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Abstract

For gate-based quantum computing, the design of quantum circuits is a criti-
cal procedure for implementing specific quantum algorithms. Currently, many
quantum circuits are designed using Quantum Architecture Search, where heuris-
tic algorithms are often applied, resulting in circuits that are not human-interpretable.
To understand the underlying logic and specific patterns of the quantum cir-
cuits, we have developed a QASM-to-Qiskit transformation called the quantum
decompiler. This transformation acts as a form of reverse engineering, convert-
ing the relatively low-level representation of a quantum circuit – the QASM
file into a more understandable, high-level representation, the Python Qiskit
code. To implement this method, we combined Genetic Algorithms (GA) and
Abstract Syntax Trees (AST). In our work, we primarily focus on developing
the concept and testing this proof-of-concept on some simple, commonly used
quantum circuits (GHZ, QFT, QPE) with a limited number of qubits. At the
end of this research, the metrics used for the evaluation of the output of our
decompiler is also discussed.
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Chapter 1
Introduction

The measure of greatness in a
scientific idea is the extent to
which it stimulates thought and
opens up new lines of research.

— Paul Dirac

Circuit decompilation involves the reverse engineering of digital logic cir-
cuits to reconstruct a high-level representation that approximates the original
design, typically expressed in a hardware description language. In quantum
computing, defining decompilation is challenging. Unlike traditional comput-
ers, for gate-based quantum computing, quantum algorithms are usually im-
plemented as quantum circuits on quantum computers and compiled quantum
circuits can be represented in Quantum Assembly (QASM). Furthermore, the
design of these quantum circuits can be in Qiskit code written in Python. Natu-
rally, we can define reverse engineering from QASM to a higher-level Qiskit
code as a process of quantum decompilation. This QASM-to-Qiskit process
closely resembles inductive inference in the human brain, such as when we de-
duce the next item in a sequence by identifying underlying patterns. For quan-
tum circuits, if we know the corresponding design on a limited scale and wish
to extend it, we must identify the shared structures or recognize the patterns of
these circuits. In this thesis, the method used to represent the rules or patterns of
these circuits is by finding the underlying code that can generate them. There-
fore, this research aims to discover a program synthesis method that generates
a piece of Qiskit code as a high-level representation of the quantum circuits.
We define this as a quantum decompiler, which combines the genetic algorithm
(GA) and Abstract Syntax Tree (AST) to find patterns in quantum algorithms
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6 Introduction

within the circuit representations.

Motivation

Due to the inherent complexity in establishing the necessary mathematical frame-
works and designing circuit-level logic, only a few human-designed quantum
algorithms currently exist. Modern quantum applications often leverage vari-
ous optimization techniques, including reinforcement learning (RL) [1–4] and
genetic algorithms [5–7], for quantum architecture search. In these methods, an
agent, whether an RL agent or a genetic programming approach, designs quan-
tum circuits by evaluating the quality of solutions or by evolving solutions to fit
a desired outcome. However, these automatically generated circuits frequently
lack human interpretability, which obscures the logic driving their success and
makes them difficult to scale or adapt for new tasks.

In response to these challenges, this work develops a Qasm-to-Qiskit quan-
tum circuit decompiler. Utilizing genetic programming, we evolve the abstract
syntax tree to create a Qiskit program that can generate a comparable set of
Qasm circuits based on the size of the problem. This methodology is applied
to simple variational ansatz patterns and established quantum algorithms, aim-
ing to enhance the practical usability of quantum circuits while preserving or
improving their computational efficiency.

Research Questions

The project will explore several key questions:

1. How can we reverse-engineer quantum circuits from QASM to Python
Qiskit code? What methods would be effective?

2. How can we measure the correctness of our decompilation? How do we
define the similarity between two groups of QASM files?

3. To what extent can the decompiler generalize across different types of
quantum circuits, and what are the limitations of its applicability?

4. If the initial quantum circuits are decomposed into different forms, can
our decompiler still reconstruct the design and generate the correspond-
ing Python code?

6
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7

Problem Defination

To be more clear with the goal we want to achieve and specifically illustrate
what we are going to implement in our thesis, the problem is defined as follows:

Phase I: Practical Deliverable

Phase I involves the initial practical deliverables of the project. First, we will
select a quantum algorithm A of choice, such as, quantum Fourier transform,
quantum phase estimation. Quantum circuits for A will be generated for dif-
ferent problem sizes, ranging from 2 to 10 qubits, using a Python program
PA(n) with the Qiskit package. The resulting circuits, C2

A, C3
A, . . . , C10

A , will be
represented in either OpenQASM or unrolled Qiskit format, depending on the
method chosen (compression/ML-based methods will use QASM, while soft-
ware engineering methods will work at the Python level). This set of circuits Cn

A
serves as the data set. Given this set as input, the designed decompiler should
be able to build a program P′A(n) that closely approximates PA(n). The close-
ness metrics can be either the process distance between the synthesized uni-
taries or the difference between the generated QASMs. P′A(n) can then be used
to generate C′11

A , C′12
A , . . ., which will be compared to C11

A , C12
A , . . . to validate the

generalization capability.

Phase II: Extended Goal

Phase II addresses the extended goals of the project by exploring the limits of the
tool developed in Phase I through empirical analysis of decompiling a highly
optimized code with a lesser algorithmic structure. We will take circuits Cn

A
and translate them into the corresponding unitaries Un

A. These unitaries will
be decomposed using Qiskit into the native gate set of a quantum processing
unit (QPU), such as IBM’s, to obtain circuits C′nA. This optimization is the re-
compiler. Given this set of circuits C′nA, the decompiler will infer P′′A(n). We
expect P′′A(n) to be less explainable and more abstract than P′A(n), thus making
it harder to generalize from optimized circuits. This will be tested by checking
if C′′11

A , C′′12
A , . . . have lower similarity scores with target circuits compared to

C′11
A , C′12

A , . . ., with respect to C11
A , C12

A , . . ..
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Chapter 2
Preliminaries

Quantum mechanics is the way
nature works and it is fascinating.

Richard Feynman

In this chapter, we introduce the fundamental concepts and tools relevant
to our research, aiming to build a bridge from quantum mechanics to quantum
computing, and further to the context of our quantum decompiler.

2.1 Qubits

Classical computers use binary digits, 0 and 1, to represent logical computation.
However, as Richard Feynman famously stated, everything in the world obeys
the rules of quantum mechanics. Naturally, this leads us to consider how to rep-
resent a number or a certain state in a "quantum computer." Thus, the concept
of the qubit was born.

In the realm of quantum computation, the qubit is the fundamental unit of
quantum information, analogous to the classical bit in classical computation.
However, unlike a classical bit which can be either 0 or 1, a qubit can exist
simultaneously in a superposition of both states |0⟩ and |1⟩. This property is a
direct consequence of the principles of quantum mechanics.

A qubit is mathematically described as a quantum state in a two-dimensional
Hilbert space, where the state of the qubit can be expressed as:

|ψ⟩ = α |0⟩+ β |1⟩ , (2.1)

where α and β are complex probability amplitudes. The coefficients α and
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10 Preliminaries

β determine the probabilities of measuring the qubit in the states |0⟩ and |1⟩,
respectively. Specifically, the probability P of measuring the state |0⟩ is |α|2
and the probability of measuring the state |1⟩ is |β|2, with the normalization
condition ensuring that the total probability is one:

|α|2 + |β|2 = 1. (2.2)

The state of an n-qubit system is an arbitrary superposition over 2n basis
states with normalized complex amplitudes as coefficients, with an irrelevant
global phase. Mathematically, it is a vector in a 2n-dimensional Hilbert space
(the complex generalization of Euclidean space).

2.2 Quantum Computation and its Principles

Building on the foundational concepts of quantum information science, we ex-
plore the various models of quantum computation and their principles.

2.2.1 Schema For different Quantum Computers Models

Quantum computation is a revolutionary paradigm that leverages the princi-
ples of quantum mechanics to process information in fundamentally new ways.
Unlike classical computation, which relies on bits as the smallest units of infor-
mation, quantum computation uses qubits, which can exist in superpositions
of states and exhibit entanglement. These unique properties endow quantum
computers with capabilities far beyond those of classical systems.

Several models of quantum computers have been proposed and developed,
each with its own approach to harnessing the power of qubits. The primary
models include:

• Quantum Circuit Model: This is the most widely studied model of quan-
tum computation, often referred to as the gate model or gate-based quan-
tum computing. In this approach, quantum computations are performed
using a sequence of quantum gates, which are unitary operations that ma-
nipulate the states of qubits. Quantum algorithms, such as Shor’s algo-
rithm [8] for factoring and Grover’s algorithm [9] for search, are typically
expressed within this framework.

In this thesis, we focus on the gate-based quantum computing model and
specifically work on QASM representation of it. Some common quantum
gates are shown in Table 2.1

10
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2.2 Quantum Computation and its Principles 11

Operator Gate(s) Matrix

Pauli-X (X) X
[

0 1
1 0

]
Pauli-Y (Y) Y

[
0 −i
i 0

]
Pauli-Z (Z) Z

[
1 0
0 −1

]
Hadamard (H) H 1√

2

[
1 1
1 −1

]
Phase (S, P) S

[
1 0
0 i

]
π/8 (T) T

[
1 0
0 eiπ/4

]

Controlled Not (CNOT, CX)


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Controlled Z (CZ)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


SWAP X

X


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



Toffoli (CCNOT, CCX, TOFF)



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


Table 2.1: Commonly used quantum gates
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12 Preliminaries

• Adiabatic Quantum Computing (AQC): This model relies on the princi-
ple of adiabatic evolution [10], where the system remains in its ground
state while the Hamiltonian of the system is slowly varied from an initial
to a final form. Quantum annealers, such as those developed by D-Wave
Systems [11], operate based on this principle and are particularly suited
for solving optimization problems.

• Topological Quantum Computing: In this approach, qubits are encoded
in the global properties of topological states of matter, which are inher-
ently protected from local noise and decoherence. This model leverages
anyons, particles that exist in two-dimensional spaces and follow non-
Abelian statistics, to perform quantum computations [12]. Topological
quantum computing promises greater fault tolerance compared to other
models.

• Measurement-Based Quantum Computing (MBQC): Also known as the
one-way quantum computer, this model uses a highly entangled initial
state, known as a cluster state, to perform computations. Computation
is carried out by performing a sequence of measurements on individual
qubits, with the outcomes of these measurements determining the subse-
quent operations.

2.2.2 Physical Implementation for Quantum Computation

As of now, the most prevalent and widely used computation model for quan-
tum computers is gate-based quantum computation [13]. Specifically, in the
quantum circuit model, David DiVincenzo, a leading researcher in the field, has
outlined several critical requirements for the physical implementation of quan-
tum computation [14]. These criteria provide a framework for understanding
and developing quantum technologies. The key requirements are as follows:

• A scalable physical system with well-characterized qubits: For a quan-
tum computer to function effectively, it must have a scalable system where
qubits can be reliably created, manipulated, and measured. Qubits, which
can be represented by various physical systems such as spin states of par-
ticles or energy levels of atoms must have well-defined and controllable
properties.

• The ability to initialize the state of the qubits to a simple fiducial state,
such as |000...⟩: Before a quantum computation can begin, the qubits need
to be initialized to a known state. This ensures that the computation starts

12
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2.2 Quantum Computation and its Principles 13

from a predictable configuration, which is essential for both practical op-
erations and error correction protocols.

• Long relevant decoherence times, much longer than the gate operation
time: Decoherence, the process by which a quantum system loses its quan-
tum properties due to interactions with its environment, must be mini-
mized. The coherence time of the qubits should be significantly longer
than the time required to perform quantum gate operations, allowing quan-
tum information to be preserved throughout the computation.

• A universal set of quantum gates: To perform arbitrary quantum compu-
tations, it is necessary to have a set of quantum gates that can be com-
bined to implement any quantum algorithm. These gates must operate
with high precision and reliability to ensure the accurate manipulation of
quantum states.

• Efficient qubit-specific measurement: Finally, the ability to measure the
state of individual qubits accurately and efficiently is crucial. Measure-
ments allow the extraction of computational results and the implementa-
tion of error correction protocols, which are essential for maintaining the
integrity of quantum information.

Guided by these foundational principles, quantum computing has ventured
into varied experimental realms. Each method offers distinct benefits and chal-
lenges, and they adhere to DiVincenzo’s criteria to different degrees. As the
field has matured, researchers have explored several physical implementations
for building prototype quantum computers. These include superconducting cir-
cuits [15], trapped ions [16], photonic systems [17], and, more recently, Rydberg
atoms [18]. Such innovations have marked significant achievements, notably
achieving quantum supremacy, where a quantum computer surpasses the best
classical supercomputers at specific tasks.

Version of August 21, 2024– Created August 21, 2024 - 06:42

13



14 Preliminaries

(a) Superconducting Circuits [15]
(b) Photonic Systems [17]

(c) Trapped Ions [17]
(d) Rydberg Atoms[19]

Figure 2.1: Different physical implementations of quantum computers.

2.3 Qiskit Codes and QASM Files

Qiskit, developed by IBM, is an open-source framework specifically designed
for interacting with quantum computers at the levels of pulses, circuits, and
algorithms [20]. To illustrate Qiskit’s workflow, we present an example of a
quantum circuit designed to generate a GHZ state [21], accompanied by the
simulation results of its measurement, as depicted in Figure 2.2. A GHZ state of
N qubits is defined as:

|GHZ⟩ = 1√
2

(
|0⟩⊗N + |1⟩⊗N

)
, (2.3)

14
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2.3 Qiskit Codes and QASM Files 15

(a) GHZ Circuits with measurements

(b) Simulation Histogram

Figure 2.2: Visualizations of the GHZ state quantum circuit and simulation results.
They were here obtained by using the code provided in Appendix C,

Alongside these tools, Quantum Assembly Language (QASM), particularly
OpenQASM, serves as a hardware-agnostic platform for specifying quantum
circuits [22]. It standardizes the notation for quantum operations, measure-
ments, and control logic, enabling the sharing of circuit designs across vari-
ous quantum platforms supported by Qiskit. Essentially, OpenQASM offers a
textual representation of quantum circuits, such as the GHZ circuit described
previously:

1 OPENQASM 2.0;
2 include "qelib1.inc";
3 qreg q[3];
4 creg meas[3];
5 h q[0];
6 cx q[0],q[1];
7 cx q[0],q[2];
8 barrier q[0],q[1],q[2];
9 measure q[0] -> meas[0];

10 measure q[1] -> meas[1];
11 measure q[2] -> meas[2];

Native Gates of IBM Quantum Hardware

Native gates are the fundamental operations that a quantum processor can per-
form directly without needing further decomposition. In IBM Quantum sys-
tems, the standard native gates generally include Rz, X, and

√
X (the square

root of X), along with CNOT as a common two-qubit gate. These gates form the
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16 Preliminaries

basis of quantum circuit design on these platforms, as they directly influence
the implementation and efficiency of quantum algorithms.

In contrast to Rz and X, the Ry gate (rotation around the y-axis) is not com-
monly included as a native gate within IBM Quantum systems, as detailed in
the official IBM documentation [23]. To utilize Ry operations, they must be con-
structed through the synthesis of available native gates, predominantly Rz and
X. This synthesis process is crucial because it significantly influences the com-
plexity and fidelity of the operations executed on the quantum processor.

