replacing every occurrence of

• “Lie group” with “topological group”,

• “smooth manifold” with “topological space”,

• “smooth” with “continuous” and

• “diffeomorphism” with “homeomorphism”

in the definitions in Section 3.1, one obtains the definitions for topological principal G-bundles and
topological principal G-bundle morphisms. Most of what we have discussed in this chapter so far has a
topological analog. In particular, a topological principal G-bundle π : P → N can be pulled back along
a continuous map F : M → N to obtain a topological principal G-bundle over M in exactly the same
way as for the smooth category, as was outlined in Section 3.2.
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26 Fiber bundles

Now, the crucial fact is that for any smooth manifold M and Lie group G, the topological and smooth
principal G-bundles over M turn out to be essentially the same thing, up to isomorphism.

Theorem 3.16. Let M be a smooth manifold and G a Lie group. Forgetting about the smooth structure
defines a bijection from the set of isomorphism classes of (smooth) principal G-bundles over M to the
set of isomorphism classes of topological principal G-bundles over M .

The interested reader may consult [10, Theorem 3.6.6] for a proof. Again, by isomorphism classes we
mean isomorphism classes over M .

Theorem 3.16 states that for any topological principal G-bundle π1 : P1 →M over a smooth manifold M ,
there exist a smooth principal G-bundle π2 : P2 →M and a G-equivariant homeomorphism F : P1 → P2

with π2 ◦ F = π1. Via F , we can supply P1 with a smooth structure with respect to which π1 is
also a smooth principal G-bundle. Therefore, in order to be able to construct smooth bundles over M
using continuous maps from M to the infinite-dimensional projective Hilbert space P(H), all we need
now is a topological bundle over P(H). This bundle is constructed in much the same way as in the
finite-dimensional case. Provide the unit sphere

S := {z ∈ H : ∥z∥ = 1}

in H with the subspace topology and P(H) with the quotient topology, then the inclusion j : S ↪→ H and
the quotient map q : H \ {0} → P(H) are continuous, so their composition

γ := q ◦ j : S −→ P(H)

z 7−→ [z].

is too. We have now the following infinite-dimensional version of Proposition 3.14.

Proposition 3.17. The map γ : S → P(H) together with the right action of U(1) on S by scalar multi-
plication is a topological principal U(1)-bundle.

Proof. The proof is virtually identical to that of Proposition 3.14. Choose an orthonormal basis {ek}k∈I
for H and for any k ∈ I, let Vk := Sp{eℓ : ℓ ̸= k} be the closed linear span of all basis vectors except
the k-th. It follows that Uk := P(H) \ P(Vk) is open for all k ∈ I, and the Uk clearly cover P(H). For
any k ∈ I, we have continuous maps

ϕk : γ−1Uk −→ Uk × U(1) ψk : Uk × U(1) −→ γ−1Uk

z 7−→
(

[z],
⟨ek|z⟩
|⟨ek|z⟩|

)
([z], λ) 7−→ |⟨ek|z⟩|

⟨ek|z⟩
· z

∥z∥
· λ

which can be shown to be inverses of each other, so ϕk = ψ−1
k is a homeomorphism. It is also clearly

U(1)-equivariant and fiber-preserving, so (Uk, ϕk) is a local trivialization.

Again, we call γ the tautological bundle over P(H), but it is important to keep in mind that it is only a
topological one.

3.4 The vertical subbundle

At this point, one might wonder why we need smooth structures on our bundles in the first place. One
important reason is that we want to be able to look at their tangent bundles and define certain objects
on them. These objects will be the focal point of Chapters 4 and 5, and we kick off the discussion here.

If π : P → M is any (smooth) principal G-bundle, there is a well-defined notion of “verticality” on the
tangent spaces of P .

26



3.4 The vertical subbundle 27

p

Px x

π

dπp
TpP

TxM

Vp

P = T 2 M = S1

Figure 3.2: Illustration of Lemma 3.19 for the trivial U(1)-bundle π : T 2 = S1 × U(1) → S1. The vertical
tangent space Vp to P at a point p ∈ P is equal to the tangent space at p to the fiber Px := π−1{x}, where
x := π(p).

Definition 3.18. For all p ∈ P , the vertical tangent subspace of TpP is defined as Vp := ker dπp ⊆ TpP .
The union V :=

⋃
p∈P Vp = ker dπ is known as the vertical subbundle of TP .

Vp can be shown to vary smoothly with p. More precisely, V is a so-called smooth subbundle of the
tangent bundle TP of P since π has constant rank by Lemma 3.2; see [8, Theorem 10.34] for details.
The vertical tangent subspaces have an intuitive geometric interpretation.

Lemma 3.19. Let p ∈ P and set x := π(p). Let Px := π−1{x} be the fiber of π containing p and
i : Px ↪→ P the inclusion, then Vp = dip(TpPx).

Proof. Let w ∈ TpPx, then dπp(dip(w)) = d(π ◦ i)p(w) = 0 since π ◦ i is the constant map q 7→ x, so
dip(w) ∈ ker dπp = Vp and dip(TpPx) ⊆ Vp.

Now, note that we have a short exact sequence of finite-dimensional vector spaces

0 −→ Vp ↪−→ TpP
dπp−→ TxM −→ 0

where the surjectivity of dπp follows from Lemma 3.2, so comparing dimensions gives

dimVp = dimTpP − dimTxM = dimP − dimM = dimG.

Since Px is diffeomorphic toG, it follows that dip(TpPx) also has dimension dimG, so Vp = dip(TpPx).

In words, Vp is just the subspace of TpP consisting of those vectors which are tangent to the fiber Px
of π containing p, as illustrated in Figure 3.2. Since any local trivialization of π around p induces a
diffeomorphism between Px and the Lie group G, Lemma 2.8 implies Lie(G) ∼= Vp as vector spaces. As it
turns out, there is a canonical identification of Lie(G) and Vp, independent of the chosen trivialization.
It is given by the infinitesimal generator θ : Lie(G) → X(P ), X 7→ X of the right action θ of G on P , see
also [9, Proposition 27.18].

Lemma 3.20. Let p ∈ P , then the linear map ηp : Lie(G) → TpP , X 7→ Xp is an isomorphism onto Vp.

Proof. Note that ηp = d(θ(p))e ◦ ϵ by Equation (2.3), with ϵ : Lie(G) → TeG the isomorphism from
Lemma 2.8. It follows that

dπp(Xp) = d(π ◦ θ(p))e(Xe) = 0

for any X ∈ Lie(G) since π ◦ θ(p) is the constant map g 7→ π(pg) = π(p), so Xp ∈ ker dπp = Vp. Also,

d(θ(p))e is injective by Lemma 2.25 since G acts freely on P . Finally, note that Vp and Lie(G) ∼= TeG
both have dimension dimG by Lemma 3.19, so we are done.
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28 Fiber bundles

Lemma 3.20 essentially says that the vertical tangent subspace consists precisely of the fundamental
vectors in TpP associated to elements of the Lie algebra Lie(G).

The important thing to realize at this point is that in general, there is no canonically defined “horizontal”
counterpart of the vertical subbundle V ⊆ TP . This is because π is inherently asymmetric: if (U, ϕ) is
a local trivialization for π, then on π−1U ∼= U ×G, the bundle map π is just the projection on the first
coordinate. In general, though, there is no analogous global projection on the second coordinate. This
asymmetry gives rise to the notion of a connection on π, which is essentially just a smooth choice of a
complementary subspace Hp of Vp in TpP for all p ∈ P . Giving such a subspace Hp amounts to choosing
a projection TpP → Vp with kernel Hp, which we can interpret as a linear map TpP → Lie(G) through
Lemma 3.20. We would therefore like to be able to talk about connections on the principal bundle π as
differential forms on P taking values in the vector space Lie(G) instead of R.
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Chapter 4
Lie algebra valued forms

The main subject of this chapter is the theory of vector valued differential forms. If M is a smooth
manifold and V a finite-dimensional R-vector space, then a V -valued k-form ω on M is an assignment of
an alternating multilinear map ωp : (TpM)k → V to every point p ∈M . If e1, . . . , en is a basis for V , ω can
also be interpreted as an n-tuple of ordinary R-valued differential forms of degree k on M , which allows
us to generalize the wedge product, exterior derivative and pullback operations. The case V = Lie(G)
will be particularly important for the discussion of connections and curvature on principal bundles in
Chapter 5. The Maurer-Cartan form is a distinguished Lie(G)-valued one-form ωG on the Lie group G
itself with many useful properties. Pulling ωG back along a smooth map ρ : M → G yields a Lie(G)-
valued one-form on M which we call the logarithmic derivative of ρ, because it generalizes the logarithmic
derivative of real-valued functions.

4.1 Vector valued forms

In this section and the next, we largely follow [9, §21]. Let T , V , W and Z be arbitrary finite-dimensional
vector spaces over R and write

Ak(T, V ) := {f : T k → V : f is multilinear and alternating}

for all k ∈ Z≥1, then Ak(T, V ) has a natural R-vector space structure with addition and scalar multipli-
cation defined pointwise. Taking A0(T, V ) to just be V by convention (any map taking 0 arguments is
automatically multilinear and alternating), the universal mapping property of the exterior power induces
an isomorphism

Ak(T, V ) ∼= HomR

(∧k
T, V

)
for all k ∈ Z≥0. Since all spaces are finite-dimensional, standard linear algebra also gives us identifications

HomR

(∧k
T, V

)
∼=
(∧k

T
)∗

⊗ V ∼=
(∧k

T ∗
)
⊗ V.

In particular, if V = R, this yields an identification of
∧k

T ∗ with the space of alternating multilinear
forms T k → R.

Now, recall that a differential form ω ∈ Ωk(M) of degree k ≥ 0 on a smooth manifold M is a section of

the vector bundle
∧k

T ∗M over M . The fiber at p ∈M of this bundle is the k-th exterior power
∧k

T ∗
pM

of the cotangent space T ∗
pM , so we can interpret ωp as an alternating multilinear form (TpM)k → R by

the above discussion. More generally, we have the following.
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30 Lie algebra valued forms

Definition 4.1. Let M be a smooth manifold and k ∈ Z≥0. A V -valued k-form on M is a section of

the tensor product bundle (
∧k

T ∗M) ⊗ (M × V ) over M .

If ω is a V -valued k-form on M , then for any p ∈M , we can view ωp ∈ (
∧k

T ∗
pM)⊗ V as an alternating

multilinear map (TpM)k → V . Choose a basis e1, . . . , en for V , then for any p ∈M , it follows that there
exist unique multilinear forms ω1

p, . . . , ω
n
p : (TpM)k → R such that

ωp(v1, . . . , vk) = ωip(v1, . . . , vk)ei

for all v1, . . . , vk ∈ TpM , where we have adopted the Einstein summation convention. The multilinear
forms ωip define (R-valued) k-forms ω1, . . . , ωn on M satisfying ω = ωi ⊗ ei, which is also often written

without the tensor product sign as ω = ωiei. We say ω is smooth if ωi is smooth for all i. It is easy
to see that this definition is independent of the chosen basis: if f1, . . . , fn is another basis for V and
ωiei = ηjfj , then the ωi are smooth if and only if the ηj are since there exist cij , d

j
i ∈ R such that

• fj = cijei for all j and thus ωi = ηjcij for all i, and

• ei = djifj for all i and thus ηj = ωidji for all j.

We denote the space of smooth V -valued k-forms on M by Ωk(M,V ).

There is another useful characterization of smoothness of vector valued forms, for which we first need
to introduce some notation. Let ω be a V -valued k-form on a smooth manifold M , then for any vector
fields X1, . . . , Xk on M , we define

ω(X1, . . . , Xk) : M −→ V

p 7−→ ωp(X1|p, . . . , Xk|p).

In terms of a basis e1, . . . , en for V , we can write ω = ωiei for k-forms ω1, . . . , ωn on M , so that

ω(X1, . . . , Xk) = ωi(X1, . . . , Xk)ei. (4.1)

Now, recall that in the case V = R, ω is smooth if and only if ω(X1, . . . , Xk) is smooth for all smooth
vector fields X1, . . . , Xk ∈ X(M); see for instance [8, Proposition 12.19]. It follows that ω induces a map

X(M)k −→ C∞(M)

(X1, . . . , Xk) 7−→ ω(X1, . . . , Xk)

which can be shown to be linear over C∞(M). Something similar holds for the general case.

Lemma 4.2. Let M be a smooth manifold and ω a V -valued k-form on M , then ω is smooth if and only
if ω(X1, . . . , Xk) is smooth for all X1, . . . , Xk ∈ X(M).

Proof. Choose a basis e1, . . . , en for V , then ω = ωiei for some k-forms ω1, . . . , ωn on M , so by (4.1),
ω(X1, . . . , Xk) = ωi(X1, . . . , Xk)ei for all X1, . . . , Xk ∈ X(M). It follows that

ω is smooth ⇐⇒ ωi is smooth for all i

⇐⇒ ωi(X1, . . . , Xk) ∈ C∞(M) for all i and X1, . . . , Xk ∈ X(M)

⇐⇒ ω(X1, . . . , Xk) ∈ C∞(M,V ) for all X1, . . . , Xk ∈ X(M).

Thus, any smooth V -valued k-form ω ∈ Ωk(M,V ) induces a mapping X(M)k → C∞(M,V ), which can
again be shown to be C∞(M)-linear.

4.2 Fundamental operations

Now, there are three operations on R-valued differential forms which can be extended in a natural way
to vector valued forms: the wedge product, the exterior derivative and the pullback along a smooth map.
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The wedge product. Let µ : V ×W → Z be a bilinear map. The product of two alternating multilinear
maps ω ∈ Ak(T, V ) and η ∈ Aℓ(T,W ) is then defined as

µ(ω, η) : T k+ℓ −→ Z

(v1, . . . , vk+ℓ) 7−→
1

k!ℓ!

∑
σ∈Sk+ℓ

(sgnσ)µ(ω(vσ(1), . . . , vσ(k)), η(vσ(k+1), . . . , vσ(k+ℓ))).

Clearly, µ(ω, η) is multilinear and alternating, so we have a map

Ak(T, V ) ×Aℓ(T,W ) −→ Ak+ℓ(T,Z)

(ω, η) 7−→ µ(ω, η).

If M is a smooth manifold, ω a V -valued k-form on M and η a W -valued ℓ-form, then their product is
the Z-valued (k + ℓ)-form µ(ω, η) on M defined as µ(ω, η)p = µ(ωp, ηp) for all p ∈ M . The following
lemma, proved in [9, Proposition 21.1], gives an alternative characterization of this product.

Lemma 4.3. Let M be a smooth manifold and µ : V ×W → Z a bilinear map. Let e1, . . . , en ∈ V and
f1, . . . , fm ∈W be vectors, ω1, . . . , ωn forms of degree k on M and η1, . . . , ηm forms of degree ℓ, then

µ(ωiei, η
jfj) = (ωi ∧ ηj)µ(ei, fj).

In particular, this shows that µ(ω, η) is smooth whenever ω and η are smooth forms, so the product
defines a pairing

Ωk(M,V ) × Ωℓ(M,W ) −→ Ωk+ℓ(M,Z)

(ω, η) 7−→ µ(ω, η).

Example 4.4. Let M be a smooth manifold.

(1) If V = W = Z = R and µ is the multiplication on R, the corresponding product is the regular
wedge product of R-valued differential forms on M .

(2) If V = HomR(W,Z) and µ is the evaluation map (L, y) 7→ Ly, then the product of a V -valued
0-form F : M → V and a W -valued k-form ω on M is just the “pointwise composition”, i.e.
(Fω)p = F (p) ◦ ωp for all p ∈M .

(3) If V = W is a finite-dimensional vector space over C considered as an R-vector space through
restriction of scalars, then any Hermitian inner product ⟨ · | · ⟩ on V is an R-bilinear map V ×V → C.
The product of V -valued forms ω and η on a smooth manifold M with respect to this bilinear map
is written as ⟨ω|η⟩. △

The exterior derivative. Let M be a smooth manifold and e1, . . . , en a basis for V , then we define

d: Ωk(M,V ) −→ Ωk+1(M,V )

ωiei 7−→ (dωi)ei

for all k ∈ Z≥0. If f1, . . . , fn is another basis for V and ωiei = ηjfj , then there exist cij ∈ R such that

fj = cijei for all j, so ωi = ηjcij and thus dωi = (dηj)cij for all i by the linearity of the exterior derivative

on R-valued forms on M . We conclude that (dωi)ei = (dηj)cijei = (dηj)fj , so the definition of d is
independent of the chosen basis for V .

As in the case V = R, the exterior derivative on V -valued forms is an antiderivation. A proof of this
fact can be found in [9, Proposition 21.3].
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Lemma 4.5. Let M be a smooth manifold and µ : V ×W → Z a bilinear map. Let ω ∈ Ωk(M,V ) and
η ∈ Ωℓ(M,W ), then

dµ(ω, η) = µ(dω, η) + (−1)kµ(ω,dη).

The coordinate-free expressions for the exterior derivatives of R-valued 0- and 1-forms on a smooth
manifold M have natural generalizations. Recall that the exterior derivative of a smooth function (i.e.
a 0-form) f ∈ C∞(M) is defined by df(X) = Xf for X ∈ X(M), where Xf ∈ C∞(M) is given by
(Xf)p = Xpf for all p ∈ M . This makes sense because the tangent vectors to M are defined as linear
maps C∞(M) → R satisfying a Leibniz rule. We can extend this to the general case as follows: choose
a basis e1, . . . , en for V , then for any X ∈ X(M) and F = F iei ∈ C∞(M,V ), we define

XF := (XF i)ei : M −→ V

p 7−→ XpF = (XpF
i)ei. (4.2)

XF is smooth by definition of the smooth structure on V , and it is easy to see that its definition is
independent of the chosen basis. By Equation (4.1), the exterior derivative of a smooth map (i.e. a
0-form) F = F iei : M → V is now given by

dF (X) = dF i(X)ei = (XF i)ei = XF

for all X ∈ X(M). For 1-forms, we have the following lemma, based on [9, Exercise 21.8].

Lemma 4.6. Let M be a smooth manifold, ω ∈ Ω1(M,V ) and X,Y ∈ X(M), then

dω(X,Y ) = X(ω(Y )) − Y (ω(X)) − ω([X,Y ]).

Proof. Choose a basis e1, . . . , en for V , then ω = ωiei for some ω1, . . . , ωn ∈ Ω1(M), so dω = (dωi)ei.
Using the invariant formula for the exterior derivative of R-valued 1-forms (cf. [8, Proposition 14.29])
together with Equations (4.1) and (4.2), we find

dω(X,Y ) = dωi(X,Y )ei = (X(ωi(Y )) − Y (ωi(X)) − ωi([X,Y ]))ei

= X(ωi(Y )ei) − Y (ωi(X)ei) − ωi([X,Y ])ei

= X(ω(Y )) − Y (ω(X)) − ω([X,Y ]).

It is important to note at this point that if M is a smooth manifold and F : M → V a smooth map, we
can interpret dF as either the differential of F as a smooth map, or its exterior derivative as a 0-form.
The first interpretation gives for all p ∈ M a linear map dFp : TpM → TF (p)V , whereas in the second,
dFp is a map TpM → V . Under the canonical identification of V with its tangent spaces, however, these
objects are one and the same.

Lemma 4.7. Let M be a smooth manifold and F : M → V a smooth map. Denoting the exterior
derivative by de, we have DF (p) ◦ deFp = dFp for all p ∈M , where DF (p) : V → TF (p)V is the canonical
isomorphism as in Lemma A.3.

Proof. Choose a basis e1, . . . , en for V and let ϕ = (x1, . . . , xn) : V → Rn be the associated smooth
coordinate chart for V as in (A.1), then F = (xi ◦ F )ei. The isomorphism DF (p) maps the ei to the
coordinate vectors associated to the chart ϕ, so

(DF (p) ◦ deFp)(v) = DF (p)(v(xi ◦ F )ei) = v(xi ◦ F )DF (p)(ei) = v(xi ◦ F )
∂

∂xi

∣∣∣∣
F (p)

for all v ∈ TpM by linearity. On the other hand, the differential dFp of F at p satisfies

dFp(v) = dex
i
∣∣
F (p)

(dFp(v))
∂

∂xi

∣∣∣∣
F (p)

= de(x
i ◦ F )p(v)

∂

∂xi

∣∣∣∣
F (p)

= v(xi ◦ F )
∂

∂xi

∣∣∣∣
F (p)
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for all v ∈ TpM since the dex
i
∣∣
F (p)

form a basis of T ∗
pM dual to the coordinate vector basis of TpM . To

be able to write dex
i
∣∣
F (p)

◦ dFp = de(x
i ◦ F )p, we used that the claim is known to hold for V = R.

As a consequence, we have the following chain rules for the exterior derivative.

Lemma 4.8. Let M and N be smooth manifolds, F : M → N and G : N → V smooth maps and
L : V →W a linear map. Denoting the exterior derivative by de, we have:

(i) de(G ◦ F )p = deGF (p) ◦ dFp for all p ∈M ;

(ii) de(L ◦G)q = L ◦ deGq for all q ∈ N .

Proof.

(i) This follows directly from Lemma 4.7 together with the chain rule for the differential.

(ii) Lemmas 4.7 and A.3 together imply

deLG(q) = D−1
L(G(q)) ◦ dLG(q) = L ◦D−1

G(q),

so with (i), we find

de(L ◦G)q = deLG(q) ◦ dGq = L ◦D−1
G(q) ◦ dGq = L ◦ deGq.

The proof of (ii) boils down to the commutativity of the following diagram:

V TG(q)V

TqN

W TL(G(q))W

∼
DG(q)

L

dLG(q)

deLG(q) dGq

d(L◦G)q

deGq

de(L◦G)q

DL(G(q))

∼

Pullbacks. Let M and N be smooth manifolds, F : M → N a smooth map and ω a V -valued k-form
on N , then the pullback of ω along F is the V -valued k-form F ∗ω on M defined by

(F ∗ω)p(v1, . . . , vk) = ωF (p)(dFp(v1), . . . ,dFp(vk))

for all p ∈M and v1, . . . , vk ∈ TpM . If ω is smooth, then so is F ∗ω, as shown by the following lemma.

