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Abstract

In quantum information theory, the presence of Bell non-local correlations
is a key indicator of non-classical behavior in multipartite quantum

systems. However, non-locality is not exclusive to quantum mechanics;
more general theories with stronger non-local correlations than those
achievable within the quantum formalism can be constructed. While

distinguishing classical (local) correlations from non-local correlations can,
in principle, be accomplished by a finite number of linear constraints

called Bell inequalities, distinguishing between quantum and
post-quantum correlations requires solving a hierarchy of SDP relaxations.
To simplify the certification of quantum correlations, a whole research line
has focused on searching for an operational principle that can explain the
limited strength of quantum correlations. Among the proposed principles,

information causality (IC) stands out as the most promising, though
deriving general correlation bounds from it is also very complex.

We review the various attempts to formalise IC and their effectiveness in
constraining bipartite non-locality, as well as the challenges encountered

in studying this principle. In particular, we perform numerical
experiments to showcase the insufficiency of all the currently proposed IC
bounds to capture the full potential of the principle for correlations near
the quantum boundary. Furthermore, we demonstrate the instability of

two out of three bounds under non-locality distillation.
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Chapter 1
Introduction

Classical theories of nature are built on the idea that spatially separated
objects exist independently and influence each other only through local
interactions. Quantum mechanics, a cornerstone theory for physical sys-
tems on the smallest scales, fundamentally challenges this classical view
by featuring phenomena like entanglement, superposition, and contextu-
ality —concepts that are widely known to contrast sharply with our every-
day experiences on the macro-scale. Despite its counterintuitive aspects,
quantum mechanics has proven remarkably successful in predicting and
explaining experimental results. This success is noteworthy, given that its
core formalism —involving state vectors, unitary evolution, and measure-
ment postulates —is largely axiomatic. While these axioms were motivated
by experimental observations, their abstract mathematical nature and the
lack of an intuitive physical justification has led to a line of research that
investigates whether quantum theory is the most general theory. More
specifically, the question was raised whether any of the non-classical quan-
tum effects are special to quantum physics or if alternative (hypothetical)
theories can predict equivalent or even stronger phenomena. [1]

Central in this investigation has been the phenomenon of non-locality.
Non-locality refers to the idea that systems, even when separated by vast
distances, can exhibit correlations that cannot be explained by local actions
and interactions alone. Importantly, this is unlike the more general con-
cept of entanglement, which can sometimes be explained through classical
correlations. In 1964, John Bell famously proved through his theorem [2]
the occurrence of non-locality in multipartite quantum systems. This result
ruled out an alternative explanation for non-local correlations, originally
suggested in the EPR paper [3], which was based on the idea of "hidden"
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variables.

Meanwhile, non-locality has found several applications in the certification
of quantum devices [4, 5], cryptography [6–8] and the generation of ran-
domness [9, 10], for example. Moreover, it turns out that non-locality is ac-
tually quite a fundamental phenomenon as it implies also some other non-
classical features of quantum physics, like non-determinism [11]. There-
fore, a seminal paper [12] by Popsecu and Rohrlich suggested to focus
research on hypothetical theories which exhibit non-locality but still com-
ply with relativistic causality. In the same work, they showed that this
set of theories is much larger than the set of theories compatible with the
quantum formalism, demonstrating that non-locality is clearly not a spe-
cial feature of quantum mechanics. Since then, much effort was spent on
finding physical principles that could serve as additional axioms, comple-
menting the occurrence of non-locality and the adherence to relativistic
causality. The hope is that these constraints on physical systems jointly
identify quantum theory uniquely from the broader set of all non-local
causal theories. While this was quickly achieved within the framework of
so-called generalized probabilistic theories (GPTs) [13], GPTs still enforce
a certain structure on (the fundamental description of) physical theories
based on abstract entities like "states" and "effects". The ambition of the re-
search line initiated by Popescu and Rohrlich, however, was rather to find
a principle whose validity can be verified solely through the observation of
certain non-local correlations in the experimental statistics of multipartite
systems. That is, without assuming anything about how these statistics
arise within the systems.

Many such operational principles [14] have been proposed in the last decades,
but all of them were found to hold for non-local correlations that form a
strictly larger sets than the set of valid quantum correlations. In fact, there
is strong evidence that operational principles can ultimately only identify
almost-quantum theory [15], which is a non-local theory with a formalism
very similar to that of quantum theory but slightly more general with the
respect to which measurements are allowed within a given multipartite
system.

The principle of Information causality (IC), as originally proposed in [16]
by Pawlowski et al, is the only exception for which it is still unknown to
what extent it can characterise the set of non-local quantum correlations
and whether it can rule out almost-quantum theory as a physical theory
of nature. Though it was already shown that no operational principle,
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including IC, can exactly describe the set of quantum correlations if its
formulation is restricted to bipartite systems. [17]

Pragmatically speaking, IC says that the amount of information that can
be gained by a receiver about a sender’s dataset should not exceed the
amount of information that may be transmitted to the receiver via some
communication channel [16]. In the special case that nothing is communi-
cated, this reduces to the principle of (relativistic) causality, implying that
the receiver cannot obtain any information about the dataset. Basically, IC
represents the idea that the existence of information in one system (e.g. the
receiver) should not depend on the simultaneous existence of information
in a different, spatially separate system (e.g. the sender) [18].

The first few works [16, 19–21] on IC already demonstrated its remark-
able success and superior strength over other principles in approximating
extremal quantum correlations. However, they also showcased some defi-
ciencies and the challenges in making general claims about which non-local
correlations satisfy the IC principle, limiting their results to very specific bi-
partite scenarios. Two other works, [22] and [23], independently made first
attempts to generalise the study of IC by considering bipartite systems in
more abstract frameworks, like causal structures [22], compared to the orig-
inal IC paper [16]. However, even after a decade of research, there is still
no convergent upper-bound on the set of non-local correlations that satisfy
IC. So for many non-local correlations, it remains inconclusive whether
they truly satisfy the IC principle or not.

Beside its use in bounding non-locality, IC was also shown to rule out
very weak and very strong forms of compositing subsystems (i.e. certain
tensor products) [24]. In addition, IC can be applied outside the field of
quantum foundations. For example, IC might be useful to simplify pro-
cedures for the device-independent certification of quantum devices that
exploit non-local correlations.
Moreover, as recently illustrated in [25], the security of certain quantum
key distribution (QKD) protocols can be demonstrated under the reason-
able assumption that both the communicating parties and the attacker
adhere to the principle of information causality.

As very recent works [26, 27] made substantial progress in simplifying and
systematizing the derivation of constraints that IC imposes on non-local
correlations, we were motivated to use this for exploring various generali-
sations of the bipartite scenarios in which IC was previously studied. The
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generalisation that we investigate in the main part of this thesis is account-
ing for non-locality distillation through so-called wirings, where multiple
copies of a source of non-local correlations are combined to potentially
create a single effective source of correlations with amplified non-locality.
In the appendix, we also take a glimpse at generalisations through non-
locality recycling and multi-bit channels.

We provide an overview of the different approaches to IC and expose their
individual strengths and weaknesses, giving possible directions for fur-
ther research on this topic. In particular, we aim to address in this thesis
the following questions: (1a) What are (strongest) known bounds for IC ?
(1b) To what extent are they quantum-tight ? (1c) If there is no universally
strongest IC bound, what is the advantage of each bound and why ? (2a)
To what extent can non-locality distillation through wirings violate current
IC bounds ? (2b) Is there evidence for an IC bound that is stable under
wirings ?

Thesis outline

In chapter 2 we start by introducing the non-familiar reader to the device-
independent paradigm, the topic of Bell non-locality, non-local games and
the information causality (IC) principle. Also we give an overview on the
different efforts that have been taken to extend the set of statistics for which
we know that IC is violated with certainty. Thereby, we also introduce the
idea of non-locality distillation by means of so-called "wirings".
We then present in chapter 3 the implementation of a modular numerical
framework for studying device-independent non-locality in Julia, and we
demonstrate this framework by using it to explore the current state of re-
search on IC. Furthermore, we describe experiments on applying wirings
to assess the strength of different IC constraints, and our attempts on find-
ing new examples of wired distributions that violate the IC principle.
Finally, the thesis is concluded in chapter 4 with a discussion on the impli-
cations and limitations of our study of IC.
Appended are chapter A on the derivation and rationalisation of IC, chap-
ter B on preliminary examinations of using non-locality recycling to fur-
ther strengthen bounds on IC in non-local scenarios involving sequential
queries of no-signaling boxes, and chapter C with a schematic of the setup
for a non-local communication game involving a channel with multiple
inputs and outputs.
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Chapter 2
Background & Previous work

2.1 The device-independent characterisation of
physical experiments

Since the beginning, quantum physics has been motivated by phenomena
observed in physical experiments. As such, deriving its laws and mathe-
matical formalism from a fully operational specification has been of special
interest in theoretical research. Rather than describing the exact way that
a physical experiment is realised in the laboratory, one thus only studies
abstractly how the measurement outcomes a, b, c, ... ("outputs") of some ex-
periment are related to the values of a certain set of measurement settings
x, y, z, ... ("inputs"). In the famous Stern-Gerlach experiment, for example,
one could think of x as a binary variable that determines the orientation of
the magnetic field, while a indicates the observed direction in which the
particles are deflected due to their spin. Another interesting example is the
quantum double-slit experiment, where x ∈ [22] could determine whether
slit 1 and slit 2 are both blocked (x = 0), only slit 1 is blocked (x = 1), only
slit 2 is blocked (x = 2), or both of the two slits are blocked (x = 4). Then a
could indicate a detector "click" in a specific region of the screen behind the
slits (a ∈ {0, 1}) or, if a ∈ R, it might correspond to the exact position of the
detection on the screen. [13] In principle, there is thus no restriction in the
experimental description that require inputs x, y, z, ... or outputs a, b, c, ... to
be discrete variables.

It is important to realise that the experiment itself is a blackbox and it
only matters what the relation between inputs and outputs is, but not
how it came about. Within the blackbox there could be classical physics,
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2.1 The device-independent characterisation of physical experiments 6

quantum physics or something radically different going on. Furthermore,
the relation between inputs and outputs is generally not specified by a
deterministic algebraic expression, but in terms of some conditional prob-
ability distribution P(a, b, c, ...|x, y, z, ...). While this is not necessary if the
blackbox is restricted to classical physics, a probabilistic description is un-
avoidable in the case of a quantum blackbox due to the fundamentally
indeterministic nature of quantum mechanics.
In the most simplistic view of physical experiments, we can thus focus on
studying the structure of conditional probability distributions P(a, b, c, ...|x, y, z, ...)
while ignoring common abstract mathematical concepts from physical the-
ories, like "states". Even the notion of a "measurement" is strictly speaking
not defined since the outputs a, b, c, ... and inputs x, y, z, ... are just a set
of values without a definite meaning. Nevertheless, we will mostly re-
fer to P(a, b, c, ...|x, y, z, ...) as an abstraction of performing measurements
with settings x, y, z, ... since measurements are the only physical operations
within quantum mechanics from which interesting structures in the exper-
imental statistics P(a, b, c, ...|x, y, z, ...) emerge.

If one consistently holds on to this device-independent formalism and treats
the emergence of any instance of such joint probability distributions as a
blackbox, one enters the realm of what we call "boxworld". Concretely, we
refer by boxworld1 to the unconstrained collection of all valid probabil-
ity distributions P(a, b, c, ...|x, y, z, ...) for any fixed alphabet of inputs and
outputs (e.g. a, b, x, y) for two inputs and two outputs). The main advan-
tage of boxworld is a focus on the behavior of the physical system and
the decoupling from any specific physical theory. That way, the number
of assumptions is radically reduced and one can make more fundamental
(and thus stronger) claims. This is of special importance in the field of
cryptography, where one aims to guarantee security of a certain protocol
independently of how it is physically implemented. [30, 31] Without the
need to specify a Hilbert space dimension, for example, one can ensure that
an adversary does not benefit from just scaling up his available resources.

2.1.1 Bell non-locality

When distinct input-output pairs (such as (x, a) and (y, b)) are associated
with different space-like separated subsystems, one typically obtains only

1This "boxworld" is different but nearly equivalent to "boxworld" in the context of
Generalised Probabilistic Theories (GPTs). In the end, both describe the same distributions
P(a, b, c, ...|x, y, z, ...) with the only difference being that the "boxworld" GPT enforces the
existence of a certain state and effect space. [28, 29]
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2.1 The device-independent characterisation of physical experiments 7

product distributions of the form P(a, b, . . . |x, y, . . .) = P(a|x)P(b|y) . . ..
These distributions preclude any correlation between output variables
a, b, . . .. However, by distributing additional information λ (potentially
probabilistic in nature) across the subsystems prior to their separation, it
becomes possible to generate correlated outputs. This is possible while
still only requiring local operations, where each subsystem produces its
output (e.g. a) based solely on its local input (e.g. x) and the shared in-
formation λ. In his famous paper, John Bell characterised distributions
P(a, b, ...|x, y, ...) for multipartite systems that incorporate such (hidden)
variables λ as follows:

Definition 2.1.1. Bell locality — A conditional distribution P(a, b, . . . |x, y, . . .)
is called (Bell) local if and only if

P(a, b, . . . |x, y, . . .) =
∫

Λ
dλQ(λ)Pλ(a|x)Pλ(b|y) . . . (2.1)

given some ensemble of marginal probability distributions {(Q(λ), Pλ(a|x), Pλ(b|y), ...)|λ ∈
Λ}, such that Q(λ) ≥ 0 and ∑λ Q(λ) = 1
Otherwise the distribution P(a, b|x, y) is (Bell) non-local.

Within a multipartite system composed of subsystems A, B, and others,
The marginal distributions Pλ(a|x), Pλ(a|x), . . . are called "processes" and
denote the distributions from which each subsystem samples its respective
output.
Further, λ is an abstract random variable that is distributed to and acces-
sible from all of the subsystems. In this sense, we say that λ is globally
shared. Abstractness of λ means that it can be represented by anything,
from a fixed collection of numbers to a random number generator that can
be sampled from within all subsystems.

From the standpoint of classical physics, these "local" distributions en-
compass everything that can be observed while adhering to the classical
assumption of locality. This means that an outcome in one subsystem can-
not be influenced by the input choice in any other subsystem, even when
these input choices are made randomly and all precautions are taken to
prevent any signal transmission between the subsystems. Consequently,
classical distributions P(a, b, . . . |x, y, . . .) are usually identified as the set of
all distributions that take on a local form, as specified in definition 2.1.1.

Shifting our focus to quantum physics, one of the most striking and non-
classical phenomena is the emergence of non-local correlations between
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2.1 The device-independent characterisation of physical experiments 8

measurement outcomes, particularly when performing independent mea-
surements on entangled multipartite quantum systems. In the EPR paper
[3], a thought experiment was presented that famously demonstrated how
non-locality as a strong form of quantum entanglement between space-like
separated systems leads to an apparent contradiction between the princi-
ple of complementarity and local descriptions of reality.

While quantum entanglement in the sense of the inseparability of states
is necessary to produce non-local correlations, entanglement is not a suffi-
cient criterion for identifying non-locality. Within the more general frame-
work of boxworld, definition 2.1.1 allows to pragmatically distinguish local
from non-local (i.e. classical from non-classical) correlations between mea-
surement outcomes a, b, ... solely by means of distributions P(a, b, ...|x, y, ...).
In the realm of quantum, the specified measurements x, y, ... with outcomes
a, b, ... are thereby performed in different (possibly space-like separated)
subsystems A and B. We call such a setup a "Bell scenario" (or "Bell ex-
periment") and specify it with a fixed number mS of inputs and a fixed
number of outputs oS for subsystem S. [32] More briefly, for a bipartite Bell
scenario, we refer to a (mA, mB, oA, oB) Bell scenario.

It is important to emphasise that there is generally no unique physical re-
alisation (e.g. a quantum state and a set of quantum measurements) that
relates the inputs (x, y, . . .) with the outputs (a, b, . . .) via a certain distri-
bution P(a, b, ...|x, y, ...). In some cases, for example, both classical and
quantum systems might be able to produce the same distribution. In the
following, we therefore refer collectively to all physical realisations of the
distribution P(a, b, ...|x, y, ...) as the box P(a, b, ...|x, y, ...). Instead of stating
that A and B share an entangled state, we can then say more generally that
A and B share a box P(a, b, ...|x, y, ...). Although we typically use the terms
"box" and "distribution" interchangeably, it should be clear from context
whether the physical realisation of the distribution P(a, b, ...|x, y, ...) or the
distribution P(a, b, ...|x, y, ...) itself is meant.

From definition 2.1.1, it is clear that the number of valid Bell local dis-
tributions P(a, b, ...|x, y, ...) is infinite, even for the simplest (2,2,2,2) Bell
scenario. However, by the convexity of the decomposition in eq. 2.1 and
the bounded nature of probabilities, it is possible to describe the set of Bell
local distributions L compactly as the convex hull of a certain finite sub-
set Pext. [32] This means that any P(a, b, ...|x, y, ...) is a convex combination

∑λ q(λ)P(λ)
ext (a, b, ...|x, y, ...) of so-called extremal points P(λ)

ext (a, b, ...|x, y, ...) ∈

8



2.1 The device-independent characterisation of physical experiments 9

Pext such that ∑λ q(λ) and q(λ) ≥ 0. The defining property of an extremal
point hereby is that they are themselves not a (non-trivial) convex combi-
nation of other extremal points, so

P(λ′)
ext (a, b, ...|x, y, ...) = ∑

λ ̸=λ′
q(λ)P(λ)

ext (a, b, ...|x, y, ...)

enforces q(λ) = δλ=λ′ .