In the experimental section of this thesis, we focus on testing the reverse en-
gineering process involving Ry gates, both pre and post-decomposition. Quan-
tum circuits containing decomposed Ry gates may exhibit enhanced efficiency
on specific quantum platforms. However, these decomposed forms often suf-
fer from reduced readability compared to their original configurations. Despite
performing identical functions as their undecomposed counterparts, these cir-
cuits are considered to have lower "readability," complicating the identification
of the quantum algorithms they implement.

16
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Chapter 3
Background

The computing scientist’s main
challenge is not to get confused by
the complexities of his own
making.

Edsger Dijkstra

The quest to decipher and simplify the intrinsic complexities of computa-
tional systems extends from the classical to the quantum realm. While classical
computing has developed sophisticated methods like decompilation to trans-
late machine code back to higher-level programming languages, quantum com-
puting faces similar challenges. The process of decompiling quantum circuits,
particularly starting from their QASM representations to uncover underlying
patterns and the original high-level Qiskit code, is crucial for advancing our un-
derstanding of quantum algorithms and improving quantum architecture de-
signs. In this chapter, we will explore the concept of "decompilation." The first
section delves into what decompilation entails in the realm of classical com-
puting. Subsequently, the second section introduces quantum compilers and
discusses their role in quantum computing. This is followed by an examination
of various approaches to searching for optimal quantum circuit architectures.
Finally, we conclude with a discussion on similar reverse engineering efforts
applied to quantum circuits.
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18 Background

3.1 Classical Decompiler

Decompilation is a critical process in computer science and software engineer-
ing, essential for understanding and analyzing compiled code. At its core, de-
compilation involves translating machine code or low-level intermediate repre-
sentations back into higher-level programming languages that are more read-
able and understandable by humans, just as Figure 3.1 shows. This reverse en-
gineering process is invaluable for various applications, including software de-
bugging, optimization, security analysis, and intellectual property protection.
[24].

Figure 3.1: A schema of how Decompilation works

One of the primary motivations for decompilation is the need to understand
the inner workings of software systems, especially when the source code is un-
available. This situation often arises in legacy systems where the original source
code has been lost or when working with third-party software. Decompilation
allows developers and engineers to recover the higher-level structure and logic
of a program, facilitating maintenance, updates, and integration with new sys-
tems [25].

In the context of security, decompilation is a powerful tool for vulnerabil-
ity assessment and malware analysis. By decompiling malicious code, security
experts can uncover the strategies and mechanisms employed by attackers, en-
abling the development of effective countermeasures. This process also aids in
the verification of software to ensure it adheres to security standards and does
not contain hidden backdoors or unauthorized functionalities [25, 26].

The complexity of decompilation varies depending on the target architecture

18
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3.1 Classical Decompiler 19

and the optimization level of the compiled code. High-level languages with
rich syntax and semantics pose significant challenges for decompilers, requir-
ing sophisticated analysis techniques to reconstruct the original code accurately.
Advances in artificial intelligence and machine learning have further enhanced
decompilation capabilities, enabling more precise and automated recovery of
high-level code structures [27].

Several methods are employed in decompilation to tackle these challenges.
Pattern matching is a common technique where known code patterns are iden-
tified in the binary and replaced with their high-level equivalents. Data flow
analysis helps in understanding how data moves through the program, which
is essential for reconstructing the logic and control flow. Control flow analy-
sis, on the other hand, focuses on the program’s structure by identifying loops,
conditionals, and other control structures. These methods are often combined
to improve the accuracy and efficiency of the decompilation process [28].

There is a very similar work to quantum circuit decompilation, Hardware
Decompilation, which also tries to find some underlying pattern from the hard-
ware circuits, particularly through techniques like Hardware Loop Rerolling
[29], plays a critical role. This method focuses on identifying repetitive logic
within netlists and transforming these patterns back into loop structures in
higher-level Hardware Description Language (HDL) code. Figures 3.2 and 3.3
illustrate these concepts. Figure 3.2 displays the detailed structure of a hard-
ware module processed via HDL, while Figure 3.3 shows the transformation of
netlist patterns into loops, exemplifying the loop rerolling process.

Figure 3.2: A hardware module represented in HDL. [29]

A practical example of decompilation is its use in recovering lost source
code. Imagine a company that has a legacy software system critical to its oper-
ations, but the original source code has been lost due to poor archival practices.
By decompiling the binary executables, the company can recover a high-level
representation of the software, which can then be maintained and updated. This
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20 Background

Figure 3.3: Illustration of the loop rerolling process applied to netlists. [29]

recovered code, while not identical to the original source code, provides a func-
tional and understandable version that developers can work on [30].

Another use case is in malware analysis. Security researchers often encounter
malware in binary form, with no access to the source code. Decompilation al-
lows them to translate the binary back into a high-level language, revealing the
malware’s behaviour and functionalities. This process is crucial for developing
anti-malware strategies and understanding how the malware interacts with sys-
tems to exploit vulnerabilities [31]. Recently, advancements in Large Language
Models (LLM) have spurred research into their application for optimizing de-
compilers, such as the DeGPT model [32]. This innovative approach enhances
the readability and utility of decompiled code through a structured workflow
that maintains semantic integrity.

Figure 3.4: Workflow of the DeGPT model showing the integration of LLMs to optimize
decompiler outputs.[32]

20
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3.2 Quantum Compiler 21

Figure 3.4 visually encapsulates the workflow of the DeGPT system, illus-
trating how each component of the framework interacts to refine the output of
decompilers.

3.2 Quantum Compiler

Constructing a fully programmable quantum computer based on the circuit
model, a system stack composed of several layers is required. [33] One of the
structures propossed so far is shown in Figure 3.5

Figure 3.5: One type of full stack Quantum Computer Architecture introduced by [34].
Starting from the bottom, it includes the quantum chip (physical qubits), the quantum-
classical interface (ADCs, DACs, and controls), microarchitecture (timing controls and
instruction pipelines), quantum instruction set architecture (runtime operations), quan-
tum runtime unit (scheduling and error correction), compiler and programming lan-
guage (high-level abstraction), and quantum algorithm descriptions (task-specific de-
signs for the compiler). This comprehensive stack is crucial for interfacing quantum
processors with algorithmic descriptions.
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Among these layers, quantum compilers play a crucial role. They translate
high-level quantum algorithms into low-level instructions that can be executed
on quantum hardware. These compilers optimize quantum circuits to reduce
errors, improve fidelity, and ensure efficient use of quantum resources.

Quantum compilers are akin to classical compilers in their function. In
classical computing, a compiler translates high-level programming languages
(like C++ or Python) into machine code that a computer’s processor can exe-
cute. Similarly, quantum compilers convert high-level quantum algorithms into
quantum gate sequences that quantum processors can understand and execute.
The key components of quantum compilers are as follows:

• Decomposition: This involves breaking down high-level quantum op-
erations into a sequence of elementary gates that can be executed on a
quantum computer. This step ensures that complex quantum gates are
expressed in terms of a universal gate set (e.g., Clifford+T). For instance,
a SWAP gate can be decomposed into three CNOT gates.

• Optimization: Optimization in quantum compilers aims to reduce the
number of qubits (circuit width) and the number of gates (circuit depth)
used in quantum circuits. High-level optimizations might involve simpli-
fying sequences of gates, such as cancelling out consecutive inverse oper-
ations. Low-level optimizations could include minimizing the number of
required quantum operations after decomposition.

• Scheduling: Scheduling ensures that quantum operations are executed in
an order that respects the dependencies between them. This process gen-
erates a Quantum Instruction Dependency Graph (QIDG), which helps in
determining the optimal sequence of operations to minimize the overall
execution time while considering qubit connectivity and gate times.

• Mapping: Mapping involves assigning logical qubits in the quantum al-
gorithm to physical qubits on the quantum hardware. This step must ac-
count for the physical layout and connectivity of qubits to ensure efficient
execution. For example, a SWAP operation might be necessary if the phys-
ical qubits required by a CNOT gate are not directly connected.

• Fault-Tolerant Synthesis: This component focuses on creating fault-tolerant
quantum circuits that can operate reliably despite the presence of errors.

• Physical Realizations: The compilation process needs to adapt to various
physical implementations of quantum computers.

22
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The challenges faced by quantum compilers are distinct and complex due to
the fundamental principles of quantum mechanics. Quantum compilers must
address quantum-specific issues such as gate fidelity, qubit connectivity, deco-
herence, and error correction. These aspects necessitate advanced techniques to
ensure the effective execution of quantum programs on quantum hardware.

3.3 Quantum Architecture Search

Quantum Architecture search (QAS) is an active field where researchers uti-
lize heuristic algorithms to optimize quantum structures, primarily focusing
on quantum circuits and QASM representations. Techniques employed encom-
pass Bayesian Optimization with Weisfeiler-Lehman Kernels [35], metric-based
quantum circuit optimizations [36], differentiable architecture [37] methods that
integrate quantum circuit parameters, along with Reinforcement Learning (RL)
[1–4] and Evolutionary Algorithms [5–7]. These methods, while effective in cer-
tain contexts, often yield quantum architectures that lack interpretability, pre-
senting substantial challenges in generalizing these structures or finding the
high-level code that generates them. This lack of interpretability highlights the
critical need for reverse engineering of quantum circuits. By reverse compiling
these obscurely discovered quantum architectures, we aim to uncover the un-
derlying principles that guide their design, thereby enabling us to effectively
scale or adapt these complex structures.

3.4 Reverse Engineering on Quantum circuits

Decompiling logic circuits presents challenges due to the significant abstrac-
tion gap between their physical realizations and high-level descriptions. Fur-
thermore, optimizations during the synthesis process may significantly modify
the circuit’s structure, thus obscuring its original design intentions. Similarly,
these challenges are evident in the reverse engineering of quantum circuits. As
discussed in the previous section, the compilation by a quantum compiler is
inherently complex. Our research does not aim to reverse engineer all com-
ponents but focuses specifically on using QASM files as a starting point. Our
goal is to reconstruct the Qiskit Python code that originally generated these
QASM files. This process is similar to pattern recognition within quantum cir-
cuits, aiming to simplify complex quantum instructions back into their intuitive,
high-level forms. For this QASM-to-Python conversion, there is limited related
research available. One notable study that aligns closely with this topic is "Re-
verse Engineering of Classical-Quantum Programs" by Luis Jimenez-Navajas et
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al. [38]. This research introduces a reverse engineering method that examines
both quantum (Qiskit) and classical (Python) code, creating a unified abstract
model that integrates classical and quantum components.

In this project, we utilize Abstract Syntax Trees (AST) to represent python
code, providing a structured and hierarchical representation of the code that
facilitates easier manipulation and analysis. Additionally, Genetic Algorithms
are employed to optimize the synthesis process, leveraging evolutionary tech-
niques to explore a vast search space and identify near-optimal solutions. For
the AST and GA, we will introduce them in detail in Chapter 4.

The combination of these methods allows us to effectively decompile intri-
cate quantum circuits and synthesize high-level programs that are both efficient
and explainable. This approach not only aids in the refinement and adaptation
of quantum algorithms but also contributes significantly to the broader field
of quantum software engineering by promoting a deeper understanding and
more robust utilization of quantum computational resources. This process is
essential for optimizing and adapting quantum circuits to different quantum
hardware platforms, ensuring that the implementations are not only efficient
but also maintainable and scalable [39].

There are various efforts in the realm of optimizing quantum circuits and ex-
ploring reverse engineering and pattern recognition within quantum systems.
Techniques such as AlphaTensor have shown significant promise in enhancing
circuit performance by identifying and implementing optimal transformations
of quantum gates [40]. In a similar way, the application of genetic algorithms
for quantum circuit optimization explores vast search spaces to identify nearly
optimal designs [41].

Research into the automatic deobfuscation of executable code and program
synthesis for identifying quantum circuit components offers valuable insights
into simplifying complex code into more understandable elements [42, 43]. These
strategies are adaptable for quantum decompilation, enhancing the comprehen-
sibility and optimization of quantum circuits.

Moreover, quantum pattern recognition, employed in photonic circuits and
real quantum processing units, showcases the practical utility of quantum algo-
rithms in discerning intricate patterns and structures, underscoring the impor-
tance of advanced quantum program synthesis and decompilation techniques
[43, 44].

Integrating these methodologies, our project seeks to push the boundaries
of quantum decompiling and program synthesis, aiming to boost the efficiency,
scalability, and clarity of quantum computing systems.

24
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Chapter 4
Methods

The essence of a breakthrough is
not a matter of knowledge, but a
matter of thinking differently.

Albert Einstein

In this chapter, the methods related to decompiling quantum circuits are
described, including using Abstract Syntax Trees (AST) to initialize qiskit code
for quantum circuit generation and employing Genetic Algorithms to optimize
the problem.

4.1 Abstract Syntax Tree

Abstract Syntax Trees (AST) play a pivotal role in the decompilation and syn-
thesis of quantum circuits. An AST provides a tree-like representation of the
abstract syntactic structure of source code written in a programming language.
Each node in the tree denotes a construct occurring in the source code. The hier-
archical nature of ASTs allows for efficient parsing, manipulation, and analysis
of the code, making them an invaluable tool in the reverse engineering process.

4.1.1 Structure of AST

The structure of an AST consists of various types of nodes, each representing a
different element or construct in the source code. Here, we introduce the basic
concepts and methods used to create and manipulate AST nodes.

Nodes in AST:
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AST nodes are categorized based on the type of construct they represent.
Some of the common node types include:

• Module Node: The root of the AST, representing the entire source file.
For example, it includes all functions, classes, and statements in a Python
script.

• FunctionDef Node: Represents a function definition. For instance,

def add(a, b):
return a + b

• Assign Node and Constant Node: The Assign Node represents an assign-
ment operation where a variable is assigned a value, while the Constant
Node specifically denotes the immutable value in the assignment. For ex-
ample:

x = 10

In this case, ‘x = 10‘ features an ‘Assign Node‘ linking the variable ‘x‘ to a
‘Constant Node‘ representing the value ‘10‘.

• Expr Node: Represents an expression. Example:

print("Hello World")

• Call Node: Represents a function call. Example:

sum([1, 2, 3])

• BinOp Node: Represents a binary operation (e.g., addition, subtraction).
Example:

a + b

• Name Node: Represents a variable name. Example: In ‘x = 5‘, ‘x‘ is a Name
node.

26
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• For Node: Represents a for loop. Example:

for i in range(10):
print(i)

Basic Methods in AST:
The following methods are commonly used to work with ASTs:

• ast.parse(source): Parses the source code into an AST.

• ast.NodeVisitor: A base class that walks the abstract syntax tree.

• ast.NodeTransformer: A base class for modifying an abstract syntax tree.

• ast.dump(node): Returns a formatted string of the AST node.

Example: Creating and Analyzing an AST The following Python code 4.1
demonstrates how to create an AST for a simple function and analyze its struc-
ture. The example plot of AST can be seen in Figure 4.1

1 source_code = """
2 def add(a, b):
3 result = a + b
4 return result
5 """
6 # Parse the source code into an AST
7 parsed_ast = ast.parse(source_code)
8 show_ast(parsed_ast)

Listing 4.1: Creating and Analyzing an AST
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Figure 4.1: An AST for a simple function add. The figure shows the hierarchy of nodes,
with Module as the root representing the entire source code. The FunctionDef node
represents the function definition for add. The arguments node represents the function
parameters a and b. The Assign node represents the assignment statement result =
a + b, where Name nodes represent the variables, and the BinOp node represents the
binary operation +. The Return node (Load) represents the return statement return
result, where the Name node under it represents the variable result.