Lemma 4.9. Let M and N be smooth manifolds, F : M → N a smooth map, V a finite-dimensional
R-vector space and k ∈ Z≥0. Let e1, . . . , en ∈ V be vectors and ω1, . . . , ωn forms of degree k on N , then
F ∗(ωiei) = (F ∗ωi)ei.

Proof. Set ω := ωiei, then for all p ∈M and v1, . . . , vk ∈ TpM ,

(F ∗ω)p(v1, . . . , vk) = ωF (p)(dFp(v1), . . . ,dFp(vk))

= ωiF (p)(dFp(v1), . . . ,dFp(vk))ei

= (F ∗ωi)p(v1, . . . , vk)ei.
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Many important properties of pullbacks of R-valued forms transfer over to the more general setting. For
a proof, we refer to [9, Proposition 21.8].

Lemma 4.10. Let M , N and P be smooth manifolds, G : M → N and F : N → P smooth maps and
µ : V ×W → Z a bilinear map. Let ω ∈ Ωk(P, V ) and η ∈ Ωℓ(P,W ), then:

(i) (F ◦G)∗ω = G∗(F ∗ω);

(ii) F ∗µ(ω, η) = µ(F ∗ω, F ∗η);

(iii) F ∗(dω) = d(F ∗ω).

4.3 Lie algebra valued forms

Let G be a Lie group. From now on, we focus on differential forms with values in the Lie algebra Lie(G)
of G. The Lie bracket is a bilinear map Lie(G)×Lie(G) → Lie(G); the product of Lie(G)-valued forms ω
and η on a smooth manifold M with respect to this bilinear map is called their Lie bracket and written
as [ω, η]. It satisfies the following “graded anticommutativity” property, proved in [9, Proposition 21.5].

Lemma 4.11. Let M be a smooth manifold, ω a Lie(G)-valued k-form on M and η a Lie(G)-valued
ℓ-form, then

[ω, η] = (−1)kℓ+1[η, ω].

In particular, if ω and η both have degree 1, we get [ω, η] = [η, ω] and [ω, ω] need not be the zero form.

Also important in this context is the following special case of Example 4.4 (2). Recall from Lemma 2.17
that the adjoint representation of G is a smooth group homomorphism Ad: G → GL(Lie(G)), so we
can interpret it as a smooth 0-form on G with values in the vector space EndR(Lie(G)) of linear maps
Lie(G) → Lie(G). Its product Adω with a Lie(G)-valued k-form ω on G is the pointwise composition,
i.e. (Adω)g = Adg ◦ ωg for all g ∈ G. Its exterior derivative d Ad ∈ Ω1(G,EndR(Lie(G))) is strongly
related to the Lie bracket.

Lemma 4.12. Let g ∈ G and X,Y ∈ Lie(G), then d Adg(Xg)Y = Adg([X,Y ]).

Proof. This follows immediately from Lemmas 2.18 and 4.7.

If M is a smooth manifold and ρ : M → G any map, we now have two product operations on Lie(G)-
valued forms on M : the Lie bracket and the pointwise composition with the smooth EndR(Lie(G))-valued
0-form Adρ := Ad ◦ ρ. These two operations behave well together.

Lemma 4.13. Let M be a smooth manifold and ρ : M → G any map. Let ω and η be Lie(G)-valued
forms on M of degree k and ℓ, respectively, then

Adρ[ω, η] = [Adρ ω,Adρ η].

Proof. Let p ∈M and v1, . . . , vk+ℓ ∈ TpM , then since Adρ(p) is a Lie algebra homomorphism,

Adρ(p) ◦ [ωp, ηp](v1, . . . , vk+ℓ)

= Adρ(p)

(
1

k!ℓ!

∑
σ∈Sk+ℓ

(sgnσ)[ωp(vσ(1), . . . , vσ(k)), ηp(vσ(k+1), . . . , vσ(k+ℓ))]

)
=

1

k!ℓ!

∑
σ∈Sk+ℓ

(sgnσ) Adρ(p)([ωp(vσ(1), . . . , vσ(k)), ηp(vσ(k+1), . . . , vσ(k+ℓ))])

=
1

k!ℓ!

∑
σ∈Sk+ℓ

(sgnσ)[Adρ(p) ◦ ωp(vσ(1), . . . , vσ(k)),Adρ(p) ◦ ηp(vσ(k+1), . . . , vσ(k+ℓ))]

= [Adρ(p) ◦ ωp,Adρ(p) ◦ ηp](v1, . . . , vk+ℓ).
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4.4 The Maurer-Cartan form 35

4.4 The Maurer-Cartan form

On any Lie group G, there is a distinguished Lie(G)-valued form which naturally occurs in many situa-
tions.

Definition 4.14. The Maurer-Cartan form on G is the Lie(G)-valued 1-form ωG on G defined by

(ωG)g := ϵ−1 ◦ d(Lg−1)g : TgG→ Lie(G)

for any g ∈ G, where ϵ : Lie(G) → TeG is the vector space isomorphism from Lemma 2.8.

The Maurer-Cartan form has a number of very useful properties, see also [9, Exercise 21.10].

Lemma 4.15. The Maurer-Cartan form ωG on G satisfies the following properties:

(i) ωG(X) is the constant map g 7→ X for all X ∈ Lie(G);

(ii) L∗
gωG = ωG for all g ∈ G;

(iii) R∗
gωG = Adg−1 ωG for all g ∈ G.

Proof.

(i) Let X ∈ Lie(G), then

ωG(X)(g) = (ωG)g(Xg) = ϵ−1(d(Lg−1)g(Xg)) = ϵ−1(Xe) = X

for all g ∈ G since X is left-invariant.

(ii) Let g, h ∈ G, then

(L∗
gωG)h = (ωG)gh ◦ d(Lg)h = ϵ−1 ◦ d(Lh−1g−1 ◦ Lg)h = ϵ−1 ◦ d(Lh−1)h = (ωG)h.

(iii) Let g, h ∈ G, then

(R∗
gωG)h = (ωG)hg ◦ d(Rg)h = ϵ−1 ◦ d(Lg−1h−1 ◦Rg)h = ϵ−1 ◦ d(adg−1 ◦ Lh−1)h

since (Lg−1h−1 ◦Rg)(k) = g−1h−1kg = (adg−1 ◦ Lh−1)(k) for all k ∈ G. Using the definition of the
adjoint representation (see Equation (2.1)), we find

(R∗
gωG)h = Adg−1 ◦ ϵ−1 ◦ d(Lh−1)h = Adg−1 ◦ (ωG)h.

We can use the first of these three properties to show that ωG is smooth.

Lemma 4.16. The Maurer-Cartan form ωG on G is smooth.

Proof. By Lemma 4.2, it suffices to show that ωG(X) ∈ C∞(M,Lie(G)) for allX ∈ X(G), so letX ∈ X(G)
be a smooth vector field on G. From Lemma 2.10, we know X = f iXi for some f1, . . . , fn ∈ C∞(G)
and X1, . . . , Xn ∈ Lie(G), so ωG(X) = f iωG(Xi). Now, by Lemma 4.15, ωG(Xi) is constant for all i, so
ωG(X) is smooth and we are done.

Our next lemma is inspired by [9, Exercise 21.9].

Lemma 4.17. ωG satisfies the Maurer-Cartan equation

dωG +
1

2
[ωG, ωG] = 0.
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36 Lie algebra valued forms

Proof. Let X,Y ∈ Lie(G), then Lemma 4.6 gives

dωG(X,Y ) = X(ωG(Y )) − Y (ωG(X)) − ωG([X,Y ]).

By Lemma 4.15, ωG(X), ωG(Y ) and ωG([X,Y ]) are the constant functions X, Y and [X,Y ], so

dωG(X,Y )(g) = −ωG([X,Y ])(g) = −[X,Y ]

for all g ∈ G. On the other hand,

1

2
[ωG, ωG](X,Y )(g) =

1

2

(
[(ωG)g(Xg), (ωG)g(Yg)] − [(ωG)g(Yg), (ωG)g(X)]

)
= [ωG(X)(g), ωG(Y )(g)] = [X,Y ],

for all g ∈ G by definition of the Lie bracket of forms, so

dωG(X,Y ) +
1

2
[ωG, ωG](X,Y ) = 0.

The claim now follows from C∞(G)-linearity together with Lemma 2.10.

4.5 The logarithmic derivative

Now if G is a Lie group, its Maurer-Cartan form ωG can be used to extend the notion of the logarithmic
derivative of a real-valued function to that of a map M → G, for any smooth manifold M . Suppose that
f : R → R>0 is smooth, then we can view log f : R → R as a smooth 0-form on R. Its exterior derivative
at any point t0 ∈ R is

d(log f)t0 =
d log f

dt
(t0)dt|t0 =

f ′(t0)dt|t0
f(t0)

=
dft0
f(t0)

= d(f(t0)−1f)t0

by the linearity of d. This inspires the following definition.

Definition 4.18. Let M be a smooth manifold and ρ : M → G a smooth map. The logarithmic derivative
of ρ is the Lie(G)-valued 1-form d log ρ on M defined for any p ∈M by

d log ρp := ϵ−1 ◦ d(ρ(p)−1ρ)p = ϵ−1 ◦ d(Lρ(p)−1 ◦ ρ)p : TpM → Lie(G),

where ϵ is the isomorphism from Lemma 2.8 and we have used the product notation (2.2).

The link between Definition 4.18 and the logarithmic derivative of real-valued functions is further solid-
ified by the next lemma.

Lemma 4.19. Suppose G is abelian, then d log expX = D−1
X for any X ∈ Lie(G), where DX is the

canonical isomorphism Lie(G) → TX Lie(G) from Lemma A.3.

Proof. Let X ∈ Lie(G) and let T : Lie(G) → Lie(G), Y 7→ −X + Y be the translation by −X, then

exp(X)−1 exp(Y ) = exp(−X + Y ) = (exp ◦ T )(Y )

for all Y ∈ Lie(G) by Lemma 2.21 (3) and (5) since G is abelian, so exp(X)−1 exp = exp ◦ T . Using
Lemma 2.21 (6) and Lemma A.4, we find

d log expX ◦DX = ϵ−1 ◦ d(exp ◦ T )X ◦DX = ϵ−1 ◦ d exp0 ◦DX−X = idLie(G)

and thus d log exp = D−1
X , as required.
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Definition 4.18 is really nothing new: the logarithmic derivative of ρ : M → G is just the pullback of the
Maurer-Cartan form ωG on G along ρ.

Lemma 4.20. Let M be a smooth manifold and ρ : M → G a smooth map, then d log ρ = ρ∗ωG.

Proof. This follows directly from the definitions: for any p ∈M ,

d log ρp = ϵ−1 ◦ d(Lρ(p)−1)ρ(p) ◦ dρp = (ωG)ρ(p) ◦ dρp = (ρ∗ωG)p.

In particular, this implies that d log ρ is smooth, since ωG is smooth by Lemma 4.16. Lemma 4.20 can
also be used to translate many of the useful properties of the Maurer-Cartan form to statements about
logarithmic derivatives.

Lemma 4.21. Let M and N be smooth manifolds and F : N →M , ρ, g : M → G smooth maps, then:

(i) F ∗ d log ρ = d log(ρ ◦ F );

(ii) d log(ρ · g) = Adg−1 d log ρ+ d log g;

(iii) d(d log ρ) = − 1
2 [d log ρ, d log ρ].

Proof.

(i) This follows directly from Lemmas 4.20 and 4.10.

(ii) Let p ∈M , then Lemmas 4.20 and 2.19 give

d log(ρ · g)p = (ωG)ρ(p)g(p) ◦ d(ρ · g)p

= (ωG)ρ(p)g(p) ◦ (d(ρg(p))p + d(ρ(p)g)p)

= (R∗
g(p)ωG)ρ(p) ◦ dρp + (L∗

ρ(p)ωG)g(p) ◦ dgp.

Using Lemma 4.15, we now find

d log(ρ · g)p = Adg(p)−1 ◦ (ωG)ρ(p) ◦ dρp + (ωG)g(p) ◦ dgp

= Adg(p)−1 ◦ (ρ∗ωG)p + (g∗ωG)p

= Adg(p)−1 ◦ d log ρp + d log gp.

(iii) This is just an application of the Maurer-Cartan equation (Lemma 4.17), combined with the fact
that pullbacks commute with both exterior derivatives and products (Lemma 4.10):

d(d log ρ) = d(ρ∗ωG) = ρ∗(dωG) = ρ∗
(
−1

2
[ωG, ωG]

)
= −1

2
[ρ∗ωG, ρ

∗ωG] = −1

2
[d log ρ,d log ρ].

Logarithmic derivatives of G-equivariant maps have some additional properties which will be useful in
the discussion of connections on principal bundles later on.

Lemma 4.22. Let M be a smooth manifold, θ a smooth right action of G on M and θ : Lie(G) → X(M),
X 7→ X the corresponding infinitesimal generator. Let ρ : M → G be a smooth G-equivariant map, where
G is considered as a right G-manifold under multiplication, and p ∈M a point, then:

(i) d log ρp(Xp) = X for all X ∈ Lie(G);

(ii) (θ∗g d log ρ)p = Adg−1 ◦ d log ρp for all g ∈ G.

Proof.
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38 Lie algebra valued forms

(i) Let X ∈ Lie(G), then X and X are ρ-related by Example 2.24, Lemma 2.26 and the G-equivariance
of ρ, so dρp(Xp) = Xρ(p) for all p ∈M . Property (i) in Lemma 4.15 now gives

d log ρp(Xp) = (ρ∗ωG)p(Xp) = (ωG)ρ(p)(Xρ(p)) = X.

(ii) The G-equivariance of ρ implies ρ ◦ θg = ρ · g, so by Lemma 4.21,

(θ∗g d log ρ)p = d log(ρ ◦ θg)p = d log(ρ · g)p = Adg−1 ◦ d log ρp.

In the last equality, we used that the logarithmic derivative of a constant function vanishes.

The logarithmic derivative also pops up when computing the exterior derivative of the pointwise compo-
sition Adρ ω of a smooth Lie(G)-valued form ω on a smooth manifold M with Ad ◦ ρ, for some smooth
map ρ : M → G.

Lemma 4.23. Let M be a smooth manifold, ρ : M → G a smooth map and ω ∈ Ωk(M,Lie(G)), then

d(Adρ ω) = Adρ dω + (−1)k[Adρ ω,d log(ρ−1)].

Proof. By Lemma 4.5, it suffices to show

d(Adρ)ω = (−1)k[Adρ ω,d log(ρ−1)].

Let p ∈M and v ∈ TpM , then d log ρp(v) ∈ Lie(G) satisfies

d log ρp(v)|ρ(p) = d(Lρ(p))e ◦ d(ρ(p)−1ρ)p(v) = dρp(v)

by left invariance, so Lemma 4.12 gives

d(Adρ)p(v)Y = d(Ad ◦ ρ)p(v)Y = d Adρ(p)(d log ρp(v)|ρ(p))Y = Adρ(p)([d log ρp(v), Y ])

for all Y ∈ Lie(G). It follows that

(d(Adρ)ω)p(v1, . . . , vk+1) =
1

k!

∑
σ∈Sk+1

(sgnσ) d(Adρ)p(vσ(1))ωp(vσ(2), . . . , vσ(k+1))

=
1

k!

∑
σ∈Sk+1

(sgnσ) Adρ(p)([d log ρp(vσ(1)), ωp(vσ(2), . . . , vσ(k+1))])

=
1

k!

∑
σ∈Sk+1

(sgnσ)[Adρ(p) ◦ d log ρp(vσ(1)),Adρ(p) ◦ ωp(vσ(2), . . . , vσ(k+1))]

= [Adρ d log ρ,Adρ ω]p(v1, . . . , vk+1)

for any v1, . . . , vk+1 ∈ TpM , so

d(Adρ)ω = [Adρ d log ρ,Adρ ω] = (−1)k+1[Adρ ω,Adρ d log ρ]

by Lemma 4.11. To conclude the proof, note that

(Adρ d log ρ)p(v) = Adρ(p) ◦ ϵ−1 ◦ d(ρ(p)−1ρ)p(v)

= ϵ−1 ◦ d(adρ(p) ◦ ρ(p)−1ρ)p(v)

= ϵ−1 ◦ d(ρρ(p)−1)p(v),

where we have used the definition of the adjoint representation (see Equation (2.1)). Lemma 2.19 now
gives d(ρ(p)ρ−1)p + d(ρρ(p)−1)p = 0 since ρ · ρ−1 is constant, so Adρ d log ρ = −d log(ρ−1) and we are
done.
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Finally, consider the special case that G is the unit circle U(1) ⊆ C. The inclusion j0 : U(1) ↪→ C is
a smooth C-valued 0-form on U(1), and its exterior derivative d(j0)1 gives a way of identifying T1U(1)
with a subspace of C.

Lemma 4.24. The exterior derivative d(j0)1 : T1U(1) → C of j0 at 1 is an isomorphism onto iR mapping
the angle coordinate vector d/dθ |1 from Example 2.9 to i.

Proof. Recall from Lemma 4.7 that the exterior derivative of j0 at 1 is the composition of its differential
d(j0)1 : T1U(1) → T1C with the inverse of the vector space isomorphism D1 : C → T1C from Lemma A.3.
U(1) is an embedded submanifold of C, so j0 is an immersion and d(j0)1 is injective. Let f ∈ C∞(C),
then

d(j0)1

(
d

dθ

∣∣∣∣
1

)
f =

d

dθ

∣∣∣∣
1

(f ◦ j0) =
d

dt

∣∣∣∣
0

(f ◦ j0 ◦ θ−1) =
d

dt

∣∣∣∣
0

f(exp(it))

by definition of the angle coordinate vector. On the other hand,

D1(i)f =
d

dt

∣∣∣∣
0

f(1 + it) =
d

dt

∣∣∣∣
0

f(exp(it)),

so d(j0)1( d/dθ |1) = D1(i) and we are done.

By composing with the evaluation map ϵ : Lie(U(1)) → T1U(1) from Lemma 2.8, we thus obtain an
isomorphism d(j0)1 ◦ ϵ : Lie(U(1)) → iR. Under this identification, the logarithmic derivative has the
following alternative characterization.

Lemma 4.25. Let M be a smooth manifold, ρ : M → U(1) a smooth map and set ϱ := j0 ◦ ρ : M → C.
Considering ϱ as a smooth C-valued 0-form on M , we have d log ρ = ϱ−1 dϱ under the canonical identi-
fication Lie(U(1)) ∼= iR, where the product of forms is the one induced by complex multiplication.

Proof. The claim follows from the fact that the diagram

C TzC TzU(1) TpM

C T1C T1U(1) Lie(U(1))

Dz

∼

Lz−1 d(Lz−1 )z

d(j0)z

d(Lz−1 )z

dρp

d log ρp

dϱp

D1

∼
d(j0)1 ϵ

∼

is commutative for all p ∈M , z := ρ(p) ∈ U(1). The left square commutes by Lemma A.3, the right one
by definition of the logarithmic derivative and the middle one by the fact that Lz−1 ◦ j0 = j0 ◦Lz−1 . For
the map dϱp on top, we used Lemma 4.7.
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Chapter 5
Connections on principal bundles

With a solid foundation in the theory of Lie groups, fiber bundles and vector valued differential forms, we
are finally in a position to start talking about connections on principal bundles. Consider the k-sheeted
covering π : S1 → S1, z 7→ zk of the circle S1 ⊆ C∗. Let z ∈ S1 be a point and γ : [0, 1] → S1 a path
starting at z. It is a well-known fact in topology that for any w ∈ π−1{z}, there is a unique lift of γ
starting at w, i.e. a path γ̃ : [0, 1] → S1 with π ◦ γ̃ = γ and γ̃(0) = w. This can also be interpreted as
there being a canonical way to “parallel transport” the point w in the fiber of π over z along the path γ.

In Example 3.7, it was shown that π is a principal Ck-bundle with Ck the cyclic group of order k, which
begs the question: does every principal G-bundle π : P →M have this path lifting property? The answer
is a resounding no. Instead, there are natural objects which provide the bundle with precisely such a
notion of parallel transport. These objects are called connections, and form the subject of this chapter.
As alluded to at the end of Chapter 3, they can be defined either as subbundles of the tangent bundle
of P , or as 1-forms on P with values in the Lie algebra Lie(G) of G. One way to construct such a 1-form
is to cover the base space M with open subsets Uα and define a Lie(G)-valued 1-form Aα on every Uα,
in such a way that a certain compatibility condition is satisfied. This construction will be important
later in the geometric interpretation of the TKNN formula, as will the definition of the curvature of a
connection.

In this entire chapter, π : P → M is a principal G-bundle, with G a Lie group. We denote the smooth
right action of G on P by θ and the corresponding infinitesimal generator by θ : Lie(G) → X(P ), X 7→ X.

5.1 Connections

Geometrically, a connection on the principal bundle π is a smooth choice of a horizontal tangent subspace
Hp of TpP for all p ∈ P such that TpP = Hp⊕Vp, where Vp is the vertical tangent subspace as defined in
Section 3.4. Choosing such a complementary subspace of Vp in TpP is equivalent to choosing a projection
vp : TpP → Vp, under the correspondence vp 7→ ker vp. Via the isomorphism ηp : Lie(G) → Vp from
Lemma 3.20, we can interpret vp as a linear map TpP → Lie(G), which leads to the following definition.

Definition 5.1. A connection (form) on π is a smooth Lie(G)-valued one-form ω ∈ Ω1(P,Lie(G)) on P
satisfying the following properties for all p ∈ P :

(i) ωp(Xp) = X for all X ∈ Lie(G);

(ii) (θ∗gω)p = Adg−1 ◦ ωp for all g ∈ G.

For all p ∈ P , we call kerωp ⊆ TpP the horizontal tangent subspace of TpP .
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42 Connections on principal bundles

The first property in Definition 5.1 means that ωp is required to be a projection onto Vp for all p ∈ P ,
under the identification Lie(G) ∼= Vp. The second implies that once a horizontal tangent subspace is
chosen at some point p ∈ P , it is immediately fixed for the whole fiber Pπ(p) of π containing p, since

kerωpg = ker(Adg ◦ ωpg) = ker(θ∗g−1ω)pg = ker(ωp ◦ d(θg)
−1
p ) = d(θg)p(kerωp)

for any g ∈ G. That is, the horizontal tangent space at pg is the pushforward of the one at p along the
right multiplication map θg. We have already seen a few examples of connection forms.