According to a well-known theorem, due to Fine [32, 33], the extremal
points for the local set L are exactly the deterministic distributions of the
form Pdet(a, b, ...|x, y, ...) = δa=a(x)δb=b(y)δy=y′ . . . for some discrete func-
tionals a(x) ∈ [oA] and b(y) ∈ [oB]. Note that the number of deterministic
distributions Pdet is finite in a fixed Bell scenario and that their convex hull
(i.e. the local set L) is a polytope. [32]

That deterministic distributions are extreme points is quite intuitive since
a convex combination is nothing else than a weighted average of elements,
where the weights are determined by probabilities. Sampling a′ and a′′

with probability p < 1.0 and 1− p respectively, for example, should never
be equivalent to the situation of obtaining ã with certainty for any input x
(i.e. P(a|x) = δa=ã) if ã ̸= a′ and ã ̸= a′′. Put simply, determinism cannot
be perfectly simulated by probabilistic sampling.

In this work, we will be fully focused on the simplest bipartite Bell sce-
nario with input and output bits, i.e. (2, 2, 2, 2). In that case, we have the
following convenient parameterisation for local deterministic distributions
PLD [19]

Pαγβλ
LD =

{
1, if a = αx⊕ γ&b = βy⊕ λ

0, otherwise
(2.2)

with parameters α, γ, β, λ ∈ {0, 1}. Boxes corresponding to some P(a, b|x, y) =
Pαγβλ

LD are called Local-Deterministic boxes (LD boxes).

The significance of Bell non-locality in quantum information science is
nowadays huge and goes far beyond the original aim in quantum foun-
dations to refute local realism. Non-locality can be seen as a generic qual-
itative feature of quantum states and as a resource since it can be stored,
converted and consumed. [1, 34]
One of the most important applications of non-locality in quantum infor-
mation processing is self-testing, so the device-independent certification

9



2.1 The device-independent characterisation of physical experiments 10

of quantum devices. [7, 8] Additional applications include cryptography
protocols [6–8] and the generation of randomness [9, 10].

Initially, the non-local property of the joint distributions P(a, b|x, y) was
actually thought to uniquely characterise quantum mechanics in multipar-
tite systems. However, as it turns out, non-locality is in no way a special
property of quantum physics but actually manifests as very strong correla-
tions between random variables in more general (hypothetical) theories as
well. [12]

2.1.2 No-signaling

Strictly speaking, not all (Bell) non-local distributions are the result of gen-
uine non-classical behavior of physical systems. The input-output pairs in
definition 2.1.1 (x, a) and (b, y), for instance, might belong to different but
time-like separated subsystems A and B. In that case, any dependence of
output b on input x (or a on y) is fully compatible with classical physics,
since the subsystems can physically interact or communicate2 with each
other. Consequently, they can exhibit arbitrarily strong correlations, includ-
ing non-local ones. This can occur, for instance, when the parties simply
communicate their respective measurement settings x and y to each other.

In contrast, if one assumes that A and B are space-like separated and no
communication takes place after fixing the inputs (x, y) and before deter-
mining the outputs (a, b), the observation of non-locality can no longer
be justified from a classical perspective. In other words, what makes most
types of quantum entanglement truly surprising and distinct from classical
correlations is not merely the observation of non-local distributions. Rather
it is the fact that these non-local distributions are observed in physical ex-
periments even when the subsystems are space-like separated from each
other and unable to communicate.

For the purpose of studying non-locality as a purely non-classical phe-
nomenon, it is therefore assumed throughout this thesis that any distribu-
tion P(a, b|x, y) satisfies the following no-signaling conditions with respect
to subsystems A and B:

2Of course, they must still respect relativistic causality. That means waiting sufficiently
long for the arrival of messages, which are transmitted at finite speed.

10



2.1 The device-independent characterisation of physical experiments 11

Definition 2.1.2. No-Signaling — A conditional distribution P(a, b|x, y) is
called no-signaling (NS) if and only if the local marginals satisfy

P(a|x, y) ≡∑
b

P(a, b|x, y) = ∑
b

P(a, b|x, y′) ≡ P(a|x, y′) (2.3)

for ∀y, y′, even if y ̸= y′, and

P(b|x, y) ≡∑
a

P(a, b|x, y) = ∑
a

P(a, b|x′, y) ≡ P(b|x′, y) (2.4)

for ∀x, x′, even if x ̸= x′.

Moreover, we define the (bipartite) no-signaling set NS , which con-
tains all distributions P(a, b|x, y) compatible with conditions 2.3 and 2.4.
In words, the no-signaling condition eq. 2.3 (eq. 2.4) thus ensures that the
marginal distribution P(a|x) (P(b|y)) over the local output a (b) for one
subsystem is independent of the input y (x) in the other subsystem. Note
hereby that no-signaling, in contrast to Bell locality, still allows the final
value of a (b) to depend on y (x), but only in such a way that y (x) does not
effect the locally observed output statistics in subsystem A (B).
From a more high-level physics perspective, the no-signaling conditions
enforce special relativity on space-like separated subsystems. Specifically,
they address relativistic causality, which dictates that no signal or influence
can propagate faster than the speed of light.

2.1.3 Facets & testing membership in compact convex sets

Classifying a probability distribution by its (mathematical) structure, like
in definition 2.1.1, allows for a very basic but universal interpretation of
what type of resources (e.g. quantum state & measurements) are required
to produce those particular statistics in physical experiments. This mani-
fests concretely in the study of causal relations between random variables
[22] and the aforementioned self-testing of quantum devices [4, 5, 30], for
example.

It would be infeasible to list all distributions with a certain structure and to
compare each with a given distribution P(a, b|x, y). However, if a given set
S is generated from a finite subset of distributions, like the local polytope
L, testing membership of P(a, b|x, y) in S is then equivalent to determining
whether any convex combination of those extremal points of S recovers
P(a, b|x, y).

11



2.1 The device-independent characterisation of physical experiments 12

Instead of representing a polytope S (i.e. a certain type of compact
convex set) by its extremal points, it is also sufficient to specify the facets
of S . To understand this, it is easiest to embed the distribution P(a, b|x, y)
as a vector in some vector space, where each dimension corresponds to a
specific tuple (a, b, x, y). The value of each dimension represents the prob-
ability associated with that tuple. For example, if a, b, x, and y have binary
values, the vector would have 16 dimensions, each corresponding to one
combination of (a, b, x, y) ∈ {0, 1}4.
Facets of S can be thought of as the "faces" or "sides" of the polytope in
this vector space. Mathematically, each facet is defined by a hyperplane
that contains a maximal set of linearly independent extremal points, with
all other extremal points lying on one side of this hyperplane. These facets
allow for a compact representation of the polytope’s boundaries as an alter-
native to the collection of extremal points. [32] Facets of S are then those
hyperplanes in the vector space which contain a maximal linearly indepen-
dent subset of extremal points, while the remaining extremal points need
to be on the same side of the hyperplane. [32]
That there always exist some extremal points that are linearly dependent
is hereby a consequence of the normalisation and no-signaling constraints
on P(a, b|x, y). Concretely, they reduce the dimension of the space of bi-
partite no-signaling distributions from mAoAmBoB to mA(oA − 1)mB(oB −
1) + mAmB(oA − 1)(oA − 1), while the number of extremal points is unaf-
fected and stays mAoAmBoB. So technically not every tuple (a, b, x, y) is an
(independent) component of the vector P(a, b|x, y), since some P(ã, b̃|x̃, ỹ)
can be derived from other the probabilities at other values of a, b, x and y.

Like any hyperplane, a facet F(i) can be expressed as a linear combination

∑a,b,x,y v(i)a,b,x,yP(a, b|x, y) = f (i), with
−→
v(i) ∈ Rdim(P(a,b|x,y)) the vector nor-

mal and f ∈ R a constant offset, such that ∑a,b,x,y va,b,x,yPext(a, b|x, y) ≤ f
for all extremal distributions Pext(a, b|x, y) of S . [32]
To test whether P(a, b|x, y) ∈ S , one has to check for every facet of S on
which side P(a, b|x, y) resides. Specifically, if

∑
a,b,x,y

v(i)a,b,x,yP(a, b|x, y) ≤ f (i)

for all facets F(i) then P(a, b|x, y) ∈ S .

12



2.1 The device-independent characterisation of physical experiments 13

2.1.4 Bell functionals & Bell inequalities

Even independently from a specific set and its facets, hyperplanes (and
their associated inequalities) are a powerful tool to characterise the correla-
tions in distributions P(a, b|x, y). A very important set of tools in the field
of Bell non-locality are Bell functionals and Bell inequalites:

Definition 2.1.3. Bell functional — A Bell functional is a linear form P(a, b|x, y) 7→
I (P(a, b|x, y)) ∈ R where

I(P) ≡ ∑
(i,j,k,l)∈{0,1}4

vijklP(a = i, b = j|x = k, y = l)

for some coefficients vijkl ∈ R.

So any linear combination of the different components of P(a, b|x, y) is
a Bell functional.

Bell inequalities are then linear criteria that divide the space of no-signaling
distributions into half-spaces, one of which is strictly non-local. Concretely:

Definition 2.1.4. Bell inequality — A Bell inequality is an inequality of the
form I(P) ≤ IL with a Bell functional I(P) and some threshold IL ∈ R such
that if P(a, b|x, y) violates the inequality (I(P) > IL) then P(a, b|x, y) is Bell
non-local (P(a, b|x, y) /∈ L).

The converse (i.e. Bell non-locality implies violation of an (arbitrary)
Bell inequality) does generally not hold. Also, satisfying a Bell inequality
does not necessarily certify that P(a, b|x, y) is a member of the local set L.
If a Bell inequality I(P) ≤ IL is an inequality that corresponds to a facet of
the local set L, then the Bell inequality is called tight.

Note that not all Bell functionals are associated to a well-defined Bell in-
equality. A simple counter-example is the average probability of equal
outputs in a (mA, mB, oA, oA) scenario:

1
mAmBoA

∑
x,y

P(a = b|x, y) =
1

mAmBoA
∑
x,y

∑
k

P(a = k, b = k|x, y).

Indeed, it is a linear combination of different components of P(a, b|x, y),
which makes it a Bell functional with coefficients vabxy = δ[a = b]. How-
ever, it reaches its maximum value of 1.0 already for certain local determin-
istic distributions P(a, b|x, y) = δ[a = k] · δ[b = k] where k ∈ {0, oA − 1}.

13



2.1 The device-independent characterisation of physical experiments 14

So no threshold IL can exist such that the set of distributions which satisfy
1

mAmBoA
∑x,y ∑k P(a = k, b = k|x, y) > IL is non-empty and does not con-

tain any Bell local distribution P(a, b|x, y) ∈ L. Therefore, definition 2.1.4
is not applicable to I(P) = 1

mAmBoA
∑x,y ∑k P(a = k, b = k|x, y), although it

is a Bell functional according to definition 2.1.3.

A particularly important instance of a Bell inequality in a bipartite (2, 2, 2, 2)
Bell scenerio is the Clauser-Horne-Shimony-Holt (CHSH) inequality. [35]
First, let us define the CHSH (Bell) functional with coefficients vijkl =

(−1)klδi=j in definition 2.1.3, such that

ICHSH = ∑
a,b,x,y

(−1)xyδa=bP(a, b|x, y) (2.5)

= ∑
x,y
(−1)xy

(
1

∑
k=0

P(k, k|x, y)

)
= ∑

x,y
(−1)xyP(a = b|x, y)

The CHSH functional is usually written more compactly in terms of the
so-called (probabilistic) Bell correlators Ekl ≡ ∑a=b P(a, b|x = k, y = l)−
∑a ̸=b P(a, b|x = k, y = l) = 2P(a = b|x = k, y = l) − 1, by simply re-
scaling and translating the terms of ICHSH. This yields the equivalent linear
functional

SCHSH = E00 + E01 + E10 − E11 (2.6)

which is what we will from now on call the CHSH functional. Furthermore,
we will refer to the value of SCHSH as the CHSH value.

2.1.5 The CHSH inequality

The Bell inequality associated to SCHSH is then the CHSH inequality and
reads

SCHSH ≤ 2.

If one prefers an expression in terms of probabilities, rather than Bell cor-
relators Exy, the equivalent (probabilistic) Bell inequality reads ICHSH ≤ 3.

The CHSH inequality is a tight Bell inequality but, in a (2, 2, 2, 2) scenario,
satisfying the CHSH inequality SCHSH ≤ 2 alone is not conclusive evidence
that a probability distribution P(a, b|x, y) is local. This is also visually illus-
trated in figure 2.1. Distributions satisfying the probabilistic Bell inequality
ICHSH ≤ 3 fall within the entire region below the horizontal dashed line

14



2.1 The device-independent characterisation of physical experiments 15

that aligns with the blue boundary of the local set L. Any distribution
above this line is definitely non-local since the local polytope L is entirely
situated below the line. However, also below the line there are non-local
regions, i.e. regions which fall outside of the blue-bordered polytope L.

Even if a distribution P(a, b|x, y) satisfies SCHSH ≤ 2, it might still violate
a different Bell inequality and thus turn out to be non-local. To determine
with certainty whether P(a, b|x, y) is local, one needs to evaluate other
"versions" of the CHSH inequality as well. This is similar to the previously
mentioned need to consider all facets of L, and their associated inequalites,
for testing membership in L. In figure 2.1, two other versions of the (prob-
abilistic) CHSH inequality are illustrated by the vertical dashed lines to the
left and right of the blue-bordered polytope L.

Mathematically, the different versions of the CHSH inequality only dif-
fer in the choice of the Bell functional, while the threshold value of 2 stays
the same. The complete family of CHSH functionals can be obtained by
simply changing the signs of the four coefficients si = ±1 in 2.6:

S(s1,s2,s3,s4)
CHSH = s1E00 + s2E01 + s3E10 − s4E11 (2.7)

Any choice of an odd number of negative signs gives a tight Bell inequal-
ity S(s1,s2,s3,s4)

CHSH ≤ 2, such that the parity ∏i si = −1. [19, 32] The different
CHSH functionals are equivalent to the canonical one in 2.6 up to permuta-
tions of the labels {0, 1} for the inputs x or y, and interchanging subsystems
A and B by re-labelling x as y and y as x. The CHSH inequality SCHSH ≤ 2
that corresponds to the CHSH functional SCHSH ≡ S(1,1,1,−1)

CHSH in 2.6 is what
we call the canonical CHSH inequality, or simply the CHSH inequality.

As part of the CHSH inequalities S(s1,s2,s3,s4)
CHSH ≤ 2, the CHSH functionals

S(s1,s2,s3,s4)
CHSH play a key role in the qualitative detection of non-locality. How-

ever, the CHSH functionals are by themselves also a quantifier of the cor-
relation strength between outputs (a, b) with respect to inputs (x, y) for
any given distribution P(a, b|x, y). Concretely, the correlation strength of
P(a, b|x, y) is defined as the largest CHSH value within the family of CHSH
functionals, i.e.

max
(s1,s2,s3,s4)

S(s1,s2,s3,s4)
CHSH (P(a, b|x, y)) .

In that regard, the threshold value of 2 in 2.1.5 is the maximum correlation
strength among all local distributions P(a, b|x, y) ∈ L.

15



2.1 The device-independent characterisation of physical experiments 16

For non-local distributions P(a, b|x, y) /∈ L, the degree to which the CHSH
functional S(s1,s2,s3,s4)

CHSH exceeds the threshold of 2 quantifies how strongly
non-local the observed correlations are. That is, the "amount" of non-
locality in P(a, b|x, y) /∈ L.

Conveniently, checking the violation of inequalities in the CHSH family is
sufficient to detect any type of non-locality in the simplest bipartite Bell
scenario. In context of physical experiments, this makes CHSH inequalities
a popular choice for testing whether an observed distribution P(a, b|x, y)
is indeed non-classical or not. [30, 32] Curiously, generalisations of the
CHSH inequality to multipartite or more complex bipartite Bell scenarios
are less effective. Some types of non-locality do not violate these general-
ized CHSH inequalities, requiring other (families of) inequalities to classify
a distribution as non-local with certainty. [31]

2.1.6 The CHSH non-local game

An alternative approach to identify non-local distributions through explicit
criteria is based on non-local games.
We focus here on bipartite non-local games which describe a scenario in-
volving two space-like separated parties, A and B. They share some no-
signaling box which matches the distribution P(a, b|x, y) ∈ NS , whereby
no-signaling is implied by space-like separation.

First, each party S is queried with a random dit-string Q(S) ∈ Z
nS
d , ac-

cording to some an ensemble {P(Q(S)), Q(S)}.
Subsequently, each party uses their local marginal of P(a, b|x, y) and their
query Q(S) to map them to some response R(S) ∈ Z

mS
d . The maps

(Q(A), P(a|x)) 7→ R(A) and (Q(B), P(b|y)) 7→ R(B)

are what we refer to as the strategy of party A and B respectively. Together
the strategies of both parties (R(A), R(B)) form a protocol.
Finally, a winning condition V : (R(A), R(B)) 7→ {0, 1} is evaluated on the
responses to decide whether the game is won (V 7→ 1) or lost (V 7→ 0). For
some fixed queries Q(A) and Q(B), the success probability is then defined as

PQ(A),Q(B) ≡ P(V(R(A), R(B)) = 1 |Q(A), Q(B)).

16



2.1 The device-independent characterisation of physical experiments 17

The ultimate goal for both parties in a specific non-local game is to max-
imise some objective function, which is a functional of the success proba-
bilities PQ(A),Q(B) . To simplify the interpretation of the objective value, the
functional is often chosen to be linear:

∑
Q(A),Q(B)

vQ(A),Q(B)PQ(A),Q(B)

with coefficients vQ(A),Q(B) ∈ R. A popular choice for such a linear objective
function is the average success probability:(

D(A)
Q · D(B)

Q

)−1
· ∑

Q(A),Q(B)

PQ(A),Q(B)

A simple but very important example of a non-local game is the CHSH
game. The queries and responses are single bits (i.e. d = 2 and nA = nB =

mA = mB = 1) and the winning condition is defined as V(R(A), R(B)) =
δR(A)⊕R(B)=Q(A)·Q(B) . This means that party A and B are only successful in
winning the game if they produce equal responses R(A) = R(B) for any
queries Q(A) and Q(B), except if Q(A) = Q(B) = 1.
Furthermore, the overall objective of the CHSH game is to maximize the
sum of success probabilities,

∑
Q(A),Q(B)

P(V(R(A), R(B)) = 1 |Q(A), Q(B)) = ∑
Q(A),Q(B)

P(R(A) ⊕ R(B) = Q(A) ·Q(B) |Q(A), Q(B))

= P(R(A) = R(B) |0, 0) + P(R(A) = R(B) |0, 1) + P(R(A) ̸= R(B) |1, 1).