In this example, the AST is created by parsing a simple function using the
ast. parse method. The structure of the AST is then printed using the ast.
dump method. A function showast is also defined to traverse and print the types
of nodes in the AST. The corresponding figure illustrates the hierarchy of nodes
in the AST.

28
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4.2 Applying AST to Qiskit code 29

4.2 Applying AST to Qiskit code

By leveraging the hierarchical and modular nature of ASTs, we can efficiently
represent, analyze, and manipulate qiskit code which is used to generate quan-
tum circuits. The following sections will detail how ASTs can be utilized for
various tasks such as generating random qubit index expressions, creating loop
structures, and constructing quantum gate calls.

4.2.1 AST Representation for Qiskit

Figure 4.2: AST structure for a simple qiskit function

In the context of quantum circuit decompilation, ASTs are utilized to initialize
the qiskit code for a certain series of quantum circuits. This structured repre-
sentation captures the essential components and their relationships within the
quantum algorithm. By converting the low-level quantum gate operations into
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a high-level AST representation, we can more easily identify patterns, optimize
the circuit, and translate it back into high-level code.

Figure 4.2 represents the Abstract Syntax Tree (AST) for the function rx_c
4.2. This function initializes a quantum circuit with a given number of qubits,
applies a series of rx rotations with decreasing angles, and returns the con-
structed quantum circuit.

1 def rx_c(n):
2 qc = QuantumCircuit(n)
3 angle = pi
4 for i in range(n):
5 qc.rx(angle, i)
6 angle /= 2
7 return qc

Listing 4.2: qiskit Example for a rx_c circuit

The AST for the rx_c function is structured as follows:

• Module: The root of the AST.

• FunctionDef: Represents the function definition rx_c.

– arguments: Represents the function arguments, including n.

– Assign: Represents assignment statements such as qc = QuantumCircuit(n)
and angle = pi.

– For: Represents the for loop for i in range(n).

* Expr: Represents the expression qc.rx(angle, i).

* AugAssign: Represents the augmented assignment angle /= 2.
The AugAssign node in AST represents augmented assignment
statements in programming. These statements combine a binary
operation with an assignment operation. In simpler terms, aug-
mented assignments are shorthand operations that update the
value of a variable using operators like +=, -=, *=, /=, etc.

– Load: Represents the return statement return qc.

4.2.2 Initialization of Qiskit Code using AST

The initialization of Qiskit code using ASTs allows us to generate and manipu-
late quantum circuits programmatically. This section details the process and the
functions involved in creating Qiskit code for random quantum circuits using
ASTs.

30
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• Generating arbitrary Qubit Index Expressions: This involves creating
random expressions for qubit indices using arithmetic operations, modu-
lus, and simple variables. The function random_expr(depth, max_expr_operators,
var_depth) generates an arbitrary expression with a specified depth, num-
ber of binary operations, and additional variables. The parameters are:

– depth d: Number of loop variables.

– max_expr_operators: Number of binary operations to perform.

– var_depth: Number of additional variables.

Example Function Call and Output:

– Input: random_expr(0, 1, 2)

– Output: The expression could be a simple operation like n− n− n,
where n is a variable or index.

– Input: random_expr(1, 2, 3)

– Output: This might generate a more complex expression such as
i0− n + 3 + 2, involving loop variables (i0), constants (3, 2), and op-
erations.

• Creating Loop Structures: Loops are crucial in quantum algorithms for
performing repeated operations. The loop_index function is designed to
generate loop indices that facilitate complex loop structures. These loops
are integral in quantum circuit generation, enabling the iterative applica-
tion of quantum gates. Below is an example illustrating nested loops in a
quantum circuit:

1 for i0 in range(n):
2 for i1 in range(abs(i0 - n)):
3 for i2 in range(abs(i0 + i1 + i1 + 1)):
4 qc.crx(pi * (1 / (2 ** (i1 + n) + i1)), (n + 1)

% n)

Listing 4.3: Nested loops in quantum circuit generation

– First Loop: The index i0 iterates from 0 to n, setting the basic frame-
work for subsequent nested loops.

– Second Loop: Dependent on i0, i1 ranges dynamically, creating a
dependency that increases the complexity of operations performed
in this layer.
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– Third Loop: The deepest layer uses both i0 and i1 in determining its
range, illustrating an advanced level of dependency and complexity
in a loop structure.

This example demonstrates how nested loops are used to dynamically ad-
just quantum operations, crucial for complex quantum algorithms that re-
quire precise control over multiple qubits.

• Creating Phase Expressions for Phase-Related Gates: For quantum gates
that involve phases (such as rx, ry, rz), the random_phase_expr function
generates a arbitrary phase expression. This function creates an expres-
sion of the form:

exprphase = (π · 1
2a + b + c

) (4.1)

where a is the expression related to the number of qubits n, b is the ex-
pression of the loop index ij, 0 < j < d, and c are random numbers from a
Gaussion Distribution

X ∼ N (µ, σ2) .µ = 0, σ = 1

. The function random_phase_expr(depth:) is used to create Phase Ex-
pression, where the only input is the depth for the current loop location
since it needs to decide which symbol is included for the expression. To
have a better understanding of how it works, we can show an example in
the following:
Example Function call and Output:

– Input: random_phase_expr(2)

– Output: pi * (1 / (2 ** (n + 0 + n - 0) + (i0 + 0 + 0 - n +
0)))

• Constructing Quantum Gate Calls: The generate_gate_call function
constructs calls to quantum gates, accommodating single, multi-qubit, and
rotational gates. It uses random expressions for qubit indices and phases,
incorporating the generated loops and expressions to define where and
how the gates are applied.
The example usage of the function generate_gate_call(depth: Any,
gate: Any) is given as Table 4.1. It takes the current loop depth and a
specific gate type as inputs:

32
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Function Call Quantum Gate Operation
generate_gate_call(2, ’h’) qc.h((i1 - 0 - n) % n)
generate_gate_call(1, ’rx’) qc.rx(pi * (1 / (2 ** (i0 + 0 - n) + (i0 - n +

n + 0))), (n - 0) % n)
generate_gate_call(1, ’cx’) qc.cx((n - 0 + n) % n, (i0 + n - 0) % n)
generate_gate_call(1, ’cp’) qc.cp(-(pi * (1 / (2 ** (n - 0 - n) + (n - n +

n + 2)))), (i0 + 0) % n, (n - 0 - n) % n)
Table 4.1: Examples of generating quantum gate calls using generate_gate_call func-
tion.

• Assembling the Circuit: The generate_random_circuit_ast function brings
all these components together, generating a complete quantum circuit. It
defines a function that initializes a quantum circuit, iterates through nodes
to add gate operations, and returns the constructed circuit.*. The example
usage of function generate_random_circuit_ast(num_nodes, operations,
max_loop_depth) is listed in the following:

– Input: generate_random_circuit_ast(4, operations, 3),here operations
is a group of pre-defined quantum operations

– Output:

1 def generate_random_circuit_ast(n):
2 qc = QuantumCircuit(n)
3 for i0 in range(n):
4 for i1 in range(abs(n + n - 1)):
5 qc.u3(pi * (1 / (2 ** (n - 0 - 0 + n) + (i0 - 0

+ 0 - 0 + 1))), (i1 - 0 - n) % n)
6 qc.u3(-(pi * (1 / (2 ** (n - n - 0 + 0) + (i1 -

n - 0 - n + 1)))), (i0 + 0 + n) % n)
7 qc.u3(-(pi * (1 / (2 ** (n + 0 - n - n) + (i1 +

0 + n - 0 + 0)))), (i1 - n) % n)
8 qc.cu1(pi * (1 / (2 ** (n - 0) + (n + 0 + 0))), (n - 0)

% n)
9 qc.cu1(pi * (1 / (2 ** (n + n) + (n + n + 0))), (n - 0)

% n)
10 return qc

Listing 4.4: An example result for the function call of generate_random_circuit_ast

*detail of this part can be seen in Appendix A
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4.3 Genetic Programming

Genetic Programming (GP) is an evolutionary algorithm-based methodology
inspired by biological evolution to find approximate solutions to optimization
and search problems. In the context of program synthesis, GP evolves com-
puter programs to solve specific tasks, starting from an initial population of
random programs and iteratively applying genetic operations such as selection,
crossover, and mutation.

Recent research has demonstrated the efficacy of GP in various aspects of
program synthesis. For instance, Banzhaf et al. (1998) [45] highlighted the appli-
cation of GP in evolving algorithms that perform specific computational tasks.
Similarly, Olsson (1995) [46] explored the use of GP for automatic program in-
duction, showcasing its potential in generating and optimizing complex soft-
ware systems. More recent advancements by Forstenlechner et al. (2017) [47]
and Krawiec and O’Reilly (2014) [48] further refined these techniques, enabling
more efficient and effective program synthesis across diverse domains.

In this thesis, we utilize GP to optimize the decompilation quantum circuits
and synthesis of qiskit codes. The primary goal is to bridge the gap between
high-level quantum algorithms and their low-level circuit implementations.

4.3.1 Baseline of Genetic Programming

The Genetic Programming (GP) methodology is characterized by the following
steps:

• Initialization: Generating an initial population .

• Selection: Choosing the fittest individuals from the population based on
their performance.

• Crossover: Combining parts of two or more parent programs to produce
offspring.

• Mutation: Making random changes to a program to explore the search
space.

• Evaluation: Assessing the fitness of each candidate program based on a
predefined objective.

The following algorithm outlines the baseline genetic programming process
and an example of how GP works is shown in Figure 4.3:

34
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Algorithm 1 Baseline Genetic Programming Algorithm

1: Initialize population P with random individuals
2: for each generation g do
3: Evaluate the fitness of each program in P
4: Select the fittest individuals from P to form a mating pool
5: Apply crossover to pairs of individuals in the mating pool to create off-

spring
6: Apply mutation to the offspring with a certain probability
7: Replace the least fit individuals in P with the new offspring
8: end for
9: Return the best individual from the final population

Figure 4.3: An example of GP applying Crossover and Mutation on Binary digits [49]

4.3.2 Implementation of Genetic Decompiler

In this project, we employ Genetic Programming (GP) to evolve the Abstract
Syntax Tree (AST) model-generated quantum circuits. The fitness of each indi-
vidual in the population is evaluated based on the similarity between the gen-
erated QASM files and the target QASM files. This similarity serves as the eval-
uation criterion for the population, guiding the evolutionary process toward
optimal solutions.

The implementation of the genetic decompiler involves several key compo-
nents, including the initialization of the population, the application of genetic
operators (mutation and crossover), the selection of parents, and the evaluation
of the fitness of each candidate solution. Below is a detailed description of each
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step, followed by a pseudocode representation of the genetic decompiler algo-
rithm. The hyperparameter of the overall genetic decompiler can be seen in
Table 4.2

Table 4.2: Hyperparameters for the genetic decompiler.

Hyperparameter Default Value Description
algorithm_name N/A The name of the quantum algo-

rithm to be decompiled.
qubit_limit 20 The maximum number of qubits in

the generated quantum circuits.
generations 100 The number of generations the ge-

netic algorithm will run.
pop_size 50 The size of the population in each

generation.
max_length 10 The maximum number of opera-

tions in the generated quantum cir-
cuits.

crossover_rate 0.3 The rate at which crossover opera-
tions occur.

new_gen_rate 0.2 The rate at which new random
individuals are introduced to the
population.

mutation_rate 0.1 The rate at which mutation opera-
tions occur.

compare_method ’l_by_l’ The method used to compare the
generated QASM files with the tar-
get QASM files.

max_loop_depth 2 The maximum depth of nested
loops in the generated qiskit codes.

selection_method ’tournament’ The method used to select parents
for crossover.

operations [’h’, ’x’, ’cx’] The list of quantum gate opera-
tions that can be used in the cir-
cuits.

Initialization The population is initialized with random candidate solutions,
each representing a qiskit code encoded as an Abstract Syntax Tree (AST). The
function generate_initial_population creates an initial population of a spec-
ified size.

36
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To calculate the parameter space size for generating a random qiskit code,
we consider the parameters used in the generate_random_circuit_ast func-
tion and its called functions. The main parameters include:

• num_nodes: The number of nodes (or gates) in the qiskit code.

• operations: The list of possible quantum gates (e.g., [’h’, ’x’, ’cx’]).

• max_loop_depth: The maximum depth of nested loops in the circuit.

For the functions called within generate_random_circuit_ast, we consider:

• random_expr:

– depth: Number of loop variables.

– max_expr_operators: Number of binary operations to perform.

– var_depth: Number of additional variables.

• random_qubit_expr:

– expr: The expression for the qubit index.

• random_phase_expr:

– depth: Number of loop variables.

• loop_index:

– depth: Depth of the loop.

Assuming typical values for these parameters, such as num_nodes = 10, op-
erations = [’h’, ’x’, ’cx’] (3 possible operations), max_loop_depth = 2, depth =
2, max_expr_operators = 3, and var_depth = 2, we can estimate the total pa-
rameter space size. The number of possible qiskit code is influenced by the
combinations of these parameters:

Total Parameter Space ≈ 310 × 22 × 105 ≈ 2.36× 109

This large space is what the genetic algorithm explores to evolve and opti-
mize qiskit code. The vastness of the parameter space highlights the necessity
of using genetic programming. This approach efficiently navigates the com-
plex and large search space, enabling the decompiler to approximate the ground
truth, which is the actual qiskit code used to create quantum circuits.
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Mutation Mutation is a crucial genetic operator that introduces diversity into
the population by making random changes to candidate solutions. In the ge-
netic decompiler, we employ two types of mutation methods: insertion and
modification.

Insertion:
In the insertion mutation, a piece of qiskit code creating a new quantum gate

is added to the quantum circuit at a randomly selected position.
Modification:
In the modification mutation, an existing qiskit code for generating quantum

gates in the circuit is replaced with a new one. These mutation methods ensure
diversity within the population of quantum circuits, enabling the genetic algo-
rithm to explore a broader search space and avoid local optima.

Crossover The crossover operator in genetic programming combines parts of
two parents AST to produce offspring by exchanging genetic material for po-
tentially better solutions. Specifically, it involves randomly selecting one node
from each of two parent AST, splitting each AST at the selected node into two
fragments, and then recombining these fragments in a new arrangement to cre-
ate two new offspring ASTs. This process blends features from both parents,
aiming to generate offspring with improved or desired characteristics by intro-
ducing novel structural combinations. A simple case can be seen in the follow-
ing listing 4.4, where ”− ” lines represent splitting for parent codes, while” ∗ ”
lines represent the position children codes crossover.

1 # Parent 1
2 qc.h((n - 1) % n)
3 ---------------- split
4 for i0 in range(n):
5 qc.h((n - 1 - i0) % n)
6 qc.h((i0 - 1) % n)

1 # Parent 2
2 qc.h((n - 0) % n)
3 ----------------- split
4 for i0 in range(n):
5 qc.x((i0 + n + 1) % n)
6 qc.x((i0 - n) % n)

1 # Child 1
2 qc.h((n - 0) % n)
3 ***************** Crossover
4 for i0 in range(n):
5 qc.x((i0 + n + 1) % n)
6 qc.x((i0 - n) % n)

1 # Child 2
2 qc.h((n - 1) % n)
3 ****************** Crossover
4 for i0 in range(n):
5 qc.h((n - 1 - i0) % n)
6 qc.h((i0 - 1) % n)

Figure 4.4: An Example of Crossover on qiskit codes

38
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Selection The selection process involves choosing the fittest individuals from
the population to serve as parents for the next generation. Several selection
methods are implemented, including tournament selection, roulette wheel se-
lection, and rank selection.