Example 5.2.

(1) By Lemma 4.15, the Maurer-Cartan form ωG ∈ Ω1(G,Lie(G)) on the Lie group G is a connection
form on the principal G-bundle G→ {∗} over the one-point space {∗}.

(2) Let ρ : P → G be any G-equivariant map where we consider G as a right G-manifold under
multiplication, then d log ρ ∈ Ω1(P,Lie(G)) is a connection form on P by Lemma 4.22. △

It is always possible to pull back connection forms along morphisms of principal G-bundles.

Proposition 5.3. Let π′ : Q → N be another principal G-bundle and F : P → Q a principal G-bundle
morphism. If ω is a connection form on π′, then F ∗ω is a connection form on π.

Proof. We know F ∗ω is a smooth Lie(G)-valued one-form on P , so it remains to check the two properties
in Definition 5.1. Denote by ϑ the right action of G on Q, by ϑ the corresponding infinitesimal generator
and let p ∈ P .

(i) Let X ∈ Lie(G). The vector fields θ(X) ∈ X(P ) and ϑ(X) ∈ X(Q) are F -related by Lemma 2.26
since F is G-equivariant, so

(F ∗ω)p(θ(X)p) = ωF (p)(dFp(θ(X)p)) = ωF (p)(ϑ(X)F (p)) = X

since ω is a connection form on π′.

(ii) Let g ∈ G, then F ◦ θg = ϑg ◦ F by the G-equivariance of F , so

(θ∗gF
∗ω)p = ((F ◦ θg)∗ω)p = ((ϑg ◦ F )∗ω)p = (F ∗ϑ∗gω)p

= (ϑ∗gω)F (p) ◦ dFp = Adg−1 ◦ ωF (p) ◦ dFp = Adg−1 ◦ (F ∗ω)p.

For trivial bundles, there is a natural choice because they have a globally defined projection on the second
coordinate.

Lemma 5.4. Suppose π : P = M × G → M is a product bundle and let π2 : P → G be the projection
onto the second coordinate, then d log π2 is a connection form on P with horizontal subspace ker d(π2)p
at any point p ∈ P .

Proof. The projection π2 is smooth and G-equivariant by definition of the G-action on P , so this is a
special case of Example 5.2 (2). To see why ker d(π2)p is the horizontal tangent space at p ∈ P , note
that d log(π2)p is the composition of d(π2)p with the vector space isomorphisms d(Lπ2(p)−1)π2(p) and ϵ−1

for all p ∈ P , so its kernel is ker d(π2)p.

5.2 The tautological bundle revisited

Another important case in which there exists a canonical choice of connection is when π is the tautological
bundle γn constructed in Section 3.3. Recall its definition γn : S → P(H), z 7→ [z] where H := Cn+1 is
supplied with the Euclidean norm, P(H) is its projectivization and S is the unit sphere in H. Remember
also that the right action θ of U(1) on S is just scalar multiplication.
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5.3 Local connection forms 43

Now, the norm on H is induced by the Euclidean inner product ⟨ · | · ⟩ on H and the inclusion j : S ↪→ H
is a smooth H-valued 0-form on S, so using the product defined in Example 4.4 (3), we get a smooth
C-valued 1-form ⟨j|dj⟩ ∈ Ω1(S,C) on S. The exterior derivative is an antiderivation and ⟨j|j⟩ : S → C
is the constant function z 7→ 1 by definition of S, so ⟨dj|j⟩ + ⟨j|dj⟩ = 0. It follows that

⟨j|dj⟩z(v) = −⟨dj|j⟩z(v) = −⟨djz(v)|z⟩ = −⟨z|djz(v)⟩ = −⟨j|dj⟩z(v)

for all z ∈ S and v ∈ TzS by the conjugate symmetry of ⟨ · | · ⟩, so ⟨j|dj⟩ actually takes values in iR.
We know from Lemma 4.24 that the exterior derivative d(j0)1 : T1U(1) → C at 1 ∈ U(1) of the in-
clusion j0 : U(1) ↪→ C is an isomorphism onto iR mapping the angle coordinate vector d/dθ |1 to i,
so under the fixed identification d(j0)1 ◦ ϵ : Lie(U(1)) → iR, we can consider ⟨j|dj⟩ to be a smooth
Lie(U(1))-valued 1-form on S.

Proposition 5.5. ⟨j|dj⟩ is a connection form on γn.

Proof. We check the two defining properties separately. Let ϑ : H×U(1) → H, (z, λ) 7→ zλ be the scalar
multiplication map of U(1) on H, so that j ◦ θλ = ϑλ ◦ j and j ◦ θ(z) = ϑ(z) for all λ ∈ U(1) and z ∈ S.

(i) Let X ∈ Lie(U(1)), then X = s d/dθ for some s ∈ R. The curve γ : R → U(1), t 7→ eist in U(1)
has initial velocity γ′(0) = s d/dθ |1 = X1 ∈ T1U(1), so for any z ∈ S,

ωz(Xz) = ωz(d(θ(z))1(X1)) = ⟨z|d(j ◦ θ(z))1(γ′(0))⟩ = ⟨z|(ϑ(z) ◦ γ)′(0)⟩ = ⟨z|isz⟩ = is

by Equation (2.3). Under the identification Lie(U(1)) ∼= iR, is corresponds to s d/dθ = X.

(ii) Let λ ∈ U(1), then

θ∗λ⟨j|dj⟩ = ⟨θ∗λj|d(θ∗λj)⟩ = ⟨j ◦ θλ|d(j ◦ θλ)⟩ = ⟨ϑλ ◦ j|d(ϑλ ◦ j)⟩

since pullbacks commute with products and exterior derivatives (Lemma 4.10). By Lemma 4.8, we
have d(ϑλ ◦ j)z = ϑλ ◦ djz for z ∈ S, so for any v ∈ TzS,

(θ∗λ⟨j|dj⟩)z(v) = ⟨(ϑλ ◦ j)(z)|(ϑλ ◦ djz)(v)⟩ = ⟨zλ|djz(v)λ⟩ = ⟨z|djz(v)⟩|λ|2 = ⟨j|dj⟩z(v).

One reason this connection form is a natural one, is that the corresponding horizontal tangent vectors
to S at z are precisely those which are orthogonal to the vertical tangent subspace Vz ⊆ TzS. To see why,
let z ∈ S and note that by the proof of (i), the fundamental vector Xz ∈ TzS associated to the angle
coordinate vector field X := d/dθ ∈ Lie(U(1)) corresponds to iz under the identification djz : TzS → H
of TzS with a subspace of H. That means v ∈ TzS is horizontal if and only if

ωz(v) = 0 ⇐⇒ ⟨z|djz(v)⟩ = 0 ⇐⇒ ⟨djz(Xz)|djz(v)⟩ = 0

⇐⇒ djz(v) ∈ {djz(Xz)}⊥ ⇐⇒ djz(v) ∈ djz(Vz)
⊥,

since Vz is generated by Xz. Let us now return to the general setting.

5.3 Local connection forms

In this section,1 we set up a one-to-one correspondence between the connections on the principal G-
bundle π and the families of so-called local connection forms on open subsets of the base space M .
The proofs are based on [12, Section 10.1.3]. First, choose a G-atlas {(Uα, ϕα)}α∈A for π, then we can
construct for each α ∈ A a smooth local section

σα : Uα −→ π−1Uα

x 7−→ ϕ−1
α (x, e)

1We leave it up to the reader to decide if it is a smooth one.
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44 Connections on principal bundles

of π over Uα as in Lemma 3.9. Recall that the transition functions ραβ : Uα ∩ Uβ → G of π relative to
the chosen G-atlas are defined by

ϕ−1
β (x, g) = ϕ−1

α (x, ραβ(x)g) (5.1)

for all x ∈ Uα ∩ Uβ and g ∈ G. Plugging in g = e gives σβ(x) = σα(x)ραβ(x), i.e. σβ = σα · ραβ in
the product notation (2.2). With this, we find that the differentials of the local sections are related on
intersections as follows.

Lemma 5.6. Let α, β ∈ A, x ∈ Uα ∩ Uβ and v ∈ TxM , then

d(σβ)x(v) = d(σα · ραβ(x))x(v) + d log(ραβ)x(v))
σβ(x)

.

Proof. Applying Lemma 2.19 to σβ = σα · ραβ yields

d(σβ)x = d(σα · ραβ(x))x + d(σα(x) · ραβ)x.

Now, by Equation (2.3) and the definition of the logarithmic derivative,

d log(ραβ)x(v))
σβ(x)

= d(θ(σβ(x)))e(d(ραβ(x)−1ραβ)x(v))

= d(θ(σβ(x)) ◦ (ραβ(x)−1ραβ))x(v)

= d(θ(σβ(x)ραβ(x)
−1) ◦ ραβ)x(v)

= d(θ(σα(x)) ◦ ραβ)x(v) = d(σα(x) · ραβ)x(v)

and we are done.

Now, let ω ∈ Ω1(P,Lie(G)) be a connection form on π. For all α ∈ A, pulling ω back along σα gives
a smooth Lie(G)-valued one-form Aα := σ∗

αω ∈ Ω1(Uα,Lie(G)) on Uα. The Aα are known as the local
connection forms of ω relative to the chosen bundle atlas and on intersections, they satisfy the following
compatibility condition.

Proposition 5.7. Let α, β ∈ A, then on Uα ∩ Uβ,

Aβ = Adρ−1
αβ

Aα + d log(ραβ). (5.2)

Proof. Let x ∈ Uα ∩ Uβ and v ∈ TxM . By Lemma 5.6,

(Aβ)x(v) = (σ∗
βω)x(v) = ωσβ(x)(d(σβ)x(v))

= ωσβ(x)(d(σα · ραβ(x))x(v)) + ωσβ(x)

(
d log(ραβ)x(v)

σβ(x)

)
.

We examine the two terms separately. For the first, note that σβ(x) = σα(x)ραβ(x) = θραβ(x)(σα(x)), so

ωσβ(x)(d(σα · ραβ(x))x(v)) = ωσα(x)ραβ(x)(d(θραβ(x) ◦ σα)x(v))

= (θ∗ραβ(x)
ω)σα(x)(d(σα)x(v))

= Adραβ(x)−1(ωσα(x)(d(σα)x(v)))

= (Adραβ(x)−1 ◦ (σ∗
αω)x)(v)

= (Adρ−1
αβ

Aα)x(v)

by property (ii) in Definition 5.1. For the second term, property (i) implies

ωσβ(x)

(
d log(ραβ)x(v)

σβ(x)

)
= d log(ραβ)x(v),

so we are done.
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Suppose now that instead of a connection one-form on π, we are given for all α ∈ A a Lie(G)-valued
one-form Aα ∈ Ω1(Uα,Lie(G)) on Uα. Then Proposition 5.7 gives a necessary condition on the Aα

for the existence of a connection form ω on π satisfying Aα = σ∗
αω for all α ∈ A. This compatibility

condition turns out to be sufficient, too. We prove this in two steps: we first show that each Aα can be
“lifted” to a connection on π−1Uα, and then that these lifts agree on intersections if the compatibility
condition is satisfied.

Lemma 5.8. Let U ⊆ M be an open subset, σ : U → π−1U a smooth local section of π and A ∈
Ω1(U,Lie(G)) a Lie(G)-valued one-form on U , then there exists a connection form ω on π−1U such that
A = σ∗ω.

Proof. Let ϕ : π−1U → U×G be the local trivialization induced by σ, i.e. ϕ−1(x, h) = σ(x)h for all x ∈ U
and h ∈ G. Set g := π2 ◦ ϕ : π−1U → G with π2 : U ×G→ G the projection, so that ϕ(p) = (π(p), g(p))
for all p ∈ π−1U . The map g is smooth and G-equivariant when considering G as a right G-manifold
under multiplication, since both π2 and ϕ are smooth and G-equivariant. Lemma 4.22 now implies
that χ := d log g is a connection form on π−1U . By Lemma 4.20, it is precisely the pullback along the
principal G-bundle morphism ϕ of the canonical connection form d log(π2) on U ×G.

Now, note that ζ := Adg−1(π∗A) is a smooth Lie(G)-valued one-form on π−1U , given by

ζp = Adg(p)−1 ◦ (π∗A)p = Adg(p)−1 ◦ Aπ(p) ◦ dπp

for any p ∈ π−1U . It clearly satisfies ζp(v) = 0 for all v ∈ Vp = ker dπp, and for any h ∈ G, we have

(θ∗hζ)p = ζph ◦ d(θh)p = Adg(ph)−1 ◦ Aπ(ph) ◦ d(π ◦ θh)p

= Adh−1g(p)−1 ◦ Aπ(p) ◦ dπp = Adh−1 ◦ (Adg(p)−1 ◦ Aπ(p) ◦ dπp) = Adh−1 ◦ ζp,

where we used Lemma 2.17. From this, it follows that ω := ζ + χ is a connection form on π−1U . We
now show σ∗ω = A. Note that g ◦ σ is the constant map x 7→ e while π ◦ σ is the identity on U , so

(σ∗ζ)x = ζσ(x) ◦ dσx = Adg(σ(x))−1 ◦ Aπ(σ(x)) ◦ d(π ◦ σ)x = Ade ◦ Ax = Ax,

(σ∗χ)x = χσ(x) ◦ dσx = ϵ−1 ◦ d((g(σ(x))−1 · g) ◦ σ)x = ϵ−1 ◦ d(g ◦ σ)x = 0

and thus (σ∗ω)x = Ax for all x ∈ U .

Proposition 5.9. Suppose the Aα satisfy the compatibility condition (5.2), then there exists a connection
form ω ∈ Ω1(P,Lie(G)) on π such that Aα = σ∗

αω for all α ∈ A.

Proof. As in the proof of Lemma 5.8, we write gα := π2 ◦ ϕα : π−1Uα → G for all α ∈ A with π2 the
projection Uα ×G→ G, so that ϕα(p) = (π(p), gα(p)) for p ∈ π−1Uα. With this, the transition function
equation (5.1) becomes gα(p) = ραβ(π(p))gβ(p) for p ∈ π−1(Uα ∩ Uβ), i.e. gα = (ραβ ◦ π) · gβ .

For all α ∈ A, we have a connection form ωα = ζα + χα ∈ Ω1(π−1Uα,Lie(G)) on π−1Uα defined as

ζα = Adg−1
α

(π∗Aα),

χα = d log gα

and satisfying σ∗
αωα = Aα by Lemma 5.8. It suffices to show that the ωα agree on overlaps, so let

α, β ∈ A, p ∈ π−1(Uα ∩ Uβ) and write x := π(p), then by the compatibility condition (5.2),

(ζβ)p = Adgβ(p)−1 ◦ (π∗Aβ)p

= Adgβ(p)−1 ◦ (Aβ)x ◦ dπp

= Adgβ(p)−1 ◦ (Adραβ(x)−1 ◦ (Aα)x + d log(ραβ)x) ◦ dπp.
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46 Connections on principal bundles

For the first term, note that

Adgβ(p)−1 ◦ Adραβ(x)−1 ◦ (Aα)x ◦ dπp = Ad(ραβ(x)gβ(p))−1 ◦ (Aα)x ◦ dπp

= Adgα(p)−1 ◦ (π∗Aα)p = (ζα)p

since Ad is a group homomorphism (Lemma 2.17). For the second, Lemma 4.21 gives

Adgβ(p)−1 ◦ d log(ραβ)x ◦ dπp = Adgβ(p)−1 ◦ d log(ραβ ◦ π)p

= d log((ραβ ◦ π) · gβ)p − d log(gβ)p

= d log(gα)p − d log(gβ)p = (χα)p − (χβ)p.

We conclude ζβ − ζα = χα − χβ and thus ωα = ωβ on π−1(Uα ∩ Uβ).

A very natural question to ask at this point is if the connection ω on π as constructed in the proof of
Proposition 5.9 is the only one which has the given Aα as its local connection forms. Our next proposition
answers this question.

Proposition 5.10. Let ω, η ∈ Ω1(P,Lie(G)) be connection forms on π such that σ∗
αω = σ∗

αη for all
α ∈ A, then ω = η.

Proof. Let α ∈ A, x ∈ Uα and set p := σα(x), we show ωp = ηp. Define σ : Uα → Uα×G, y 7→ (y, e) and
let π1 : Uα ×G → Uα be the projection onto the first coordinate, then σ = ϕα ◦ σα by definition of the
local section σα and π1 ◦ ϕα = π by definition of a local trivialization. Theorem A.2 now tells us

T(x,e)(Uα ×G) = dσx(TxUα) ⊕ ker d(π1)(x,e),

so the tangent space TpP to P at p = σα(x) = ϕ−1
α (x, e) is the direct sum of

d(ϕ−1
α )(x,e)(dσx(TxUα)) = d(ϕ−1

α ◦ σ)x(TxUα) = d(σα)x(TxUα)

and

d(ϕ−1
α )(x,e)(ker d(π1)(x,e)) = ker d(π1 ◦ ϕα)p = ker dπp = Vp,

the vertical tangent subspace at p. By linearity, it therefore suffices to prove ωp(v) = ηp(v) for v in these
two subspaces separately. If v ∈ Vp, this holds by property (i) in Definition 5.1 since v = Xp for some
X ∈ Lie(G) (see Lemma 3.20). If v ∈ d(σα)x(TxUα), then v = d(σα)x(w) for some w ∈ TxUα and thus

ωp(v) = (σ∗
αω)x(w) = (σ∗

αη)x(w) = ηp(v).

We conclude ωp = ηp, so also

ωpg = Adg−1 ◦ ωp ◦ d(θg−1)pg = Adg−1 ◦ ηp ◦ d(θg−1)pg = ηpg

for all g ∈ G by property (ii) in Definition 5.1. Since α and x were arbitrary and G acts transitively on
the fibers, we are done.

Combining all the previous results yields the following classification theorem.

Theorem 5.11. The assignment ω 7→ {σ∗
αω}α∈A defines a one-to-one correspondence between the con-

nections on π and the families {Aα}α∈A of smooth Lie(G)-valued forms Aα ∈ Ω1(Uα,Lie(G)) satisfying
the compatibility condition (5.2).

Proof. The given map is well-defined by Proposition 5.7, surjective by Proposition 5.9 and injective by
Proposition 5.10.
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5.4 Curvature

Associated to any connection on π is a Lie(G)-valued 2-form on P .

Definition 5.12. Let ω ∈ Ω1(P,Lie(G)) be a connection form on π. The curvature of ω is defined as
the Lie(G)-valued 2-form

Ω := dω +
1

2
[ω, ω] ∈ Ω2(P,Lie(G)).

Let ω be a connection form on π and Ω its curvature. We are mainly interested in the corresponding
local curvature forms, i.e. pullbacks of Ω along local sections of π, so let {(Uα, ϕα)}α∈A be a G-atlas for π
with associated local sections σα and transition functions ραβ as in the previous section. Set Aα := σ∗

αω
and Fα := σ∗

αΩ, then

Fα = σ∗
α dω +

1

2
σ∗
α[ω, ω] = dσ∗

αω +
1

2
[σ∗
αω, σ

∗
αω] = dAα +

1

2
[Aα,Aα] (5.3)

because pullbacks commute with exterior derivatives and products. For these local curvature forms, the
compatibility condition (5.2) on the Aα now implies the following.

Proposition 5.13. Let α, β ∈ A, then on Uα ∩ Uβ,

Fβ = Adρ−1
αβ

Fα. (5.4)

Proof. Plugging (5.2) into (5.3) gives

Fβ = dAβ +
1

2
[Aβ ,Aβ ]

= d(Adρ−1
αβ

Aα + d log(ραβ)) +
1

2
[Adρ−1

αβ
Aα + d log(ραβ),Adρ−1

αβ
Aα + d log(ραβ)]

= d(Adρ−1
αβ

Aα) + d(d log(ραβ)) +
1

2
[Adρ−1

αβ
Aα,Adρ−1

αβ
Aα]

+[Adρ−1
αβ

Aα,d log(ραβ)] +
1

2
[d log(ραβ),d log(ραβ)],

where we used that the Lie bracket is commutative for 1-forms (cf. Lemma 4.11) in the last equation.
By Lemmas 4.13, 4.21 and 4.23,

d(Adρ−1
αβ

Aα) = Adρ−1
αβ

dAα − [Adρ−1
αβ

Aα,d log(ραβ)],

d(d log(ραβ)) = −1

2
[d log(ραβ),d log(ραβ)],

[Adρ−1
αβ

Aα,Adρ−1
αβ

Aα] = Adρ−1
αβ

[Aα,Aα],

from which the claim follows.

5.5 Parallel transport

Now that we have seen what connections and curvatures on the principal bundle π are and how they can
be constructed from Lie algebra valued forms on open subsets of M , it is time to talk about their raison
d’être: path lifting and parallel transport. Let ω be a connection form on π, then we can define what it
means for a path in P to be “horizontal”.

Definition 5.14. Let γ : [0, 1] → M and γ̃ : [0, 1] → P be smooth paths in M and P , respectively. We
say γ̃ is a lift of γ if π ◦ γ̃ = γ, and a horizontal lift if in addition ωγ̃(t)(γ̃

′(t)) = 0 for all t ∈ [0, 1].
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48 Connections on principal bundles

In words, a horizontal lift of a smooth path γ in M is a smooth path in P which projects onto γ and whose
velocity at any point γ̃(t) lies in the horizontal tangent subspace kerωγ̃(t) defined by the connection ω.
The main theorem on parallel transport in principal bundles states that γ has a unique horizontal lift
with a given starting point p ∈ π−1{γ(0)}.

Theorem 5.15. Let γ : [0, 1] → M be a smooth path and choose p ∈ π−1{γ(0)}, then there exists a
unique horizontal lift γ̃ : [0, 1] → P of γ with γ̃(0) = p.

The reader is referred to [10, Proposition 17.2] for a proof, which essentially boils down to the existence
and uniqueness of solutions to ordinary first order differential equations. We give here an explicit
construction of the horizontal lift in case G is abelian and γ([0, 1]) is contained within an open subset U
of M whose inverse image under π can be trivialized.