Since P(R(A) ̸= R(B) |1, 1) = 1− P(R(A) = R(B) |1, 1) the objective function
becomes

−1 + ∑
Q(A),Q(B)

(−1)Q(A)·Q(B) · P(R(A) = R(B) |Q(A), Q(B))

However, we can drop the constant "−1" since it is irrelevant for maximis-
ing the sum.

Note that the above is still independent of the strategies of party A and B
in the CHSH game. To proceed, we now need to specify the protocol.
Let party A choose the query as local input to the no-signaling box P(a.b|x, y),
such that Q(A) = x, and let A give the local output as response R(A) = a.

17



2.1 The device-independent characterisation of physical experiments 18

Equivalently, let Q(B) = y and R(B) = b for party B.
For this specific protocol, the above objective then becomes ∑x,y(−1)xy ·
P(a = b |x, y). When comparing this to eq. 2.5, we can see that the objec-
tive for a given protocol is just a Bell functional. Consequently, maximising
the objective function over distributions P(a, b|x, y) ∈ NS for the CHSH
game is identical to maximising the (probabilistic) CHSH functional ICHSH.

The equivalence between Bell functionals and the success probability of
non-local games generalises beyond the special case demonstrated here.
So for every non-local game with a given protocol, there is a correspond-
ing Bell functional. Which of the two formulations is more convenient
depends on the context of application. For some physical experiments, for
example, one would like to detect non-locality in an observed distribution
P(a, b|x, y) of measurements labelled by inputs (x, y). In that case, one can
simply substitute P(a, b|x, y) into a Bell functional I(P) and check for the
violation of the corresponding Bell inequality I(P) ≤ IL. However, in the
field of cryptography, it is usually more natural to think in terms of non-
local games and success probabilities. In that case, an objective function
value that exceeds a certain threshold can also certify whether the parties
shared a non-local resource or not.
This is because from the perspective of non-local games, a Bell functional
like SCHSH is nothing more than a linear combination of success probabili-
ties between different (independent) sets of inputs (x, y) of the no-signaling
box P(a, b|x, y). In fact, any non-local game objective that only depends
on P(a, b|x, y) does correspond to some Bell functional. However, the con-
verse does not hold true, which means that not all Bell functionals can be
re-formulated as the objective function of some non-local game.

2.1.7 PR-boxes & the no-signaling polytope

Although the locality threshold IL = 2 for the CHSH functionals S(s1,s2,s3,s4)
CHSH

in 2.7 is sufficient for distinguishing between local and non-local distribu-
tions, it does not yet saturate their maximum. Indeed, since 0 ≤ P(a, b|x, y) ≤
1 and the Bell correlators −1 ≤ Exy ≤ 1, we see that S(s1,s2,s3,s4)

CHSH ≤ 4 for any
variant of the CHSH functional with parameters (s1, s2, s3, s4).
The game-based formulation of the canonical CHSH functional SCHSH
helps to identify when the maximum value of 4 is reached, since opti-
mal success in the CHSH game corresponds to a maximised SCHSH. With
the previously specified protocol, the winning condition for the CHSH
game reads x · y = a⊕ b. The distribution P(a, b|x, y) = δx·y=ã⊕b̃δa=ãδb=b̃

18



2.1 The device-independent characterisation of physical experiments 19

does satisfy this condition for any fixed pair of outputs (ã, b̃) ∈ {0, 1} ×
{0, 1} with certainty, i.e. P(x · y = ã ⊕ b̃|x, y) = 1 for all input pairs
(x, y). These distributions, however, turn out to be signaling (P(a, b|x, y) /∈
NS) for any output pair (ã, b̃). The unique distribution P(a, b|x, y) that
is no-signaling and for which any sample perfectly satisfies x · y = a ⊕
b, is the uniform probabilistic mixture of distributions PPR(a, b|x, y) =
1
4 ∑ã,b̃ δx·y=ã⊕b̃δa=ãδb=b̃. [32] Evaluating the canonical CHSH functional
SCHSH on PPR then indeed gives the optimum of 4
More generally, each CHSH functional in the family S(s1,s2,s3,s4)

CHSH corresponds
to a CHSH game with a different winning condition and consequently
yield other, unique distributions P(a, b|x, y) ∈ NS for which S(s1,s2,s3,s4)

CHSH =
4.

We can parameterise the family of all maximally non-local, no-signaling
distributions in the simplest bipartite (2, 2, 2, 2) scenario conveniently by
µ, ν, σ ∈ {0, 1}: [19]

Pµνσ
PR (a, b|x, y) =

{
1
2 if a⊕ b = xy⊕ µx⊕ νy⊕ σ

0, otherwise
(2.8)

The boxes which correspond to distributions of this form are called Popescu-
Rohrlich (PR) boxes. Of particular importance is P000

PR (a, b|x, y), which we
refer to as the canonical PR-box. [32] Beyond the simplest Bell scenario
that we consider in this work, generalisations of PR-boxes to more com-
plex scenario’s do exist as well. [36]

PR-boxes are extreme examples of non-local no-signaling resources that
even go beyond what quantum physics can realise. This makes PR-boxes
evidently unphysical. [1, 32] Being extreme no-signaling distributions,
however, makes them characteristic for theNS set. In fact, in the (2, 2, 2, 2)
Bell scenario, the 8 non-local PR distributions (eq. 2.8) and 16 local deter-
ministic boxes (eq. 2.2) together generate NS . [32] Because of the finite
number of extremal points, the no-signaling setNS is thus also a polytope,
just like the local set L. Notice that all extremal points of L are also vertices
of NS . This implies that also some of the edges and facets of NS and L
match up exactly.

Although the 16 extremal distributions of NS already provide valuable
insights about the no-signaling set NS as a whole, it is sometimes also
useful to consider convex combinations of the extremal points. To simplify
calculations, as well as the interpretation and visualisation of our results,
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2.1 The device-independent characterisation of physical experiments 20

Figure 2.1: Schematic illustration of an arbitrary 2D slice of the NS-polytope in
comparison with the corresponding projections of the strictly contained quantum
set Q (red) and local set L (blue). The value of the canonical CHSH functional
SCHSH varies along the vertical as indicated by the horizontal dashed lines. The
slice gives an extreme example of the non-trivial boundary of the quantum set Q
since it is completely curved. Illustration based on figure 2 in [37]

we will usually not study all mixtures in NS at once.
Rather one focuses on mixtures of only three distributions, i.e.

η1P(a, b|x, y) + η2Q(a, b|x, y) + (1− η1 − η2)R(a, b|x, y)

with P, Q, R ∈ NS , η1 + η2 ≤ 1.0 and 0.0 ≤ η1, η2 ≤ 1.0. We will often
call such a family of mixtures a slice of the no-signaling set NS . Hereby,
"slice" refers to the geometric interpretation of selecting the unique 2D
cross-section of NS , embedded in the high-dimensional vector space of
distributions P(a, b|x, y), which contains the three points P, Q and R.

The relation between the no-signaling set NS , the quantum set Q′ (de-
fined below) and the local set L is illustrated in figure 2.1 for a specific
family of mixtures of three PR-boxes η1P000

PR + (1− η1 − η2)P111
PR + η2P001

PR .
Hereby, the coefficient η1 varies along the vertical of the figure, while the
horizontal corresponds to the value of η2. For this slice, η1 is equal to the
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2.1 The device-independent characterisation of physical experiments 21

value of the canonical CHSH functional SCHSH up to some scaling factor.
Accordingly, the dashed horizontal lines intersect the boundary of each of
the sets at their respective maximum value of ICHSH from eq. 2.5. Observe
furthermore that L ⊆ Q′ ⊆ NS . This makes sense since quantum en-
tangled states indeed feature non-classical behavior (L ⊆ Q′), while they
should still obey special relativity (Q′ ⊆ NS).

2.1.8 Non-locality as a resource

Quantifying non-locality by the value of CHSH functionals S(s1,s2,s3,s4)
CHSH , also

begs the question of how this quantity changes when performing certain
operations on the physical system. In a typical bipartite Bell scenario, the
two space-like separated parties are restricted to local operations in their
individual subsystems and possibly some classical communication. For
this set of operations, often briefly denoted as LOCC (i.e. Local Operations
& Classical Communication), any pre-established non-locality is either pre-
served or "consumed" over time, but it can never increase. [31, 32] Only
if the subsystems are brought together and a certain global operation is
applied to the joint system, more non-locality might be created. In that
sense, non-locality in entanglement theory is often interpreted as a type of
limited resource, which can be used to share information (or randomness)
between multiple parties.

2.1.9 The quantum set

In our quest to identify which distributions P(a, b|x, y) ∈ NS can be re-
alised with the quantum formalism of quantum states and general POVM
measurements, it is of special interest what value any CHSH functionals
S(s1,s2,s3,s4)

CHSH can reach when restricting ourselves to quantum mechanics.
The most pragmatic way to define the set of quantum distributions Q is
the following: [32]

Definition 2.1.5. Quantum set Q— In a bipartite (2, 2, 2, 2) Bell scenario, a
distribution P(a, b|x, y) is called quantum iff

P(a, b|x, y) = Tr
(
ρ(Πx

a ⊗Πy
b)
)

for some positive-semidefinite operator ρ ∈ L (HA ⊗HB) on the product between
two Hilbert spaces HA and HB, such that Tr ρ = 1. Further, Πx

a ∈ L(HA)
(Πy

b ∈ L(HB)) are positive-semidefinite operators such that ∑a Πx
a = I for any

x ∈ [mA] (∑b Πy
b = I for any y ∈ [mB]). These operators correspond to mA (mB)
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2.1 The device-independent characterisation of physical experiments 22

measurements with each oA (oB) possible outcomes.
Operator "⊗" represents the usual tensor product of real linear vector spaces.

For an "if" instead of "iff", one can shorten def. 2.1.5 by dropping
Tr ρ = 1 and the normalisation of density operators ∑a Πx

a = I (∑b Πy
b = I).

For any given P(a, b|x, y), these conditions are already implied from the
normalisation of the distribution.

The above definition is a natural choice from the perspective of quantum
information theory, as it inherently constructs multipartite systems from
individual subsystems using the tensor product formalism. This approach
mirrors the way qubits, the fundamental units of quantum information,
are integrated in the field of quantum information processing.
However, the resulting set Q is not closed and, therefore, has no sharp
boundary that one could use as reference to compare Q to other subsets of
NS . Moreover, the use of tensor product operations in the definition for
distributions in Q complicates the analytical characterisation of Q. This
means that only few of the conjectured mathemtical properties of Q have
actually been proven yet, while much more is known about Q′, which
corresponds to a weaker definition of the quantum set: [32]

Definition 2.1.6. Quantum set Q′ In a bipartite (2, 2, 2, 2) Bell scenario, a dis-
tribution P(a, b|x, y) is called quantum if

P(a, b|x, y) = Tr(ρΠx
a Πy

b)

for some positive-semidefinite operator ρ ∈ L(H) on some Hilbert spaceH, such
that Tr ρ = 1. Further, Πx

a ∈ L(H) (Πy
b ∈ L(H)) are positive-semidefinite

operators such that ∑a Πx
a = I for any x ∈ [mA] (∑b Πy

b = I for any y ∈ [mB]).
These operators correspond correspond to mA (mB) measurements with each oA
(oB) possible outcomes.
Additionally, measurement operators on different subsystems must commute, i.e.

[Πx
a , Πy

b ] = 0, ∀a, b, x, y

The set Q′ defined by 2.1.6 is actually a strict superset of the actual
quantum setQ from definition 2.1.5. The two sets differ only in what struc-
ture is demanded on the measurement operators. In quantum information,
we use more often the tensor product structure for composite systems in
2.1.5 to implicitly enforce commutativity of operators on different subsys-
tems. Defining the relaxation Q′ as the quantum set, however, is usually
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preferred in quantum foundations since Q′ is closed by construction and a
more common choice in adjacent fields of research, such as quantum field
theory. We are not further concerned with the minimal (though non-zero
[38]) difference between Q and Q′. Therefore, we will keep referring to Q′
from definition 2.1.6 as the quantum set.

The well-known Tsirelson bound of SCHSH ≤ 2
√

2 then gives the maxi-
mal quantum violation of the CHSH inequality. [39] See section 3.2.2 of
[32] for an instructive derivation of the Tsirelson bound.
Remarkably, the Tsirelson bound is achievable within the quantum frame-
work only by preparing a singlet state, up to local isometries, and perform-
ing a suitable projective measurement. [30, 32] This unique property of the
singlet state is of interest for applications in self-testing and re-emphasizes
the relevance of the singlet in quantum physics more generally.

However, beyond the few quantum distributions P(a, b|x, y) ∈ Q′ which
reach the Tsirelson bound, it is very difficult to characterise the boundary
of the set Q′. While the quantum set Q′ is convex, like L and NS , it has
an infinite number of extremal points. Therefore, it is not a polytope and
does not underlie any other compact mathematical description.
Only a few exceptions are known for which an exact expression for the
boundary of Q′ exist. Those only apply to well-studied regions of the no-
signaling polytope, like quantum voids [40] and a subset of distributions
arising from dichomotic quantum measurements [41]. However, to recover
the full boundary of the quantum set Q′, we usually need to fall back on
solving semidefinite programs (SDPs). The most famous and widely used
set of SDPs is the so-called Navascues-Pironio-Acin (NPA) hierachy. [42]

When visualising the quantum set within the vector space of no-signaling
distributions, some parts of the boundary actually turn out to be smooth,
non-linear curves. This is in contrast to the flat edges and sharp corners of
the polytopes corresponding to L and NS . [32, 37] An extreme case of the
non-linear boundary ofQ′, in direct comparison with the other two sets, is
illustrated in figure 2.1.

2.2 Bounding quantum correlations operationally

The problem of describing the quantum set of distributions by purely op-
erational principles was first raised in [1]. It was based on the finding that
special relativity, in the form of the no-signaling conditions 2.3 and 2.4,
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actually allow for much stronger correlations than quantum mechanics,
such as those of PR-boxes. The extent of this gap between quantum and
no-signaling correlations was recently shown to become more significant
when considering Bell scenario’s with higher number of inputs or outputs.
[43]

Thus clearly the no-signaling principle can not be a characteristic prin-
ciple of quantum theory, at least as long as no further assumptions are
made about the underlying physical system.
If we, for example, assume that the two space-like separated subsystems
can individually be described within the quantum formalism, then the no-
signaling principle is actually able to constrain any shared bipartite box
P(a, b|x, y) to the quantum set, i.e. P(a, b|x, y) ∈ Q′. [44] That is, when-
ever the no-signaling principle holds, the box P(a, b|x, y) can always be
simulated with bipartite quantum states and local measurements, even if
the truly underlying composite system can not be described by a state in
some bipartite Hilbert space3. On first sight, this already seems to solve the
targeted problem of bounding the quantum set by an operational principle.
However, the "locally-quantum"-assumption is incompatible with the aim
for a completely device-independent characterisation of quantum distri-
butions Q′. In fact, the authors of [44] point out that the requirement for
quantum subsystems is just a further witness for the need to supplement
no-signaling with some other (locally constraining) principle. In that sense,
[44] provided additional evidence for the conjecture in [1] that constraining
non-locality (globally) is a necessary but insufficient part of justifying the
quantum formalism.

After discovering that the no-signaling principle alone cannot fully char-
acterize the set of physically realisable distributions P(a, b|x, y), numer-
ous other complementary principles have been proposed over the past
few decades. This includes local orthogonality [45], macroscopic locality
[46, 47], no-hypersignaling [48], macroscopic non-contextuality [14] and
consistent exclusivity [49], to just name a few.

2.2.1 Almost-quantum distributions

The collapse of communication complexity is a particularly well-known,
yet simple, example of a principle whereby many no-signaling boxes be-

3Within the framework of GPTs, this happens when choosing a tensor product other
than the standard one.
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yond quantum were found to give an implausible advantage in certain
non-local games. [32, 50] Implausible is here understood in the sense that
scaling of the non-local scenario to more inputs (i.e. information) does
not impact the amount of communication that is needed to succeed in the
game.
Although most of the principles mentioned above can be used to derive
the maximum quantum violation of CHSH (i.e. the Tsirelson bound), it
was shown that none of them is able to reconstruct the full boundary of
the quantum set Q′ within the space of distributions P(a, b|x, y). [15, 32]

A proposal of a slight modification of the quantum setQ′, called the almost-
quantum set Q̃ of distributions, played a particularly notable role in ruling
out many of the aforementioned principles. Briefly stated, the requirement
of commutation between measurement operators in definition 2.1.6 is re-
laxed4 to apply only to specific quantum states, resulting in a larger set
of distributions P(a, b|x, y) ∈ Q̃. The idea is that there is no physical ne-
cessity for insisting on pairwise commutation between measurements in
different subsystems with respect to all joint quantum states. In that sense,
the almost-quantum formalism does not equal the widely used quantum
formalism, but is very similar to it, even in terms of the (observable) pre-
dictions that it makes [15].

Checking membership of P(a, b|x, y) in Q̃ requires solving a hierarchy of
feasibility SDPs, similar to the NPA hierachy for Q′. In fact, the almost-
quantum set is equivalent to the set obtained through the "1 + AB" level
of the NPA hierachy in the simplest Bell scenario. Hereby, "1 + AB" is a
special intermediate level between the first and second NPA level. 5

By the physical similarity between Q̃ and Q′, this demonstrates that even
quite low levels of NPA are quite reasonable approximations to Q′. The ef-
fectiveness of the almost-quantum set in bounding quantum distributions
was recently also confirmed in terms of relative volume with respect to the
no-signaling set NS . [43] Even for more complex bipartite Bell scenarios,
the almost-quantum set stays a good approximation, though testing mem-
bership in almost-quantum is then not as efficient anymore. [15, 43]

4Thus [Πx
a , Πy

b ] = 0 in definition 2.1.6 is replaced by [Πx
a , Πy

b ]|ψ⟩ = 0, whereby without
loss of generality ρ in def. 2.1.6 is redefined as ρ = |ψ⟩⟨ψ| with |ψ⟩ ∈ H.