Roulette Wheel Selection:

• Calculates the total fitness of the population.

• Assigns a selection probability to each individual based on their fitness.

• Randomly selects parents according to these probabilities, favouring higher
fitness individuals.

The probability Pi of selecting an individual i is given by:

Pi =
fi

∑N
j=1 f j

where fi is the fitness of individual i and N is the population size.
Tournament Selection:

• Randomly selects a subset of individuals from the population.

• Chooses the individual with the highest fitness from this subset as a par-
ent.

• Repeats the process of selecting the second parent.

Rank Selection:

• Ranks the population based on fitness.

• Assigns selection probabilities based on ranks, with higher-ranked indi-
viduals having higher probabilities.

• Selects parents based on these probabilities.

If ri is the rank of individual i (with 1 being the highest rank), the probability Pi
of selecting individual i is:

Pi =
2(ri − 1)
N(N − 1)

where N is the population size.
Weighted Roulette Wheel Selection:

• Similar to roulette wheel selection but applies a weighting factor to fitness
scores.

Version of August 21, 2024– Created August 21, 2024 - 06:42

39



40 Methods

• Increases the likelihood of selecting higher fitness individuals more ag-
gressively.

The weighted probability Pi of selecting an individual i is given by:

Pi =
f w
i

∑N
j=1 f w

j

where fi is the fitness of individual i, N is the population size, and w is the
weighting factor.

These parent selection methods ensure diversity and maintain the evolu-
tionary pressure towards better solutions. By combining the strengths of differ-
ent individuals, crossover operators play a crucial role in evolving high-quality
quantum circuits.

Evaluation Ton evaluate the fitness of each single quantum circuit compared
to the target circuit, other than the typical way to compare two quantum cir-
cuits(Process Fidelity), we invent a set of evaluation metrics which are inspired
by comparing two text documents in NLP(Natural Language Processing).

Process Fidelity:

• Measures how closely two unitary matrices (representing quantum cir-
cuits) align.

• Given two unitary matrices U and V, the process fidelity F is defined as:

F(U, V) =

∣∣∣∣Tr(U†V)

N

∣∣∣∣2
where Tr denotes the trace, U† is the conjugate transpose of U, and N is
the dimension of the unitary matrices.

Gate Sequence Similarity:

• Compares the sequences of quantum gates applied in two circuits.

• Uses Levenshtein distance [50] to measure the similarity between two gate
sequences. The Levenshtein distance is a string metric for measuring the
difference between two sequences by counting the minimum number of
operations required to transform one sequence into the other. These oper-
ations include insertions, deletions, or substitutions of single characters.

40
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• The similarity score S between two sequences A and B is:

S(A, B) = 1−

√
D(A, B)

max(|A|, |B|) ) (4.2)

where D(A, B) is the Levenshtein distance between sequences A and B,
and |A| and |B| are the lengths of the sequences. For more details on
the Levenshtein distance [51], refer to [50]. We apply the square root of
the normalized Levenshtein distance since we want to scale up the im-
portance of the sequence similarity term. Otherwise, when the quantum
circuit sequence gets larger, the normalized distance will always be close
to 0.

The general form of Levenshtein Distance is as follows:

leva,b(i, j) =


max(i, j) if min(i, j) = 0,

min


leva,b(i− 1, j) + 1,
leva,b(i, j− 1) + 1,
leva,b(i− 1, j− 1) + 1(ai ̸= bj)

otherwise
(4.3)

Where:

• lev(i,j) is the Levenshtein distance between the character i from string a
and the character j from string b

In the following table 4.3, we show a simple example to calculate Levenshtein
distance between two sequences occuring in QASM file as "rx(pi/4) q[0]" and
"ry(pi/8) q[0]". The Levenshtein distance matrix is as follows:

To populate the matrix, we use the following rules:

• If the characters are the same, the cost is the same as the top-left diagonal
cell.

• Otherwise, the cost is 1 plus the minimum of the left cell, top cell, or top-
left diagonal cell.

The Levenshtein distance is the value in the bottom-right cell of the matrix,
which in this case is 2. This indicates that 2 operations are needed to transform
"rx(pi/4) q[0]" into "ry(pi/8) q[0]".

Gate Frequency Similarity:

• Compares the frequency of each type of gate in two circuits.
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Table 4.3: Levenshtein distance matrix for "rx(pi/4) q[0]" and "ry(pi/8) q[0]"

r y ( p i / 8 ) q [ 0 ]
0 1 2 3 4 5 6 7 8 9 10 11 12 13

r 1 0 1 2 3 4 5 6 7 8 9 10 11 12
x 2 1 1 2 3 4 5 6 7 8 9 10 11 12
( 3 2 2 1 2 3 4 5 6 7 8 9 10 11
p 4 3 3 2 1 2 3 4 5 6 7 8 9 10
i 5 4 4 3 2 1 2 3 4 5 6 7 8 9
/ 6 5 5 4 3 2 1 2 3 4 5 6 7 8
8 7 6 6 5 4 3 2 2 3 4 5 6 7 8
) 8 7 7 6 5 4 3 3 2 3 4 5 6 7

9 8 8 7 6 5 4 4 3 2 3 4 5 6
q 10 9 9 8 7 6 5 5 4 3 2 3 4 5
[ 11 10 10 9 8 7 6 6 5 4 3 2 3 4
0 12 11 11 10 9 8 7 7 6 5 4 3 2 3
] 13 12 12 11 10 9 8 8 7 6 5 4 3 2

• For each circuit, count the occurrences of each gate type.

• Calculates the cosine similarity between two frequency vectors.

• The similarity score S between two frequency vectors f1 and f2 is:

S(f1, f2) =
f1 · f2

∥f1∥∥f2∥

where · denotes the dot product, and ∥fi∥ is the Euclidean norm of fi.

Longest Common Subsequence Comparison:

• Compares the QASM (Quantum Assembly Language) code of two circuits
by finding the longest common subsequence (LCS) of lines.

• Uses a dynamic programming approach to efficiently compute the LCS.

• Evaluates the similarity based on the proportion of the LCS to the total
lines in the target QASM.

• The similarity score S is:

S =
length of the longest common subsequence

total lines in target QASM

42
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The dynamic programming method for calculating the LCS is as follows:

1. Let X = [x1, x2, . . . , xm] be the lines of the first QASM file and Y = [y1, y2, . . . , yn]
be the lines of the target QASM file.

2. Define a 2D table L where L[i][j] represents the length of the LCS of X[1 . . . i]
and Y[1 . . . j].

3. Initialize L[0][j] = 0 for all j and L[i][0] = 0 for all i.

4. Fill the table L using the following recurrence relation:

L[i][j] =

{
L[i− 1][j− 1] + 1 if xi = yj

max(L[i− 1][j], L[i][j− 1]) if xi ̸= yj

5. The length of the LCS is given by L[m][n].

Combined Score:

• Integrates multiple evaluation metrics to provide a comprehensive fitness
score.

• The combined score S is the average of individual scores:

S =
(
Sseq(A, B) ∗ Sfreq(f1, f2) ∗ SLcs

)1/3

where Sseq(A, B) is the gate sequence similarity, Sfreq(f1, f2) is the gate
frequency similarity, and Sline is the line-by-line comparison score. Due to
the exponential growth of the unitary’s fidelity with the number of qubits,
in the actual implementation code, we only used gate sequence similarity,
gate frequency similarity, and line-by-line comparison.

These specific metrics were chosen because they capture different aspects
of the circuit’s structure and behaviour. By taking the geometric mean of these
scores, we ensure that the combined score reflects a balanced assessment, where
a low score in one metric significantly impacts the overall fitness. This holis-
tic approach drives the evolutionary process towards solutions that are well-
rounded in multiple aspects of circuit similarity.
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Algorithm 2 Genetic Decompiler Run Method

Initialize population P ← generate_initial_population(pop_size)
for generation = 1 to generations do

Evaluate fitness F for each individual in P
Sort P by F (descending)
Select best individual Ibest and score fbest
Initialize new population Pnew
Preserve elite individuals:
for i = 1 to elite_count do
Pnew ← Pnew ∪ {P [i]}

end for
Apply crossover:
while |Pnew| < elite_count+ crossover_count do
(P1,P2)← select_parents(P ,F , method)
(C1, C2)← crossover(P1,P2)
Pnew ← Pnew ∪ {C1, C2}

end while
Apply mutation:
for i = 1 to mutation_count do

if |Pnew| > 0 then
Imutate ← random.choice(Pnew)
Pnew ← Pnew ∪ {mutate(Imutate)}

end if
end for
Generate new individuals:
Pnew ← Pnew ∪ generate_initial_population(new_gen_count)
Update P ← Pnew

end for
Return best individual Ibest and scores

Evolution of the Generation After introducing all the key components, the
main Loop of the genetic decompiler to get the best code for the target quantum
circuit is shown as 2, and the whole details for the genetic algorithm are listed
in appendix B

4.3.3 Improvement Strategies

In order to enhance the performance of the genetic decompiler, we have intro-
duced two key improvement strategies:

44
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1. Random Initialization of New Individuals At the beginning of each gen-
eration, a portion of the new population is randomly initialized with new indi-
viduals. This strategy aims to increase the exploration capability of the decom-
piler and prevents it from getting trapped in local optima. Mathematically, the
population update process can be described as follows:

LetPg be the population at generation g, and Eg be the set of elite individuals
selected from Pg. The new population Pg+1 is formed by combining the elite
individuals Eg with a set of newly initialized individuals Ng:

Pg+1 = Eg ∪Ng

where |Eg| = ec (elite count) and |Ng| = nc (new generation count). This en-
sures that the new population contains both well-performing individuals from
the previous generation and fresh, unexplored solutions, thereby enhancing the
diversity of the population.

2. Annealed Mutation Rate To balance exploration and exploitation, we have
introduced an annealing mechanism for the mutation rate. The mutation pro-
cess is controlled by two parameters: mr (mutation rate) and mr2 (feature muta-
tion rate). The former defines the proportion of the population that undergoes
mutation, while the latter determines the probability of mutating each feature
within an individual.

The mutation probability mr2 is subject to exponential decay, modelled as
follows:

mr2(g) = max(mr20 × dg, mr2min)

where:

• mr20 is the initial mutation probability.

• d is the decay factor, typically 0 < d < 1.

• g is the current generation number.

• mr2min is the minimum allowable mutation rate, set to 0.2.

By applying this annealing process, the mutation rate mr2 decreases over
generations, allowing for extensive exploration in the early stages when the ge-
netic pool is less adapted, and more refined, effective mutations in later stages
when the population has converged towards an optimal solution. This ap-
proach helps maintain a balance between exploration and exploitation, promot-
ing efficient convergence to high-quality solutions.
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These improvement strategies collectively enhance the genetic decompiler’s
ability to navigate the complex search space, improving the likelihood of find-
ing the optimal or near-optimal quantum circuit representations.

4.4 Challenges

In the previous part of this section, we introduced how to initialize Qiskit code
in the AST (Abstract Syntax Tree) form as the initial generation for the Genetic
Algorithm. This process involves generating quantum circuits and converting
them into a series of QASM files based on the number of qubits. These files are
then evaluated for their fitness scores by comparing them with target QASM
files using specific evaluation methods. By running the Genetic Algorithm,
our decompiler evolves the circuit code generation to approximate the ground
truth, which is the actual Qiskit code used to create quantum circuits. For this
method, there are still some detailed procedures that present challenges to be
tackled.

4.4.1 Syntax problem for the qubit index

To accurately reflect the logic of quantum circuits, we need to incorporate ’n’
as the total number of qubits or ’i’ as the loop index into the expression for the
qubit index, indicating the position of each quantum operator. To avoid syntax
errors, such as an index exceeding the number of qubits ’n’, we will apply a
modulo operation to the expression by ’n’ to ensure it stays within valid bounds.

Exprqubit = Exprqubit mod n (4.4)

This approach works well for local operations (single-qubit gates). However,
when dealing with non-local operators like the CNOT gate for two qubits or
the Toffoli gate for three qubits, we generate two random expressions or add
certain expressions to the first qubit expression. To ensure all these expressions
remain within the valid range for the number of qubits ’n’, they are all subjected
to the modulo operation by ’n’. This creates a challenge. It is difficult to gen-
erate two random expressions involving linear combinations of ’n’ and ’i’ that
ensure different values modulo ’n’ for a given range of ’n’ (e.g., 2-20 qubits). It
is nonsensical to apply a multi-qubit gate to the same qubit.

To address this issue, the decompiler currently assigns a fitness score of 0
to any syntax error, resulting in many invalid data points during the genetic
decompiler run. Finding a method to generate two or more random expressions
that remain distinct under modulo ’n’ while keeping the form simple would
significantly enhance the efficiency of our decompiler.

46
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Example: Consider generating a CNOT gate within a circuit of ’n’ qubits.

1. Generate Random Expressions:

expr1 = i + n
expr2 = 2i + 3

2. Apply Modulo Operation:

qubit1 = (i + n) mod n
qubit2 = (2i + 3) mod n

If i = 3, and n = 2, then:
qubit1 = (3 + 3) mod 3 = 0
qubit2 = (2 · 3 + 3) mod 3 = 0

In this example, both two expressions return 0 when certain i and n are given,
which will lead to syntax error when running the code containing a CNOT gate
on two same qubit

4.4.2 Fitness Evaluation

Accurately and efficiently evaluating the fitness of generated circuits is complex
and resource-intensive. It evaluates the similarity between generated circuits
and target circuits, which can be computationally expensive. The unitary matrix
of a quantum circuit provides the most comprehensive representation of the
circuit’s behaviour, capturing all its quantum properties. However, the size of
the unitary matrix grows exponentially with the number of qubits, leading to
significant computational challenges.

Alternatively, other fitness evaluation methods treat the quantum circuit as
pure text information, such as using gate sequence similarity or gate frequency
similarity. These methods involve comparing the generated quantum circuits
to the target circuits by examining their text representations. While these ap-
proaches are computationally less demanding, they might lose some quantum-
specific characteristics. By focusing solely on the textual representation, subtle
but important quantum properties may be overlooked, potentially leading to
suboptimal solutions.
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4.4.3 Balancing Exploration and Exploitation

Genetic algorithms need to balance the exploration of new solutions and the ex-
ploitation of known good solutions. This balance is crucial for the algorithm’s
efficiency and effectiveness but is challenging to tune and often requires empir-
ical adjustment.

Fine-grained crossover and mutation, and local search definition are meth-
ods that can aid in achieving this balance. However, the process of selecting
which specific traits to mutate or crossover is entirely random. Unlike gradient
descent methods, where the direction of parameter adjustments is guided by
gradients, genetic algorithms lack such directionality. We do not have a clear
understanding of the distribution of parameters in the parameter space or how
to define their neighbourhoods.

This lack of directionality makes it difficult to guide mutations in a beneficial
direction, increasing the difficulty of achieving convergence. The randomness
in choosing specific traits for mutation and crossover means that we may need
to rely on a larger number of generations and a more extensive search space
to find optimal solutions, thus making the algorithm less efficient and more
computationally expensive.