Proposition 5.16. Suppose G is abelian. Let (U, ϕ) be a local trivialization for π, σ : U → π−1U the
associated local section of π under the correspondence of Lemma 3.9 and set A := σ∗ω ∈ Ω1(U,Lie(G)).
Let γ : [0, 1] → U be a smooth path in U and define

g : [0, 1] −→ G

t 7−→ exp

(
−
ˆ t

0

γ∗A
)
,

then γ̃ := (σ ◦ γ) · g : [0, 1] → π−1U is the unique horizontal lift of γ starting at σ(γ(0)).

Proof. The right action of G on P is fiberwise, so π(γ̃(t)) = π((σ ◦ γ)(t)) for all t ∈ [0, 1]. It follows that
π(γ̃(t)) = γ(t) since π ◦ σ = idU , which means γ̃ is a lift of γ.

To prove horizontality, let t0 ∈ [0, 1] and note that

γ̃′(t0) = d((σ ◦ γ) · g)t0

(
d

dt

∣∣∣∣
t0

)
= d((σ ◦ γ) · g(t0))t0

(
d

dt

∣∣∣∣
t0

)
+ d((σ ◦ γ)(t0) · g)t0

(
d

dt

∣∣∣∣
t0

)
by Lemma 2.19. We can plug both terms into ωγ̃(t0) and show that they sum up to zero. For the first
term, observe that (σ ◦ γ) · g(t0) = θg(t0) ◦ (σ ◦ γ) and thus

ωγ̃(t0) ◦ d((σ ◦ γ) · g(t0))t0

(
d

dt

∣∣∣∣
t0

)
= ω(σ◦γ)(t0)g(t0) ◦ d(θg(t0))(σ◦γ)(t0) ◦ d(σ ◦ γ)t0

(
d

dt

∣∣∣∣
t0

)
= (θ∗g(t0)ω)(σ◦γ)(t0) ◦ d(σ ◦ γ)t0

(
d

dt

∣∣∣∣
t0

)
= ωσ(γ(t0)) ◦ dσγ(t0)(γ

′(t0))

= (σ∗ω)γ(t0)(γ
′(t0)) = Aγ(t0)(γ

′(t0))

by property (ii) in Definition 5.1 (the adjoint representation is trivial since G is assumed to be abelian).

For the second term, (σ ◦ γ)(t0) · g = γ̃(t0) · g(t0)−1g = θ(γ̃(t0)) ◦ g(t0)−1g yields

ωγ̃(t0) ◦ d((σ ◦ γ)(t0) · g)t0

(
d

dt

∣∣∣∣
t0

)
= ωγ̃(t0) ◦ d(θ(γ̃(t0)))e ◦ d(g(t0)−1g)t0

(
d

dt

∣∣∣∣
t0

)
= ωγ̃(t0)

(
d log gt0

(
d

dt

∣∣∣∣
t0

)
γ̃(t0)

)
= d log gt0

(
d

dt

∣∣∣∣
t0

)
.

We used Equation (2.3) in the second equality and property (i) from Definition 5.1 in the third. Define

I : [0, 1] −→ Lie(G)

t 7−→ −
ˆ t

0

γ∗A,
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so that g = exp ◦ I and thus d log gt0 = d log expI(t0) ◦ dIt0 by Lemma 4.21. From Lemma 4.19, we know
d log expI(t0) is the inverse of the vector space isomorphism DI(t0) : Lie(G) → TI(t0) Lie(G). By Lemma

4.7, that means d log gt0 = D−1
I(t0)

◦ dIt0 is just the exterior derivative of I at t0 when we consider I as a

Lie(G)-valued 0-form on [0, 1], so

d log gt0

(
d

dt

∣∣∣∣
t0

)
=

d

dt

∣∣∣∣
t0

I = − d

dt

∣∣∣∣
t0

ˆ t

0

(γ∗A)
( d

dt

)
dt = −(γ∗A)t0

(
d

dt

∣∣∣∣
t0

)
= −Aγ(t0)(γ

′(t0)).

Putting everything together, we find ωγ̃(t0)(γ̃
′(t0)) = 0, as required.

As a special case, suppose γ is a loop in U , so that γ̃(1) = γ̃(0)g(1). Let Ω be the curvature of ω and
F := σ∗Ω the corresponding local curvature form on U , then Ω = dω and F = dA since G is abelian. If
Σ ⊆ M is an appropriately oriented and compact embedded 2-submanifold of U with the image of the
curve γ as its boundary, Stokes’ theorem implies

g(1) = exp

(
−
ˆ 1

0

γ∗A
)

= exp

(
−
ˆ
∂Σ

A
)

= exp

(
−
ˆ
∂Σ

dA
)

= exp

(
−
ˆ
Σ

F
)

= exp

(
−
ˆ
Σ

σ∗Ω

)
= exp

(
−
ˆ
σ(Σ)

Ω

)
.

In words, the starting point γ̃(0) and the endpoint γ̃(1) of the horizontal lift γ̃ of the loop γ in U lie in
the same fiber of the bundle map π, but they differ by a factor g(1) which is measured by the curvature
Ω of the connection. In the case G = U(1), we can interpret this as a sort of “phase shift”, a concept we
will return to in Chapter 7.
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Chapter 6
The TKNN formula

With all this mathematical machinery in place, we now turn to the derivation of the TKNN formula
for σxy. The starting point is the Kubo formula for the linear response of an observable to a weak

perturbation, which can then be applied to the current density ĵ to obtain a very general expression
for the components of the conductivity matrix σ. This expression reduces to a much simpler and more
manageable form in the independent electron approximation, i.e. when electron-electron interactions in
the system are ignored. Finally, the TKNN formula can be derived by assuming the potential energy
function has the periodicity of a lattice – which is approximately the case for electrons in a crystalline
solid – and using Bloch’s theorem to characterize the energy eigenstates. The derivations are based
largely on [13], [14] and [15] and take place in the framework of second quantization. For an overview of
the important definitions and results, we refer to Appendix B.1.

6.1 Linear response theory

Consider a system of fermionic particles described by a time-independent Hamiltonian Ĥ0 acting on the
antisymmetric Fock space F(H) of a one-particle Hilbert space H, i.e. the completion of the direct sum

of the N -particle spaces H(N)
a for all N ≥ 0. Assuming the grand canonical ensemble, the equilibrium

density matrix of the system is

ρ̂0 =
1

Z0
e−β(Ĥ0−µN̂) (6.1)

with β = 1/kBT the inverse temperature, µ the chemical potential, N̂ = dΓ(I) the particle number

operator on F(H) and Z0 = Tr e−β(Ĥ0−µN̂) the partition function. In the presence of a (weak) time-
dependent perturbation Ŵ (t), the total Hamiltonian becomes

Ĥ(t) = Ĥ0 + Ŵ (t)

and the time evolution of the new density matrix ρ̂(t) is dictated by the von Neumann equation

iℏ
∂ρ̂(t)

∂t
= [Ĥ(t), ρ̂(t)]. (6.2)

Since the Hamiltonian is split into a time-independent part and a perturbation, it is useful to switch
to the interaction picture, in which part of the time evolution of the density matrix is transferred to

the observables. We do this by setting ÂI(t) := eiĤ0t/ℏÂ(t)e−iĤ0t/ℏ for any (possibly time-dependent)
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operator Â(t) on F(H). For the interaction picture density matrix, we then find

iℏ
∂ρ̂I(t)

∂t
= iℏ

( ∂
∂t
eiĤ0t/ℏ

)
ρ̂(t)e−iĤ0t/ℏ + iℏeiĤ0t/ℏ ∂ρ̂(t)

∂t
e−iĤ0t/ℏ + iℏeiĤ0t/ℏρ̂(t)

( ∂
∂t
e−iĤ0t/ℏ

)
= −Ĥ0ρ̂I(t) + eiĤ0t/ℏ[Ĥ(t), ρ̂(t)]e−iĤ0t/ℏ + ρ̂I(t)Ĥ0

= −[Ĥ0, ρ̂I(t)] + eiĤ0t/ℏ[Ĥ0 + Ŵ (t), ρ̂(t)]e−iĤ0t/ℏ. (6.3)

Note that eiĤ0t/ℏ and Ĥ0 commute, so

eiĤ0t/ℏ[Ĥ0, ρ̂(t)]e−iĤ0t/ℏ = [Ĥ0, e
iĤ0t/ℏρ̂(t)e−iĤ0t/ℏ] = [Ĥ0, ρ̂I(t)].

Also,

eiĤ0t/ℏ[Ŵ (t), ρ̂(t)]e−iĤ0t/ℏ = ŴI(t)ρ̂I(t) − ρ̂I(t)ŴI(t) = [ŴI(t), ρ̂I(t)],

so putting everything together, we find

iℏ
∂ρ̂I(t)

∂t
= [ŴI(t), ρ̂I(t)], (6.4)

which is just the von Neumann equation in the interaction picture. Its integral form is

ρ̂I(t) = ρ̂0 +
1

iℏ

ˆ t

−∞
dt1[ŴI(t1), ρ̂I(t1)],

where we have made the assumption that Ŵ (t) goes to zero in the limit t → −∞. Iteratively plugging
this equation back into itself yields the solution

ρ̂I(t) = ρ̂0 +

∞∑
n=1

1

(iℏ)n

ˆ t

−∞
dt1

ˆ t1

−∞
dt2 · · ·

ˆ tn−1

−∞
dtn[ŴI(t1), [ŴI(t2), [. . . [ŴI(tn), ρ̂0] . . . ]]],

so to first order in the perturbation Ŵ (t),

ρ̂I(t) = ρ̂0 +
1

iℏ

ˆ t

−∞
dt1[ŴI(t1), ρ̂0]. (6.5)

Note that [Ĥ0, ρ̂0] = 0 by Equation (6.1), so Equation (6.5) implies

ρ̂(t) = e−iĤ0t/ℏρ̂I(t)e
iĤ0t/ℏ = ρ̂0 +

1

iℏ

ˆ t

−∞
dt1[e−iĤ0t/ℏŴI(t1)eiĤ0t/ℏ, ρ̂0].

Now, assume the perturbation can be written as a product Ŵ (t) = Q̂F (t) of a real-valued function of
time F and an operator Q̂ with no explicit time dependence, then

e−iĤ0t/ℏŴI(t1)eiĤ0t/ℏ = eiĤ0(t1−t)/ℏQ̂e−iĤ0(t1−t)/ℏF (t1) = Q̂I(t1 − t)F (t1)

and thus

ρ̂(t) = ρ̂0 +
1

iℏ

ˆ 0

−∞
dt1[Q̂I(t1), ρ̂0]F (t1 + t). (6.6)

With this approximate solution to (6.2), we can now compute the linear response to the perturbation Ŵ
of any observable Â. The expectation value of Â at time t is given in terms of the density operator ρ̂(t)
by

⟨Â⟩(t) = Tr ρ̂(t)Â,

so using Equation (6.6), we find

⟨Â⟩(t) = ⟨Â⟩0 +
1

iℏ

ˆ 0

−∞
dt1 Tr

(
[Q̂I(t1), ρ̂0]Â

)
F (t1 + t), (6.7)

where ⟨Â⟩0 := Tr ρ̂0Â is the expectation value of Â in the absence of any perturbation.
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6.2 The Kubo formula for conductivity

This expression for the linear response of an observable Â can now be applied to the current density ĵ,
defined as

ĵ(t) :=
q

iℏV
[dΓ(r̂(1)), Ĥ(t)] (6.8)

with q the charge of the particles in the system, V its volume and r̂(1) the position operator on H. On

the N -particle subspace H(N)
a ⊆ F(H), Equation (B.1) gives

ĵ(t)|H(N)
a

=
q

iℏV
[dΓ(N)(r̂(1)), Ĥ(N)(t)] =

q

iℏV

N∑
n=1

[r̂n, Ĥ
(N)(t)] =

1

V

N∑
n=1

qv̂n(t), (6.9)

where r̂n := dΓ
(N)
n (r̂(1)) is the position of particle n,

v̂n(t) :=
1

iℏ
[r̂n, Ĥ

(N)(t)]

its velocity and Ĥ(N)(t) the Hamiltonian on H(N)
a . Equation (6.9) is just the classical expression for

current density. In order to be able to compute the conductivity of the system, we need to know the
linear response of j in the presence of an external electric field. A field of the form E(t) = E0e

−i(ω+iδ)t

(with δ > 0 so that E(t) → 0 for t→ −∞) gives rise to a perturbation energy

Ŵ (t) = −P̂ ·E(t) = Q̂F (t),

with F (t) := e−i(ω+iδ)t and

Q̂ := −P̂ ·E0 = −
∑
ν

P̂νE0ν .

Here, P̂ := dΓ(qr̂(1)) is the polarization operator, given on H(N)
a by the classical expression

P̂|H(N)
a

=

N∑
n=1

qr̂n. (6.10)

Under the assumption ⟨̂j⟩0 = 0, Equation (6.7) now gives

⟨ĵµ⟩(t) =
1

iℏ

ˆ 0

−∞
dt1 Tr

([
−
∑
ν

P̂νI(t1)E0ν , ρ̂0
]
ĵµ

)
e−i(ω+iδ)(t1+t)

=
∑
ν

i

ℏ

ˆ 0

−∞
dt1 Tr

(
[P̂νI(t1), ρ̂0]ĵµ

)
e−i(ω+iδ)t1Eν(t),

so using j = σE, we get

σµν(ω) =
i

ℏ

ˆ 0

−∞
dtTr

(
[P̂νI(t), ρ̂0]ĵµ

)
e−i(ω+iδ)t. (6.11)

It is important to note that whereas Equation (6.7) gives only an approximation of the true expectation
value of an observable in the presence of a time-dependent perturbation, Equation (6.11) is exact, essen-
tially by definition of the conductivity. In many materials, the relation j = σE is only approximately
true; σ is just the “coefficient” of the linear term in the power series expansion of j in E, which is
precisely what we have calculated here.

Proceeding with the derivation, note that for any time-independent operator Â commuting with N̂ ,

ρ̂0ÂI(t− iℏβ) =
1

Z0
e−β(Ĥ0−µN̂)eiĤ0(t−iℏβ)/ℏÂe−iĤ0(t−iℏβ)/ℏ

=
1

Z0
eiĤ0t/ℏÂe−iĤ0t/ℏe−β(Ĥ0−µN̂) = ÂI(t)ρ̂0

53



54 The TKNN formula

and thus

ρ̂0

ˆ β

0

dλ
∂

∂t
ÂI(t− iℏλ) = ρ̂0

ˆ t−iℏβ

t

(
−dt′

iℏ

) ∂
∂t
ÂI(t

′) =
i

ℏ
ρ̂0(ÂI(t− iℏβ) − ÂI(t))

=
i

ℏ
(ÂI(t)ρ̂0 − ρ̂0ÂI(t)) =

i

ℏ
[ÂI(t), ρ̂0].

With this, Equation (6.11) becomes

σµν(ω) =

ˆ 0

−∞
dt

ˆ β

0

dλTr
(
ρ̂0
∂

∂t
P̂νI(t− iℏλ)ĵµ

)
e−i(ω+iδ)t

=

ˆ 0

−∞
dt

ˆ β

0

dλ
〈 ∂
∂t
P̂νI(t− iℏλ)ĵµ

〉
0
e−i(ω+iδ)t.

One might wonder why we went through so much effort only to introduce an extra integral as well as
a derivative into the expression for σµν . The reason is that we can relate the time derivative of the
(interaction picture) polarization operator to the current density, as follows. First note that the linearity
of dΓ (Lemma B.1) implies

Ŵ (t) = −dΓ(qr̂(1)) ·E(t) = −dΓ(qr̂(1) ·E(t)),

so by that same lemma,

[dΓ(r̂(1)), Ŵ (t)] = −[dΓ(r̂(1)),dΓ(qr̂(1) ·E(t))] = −dΓ([r̂(1), qr̂(1) ·E(t)]) = 0. (6.12)

It follows that we can replace Ĥ(t) by Ĥ0 in Equation (6.8), so

V ĵI(t) = eiĤ0t/ℏ 1

iℏ
[dΓ(qr̂(1)), Ĥ0]e−iĤ0t/ℏ

=
1

iℏ
[eiĤ0t/ℏP̂e−iĤ0t/ℏ, Ĥ0]

=
1

iℏ
[P̂I(t), Ĥ0] =

∂P̂I(t)

∂t

by a similar argument as in Equation (6.3) and thus

σµν(ω) = V

ˆ 0

−∞
dt

ˆ β

0

dλ⟨ĵνI(t− iℏλ)ĵµ⟩0e−i(ω+iδ)t

= V

ˆ ∞

0

dt

ˆ β

0

dλ⟨ĵν ĵµI(t+ iℏλ)⟩0ei(ω+iδ)t.

In the last equality, we used that

Tr(ρ̂0ĵνI(−t− iℏλ)ĵµ) = Tr(ρ̂0e
−iĤ0(t+iℏλ)/ℏĵνe

iĤ0(t+iℏλ)/ℏĵµ)

= Tr(ρ̂0ĵνe
iĤ0(t+iℏλ)/ℏĵµe

−iĤ0(t+iℏλ)/ℏ)

= Tr(ρ̂0ĵν ĵµI(t+ iℏλ)),

since ρ̂0 commutes with e−iĤ0(t+iℏλ)/ℏ and the trace is invariant under cyclic permutations. We conclude
that the DC conductivity reads

σµν = V

ˆ ∞

0

dt

ˆ β

0

dλ⟨ĵν ĵµI(t+ iℏλ)⟩0e−δt. (6.13)

This is the Kubo formula for the conductivity, first derived in 1957 by Ryogo Kubo [16]. In order to
actually be able to use it in practice, we need to make some simplifying assumptions.
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6.3 The independent electron approximation

In the independent electron approximation, electron-electron interactions in the system are ignored. This

implies that the Hamiltonian can be written as Ĥ0 = dΓ(Ĥ
(1)
0 ), where Ĥ

(1)
0 is the one-particle Hamilto-

nian operator on H (see Appendix B.1). We denote its eigenstates by |k⟩ and the corresponding energy
eigenvalues by ϵk. Substitution into Equation (6.8) yields

ĵ =
q

iℏV
[dΓ(r̂(1)),dΓ(Ĥ

(1)
0 )] =

q

iℏV
dΓ([r̂(1), Ĥ

(1)
0 ]) = dΓ(̂j

(1)
)

with

ĵ
(1)

:=
1

V
qv̂(1) and v̂(1) :=

1

iℏ
[r̂(1), Ĥ

(1)
0 ] (6.14)

the current density and velocity operators on H, respectively. We again used Equation (6.12) to replace

Ĥ(t) by Ĥ0 in the definition of ĵ and Lemma B.1 to pull dΓ out of the commutator. Lemma B.1 also
gives us

ĵI(t) = eiĤ0t/ℏĵe−iĤ0t/ℏ = dΓ(eiĤ
(1)
0 t/ℏĵ

(1)
e−iĤ

(1)
0 t/ℏ) = dΓ(̂j

(1)

I (t)),

so by Lemma B.2,

Ĥ0 =
∑
k,ℓ

⟨k|Ĥ(1)
0 |ℓ⟩ĉ∗k ĉℓ =

∑
k

ϵk ĉ
∗
k ĉk =

∑
k

ϵkn̂k,

ĵν =
∑
k,ℓ

⟨k|ĵ(1)ν |ℓ⟩ĉ∗k ĉℓ,

ĵµI(t) =
∑
k,ℓ

⟨k|ĵ(1)µI (t)|ℓ⟩ĉ∗k ĉℓ

where ĉ∗k and ĉk are the fermionic creation and annihilation operators. The corresponding occupation
number operator n̂k = ĉ∗k ĉk is known to have expectation value ⟨n̂k⟩ = f(ϵk), where

f(ϵ) :=
1

eβ(ϵ−µ) + 1

is the Fermi-Dirac distribution.

These expansions of the Hamiltonian and current density operators allow us to compute the trace in the
Kubo formula (6.13). Noting that

⟨ℓ|ĵ(1)µI (t+ iℏλ)|k⟩ = ⟨ℓ|eiĤ
(1)
0 t/ℏe−λĤ

(1)
0 ĵ(1)µ e−iĤ

(1)
0 t/ℏeλĤ

(1)
0 |k⟩

= e−iϵkt/ℏeλϵk⟨k|(eiĤ
(1)
0 t/ℏe−λĤ

(1)
0 ĵ

(1)
µ )∗|ℓ⟩

= e−iϵkt/ℏeλϵk⟨k|ĵ(1)µ e−iĤ
(1)
0 t/ℏe−λĤ

(1)
0 |ℓ⟩

= e−iϵkt/ℏeλϵkeiϵℓt/ℏe−λϵℓ⟨k|ĵ(1)µ |ℓ⟩
= ei(ϵℓ−ϵk)t/ℏe−λ(ϵℓ−ϵk)⟨ℓ|ĵ(1)µ |k⟩

for any k, ℓ, we get

⟨ĵν ĵµI(t+ iℏλ)⟩0 =
∑

k1,k2,k3,k4

⟨k1|ĵ(1)ν |k2⟩⟨k3|ĵ(1)µ |k4⟩ei(ϵk3
−ϵk4

)t/ℏe−λ(ϵk3
−ϵk4

)⟨ĉ∗k1 ĉk2 ĉ
∗
k3 ĉk4⟩0. (6.15)

Taking the Fock states |(nk)⟩ as the basis states for the trace, where nk ∈ {0, 1} is the number of particles
in state |k⟩, it becomes clear that there are only three cases in which the trace does not vanish:
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(1) Case 1 : k1 = k2 = k3 = k4 =: k. We have

ĉ∗k ĉk ĉ
∗
k ĉk = ĉ∗k(1 − ĉ∗k ĉk)ĉk = ĉ∗k ĉk − (ĉ∗k)2(ĉk)2 = n̂k

since {ĉk, ĉ∗k} = 1 by Equation (B.2), so in this case,

⟨ĉ∗k1 ĉk2 ĉ
∗
k3 ĉk4⟩0 = ⟨n̂k⟩ = f(ϵk).