5"Levels" in the NPA hierachy can be understood as the "order of the outer approxima-
tion" to Q′. A higher level allows the SDP optimisation to yield an approximation with
higher precision. For details see [15, 32]
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Meanwhile, nearly all operational principles have been shown to single out
sets of distributions which are all strictly larger than the almost-quantum
set Q̃, and thus also the quantum set Q′ itself. [14, 15, 32, 51] Only a
few principles, like macroscopic non-contextuality, exactly correspond to
the almost-quantum set [14]. This has prompted the conjecture that all
bipartite, device-independent, and operational principles (including IC)
may ultimately converge to a constraint that corresponds to Q̃ rather than
Q′.[15, 32, 52]
In order to bound sets of distributions which are strictly contained in
Q̃, one probably needs to consider genuinely multipartite information-
theoretic principles [17] or principles that also make explicit assumptions
about the local state space structure [51, 52].

To our knowledge, information causality is the only operational princi-
ple for which it is still unknown whether it bounds a superset or a subset
of Q̃. Though there is some numerical evidence that it is not a subset [15],
just like all the other principles. The lack of a universally tight bound for
information causality has prevented a definite conclusion to date.
In the next subsection we describe how information causality was orig-
inally proposed and how the statement of this principle has developed
since then.

2.2.2 The brief history of Information Causality

Information causality is an information-theoretic principle that follows
from the fundamental properties of certain types of entropies in the con-
text of a particular type of communication games, called information re-
trieval tasks. We start this subsection by first introducing this type of game.

Information retrieval & Random Access Codes

Consider a bipartite system with subsystem A associated with some par-
ty/agent A and subsystem B with some party B. Assume that a (noisy)
communication channel with at most κ bits of (classical) capacity con-
nects the two physical subsystems. Initially, party A receives n inputs
−→α = (α0, ..., αn−1) (a.k.a. the "data"), whereby each input can take d possi-
ble values. Subsequently, the task for party B is to choose a single output g
(a.k.a. the "retrieved information") from d possible values.
It is crucial that neither A or B have control about the data and the choice
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of a query, such that they cannot conspire to make the task trivial by them-
selves. Therefore, it is easiest to imagine an additional external party, the
verifier V, which distributes the inputs and checks whether B’s retrieved
information g was correct.

In such a scenario, an abstract information retrieval task is then described
by some queries Q ∈ Zd and "winning relations" wq : Zn

d 7→ Zd which
identify for each set of n inputs a correct6 output (modulo d), given some
query q ∈ Q. [54] Note that in this formalism, multiple "correct" output
values g can exists for a fixed query q and a fixed input vector −→α . In this
case, multiple winning conditions with the same label "wq" are specified,
each mapping to one of correct values.

A very popular example of an IR task in both Shannon and quantum infor-
mation theory is the so-called Random Access Code (RAC). [54–56] In the
bipartite version, with cooperating parties A and B, the goal is to transfer
a piece of requested information about a randomized dataset from party
A to party B. Concretely, given some random input dits −→α ∈ [d]n at party
A, the aim for party B is to retrieve the β-th dit in the input string of party
A. Hereby, β ∈ [n] is a (randomized) integer that party B receives as input
and outputs a guess gβ of αβ such that the success probability of the event
gβ = αβ mod d is maximized. The winning relations for any type of RAC
then simply become wβ = αβ mod d for all β ∈ [n].

While party A and B might agree on a cooperative strategy before they
have received their respective inputs, they are only allowed to commu-
nicate via their limited communication channel during each round of the
game. Also, although two-way communication is technically allowed, we
focus here on strategies involving only the most important direction of
information transfer, namely from party A to party B. We denote the lo-
cally constructed message of A as µ, and the possibly noisy message µ′ as
received by party B.

A simple but natural figure-of-merit for RACs is the (average) success
probability of party B retrieving the queried dit. [16, 57, 58] The idea is
to repeat the game many times and calculate the frequency of successful
rounds. This allows us to compare different protocols or strategies of party
A and B within the given rules of the game.

6Thereby we assumed that the retrieval of information can either be a "success" or
"failure". For information retrieval games with continuous scores, see [53].
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The (classical) baseline for any guess that party B makes, is the uniform
random probability of 1

d . [57, 59] This success probability is realized in the
trivial scenario when there is no communication allowed between the two
parties, and B just guesses the requested dit at random.
In the other extreme, if the channel’s capacity is unlimited, or at least n dits,
the transfer of the full dit string −→α from A to B is trivial and the success
probability is 1.

For a fixed setting that lies in between the two extremes, say for n = 2,
d = 2 and a limited channel capcacity of 1 bit, the challenge is to determine
an optimal encoding and decoding strategy.
If party A always just sends the value of one of the two input bits (α0, α1)
to B, while both −→α and β are distributed uniformly, then the probability of
success can become 3

4 in the best case. Thus, indeed, the communication of
1 bit does help to improve over random guessing quite a bit, even though
all the employed resources in the RAC were classical. Note that the given
example only applies to the simplest and lowest values of d = 2 and n = 2.
The more general upper bounds for higher n and d, and for non-uniform
random inputs −→α /β, are much more involved.

The intuition of the communication advantage is that B does only care
about getting the correct bit-value and not whether party A has send ex-
actly the part of the bit-string −→α that was queried with β. So even if party
A sends the non-requested bit to B, as long as it has the same value, B just
happened to be lucky. It is easy to see that this false-positive coincidence
happens 25% of the time, which explains the deviation from random guess-
ing.

The problem of finding an optimal trade-off between required commu-
nication resources and an acceptable success probability has been of great
interest to research in information theory. [57, 60]

Non-Locality assisted RACs & the van Dam protocol

The exploitation of non-locality has turned out to yield a significant gain
in the average success probability in RACs and made RACs very popular
as a benchmark in quantum information theory. More concretely, there are
two types of RACs that can make use quantum resources: Quantum RACs
(QRACs) and Entanglement-Assisted RACs (EARACs).
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In a Quantum RAC (QRAC), the two parties are equipped with a quan-
tum channel, instead of a classical communication channel. [57–59, 61]
The idea is to physically transfer qudits from A to B and make use of the
non-classical properties of quantum information carriers. While QRACs
are very powerful, they are practically much more resource intensive than
regular RAC setups and protocols. Moreover, the intend of our discussion
on operational principles was to avoid the explicit use of the quantum for-
malism, which is rather difficult for QRACs.

In contrast, an EARAC is much more like a standard RAC, with a classical
communication channel, but the two parties share a no-signaling resource
that corresponds to some bipartite distribution P(a, b|x, y) ∈ NS . In a fully
classical RAC, for example, they could have access to a Local-Determinstic
box (eq. 2.2) or some classical source of shared randomness. In a RAC
with quantum subsystems, however, the two parties could also share an
entangled pair of qubits and use the outcomes of local measurements to
adapt their game strategy based on the measurement outcomes (a, b).

Such a RAC, in which the two parties are equipped with a classical com-
munication channel and a bipartite no-signaling box, should probably be
called a non-locality assisted random access code (NARAC). However, for
consistency, we will refer to them as EARACs (i.e. Entanglemenet assisted
RACs) in this thesis. This quantum-restricted term is namely used more
commonly throughout the literature. [55, 56, 58, 62]

For an EARAC, there is no Bell local P(a, b|x, y) ∈ L which can improve
the average success probability compared to a standard RAC. For example,
for n = 2, d = 2, and a single bit of classical communication, the average
success probability of an EARAC stays between 1

2 and 3
4 , which any (clas-

sical) strategy in a standard RAC can achieve as well. [55, 57]
Quantum and stronger non-local correlations, however, can increase the
amount of potential information accessible to B. Curiously, it turns out
that QRACs and EARACs complement each other in terms of achievable
success probabilities. [58] This also means that there are special cases in
which QRACs can achieve higher success probabilities than EARACs, but
also many scenarios vice versa. [55, 58].

An important example of a EARAC with bipartite no-signaling distribu-
tions P(a, b|x, y) /∈ Q′ beyond the quantum set is the one involving PR-
boxes Pµνσ

PR . The maximal non-locality of PR-boxes enables hereby gen-
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Figure 2.2: The van Dam protocol applied to a bipartite Random Access Code
(RAC) between space-like separated parties A and B in a (n, n, 2, 2) Bell scenario.
While A receives a dit-string −→α of fixed length n, B is queried with only a single
n-dimensional bit β. The latter indicates which dit in −→α his final output dit gβ is
supposed to recover. The two parties only share a noisy communication channel
of κ ≡ I(µ : µ′) dits classical capacity.

erally the highest success probabilities in RACs. Asymptotically, it even
allows error-free guessing by party B if the number of shared PR-boxes
grows towards infinity.

The most well-known protocol that can achieve error-free guessing via
PR-boxes, is the so-called van Dam protocol. [32, 63] In the simplest scenario
of two input bits (α0, α1) ∈ 0, 12 (i.e. d = 2 and n = 2) and a single bit of
communication κ = 1, it goes as follows:
On receiving inputs −→α , party A starts by putting x = α0 ⊕ α1 into part
A of the shared no-signaling box P(a, b|x, y) and retrieves the output a.
Subsequently, A constructs the message µ = α0 ⊕ a and sends it via the
classical channel to B. Meanwhile, B got input β, evaluated y = β on part B
of the shared box and obtains b as output. Lastly, B receives the message µ′

from A and makes the guess gβ = µ′ ⊕ b. An illustration of the described
protocol in a RAC setup is shown in figure 2.2.

If the classical communication channel is taken to be noiseless then
µ′ = µ, and so gβ = µ ⊕ b = α0 ⊕ a ⊕ b. Assuming that P(a, b|x, y) is a
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PR-box also allows us to substitute the relation a⊕ b = xy, which always
holds by definition of the PR-box. Then gβ = α0 ⊕ xy = α0 ⊕ (α0 ⊕ α1)β
gives indeed g0 = α0 and g1 = α1 with certainty, which corresponds to a
success probability of 1 in the RAC game.

Motivation for information casuality as a physical principle

The above example, however, has an implausible consequence. Although
only a single bit µ is communicated, B seems to have error-free access
to whatever bit-index β is queried. Mathematically, the potential infor-
mation shared between A and B is I(−→α : µ′, B) ≡ H(−→α ) + H(µ′, B) −
H(−→α ), µ′, B) = 2− H(−→α )|µ′, B), since for two uniformly distributed in-
put bits P(−→α ) = 1

2 with Shannon entropy H(−→α ) = 2. Party B was able
to apply the van Dam protocol consistently to construct a correct guess by
evaluating B and receiving µ′ for either of the two inputs bits −→α . Thus
clearly there is no uncertainty in −→α left when B and µ′ are known, so
H(−→α )|µ′, B) = 2 and I(−→α : µ′, B) = 2 bits. 7

Intuitively, communicating one bit should at most give access to one of
the two bits. This should be the case within classical systems but also in
(multipartite) quantum systems. Even if the two parties share entangled
quantum states, the well-known no-communication theorem in quantum
mechanics forbids that quantum entanglement can transfer information
and, therefore, quantum non-locality should not give an advantage in in-
formation retrieval tasks.
This limitation on the potentially accessible information by the communi-
cation capacity is the principle of information causality.

It is crucial to notice here the subtle difference between potential and
retrievable information. Actually, it is similar to the Holevo bound in
quantum information. Namely, while a multi-qubit state is specified by an
exponential number of coefficients (i.e. potential information), one can ob-
tain through measurements at most a linear number of bits (i.e. extractable
information).
Indeed, even a PR-box does not allow party B to guess in a RAC more
than one bit after a single bit of communication. It only enables a free,
completely local choice of which bit to retrieve. As soon as the bit-index β
is determined and B has evaluated his part of the no-signaling box on it,
any information about the other input bits −→α is lost.

7For a more rigorous proof, see [16]
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2.2.3 Formalising IC in non-local games

Information causality is not merely the consequence of a physical axiom,
but is actually a very fundamental information-theoretic property that fol-
lows from a few mathematical but intuitive assumptions about the notion
of entropy.

The study of classical and quantum information theory has revealed sev-
eral ways to quantify the information content of (complex) physical sys-
tems. In particular, mutual information I(A : B) = H(A) + H(B) −
H(A, B) based on Shannon entropy H(·) is a popular choice for quanti-
fying the information that is shared between multiple (classical) random
variables. While this type of mutual information has many interesting
properties, most of them can actually be derived from just a few basic
characteristics of the conditional mutual information, I(A : B|C). Those
include [27, 64]:

• Non-negativity : I(A : B|C) ≥ 0 (2.9)

• Markov independence : If A → B → C a Markov chain with respect
to physically implementable transformations, then I(A : C|B) = 0.

(2.10)

• Data processing inequality : If B → B̃ is a physically implementable
transformation (i.e. a permissible map), then I(A : B) ≥ I(A : B̃).

(2.11)

• Chain rule : I(A, B : C) = I(B : C|A) + I(A : C) (2.12)

• Consistency : If A, B and C classical random variables, then I(A :
B|C) exactly matches the (conditional) Shannon mutual information
of A and B conditioned on C. (2.13)

for any suitable random variables A,B, B̃ and C. These fundamental prop-
erties do hold for Shannon entropy with classical random variables but
also for von Neumann entropy with A,B, B̃ and C the density matrices
of quantum systems. More generally, the above properties are considered
essential for an entropy measure to serve as a physical measure of (shared)
information [64] and, as it happens, they are also sufficient for information
causality to hold in any multipartite system with limited communication
between parties. In other words, if there is a mutual information I(·, ··)
that satisfies eq. 2.9 - 2.13 for some given random variables A,B, B̃ and C in
a physical system, then the physical system satisfies information causality.
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In this work, we focus on bipartite scenarios, where two subsystems share
a no-signaling box P(a, b|x, y) ∈ NS and where a noisy one-way commu-
nication channel µ 7→ µ′ exists.
The mathematical statement of information causality in such communica-
tion scenarios reads: [16]

I(−→α : µ′, B) ≤ I(µ : µ′) ≡ κ (2.14)

For completeness, we have included a derivation in the appendix A, which
is a slightly modified variant of the derivation in [27].

Although the physical interpretation of IC in terms of mutual informa-
tion is more intuitive, it is heavily depending on the definition of mutual
information I(X : Y) = H(X) + H(Y)− H(X, Y). Deriving and stating the
IC principle directly in terms of entropy is thus a bit more fundamental.
This was also remarked in [65] and they proposed to rewrite the above
inequality as

H(−→α |µ′, B) ≥ H(−→α )− H(µ′)

with H(µ′) = κ + H(µ′|µ), which quantifies the minimal uncertainty that
B should have after receiving the message µ′. [65] In fact, deriving this
purely entropic inequality required only three properties for the entropy
H(·), as opposed to the four properties (eq. 2.9 - 2.13) required for the
mutual information I(·, ·).

For independently distributed inputs −→α , we can express eq. 2.14 further-
more in terms of B’s guesses gβ

n−1

∑
i=0

I(αi; gβ |β = i) ≤ I(−→α : µ′, B) ≤ κ (2.15)

That is, the information shared between A’s input data and all the informa-
tion that is available to B for constructing the guess gβ is upper-bounded
by the channel capacity κ.

In the κ = 0 case, we see that information causality reduces to the no-
signaling principle. Even some properties of no-signaling, like the com-
position restrictions of quantum systems found in [44], are conjectured to
hold for information causality as well. [24]
Moreover, in the special case κ = 1, violating the principle of non-trivial
communication complexity implies violation of information causality.
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For an extended discussion on interpreting the IC statement, see the last
part of appendix A.

2.2.4 From the IC criterion to a bound on no-signaling dis-
tributions

Information causality was originally proposed in [16] as a candidate princi-
ple for recovering the quantum set of distributionsQ′ solely from information-
theoretic constraints. In contrast to the above IC statement, it was spe-
cialised to the context of (EA)RAC games and also specifically assumed
the van Dam protocol for party A and B. Instead of fixing the shared no-
signaling box P(a, b|x, y) to be a PR-box, they also considered a more gen-
eral EARAC setup in which any box P(a, b|x, y) ∈ NS in a (2, 2, 2, 2) Bell
scenario could be shared by the two parties.
So the setup considered in the original IC paper [16] was similar to figure
2.2 for n = 2. The only difference is that they restricted the setup to a
noiseless channel (i.e. µ′ = µ) with a capacity of κ = 1 bit.

From the definition of the van Dam protocol, it is easy to see that either
α0 or α1 is guessed correctly by B whenever a = b, except if y = β = 1
and x = α0 ⊕ α1 = 1. Thus the guessing biases, with respect to random
guessing, for β = 0 and β = 1 are respectively: [16, 19]

E[α0 = g0] = (P(a = b|0, 0)− 1
2
) + (P(a = b|1, 0)− 1

2
) =

1
2
(E00 + E10)

E[α1 = g1] = (P(a = b|0, 1)− 1
2
) + (P(a ̸= b|1, 1)− 1

2
) =

1
2
(E01 − E11)

with the probabilistic Bell correlators Exy = 2P(a = b|x, y)− 1 and using
P(a = b|x, y) = 1− P(a ̸= b|x, y).
If α0 and α1 are independent and uniform random, then H(α0) = H(α1) =
1 and the IC statement (eq. 2.15) can be expressed conveniently in terms of
those biases: [16, 32]

κ ≥
n−1

∑
i=0

I(αi; gβ|β = i) =
n−1

∑
i=0

H(αβ|β = i) + H(gβ|β = i)− H(αβ, gβ|β = i)

= 2−
n−1

∑
i=0

H(αβ|gβ, β = i) = 2−
n−1

∑
i=0

H(αβ = gβ|β = i) = 2−
n−1

∑
i=0

H

(
1 + E[αi = gi]

2

)
(2.16)
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where the second to last step uses a well-known result in information the-
ory called Fano’s inequality, which is an equality here.