48
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Chapter 5
Results and Discussion

An experiment is a question
which science poses to Nature,
and a measurement is the
recording of Nature’s answer.

Max Planck

In this chapter, we delve into the practical implementation and performance
evaluation of the genetic decompiler for quantum circuits. The experiments are
designed to validate the efficacy and robustness of our approach in decompil-
ing quantum circuits and synthesizing high-level quantum algorithms. First,
we had our decompiler test some very simple quantum line patterns, which we
call the Vanilla dataset, this part is mainly used as a proof of concept, to see
whether our decompiler works or not. Then, we tested the performance of our
decompiler before and after the Then, we test the performance of our decom-
pilers quantum lines before and after decomposition, the purpose of this test is
to detect how the effect of those decomposed quantum lines, which are more
efficient in some hardware platforms, being decompiled compares with the ef-
fect of those before they are not decomposed, and here we interpret the result
of the reverse compilation as the readability of this part of the quantum lines.
Finally, we tested our decompiler on quantum lines represented by some classi-
cal algorithms to check the ability of our decompiler to be decompiled. Finally,
we discuss the results of the three sets of experiments and, in order to verify
the generalization ability of the decompiler and to check whether he accurately
recognizes the pattern features of the quantum lines, we tested it on lines with
more quantum bits than the test dataset and discuss the different evaluation
metrics separately.
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5.1 Vanilla data-set

In this section, we introduce and test some simple quantum circuits. These cir-
cuits are designed to demonstrate basic quantum gate operations and evaluate
the performance of our genetic decompiler on these fundamental data sets.

• Hadamard Gate Circuit on All Qubits Function: h_c(n)

This circuit applies a Hadamard gate on each qubit. Mathematically, this
circuit can be represented as:

qc =
n−1

∏
i=0

Hi

where Hi denotes the Hadamard gate applied to the i-th qubit.

• Hadamard Gate on the First Qubit

Function: h_0(n)

This circuit applies a Hadamard gate on the first qubit for all iterations.
Mathematically, this circuit can be represented as:

qc =
n−1

∏
i=0

H0

where H0 denotes the Hadamard gate applied to the first qubit.

• Rotational Gate Circuit

Function: rx_c(n)

This circuit applies a rotational gate Rx(θ) to each qubit, with each qubit’s
rotation angle being half of the previous qubit’s angle. Mathematically,
this circuit can be represented as:

qc =
n−1

∏
i=0

Rx

(π

2i

)
i

where Rx(θ) denotes the rotational gate with angle θ, and the angle θ de-
creases exponentially with the qubit index i.

The decompilation results of these simple datasets are shown in Figure 5.1.
We run the decompiler 3 times and plot both the average and highest scores of
each algorithm. We perform all the tricks we used before including crossover,
mutation and annealing mutation to balance the exploration and exploitation.

50
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The evaluation method used to get the fitness scores is a combined method
of sequence similarity, sequence frequency and line-by-line correctness.We plot
the combined scores to evaluate performance over generations. The "Mean Best
Score" represents the average score of the best individual across all experiments
for each generation, while the "Max Score" indicates the highest score achieved
among all repetitions for each generation. The final scores are calculated based
on our defined ’combined’ scores metric. The evaluation is performed on the
best individual from each generation (a segment of Python code) produced by
the genetic algorithm. These individuals are executed to generate quantum cir-
cuits within a limited qubit range (2-10 qubits). The generated QASM files are
then compared to a known target QASM file. The final score is the average of
the comparison results for each QASM file within the 2-10 qubit range. To test it,
we show the best code corresponding to the last generation of three algorithms
as Figure 5.2

Figure 5.1: Genetic Decompilation Performance Over Generations.
The parameters used for generating the plot are: mutation_rate=0.3, pop_size=40,
generations=100, rep=3. total_qubit=20, max_length=10, perform_crossover=True,
crossover_rate=0.3, new_gen_rate=0.2, max_loop_depth=2, mutation_rate_2=0.5

As the figure shows, all three simple datasets get perfectly decompiled by
our decompiler, the Highest scores of duplicate experiments for each quantum
circuit all achieve a combined score 1, which means all individual metrics also
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(a) Best code for h_c (b) Best code for h_0

(c) Best code for rx_c

Figure 5.2: Best code Decomplied by genetic algorithm for some simple quantum cir-
cuits

reach score 1, we can also confirm it by checking the final qiskit code generated
by our decompiler, which matches the certain pattern of these quantum circuits.

5.2 Rotation Ry Circuits with Decomposition

The Ry gate is not a native gate for some of the quantum hardware platforms
supported by Qiskit, particularly IBM Quantum hardware. Instead, Ry gates are
typically decomposed into a series of native gates that the hardware can execute
directly. Below are two types of decompositions of the Ry gate for different
hardware platforms using Qiskit:

• Decomposition using RX and RZ Gates

The Ry gate can be decomposed using RX and RZ gates, which are also
native gates for some quantum hardware.

Ry(θ) = Rz

(π

2

)
· RX(θ) · Rz

(
−π

2

)
• Decomposition using H and RX Gates

Another common decomposition is to use H (Hadamard) gates along with
RX gates.

52
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Ry(θ) = H · RX(θ) · H

Figure 5.3: Reverse compilation results for decomposed Ry gate circuits across different
hardware platforms. Here ry_decomposed means the decomposition of r_x and h for the
ry_c circuit and ry_rx_rz means the decomposition of r_y and r_z for the r_c circuit.The
hyperparameter settings for the Ry gate experiments are as follows:
mutation_rate=0.3, new_gen_rate=0.3, crossover_rate=0.2,
mutation_rate_2=0.99, max_length=4, max_loop_depth=3, qubit_limit=10,
pop_size=50, generations=400, rep=3.

We will explore the reverse compilation results based on these decomposi-
tions and regard the hardness of the decompilation as a kind of readability for
quantum circuits. The results are shown in Figure 5.3. Similar to the previous
plot. The "Mean Best Score" represents the average score of the best individual
across all experiments for each generation, while the "Max Score" indicates the
highest score achieved among all repetitions for each generation.

We can see that the ry circuit, without decomposition, achieves a perfect
score of 1.0, indicating it exactly replicates the pattern of the quantum circuit as
generated by the real code. For the circuits decomposed with a Hadamard gate
and Rotation Rx (ry_decomposed in the figure) and those decomposed with Ro-
tation Rx and Rotation Rz (ry_decomposed_rx_rz in the figure), our decompiler
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yields lower evaluation scores. To provide a clearer comparison, we juxtaposed
the original code used to generate the dataset, referred to as “real code,” with
the final qiskit code produced by the decompiler from the best individual of the
last generation, as shown in Figure D.1. The results clearly demonstrate that
our decompiler is more adept at mimicking and learning from the original ry
circuits than from the decomposed ry circuits. Moreover, the learning ability for
decompositions involving rx and h gates is slightly superior to that involving
rx and rz gates. This might be due to the additional phase coefficient required
for implementing a rotation gate in the qiskit code compared to the Hadamard
Gate. After decomposition, these circuits might be more efficient on certain
platforms, as the Ry gate is not inherently decomposed; however, generally,
their patterns are more challenging for our decompiler to capture.

5.3 GHZ, QFT and QPE

After conducting our decompiling experiments on simple quantum circuits,
we extend our approach to more complex and commonly used quantum al-
gorithms. Specifically, we select Quantum Phase Estimation (QPE), Quantum
Fourier Transform (QFT), and GHZ state preparation circuits

Quantum Fourier Transform (QFT)

The Quantum Fourier Transform is a linear transformation on quantum bits,
analogous to the discrete Fourier transform in classical computation [52]. It is
a crucial component in many quantum algorithms, including Shor’s algorithm
for factoring. The ket steps for QFT are:

1. Superposition: Apply Hadamard gates to put the qubits into a state of
superposition, encoding the input in quantum parallelism.

2. Phase Rotation: Apply a series of controlled phase rotation gates to en-
tangle the qubits and encode the Fourier transform coefficients.

Quantum Phase Estimation (QPE)

Quantum Phase Estimation is a fundamental algorithm used to estimate the
phase (eigenvalue) introduced by a unitary operator. It has applications in var-
ious fields including factoring [53], cryptography [54], and quantum chemistry
[55]. The key steps for QPE are:

54
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Figure 5.4: Quantum Fourier Transform (QFT) Circuit

1. State Preparation: Initialize two registers: the first with qubits in super-
position to act as controls, and the second with an eigenstate of the unitary
operator.

2. Controlled Unitary Operations: Apply controlled unitary operations that
evolve the second register based on the state of the first register.

3. Inverse Quantum Fourier Transform (QFT): Apply the inverse QFT on
the first register to convert the quantum phase information into a readable
binary format.

Figure 5.5: Quantum Phase Estimation (QPE) Circuit

GHZ State Preparation

The GHZ (Greenberger-Horne-Zeilinger)[21] state is an entangled quantum state
involving multiple qubits. It is used in quantum communication, quantum er-
ror correction, and tests of quantum mechanics. we have already introduced
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this circuit structure in Chapter 3 as Figure2.2. The key steps for constructing a
GHZ state preparation circuit are:

1. Hadamard Gate: Apply a Hadamard gate to the first qubit to create a
superposition state.

2. CNOT Gates: Apply CNOT gates between the first qubit and the rest to
entangle them, creating the GHZ state.

The results of the decompiling on these algorithms can be seen in Figure
5.6. We test the similarity of the qasm files (2-10 qubits) generated by each best
individual of generations with the target qasm files(2-10 qubit). Theqiskit code
generated by decompiler for the best individual from last generation is listed in
Figure D.2

Figure 5.6: Genetic decompilation performance over generations. The plot shows the
mean best score and the maximum score across generations for different algorithms:
QFT decomposition (qft_decom), QPE decomposition (qpe_dec), and GHZ state
preparation (ghz_state). The mean best score represents the average score of the best
individual across all experiments for each generation, while the max score indicates the
highest score achieved among all repetitions for each generation. The hyperparameter
settings are as follows:
mutation_rate=0.3, new_gen_rate=0.3, crossover_rate=0.2,
mutation_rate_2=0.99, max_length=4, max_loop_depth=3, qubit_limit=10,
pop_size=40, generations=500, rep=3.

56
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As the plot illustrates, the GHZ circuit achieves the best decompilation re-
sult, while the QFT is easier to decompile than the QPE. This may be because
the GHZ circuit contains the fewest quantum gates and follows the simplest
pattern compared to the other two. Meanwhile, since QFT is a component of
QPE, the quantum circuits for QPE naturally exhibit a more complex pattern,
making them harder to decompile.

5.4 Testing on more Qubits

To evaluate the performance of our genetic decompiler, we selected the best
code after the evolution of the genetic algorithm and generated quantum cir-
cuits larger than the original size (2-10 qubits) used for initial evaluation. We
then plotted the fitness scores for various comparison metrics at qubit sizes
ranging from 11 to 20 to assess the generalization ability of the decompiler.

(a) different evaluation scores on ry experi-
ments

(b) different evaluation scores on qft and
GHZ-generation circuit

Figure 5.7: Comparison of different evaluation scores on the qubit size from 11 to 20.

From these two sets of experiments,5.7 we can see that sequence frequency
similarity is the easiest feature to capture. In contrast, features of quantum cir-
cuits as sequences, such as sequence similarity and largest common sequence,
are challenging to capture for both sets of experiments. This is evident since the
frequency of quantum gates appearing in quantum circuits is an easily learned
feature, whereas their order and logical relationships are relatively difficult to
capture under the framework of using a genetic algorithm to manipulate the
Abstract Syntax Tree.

This difficulty arises because the order and logical relationships of quantum
gates in quantum circuits exhibit more complex structures and interdependen-
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cies. While sequence frequency similarity can be easily obtained by counting
occurrences, capturing the specific sequence and interactions of quantum gates
within quantum circuits requires more advanced analytical methods and al-
gorithms. Therefore, our research findings indicate that genetic algorithms is
insufficient to comprehensively understand the characteristics of quantum cir-
cuits. This further underscores that in the field of quantum computing, un-
derstanding and optimizing the complexity of quantum circuits requires more
research and innovative approaches.

5.5 Discussion

In this section, we discuss the outcomes of our experiments with the genetic
decompiler.

5.5.1 Proof of Concept

We have demonstrated that using a genetic algorithm to manipulate the abstract
syntax tree (AST) of Qiskit code can identify pattern features in quantum cir-
cuits. For simple datasets, our genetic decompiler achieved near-perfect accu-
racy, effectively reconstructing the original quantum circuits. For more complex
and common quantum circuits, the decompiler partially reconstructed their fea-
tures. Unfortunately, our results indicate that within limited computational
time, using this framework to reverse-engineer quantum circuits may not be
the optimal solution.

5.5.2 Explainability and Efficiency Trade-Off

Through our experiments, we observed a significant trade-off between the ex-
plainability and the efficiency of quantum circuits. For instance, the Ry gate,
when decomposed into native gates such as H, CX, RX, and RZ, becomes more
efficient for execution on hardware but less readable. This trade-off was evi-
dent in the adaptive scores obtained during reverse compilation. Decomposed
circuits, while more efficient in execution, scored lower in terms of readability.

5.5.3 Selection of Evaluation Methods

Choosing the right evaluation method for fitness scoring is essential. Our cur-
rent approach combines sequence similarity, gate frequency similarity, and line-
by-line correctness. However, each method has its strengths and weaknesses:
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• Gate Frequency Similarity: This method often yields high scores because
it projects gate frequencies into vectors, allowing dominant gates to influ-
ence the global score. However, it does not account for the sequence of
gates.

• Gate Sequence Similarity and LCS: These methods consider the order
of gates, often resulting in lower scores but providing a more accurate
reflection of the circuit’s structure.

We currently use the cubic root of these three scores with equal weighting.
Adjusting these weights may better guide the decompiler to capture the correct
quantum circuit patterns more effectively.

5.5.4 Limitation For Genetic Algorithm

In our research, we utilize genetic algorithms (GA) to search the abstract syntax
tree (AST) structure in the parameter space and evaluate the quantum circuits
generated by qiskit code for the corresponding AST structure against the target
circuits (the real circuits we want to decompile, our ground truth). We aim to
identify patterns in these quantum circuits, but this process lacks some prior
knowledge or empirical understanding of the quantum circuits. Each search
is completely random and equally distributed among all possible parameters,
such as the index for the qubit, the expression for the phase, or the selection for
loop expression. However, there are some common rules when designing quan-
tum circuits. For instance, the Hadamard gate is used to prepare entanglement,
and there is a greater probability of applying a two-qubit gate in cases involving
adjacent qubits or multiple qubits near the first or last qubit. But this approach
is not generative enough and is difficult to define strictly mathematically. Over-
all, enhancing the search process with more experience-based knowledge could
be a potential way to uncover the underlying patterns in quantum circuits
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Chapter 6
Conclusion and Future Direction

We choose to go to the Moon in
this decade and do the other
things, not because they are easy,
but because they are hard.