(2) Case 2 : k1 = k2 =: k ̸= ℓ := k3 = k4. Heuristically, the occupation number operators n̂k and n̂ℓ
are independent as random variables, so

⟨ĉ∗k1 ĉk2 ĉ
∗
k3 ĉk4⟩0 = ⟨n̂kn̂ℓ⟩0 = ⟨n̂k⟩0⟨n̂ℓ⟩0 = f(ϵk)f(ϵℓ).

This can also be derived by simply evaluating the trace

⟨ĉ∗k ĉk ĉ∗ℓ ĉℓ⟩0 =
∑
(nk′ )

⟨(nk′)|ρ̂0n̂kn̂ℓ|(nk′)⟩ =
∑
(nk′ ):

nk=nℓ=1

⟨(nk′)|ρ̂0|(nk′)⟩.

We know ρ̂0 = e−β(Ĥ0−µN̂)/Z0 from Equation (6.1) and Ĥ0 − µN̂ =
∑
k′(ϵk′ − µ)n̂k′ , so

⟨ĉ∗k ĉk ĉ∗ℓ ĉℓ⟩0 =
1

Z0

∑
(nk′ ):

nk=nℓ=1

e−β
∑

k′ (ϵk′−µ)nk′ =
1

Z0
e−β(ϵk−µ)e−β(ϵℓ−µ)

∑
(nk′ ):
k′ ̸=k,ℓ

∏
k′ ̸=k,ℓ

e−β(ϵk′−µ)nk′

=
1

Z0
e−β(ϵk−µ)e−β(ϵℓ−µ)

∏
k′ ̸=k,ℓ

(1 + e−β(ϵk′−µ)).

Applying the same trick of swapping sum and product to Z0 gives

Z0 =
∏
k′

(1 + e−β(ϵk′−µ))

and thus

⟨ĉ∗k ĉk ĉ∗ℓ ĉℓ⟩0 =
e−β(ϵk−µ)e−β(ϵℓ−µ)

(1 + e−β(ϵk−µ))(1 + e−β(ϵℓ−µ))
= f(ϵk)f(ϵℓ).

(3) Case 3 : k1 = k4 =: k ̸= ℓ := k2 = k3. Note that

ĉ∗k ĉℓĉ
∗
ℓ ĉk = −ĉ∗k ĉℓĉk ĉ∗ℓ = ĉ∗k ĉk ĉℓĉ

∗
ℓ = ĉ∗k ĉk(1 − ĉ∗ℓ ĉℓ) = n̂k − n̂kn̂ℓ

by the anticommutation relations {ĉ∗k, ĉ∗ℓ} = 0, {ĉk, ĉℓ} = 0 and {ĉℓ, ĉ∗ℓ} = 1, see (B.2). Using case
2, we find

⟨ĉ∗k1 ĉk2 ĉ
∗
k3 ĉk4⟩0 = ⟨n̂k⟩0 − ⟨n̂kn̂ℓ⟩0 = f(ϵk)(1 − f(ϵℓ)).

Combining this with Equation (6.15) gives

⟨ĵν ĵµI(t+ iℏλ)⟩0 =
∑
k

⟨k|ĵ(1)ν |k⟩⟨k|ĵ(1)µ |k⟩f(ϵk)+∑
k ̸=ℓ

⟨k|ĵ(1)ν |k⟩⟨ℓ|ĵ(1)µ |ℓ⟩f(ϵk)f(ϵℓ)+∑
k ̸=ℓ

⟨k|ĵ(1)ν |ℓ⟩⟨ℓ|ĵ(1)µ |k⟩ei(ϵℓ−ϵk)t/ℏe−λ(ϵℓ−ϵk)f(ϵk)(1 − f(ϵℓ)).

Now, ⟨̂j⟩0 = 0 by assumption, so

0 = ⟨ĵλ⟩0 =
∑
k,ℓ

⟨k|ĵ(1)λ |ℓ⟩⟨ĉ∗k ĉℓ⟩0 =
∑
k

⟨k|ĵ(1)λ |k⟩⟨n̂k⟩0 =
∑
k

⟨k|ĵ(1)λ |k⟩f(ϵk).
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for any λ. It follows that

0 = ⟨ĵν⟩0⟨ĵµ⟩0 =

(∑
k

⟨k|ĵ(1)ν |k⟩f(ϵk)

)(∑
ℓ

⟨ℓ|ĵ(1)µ |ℓ⟩f(ϵℓ)

)
=
∑
k ̸=ℓ

⟨k|ĵ(1)ν |k⟩⟨ℓ|ĵ(1)µ |ℓ⟩f(ϵk)f(ϵℓ) +
∑
k

⟨k|ĵ(1)ν |k⟩⟨k|ĵ(1)µ |k⟩f(ϵk)2

and thus

⟨ĵν ĵµI(t+ iℏλ)⟩0 =
∑
k

⟨k|ĵ(1)ν |k⟩⟨k|ĵ(1)µ |k⟩f(ϵk)(1 − f(ϵk))+∑
k ̸=ℓ

⟨k|ĵ(1)ν |ℓ⟩⟨ℓ|ĵ(1)µ |k⟩ei(ϵℓ−ϵk)t/ℏe−λ(ϵℓ−ϵk)f(ϵk)(1 − f(ϵℓ))

=
∑
k,ℓ

⟨k|ĵ(1)ν |ℓ⟩⟨ℓ|ĵ(1)µ |k⟩ei(ϵℓ−ϵk)t/ℏe−λ(ϵℓ−ϵk)f(ϵk)(1 − f(ϵℓ)).

Substitution into Equation (6.13) yields

σµν = V
∑
k,ℓ

ˆ ∞

0

dt ei(ϵℓ−ϵk)t/ℏe−δt
ˆ β

0

dλ e−λ(ϵℓ−ϵk)f(ϵk)(1 − f(ϵℓ))⟨k|ĵ(1)ν |ℓ⟩⟨ℓ|ĵ(1)µ |k⟩,

which we can simplify further. We compute

ˆ ∞

0

dt ei(ϵℓ−ϵk)t/ℏe−δt =
ℏ

i(ϵℓ − ϵk) − ℏδ
ei(ϵℓ−ϵk)t/ℏe−δt

∣∣∣∞
0

= − iℏ
ϵk − ϵℓ − iℏδ

,

ˆ β

0

dλ eλ(ϵk−ϵℓ) =
1

ϵk − ϵℓ
eλ(ϵk−ϵℓ)

∣∣∣β
0

=
eβ(ϵk−ϵℓ) − 1

ϵk − ϵℓ
,

interpreting the second integral as β if ϵk = ϵℓ. Noting that

(eβ(ϵk−ϵℓ) − 1)f(ϵk)(1 − f(ϵℓ)) = (eβ(ϵk−ϵℓ) − 1) · 1

eβ(ϵk−µ) + 1
· eβ(ϵℓ−µ)

eβ(ϵℓ−µ) + 1

=
eβ(ϵk−µ) − eβ(ϵℓ−µ)

(eβ(ϵk−µ) + 1)(eβ(ϵℓ−µ) + 1)
= f(ϵℓ) − f(ϵk),

we arrive at the final expression

σµν = iℏV
∑
k,ℓ

f(ϵk) − f(ϵℓ)

(ϵk − ϵℓ − iℏδ)(ϵk − ϵℓ)
⟨k|ĵ(1)ν |ℓ⟩⟨ℓ|ĵ(1)µ |k⟩. (6.16)

This expression is consistent with the literature, see for instance Equation (1.2) in [5]. It may seem like
the ϵk = ϵℓ terms blow it up, but this is not the case since the λ integral is just β if ϵk = ϵℓ.

6.4 The TKNN formula

At last, we can reduce (6.16) to a form that has a geometric interpretation in the context of connections
on principal U(1)-bundles. This was first done by Thouless, Kohmoto, Nightingale and Den Nijs in
1982 [7]; we follow [15, Section 4.2]. All operators now act on the one-particle Hilbert space H, so
henceforth, any superscripts (1) will be dropped.

This is the point where we assume Ĥ0 is a Bloch Hamiltonian, i.e. that it commutes with all translations
by elements of a full rank lattice Λ in Rd, with d the dimension of the system (usually 2 or 3). That is,
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58 The TKNN formula

if we define for all R ∈ Λ an operator T̂R on H by T̂Rψ(r) := ψ(r+R), then we require [Ĥ0, T̂R] = 0 for
all R ∈ Λ. The simplest Bloch Hamiltonians are those of the form

Ĥ0 = − ℏ2

2m
∇2

r + U(r) (6.17)

for some Λ-periodic potential energy function U(r), but in general, Ĥ0 can take many different shapes.
For instance, magnetic fields can give rise to terms linear in the momentum p̂ and if spin is included in
the picture, terms involving the Pauli matrices can pop up too.

We now attach some symbols to the crystal lattice Λ. Choose a basis matrix A ∈ GL(d,R) for Λ, then

Λ = {Am : m ∈ Zd}

and Γ := A[0, 1)d is a primitive unit cell. For simplicity, assume the system is made up of finitely many
such unit cells, arranged in a d-dimensional cube. In other words, there exists L ∈ Z>0 such that the
particles are confined to

ΓL := A[0, L)d =
⋃

R∈ΛL

(R + Γ),

where
ΛL := {Am : m ∈ {0, 1, . . . , L− 1}d} ⊆ Λ.

The number of unit cells is N := |ΛL| = Ld and the system volume is V = vol(ΓL) = NV0 with
V0 := vol(Γ) = |det(A)| the determinant of Λ. The reciprocal lattice of Λ is defined as

Λ∗ := {Bn : n ∈ Zd}

with B := 2πA−T ∈ GL(d,R). Its has determinant |det(B)| = (2π)d/V0 and can also be characterized
as follows.

Lemma 6.1. Let K ∈ Rd, then K ∈ Λ∗ if and only if eiK·R = 1 for all R ∈ Λ.

Proof. First suppose K ∈ Λ∗, then K = Bn for some n ∈ Zd. Note that BTA = 2πA−1A = 2πId, so for
any R = Am ∈ Λ,

eiK·R = ei(Bn)T (Am) = ein
TBTAm = e2πin·m = 1.

For the converse, assume eiK·R = 1 holds for all R ∈ Λ, and let n ∈ Rd be such that K = Bn; we need
to show n ∈ Zd. Let 1 ≤ j ≤ d and denote by ej the j-th standard basis vector of Rd. Set R := Aej ∈ Λ,
then by a similar computation as before,

1 = eiK·R = e2πin·ej = e2πinj

and thus nj ∈ Z.

With this language of lattices and unit cells in place, the eigenstates of Ĥ0 can be characterized quite eas-
ily. Bloch’s theorem guarantees the existence of an orthonormal basis for H consisting of Ĥ0-eigenstates
|n,k⟩ of the form

⟨r|n,k⟩ =
1√
N
eik·run,k(r) (6.18)

for some Λ-periodic Bloch function un,k(r). Here, n is an integer known as the band index and the
wave vector k ∈ Rd can be chosen inside the (first) Brillouin zone, a primitive unit cell of the reciprocal
lattice Λ∗. Any unit cell would suffice, but in the literature, the term Brillouin zone is usually reserved
for the Wigner-Seitz cell of Λ∗, which is the set of points for which 0 is among the closest reciprocal
lattice vectors.1 Furthermore, if we impose periodic boundary conditions on the eigenstates so that H

1Strictly speaking, this is not a fundamental domain of Λ∗ since it is symmetric around 0. To fix this, part of the
boundary should be omitted, but this is usually ignored.
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6.4 The TKNN formula 59

can be regarded as a space of LΛ-periodic functions on Rd, it follows that k always lies in the discretized
reciprocal space

Λ∗

L
:=
{Bn

L
: n ∈ Zd

}
.

Hence, the total number of points in reciprocal space representing a physical state is N , and each such
point has volume (2π)d/(NV0) = (2π)d/V . The factor 1/

√
N in Equation (6.18) ensures that the Bloch

functions are normalized as elements of the space H′ of Λ-periodic functions with inner product

⟨u|v⟩ :=

ˆ
Γ

dr u(r)v(r). (6.19)

Now, define for all k in the Brillouin zone a new operator

Ĥ(k) := e−ik·rĤ0e
ik·r (6.20)

on this smaller space H′ and note that Ĥ(k) is Hermitian.2 By definition, then, u ∈ H′ is an eigenstate
of Ĥ(k) with eigenvalue ϵ ∈ R if and only if eik·ru ∈ H is an eigenstate of the Hamiltonian Ĥ0 with that
same eigenvalue, so diagonalizing Ĥ(k) yields precisely the Bloch functions un,k with wave vector k. One

consequence of this is that for any k, the |un,k⟩ form an orthonormal basis of H′ since Ĥ(k) is Hermitian,
a fact which we will need later. The definition of this new k-dependent Hamiltonian Ĥ(k) signifies an
important conceptual shift: instead of solving for all k in the first Brillouin zone simultaneously, we can
fix k and diagonalize Ĥ(k), regarding the wave vector as a sort of parameter of the system.

Having characterized the eigenstates of the one-particle Hamiltonian, we can now reduce Equation (6.16)

further by computing the current density operator’s matrix elements. Recall from (6.14) that ĵ = qv̂/V ,
so Equation (6.16) can be written

σµν =
iℏq2

V

∑
n,n′

∑
k,k′

f(ϵn,k) − f(ϵn′,k′)

(ϵn,k − ϵn′,k′ − iℏδ)(ϵn,k − ϵn′,k′)
⟨n,k|v̂ν |n′,k′⟩⟨n′,k′|v̂µ|n,k⟩. (6.21)

It turns out that the matrix elements of v̂ can be related to those of the k-dependent velocity operator

v̂(k) := e−ik·rv̂eik·r (6.22)

on H′, whose definition is of course inspired by (6.20). To see this, first note that for all band indices
n, n′ and wave vectors k,k′ ∈ Λ∗/L, we have

⟨n,k|v̂|n′,k′⟩ =
1

N

ˆ
ΓL

dr e−ik·run,k(r)v̂eik
′·run′,k′(r)

=
1

N

ˆ
ΓL

dr ei(k
′−k)·run,k(r)v̂(k′)un′,k′(r).

Splitting the domain of integration into N shifted copies of the unit cell Γ yields

⟨n,k|v̂|n′,k′⟩ =
1

N

∑
R∈ΛL

ˆ
R+Γ

dr ei(k
′−k)·run,k(r)v̂(k′)un′,k′(r)

=
1

N

∑
R∈ΛL

ˆ
Γ

dr ei(k
′−k)·(R+r)un,k(R + r)v̂(k′)un′,k′(R + r)

=
1

N

( ∑
R∈ΛL

ei(k
′−k)·R

)ˆ
Γ

dr ei(k
′−k)·run,k(r)v̂(k′)un′,k′(r), (6.23)

2If Ĥ0 is of the form (6.17), it is easy to see that

Ĥ(k) = −
ℏ2

2m
(∇r + ik)2 + U(r),

which is just Ĥ0 with the momentum operator p̂ = −iℏ∇r replaced by p̂+ ℏk.
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60 The TKNN formula

where we made use of the Λ-periodicity of the Bloch functions. This can be reduced further using the
following lemma.

Lemma 6.2. If k,k′ ∈ Λ∗/L, then

∑
R∈ΛL

ei(k
′−k)·R =

{
N if k′ − k ∈ Λ∗,

0 otherwise.

Proof. The case k′ − k ∈ Λ∗ holds by Lemma 6.1 (since |ΛL| = Ld = N), so assume k′ − k /∈ Λ∗ and
choose n ∈ Zd such that k′ − k = Bn/L. Writing ZL := {0, 1, . . . , L− 1}, it follows that∑

R∈ΛL

ei(k
′−k)·R =

∑
m∈Zd

L

ei(Bn)·(Am)/L =
∑

m∈Zd
L

e2πin·m/L

=

d∏
j=1

L−1∑
m=0

e2πinjm/L =

d∏
j=1

L−1∑
m=0

(
e2πinj/L

)m
,

where we used BTA = 2πA−1A = 2πId. By assumption, there exists a j such that nj is not a multiple
of L, which means e2πinj/L ̸= 1 and thus

L−1∑
m=0

(
e2πinj/L

)m
=

1 − e2πinj

1 − e2πinj/L
= 0.

Finally, if k and k′ live inside the first Brillouin zone, 0 is the only reciprocal lattice vector that they
can differ by. Combining this with Equations (6.19) and (6.23) gives

⟨n,k|v̂|n′,k′⟩ = δkk′

ˆ
Γ

dr un,k(r)v̂(k)un′,k(r)

= δkk′⟨un,k|v̂(k)|un′,k⟩,

so Equation (6.21) reduces to

σµν =
iℏq2

V

∑
n,n′

∑
k

f(ϵn,k) − f(ϵn′,k)

(ϵn,k − ϵn′,k − iℏδ)(ϵn,k − ϵn′,k)
⟨un,k|v̂ν(k)|un′,k⟩⟨un′,k|v̂µ(k)|un,k⟩. (6.24)

As explained at the end of the previous section, the n = n′ terms remain finite due to some cancellations,
but this breaks down when we take the limit δ ↓ 0. A more careful analysis which also takes disorder
and impurity concentrations into account shows that the n = n′ terms are proportional to the mean
scattering time; see for instance [15, Section 4.2]. Their sum is known as the Drude conductivity and it
blows up in the clean limit – which we are working in here – essentially because a perfect metal has zero
resistance. We therefore choose to ignore this “very stupid infinity” and focus instead on the n ̸= n′

terms, which constitute the interband conductivity. In the continuum limit L→ ∞ with δ ↓ 0, it reads

σµν =
iℏq2

(2π)d

∑
n ̸=n′

ˆ
dk

f(ϵn,k) − f(ϵn′,k)

(ϵn,k − ϵn′,k)2
⟨un,k|v̂ν(k)|un′,k⟩⟨un′,k|v̂µ(k)|un,k⟩. (6.25)

In converting the sum over k to an integral, we divided by the volume per k-point (2π)d/V .

Now, note that for any u ∈ H′ and wave vector k,

(∇kĤ(k))u = ∇k(e−ik·rĤ0e
ik·ru) = −ire−ik·rĤ0e

ik·ru+ e−ik·rĤ0ire
ik·ru

= −ie−ik·r[r̂, Ĥ0]eik·ru = ℏv̂(k)u
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6.4 The TKNN formula 61

by the product rule together with Equations (6.14) and (6.22), so

⟨un,k|v̂(k)|un′,k⟩ =
1

ℏ
⟨un,k|∇kĤ(k)|un′,k⟩

for any pair of band indices n, n′. We want to use the product rule for differentiation to transfer the
gradient to other parts of the inner product, but for that, we need the map assigning |un,k⟩ to every
point k in the first Brillouin zone to be smooth for all band indices n. However, quantum mechanical
eigenstates are defined up to phase, so we can guarantee that |un,k⟩ depends smoothly on k by choosing
an appropriate phase for every Bloch function. There is an important caveat, though: for this to be
possible, we need to assume that the bands are isolated, i.e. that ϵn,k ̸= ϵn+1,k for all n and k. If
two distinct bands cross or touch, which happens quite regularly at high symmetry points in the first
Brillouin zone, singularities can occur. We will see an example of this in Chapter 7.

The Bloch states |un,k⟩ and |un′,k⟩ have inner product δnn′ , so

0 = ∇k⟨un,k|un′,k⟩ = ⟨∇kun,k|un′,k⟩ + ⟨un,k|∇kun′,k⟩ (6.26)

and if n ̸= n′,

0 = ∇k⟨un,k|Ĥ(k)|un′,k⟩
= ⟨∇kun,k|Ĥ(k)|un′,k⟩ + ⟨un,k|∇kĤ(k)|un′,k⟩ + ⟨un,k|Ĥ(k)|∇kun′,k⟩
= (−ϵn′,k + ϵn,k)⟨un,k|∇kun′,k⟩ + ⟨un,k|∇kĤ(k)|un′,k⟩,

which means
⟨un,k|v̂(k)|un′,k⟩
ϵn,k − ϵn′,k

= −1

ℏ
⟨un,k|∇kun′,k⟩.

Substitution into Equation (6.25) now gives

σµν = − iq2

(2π)dℏ
∑
n,n′

ˆ
dk
(
f(ϵn,k) − f(ϵn′,k)

)
⟨un,k|∂νun′,k⟩⟨un′,k|∂µun,k⟩,

where ∂µ and ∂ν denote partial derivatives with respect to kµ and kν . We have also reintroduced the
n = n′ terms because they now contribute nothing. Splitting the sum into two and using Equation (6.26)
to again transfer k-derivatives to the other side of inner products at the cost of a minus sign yields

σµν =
iq2

(2π)dℏ

ˆ
dk

(∑
n,n′

f(ϵn,k)⟨∂νun,k|un′,k⟩⟨un′,k|∂µun,k⟩−

∑
n,n′

f(ϵn′,k)⟨∂µun′,k|un,k⟩⟨un,k|∂νun′,k⟩
)

=
iq2

(2π)dℏ
∑
n

ˆ
dk f(ϵn,k)

(
⟨∂νun,k|Ô(k)|∂µun,k⟩ − ⟨∂µun,k|Ô(k)|∂νun,k⟩

)
,

where we have introduced the projection operator

Ô(k) :=
∑
n

|un,k⟩⟨un,k|

on H′ for all k. Now, recall that for any fixed k, the |un,k⟩ constitute an orthonormal basis of H′. That

means Ô(k) is the identity, so

σµν = − iq2

(2π)dℏ
∑
n

ˆ
dk f(ϵn,k)

(
⟨∂µun,k|∂νun,k⟩ − ⟨∂νun,k|∂µun,k⟩

)
.
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62 The TKNN formula

For all n, define the n-th Berry connection a(n) and Berry curvature f (n) as

a(n)µ (k) := −i⟨un,k|∂µun,k⟩, (6.27)

f (n)µν (k) := ∂µa
(n)
ν (k) − ∂νa

(n)
µ (k). (6.28)

Recall that earlier on, we had to choose a phase for each Bloch function to be able to take derivatives
with respect to k; a priori, a(n) and f (n) depend on that choice of phase. By the equality of mixed
partials,

f (n)µν (k) = −i
(
⟨∂µun,k|∂νun,k⟩ + ⟨un,k|∂µ∂νun,k⟩−
⟨∂νun,k|∂µun,k⟩ − ⟨un,k|∂ν∂µun,k⟩

)
= −i

(
⟨∂µun,k|∂νun,k⟩ − ⟨∂νun,k|∂µun,k⟩

)
,

with which we finally arrive at the TKNN formula

σµν =
q2

(2π)dℏ
∑
n

ˆ
dk f(ϵn,k)f (n)µν (k). (6.29)

Taking a step back, recall that σµν by definition measures the strength of the current in the µ-direction
induced by an electric field in the ν-direction. Thus, the off-diagonal elements σµν , µ ̸= ν of the
conductivity matrix quantify the anomalous Hall effect. Equation (6.29) then states that there is a
contribution to the AHE by each (partially) occupied band n, given by the integral over the Brillouin
zone of the n-th Berry curvature f

(n)
µν weighted by the Fermi-Dirac distribution. As we will see in the

next chapter, the TKNN formula explains why the anomalous Hall effect can occur only in magnetic
materials, and it provides a fascinating geometric viewpoint.
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Chapter 7
The anomalous Hall effect

To those readers who have gotten lost in the sea of symbols and equations: do not fret, this is where the
fun begins. In this final chapter, we discuss the geometric interpretation of the anomalous Hall effect,
the puzzling ferromagnetic cousin of the ordinary Hall effect discovered in 1881 by Edwin Hall. One
could say that it has three parts. Firstly, the functions a(n) and f (n) on the Brillouin zone which make
an appearance in the TKNN formula (6.29) can be interpreted as the coordinate representations of the
local forms of a connection ω and its curvature Ω on a principal U(1)-bundle π : P → T d over the d-
dimensional torus T d. Interpreting T d as the “folded up” Brillouin zone, the total space P of the bundle
can be constructed by gluing to each wave vector k ∈ T d the U(1) of normalized Ĥ(k) eigenstates.
Second, the notion of parallel transport on P that ω gives rise to has real physical significance: the
horizontal lift to P of a smooth path γ in T d describes the actual time evolution of the quantum
system (as dictated by the Schrödinger equation) when the wave vector k (which can be interpreted as
a parameter of the system) traverses the path γ. If γ is a loop in T d, then the phase difference between
the initial and final states of the system is known as a Berry phase. Finally, in two dimensions and in
the low temperature limit, the contribution of a band to the TKNN conductivity σxy is a fundamental
constant multiplied by precisely the Berry phase acquired by the system when walking around the edge
of the occupied Brillouin zone for that particular band.