To extend the applicability of their setup to n inputs, Pawlowski et al used
in [16] a technique called concatenation that combines multiple copies of a
(2, 2, 2, 2)-box. In particular, their approach involved an exponential num-
ber of no-signaling boxes, whereby A combines pairs of inputs as αk⊕ αk+1
and retrieves a single output ak per pair. The outputs of two different pairs,
ak and ak′ , are then fed as input pair to another copy of the box. By re-
peating this over multiple steps, an exponential number of inputs −→α can
be reduced to a single message bit, which subsequently can be send over
the classical channel to B. A similar step-wise evaluation of the boxes on
B’s side can then indeed be shown to recover any of A’s n input bits when
using PR-boxes. [16]

A combinatoric argument then showed that the evaluation of concatenated
boxes actually increases the noise in the final message bit µ such that the
information that B gains from the message decreases with increasing n.
Consequently, the guessing biases E[αi = gi] asymptotically vanish for
all i ∈ [n]. Expanding the entropy function H(·) in eq. 2.16 in the limit
n → ∞ then finally gives a simple quadratic constraint on the space of
distributions P(a, b|x, y) in terms of their corresponding correlators Exy:

ICRAC [P(a, b|x, y)] ≡ (E00 + E10)
2 + (E01 − E11)

2 ≤ 4 (2.17)

The above is actually a variant of the quadratic Uffink inequality [66] with
permuted output labels, which is strictly stronger than the CHSH inequal-
ity. Therefore, we call 2.17 an Uffink-like inequality.

Note that distilling the bound 2.17 from 2.15 required the explicit speci-
fication of a protocol that A and B apply to determine a value for the guess
gβ. The van Dam protocol was useful in this case since the PR-box, as an
extremal no-signaling box, exactly saturates the perfect guessing proba-
bility of 1.0 and the maximum mutual information of I(α0, α1 : µ′, B) =
H(α0, α1) = 2 bits. The maximally mixed box PI(a, b|x, y) = 1

4 , in con-
trast, only allows only random guessing (success probability of 1

2 ) and thus
I(α0, α1 : µ′, B) = H(α0, α1) = 0. So it seems plausible that, by using the
van Dam protocol, some probabilistic mixture of PPR and PI will sit on
the boundary between satisfying and violating the IC principle. In fact,
the mixture P(a, b|x, y) = ηPPR + (1 − η)PI with a maximal value of η
(0.0 ≤ η ≤ 1.0) such that P(a, b|x, y) ∈ Q′ has a CHSH value of exactly
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2
√

2, i.e. the Tsirelson bound. [16, 32] Remarkably, despite the minimal
assumptions that IC makes on the mutual information, it was later shown
that Tsirelson’s bound can also be derived solely from assuming a gener-
alised data-processing inequality 2.11. [67]

2.2.5 Generalising and simplifying the derivation of IC
bounds on no-signaling distributions

The study of information causality has, since the proposal in [16], mostly
hold on to the RAC-based formulation and rather focused on generalising
and simplifying the protocol of the (EA)RAC game.

A key issue with the original protocol in [16] was the concatenation pro-
cedure. While it was effective for deriving the Tsirelson bound and a
quadratic constraint, it required an infinite number of copies of the no-
signaling boxes. This is unpractical for experimental tests of IC and makes
the derivation itself quite laborious. Also it is unclear how to generalise
the protocol with concatenation to boxes in scenarios other than (2, 2, 2, 2).
To resolve that issue, [26] suggested to replace the concatenation of boxes
by making the communication channel noisy.

In concatenation, the bound was strongest for very large n because the
sequential evaluation of box copies by party A resulted in diluting the in-
formation about input bits −→α . That way, the message bit µ becomes less
informative and party B’s guessing success becomes more dependent on
the correlated side-information b that party B obtains by querying the no-
signaling box with input β. Even boxes with weaker non-locality are then
sufficient to decode the little amount of information that is left within the
message bit µ, which is noisy by its construction.
By modelling the whole process of multiple box copies instead as a noisy
channel with some noise parameter pc, the exact same effect is achieved
and the bound 2.17 is rederived. More concretely, a binary symmetric
channel with error probability pc is used, which implies a communication
capacity of κ = 1− h(pc). [27]

In addition to the already known results, they showed that the new pro-
tocol is applicable to an arbitrary (n, m, d, d) Bell scenario, though they
explicitly only demonstrated it in the (3, 3, 2, 2) case. The only relevant
assumption is that all input bits −→α are treated equally, in that sense any
cooperative strategy of party A and B must yield the same guessing proba-

36



2.2 Bounding quantum correlations operationally 37

bility for all bit indices β.

Still the derivation in [26] relied somewhat on heuristic arguments and
had to be tailored to a specific setting. Only recently, the noisy channel
approach was made more systematic by Jain et al in [27].
In the first step, the conditional guessing probabilities P(gβ|−→α =

−→
j , β = i)

for any i ∈ [n] and
−→
j ∈ [d]n are calculated in terms of the Bell correlators

Exy of the no-signaling box and the noise parameter pc of the classical sym-
metric noise channel.

The mutual information terms I(−→α : µ′, B) in 2.14 can then already be
fully determined by those probabilities. However, their expressions still in-
volve the highly non-linear Shannon entropy H(·). The method presented
in [27] eliminates those by exploiting a key property of the entropy func-
tion, namely that the derivatives of H(·) are piecewise well approximated
by polynomial functions. By taking the derivatives of both sides of 2.14
and taking the limit to a zero capacity channel, a polynomial inequality in
terms of the box biases Exy is derived. The inequality is still valid because
the derivates are taken by applying L’Hoptials rule. In the limit of a fully
noisy channel (e.g. pc → 1

2 for a binary symmetric channel), both sides of
2.14 vanish and so L’Hopitals rule is applicable on their ratio.

Using this method, bounds for a whole family of (n, n, 2, 2) scenarios was
derived in a single calculation and the quadratic, Uffink-like inequality (eq.
2.17) was obtained as a special case. [27]
Furthermore the (d, 2, d, d) and (n, n, d, d) families were studied to demon-
strate the efficiency of their derivation method. Notably, the (n, n, 2, 2)
bounds are actually tighter than those found for the equivalent concatena-
tion setup in [16] or via the noisy channel approach for n = 3 in [26]. The
inequalities derived for the (d, 2, d, d) case, in contrast, match those of an
earlier work. [68]

Lastly, while all of the above works focused on the bipartite setting, infor-
mation causality was also studied for tripartite distributions P(a, b, c|x, y, z)
in [69]. For this, however, they only considered the case of bipartite non-
locality between different bipartitions of the three parties.
Pollyceno et al, in contrast, recently proposed in [70] a genuine multipar-
tite generalisation of the principle using the novel framework of quantum
causal structures. Instead of one sender A and one receiver B, they con-
sider multiple senders and a single receiver. The goal is compute a certain
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function fβ which depends on the β-th bit in the data of each sender. [70]

2.2.6 IC bounds in the CHSH scenario

In [20, 71] it was observed that for a few symmetric8 types of boxes, the
quadratic IC bound (eq. 2.17) actually coincides perfectly with the quan-
tum boundary within the space of bipartite no-signaling distributions
P(a, b|x, y). This is a remarkable observation since none of the other opera-
tional principles was yet found to be tightly bounding the quantum set Q′
for any specific subset of distributions, except from the very special case of
a noisy PR-box P(a, b|x, y) = ηPµνσ

PR + (1− η)/4 for 0.0 ≤ η ≤ 1.0. [11, 32]
However, also the IC principle seems to fail on tightly bounding the quan-
tum set Q′ for many other subsets of (asymmetric) boxes when testing IC
violations with the quadratic IC bound. [19, 20]

The main open question on the topic of IC thus remains to what extend the
remaining gap between the IC bound 2.17 and the quantum boundary can
be reduced by deriving stronger IC constraints within the space of bipartite
distributions P(a, b|x, y).

As previously discussed, progress has been made on tightening the bound
for more complex Bell scenarios than the CHSH scenario, like (n, n, 2, 2)
and (n, n, d, d) [27], and for multipartite settings [70]. However, in the sim-
plest (2, 2, 2, 2) scenario, there is to date no IC bound that is equally strong
or stronger than the quadratic IC inequality (eq. 2.17) across the whole
no-signaling polytope. Even the novel technique presented by Jain et al
([27]) for finding non-locality bounds from IC criteria gave only improve-
ments for higher dimensional distribution spaces, i.e. for P(a, b|x, y) with
a, b ∈ [d], x, y ∈ [n] and d, n ≥ 3.

Importantly, the emphasis here lies on universally tighter bounds in the
CHSH scenario. That is, bounds which are the strongest in any given no-
signaling slice.
When disregarding this demand for universality, there are actually some
examples of stronger bounds that were derived for specific no-signaling
slices. However, those come at the cost of even worse performance than
the quadratic IC inequality in other parts of the polytope. A specialised
constraint from [27] for the case of strongly correlated inputs α0 and α1, for

8Symmetric boxes refers to so-called "isotropic boxes", which are mixtures of one or
more PR-boxes and white noise (P(a, b|x, y) = 1/4)
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example, can detect significantly more IC-violating non-local boxes than
2.17 when focusing on mixtures of two LD-boxes (eq. 2.2) and one PR-box
(eq. 2.8). [27] However, as we will show in the next chapter, the crite-
rion for strongly correlated inputs is nearly equivalent to the no-signaling
boundary for the subset of boxes considered in [19]. 9

Furthermore, a few numerical bounds have been suggested which are actu-
ally more restrictive than Uffink across the whole no-signaling set.
To construct those, however, the initial RAC-based formulation of IC had
to be generalised. All of the above works namely rather held on to the orig-
inal approach of baking the RAC game into the definition and derivation
of IC.

One example of such a numerical bound was presented in the work by
Yu et al [23]. They reformulated IC as an abstract RAC-independent re-
trieval task by using the notion of redundant information. This notion
stems from the so-called partial information decomposition, which splits
the information of multiple variables Xi about some target variable T up
into three contributions: unique, synergistic and redundant information.
If we consider that party B retrieves two pieces of information, G1 and G2,
about the data −→α , then redundant information quantifies how much infor-
mation G2 contains about −→α that was already available when retrieving
G1, and vice versa. The unique information gained by B from G1 and G2
about −→α is then just the sum of mutual information terms I(−→α : G1) and
I(−→α : G1, G2), subtracted by the overlapping (i.e. redundant) information
Ired(G1, G2 7→ −→α ). Enforcing IC on this setup means that this potentially
retrievable information is upper-bounded by the classical capacity of any
communication channel between A and B, just like for the RAC.
The other generalisation in [23] is that B’s query β no longer denotes a
specific bit-index in A’s input string −→α ). Rather β can label any (partial)
piece of information about the data −→α ).

Unfortunately, also this modified IC statement by Yu et al does not prevent
from choosing a specific protocol for A and B. The mutual and redundant
information terms are fully determined by the probabilities P(−→α , Gi|i = β),
but expressing those in terms of the box correlations P(a, b|x, y) requires
knowing how the values of a, b, x, y,−→α , Gi and β are related to each other.

9One of the authors of [27] pointed out that if an arbitrary correlation strength between
the input bits is allowed, one can optimise over the correlation strength for any set of
distributions P(a, b|x, y) to obtain a bound that is universally stronger than Uffink.
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In [23], Yu et al decided to keep using the van Dam protocol but tested
the violation of IC with their modified and generalised statement. In doing
so, they numerically demonstrated equal or tighter bounds in the same
three slices that were already considered for the original formulation of IC
[19]. 10 However, while their IC bound matched the quantum boundary
in two of the three no-signaling slices, it did not in the third slice. In fact,
the IC-quantum gap in the latter case exactly matched the one observed
already for the Uffink-like IC boundary.

The quantum-tight IC bounds in [23] were hereby obtained for all kinds of
isotropic11 boxes, while the failing slice contains mixtures of a PR-box, a
Local-Deterministic box and white noise (P(a, b|x, y) = 1/4). Surprisingly,
an even earlier proposed generalisation of IC by Chaves et al [22] gave a
stronger bound than the quadratic IC bound for those anisotropic 12 boxes.
They formulated IC within the framework of so-called quantum causal
structures, and leveraged SDPs to optimise the potential information of B
that is still compatible with those information-theoretic structures. [22] A
key consequence of this approach is that, like in [23], the potential informa-
tion takes relative information about A’s bits−→α into account, which makes
boxes with weaker non-locality sufficient to violate the IC bound.
However, although employing causal structures allows to detect more IC
violating boxes than the original IC inequality, the improvement is only
slight and the gap to the quantum boundary stays relatively large for
anisotropic boxes. The principle of local orthogonality, in contrast, is in
those parts of the no-signaling polytope significantly stronger and even
nearly tight for the quantum set. [45]

10While preparing this work, it was remarked in private communication that the paper
made a mistake in proving that the IC statement is satisfied by (all) quantum distribu-
tions P(a, b|x, y) ∈ Q′. Nevertheless, we consider it relevant in discussing the different
perspectives which have been taken on IC.

11I.e. Box mixtures with one or more PR-boxes and white noise (P(a, b|x, y) = 1/4), but
no Local-Determinstic box.

12Box mixtures with one or more PR-boxes and white noise (P(a, b|x, y) = 1/4), but no
Local-Determinstic box.
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2.3 Non-Locality Distillation

All pure entangled quantum states are resources for establishing non-local
correlations. In contrast, measurements on mixed states are not necessarily
able to produce distributions P(a, b|x, y) outside of the local set L, even
when the mixed state is inseparable [32] Some of the well-known Werner
states, for example, are entangled but not all of them do exhibit non-locality
by themselves.
However, it turns out that by combining multiple copies of those states,
one can still simulate correlations beyond the local set. This is called super-
activation of non-locality. More generally, one can take any no-signaling
box P(a, b|x, y) and increase the amount of observed non-locality by shar-
ing multiple instances of it, which then goes by the name non-locality distil-
lation.
Even if a box P(a, b|x, y) already violated a Bell inequality, non-locality dis-
tillation can strengthen the violation. With respect to a CHSH functional
S(s1,s2,s3,s4)

CHSH , this means that the value of S(s1,s2,s3,s4)
CHSH can be increased.

If now multiple copies {P(a1, b1|x1, y1), . . . , P(aN , bN|xN , yN)} of a box P(a, b|x, y) ∈
NS are shared between the two space-like separated parties, the inputs
{(x1, y1), . . . , (xN, yN)} and outputs {(a1, b1), . . . , (aN, bN)} can be locally
processed in such a way that effectively another single no-signaling box
with distribution Q(a, b|x, y) ∈ NS is obtained. This is exactly what
wirings, a specific form of non-locality distillation, are about. [71, 72]
The effective non-locality of the wired box Q(a, b|x, y) can hereby be higher
or lower than the non-locality in the original distribution P(a.b|x, y). How-
ever, Q(a, b|x, y) can never have more non-locality than the sum over the
individual instances of P(a, b|x, y). Thus, for any tuple of coefficients
(s1, s2, s3, s4):

N

∑
c=1

S(s1,s2,s3,s4)
CHSH (P(aN, bN|xN, yN)) ≥ S(s1,s2,s3,s4)

CHSH (Q(a, b|x, y)).
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Although wirings are represented in various ways throughout the liter-
ature, we will refer to the following definition:

Definition 2.3.1. Wiring — A wiring W between two boxes P1(a1, b1|x1, y1) ∈
NS and P2(a2, b2|x2, y2) ∈ NS in a bipartite (2, 2, 2, 2) Bell scenario is a tuple
of boolean functions ( f (1)in , f (2)in , fout, g(1)in , g(2)in , gout) (i.e. the "wires") where

f (1)in 7→ f (1)in (x, a2) ≡ x1 f (2)in 7→ f (2)in (x, a1) ≡ x2 fout 7→ fout(x, a1, a2) ≡ a

g(1)in 7→ g(1)in (y, b2) ≡ y1 g(2)in 7→ g(2)in (y, b1) ≡ y2 gout 7→ gout(y, b1, b2) ≡ b

for any a, b, a1, b1, a2, b2, x, y ∈ {0, 1} such that the following non-cyclicity13

conditions are satisfied: [72]

f (1)in (x, a2) = f (1)in (x) or f (2)in (x, a1) = f (2)in (x) (2.18)

and equally for the g(i)in -functions.

The functions f (k)in (g(k)in ) hereby specify the input xk (yk) into the k-th
box within subsystem A (B). On the other hand, fout (gout) gives the output
of the (effective) wired box a (b) from subsystem A (B).

Applying a wiring W to two boxes results in another (effective) no-signaling
box W(P1, P2) = Q(a, b|x, y) ∈ NS . Consequently, N boxes can also be
wired to a single box W(P(a, b|x, y)×N) = R(a, b|x, y) ∈ NS by an itera-
tive process from two-box wirings. [72] Hereby, it is important to remark
that wiring more than two boxes is an ambiguous process. Three instances
of some box P(a, b|x, y), for example, can be wired as W(W(P, P), P) or
W(P, W(P, P)), which generally do not result in the same box. The oper-
ation of a wiring W is namely non-associative and not symmetric in its
arguments [72]. The former variant, however, can be shown to result in
a box with the highest amount of non-locality. If we wire N copies of
the same box P(a, b|x, y), we will assume W(...W(W(P, P), P)..., P) as the
canonical way to perform the wiring. Furthermore, we call N− 1 the wiring
order. whereby an increasing order implies a more complex wiring process.

In above definition, indexed values (a1, a2, b1, b2) denote the (hidden) out-
puts of boxes P1(a1, b1|x1, y1) and P2(a2, b2|x2, y2). The (hidden) inputs of

13Non-cyclicity prevents that the inputs of each box depends on the output of the other
box. At least one box input (e.g. x1 or x2) must solely depend on the global input x.
Otherwise there is a logical loop and none of the boxes could be queried in the first place.
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P1 and P2, on the other hand, are implicitly determined by the wiring func-
tions as x1 ≡ f (1)in (x, a2) and x2 ≡ f (2)in (x, a1) for party A’s part of the wired

box. Equivalently for B’s side: g(1)in (y, b2) ≡ y1 and g(2)in (y, b1) ≡ y2.
We can understand (x, y) as the initial input values to the wired box Q(a, b|x, y)
and (a, b) as the final output values of the wired box. While the inputs (x, y)
are given when querying the (global) wired box Q(a, b|x, y), the outputs
(a, b) result from post-processing the outputs (a1, a2) and (b1, b2) of the
individual boxes for party A and B respectively. This happens according
to the wiring functions, namely a ≡ fout(x, a1, a2) and b ≡ gout(y, b1, b2).
[72, 73] The processing is separated between the parties, by f and g func-
tions respectively, to preserve the no-signaling property of the wired boxes.
For common examples of wirings and their insightful visualisation, we re-
fer the reader to figure 3 in [72].