John F. Kennedy

6.1 Conclusion

There are many quantum circuits designed by heuristic algorithms that our
human brains cannot easily recognize. Therefore, understanding the under-
lying logic behind these quantum circuits motivates us to develop a QASM to
Python Qiskit decompiler. To review, the research questions for this thesis in-
clude whether such QASM-to-Qiskit reverse engineering can be accomplished,
what methods can be employed, how we can evaluate the performance of our
decompiler, and how our decompiler performs on quantum circuits with vary-
ing readability (before and after decomposition). The main contribution of this
thesis is the so-called Genetic Quantum Decompiler, which uses a Genetic Al-
gorithm to manipulate the Qiskit code in the format of an Abstract Syntax Tree,
evolving the Qiskit code to approximate the true pattern of certain quantum
circuits. To assess the correctness of this reverse engineering, we have defined
a series of metrics inspired by text similarity measures used in Natural Lan-
guage Processing (NLP), which include gate sequence frequency, gate sequence
similarity, and line-by-line comparison. For the quantum circuits after decom-
position, it is indeed more challenging for our decompiler to decompile, which
reveals a lower readability for these quantum circuits.
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However, during our discussions, it was evident that genetic programming
is not yet sufficient to accurately determine the structure of the Qiskit code
when problems become complex. On the other hand, since we treat the quan-
tum circuits purely as text documents, this approach may lose some key in-
formation about the quantum algorithms they represent. Therefore, although
our evaluating metrics ensure that the quantum circuits generated by the de-
compiled Qiskit code look similar and follow the same patterns as the target
quantum circuits, they do not guarantee functional equivalence.

In conclusion, we have demonstrated the potential for reverse engineering
quantum circuits with a QASM-to-Qiskit decompilation and have made a sig-
nificant initial attempt to combine AST and GA as methods. However, to de-
velop a better decompiler with more appropriate metrics to evaluate the close-
ness between quantum circuits, much more research and novel ideas are still
required

6.2 Future Direction

As we look ahead, there are several exciting directions and improvements to
consider for advancing our work on quantum circuit decompilation.

6.2.1 Hyper-Parameter Tuning

Detailed and meticulous hyper-parameter tuning is crucial for optimizing the
performance of our genetic algorithm (GA). By systematically exploring vari-
ous combinations of parameters, we can better balance the exploration and ex-
ploitation phases of the algorithm, thereby improving the overall efficiency and
effectiveness of the decompiler.

6.2.2 Comprehensive Quantum Circuit Decomposition

Expanding the range of quantum circuit structures that our decompiler can han-
dle is essential. This includes incorporating conditional operations such as ‘if‘
statements within the code and clearly specifying which qubits to measure in
randomly generated circuits. These enhancements will allow for more complex
and realistic quantum circuits to be effectively decompiled.

6.2.3 Exploring New Optimization Methods

Given the inherent randomness and inefficiency of GAs, exploring alternative
optimization techniques such as reinforcement learning (RL) is a promising di-
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rection. RL, with its potential for making discrete decisions for each feature,
could offer more precise and efficient optimization.

6.2.4 Expanding GA-Manipulated AST Framework for Other
Tasks

Our framework for manipulating the Abstract Syntax Tree (AST) using GA has
broader applications beyond decompilation. For example, it could be used to
create general quantum circuits aimed at achieving highly entangled quantum
states. By changing the fitness score from the similarity between the gener-
ated QASM and target QASM to the degree of entanglement of the generated
quantum state, we can tackle new challenges and expand the capabilities of our
framework.

6.2.5 New Features for Describing Quantum Circuits

Currently, our approach to recognizing quantum circuit patterns involves treat-
ing the circuit as a text file and analyzing its features at the QASM level. How-
ever, exploring other methods to characterize these features could enhance our
understanding and efficiency. While fidelity is a measure we’ve considered, it
scales exponentially with the size of the system. Machine learning models, such
as neural networks, could be trained to encode the features of quantum circuits
into a latent space, providing a more nuanced and scalable approach to pattern
recognition and feature extraction.

6.2.6 Decompilation on circuits by Quantum Architecture search

In our research, we want to start with a proof of concept to see whether our
methodâcombining AST and GAâmight work. Initially, we only test our de-
compiler on some well-known quantum circuits that are designed by humans,
and for which we already know the code to generate them. However, true to
our initial motivation, we aim to generalize this QASM-to-qiskit process to a
broader range of quantum circuits, including some circuit designs discovered
by quantum Architecture search. These circuits lack human interpretability, and
we do not know the underlying logic behind them. If we could decompile these
quantum circuits on a limited qubit scale and then test the resulting qiskit code
to generate larger quantum circuits, we could check if they still perform sim-
ilarly to the smaller-sized quantum circuits. This approach could potentially
improve the efficiency of human-designed quantum circuits and quantum Ar-
chitecture Search.
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Appendix A
Python Code for Circuit Intialization

1 import ast
2 import random
3 import time
4 import matplotlib.pyplot as plt
5 from tqdm import tqdm
6 from graphviz import Digraph
7
8 def random_positive_gaussian_integers(mu=0, sigma=1):
9 """Generate positive random integers from a Gaussian

distribution, ensuring all numbers are within a given range
[1, upper_bound].

10
11 Args:
12 mu (float): Mean of the Gaussian distribution.
13 sigma (float): Standard deviation of the Gaussian

distribution.
14 num_samples (int): Number of samples to generate.
15 upper_bound (int): Maximum value of the random integer (

inclusive).
16 """
17 # Generate number, take absolute value, round, and apply upper

bound
18 number = random.gauss(mu, sigma)
19 positive_integer = int(abs(number))
20 return positive_integer
21
22 def random_expr(depth, max_expr_operators, var_depth):
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23 """Generate a random qubit index expression using arithmetic,
modulus, or simple variables.

24
25 Args:
26 depth (int): Number of loop variables.
27 max_expr_operators (int): Number of binary operations to perform

.
28 var_depth (int): Number of additional variables.
29 """
30 # Generate variable names for loop indices and variables
31 loop_vars = [f"i{ind}" for ind in range(depth)]
32 vars = [’n’]+[f"{ind}" for ind in range(var_depth+1)]
33
34 # All possible variables include ’n’ and loop indices
35 choices = [ast.Name(id=’n’, ctx=ast.Load())] + \
36 [ast.Name(id=var, ctx=ast.Load()) for var in loop_vars

]
37
38 # Start with a random variable
39 # expr = ast.Name(id=random.choice(vars),ctx=ast.Load())
40 expr=random.choice(choices)
41 # Add binary operations
42 for _ in range(max_expr_operators+1):
43 left = expr
44 right = ast.Name(id=random.choice(vars),ctx=ast.Load())
45 op = random.choice([ast.Add(), ast.Sub()])
46 expr = ast.BinOp(left=left, op=op, right=right)
47 return expr
48 # Apply modulo operation to ensure the result is within valid

index range
49
50 def random_qubit_expr(expr):
51 mod_expr = ast.BinOp(left=expr, op=ast.Mod(), right=ast.Name(id=

’n’, ctx=ast.Load()))
52
53 return mod_expr
54
55 def print_qubit_indices(node, n_value):
56 """
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57 Traverse the AST and print each qubit index expression,
evaluating them if possible,

58 or replacing ’n’ with a specific value.
59 """
60 class IndexPrinter(ast.NodeVisitor):
61 def visit_Call(self, node):
62 if isinstance(node.func, ast.Attribute) and node.func.

attr in [’x’, ’h’, ’cx’, ’rx’, ’ry’, ’rz’]:
63 for arg in node.args:
64 print(self.evaluate_expr(arg, n_value))
65 self.generic_visit(node)
66
67 def evaluate_expr(self, expr, n_value):
68 if isinstance(expr, ast.Name) and expr.id == ’i’:
69 return ’i’ # Return ’i’ directly
70 try:
71 compiled_expr = compile(ast.Expression(expr),

filename="<ast>", mode="eval")
72 return str(eval(compiled_expr, {"n": n_value, "i": "i

", "pi": 3.141592653589793}))
73 except Exception as e:
74 return f"Error evaluating expression: {e}"
75
76 visitor = IndexPrinter()
77 visitor.visit(node)
78
79 def random_phase_expr(depth):
80 """Generate a random phase expression of the form pi * 1 / (2^a

+ b + c)."""
81 loop_vars = [f"i{ind}" for ind in range(depth)]
82
83 # Define a
84 a = random_expr(depth,depth,0)
85
86 # Define b
87 b = random_expr(depth,depth,0)
88 # Define c
89 c = ast.Constant(value=random_positive_gaussian_integers())
90
91 # Create the expression 2^a + b + c
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92 expr_inner = ast.BinOp(
93 left=ast.BinOp(
94 left=ast.Constant(value=2),
95 op=ast.Pow(),
96 right=a
97 ),
98 op=ast.Add(),
99 right=ast.BinOp(

100 left=b,
101 op=ast.Add(),
102 right=c
103 )
104 )
105 # Create the expression pi * 1 / (2^a + b + c)
106 phase_expr = ast.BinOp(
107 left=ast.Name(id=’pi’, ctx=ast.Load()),
108 op=ast.Mult(),
109 right=ast.BinOp(
110 left=ast.Constant(value=1),
111 op=ast.Div(),
112 right=expr_inner
113 )
114 )
115 return phase_expr
116
117 def loop_index(depth):
118 if depth == 1:
119 return ast.Name(id=’n’, ctx=ast.Load())
120 else:
121 # Generate variable names for loop indices
122 vars = [f"i{ind}" for ind in range(depth-1)]
123 choices = [ast.Name(id=’n’, ctx=ast.Load())]+\
124 [ast.Name(id=var, ctx=ast.Load()) for var in vars]
125
126 # Start with a random variable
127 expr = random.choice(choices)
128
129 # Add binary operations
130 for _ in range(depth - 1):
131 left = expr
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132 right = random.choice(choices)
133 op = random.choice([ast.Add(), ast.Sub()])
134 expr = ast.BinOp(left=left, op=op, right=right)
135
136 # Random value to add/subtract
137 value = random.randint(0, depth-1) # Using a random integer

instead of string
138 index = ast.BinOp(left=expr, op=random.choice([ast.Add(),

ast.Sub()]),
139 right=ast.Constant(value=value))
140
141 return ast.Call(
142 func=ast.Name(id=’abs’, ctx=ast.Load()),
143 args=[index],
144 keywords=[])
145
146 def set_specific_n(module, n_value):
147 print_qubit_indices(module, n_value)
148
149 # Define example operations and number of nodes
150 rotation_gates = [’rx’, ’ry’, ’rz’, ’u1’, ’u2’, ’u3’, ’crx’, ’cry’,

’crz’, ’cp’, ’cu1’, ’cu3’]
151 multi_qubit_gates = [’cx’, ’cz’, ’swap’, ’ch’, ’csx’, ’cy’, ’ccx’,

’cswap’, ’cu’, ’cp’]
152 three_qubit_gates = [’ccx’, ’cswap’] # Toffoli (CCX) gate and

Fredkin (CSWAP) gate
153
154 def generate_gate_call(depth, gate):
155 """Generate a gate call expression based on the gate type and

depth."""
156 expr = random_expr(depth, 1, 2)
157 index = random_qubit_expr(expr)
158 if gate in multi_qubit_gates:
159 target_expr = random_expr(depth, 1, 2)
160 target_qubit_index = random_qubit_expr(target_expr)
161 if gate in rotation_gates:
162 phase = random_phase_expr(depth)
163 gate_call = ast.Expr(value=ast.Call(
164 func=ast.Attribute(value=ast.Name(id="qc", ctx=ast.

Load()), attr=gate, ctx=ast.Load()),
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165 args=[phase, index, target_qubit_index],
166 keywords=[]
167 ))
168 else:
169 gate_call = ast.Expr(value=ast.Call(
170 func=ast.Attribute(value=ast.Name(id="qc", ctx=ast.

Load()), attr=gate, ctx=ast.Load()),
171 args=[index, target_qubit_index],
172 keywords=[]
173 ))
174 else:
175 if gate in rotation_gates:
176 phase = random_phase_expr(depth)
177 gate_call = ast.Expr(value=ast.Call(
178 func=ast.Attribute(value=ast.Name(id="qc", ctx=ast.

Load()), attr=gate, ctx=ast.Load()),
179 args=[phase, index],
180 keywords=[]
181 ))
182 else:
183 gate_call = ast.Expr(value=ast.Call(
184 func=ast.Attribute(value=ast.Name(id="qc", ctx=ast.

Load()), attr=gate, ctx=ast.Load()),
185 args=[index],
186 keywords=[]
187 ))
188 return gate_call
189
190 def generate_random_circuit_ast(num_nodes, operations,

max_loop_depth):
191 args = ast.arguments(
192 posonlyargs=[],
193 args=[ast.arg(arg=’n’, annotation=None)],
194 vararg=None,
195 kwonlyargs=[],
196 kw_defaults=[],
197 kwarg=None,
198 defaults=[]
199 )
200
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201 body = [
202 ast.Assign(
203 targets=[ast.Name(id="qc", ctx=ast.Store())],
204 value=ast.Call(
205 func=ast.Name(id=’QuantumCircuit’, ctx=ast.Load()),
206 args=[ast.Name(id=’n’, ctx=ast.Load())],
207 keywords=[]
208 )
209 )
210 ]
211
212 for i in range(num_nodes):
213 depth = 0
214 gate = random.choice(operations)
215 if random.choice([True, False]): # Randomly decide to use a

loop or a single operation
216 loop_body = []
217 loop_depth = random.randint(1, max_loop_depth)
218 loop_vars = [f"i{ind}" for ind in range(loop_depth)]
219 current_body = loop_body
220 for j in range(loop_depth):
221 depth += 1
222 loop = ast.For(
223 target=ast.Name(id=loop_vars[depth-1], ctx=ast.

Store()),
224 iter=ast.Call(func=ast.Name(id=’range’, ctx=ast.

Load()), args=[loop_index(depth)], keywords
=[]),

225 body=[],
226 orelse=[]
227 )
228 current_body.append(loop)
229 current_body = loop.body
230
231 # Decide to add a gate call in the loop body
232 add_gate=random.randint(0,2)
233 for i in range(add_gate):
234 gate_call = generate_gate_call(depth, gate)
235 current_body.append(gate_call)
236
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237 choices = [ast.Name(id=’n’, ctx=ast.Load())] + [ast.Name
(id=var, ctx=ast.Load()) for var in loop_vars]

238 qubit_index = random.choice(choices)
239 gate_call = generate_gate_call(depth, gate)
240 current_body.append(gate_call)
241 body.extend(loop_body)
242 else:
243 gate_call = generate_gate_call(depth, gate)
244 body.append(gate_call)
245
246 body.append(ast.Return(value=ast.Name(id="qc", ctx=ast.Load())))
247
248 function_def = ast.FunctionDef(
249 name="generate_random_circuit_ast",
250 args=args,
251 body=body,
252 decorator_list=[],
253 returns=None,
254 type_comment=None
255 )
256
257 module = ast.Module(body=[function_def], type_ignores=[])
258 ast.fix_missing_locations(module)
259 return module
260 if __name__ == "__main__":
261
262
263 # data = []
264 # for i in range (1000):\
265 # data.append(random_positive_gaussian_integers(mu=0, sigma=2))
266
267 # plt.figure(figsize=(10, 6))
268 # plt.hist(data, bins=range(0, max(data) + 2), edgecolor=’black

’, alpha=0.75)
269 # plt.title(’Histogram of 1000 Positive Gaussian Integers’)
270 # plt.xlabel(’Value’)
271 # plt.ylabel(’Frequency’)
272 # plt.xticks(range(0, 11))
273 # plt.grid(True)
274 # plt.show()
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275 # print(random_positive_gaussian_integers())
276
277 # Example usage
278 operations = rotation_gates + multi_qubit_gates +

three_qubit_gates # List of gates to use
279 random_circuit = generate_random_circuit_ast(1, operations, 1)
280 print(ast.unparse(random_circuit))
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1 import ast
2 from tqdm import tqdm
3 import subprocess
4 from circuit_generation import *
5
6
7 from copy import deepcopy
8 import os
9 import shutil

10 import importlib.util
11 from qiskit.circuit.exceptions import CircuitError
12 from qiskit import QuantumCircuit, Aer, transpile
13 from qiskit.quantum_info import Operator, state_fidelity,

process_fidelity
14 import Levenshtein
15 import time
16 from tqdm import tqdm
17 rotation_gates = [’rx’, ’ry’, ’rz’, ’u1’, ’u2’, ’u3’, ’crx’, ’cry’,

’crz’, ’cp’, ’cu1’, ’cu3’]
18 multi_qubit_gates = [’cx’, ’cz’, ’swap’, ’ch’, ’csx’, ’cy’, ’ccx’,

’cswap’, ’cu’, ’cp’]
19 three_qubit_gates = [’ccx’, ’cswap’] # Toffoli (CCX) gate and

Fredkin (CSWAP) gate
20
21
22 def analyze_ast(node, output=False):
23 gate_calls = []
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24 qc_calls = []
25 parent_info = []
26 index_depths = []
27
28 def visit_node(node, depth=0):
29 if isinstance(node, ast.Call) and isinstance(node.func, ast.