Interesting as it may be, however, this geometric interpretation still does not answer the question of why
the anomalous Hall effect is measured only in ferromagnets; for that, we need to look at symmetries.
It turns out that σxy can be nonvanishing only if time reversal symmetry is broken. This happens
spontaneously in a ferromagnet: if it is magnetized, it can retain its nonzero magnetization even after
any external fields have been turned off. Time reversal symmetry is usually broken in the spin sector, and
spin-orbit coupling is needed to somehow “transfer” this information to the momentum k. Finally, to
conclude the chapter, we discuss the Rashba model for itinerant ferromagnetism, which nicely illustrates
many of the concepts.

7.1 The bundle and its connection

The following ideas are based on [12, Section 10.6]. Consider a system of non-interacting electrons
described by a Bloch Hamiltonian Ĥ0 in a crystal lattice Λ ⊆ Rd. Recall from Equation (6.20) that we
can then define a k-dependent Hamiltonian Ĥ(k) acting on the space of Λ-periodic functions (which we
now denote by H) for all k in the first Brillouin zone, i.e. a primitive unit cell of the reciprocal lattice Λ∗

of Λ. Diagonalizing Ĥ(k) yields a collection of eigenspaces, namely those spanned by the Bloch functions
un,k with wave vector k, along with the corresponding energy eigenvalues ϵn,k.
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64 The anomalous Hall effect

As before, we have to make the crucial assumption that all these eigenspaces have (complex) dimension 1,
meaning that all energy bands in the system are isolated.1 There may still very well be degeneracy within
any band, just not between them: states with the same n but a different k can have the same energy
eigenvalue, while states with the same k but a different n cannot. Under this assumption, we end up with
a collection of functions – one for each band – from the first Brillouin zone to the set of 1-dimensional
subspaces of H, which can be canonically identified with the projective Hilbert space P(H). These
descend to maps F (n) : T d → P(H) with T d the d-dimensional torus, since points on opposite edges of
the Brillouin zone have identical spectra. Mathematically, T d = Rd/Λ∗ is the quotient of reciprocal space
by the reciprocal lattice Λ∗, and the functions BZ → P(H) factor through the quotient map q : Rd → T d,
k 7→ [k]. In some sense, the F (n) form the quantum mechanical description of the system, and they are
precisely what we need to give the TKNN formula a geometric interpretation.

The finite-dimensional case. To see why, fix n and assume for the moment that the image of F (n) is
contained in the projectivization of some finite-dimensional subspace of H. For all intents and purposes,
then, we can just assume H itself to be finite-dimensional, at least while we are looking at only the
n-th band. Recall from Section 3.3 that the natural map γn : S → P(H), z 7→ [z] with S ⊆ H the unit
sphere is then a principal U(1)-bundle, and from Section 5.2 that there is a canonical connection form
⟨j|dj⟩ ∈ Ω1(S, iR) on γn, where j : S ↪→ H is the inclusion. Hence, under the assumption that F (n) is
smooth (which is a well-defined notion now), we can do two things:

(i) pull back γn along F (n) to obtain a principal U(1)-bundle π : P := (F (n))∗S → T d and a principal
U(1)-bundle morphism ζ : P → S, which is just the projection onto the second coordinate (see
Proposition 3.13);

(ii) pull back ⟨j|dj⟩ along ζ to obtain a connection form ω := ζ∗⟨j|dj⟩ on π (see Proposition 5.3).

One way to summarize this is to say that we are “pulling back the mathematics along the physics”.

By definition of the pullback bundle, the fiber of π over [k] ∈ T d consists precisely of those points ([k], |u⟩)
with |u⟩ ∈ S an eigenstate of Ĥ(k) with eigenvalue ϵn,k. Intuitively, P is just the space we obtain by
gluing to each point [k] ∈ T d on the folded up Brillouin zone the U(1) of normalized Bloch functions
with wave vector k in band n. As for the pullback connection ω, let us try to compute its local forms
in coordinates. Let V ⊆ Rd be the Brillouin zone without its boundary and set U := q(V ) ⊆ T d, then
U is open in T d. The restriction q|V is a diffeomorphism onto U and its inverse ψ := (q|V )−1 : U → V
is a smooth chart for T d. Assume U admits a smooth local section σ : U → π−1U of π,2 then the
composition τ := j ◦ ζ ◦ σ : U → H sends [k] ∈ U to one such normalized Ĥ(k) eigenstate, which we can
denote by |un,k⟩ := τ([k]) = (τ ◦ ψ−1)(k) for all k ∈ V . The function τ is essentially what was referred
to earlier as a “smooth choice of phase” on the open Brillouin zone. The local form of ω on U can now
be written as

A := σ∗ω = ⟨(ζ ◦ σ)∗j|d((ζ ◦ σ)∗j)⟩ = ⟨τ |dτ⟩ ∈ Ω1(U, iR), (7.1)

since pullbacks commute with products and exterior derivatives (see Lemma 4.10). Similarly, pulling A
back along ψ−1 = q|V : V → U yields a smooth iR-valued 1-form

A := (ψ−1)∗A = ⟨(ψ−1)∗τ |d((ψ−1)∗τ)⟩ = ⟨τ ◦ ψ−1|d(τ ◦ ψ−1)⟩ ∈ Ω1(V, iR)

on V . Now, since τ ◦ ψ−1 is just a map from an open subset of Rd to H,

d(τ ◦ ψ−1) = ∂µ(τ ◦ ψ−1) dkµ = |∂µun,k⟩dkµ

1This assumption is not strictly necessary for the construction to work. For example, if the system is invariant under
both time-reversal and spatial inversion, each band is doubly degenerate due to the spin of the electrons. However, the
spin-up and spin-down populations can be regarded as their own separate subsystems, with isolated and non-singular
bands. We still make the assumption for the sake of clarity and ease of language.

2This assumption is actually redundant, since U is contractible and any principal bundle over a contractible base space
admits a global section.
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with k1, . . . , kd : Rd → R the coordinate projections, so

A = ⟨un,k|∂µun,k⟩dkµ. (7.2)

By Equation (6.27), the component functions Aµ : V → iR of A satisfy Aµ = a
(n)
µ i, with a(n) the Berry

connection of the n-th band. Now, let Ω := dω ∈ Ω2(P, iR) be the curvature of ω (the Lie bracket
term vanishes because U(1) is abelian) and F := σ∗Ω its corresponding local form, then F = dA since
pullbacks commute with exterior derivatives. The coordinate representation of F reads

F := (ψ−1)∗F = dA = ∂µAν dkµ ∧ dkν =
1

2
(∂µAν − ∂νAµ) dkµ ∧ dkν

where the factor 1/2 compensates for the fact that the implicit summations runs over each unordered
pair of distinct indices twice, so for the component functions Fµν : V → iR, we have Fµν = f

(n)
µν i with

f (n) the n-th Berry curvature. This is the essence of the geometric interpretation of the TKNN formula:

The Berry connection a(n) and curvature f (n) are the coordinate representations of the local
forms of a connection ω and its curvature Ω = dω on a principal U(1)-bundle π over the folded
up Brillouin zone T d.

The infinite-dimensional case. Things get a little more messy if the image of F (n) is not contained
in P(H′) for some finite-dimensional subspace H′ ⊆ H. In this case, P(H) is no longer locally Euclidean
and a more general theory of infinite-dimensional differentiable manifolds is needed to be able to talk
about smoothness of maps and bundles. What we can do, however, is assume that F (n) is at least
continuous and pull back the topological bundle γ : S → P(H) from Proposition 3.17 along F (n). This
yields a topological principal U(1)-bundle π : P → T d along with a topological principal U(1)-bundle
morphism ζ : P → S. By virtue of Theorem 3.16, P can then be given a compatible smooth structure
such that π becomes a smooth bundle.

To construct a connection on π, we now argue backwards. Let {(Uα, ϕα)}α∈A be a bundle atlas for π
with associated smooth local sections σα : Uα → π−1Uα. Again, denote by j : S ↪→ H the inclusion of
the unit sphere S ⊆ H in H and set τα := j ◦ ζ ◦ σα : Uα → H for all α ∈ A. Choose an orthonormal
basis {eℓ}ℓ∈I for H, then for all α ∈ A, there exist functions τ ℓα : Uα → C such that τα = τ ℓαeℓ. Assuming
these to be smooth, we can use the product of C-valued forms induced by complex multiplication to
define

Aℓ
α := τ ℓα d(τ ℓα) ∈ Ω1(Uα,C)

for all α ∈ A and ℓ ∈ I. Finally, assume the sum

Aα :=
∑
ℓ∈I

Aℓ
α

to be a well-defined smooth C-valued 1-form on Uα for all α ∈ A. These are our local connection form
candidates, inspired by Equation (7.1). It is easy to see that they are in fact iR-valued: for all [k] ∈ Uα
and v ∈ T[k]T

d,

(Aα)[k](v) =
∑
ℓ∈I

(d(τ ℓατ
ℓ
α)[k](v) − d(τ ℓα)[k](v)τ ℓα([k]))

= d

(∑
ℓ∈I

|τ ℓα|2
)

[k]

(v) −
∑
ℓ∈I

τ ℓα([k]) d(τ ℓα)[k](v)

= d(|τα|2)[k](v) − (Aα)[k](v) = −(Aα)[k](v)

since the exterior derivative is an antiderivation and τα by definition takes values in the unit sphere S, so
that |τα|2 is a constant map. Now, denote by ραβ the transition functions relative to the chosen bundle
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atlas and let α, β ∈ A. The topological fiber bundle morphism ζ : P → S is U(1)-equivariant and we
know σβ = σα · ραβ on Uα ∩ Uβ , so also τβ = τα · ραβ and thus τ ℓβ = τ ℓα · ραβ for all ℓ ∈ I. Again using
that d is an antiderivation gives

Aβ =
∑
ℓ∈I

τ ℓαραβ(d(τ ℓα)ραβ + τ ℓα d(ραβ))

=
∑
ℓ∈I

τ ℓα d(τ ℓα)|ραβ |2 +

(∑
ℓ∈I

|τ ℓα|2
)
ραβ d(ραβ)

= Aα + ρ−1
αβ d(ραβ) = Aα + d log(ραβ),

where Lemma 4.25 was used in the last equation. Hence, by Proposition 5.9, there exists a connection
form ω ∈ Ω1(P, iR) on π such that Aα = σ∗

αω for all α ∈ A. Note that the Aα were defined in such a way
that pushing them forward along smooth coordinate chart maps ψα : Uα → Rd gives the same results as
in the finite-dimensional case, so from this point on, the two cases can again be treated as one.

7.2 Berry’s phase

With the connection form ω on the principal U(1)-bundle π : P → T d comes a notion of parallel transport
on P , as was discussed in Section 5.5. Remarkably, the horizontal lifts of smooth paths in the folded up
Brillouin zone T d have real physical significance: they represent the actual time evolution of quantum
states as dictated by the Schrödinger equation. We follow [17, Section 3.3].

As above, let V be the open Brillouin zone and U ⊆ T d its image under the quotient map q : Rd → T d,
so that ψ := (q|V )−1 : U → V is a smooth coordinate map. Choose a smooth local section σ : U → π−1U
of π and write |un,k⟩ := ζ(σ([k])) ∈ S for all k ∈ V ; σ can be interpreted as a smooth choice of phase
on U . Again, we denote by A := σ∗ω and F := σ∗Ω the corresponding local forms of the connection
ω and its curvature Ω = dω, and by A := (ψ−1)∗A and F := (ψ−1)∗F the coordinate representations
of A and F . Now comes a bit of a conceptual leap: we have to start viewing the wave vector k as a
parameter of the system that can be tuned by turning an imaginary knob. The system is described by
the k-dependent Hamiltonian Ĥ(k), and its parameter space is T d. If γ : t 7→ k(t) is a smooth curve in
V , then its composition ψ−1 ◦ γ : t 7→ [k(t)] with ψ−1 describes a possible evolution of the parameter
through time. Suppose the system is prepared at time t = 0 in the state |ψ(0)⟩ =

∣∣un,k(0)〉, then its state
|ψ(t)⟩ at time t > 0 can be found by solving the Schrödinger equation(

iℏ∂t − Ĥ(k(t))
)
|ψ(t)⟩ = 0. (7.3)

If the evolution of the parameter k(t) is “slow enough”,3 then the adiabatic theorem tells us that to
good approximation, |ψ(t)⟩ = eiθ(t)

∣∣un,k(t)〉 for some phase function θ. That is, if the system changes
in time only very gradually, it will stay in the n-th band and barely mix with other eigenstates. If γ
were the constant map k(t) ≡ k, then the system would evolve as |ψ(t)⟩ = e−iϵn,kt/ℏ|un,k⟩ by standard

quantum mechanics: |un,k⟩ is an eigenstate of Ĥ(k) with eigenvalue ϵn,k, so all we have to do is tack on
its characteristic wiggle factor. For general γ, this motivates the ansatz |ψ(t)⟩ = c(t)eiθ(t)

∣∣un,k(t)〉 with

θ(t) := −1

ℏ

ˆ t

0

ϵn,k(t′) dt′.

Substitution into the Schrodinger equation (7.3) yields

0 = c′(t)eiθ(t)
∣∣un,k(t)〉+ iθ′(t)|ψ(t)⟩ + c(t)eiθ(t)

∣∣∂tun,k(t)〉− 1

iℏ
Ĥ(k(t))|ψ(t)⟩

= c′(t)eiθ(t)
∣∣un,k(t)〉+

1

iℏ
ϵn,k(t)|ψ(t)⟩ + c(t)eiθ(t)

∣∣∂tun,k(t)〉− 1

iℏ
ϵn,k(t)|ψ(t)⟩

=
(
c′(t)

∣∣un,k(t)〉+ c(t)
∣∣∂tun,k(t)〉)eiθ(t),

3The parameter must evolve slowly relative to ∆E/ℏ with ∆E a typical band gap size. It is possible to precisely quantify
this, see [17, Section 3.3] and [18, Section 2.1].
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which implies
c′(t) = −c(t)⟨un,k(t)|∂tun,k(t)⟩.

With the initial condition c(0) = 1, we thus find the solution

c(t) = exp

(
−
ˆ t

0

⟨un,k(t′)|∂tun,k(t′)⟩dt′
)
.

This can be plugged back into the ansatz to obtain

|ψ(t)⟩ = eiθ(t)
∣∣un,k(t)〉 exp

(
−
ˆ t

0

⟨un,k(t′)|∂µun,k(t′)⟩
dkµ

dt
(t′) dt′

)
= eiθ(t)

∣∣un,k(t)〉 exp

(
−
ˆ t

0

⟨un,k(t′)|∂µun,k(t′)⟩d(kµ ◦ γ)

)
= eiθ(t)

∣∣un,k(t)〉 exp

(
−
ˆ t

0

γ∗(⟨un,k|∂µun,k⟩dkµ)

)
= eiθ(t)

∣∣un,k(t)〉 exp

(
−
ˆ t

0

γ∗A

)
,

where we have used the expression (7.2) for A = (ψ−1)∗A. By writing |ψ(t)⟩ in this form, the connection
(pun intended) with horizontal path lifting becomes clear. Theorem 5.15 states that the smooth path
ψ−1 ◦ γ : t 7→ [k(t)] in T d has a unique lift γ̃ to P with initial point σ([k(0)]) which is horizontal with
respect to the connection ω on π. By Proposition 5.16, it is given by

(ζ ◦ γ̃)(t) = ζ(σ([k(t)])) exp

(
−
ˆ t

0

(ψ−1 ◦ γ)∗A
)

=
∣∣un,k(t)〉 exp

(
−
ˆ t

0

γ∗A

)
,

which is precisely |ψ(t)⟩ if the dynamical phase θ(t) is left out. This brings us to the following conclusion:

The connection ω on the principal U(1)-bundle π over T d describes a physical geometric phase
acquired by the system’s wave function when traversing a path in parameter space.

In this context, such a geometric phase is also known as a Berry phase. In d = 2 dimensions at low
temperatures, it allows for taking the geometric interpretation of the TKNN formula a step further. In
the limit T ↓ 0, the Fermi-Dirac distribution f(ϵ) converges to a step function which cuts off from 1 to
0 at the chemical potential ϵ = µ. The occupied states in the n-th band are thus precisely those with a
wave vector lying in the subset

Σ := {k : ϵn,k < µ} ⊆ R2

of the first Brillouin zone. By Equation (6.29) then, the contribution of the n-th band to the anomalous
Hall conductivity σxy is

σ(n)
xy =

e2

2πh

ˆ
Σ

f (n)xy (k) dkx dky = − ie2

2πh

ˆ
Σ

Fxy(k) dkx dky = − ie2

2πh

ˆ
Σ

F,

where we used that F = Fxy dkx ∧ dky since we are working in 2D. Assume that the closure Σ of Σ is
contained in the open Brillouin zone V , and that γ : [0, 1] → V is a smooth closed curve traversing the
boundary of Σ once in the positive direction, then by Stokes’ theorem,

σ(n)
xy = − ie2

2πh

ˆ
Σ

dA = − ie2

2πh

ˆ
∂Σ

A = − ie2

2πh

ˆ 1

0

γ∗A.

From the above discussion, we also know that when walking around the closed loop ψ−1 ◦γ in parameter
space, the initial and final states of the system differ by a geometric phase factor eiϕ with

ϕ = i

ˆ 1

0

(ψ−1 ◦ γ)∗A = i

ˆ 1

0

γ∗A,
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which implies

σ(n)
xy = −e

2

h
· ϕ

2π
.

In words:

In two dimensions in the low temperature limit, the contribution of the n-th band to the anoma-
lous Hall conductivity σxy is the universal constant −e2/h multiplied the Berry phase in units
of 2π acquired by the wave function when traversing the boundary of the occupied part of the
Brillouin zone in reciprocal space.

Something special happens when the entire n-th band is filled, so that

σ(n)
xy = − ie2

2πh

ˆ
V

F = − ie2

2πh

ˆ
T 2

F .

It is important to note here that F = σ∗Ω is really only defined on the dense subset U of T 2, but by
Proposition 5.13, it agrees with other local forms of Ω on intersections since U(1) is abelian. Therefore,
it can be extended to a smooth iR-valued 2-form on the whole space T 2, which by abuse of notation
is also called F . Now, by Shiing-Shen Chern’s generalization of the famous Gauss-Bonnet theorem, the
integral of iF/2π ∈ Ω2(T 2,R) over the torus T 2 is an integer, known as the Chern number, which implies
that the Hall conductivity σxy is quantized [19].

This fits into the broader theory of characteristic classes as follows. Since F is just a bunch of exterior
derivatives of local connection forms patched together, it is closed, i.e. dF = 0. As a consequence, the
R-valued 2-form iF/2π on T 2 defines a de Rham cohomology class [iF/2π] ∈ H2(T 2), which can be
shown to be independent of the connection ω. That is, if you follow the same procedure starting with
a different connection on the principal U(1)-bundle π, you end up with something which differs from
iF/2π by an exact form. We call [iF/2π] the Chern class of the bundle and under the identification of
de Rham and singular cohomology, it can be shown to have integer coefficients. Furthermore, homotopic
maps F (n) : T 2 → P(H) give isomorphic U(1)-bundles by Theorem 3.15 (at least in the finite-dimensional
case), which means that the Chern classes and numbers are invariant under small perturbations of the
Hamiltonian: the quantization of σxy is topologically protected. For details, see [9, §32], [20, Chapter C].

7.3 Symmetry considerations

One question that remains unanswered is why the anomalous Hall effect is measured only in ferromagnetic
materials. It can be answered at least to some extent by considering the symmetries of the system. In
quantum mechanics, a symmetry is represented by a (conjugate) linear operator Ŝ acting on the system’s
Hilbert space. The system is said to possess the symmetry if its Hamiltonian Ĥ commutes with Ŝ, i.e.
[Ĥ, Ŝ] = 0. For example, the operator T̂ associated to translational symmetry over some vector a shifts
any wave function ψ(r) by a, so T̂ψ(r) = ψ(r− a). For a Hamiltonian of the form

Ĥ = − ℏ2

2m
∇2 + U(r),

having translational symmetry then means U(r− a) = U(r) for all r.