Note that wirings are somewhat different from the previously mentioned
process of concatenating no-signaling boxes. Although the latter can also
be used for non-locality distillation, there are n inputs −→x ∈ {0, 1}n and
−→y ∈ {0, 1}n for each party that are distributed in parallel over the different
boxes {P(a1, b1|x1, y1), . . . , P(aN, bN|xN, yN)}. In contrast to wirings, the
resulting setup as a whole can not be viewed as an (effective) no-signaling
box. The number of inputs of a wired box, must namely match that of the
individual boxes to preserve the structure of a bipartite output distribution
P(a, b|x, y). So wiring N for bipartite boxes, each party can only provide a
single input to the wired box that is subsequently relayed to only a single
box from {P(a1, b1|x1, y1), . . . , P(aN, bN|xN, yN)}.

Studying wirings is extremely non-trivial since there are a huge number of
valid ways to connect the inputs and outputs, even for just two boxes. This
becomes only worse if one goes beyond deterministic wirings and takes
also probabilistic mixtures of those wirings into consideration [72]. Fortu-
nately, similar to the two compact sets of distributions, L and NS , the set
of wirings turns out to be convex and compact as well. [72, 74] Particularly
for wirings from definition 2.3.1, every such wiring can be reproduced from
a mixture of 824 = (6, 724)2 = 45, 212, 176 extremal wirings. Hereby, 82 is
the number of extremal wirings that one can choose from independently
for each of 2 possible inputs x for party A and each of 2 inputs y for party B.
All those 82 wirings can be composed from only 5 different parameterised
types, labelled as "deterministic", "one-sided", "XOR-gated", "AND-gated"
and "sequential" respectively. For details on the different types of extremal
wirings, see Table 1 in [74].
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The simplest non-trivial wiring types are the ones where the (independent)
outputs of both boxes (a1, a2) ((b1, b2)) are used in conjunction to produce
the effective box output a (b). From the table of extremal wirings, we
see that this involves either XOR-gating or AND-gating the outputs. Any
other combination of the outputs can be produced as a mixture of these
two atomic operations.
Lastly, the sequential wiring type is most notable type from the table as it
is the only one that actually uses the output of one box as an input for the
other box. The other four extremal types rather query the boxes P1 and P2
independently, and post-process their outputs to produce the final outputs
(a, b) of the wired box Q(a, b|x, y).

The importance of considering wirings lies in their potential to construct
an effective box R(a, b|x, y) ∈ NS that might exceed the boundary of any
restricted subset of distributions S ⊂ NS such that Q(a, b|x, y) /∈ S , even
when the underlying individual boxes were contained in that same subset
S , i.e. Pi(ai, bi|xi, yi) ∈ S for all i ∈ [1, n].
A set of distributions S is called closed under wirings if there does not exist
any subset of boxes P1, P2, . . . ∈ S and any wiring W for which the corre-
lation lies outside the set S , i.e. W(P1, P2, . . .) /∈ S . Equally, we say that
some constraint C(P(a, b|x, y)) ≤ C on the correlation space is stable (un-
der wirings) if and only if its enclosed subset is not closed.

On the one hand, wirings are plausible ("physical") local operations in
the assumed LOCC framework, provided that a sufficient number of boxes
N (or copies of a single box) are available. On the other hand, for any
S ⊂ NS which is not closed under wirings, it is impossible to define
a physical self-consistent theory 14 that generates the distributions in S .
[75] This means that, starting from theory-consistent distributions, there
would otherwise be the possibility to produce (by local operations that
correspond to some suitable wiring) a distribution outside of the theory
domain, where the theory is not well-defined anymore. Consequently, any
constraint C(P(a, b|x, y)) ≤ C that is not stable under wirings is an unphys-
ical constraint.

Unfortunately, proving closure of a set S is very involved and tailored
to each situation, making success highly dependent on the particular struc-

14"Theory" is meant here in the most abstract and general way possible, since it
isn’t well-defined within the device-independent framework of black-box distributions
P(a, b|x, y). The reader familiar with GPTs may, without loss of generality, assume that
"theory" here refers to some constrained variant of the well-known "boxworld" GPT. [13]
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ture of S . Therefore, very few non-trivial closed subsets of NS are cur-
rently known for which the closure has actually been proven. [75] The
no-signaling set NS itself is the most important example for which it has
been shown. Also the quantum set Q (i.e. the one with the tensor product
structure) is closed under wirings, but for the often considered alternative
quantum setQ′ it is still unknown. [75] Here we only consider the simplest
bipartite Bell scenario where Q and Q′ are nearly identical. In that sense,
Q′ can be considered closed throughout our discussion as well.

Although wirings have not yet been studied explicitly in the context of
IC, the original variant of Uffinks inequality from [66] is very similar and
was readily shown to be not closed under wirings in [71]. Specifically, they
proposed a wiring that can distill multiple copies of some Uffink-satisfying
mixtures between the canonical P(000)

PR PR-box (eq. 2.8), a local determinstic

P(0101)
LD -type box (eq. 2.2) and the maximally random box PI(a, b|x, y) = 1

4
to distributions Q(a, b|x, y) ∈ NS which then violate the Uffink inequal-
ity. In terms of the extremal wiring types from table 1 in [74], the wiring
proposed by Allcock et al is composed of AND-gating and XOR-gating the
outputs of different box copies. The concrete wiring functions read:

f (1)in (x, a2) = x g(1)in (y, b2) = y

f (2)in (x, a1) = x⊕ a1 ⊕ 1 g(2)in (y, b1) = yb1

fout(x, a1, a2) = a1 ⊕ a2 ⊕ 1 gout(y, b1, b2) = b1 ⊕ b2 ⊕ 1 (2.19)
(2.20)

In addition to this very specific combination of a wiring and a certain type
of box mixture, several other counterexamples have been found for the
non-closure of Uffink-like inequalities. For instance, when considering
non-local boxes in various quantum voids. [73]
Since the quadratic IC inequality 2.17 is also just a variant of the original
Uffink inequality with permutated output labels (i.e. swapped {0, 1} val-
ues for both outputs a and b), there must exist some similar wiring to 2.19
which distills IC-consistent boxes to ones that violate the IC principle.

We remark that despite the failure of Uffink, the stability under wirings
of IC itself is still inconclusive. We lack a constraint that exactly describes
which distributions P(a, b|x, y) are consistent with the IC principle for all
possible formulations of the principle and all possible strategies of the two
parties. Only with such an IC-tight bound, we could start to assess the
stability of IC itself.
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Anyhow, if IC turns out to be stable under wirings, the set IC of IC con-
sistent distributions will definitely be the maximal closed subset of the set
enclosed by the Uffink inequality. [71, 75]
Beyond the IC principle, we remark that the set of distributions satisfying
the macroscopic locality principle is already known to be closed under
wirings. Also the local orthogonality principle is stable in simple bipar-
tite non-locality scenarios, but actually becomes unstable in more general
contextuality scenarios. [75]
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Chapter 3
Methods, Experiments & Results

3.1 ABoxWorld: A modular numerical framework
for no-signaling correlations

The formulation of the information causality principle in terms of mutual
information (or, equivalently, entropy) is a real challenge. For deriving a di-
rect constraint on the space of no-signaling distribution P(a, b|x, y) ∈ NS
from IC statements (like 2.15) in a bipartite non-local scenario, one namely
has to make the protocol explicit.
On the one hand, this is because the mutual information terms I(αi :
gβ|β = i) refer to random variables, αi and gβ, which do generally not
have a fixed relation to the box variables (a, b, x, y). On the other hand, it is
not evident from the IC statement how exactly the communicated message
µ is constructed by party A.

To compute the mutual information I(αi : gβ|β = i), one thus first needs to
specify the information retrieval task (e.g. RAC), the specific encoding of
input data into a classical message µ of party A, the decoding routine for
constructing the guess gβ of party B, and the type of (noisy) communica-
tion channel µ 7→ µ′. This implies that one can always consider only the
special case of a specific protocol that party A and B will follow in some
non-local game. Unfortunately, this means that we have to test through all
possible protocols to determine which protocol gives the strongest bound
on IC. Thereby we use that maximising the strength of the bound corre-
sponds to maximising the value of I(αi : gβ|β = i) terms in 2.15 for a fixed
channel capacity.
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However, examining the information retrieval performance ∑i I(αi : gβ|β =
i) for many different (family of) protocols would be a tedious task if we
want to do it analytically, even when the most recent method by [27] is
applied. This thus invites the use of numerical tools to explore the impli-
cations of information causality on constraining no-signaling distributions
P(a, b|x, y) ∈ NS .

Within the broader field of quantum information, some numerical libraries
already exist for quantum circuits (e.g. Qiskit), simulation of open quan-
tum systems (e.g. QuTiP, QuantumOptics.jl) and even (quantum) entan-
glement theory (e.g. Toqito). However, there has not yet been any general-
purpose library or modular codebase for studying non-local correlations
beyond quantum mechanics. Also, most code related to Bell non-locality is
written in either proprietary languages, like Matlab, or in popular but inef-
ficient languages, like Python. Therefore, we have implemented our own
modular framework in Julia. All of the following numerical experiments
have been performed in this new framework. 1

At the core of the framework are the bipartite no-signaling boxes P(a, b|x, y)2,
stored in the compact Collins-Gisin (CG) representation [32, 76]. This rep-
resentation reduces the mAmBoAoB components of P(a, b|x, y) in a bipar-
tite (mA, mB, oA, oB) scenario to only mA(oA − 1) + mB(oB − 1) + mA(oA −
1)mB(oB − 1). Because of the normalisation of P(a, b|x, y) and the no-
signaling conditions (eq. 2.3 & 2.4), we namely only need to store the
marginals P(a|x) and P(b|y), as well as n − 1 components of P(a, b|x, y)
for each pair of inputs (x, y). So while the benefit in the simplest (2, 2, 2, 2)
Bell scenario is limited, this is already a lot more memory efficient for only
slightly more complex scenarios.

Various operations can then be performed on the no-signaling boxes. This
includes the testing of user-defined Bell inequalities in any bipartite Bell
scenario and applying an arbitrary wiring of two boxes in the simplest
CHSH-scenario. The implementation of wirings was hereby heavily based
upon the python code 3 accompanying [72].

1Available on GitHub: https://github.com/t-rothe/ABoxWorld
2In addition to boxes P(a, b|x, y) with a single input per party, there is also limited

support for time-ordered (sequential) no-signaling boxes P(a, b1, . . . , bt|x, y1, . . . , yt). For
background information on time-ordered distributions, see appendix B

3https://github.com/Pierre-Botteron/Algebra-of-Boxes-code/tree/main/
non_local_boxes
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Since the exact quantum boundary is not representable by a compact con-
straint, we used the NPA hierachy of SDP programs 4 to test membership
of boxes P(a, b|x, y)NS in a close approximation to the quantum set. [42]
Throughout our numerical experiments, we thereby considered NPA at
level 3 to be sufficient for detecting significant gaps between the quantum
boundary, corresponding to the set Q′, and any boundary implied by the
IC constraints.
Two different NPA implementations, QuantumNPA.jl 5 and ncpol2sdpa 6,
were used in combination with the proprietary solver Mosek 7. The former
implementation was often preferred since it was also written in Julia and
up to 2 orders of magnitudes faster. The ncpol2sdpa python library, how-
ever, has a wider set of features and is thus more adaptable to problems
whereby any variables, in addition to the NPA moment matrix compo-
nents, need to be injected into the definition of the optimisation problem.
This is the case, for example, when solving the membership problem as
a more stable optimization problem, rather than as an possibly unstable
feasibility problem.

3.2 Comparing IC bounds

So far, one common limitation of many works on IC has been the focus
on demonstrating the strength of IC only in very specifically chosen no-
signaling slices, i.e. very specific families of box mixtures. Curiously, no
comprehensive comparison of all the known bounds has been made yet.
To map out the strengths and weaknesses of each IC bound, we plotted
the various IC bounds for the simplest bipartite scenario (i.e. (2, 2, 2, 2))
side-by-side in figure 3.1.

Figures 3.1a - 3.1c correspond to the slices that were also chosen in [19]
and [23]. The box mixtures represented in figure 3.1d, on the other hand,
were first considered in the context of IC in [27]. For comparability and for
demonstrating our numerical framework, we hereby held onto the style
of the figures in the original works. Those were either line plots with re-
spect to the values of two different types of CHSH-scores, or an area plot

4We refer any reader who is unfamiliar with SDPs to [77] for background information,
and to [42] for more information specifically about the NPA hierachy of SDPs

5https://github.com/ewoodhead/QuantumNPA.jl
6https://github.com/peterwittek/ncpol2sdpa
7https://github.com/MOSEK/Mosek.jl
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that directly represents the coefficient-space (η1, η2) of convex mixtures
P(a, b|x, y) ≡ η1P1(a, b|x, y) + η2P2(a, b|x, y) + (1 − η1 − η2)P3(a, b|x, y).
Due to the normalisation of mixture coefficients η1 + η2 = 1, all the 2D-
plots in figure 3.1 correspond each to some family of mixtures of exactly
three no-signaling distributions (P1(a, b|x, y), P2(a, b|x, y), P3(a, b|x, y)).

Regarding the line plots in figures 3.1a - 3.1c, the lines separate distri-
butions that satisfy the respective constraints, lying in the regions below,
from those that violate them, lying in the regions above. All relevant dis-
tributions P(a, b|x, y) ∈ NS are situated in the lower-left triangle, below
the black no-signaling boundary, while anything above the triangle can be
ignored. Hereby, "relevant" thus refers to the no-signaling property from
definition 2.1.2.

Equivalently, each colored area in figure 3.1d identifies all the distributions
that are consistent with the corresponding IC or quantum constraint. The
blank region in the lower-left violates all constraints (except no-signaling
2.1.2), while the blank area on the right of the figure only contains irrel-
evant distributions P(a, b|x, y) /∈ NS . Inevitably, colored areas overlap
towards the top-right corner in this visualisation and thus only the quan-
tum NPA region is fully visible.

The visualisation of the space of distributions P(a, b|x, y) with respect to
the values of two different ("orthogonal") CHSH functionals in figures 3.1a
- 3.1c has the advantage that each distribution can be directly interpreted
by the amount of non-locality that it involves.
Thereby, the two CHSH functionals are chosen such that each mixture
of three no-signaling boxes P(a, b|x, y) ≡ η1P1(a, b|x, y) + η2P2(a, b|x, y) +
(1− η1 − η2)P3(a, b|x, y) can be uniquely identified by simply solving a
system of linear equations.

Which of the eight CHSH functionals in eq. 2.7 to choose for each slice
thus depends on the three extremal boxes in the mixture. Each CHSH
functional S(s1,s2,s3,s4)

CHSH is namely associated to a facet of the local set of distri-
butions L and to a PR-box (corresponding to distributions in 2.8) by which
it is maximally violated.
Using this correspondence, the two CHSH variants for figure 3.1a and 3.1b
were chosen such that the PR-boxes in the mixture saturate the optimum
value for the two CHSH functionals respectively. For figure 3.1c, on the
other hand, the CHSH functionals were selected based on whether the LD
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box in the mixture (P0000
LD ) is contained in the associated facets of L.

Concretely, the shown slices of NS are given with respect to the values
of SCHSH ≡ S(1,1,1,−1)

CHSH (i.e. the canonical CHSH functional), SCHSH′ ≡
S(1,−1,1,1)

CHSH , and SCHSH′′ ≡ S(−1,1,1,1)
CHSH as defined in eq. 2.7. For simplicity we

labelled them as CHSH, CHSH’, and CHSH” respectively.

As mentioned previously, computing the mutual information for any of the
known IC bounds requires fixing a specific protocol and (noisy) communi-
cation channel. For plotting the bounds in 3.1, we assumed the van Dam
protocol and a binary symmetric channel. This setup was demonstrated
to give optimal RAC success probabilities and the strongest IC bound for
all extremal no-signaling distributions in the simplest bipartite scenario.
[26, 27] While this does not necessarily imply optimality for mixtures of
extremal distributions, there has not yet been found any protocol for the
RAC setup with an IC bound that is stronger than the Uffink-like inequal-
ity obtained from the van Dam protocol.

In figure 3.1a, we consider a family of so-called isotropic mixtures between
the canonical PR-box P000

PR , the maximally mixed box PI(a, b|x, y) = 1
4 (i.e.

white noise) and the PR-box P010
PR . While the more general IC bounds from

[16], [22] and [23] exactly reconstruct the quantum boundary, the bound
for the special case of nearly perfectly correlated bits (α0, α1) from [27] is
not much stronger than the no-signaling constraint. This observation is
consistent across all figures, 3.1a - 3.1c, except from the slice in 3.1d that
was also selected by the authors of [27] themselves to demonstrate their
specialised bound. 8

For a different family of isotropic distributions, η1P000
PR + η2P110

PR + (1 −
η1 − η2)PI, we see in figure 3.1b that only the bound by Yu et al from
[23] can recover the NPA-based quantum boundary. The original Uffink-
like IC inequality and the bound by Chaves et al from [22], on the other
hand, are both a horizontal line at the Tsirelson canonical CHSH value of
SCHSH = 2

√
2. In both cases the success probabilities, for the respective

8The "specialised" bound for nearly perfectly correlated bits α0 and α1 can be gener-
alised to arbitrary correlation strengths between A’s data bits −→α . From that perspective,
the Uffink-like bound from [16] is equally just a special case, namely the case of uncorre-
lated bits. The generalised bound matches Uffink for most NS distributions, but can be
stronger in a few non-isotropic slices, like the one drawn in figure 3.1d. Most importantly,
however, as a generalisation it can never be weaker than Uffink.
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(a) Projection space of isotropic mixtures η1P000
PR +

η2P010
PR + (1− η1 − η2)PI with 0.0 ≤ η1, η2 ≤ 1.0

onto their SCHSH′ (horizontal) and SCHSH (ver-
tical) values. All IC bounds, except the purple
bound for nearly perfectly correlated inputs, ex-
actly match the quantum boundary according to
NPA level 3. Some lines have been slightly trans-
lated vertically to make all overlapping lines visi-
ble.