Attribute) and isinstance(node.func.value, ast.Name) and
node.func.value.id == ’qc’:

30 qc_calls.append(node)
31 index_depth = 0
32 args = [ast.unparse(arg) for arg in node.args]
33 if output:
34 print(f"{’ ’ * depth}Found qc call: {ast.dump(node)}

at depth {depth}")
35 print(f"{’ ’ * depth}Arguments: {args}")
36 for arg in node.args:
37 arg_str = ast.unparse(arg)
38 if ’pi’ in arg_str:
39 continue
40 # Check for ’i’ and find the maximum number following

’i’
41 for part in arg_str.split():
42 if ’i’ in part:
43 i_pos = part.find(’i’)
44 if i_pos != -1 and i_pos < len(part) - 1:
45 num_str = ’’.join(filter(str.isdigit, part

[i_pos+1:]))
46 if num_str:
47 index_depth = max(index_depth, int(

num_str) + 1)
48 index_depths.append(index_depth)
49 if output:
50 print(f"{’ ’ * depth}Index Depth: {index_depth}\n")
51 for child in ast.iter_child_nodes(node):
52 visit_node(child, depth + 1)
53
54 visit_node(node)
55 return gate_calls, qc_calls, parent_info, index_depths
56
57
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58
59
60
61
62 class genetic_Decompiler:
63 def __init__(self, algorithm_name, qubit_limit=20, generations

=100, pop_size=50, max_length=10,
64 perform_crossover=True,crossover_rate=0.3,

new_gen_rate=0.2,mutation_rate=0.1,
65 compare_method=’l_by_l’,max_loop_depth=2,

mutation_rate_2=0.5, perform_annealing=False,
66 perform_mutation=True, selection_method=’tournament’,

operations = [’h’, ’x’, ’cx’]):
67 self.algorithm_name = algorithm_name
68 self.qubit_limit = qubit_limit
69 self.generations = generations
70 self.pop_size = pop_size
71 self.max_length = max_length
72 self.crossover_rate=crossover_rate
73 self.mutation_rate=mutation_rate
74 self.mutation_rate_2 = mutation_rate_2
75 self.new_gen_rate=new_gen_rate
76 self.max_loop_depth=max_loop_depth
77 self.perform_crossover = perform_crossover
78 self.compare_method=compare_method
79 self.perform_annealing = perform_annealing
80 self.perform_mutation = perform_mutation
81 self.selection_method = selection_method
82 self.operations=operations
83 # Initialize the path for saving files related to the

algorithm
84 self.path = os.path.join(’genetic_deQ’, self.algorithm_name)
85 self.qasm_path=os.path.join(’genetic_deQ_qasm’, self.

algorithm_name)
86 os.makedirs(self.path, exist_ok=True) # Create the directory

if it does not exist
87 os.makedirs(self.qasm_path, exist_ok=True)
88
89
90 def generate_initial_population(self,size):
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91 population = []
92 for _ in range(size):
93 # num_qubits = random.randint(2, self.qubit_limit)
94 num_nodes = random.randint(1, self.max_length)
95 ast_circuit = generate_random_circuit_ast( num_nodes,

self.operations,max_loop_depth=self.max_loop_depth)
96 population.append(ast_circuit)
97 return population
98
99

100 def mutate(self, ast_circuit, mutation_rate_2=0.5, output=False)
:

101 mutation_rate_2 = self.mutation_rate_2
102 # Create a deep copy of the AST to avoid modifying the

original AST
103 ast_circuit_copy = deepcopy(ast_circuit)
104
105 # Analyze the AST
106 gate_calls, qc_calls, parent_info, index_depths =

analyze_ast(ast_circuit_copy, output=False)
107
108 if not qc_calls:
109 return ast_circuit_copy # No gate calls to mutate
110
111 # Randomly choose mutation type
112 mutation_type = random.choices([’insert’, ’modify’], weights

=[0.2, 0.8])[0]
113
114 if mutation_type == ’insert’:
115 # Randomly select a parent node to insert into
116 if not parent_info:
117 return ast_circuit_copy # No parent nodes to insert

into
118
119 parent_node, parent_index = random.choice(parent_info)
120 new_gate = generate_gate_call(random.choice(self.

operations))
121 parent_node.body.insert(parent_index, new_gate)
122 if output:
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123 print(f"Inserted new gate: {ast.unparse(new_gate)} at
index {parent_index}")

124
125 elif mutation_type == ’modify’:
126 # Randomly select a qc call to mutate with a probability
127 for qc_call, index_depth in zip(qc_calls, index_depths):
128 if random.random() < mutation_rate_2:
129 if output:
130 original_code = ast.unparse(qc_call)
131
132 # Extract arguments and classify them
133 for i, arg in enumerate(qc_call.args):
134 arg_str = ast.unparse(arg)
135 if ’pi’ in arg_str:
136 # Mutate phase argument
137 qc_call.args[i] = random_phase_expr(

index_depth)
138 else:
139 # Mutate index argument
140 new_expr = random_expr(index_depth, 3, 1)
141 qc_call.args[i] = random_qubit_expr(

new_expr)
142
143 if output:
144 new_code = ast.unparse(qc_call)
145 print(f"Modified code from: {original_code} to

: {new_code}")
146
147 ast.fix_missing_locations(ast_circuit_copy)
148 return ast_circuit_copy
149
150 def crossover(self, parent1, parent2):
151 # Select crossover points
152 index1 = random.randint(1, len(parent1.body[0].body) - 2)
153 index2 = random.randint(1, len(parent2.body[0].body) - 2)
154
155 # Swap subcircuits
156 new_body1 = parent1.body[0].body[:index1] + parent2.body[0].

body[index2:]
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157 new_body2 = parent2.body[0].body[:index2] + parent1.body[0].
body[index1:]

158
159 # Construct new ASTs
160 child1 = ast.Module(body=[ast.FunctionDef(
161 name=parent1.body[0].name,
162 args=parent1.body[0].args,
163 body=new_body1,
164 decorator_list=[]
165 )], type_ignores=[])
166
167 child2 = ast.Module(body=[ast.FunctionDef(
168 name=parent2.body[0].name,
169 args=parent2.body[0].args,
170 body=new_body2,
171 decorator_list=[]
172 )], type_ignores=[])
173
174 ast.fix_missing_locations(child1)
175 ast.fix_missing_locations(child2)
176
177 return child1, child2
178
179 def select_parents(self, population, fitness_scores,

selection_method=’tournament’, k=3):
180 if selection_method == ’roulette’:
181 return self.roulette_wheel_selection(population,

fitness_scores)
182 elif selection_method == ’tournament’:
183 return self.tournament_selection(population,

fitness_scores, k)
184 elif selection_method == ’rank’:
185 return self.rank_selection(population, fitness_scores)
186 elif selection_method == ’random’:
187 return self.random_selection(population)
188 elif selection_method == ’weighted_roulette’:
189 return self.weighted_roulette_wheel_selection(population

, fitness_scores)
190 else:
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191 raise ValueError(f"Unknown selection method: {
selection_method}")

192
193 def roulette_wheel_selection(self, population, fitness_scores):
194 total_fitness = sum(fitness_scores)
195 probabilities = [score / total_fitness for score in

fitness_scores]
196 selected_indices = random.choices(range(len(population)),

weights=probabilities, k=2)
197 return population[selected_indices[0]], population[

selected_indices[1]]
198
199 def tournament_selection(self, population, fitness_scores, k=3):
200 selected_indices = random.sample(range(len(population)), k)
201 selected_individuals = [(fitness_scores[i], population[i])

for i in selected_indices]
202 parent1 = max(selected_individuals, key=lambda x: x[0])[1]
203 parent2 = max(selected_individuals, key=lambda x: x[0])[1]
204 return parent1, parent2
205
206 def rank_selection(self, population, fitness_scores):
207 sorted_population = sorted(zip(fitness_scores, population),

key=lambda x: x[0])
208 rank_probabilities = [(i + 1) / len(sorted_population) for i

in range(len(sorted_population))]
209 selected_indices = random.choices(range(len(population)),

weights=rank_probabilities, k=2)
210 return sorted_population[selected_indices[0]][1],

sorted_population[selected_indices[1]][1]
211
212 def random_selection(self, population):
213 parent1, parent2 = random.sample(population, 2)
214 return parent1, parent2
215
216 def weighted_roulette_wheel_selection(self, population,

fitness_scores, weight=2.0):
217 total_fitness = sum(fitness_scores)
218 weighted_fitness = [score ** weight for score in

fitness_scores]
219 total_weighted_fitness = sum(weighted_fitness)
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220 probabilities = [wf / total_weighted_fitness for wf in
weighted_fitness]

221 selected_indices = random.choices(range(len(population)),
weights=probabilities, k=2)

222 return population[selected_indices[0]], population[
selected_indices[1]]

223
224 def save(self, population):
225 # Clear all files in the target directory before saving new

files
226 for filename in os.listdir(self.path):
227 file_path = os.path.join(self.path, filename)
228 try:
229 if os.path.isfile(file_path) or os.path.islink(

file_path):
230 os.unlink(file_path) # Remove file
231 elif os.path.isdir(file_path):
232 shutil.rmtree(file_path) # Remove directory
233 except Exception as e:
234 print(f’Failed to delete {file_path}. Reason: {e}’)
235
236 # Iterate over the population and save each individual’s

Python code to a file
237 for index, individual in enumerate(population):
238 # Convert AST to Python code
239 python_code = ast.unparse(individual)
240
241 # Create the filename, including the algorithm name and

index
242 filename = os.path.join(self.path, f"{self.

algorithm_name}_{index}.py")
243
244 # Write Python code to the file
245 with open(filename, ’w’) as file:
246 file.write(python_code)
247
248 def get_quantum_gates_from_qasm(self):
249 target_qasm_dir = "Circuits"
250 all_gates = set()
251
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252 for i in range(2, self.qubit_limit + 1):
253 target_qasm_file = os.path.join(target_qasm_dir, f"{self

.algorithm_name}_{i}.qasm")
254
255 if os.path.exists(target_qasm_file):
256 with open(target_qasm_file, ’r’) as file:
257 qasm_str = file.read()
258
259 quantum_circuit = QuantumCircuit.from_qasm_str(

qasm_str)
260
261 for instruction in quantum_circuit.data:
262 gate_name = instruction[0].name
263 all_gates.add(gate_name)
264
265 return list(all_gates)
266
267 def save_qasm(self):
268 for filename in os.listdir(self.path):
269 if filename.endswith(’.py’):
270 full_py_path = os.path.join(self.path, filename)
271
272 # Read and modify the script as discussed above
273 with open(full_py_path, ’r’) as file:
274 module_code = "from qiskit import QuantumCircuit\

nimport numpy as np\nimport random\nfrom math
import pi\n" + file.read()

275
276 local_namespace = {}
277 exec(module_code, local_namespace)
278
279 # Set up the directory for QASM files
280 file_base_name = filename[:-3] # Remove ’.py’

extension
281 qasm_dir_path = os.path.join(self.qasm_path,

file_base_name)
282 os.makedirs(qasm_dir_path, exist_ok=True)
283
284 # Generate QASM files for each qubit count
285 for i in range(2, self.qubit_limit + 1):
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286 try:
287 # Print the generated Python code for

debugging
288 # generated_code = module_code + f"\n\

ngenerate_random_circuit_ast({i})"
289 # print(f"Running generated code for {

file_base_name} with {i} qubits:\n{
generated_code}")

290
291
292 qc = local_namespace[’

generate_random_circuit_ast’](i)
293
294 modified_circuit = QuantumCircuit(qc.

num_qubits)
295 for gate, qargs, cargs in qc.data:
296 if gate.name == ’cx’:
297 control_qubit, target_qubit = qargs
298 if control_qubit.index == target_qubit

.index:
299 # Adjust target qubit index to be

different from control qubit
index

300 target_qubit = qc.qubits[(
target_qubit.index + 1) % qc.
num_qubits]

301 modified_circuit.cx(control_qubit,
target_qubit)

302 else:
303 modified_circuit.cx(control_qubit,

target_qubit)
304 else:
305 modified_circuit.append(gate, qargs,

cargs)
306
307 qasm_output = modified_circuit.qasm()
308 except (CircuitError, ZeroDivisionError) as e:
309 # Handle both CircuitError and ZeroDivisionError
310 # print(f"Error generating QASM for {filename}

with {i} qubits: {e}")
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311 qasm_output = "" # Save an empty QASM file if
there’s an error

312
313 qasm_filename = os.path.join(qasm_dir_path, f"{

file_base_name}_{i}.qasm")
314 with open(qasm_filename, ’w’) as f:
315 f.write(qasm_output)
316
317
318 def qasm_to_unitary(self, qasm_file_path):
319 # Read QASM file and create a quantum circuit
320 with open(qasm_file_path, ’r’) as file:
321 qasm_str = file.read()
322
323 quantum_circuit = QuantumCircuit.from_qasm_str(qasm_str)
324
325 # Use Aer simulator to get the unitary matrix
326 backend = Aer.get_backend(’unitary_simulator’)
327 transpiled_circuit = transpile(quantum_circuit, backend)
328
329 # Get the unitary matrix
330 job = backend.run(transpiled_circuit)
331 unitary_matrix = job.result().get_unitary(transpiled_circuit

)
332
333 return unitary_matrix
334
335 def qasm_to_gate_sequence(self, qasm_file_path):
336 # Read QASM file and create a quantum circuit
337 with open(qasm_file_path, ’r’) as file:
338 qasm_str = file.read()
339
340 quantum_circuit = QuantumCircuit.from_qasm_str(qasm_str)
341
342 # Extract gate sequence
343 gate_sequence = []
344 for instruction in quantum_circuit.data:
345 gate_name = instruction[0].name
346 qubits = [qubit.index for qubit in instruction[1]]
347 if gate_name in rotation_gates:
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348 params = [param for param in instruction[0].params]
349 gate_sequence.append((gate_name, tuple(qubits),

params))
350 else:
351 gate_sequence.append((gate_name, tuple(qubits)))
352
353 return gate_sequence
354
355 def gate_sequence_similarity(self, seq1, seq2):
356 seq1_str = ’ ’.join([f"{gate[0]}{gate[1]}{[f’{param:.6f}’

for param in gate[2]]}" if len(gate) == 3 else f"{gate
[0]}{gate[1]}" for gate in seq1])