For us, two symmetry operators are relevant. The first is the parity or inversion operator Î, defined in
the position basis by Îψ(r) = ψ(−r). It is linear, Hermitian (Î∗ = Î) and unitary (Î∗ = Î−1), which
implies that its only possible eigenvalues are +1 and −1. The corresponding eigenstates are precisely
the wave functions which are even and odd in r. The second is the time reversal operator T̂ , defined
for spin 1/2 particles as T̂ = iσ̂yK̂ with σ̂y the second Pauli spin matrix and K̂ the position basis

complex conjugation operator. It is conjugate linear and antiunitary (T̂ ∗ = T̂ −1),4 which means all its
eigenvalues have norm 1, and it satisfies T̂ 2 = −1; see [17, Section 2.1.6].

4For a conjugate linear operator Â on a Hilbert space H, the adjoint Â∗ is defined by ⟨Âx|y⟩ = ⟨x|Â∗y⟩ for all x, y ∈ H.
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The associated symmetries have important consequences, also explained in [17, Section 2.1.6]. If a system
has inversion symmetry, then we always can find an orthonormal basis of energy eigenstates which are all
either even or odd in r. Time reversal symmetry, on the other hand, implies that every energy eigenspace
is at least twofold degenerate. To see why, let |ψ⟩ be a normalized eigenstate of the Hamiltonian Ĥ with
eigenvalue ϵ, then also ĤT̂ |ψ⟩ = ϵ|ψ⟩ since Ĥ and T̂ commute and ϵ is real. Suppose now that this does
not imply degeneracy, i.e. that T̂ |ψ⟩ = λ|ψ⟩ for some λ ∈ C, then

|λ|2 = |λ|2⟨ψ|ψ⟩ = ⟨T̂ ψ|T̂ ψ⟩ = ⟨ψ|T̂ ∗T̂ |ψ⟩ = ⟨ψ|ψ⟩ = 1

since T̂ is antiunitary, so

−|ψ⟩ = T̂ 2|ψ⟩ = T̂ λ|ψ⟩ = λT̂ |ψ⟩ = |λ|2|ψ⟩ = |ψ⟩,

which is clearly a contradiction. It follows that |ψ⟩ and T̂ |ψ⟩ are linearly independent eigenstates of Ĥ
with the same eigenvalue E, and |ψ⟩ was arbitrary. This is known as Kramers degeneracy.

Let us now return to our system of non-interacting electrons in a crystalline solid described by a Bloch
Hamiltonian Ĥ0. Under inversion symmetry,

Îψn,k(r) =
1√
N
e−ik·run,k(−r) =

1√
N
e−ik·rÎun,k(r)

is again an eigenstate of Ĥ0 with eigenvalue ϵn,k, for any wave vector k and band index n. It has wave

vector −k, so Î|un,k⟩ = λ|un,−k⟩ for some (k-dependent) λ ∈ U(1) and ϵn,k = ϵn,−k. Similarly, under
time reversal symmetry,

T̂ ψn,k(r) =
1√
N
e−ik·rT̂ un,k(r)

implies T̂ |un,k⟩ = λ|un,−k⟩ and ϵn,k = ϵn,−k for all k and n. These two are linearly independent by
the Kramers argument, so if k and −k differ by a reciprocal lattice vector (i.e. if 2k ∈ Λ∗), we find
that all eigenspaces of Ĥ(k) are at least doubly degenerate. To reiterate, if time reversal symmetry is
present, all Ĥ0 eigenstates are degenerated, but this need not be fixed k degeneracy: the partner of any
state could lie at a different wave vector in the same band. However, for all k ∈ Λ∗/2, the degenerated
partner must have the same wave vector, which means that two bands cross or touch. These special k are
known as the time-reversal invariant momenta or TRIM for short, and there are precisely 2d of them in
d dimensions; see Figure 7.1 for an illustration. If the system is invariant under both inversion and time
reversal, then the product ÎT̂ is a conjugate linear and antiunitary operator mapping |un,k⟩ to itself, up

to phase. Thus, by the Kramers argument, the eigenspaces of Ĥ(k) are at least doubly degenerate for
all k, meaning that each band has “multiplicity” ≥ 2.

BZ BZ

Figure 7.1: Illustration of the time-reversal invariant momenta (marked with pink dots) in the Brillouin zone
of a square lattice (left) and triangular lattice (right)
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Now, recall that the components of the n-th Berry curvature are given by

f (n)µν (k) = −i
(
⟨∂µun,k|∂νun,k⟩ − ⟨∂µun,k|∂νun,k⟩

)
,

where we now explicitly write |un,k⟩ as a 2-component spinor

|un,k⟩ =

(
|u↑n,k⟩
|u↓n,k⟩

)
.

Applying the time-reversal operator T̂ gives

T̂ |un,k⟩ =

(
0 1
−1 0

)(
|u↑n,k⟩
|u↓n,k⟩

)
=

(
|u↓n,k⟩
−|u↑n,k⟩

)
,

so under time-reversal symmetry,

if (n)µν (−k) = ⟨∂µT̂ un,k|∂ν T̂ un,k⟩ − ⟨∂µT̂ un,k|∂ν T̂ un,k⟩

= ⟨∂µu↓n,k|∂νu
↓
n,k⟩ + ⟨∂µu↑n,k|∂νu

↑
n,k⟩ − ⟨∂µu↓n,k|∂νu

↓
n,k⟩ − ⟨∂µu↑n,k|∂νu

↑
n,k⟩

= −if (n)µν (k).

We also know ϵn,k = ϵn,−k for all n and k, so f(ϵn,k)f
(n)
µν (k) is odd in k and the TKNN conductivity

σxy =
e2

(2π)dℏ
∑
n

ˆ
dkf(ϵn,k)f (n)µν (k)

vanishes. In conclusion, time reversal symmetry must be broken in order for the anomalous Hall effect to
occur. This always happens in ferromagnets when the material spontaneously magnetizes. The symmetry
breaking usually happens in the spin sector, and experience has shown that spin-orbit coupling is needed
to “transfer” the information to the orbital sector and thus develop a non-zero Berry curvature. We now
examine a simple model of itinerant ferromagnetism which demonstrates this.

7.4 The Rashba model

This section is based on [21]. Consider a generic 2D k-dependent Bloch Hamiltonian of the form

Ĥ(k) =
1

2m
(p̂ + ℏk)2 + U(r) = Ĥ(0) +

ℏ2k2

2m
+

ℏk · p
m

for some potential U(r), acting on the space H of lattice periodic functions. In order to be able to
compute the Berry curvatures of the system, we essentially need to diagonalize Ĥ(k) for all k in the first
Brillouin zone. To this end, it is often useful to take Ĥ(0) with eigenstates |n,0⟩ and energies ϵn,0 as a
starting point and treat the remaining terms perturbatively. To second order,

ϵn,k ≈ ϵn,0 +
ℏ2k2

2m
+

ℏ2

m2

∑
n′ ̸=n

|⟨un,0|k · p̂|un′,0⟩|2

ϵn′,0 − ϵn,0
= ϵn,0 + γk2,

assuming the dispersion has an extremum at k = 0 so that the linear term vanishes. In the last equality,
we introduced γ := ℏ2/2m∗ with

m∗ =

(
1

m
+

2

m2k2

∑
n′ ̸=n

|⟨un,0|k · p̂|un′,0⟩|2

ϵn′,0 − ϵn,0

)−1

70



7.4 The Rashba model 71

the effective mass. Note that m∗ depends only on the direction of k and not on its magnitude. In
the two-dimensional subspace of H spanned by the unperturbed eigenstates |n,0, ↑⟩ and |n,0, ↓⟩, the
Hamiltonian now has the approximate form Ĥ(k) ≈ (ϵn,0 + γk2)I2, with I2 the 2 × 2 identity matrix.
For details about this so-called k · p method, we refer to [22, Section 2.6].

Now, in the Rashba model, we add two more terms to Ĥ(k). As we will see later, one breaks inversion
symmetry while the other breaks time reversal invariance; when put together, all spin degeneracy is
lifted. The first term is the Rashba spin-orbit coupling

V̂SO = αf(k)(σ̂ × k) · ez = αf(k)(σ̂xky − σ̂ykx) (7.4)

with α a non-zero real number, f(k) an arbitrary function and σ̂ the vector of Pauli spin matrices. To
understand where it comes from, note that an electron moving through an electric field E experiences an
effective magnetic field Beff = −(p× E)/mc2 in its rest frame, with c the speed of light. The resulting
Zeeman energy contribution V̂SO ∼ (p̂×E) · σ̂ then takes the form (7.4) if E is assumed to point in the
z-direction (see [23]).5 In the given basis,

V̂SO = αf(k)

(
0 ky + ikx

ky − ikx 0

)
= iαf(k)

(
0 k−

−k+ 0

)
,

where k± := kx ± iky. Note that k+ = k− and |k+| = |k−| = k. The second term reads

V̂EF = h0σ̂z =

(
h0 0
0 −h0

)
and it represents the coupling of spins to a uniform exchange field h0ez. Such an effective exchange field
is present in ferromagnets due to the spontaneous magnetization, but it can also be artificially realized
by introducing magnetic impurities through doping. Adding these two terms together gives the total
perturbation

Ĥ ′ = V̂SO + V̂EF =

(
h0 iαf(k)k−

−iαf(k)k+ −h0

)
.

The corrections to the energy eigenvalues as well as the associated “good” linear combinations of basis
states can be found by diagonalizing this matrix. Its eigenvalues are quickly found to be ±∆ with

∆ =
√
h20 + α2f(k)2k2,

and corresponding eigenvectors are(
iαf(k)k−
−(h0 ∓ ∆)

)
, with eigenvalue ± ∆.

These have squared norm

N2
± = |iαf(k)k−|2 + (h0 ∓ ∆)2

= α2f(k)2k2 + h20 + ∆2 ∓ 2h0∆

= 2∆2 ∓ 2h0∆

= 2∆(∆ ∓ h0),

so we obtain the following (approximate) spin-split subband eigenstates:

|n,k,±⟩ =
iαf(k)k−

N±
|n,0, ↑⟩ − h0 ∓ ∆

N±
|n,0, ↓⟩. (7.5)

5If E were radial, we would instead get the usual L̂ · Ŝ spin-orbit coupling.
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72 The anomalous Hall effect

Figure 7.2: Sketch of the dispersion and spin quantization direction for the upper (pink) and lower (blue)
branches of any band in the Rashba model, for γ ≡ 1, f(k) ≡ 1 and different values of the parameters α and
h0. If both are zero (top left), the system is invariant under both spatial inversion and time reversal and the two
subbands coincide. If only α ̸= 0 (top right), only inversion symmetry is broken and the bands cross at k = 0. If
only h0 ̸= 0 (bottom left), we get two vertically shifted copies of the unperturbed dispersion, with a gap of size
2h0. If both are nonzero (bottom right), the band crossing at k = 0 is narrowly avoided.

By computing the expected value of the spin operator Ŝ = ℏσ̂/2 in the states |n,k,±⟩, we can see how
the spin-orbit coupling and exchange field terms in the Rashba Hamiltonian give rise to (k-dependent)
spin quantization directions. A straightforward albeit rather tedious computation gives

⟨Ŝ∥⟩n,k,± = ±ℏ
2
· αf(k)k√

h20 + α2f(k)2k2
· 1

k

(
ky
−kx

)
,

⟨Ŝz⟩n,k,± = ±ℏ
2
· h0√

h20 + α2f(k)2k2
.

From this, we see that the spin-orbit coupling V̂SO aligns spins in the xy-plane and perpendicular to the
wave vector k (“coupling” spin to momentum), while the exchange field V̂EF tries to tilt the spins in the
z-direction. This is shown in Figure 7.2, together with some sketches of the dispersion.
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Observe:

• if α = 0 and h0 = 0, both spatial inversion and time reversal symmetry are present, which means
the band is doubly degenerate everywhere;

• if α ̸= 0 and h0 = 0, only inversion symmetry is broken and the spin-split subbands cross at the
time-reversal invariant momentum k = 0;

• if α = 0 and h0 ̸= 0, only time reversal symmetry is broken;

• if α ̸= 0 and h0 ̸= 0, both symmetries are broken and the bands are isolated.

With Equation (7.5), we can approximate the Berry curvatures

f (n,±)
xy = 2 Im⟨∂kx(n,k,±)|∂ky (n,k,±)⟩

= 2 Im

(
∂

∂kx

[
iαf(k)k−

N±

]
∂

∂ky

[
iαf(k)k−

N±

]
+

∂

∂kx

[
h0 ∓ ∆

N±

]
∂

∂ky

[
h0 ∓ ∆

N±

])
= 2 Im

(
− ∂

∂kx

[
iαf(k)k+

N±

]
∂

∂ky

[
iαf(k)k−

N±

]
+

∂

∂kx

[
h0 ∓ ∆

N±

]
∂

∂ky

[
h0 ∓ ∆

N±

])
of the two subbands. First, note that the second term within the parentheses is real, so

f (n,±)
xy = 2α2 Im

(
∂

∂kx

[
f(k)k+
N±

]
∂

∂ky

[
f(k)k−
N±

])
.

After some algebra, it follows that

∂

∂kx

[
f(k)k+
N±

]
=

1

N±

(
1

k
f ′(k)kx(kx + iky) + f(k)

)
− 1

N3
±
α2f(k)2kx(kx + iky)

d

dk
[f(k)k]

(
2 ∓ h0

∆

)
,

∂

∂ky

[
f(k)k−
N±

]
=

1

N±

(
1

k
f ′(k)ky(kx − iky) − if(k)

)
− 1

N3
±
α2f(k)2ky(kx − iky)

d

dk
[f(k)k]

(
2 ∓ h0

∆

)
.

The product of these two derivatives has four terms. The N−6
± term has no imaginary part since

k+k− = k2 is real, which means it will not contribute to the Berry curvature. Writing out the other
three, we eventually obtain

f (n,±)
xy = 2α2

(
− 1

N2
±
f(k)

d

dk
[f(k)k] +

1

N4
±
α2f(k)3(k2x + k2y)

d

dk
[f(k)k]

(
2 ∓ h0

∆

))
= 2α2f(k)

d

dk
[f(k)k]

1

N2
±

(
1

N2
±

(∆2 − h20)

(
2 ∓ h0

∆

)
− 1

)
.

Now,

1

N2
±

(∆2 − h20)

(
2 ∓ h0

∆

)
− 1 =

∆2 − h20
2∆(∆ ∓ h0)

· 2∆ ∓ h0
∆

− 1 =
∆ ± h0

2∆
· 2∆ ∓ h0

∆
− 1

=
2∆2 ± h0∆ − h20

2∆2
− 1 = ±h0(∆ ∓ h0)

2∆2
= ±

h0N
2
±

4∆3

and thus

f (n,±)
xy = ±

α2h0f(k) d
dk [f(k)k]

2∆3
= ∓h0

2k
· d

dk

[
1

∆

]
.

See Figure 7.3 for a plot. The Berry curvature is heavily spiked around k = 0, the point at which a band
crossing is narrowly avoided.

Now, the TKNN formula (6.29) for d = 2 says that the contribution of any subband to the Hall conduc-
tivity σxy is just the integral of its Berry curvature over the occupied part of the first Brillouin zone,
multiplied by e2/2πh. We make two further assumptions:
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Figure 7.3: Sketch of the Berry curvature f
(n,+)
xy around k = 0 of any upper branch in the Rashba model, for

γ ≡ 1, f(k) ≡ 1, h0 = 0.4 and 6 distinct values of α ranging from 0 to 2. The height of the peak increases with

α. The Berry curvature of the corresponding lower branch is just −f
(n,+)
xy .

(i) the effective mass m∗ is isotropic, so that the (approximate) dispersion is rotationally symmetric;

(ii) the Fermi energy lies between the local maximum at k = 0 of the lower branch of some band (the
n-th, say) and the local minimum at k = 0 of its upper branch, see Figure 7.2.

In particular, the second assumption implies the presence of an exchange field, since there is no gap at
the origin when h0 = 0. The contributions to σxy of completely filled upper and lower subbands cancel
each other out since F

(n′,−)
xy = −F (n′,+)

xy for any band index n′, so the only surviving term is the one
corresponding to the lower branch of band n. By rotational symmetry of the dispersion relation, the
occupied states within that subband form a circle of radius kF in the first Brillouin zone, so

σxy =
e2

2πh

¨
k<kF

F (n,−)
xy dk =

e2

2πh

ˆ 2π

0

ˆ kF

0

F (n,−)
xy k dk dθ

=
e2

h
· h0

2

[
1

∆

]kF
0

=
e2

2h

(
h0

(h20 + α2f(kF )2k2F )3/2
− 1

)
.

The geometric interpretation of the TKNN formula tells us the following: if the system is prepared in
a state |n,k,−⟩ with |k| = kF and we then let k walk counterclockwise along the circle of radius kF in
reciprocal space, a geometric Berry phase is acquired which is given precisely by the term in parentheses,
multiplied by π.
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Chapter 8
Conclusion and outlook

In this thesis, we have investigated the geometric Berry phase interpretation of the intrinsic anomalous
Hall effect. In the finite-dimensional case, the tautological U(1)-bundle and its canonical connection form
can be pulled back along the Bloch eigenspace map T d → P(H) of any band to obtain a principal U(1)-
bundle π over the folded up Brillouin zone T d, as well as a connection on π. In the infinite-dimensional
case, the theory of local connection forms is required to lift smooth iR-valued forms on open subsets of
T d to the total space of the bundle and patch them together. Either way, the connection on π gives rise
to a notion of horizontal lifting which reflects the physical time evolution of the system according to the
Schrödinger equation whenever the wave vector traverses a path in k-space. If that path is a loop, the
initial and final states differ by a geometric phase factor known as a Berry phase, and in two-dimensional
systems at low temperatures, the interband anomalous Hall conductivity can be interpreted as a sum of
such Berry phases through the TKNN formula. For this sum to be nonvanishing, a combination of time
reversal symmetry breaking and spin-orbit coupling is required, as demonstrated by the Rashba model.

There are still some loose ends on both the mathematics and physics side, which might be worth looking
into. Recall from Theorem 3.15 that principal U(1)-bundles over a smooth manifold M are classified
by homotopy classes of smooth maps M → Pn(C) for n large enough. However, there also exists an
alternative classification scheme if M is the orbit space for the smooth left action of H = Zd on X = Rd by
translation, i.e. if M = H\X = T d. In short, any principal G-bundle π : P →M can be pulled back along
the quotient map q : X →M to obtain a principalG-bundle π̃ : q∗P → X, which is necessarily trivial since
X is contractible. That means π̃ admits a global section σ̃ : X → q∗P , which we can compose with the
projection q∗P → P on the second coordinate to obtain a map σ : X → P satisfying π(σ(h+x)) = π(σ(x))
for all h ∈ H and x ∈ X. This uniquely defines a map γ : H × X → G with σ(h + x)γ(h, x) = σ(x),
which in turn implies that γ obeys the cocycle condition γ(h′ + h, x) = γ(h′, h+ x)γ(h, x). Such a map
H ×X → G satisfying the cocycle condition is known as a cocycle. Two cocycles γ and γ′ are said to
be equivalent if there exists a function f : X → G such that γ′(h, x) = f(h + x)γ(h, x)f(x)−1 for all
h ∈ H and x ∈ X, and it can be shown that choosing a different global section for π̃ or starting with
an isomorphic bundle results in an equivalent cocycle. The details have not yet been checked, but it
seems like under some smoothness conditions on the γ and f , this sets up a one-to-one correspondence
between isomorphism classes of principal G-bundles over M and equivalence classes of cocycles. This of
course begs the question how the two classifications are related: given a smooth map M → Pn(C), which
cocycle yields the same principal G-bundle isomorphism class and vice versa?

On the same note, it might be interesting to examine how much of the theory of principal G-bundles,
connections and their classification generalizes to the case of infinite-dimensional manifolds modeled on
Banach spaces, as defined in for example [11]. Our construction of the connection on the bundle π over
T d in the infinite-dimensional case (see Section 7.1) was rather messy because we could not do much
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76 Conclusion and outlook

more than simply assume that everything works. It would be great if both cases could instead be treated
on an equal footing.

As for the derivation of the TKNN formula in Chapter 6, (at least) two things deserve attention. The first
is the continuum limit L→ ∞ with which the sum over the allowed wave vectors in discretized reciprocal
space was converted to an integral over the Brillouin zone: why is it even necessary to confine the system
to a finite volume in the first place? We chose to do it because it resolves the issue of the Bloch waves not
being normalizable in an unbounded system and makes it easier to show that the off-k-diagonal matrix
elements of the velocity operator vanish (see Lemma 6.2), but it might be possible to circumvent these
problems in a different way. Second, we ignored the Drude conductivity (the n = n′ terms in (6.24))
without real justification, outside of the fact that it blows up in the clean limit. According to [24], one
of the two terms in the so-called Str̆eda formula for conductivity vanishes whenever the Fermi energy of
the system lies in a band gap. Since the classical Drude conductivity applies mainly to metals, it seems
plausible that this holds for the n = n′ terms in the Kubo formula, too. Perhaps there is a link between
the distinction of the Drude and interband conductivity in the Kubo formula and the splitting of the
Str̆eda conductivity which has not yet been explored.

Another important thing to note is that the TKNN formula only describes one contribution to the
anomalous Hall effect, an intrinsic one which depends only on the material’s band structure. As explained
in the introduction, other contributions have also been identified, the most important being the side jump
and skew-scattering mechanisms. Both rely heavily on disorder in the system. Attempts have been made
to combine all three contributions into a unified theory. For an overview of three such attempts – the
semiclassical Boltzmann approach and the Kubo and Keldysh formalisms – we refer to [5, Section IV]. In
certain temperature and longitudinal conductivity regimes, the side-jump and skew scattering dominate
(see [5]), so the intrinsic anomalous Hall effect we have discussed is only part of the story.