(b) Projection space of isotropic mixtures η1P000
PR +

η2P110
PR + (1− η1 − η2)PI with 0.0 ≤ η1, η2 ≤ 1.0

onto their SCHSH′ (horizontal) and SCHSH (ver-
tical) values. The IC bound by Yu et al from
[23] reconstructs the NPA level 3 boundary, while
Chaves2015 matches the original IC bound from
[16].

(c) Projection space of mixtures η1P000
PR + η2P0000

LD +
(1− η1 − η2)PI with 0.0 ≤ η1, η2 ≤ 1.0 onto their
SCHSH′ (horizontal) and SCHSH (vertical) values.
None of the IC bounds reconstructs the NPA level
3 boundary. While Chaves2015 is for these box
mixtures stronger than all other IC constraints, it
is not quantum-tight.

(d) Space of isotropic mixtures η1P000
PR + η2P0000

LD +

(1 − η1 − η2)P0101
LD , whereby the (partially over-

lapping) areas indicate the boxes which satisfy
the respective constraints. No IC bound recovers
the NPA boundary, but the specialised bound for
nearly perfectly correlated inputs comes closest.
Chaves2015 provides the strongest constraint of
the bounds which enclose an Uffink-compatible
set.

Figure 3.1: Various IC bounds and the quantum boundary across different no-
signaling slices. Slices of 3.1a, 3.1b, and 3.1a reproduce & extend plots from
[19, 23]. The area plot in 3.1d is based on figure 2 in [27].
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information retrieval tasks, are thus fully independent of the presence of a
P110

PR -type distribution within the mixture. In other words, the correlation
resulting from a PR-box P110

PR does not increase B’s chances for making a
correct guess beyond the success probability that a (classical) local deter-
ministic box (eq. 2.2) would have given.

The remaining two figures, 3.1c and 3.1d, show the bounds for two non-
isotropic types of mixtures with very similar observations. On the one
hand, a mixture with a single LD-box P0000

LD (eq. 2.2) in 3.1c and a mixture
with two LD-boxes P0000

LD and P0101
LD in 3.1d. In both cases, the quantum

boundary is simply linear (according to NPA at level 3), but clearly none
of plotted bounds is able to reconstruct it. 9

Nevertheless, in 3.1c the IC statement based on causal structures from [22]
results in a boundary that is strictly closer to the quantum boundary than
any of the other bounds. The generalisation of IC in terms of redundant
information from [23] by Yu et al, in contrast, seems to have no advan-
tage for the considered mixture and matches the Uffink-like IC bound in
this slice. Thus, Chaves’ [22] and Yu’s [23] bounds are complementary, in
the sense that each is the strictly strongest bound for some type of mixtures.

Although nearly the same ranking between the IC bounds, with respect to
their strength, applies to the area plot in figure 3.1d, there are some subtle
differences visible. Firstly, there is a growing gap between the original IC
bound and the bound by Yu et al with an increasing proportion of the local
deterministic box P1010

LD in the mixture, i.e. higher η2. This gap between the
two bounds is hereby, in comparison to figure 3.1c, neither a consequence
of numerical imprecision nor due to the alternative representation of the
no-signaling slice in terms of coefficients (η1, η2). Secondly, the specialised
bound from [27] for nearly perfectly correlated inputs (α0, α1) is now the
strongest. While the gap of the correlated-inputs bound to Chaves’ bound
around the center of the plot (η1 = η2 = 0.5) is quite significant, the respec-
tive boundaries converge towards each other in the limits single LD-boxes
in the mixtures, η1 → 0 or η2 → 0.

9It was remarked by one of the authors of [27] that the more general correlated-inputs
bound, with arbitrary correlation strength between α0 and α1, does actually recover the
quantum NPA boundary within this specific slice.
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3.2.1 Generalising the observed differences between IC con-
straints

Constraint on I(−→α : µ′, B) Strongest for

RAC success
Pawlowski et al [16]

∑n−1
i=0 I(αi; gβ |β = i) ≤ I(µ : µ′) P0νσ

PR + P0ν′σ′
PR + PI

Causal Structures
Chaves et al [22]

∑n−1
i=0 I(αi : gβ, µ′ |β = i)

+∑n−1
i=1 I(α0 : αi |gβ, µ′, β = i)

≤ I(µ : µ′) + ∑n
i=1 H(αi)− H(−→α )

P0νσ
PR + P0ν′σ′

PR + PI

P0νσ
PR + Pαγβλ

LD + PI

P0νσ
PR + Pαγβλ

LD + Pα′γ′β′λ′

LD

Redundant information
Yu et al [23]

∑M−1
i=0 I(−→α : gβ |β = i)
−Ired(g0, . . . , gM−1 7→ −→α )
≤ I(µ : µ′)

P0νσ
PR + P0ν′σ′

PR + PI

Pµνσ
PR + Pµ′ν′σ′

PR + PI

Table 3.1: Comparison of the different IC statements proposed so far based on
RACs ([16]/[27]), quantum causal structures ([22]) and redundant information
([23]) respectively. Blue and red colored parts in the inequalities indicate the
differences in the formulation of IC with respect to the original IC statement (top
row). Additionally, red identifies vanishing terms for all settings considered in this
work. The Q′-tight constraint on isotropic mixtures of the form P0νσ

PR + P0ν′σ′
PR + PI

is obtained by all IC statements. Causal structures and redundant information
have unique mixtures for which they achieve the strongest bound, though they
are not necessarily IC-tight in those slices.

By also considering various other mixtures between three extremal
boxes, we can summarise and generalise the above observations for the
three independent formulations of IC in table 3.1.
From the table, we can see that non-isotropic mixtures containing local
deterministic distributions Pαγβλ

LD (eq. 2.2) are constrained most strongly by
IC through quantum causal structures as proposed by Chaves et al [22].

There are two key differences between Chaves’ IC statement and the orig-
inal IC statement from [16] that explain why they result in bounds of dif-
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ferent strength. On the one hand, the mutual information terms in Chaves’
IC statement have an additional and direct dependence on the (received)
message µ′, aside from the indirect dependence via gβ in the original IC
statement 2.15. On the other hand, some new terms I(α0 : αi |gβ, µ′, β = i)
with i ̸= 0 capture information about α0 that B inherently obtains when-
ever he successfully guesses a different bit αi.

Curiously, throughout all our experiments in (2, 2, 2, 2) scenarios (i.e. i ∈
{0, 1}), we observed that I(α0 : α1 |gβ, µ′, β = 1) = 0.0 up to numer-
ical precision. This suggests that the extra dependence on µ′ in I(αi :
gβ, µ′|β = i) > I(αi : gβ|β = i) is the main contribution of Chaves’ im-
provement to the IC statement. On first sight, this is somewhat surprising
since gβ ≡ µ′ ⊕ b for the van Dam protocol might imply that gβ should
encode the same information about αi as µ′, such that

I(αi : gβ|β = i) = I(αi : gβ, µ′|β = i)

for all i ∈ {0, 1} and P(a, b|x, y) ∈ NS .

However, using LD-boxes Pαγβλ
LD introduces a certain asymmetry to the

RAC protocol by non-uniform marginals P(a|x) and P(b|y). Consequently,
I(αi : gβ, µ′|β = i) > I(αi : gβ|β = i) for some i ∈ {0, 1} and P(a, b|x, y) ∈
NS since, roughly speaking, the bias in b partially erases information in µ′

about α0 or α1 when computing gβ ≡ µ′⊕ b. This would indeed imply that
more boxes P(a, b|x, y) violate IC and thus also result in a tighter IC bound
when replacing I(αi : gβ|β = i) with I(αi : gβ, µ′|β = i) in the IC statement.

The above reported observations provide numerical evidence that the IC
statement by Chaves et al always results in a stronger IC bound than
the original one for all mixtures which involve Pαγβλ

LD boxes. These non-
isotropic mixtures are highly non-intuitive and so the exact reason for the
success of Chaves’ bound in these no-signaling slices remains unclear to us.

In contrast to causal structures, the generalised IC statement from Yu et al
[23] did not show any advantage over the original RAC-based IC formula-
tion from [16] whenever a Pαγβλ

LD box is part of a three-box mixture.
However, the optimality of the two bounds is reversed when considering
mixtures which contain a P1νσ

PR box. So in that case, the result from Chaves
et al [22] matches the Uffink-like IC bound, while the IC formulation by Yu
et al from [23] is significantly stronger than Uffink (and is even quantum-
tight). This is the complementary of these two IC formulations that we
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already observed in the special cases of figures 3.1c and 3.1d.

Accepting partial information about the bits in−→α is currently unique to the
formulation of IC by Yu et al in [23]. In contrast, the mutual information
terms in Pawlowski’s [16] and Chaves’ [22] IC formulations only capture
the retrieval of complete and individual bits αi in −→α .
Note that while the IC formulation by Chaves et al also has terms I(α0 :
αi |gβ, µ′, β = i) which account for correlated information between pairs of
different bits in −→α , there is an important deficit. Rather than accepting par-
ity as a piece of information on it’s own, the I(α0 : αi|µ′, gβ) term only asks
whether B can improve his guessing probabilities on the value of α0 pro-
vided that he already successfully retrieved αi in isolation. In other words,
the parity is only considered to be useful information if it is accompanied
with a correct guess of the value of either α0 or α1.

To interpret the advantage of the bound by Yu et al [23], note that the
key difference between P1νσ

PR
10 boxes and P0νσ

PR
11 boxes lies in which spe-

cific combinations of input and output values (a, b, x.y) have a non-zero
probability within the distribution P(a, b|x, y). While the canonical PR dis-
tribution P000

PR , for instance, is nonzero whenever a⊕ b = xy, the condition
for P110

PR reads a⊕ b = xy⊕ x⊕ y. The additional individual dependence
on x and y biases the output b that party B uses to decode the received
message µ′. Within a RAC with the van Dam protocol, this requires party
B to correct his output b by undoing the addition of x and/or y. For his
own input y, this is easy. However, he generally does not have access to
the pure box input x of party A.
The IC statement by Yu et al [23] takes this into account by using a modi-
fied objective for the RAC game that is invariant under the addition of x
to g. That is, if the RAC is successful for some guess g = ĝ, then it equally
succeeds for the guess g = ĝ⊕ x.

10E.g. P110
PR

11E.g. the canonical PR-box
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3.3 Violating IC by wiring-based non-locality dis-
tillation

The preceding analysis and demonstration of IC bounds assumed that par-
ties A and B share only a single instance of each no-signaling distribution
P(a, b|x, y) ∈ NS . However, in a more general scenario, if multiple copies
of a box P(a.b|x, y) are shared, a suitable wiring can result in an effec-
tive box Q(a, b|x, y) with a larger CHSH value SCHSH than an individual
copy of P(a, b|x, y). This suggests that even when a probability distribu-
tion P(a, b|x, y) obeys the Uffink-like IC inequality ICRAC [P(a, b|x, y)] ≤ 4
(eq. 2.17), it might equivalently be possible to wire multiple instances of
P(a, b|x, y) to a distribution Q(a, b|x, y) ≡W(P(a, b|x, y)×N) such that then
ICRAC [Q(a, b|x, y)] > 4.

It is generally a non-trivial task to find combinations (W, P(a, b|x, y), N)
for which this is the case. In particular, solving ICRAC [Q(a, b|x, y)] ≤ 4
analytically in terms of Q(a, b|x, y) is already infeasible due to the non-
linearity of ICRAC. Consequently, finding expressions for wiring functions
( f (1)in , f (2)in , fout, g(1)in , g(2)in , gout) ≡ W, a distribution P(a, b|x, y), and N such
that ICRAC [W(P(a, b|x, y)×N)] ≤ 4 is only feasible by means of numerical
methods.

The simplest approach would be to search among all possible wirings W
by brute-force while focusing on a fixed subset of distributions P(a, b|x, y).
However, the number of valid wiring functions W ≡ ( f (1)in , f (2)in , fout, g(1)in , g(2)in , gout)
is huge. Even in the simplest (2, 2, 2, 2) Bell scenario and N = 2, a single
iteration through all wirings would be inefficient, if not infeasible.
To reduce the search space, one could alternatively select a relevant sub-
set of wirings that is iterable within reasonable time. Following this ap-
proach, the authors in [73] studied wirings in the context of the princi-
ple of non-trivial communication complexity, which limits the value of
the CHSH functional SCHSH to a certain constant. Thereby, they only
considered wirings under which canonical PR-boxes stay invariant, i.e.
{W : W(P000

PR , P000
PR )}).

Overall, the wirings in this subset proved to be a good choice for increasing
the SCHSH value and, therefore, for violating the principal of non-trivial
communication complexity at some point.
One instance from the mentioned subset is the wiring proposed by Allcock
et al in [71], which we introduced earlier in eq. 2.19.
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ht

Figure 3.2: Post-wiring violations of IC for the mixtures P(a, b|x, y) = η1P000
PR +

η2P0101
LD + (1 − η1 − η2)PI with 0 ≤ η1, η2 ≤ 1 and a wiring proposed in [71].

Each mixture with (η1, η2) is represented on the axes by their values of SCHSH ≡
S(1,1,1,−1)

CHSH′ (horizontal) and SCHSH ≡ S(1,1,1,−1)
CHSH (vertical).

Dots indicate assessed boxes P(a, b|x, y), whereby red dots signify boxes that
could not be distilled to a IC-violating box by the wiring up to order 12 (∼ N = 13
box copies). Blue dots signify distillable boxes, with the luminance of the color
indicating the minimally required wiring order N − 1 (∼ N boxes copies). While
the wiring can help violating IC for the bounds of [16] and [23], no post-wiring
violations are found for the bound in [22].

3.3.1 Post-wiring violations of the quadratic IC inequality

For the original Uffink inequality [66], it was shown that this wiring alone
can already distill many Uffink-consistent boxes P(a, b|x, y) to boxes Q(a, b|x, y)
that violate Uffink’s inequality. Therefore, it was anticipated that this
would equally hold for the Uffink-like IC inequality 2.17.
To demonstrate this, and to illustrate the extension of our numerical frame-

work to wirings, we plotted in figure 3.2 the post-wiring violations of the
original IC inequality 2.17, specifically for the wiring of Allcock et al. The
chosen mixture of boxes for this figure, P(a, b|x, y) = η1P000

PR + η2P0101
LD +

(1− η1 − η2)PI, is hereby the same as in figure 6 of [71].
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Instead of assessing all values 0 ≤ η1, η2 ≤ 1, we focused on those boxes
P(a, b|x, y) within a grid with spacing 8 · 10−4 which are within the so-
called IC-Q-Gap, meaning that P(a, b|x, y) satisfies the original IC inequal-
ity ICRAC[P(a, b|x, y)] ≤ 4 (eq. 2.17) and P(a, b|x, y) /∈ Q′. The latter
restriction can be made since the quantum set Q′ is known to be closed
under wirings. Testing whether quantum boxes violate IC after applying a
wiring is thus superfluous. Also if ICRAC[P(a, b|x, y)] > 4, we do not need
to be test the box anymore since it already violates IC without any wiring
and for any formulation IC.
For comparison, figure 3.2 also shows the other two IC constraints from
table 3.1.

Beside the IC bounds, the figure shows as blue and red dots all the boxes in
the slice that we assessed. Those are thus the boxes P(a, b|x, y) which have
been wired together, not the final wired boxes Q(a, b|x, y) which could also
lie outside of the visualised slice.
Blue dots identify the boxes that did violate the IC inequality 2.17 after ap-
plying the wiring W(P, P) at least once (N ≥ 2). Hereby, the luminance of
the blue color shows how many copies N of P(a, b|x, y) were required to ob-
tain the violation, i.e. the minimum N such that ICRAC[W(P(a, b|x, y)×N)] >
4. A lighter color means that more box copies were needed. The red dots,
in contrast, indicate that IC was satisfied for this specific wiring up to the
pre-determined maximum wiring order of 12. That is,

ICRAC[W(P(a, b|x, y)×N)] ≤ 4

for any number of box copies N ∈ [1, 13].
However, a box displayed in red does not necessarily rule out the possibil-
ity that applying the wiring to more than 12 copies of that box could result
in an IC violation. Furthermore, a stronger constraint for IC than eq. 2.17
could lower the (non-locality) barrier for a violation, potentially allowing
the wiring to distill a red box P(a, b|x, y) to an IC-violating box Q(a, b|x, y)
after all.

Figure 3.2 shows that, for most boxes marked in blue, just 2 box copies
are enough to achieve an IC violation with this single wiring. In the lower-
right part of the figure, however, there are also boxes P(a.b|x, y) for which
the wiring needs at least 4 to 6 copies to distill boxes sufficiently far. In
only very few exceptions, visible along the orange line, the wiring requires
N = 8 to 10 box copies to violate IC.
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We remark that, although the figure visually limits the wiring order to a
maximum of 12, the underlying computations were actually carried out
for up to N = 25 box copies. However, no additional IC violations were
found when choosing N between 10 and 25.

When comparing the different IC bounds to the blue region of post-wiring
violations, it is evident that the visually overlapping bounds proposed
by the original IC paper [16] and by Yu et al. [23] are both not IC-tight
constraints. After all, many boxes violate these bounds after applying the
wiring to just two satisfying copies. In stark contrast, there is not a single
box P(a, b|x, y) below the IC bound by Chaves et al [22] which could be
distilled with the considered wiring to a box above the other two bounds.