357 seq2_str = ’ ’.join([f"{gate[0]}{gate[1]}{[f’{param:.6f}’
for param in gate[2]]}" if len(gate) == 3 else f"{gate
[0]}{gate[1]}" for gate in seq2])

358
359 ### Debugging line
360 # print(f"Sequence 1: {seq1_str}")
361 # print(f"Sequence 2: {seq2_str}")
362
363 max_len = max(len(seq1_str), len(seq2_str))
364 if max_len == 0:
365 return 1.0
366
367 return 1 - (Levenshtein.distance(seq1_str, seq2_str) /

max_len)**(1/2)
368
369 def gate_frequency_similarity(self, qasm_file_path1,

qasm_file_path2):
370 def get_gate_frequencies(qasm_file_path):
371 with open(qasm_file_path, ’r’) as file:
372 qasm_str = file.read()
373
374 quantum_circuit = QuantumCircuit.from_qasm_str(qasm_str)
375 gate_count = {}
376 for instruction in quantum_circuit.data:
377 gate_name = instruction[0].name
378 if gate_name in gate_count:
379 gate_count[gate_name] += 1
380 else:
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381 gate_count[gate_name] = 1
382 return gate_count
383
384 freq1 = get_gate_frequencies(qasm_file_path1)
385 freq2 = get_gate_frequencies(qasm_file_path2)
386
387 all_gates = set(freq1.keys()).union(set(freq2.keys()))
388 # Check if the gate types are the same
389 if set(freq1.keys()) != set(freq2.keys()):
390 return 0.0 # Directly return 0 if the gate types are

different
391 vec1 = [freq1.get(gate, 0) for gate in all_gates]
392 vec2 = [freq2.get(gate, 0) for gate in all_gates]
393
394 dot_product = sum([vec1[i] * vec2[i] for i in range(len(

all_gates))])
395 norm1 = sum([x ** 2 for x in vec1]) ** 0.5
396 norm2 = sum([x ** 2 for x in vec2]) ** 0.5
397
398 return dot_product / (norm1 * norm2)
399
400 def compare_qasm_lcs(self,qasm_lines, target_qasm_lines):
401 def lcs_length(X, Y):
402 m = len(X)
403 n = len(Y)
404 L = [[0] * (n + 1) for i in range(m + 1)]
405
406 for i in range(m + 1):
407 for j in range(n + 1):
408 if i == 0 or j == 0:
409 L[i][j] = 0
410 elif X[i - 1].strip() == Y[j - 1].strip():
411 L[i][j] = L[i - 1][j - 1] + 1
412 else:
413 L[i][j] = max(L[i - 1][j], L[i][j - 1])
414
415 return L[m][n]
416 # Calculate the length of the longest common subsequence
417 lcs_len = lcs_length(qasm_lines, target_qasm_lines)
418
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419 # Calculate similarity score based on the length of LCS over
the total lines in target_qasm

420 score = lcs_len / len(target_qasm_lines) if
target_qasm_lines else 0

421 return score
422
423 def compare_qasm(self, qasm, target_qasm):
424 def is_file_empty(file_path):
425 return os.path.getsize(file_path) == 0
426
427 if is_file_empty(qasm) or is_file_empty(target_qasm):
428 return 0
429 try:
430 if self.compare_method == ’fidelity’:
431 # Calculate unitary matrices for both QASM files
432 unitary1 = self.qasm_to_unitary(qasm)
433 unitary2 = self.qasm_to_unitary(target_qasm)
434
435 # Calculate fidelity
436 fidelity_score = process_fidelity(unitary1,unitary2)
437 return fidelity_score
438
439 elif self.compare_method == ’seq_similarity’:
440 # Gate sequence similarity
441 seq1 = self.qasm_to_gate_sequence(qasm)
442 seq2 = self.qasm_to_gate_sequence(target_qasm)
443 seq_similarity = self.gate_sequence_similarity(seq1,

seq2)
444 return seq_similarity
445
446 elif self.compare_method == ’freq_similarity’:
447 # Gate frequency similarity
448 freq_similarity = self.gate_frequency_similarity(qasm

, target_qasm)
449 return freq_similarity
450
451
452 elif self.compare_method == ’l_by_l’:
453 with open(qasm, ’r’) as file1, open(target_qasm, ’r’)

as file2:
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454 qasm_lines = file1.readlines()
455 target_qasm_lines = file2.readlines()
456
457 score = self.compare_qasm_lcs(qasm_lines,

target_qasm_lines)
458
459 return score
460
461 elif self.compare_method == ’combined’:
462 # Gate sequence similarity
463 seq1 = self.qasm_to_gate_sequence(qasm)
464 seq2 = self.qasm_to_gate_sequence(target_qasm)
465 seq_similarity = self.gate_sequence_similarity(seq1,

seq2)
466
467 # Gate frequency similarity
468 freq_similarity = self.gate_frequency_similarity(qasm

, target_qasm)
469
470 with open(qasm, ’r’) as file1, open(target_qasm, ’r’)

as file2:
471 qasm_lines = file1.readlines()
472 target_qasm_lines = file2.readlines()
473
474 lcs_similarity = self.compare_qasm_lcs(qasm_lines

,target_qasm_lines)
475
476 # combined_score = (seq_similarity + freq_similarity

+ inter_section_score) / 3
477 combined_score = (seq_similarity * freq_similarity *

lcs_similarity)**(1/3)
478 return combined_score
479
480
481 except FileNotFoundError:
482 print(f"Error: One of the files not found ({qasm} or {

target_qasm}).")
483 return 0
484 except Exception as e:
485 print(f"Error comparing QASM files: {str(e)}")

Version of August 21, 2024– Created August 21, 2024 - 06:42

95



96 python code for Genetic Decomplier

486 return 0
487
488 def evaluate(self, individual, individual_index):
489 qasm_dir = os.path.join(self.qasm_path, f"{self.

algorithm_name}_{individual_index}")
490 target_qasm_dir = "Circuits"
491
492 # Calculate score for each QASM file
493 scores = []
494 for i in range(2, self.qubit_limit+1):
495 qasm_file = os.path.join(qasm_dir, f"{self.

algorithm_name}_{individual_index}_{i}.qasm")
496 target_qasm_file = os.path.join(target_qasm_dir, f"{self

.algorithm_name}_{i}.qasm")
497 ## debug
498 # print(qasm_file,target_qasm_file)
499 score = self.compare_qasm(qasm_file, target_qasm_file)
500 scores.append(score)
501
502 # Return the average score
503
504 average_score = sum(scores) / len(scores) if scores else 0
505 return average_score
506
507
508 def run(self):
509 if not self.perform_crossover and not self.perform_mutation:
510 print("Warning: Both crossover and mutation are disabled

; the population will not evolve.")
511
512 best_score = float(’-inf’)
513 best_individual = None
514 best_generation_index = -1
515
516 # Initialize lists to store scores
517 best_scores = []
518 all_scores = []
519 best_code=[]
520
521 # Generate initial population once at the beginning
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522 population = self.generate_initial_population(self.pop_size)
523
524 for generation in range(self.generations):
525 start_time = time.time()
526
527 # Save the current population state and QASM data
528 self.save(population)
529 self.save_qasm()
530
531 # Evaluate fitness for each individual
532 fitness_scores = [self.evaluate(individual, index) for

index, individual in enumerate(population)]
533
534 # Save all fitness scores for this generation
535 all_scores.append(fitness_scores)
536
537 # Sort population by fitness (descending order)
538 sorted_population = sorted(zip(fitness_scores,

population), key=lambda pair: pair[0], reverse=True)
539 sorted_scores, next_generation = zip(*sorted_population)
540 next_generation = list(next_generation)
541 sorted_scores = list(sorted_scores)
542
543 # Select the best individual and corresponding score
544 best_individual = next_generation[0]
545 best_score = sorted_scores[0]
546
547 # Save the best score for this generation
548 best_scores.append(best_score)
549
550 # Find the index of the best individual in the original

population
551 best_individual_index = fitness_scores.index(best_score)
552
553 # Print debugging information
554 # print(f"Algorithm : {self.algorithm_name} Generation {

generation + 1}: Best score = {best_score}")
555
556 # # If the best score is 1, stop the iteration
557 # if best_score == 1:
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558 # break
559 new_population = []
560
561 # Number of individuals to be generated by each method
562 crossover_count = int(self.pop_size * self.

crossover_rate) if self.perform_crossover == True
else 0

563 mutation_count = int(self.pop_size * self.mutation_rate)
if self.perform_mutation == True else 0

564 new_gen_count = int(self.pop_size * self.new_gen_rate)
565 elite_count = self.pop_size - crossover_count -

mutation_count - new_gen_count
566
567 # Preserve elite individuals
568 new_population.extend(next_generation[:elite_count])
569
570 # Apply crossover to generate new individuals
571 while len(new_population) < elite_count +

crossover_count:
572 parent1, parent2 = self.select_parents(

next_generation, sorted_scores, self.
selection_method)

573
574 child1, child2 = self.crossover(parent1, parent2)
575
576 new_population.extend([child1, child2])
577
578 # Apply mutation to new individuals
579 for _ in range(mutation_count):
580 if new_population:
581 individual_to_mutate = random.choice(

new_population)
582 new_population.append(self.mutate(

individual_to_mutate))
583
584 # Generate new individuals
585 new_population.extend(self.generate_initial_population(

new_gen_count))
586 individual_code = ast.unparse(best_individual) if

best_individual else "No best individual found"
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587
588 best_code.append(individual_code)
589
590 # Ensure the population size is correct after all

operations
591 # new_population = new_population[:self.pop_size]
592
593 population = new_population
594
595 # Apply annealing to the mutation_rate_2
596 if self.perform_annealing:
597 self.mutation_rate_2 = max(self.mutation_rate_2 *

0.99, 0.1)
598
599 end_time = time.time()
600 time_taken = end_time - start_time
601 tqdm.write(f"Generation {generation + 1}/{self.

generations} completed in {time_taken:.2f} seconds")
602
603 # Unparse the AST of the best individual if found
604
605 return best_code, best_scores, all_scores
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Appendix C
Qiskit Code for Circuit Simulation

1 from qiskit import QuantumCircuit, transpile, Aer, assemble
2 from qiskit.visualization import plot_histogram, circuit_drawer
3 import matplotlib.pyplot as plt
4
5 # Create a quantum circuit with 3 qubits
6 qc = QuantumCircuit(3)
7
8 # Create a GHZ state
9 qc.h(0) # Apply Hadamard gate on qubit 0

10 qc.cx(0, 1) # Apply CNOT (Controlled-NOT) gate between qubit 0 and
1

11 qc.cx(0, 2) # Apply CNOT gate between qubit 0 and 2
12
13 # Simulate the circuit
14 simulator = Aer.get_backend(’statevector_simulator’)
15 result = simulator.run(qc).result()
16 statevector = result.get_statevector()
17
18 # Print the final statevector
19 print("Final statevector:")
20 print(statevector)
21
22 # Measure qubits and display histogram
23 qc.measure_all()
24 qc.draw(output=’mpl’, filename=’ghz_state_measurement.png’) # Save

measurement circuit plot as image
25 print(qc)
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26
27 # Simulate the measurement circuit
28 simulator = Aer.get_backend(’qasm_simulator’)
29 job = assemble(qc)
30 result = simulator.run(job).result()
31 counts = result.get_counts()
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104 Qiskit code Generated by decompiler

1 # Real code for ry_decomposed
2 angle = pi
3 for i in range(n):
4 qc.h(i)
5 qc.rx(angle, i)
6 qc.h(i)
7 angle /= 2
8 return qc

1 # Real code for
ry_decomposed_rx_rz

2 angle = pi
3 for i in range(n):
4 qc.rz(-pi/2, i)
5 qc.rx(angle, i)
6 qc.rz(pi/2, i)
7 angle /= 2
8 return qc

1 # Decompiled code for ry_decomposed
2 qc.rx(pi * (1 / (2 ** (n - n) + (n - n + 0))), (n + n) % n)
3 for i0 in range(n):
4 qc.h((i0 - n + n) % n)
5 qc.h((i0 - 1 + 1 - n - 0) % n)
6 for i1 in range(abs(n - n - 1)):
7 qc.h((n - 1 - 1 - 0 - 1) % n)
8 qc.rx(pi * (1 / (2 ** (n - n) + (n - n + 0))), (n + n) % n)
9 qc.h((n - n - 0 - n - 1) % n)

10 return qc

1 # Decompiled code for ry_decomposed_rx_rz
2 for i0 in range(n):
3 qc.rz(pi * (1 / (2 ** (n - n) + (n - n + 1))), (n - 1 + n

+ 1 + 0) % n)
4 qc.rz(pi * (1 / (2 ** (n - n) + (n - n + 1))), (n - 0 + 1

- 0 + 1) % n)
5 qc.rz(-(pi * (1 / (2 ** (n + 0 - n) + (n + 0 - n + 1)))),

(i0 + n) % n)
6 qc.rx(pi * (1 / (2 ** (n - n) + (n - n + 1))), (n - 0 + 0 -

n + n) % n)
7 return qc

Figure D.1: Decomposed qiskit code for ry circuits in different decomposition
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1 # Decompiled code code for ghz_state
2 qc.h((n - n) % n)
3 for i0 in range(n):
4 qc.cx((i0 - 1 + 0) % n, (i0 + n) % n)
5 return qc

1 # Decompiled code for qpe_dec
2 qc.h((n - 1 + n - 1 - n) % n)
3 qc.h((n - 1 + n - 1 - n) % n)
4 qc.swap((n + 0) % n, (n - 1) % n)
5 qc.h((n - 1 + n - 1 - n) % n)
6 qc.h((n - 1 + n - 1 - n) % n)
7 qc.h((n - 1 + n - 1 - n) % n)
8 qc.h((n - 1 + n - 1 - n) % n)
9 for i0 in range(n):

10 for i1 in range(abs(n + n - 1)):
11 qc.cp(pi * (1 / (2 ** (i0 - 0 - 0) + (n - n - 0

+ 0))), (n - 1 + 0 + 1 - n) % n, (n + 0 +
1 - 1 - 1) % n)

12 qc.cp(pi * (1 / (2 ** (n - n) + (n - 0 + 0))),
(n + 1 - 0 - 0 - 1) % n, (n + 1 + 1 - 1 + n
) % n)

13 return qc

1 # Decompiled code for qft_decom
2 qc.h((n - n - 0 - 0 - 0) % n)
3 for i0 in range(n):
4 qc.cp(-(pi * (1 / (2 ** (n - n) + (n - n + 1)))),

(n + n + 0 + 0 - 1) % n, (n + 1 - 1 + 0 + 0) %
n)

5 qc.cp(pi * (1 / (2 ** (n - n + 0) + (i0 + 0 + 0 +
1))), (i0 + 1) % n, (i0 - n + n) % n)

6 for i0 in range(n):
7 qc.h((i0 + n - 0 + 1 + n) % n)
8 qc.swap((n + n - 1 + 0 + 1) % n, (n - 0 - 0 - 1 - n) %

n)
9 return qc

Figure D.2: Decomplied qiskit code for GHZ, qft_decom, and qpe_dec circuits
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