Finally, it is worth noting that the Rashba model calculations from Section 7.4 seem to disagree qualita-
tively with principles from the field of topological matter that the intrinsic anomalous Hall effect is a part
of. As was explained at the end of Section 7.2, the TKNN conductivity of a filled band is quantized: it
labels a “topological phase”. For a topological phase transition to occur, there must be some structural
change in the system’s band structure, such as the opening or closing of a gap. In the Rashba model,
the Berry curvature (and thus the conductivity) of a band vanishes in the absence of spin-orbit coupling.
When spin-orbit coupling is turned on, the Berry curvature starts to spike around k = 0, as shown in
Figure 7.3, which should imply that a band gap opens or closes somewhere along the way. However,
this is not visible in the dispersion shown in Figure 7.2. Perhaps this has to do with the fact that the
approximation breaks down further away from k = 0, which is also why we can’t directly see quantization
in σxy: for that, we would need to be able to integrate over the entire Brillouin zone. Either way, it
would be interesting to see if things change when higher order terms in the approximation are included,
and to compare it to other models, such as the tight binding honeycomb lattice model introduced by
Haldane in 1988 ([25], see also [17, Section 5.1.1]).
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Appendix A
Preliminaries: differential geometry

A.1 Product manifolds

In this section, we show that the tangent spaces to a product manifold split as a direct sum in a natural
way, a result which is used on numerous occasions throughout the rest of this thesis. Let M1 and M2

be smooth manifolds of dimension n1 and n2, respectively, then M := M1 ×M2 can be made into a
smooth manifold of dimension n := n1 + n2. Let p = (p1, p2) ∈ M and define injections j1 : M1 → M ,
q1 7→ (q1, p2) and j2 : M2 →M , q2 7→ (p1, q2). Also let πi : M →Mi be the projection for i ∈ {1, 2}.

Lemma A.1. The linear map d(j1 ◦ π1)p + d(j2 ◦ π2)p is the identity on TpM .

Proof. Choose coordinate neighborhoods (U1, ϕ1) and (U2, ϕ2) of p1 and p2 in M1 and M2, respectively,
then (U, ϕ) with U := U1 × U2 ⊆M and

ϕ : U = U1 × U2 −→ Rn = Rn1 × Rn2

(q1, q2) 7−→ (ϕ1(q1), ϕ2(q2))

is a chart on M containing p. This gives a basis ∂1|p, . . . , ∂n|p for TpM , where

∂i|pf :=
∂

∂xi

∣∣∣∣
ϕ(p)

(f ◦ ϕ−1)

for all i ∈ {1, . . . , n} and f ∈ C∞(M). It suffices to show that d(j1 ◦ π1)p + d(j2 ◦ π2)p sends each of
these basis vectors to itself. Let f ∈ C∞(M) and x = (x1, . . . , xn) ∈ ϕ(U) = ϕ1(U1) × ϕ2(U2), then

(f ◦ j1 ◦ π1 ◦ ϕ−1)(x) = f(ϕ−1
1 (x1, . . . , xn1), p2) = (f ◦ ϕ−1)(x1, . . . , xn1 , ϕ2(p2)),

(f ◦ j2 ◦ π2 ◦ ϕ−1)(x) = f(p1, ϕ
−1
2 (xn1+1, . . . , xn)) = (f ◦ ϕ−1)(ϕ1(p1), xn1+1, . . . , xn).

It follows that

d(j1 ◦ π1)p(∂i|p)f =
∂

∂xi

∣∣∣∣
ϕ(p)

(f ◦ j1 ◦ π1 ◦ ϕ−1) =


∂

∂xi

∣∣∣∣
ϕ(p)

(f ◦ ϕ−1) if 1 ≤ i ≤ n1

0 if n1 < i ≤ n,

d(j2 ◦ π2)p(∂i|p)f =
∂

∂xi

∣∣∣∣
ϕ(p)

(f ◦ j2 ◦ π2 ◦ ϕ−1) =


0 if 1 ≤ i ≤ n1

∂

∂xi

∣∣∣∣
ϕ(p)

(f ◦ ϕ−1) if n1 < i ≤ n

for all i ∈ {1, . . . , n}, so d(j1 ◦ π1)p(∂i|p) + d(j2 ◦ π2)p(∂i|p) = ∂i|p and we are done.
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M = M1 ×M2 M2

M1

p1

p2

p

TpM

j2(M2)

j1(M1)
T1

T2

Figure A.1: Illustration of Theorem A.2.

Using this technical lemma, we can show that TpM splits as a direct sum, and that this direct sum
decomposition has two different characterizations.

Theorem A.2. Set Ti := d(ji)pi(TpiMi) ⊆ TpM for i ∈ {1, 2}, then:

(i) TpM = T1 ⊕ T2;

(ii) T1 = ker d(π2)p and T2 = ker d(π1)p.

Proof. We prove the two claims separately.

(i) Let v ∈ T1 ∩ T2, then there exist w1 ∈ Tp1M1 and w2 ∈ Tp2M2 such that d(j1)p1(w1) = v =
d(j2)p2(w2). Applying d(π1)p on both sides gives w1 = 0 since π1 ◦ j1 = idM1

while π1 ◦ j2 is the
constant map q2 7→ p1. It follows that v = 0, so T1 ∩ T2 = {0}.

The fact that TpM = T1 + T2 holds, follows directly from Lemma A.1: for any v ∈ TpM ,

v = idTpM (v) = d(j1)p1(d(π1)p(v)) + d(j2)p2(d(π2)p(v)) ∈ T1 + T2.

(ii) We prove T2 = ker d(π1)p, the other equality follows from symmetry. Let w ∈ Tp2M2, then

d(π1)p(d(j2)p2(w)) = d(π1 ◦ j2)(w) = 0

by the same argument as above, so d(j2)p2(w) ∈ ker d(π1)p and T2 ⊆ ker d(π1)p. For the other
inclusion, let v ∈ ker d(π1)p, then

v = idTpM (v) = d(j1)p1(d(π1)p(v)) + d(j2)p2(d(π2)p(v)) = d(j2)p2(d(π2)p(v)) ∈ T2

by Lemma A.1.

A.2 Vector spaces

The tangent spaces to any finite-dimensional R-vector space V are also easily classified: they are canoni-
cally isomorphic to the space V itself. More precisely, we have the following. We refer to [8, Proposition
3.13] for a proof.
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Lemma A.3. For all x ∈ V , the map

Dx : V −→ TxV

y 7−→
(
f 7→ d

dt

∣∣∣∣
0

f(x+ ty)

)
,

is a linear isomorphism such that for any R-linear map L : V →W , the following diagram commutes:

V TxV

W TLxW

∼
Dx

L dLx

∼
DLx

Recall that the smooth structure on V is defined such that for any basis e1, . . . , en for V , the map

ϕ : V −→ Rn

xiei 7−→ (x1, . . . , xn) (A.1)

is a smooth global coordinate chart, where we used the Einstein summation convention. Now let x =
xiei ∈ V , then for all i, the isomorphism Dx of Lemma A.3 maps ei to the coordinate vector

∂

∂xi

∣∣∣∣
x

:= d(ϕ−1)ϕ(x)

(
∂

∂xi

∣∣∣∣
ϕ(x)

)
∈ TxV

associated to the chart ϕ, since

Dx(ei)f =
d

dt

∣∣∣∣
0

f(x+ tei) =
d

dt

∣∣∣∣
0

(f ◦ ϕ−1)(x1, . . . , xi + t, . . . , xn)

=
∂

∂xi

∣∣∣∣
ϕ(x)

(f ◦ ϕ−1) = d(ϕ−1)ϕ(x)

(
∂

∂xi

∣∣∣∣
ϕ(x)

)
f =

∂

∂xi

∣∣∣∣
x

f

for all f ∈ C∞(V ) by the chain rule. In other words, e1, . . . , en and ∂
/
∂x1

∣∣
x
, . . . , ∂/∂xn |x correspond

under the canonical isomorphism Dx.

If we use Lemma A.3 to identify V with two different tangent spaces, it turns out that these identifications
differ by the pushforward of a translation.

Lemma A.4. Let x, y ∈ V and define T : V → V , x 7→ x+ y, then dTx ◦Dx = Dx+y.

Proof. Let z ∈ V and f ∈ C∞(V ), then

(dTx ◦Dx)(z)f = Dx(z)(f ◦ T ) =
d

dt

∣∣∣∣
0

(f ◦ T )(x+ tz) =
d

dt

∣∣∣∣
0

f((x+ y) + tz) = Dx+y(z)f.
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Appendix B
Preliminaries: quantum mechanics

B.1 Second quantization

The state of a quantum mechanical system is described at any time t by an element of a Hilbert space
H, i.e. a complex inner product space which is complete with respect to the metric induced by the inner
product, while observables are represented by Hermitian operators on H. Second quantization provides
a description of the state space and observables of a system made up of arbitrarily many identical
particles, starting from the state space and observables of the system describing one such particle.
A mathematically rigorous discussion of this formalism requires quite a lot of machinery from linear
analysis and lies outside the scope of this thesis. At the same time, many texts discussing the subject
from a physicist’s point of view leave out almost all of the mathematics. Here, we take an intermediate
stance: the antisymmetric Fock space is defined somewhat rigorously, but in the results concerning linear
operators, all subtleties regarding for instance domains of definition and boundedness are swept under
the rug. This level of precision suffices for our derivation of the TKNN formula in Chapter 6, which is
already inherently imprecise.

Fock space. To start, let H be any complex Hilbert space, which we interpret as the state space of
the one-particle system. For all N ∈ Z≥0, it can be shown that the bilinear form on the N -fold tensor
product H⊗N = H⊗ · · · ⊗ H defined for elementary tensors by

⟨x1 ⊗ · · · ⊗ xN |y1 ⊗ · · · ⊗ yN ⟩ =

N∏
i=1

⟨xi|yi⟩

is an inner product, see for example [26, Proposition II.4.1]. The completion of H⊗N with respect to
this inner product is denoted by H(N). The inner product on H⊗N extends naturally to H(N), making
it into a Hilbert space. Any σ in the permutation group SN on N elements induces a bounded linear
operator of norm 1 on H⊗N defined on elementary tensors by

σ(x1 ⊗ · · · ⊗ xN ) = xσ(1) ⊗ · · · ⊗ xσ(N),

which then extends to a bounded linear operator of the same norm on H(N) since H(N) contains H⊗N

as a dense subspace. By [26, Problem II.23], the alternation operator

AN :=
1

N !

∑
σ∈SN

(sgnσ)σ
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on H(N) is an orthogonal projection, i.e. A2
N = AN and A∗

N = AN . Its range H(N)
a := ANH(N) is a

closed subspace of H(N) and thus a Hilbert space. Finally, we can define the fermionic Fock space of H
as the C-vector space

F(H) :=

{
(ψN )N≥0 : ψN ∈ H(N)

a ,

∞∑
N=0

∥ψN∥2 <∞
}
,

which naturally contains each H(N)
a as a subspace. As shown in [27, Proposition 6.2], it follows that

⟨(ψN )N≥0|(ϕN )N≥0⟩ =

∞∑
N=0

⟨ψN |ϕN ⟩

defines an inner product on F(H) which extends the inner products on the H(N)
a and with respect to

which F(H) is complete. With it, the vector space direct sum of the H(N)
a becomes a dense subspace of

F(H), which means we can view the fermionic Fock space as its completion:

F(H) =

∞⊕
N=0

H(N)
a .

If the particle described by H is a fermion (e.g. an electron) and we put together arbitrarily many
indistinguishable copies of it in one system, the resulting state space is precisely F(H). The elements

describing states with N particles live in H(N)
a , which is therefore known as the N -particle subspace. For

example, AN (x1⊗· · ·⊗xN ) ∈ H(N)
a is interpreted (after normalization) as the state with one x1 particle,

one x2 particle, etc. Only elements in the range of the alternation operator are allowed since fermionic
wave functions must be odd under particle interchange.

Operators on Fock space. Given a Hermitian operator Â on H corresponding to some observable,
we can construct for all N ≥ Z≥0 and 1 ≤ n ≤ N a corresponding operator

dΓ(N)
n (Â) := Î ⊗ · · · ⊗ Â⊗ · · · ⊗ Î

on H(N), where Î is the identity on H and the Â is in the n-th spot. Note that dΓ
(N)
n need not have the

range H(N)
a of AN as an invariant subspace, but

dΓ(N)(Â) :=

N∑
n=1

dΓ(N)
n (Â) = Â⊗ Î ⊗ · · · ⊗ Î + Î ⊗ Â⊗ · · · ⊗ Î + · · · + Î ⊗ Î ⊗ · · · ⊗ Â (B.1)

does, so we obtain an operator dΓ(Â) on the fermionic Fock space F(H) of H defined on the N -particle

subspace H(N)
a as dΓ(Â)|H(N)

a
= dΓ(N)(Â). Explicitly,

dΓ(Â)(AN (x1 ⊗ x2 ⊗ · · · ⊗ xN ))

= AN (Âx1 ⊗ x2 ⊗ · · · ⊗ xN + x1 ⊗ Âx2 ⊗ · · · ⊗ xN + · · · + x1 ⊗ x2 ⊗ · · · ⊗ ÂxN ) ∈ H(N)
a

for any x1, . . . , xN ∈ H. dΓ(Â) is known as the second quantization of Â, and it is also Hermitian; see
for instance [28, Section 6.3.2]. It represents the same observable as Â, under the assumption that the
system’s particles are independent. For example, if Â = Ĥ is the Hamiltonian of the one-particle system,
then dΓ(Ĥ) represents the sum of the energies that the individual particles would have on their own,
which is precisely the total energy of the system provided that there are no extra interactions. Another
important special case is Â = Î, for which we write N̂ := dΓ(Î). The second quantized operator N̂

has each N -particle subspace H(N)
a of F(H) as an eigenspace, with corresponding eigenvalue N . For

this reason, we call N̂ the particle number operator on F(H). As the next lemma shows, the second
quantization operator dΓ has a number of useful properties. For details, we refer to [29].
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Lemma B.1. The second quantization map dΓ satisfies the following properties:

(i) dΓ is C-linear;

(ii) let Â and B̂ be Hermitian operators on H, then dΓ(eiÂB̂e−iÂ) = ei dΓ(Â) dΓ(B̂)e−i dΓ(Â);

(iii) let Â and B̂ be Hermitian operators on H, then [dΓ(Â),dΓ(B̂)] = dΓ([Â, B̂]).

The number representation. Suppose now that H is an infinite-dimensional separable Hilbert space
and let {ek}k≥1 be an orthonormal basis for H. We can view the ek as the possible states for any
individual particle to be in. For any N ∈ Z≥0, the set

{ek1 ⊗ · · · ⊗ ekN : k1, . . . , kN ≥ 1}

is an orthonormal basis for H(N) by [26, Proposition II.4.2]. As a result,

{
√
N !AN (ek1 ⊗ · · · ⊗ ekN ) : 1 ≤ k1 < · · · < kN}

is an orthonormal basis for H(N)
a . Its elements have their own alternative notation in the physics liter-

ature. Let (nk)k≥1 be a sequence of elements of {0, 1} with nk = 0 for all but finitely many k and let
1 ≤ k1 < · · · < kN be the indices of the nonzero terms, we then write

|(nk)⟩ :=
√
N !AN (ek1 ⊗ · · · ⊗ ekN ).

In words, |(nk)⟩ describes the system when precisely the states k1, . . . , kN are occupied and nk represents
the occupation of state k for all k ≥ 1. This notation is therefore often referred to as the occupation
number representation, and the |(nk)⟩ are known as Fock states. For a sequence (nk)k≥1 in Z with only
finitely many nonzero terms, we understand |(nk)⟩ to be 0 whenever nk > 1 or nk < 0 for some k; no
two fermions can occupy the same state by the Pauli exclusion principle, nor can any state be occupied
by a negative number of particles.

Now, it can be shown (see for example [30, Section 1.3.3]) that there exist operators ĉk on F(H) for all
k ≥ 1 with the following properties:

• ĉℓ|(nk)⟩ = ±|(nk − δkℓ)⟩ for any (nk)k≥1;

• ĉ∗ℓ |(nk)⟩ = ±|(nk + δkℓ)⟩ for any (nk)k≥1;

• for all k, ℓ ≥ 1, we have the anticommutation1 relations

{ĉk, ĉℓ} = 0, {ĉ∗k, ĉ∗ℓ} = 0, {ĉk, ĉ∗ℓ} = δkℓ. (B.2)

ĉk and its adjoint ĉ∗k are known as the fermionic annihilation and creation operators at state k, respec-
tively, since ĉk lowers the occupation of state k by one while ĉ∗k raises it. An immediate consequence of
the above properties is that ĉ∗ℓ ĉℓ|(nk)⟩ = nℓ|(nk)⟩, which is why n̂ℓ := ĉ∗ℓ ĉℓ is known as the occupation
number operator at state ℓ.

Any second quantized operator on F(H) can be expanded in terms of the creation and annihilation
operators as follows. For a derivation, we refer to [30, Equation (1.60)]

Lemma B.2. Let Â be a Hermitian operator on H, then

dΓ(Â) =
∑
k,ℓ

⟨ek|Âeℓ⟩ĉ∗k ĉℓ.

1The anticommutator of two operators Â and B̂ is defined as the operator {Â, B̂} := ÂB̂ + B̂Â.

85





Bibliography

[1] E. H. Hall. On a New Action of the Magnet on Electric Currents. American Journal of Mathematics,
2(3):287, September 1879. ISSN 0002-9327. doi: 10.2307/2369245. URL http://dx.doi.org/10.

2307/2369245.

[2] Steven H. Simon. The Oxford Solid State Basics. Oxford University Press, 2013.

[3] E.H. Hall. On the “Rotational Coefficient” in nickel and cobalt. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, 12(74):157–172, September 1881. ISSN 1941-5990.
doi: 10.1080/14786448108627086. URL http://dx.doi.org/10.1080/14786448108627086.

[4] Emerson M. Pugh. Hall Effect and the Magnetic Properties of Some Ferromagnetic Materials. Phys.
Rev., 36:1503–1511, Nov 1930. doi: 10.1103/PhysRev.36.1503. URL https://link.aps.org/doi/

10.1103/PhysRev.36.1503.

[5] Naoto Nagaosa, Jairo Sinova, Shigeki Onoda, A. H. MacDonald, and N. P. Ong. Anomalous Hall
effect. Rev. Mod. Phys., 82:1539–1592, May 2010. doi: 10.1103/RevModPhys.82.1539. URL https:

//link.aps.org/doi/10.1103/RevModPhys.82.1539.

[6] K. v. Klitzing, G. Dorda, and M. Pepper. New Method for High-Accuracy Determination of the Fine-
Structure Constant Based on Quantized Hall Resistance. Phys. Rev. Lett., 45:494–497, Aug 1980.
doi: 10.1103/PhysRevLett.45.494. URL https://link.aps.org/doi/10.1103/PhysRevLett.45.

494.

[7] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs. Quantized Hall Conductance
in a Two-Dimensional Periodic Potential. Phys. Rev. Lett., 49:405–408, Aug 1982. doi: 10.1103/
PhysRevLett.49.405. URL https://link.aps.org/doi/10.1103/PhysRevLett.49.405.

[8] John M. Lee. Introduction to Smooth Manifolds. Springer New York, 2012. ISBN 9781441999825.
doi: 10.1007/978-1-4419-9982-5. URL http://dx.doi.org/10.1007/978-1-4419-9982-5.

[9] Loring W. Tu. Differential Geometry. Springer International Publishing, 2017. ISBN 9783319550848.
doi: 10.1007/978-3-319-55084-8. URL http://dx.doi.org/10.1007/978-3-319-55084-8.

[10] Gerd Rudolph and Matthias Schmidt. Differential Geometry and Mathematical Physics: Part I.
Manifolds, Lie Groups and Hamiltonian Systems. Springer Netherlands, 2013. ISBN 9789400753457.
doi: 10.1007/978-94-007-5345-7. URL http://dx.doi.org/10.1007/978-94-007-5345-7.

[11] Serge Lang. Differential and Riemannian Manifolds. Springer New York, 1995. ISBN 9781461241829.
doi: 10.1007/978-1-4612-4182-9. URL http://dx.doi.org/10.1007/978-1-4612-4182-9.

[12] Michiko Nakahara. Geometry, Topology and Physics. Graduate student series in physics. Adam
Hilger, Bristol [etc, 1990. ISBN 0852740948.

87

http://dx.doi.org/10.2307/2369245
http://dx.doi.org/10.2307/2369245
http://dx.doi.org/10.1080/14786448108627086
https://link.aps.org/doi/10.1103/PhysRev.36.1503
https://link.aps.org/doi/10.1103/PhysRev.36.1503
https://link.aps.org/doi/10.1103/RevModPhys.82.1539
https://link.aps.org/doi/10.1103/RevModPhys.82.1539
https://link.aps.org/doi/10.1103/PhysRevLett.45.494
https://link.aps.org/doi/10.1103/PhysRevLett.45.494
https://link.aps.org/doi/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1007/978-1-4419-9982-5
http://dx.doi.org/10.1007/978-3-319-55084-8
http://dx.doi.org/10.1007/978-94-007-5345-7
http://dx.doi.org/10.1007/978-1-4612-4182-9


88 BIBLIOGRAPHY

[13] Kristina Chadova. Electronic transport within the Kubo-Bastin Formalism, December 2017. URL
http://nbn-resolving.de/urn:nbn:de:bvb:19-216095.

[14] Jan Mrozek. Study of the effect of spin-orbit interaction in solids, 2017. URL http://hdl.handle.

net/20.500.11956/90983.

[15] Alexander B. Watson, Dionisios Margetis, and Mitchell Luskin. Mathematical aspects of the Kubo
formula for electrical conductivity with dissipation. Japan Journal of Industrial and Applied Mathe-
matics, 40(3):1765–1795, September 2023. ISSN 1868-937X. doi: 10.1007/s13160-023-00613-7. URL
http://dx.doi.org/10.1007/s13160-023-00613-7.

[16] Ryogo Kubo. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple
Applications to Magnetic and Conduction Problems. Journal of the Physical Society of Japan, 12
(6):570–586, June 1957. ISSN 1347-4073. doi: 10.1143/jpsj.12.570. URL http://dx.doi.org/10.

1143/JPSJ.12.570.

[17] David Vanderbilt. Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital
Magnetization and Topological Insulators. Cambridge University Press, 2018.
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