In fact, on the right side of the figure (i.e. higher SCHSH′′ values) Chaves’
bound even turns out to be tangent to the lower edge of the blue-dotted
region, at least up to numerical precision.
This is somewhat surprising because Chaves’ IC bound, derived from
the framework of causal structures, is entirely unrelated to the concept
of wirings. Therefore, we might have evidence that Chaves’ bound is actu-
ally IC-tight for the plotted family of box mixtures. IC-tightness of Chaves’
bound could then explain why, despite the lack of connection between
causal structures and wirings, the wiring’s distillation capability ends ex-
actly at Chaves’ IC boundary.
Of course, the matching boundaries could also be a coincidence since the
blue-dotted region and Chaves’ IC bound do not coincide over the entire
width of the figure. The differences become particularly significant for
SCHSH′′ < 1.5 in this slice. Moreover, when considering various other
non-isotropic box mixtures, Chaves’ bound is not always the strongest IC
bound, nor does the region of post-wiring violations consistently reach this
bound in all such slices.

3.3.2 Broadening the search for post-wiring violations

The single wiring as proposed by [71] can thus already reveal many post-
violations of the quadratic IC inequality 2.17. There are, however, still
many boxes P(a, b|x, y) which do not violate IC after wiring them with
this specific wiring. On the one hand, there is still a large gap between the
quantum boundary and the lower edge of the blue-dotted region of figure
3.2. On the other hand, we found that the proportion of boxes within the
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IC-Q-gap that show post-wiring violations of 2.17 is much smaller for other
types of non-isotropic box mixtures than for the slice of figure 3.2.

To get a more complete picture of which boxes can definitely be wired
to IC violating boxes, we thus have to consider far more wirings. In search-
ing for more post-wiring violations, it would be particularly interesting to
find a counter-example for the instability of the causal structures IC bound
from [22] under wirings, specifically for the case of non-isotropic box mix-
tures. After all, the single wiring of figure 3.2 was already sufficient to rule
out IC-tightness of the Uffink-like IC inequality 2.17 and the bound by Yu
et al from [23]. Therefore, finding a suitable combination of a wiring and a
box for disproving IC-tightness of Chaves’ IC bound formed the primary
motivation to extend the search for post-wiring violations.

Based on the preceding observations and additional experiments with
other wirings from the previously mentioned set of PR-box preserving
wirings, we anticipated that a completely different class of wirings would
be necessary to identify post-wiring violations capable of surpassing Chaves’
IC boundary.
Unfortunately, there does not seem to be a clear heuristic for selecting a
class of wirings specifically aimed at violating IC bounds.
Already for the quadratic and relatively compact IC inequality 2.17, it is not
clear what kind of wiring might increase the value of the non-linear func-
tional ICRAC[Q(a, b|x, y)], for example. This becomes only worse when
considering any of the other IC inequality statements (see column 2 in ta-
ble 3.1) with highly non-linear mutual information terms.

In addition to the difficulty of identifying a useful class of wirings, fo-
cusing exclusively on a specific class might discard too many wirings that
could prove unexpectedly useful in a particular information retrieval task,
such as a RAC. Therefore, a more appropriate strategy might be to first
broadly explore the entire set of wirings before narrowing it down to cer-
tain optimal classes.
To achieve this, we can exploit that the set of wirings, as defined in 2.3.1,
is a convex and compact set such that it forms a polytope, just like the
set of distributions NS and L. This means that there are a finite number
of extremal points which characterise and generate the full set of wirings.
Even better, each of those extremal wirings can be generated from a com-
position of only 5 types of partial wirings, as listed in table 1 in [74]. The
total amount of extremal wirings, 45, 212, 176, is then still very large but
iterable within a manageable runtime, especially on a sufficiently powerful
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compute cluster.
After several trial runs, we nevertheless further reduced the search space
by discarding 2 of the 5 types of partial extremal wirings from [74], specifi-
cally the deterministic and one-sided types. By studying the changes in the
values of SCHSH and ICRAC[Q(a, b|x, y)], we observed that all wirings con-
structed with the two discarded types were namely not capable of increas-
ing the amount of non-locality for 10 or fewer copies of any box P(a, b|x, y)
within the slice represented in figure 3.2.

While iterating through all of the remaining 724 = (5, 184)2 = 26, 873, 856
extremal wirings, we recovered the previously considered wiring from [71]
for the exact same box mixtures as in figure 3.2. Additionally, we discov-
ered a few other extremal wirings that appeared to be very similar, as they
exhibited the same or fewer post-wiring violations for boxes P(a, b|x, y)
within the same slice.

Unfortunately, despite conducting extensive searches in various non-isotropic
slices, specifically those with one or two LD-boxes in the three-box mix-
tures, we did not find any wiring that could distill boxes above Chaves’ IC
bound. Thus, it remains inconclusive whether the set of boxes compatible
with Chaves’ IC bound is closed under wirings or not. In the end, there
are still various possibilities for disproving the stability of IC within causal
structures. For example, by wiring different boxes that satisfy the bound,
instead of multiple copies of the same box.

One novel method that allows to efficiently optimise also over all con-
vex combinations of extremal wirings has recently been presented in [72].
Concretely, they employ projected gradient descent with an adaptive learn-
ing rate to search for wirings within the continuous space of mixed wirings.
Mixed wirings are just convex mixtures of the deterministic wirings that
we introduced in def. 2.3.1, whereby the wiring functions ( f (1)in , f (2)in , fout,

g(1)in , g(2)in , gout) take the same binary arguments as before but now each
output nuous values in the range [0, 1] instead of a binary value. In partic-
ular, these continuous values denote each the probability for the box inputs
(x1, x2, y1, y2) and the effective box outputs (a, b) having a value of 0 re-
spectively. So all box inputs or outputs still take binary values, but now
with a certain probability.
Because of this, Q(a, b|x, y) ≡ W(P(a, b|x, y)×N) and SCHSH(Q(a, b|x, y)
become also continuous functions with respect to the wiring function val-
ues f (1)in (x, a2), f (2)in (x, a1), fout(x, a1, a2), g(1)in (y, b2), g(2)in (y, b1), and gout(y, b1, b2).
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Consequently, the gradient of an objective function, such as SCHSH(Q(a, b|x, y))
or ICRAC[Q(a, b|x, y)], can be defined. Well-established machine learning
techniques, like gradient descent, can then be used to find an optimal
wiring W with respect to the objective.

We successfully re-implemented this method in our numerical framework
with the quadratic expression ICRAC[Q(a, b|x, y)] from eq. 2.17 as the ob-
jective to be maximised. We performed a few trial runs, focusing on non-
isotropic box mixtures with a single LD-box, such as the one from figure
3.2.
Despite extra efforts to avoid local maxima12, the optimisation often got
stuck on wirings that yield no violations of the original IC bound (eq.
2.17) for any of the assessed box mixtures. This could either be due to
the non-linearity of the objective or suboptimal hyperparameters for gra-
dient descent and line search, with the latter being more probable since
ICRAC[Q(a, b|x, y)] is not significantly more complicated than the expres-
sion for the CHSH functional SCHSH.
Nevertheless, in a few runs, we actually found some wirings with post-
wiring violations for the box mixtures P(a, b|x, y) = η1P000

PR + η2P0101
LD +

(1− η1 − η2)PI, though we had already discovered these wirings previ-
ously while iterating over the set of extremal wirings.

Regarding our primary aim of finding post-wiring violations of Chaves’ IC
bound, we must resort to using the left-hand side of the IC inequality in the
center cell of Table 3.1 as the objective function. Unfortunately, the above
method breaks down when considering this objective based on mutual
information. This is because the mutual information terms in Chaves’ IC
statement, as functions of the distributions P(a, b|x, y), only vary in large
discrete steps of 1.0 (i.e. whole bits). This raises the general difficulty of
optimizing discrete objectives with gradient-based methods

An additional problem is that for all boxes P(a, b|x, y) relevant to our
search, namely those in the IC-Q-gap13, the mutual information terms on
the left-hand side of Chaves’ IC inequality take the same value. While
boxes on the boundary between IC-satisfying and IC-violating boxes satu-
rate Chaves’ IC inequality by definition, any quantum box P(a, b|x, y) ∈ Q′
with P(a, b|x, y) /∈ L does saturate it as well. In that sense, boxes within
the IC-Q-gap are indistinguishable with respect to the LHS of Chaves’ IC

12By using multi-start optimisation and an adaptive learning rate
13That is, any P(a, b|x, y) such that ICRAC[P(a, b|x, y)] > 0 and P(a, b|x, y) /∈ Q′
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inequality and consequently, the idea of being close to (or far from) violat-
ing this inequality is not well-defined.

Gradient-based optimisation of wirings for the purpose of violating Chaves’
IC bound is thus not possible with the given formulation in terms of mu-
tual information. However, it might become possible if one derives a di-
rect polynomial constraint on the space of distributions P(a, b|x, y) from
Chaves’ IC inequality. For now, only the Uffink-like IC inequality seems to
be compatible with this method, using ICRAC[Q(a, b|x, y)] or the average
success probability of an EARAC as the objective function.
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Chapter 4
Discussion & Conclusion

This work offers a comprehensive review of research on bounding non-
locality with the information causality (IC) principle in a bipartite setting.
Rather than focusing on one specific formulation of IC, our analysis in-
tends to elucidate IC from various perspectives. On the one hand, the
strengths and weaknesses of different generalised formulations of IC are
examined. On the other hand, starting from any IC formulation, various
ways to generalise the derivation of explicit constraints on distributions
P(a, b|x, y) ∈ NS are explored. Overall, our study emphasises the re-
markable power of the (bipartite) IC principle in approximating the quan-
tum boundary for many isotropic boxes. However, it also showcases the
heavy deficiencies in our understanding to what extent IC bounds can be
strengthened further and to what extent the gap between the IC and quan-
tum boundary can be closed.
Although we also provide new insights about the stability of certain IC
formulations under non-locality distillation, this work mainly serves as a
survey of various attempts to derive tight IC bounds for setups beyond the
standard EARAC.

4.1 Implications

• Unifying the view on generalised formulations of IC
First, the IC bounds that follow from the generalised formulations of IC in
[22, 23, 27] are studied in a unified notation and for box mixtures beyond
the ones that were specifically selected in the original works. For the first
time, this allows an overview of the strengths and weaknesses of each ap-
proach that has been proposed so far.
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Particularly, we chose to compare all the IC bounds which are universally
stronger than the quadratic Uffink-like constraint, which follows from the
original RAC-based formulation of IC in [16, 26].

A more detailed analysis in [22] of the causal relationships between vari-
ables in an EARAC, for example, has significantly improved our ability
to accurately quantify the amount of information I(−→α : gβ|β) that party
B can obtain from party A’s data −→α for a given box P(a, b|x, y) ∈ NS .
Each time a bit αβ is guessed correctly, there might namely be additional
information left in message µ′ that allows to slightly increase the guessing
probability of another bit αβ′ (β′ ̸= β) as well. While the upper-bounding
channel capacity is held constant, the retrievable information increases and
violates the IC inequality for many more boxes, which implies a stronger
bound.

• IC is powerful for symmetric distributions, but shows significant weak-
nesses for boxes with biased outputs
The comparison of IC bounds demonstrates their astonishing capability in
reconstructing quantum boundaries for most families of symmetric and
unbiased boxes, while it also highlights the significant gaps to the quantum
boundary in non-isotropic slices. The size of the gap and the difficulty to
strengthen IC bounds hereby seems to increase with the number of Local-
Deterministic boxes in the mixture.

Indeed, this is not surprising as we assumed uniform (i.e. unbiased) and
i.i.d. data bits −→α while Local-Deterministic boxes do imply a certain bias
in the value of party B’s guess gβ.
Only for the IC bound from [27], the usual assumption of uncorrelated data
bits (α0, α1) was dropped and EARACs with nearly perfect correlation be-
tween α0 and α1 were shown to give an IC bound that is much stronger
than Uffink’s inequality for mixtures of two Local-Deterministic boxes and
a single PR-box. The choice of nearly perfect correlation is, however, not
optimal for other type of boxes and even results in IC bounds which are
hardly stronger than the no-signaling conditions.
This shows that IC can also work well in less symmetric scenarios of non-
isotropic boxes but it requires more specialised fine-tuning to the setup of
the information retrieval task in which IC is formulated.
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• The two generalised (bipartite) formulations of IC from [22, 23] are
complementary
Furthermore, we demonstrate that there is currently no bound known that
is IC-tight for isotropic boxes while also being the strongest bound for non-
isotropic boxes.
In particular, IC within the framework of causal structures and the IC
formulation proposed by [23] complement each other. While the former
bound from [22] is the strongest IC bound for non-isotropic boxes, it is
not stronger than the original Uffink-like IC inequality for any family of
isotropic boxes. In contrast, the latter bound from [23] closes the gap
between the IC and quantum boundary for certain families of isotropic
boxes but performs equivalently to the Uffink-like IC inequality for all non-
isotropic boxes.

• Focus of IC research on improving RAC protocol and simplifying
derivations of IC constraints
The biggest contributions to IC so far, however, have not been made on
re-formulating IC, but rather on simplifying the derivation of explicit IC
constraints in terms of distributions P(a, b|x, y) and improving the proto-
col that parties A and B apply within their bipartite information retrieval
task.

For instance, the proposal in [26] to replace the box concatenation proce-
dure by a noisy communication channel and the recently presented method
from [27] to make the derivation of explicit IC bounds more systematic,
have been most disruptive in simplifying the computation of the quadratic
Uffink-like IC bound. Although the resulting IC bound is the same1, this
is a first step to enable the study of IC for more general and more complex
variations on the regular EARAC scenario, which may reveal many more
IC-violating boxes compared to the original IC formulation from [16].
The above mentioned specialised IC bound for nearly perfectly correlated
data bits from [27] is thereby early evidence for the potential strength
that can still be gained for IC bounds when generalising the setup of the
EARAC2. This is the case even when using one of the existing (but possibly
incomplete) formulations of IC in table 3.1.

1At least in the default setup that we assume throughout this thesis: The standard
EARAC as the bipartite information retrieval task + shared no-signaling boxes in the
simplest (2, 2, 2, 2) Bell scenario

2or any other bipartite information retrieval task
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• Wired box copies can violate IC bounds (from [16, 23]) that do not
exploit the full information in messages
One other possible generalisation of a standard EARAC with a single no-
signaling box is giving the two parties access to multiple boxes or multiple
copies of the same box. In combination with arbitrary local processing, this
generalised scenario allows to distill non-locality through wirings. In our
numerical experiments, we specifically studied the impact of wirings on
the ability of boxes P(a, b|x, y) to violate any of the IC bounds. Although
this has been done before on a superficial level in works like [73] for the
quadratic Uffink-like IC inequality (eq. 2.17, our experiments were focused
on searching for wirings that are optimal for catalysing the violation of any
given bound, specifically in the context of IC. As no universally IC-tight
bound has yet been identified, it is of particular interest to find boxes that,
while satisfying all proposed IC bounds for individual box copies, can vio-
late at least one of the bounds when wiring multiple copies. Discovering
any such post-wiring violation would then indicate the minimum extent
to which IC bounds can be tightened further towards the quantum bound-
ary.
Unfortunately, we found no such post-wiring violation for up to 12 box
copies, despite an extensive search for wirings within the set of extremal
(deterministic) wirings and boxes within a few specific families of non-
isotropic boxes. However, some extremal wirings did still give many post-
wiring violations when focusing on either the quadratic Uffink-like IC
bound or the bound proposed by Yu et al in [23]. 3 We demonstrated
this for a certain wiring that was first considered in [71] and that belongs
to a class4 of wirings which was already known from [73] to violate the
Uffink-like IC inequality. For the bound by Yu et al, however, this was not
explicitly demonstrated before.

In the end, only for the IC bound based on causal structures from [22]
our numerical experiments leave open whether any valid wiring can distill
a set of compatible boxes5 to some effective box that can violate the bound.
Because of our extensive search for wirings, using multiple numerical
methods, we consider our observations to be even weak (numerical) evi-
dence for the IC-tightness of the causal structures bound for box mixtures
with a single LD-box. Though, if this turns out to be correct, explaining the

3Note that the two bounds are completely equivalent in this case of non-isotropic box
mixtures

4Concretely, this is the class of wirings W which preserved PR-boxes, i.e.
W(PPR(a, b|x, y)×N) for any number of copies N ≥ 2. (See chapter 3

5or, even better, multiple copies of a single box
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preference of the bound for this specific type of non-isotropic boxes seems
a bit difficult since the bound is not the strongest one for non-isotropic
boxes with two LD-boxes, for example.

• Conjecturing stability under wirings of the IC bound based on causal
structures (from [22])
Although we found no examples of post-wiring violations of the Uffink-
like IC bound for boxes satisfying the causal structures IC bound, we did
actually find many examples of post-wiring violations for boxes very close
to the causal structures bound6. Somehow, the existence of post-wiring
violations thus seems to be exactly restricted to those boxes that violate the
causal structures bound, at least for the two non-isotropic slices that we
considered for our wiring experiments.7 In other words, the causal struc-
tures bound seems to be setting a limit on the extent to which wirings can
be applied to violate IC bounds. Overall, our observations then suggest
that the set of boxes8 which satisfy the causal structures bound is closed
under wirings and, therefore, that the IC bound based on causal structures
must be stable under wirings.

At this point, one might wonder whether using causal structures to for-
mulate IC is, in contrast to the other two bounds, inherently already in-
corporating scenarios which make of use wirings. This would then justify
the potential stability of the bound under wirings. However, we could not
identify any clear relation between wirings and the IC bound based on
causal structures. Although we can not completely rule out such a relation,
the absence would mean that we need some alternative explanation for
why the causal structure bound and the region of post-wiring violation
of IC bounds happen to coincide9 so well in our experiments. Since any
information theoretical principle, including IC, is expected to be stable un-
der wirings [75], IC-tightness of the causal structures bound within the
no-signaling slices of our experiments could explain the seemingly perfect
match as well.

6That is, boxes which violate the bound but are hardly distinguishable from boxes
satisfying it.

7As mentioned in the previous chapter, those observations were not restricted to the
wiring from [71] that we studied for figure 3.2, but also hold for other (similar) wirings.

8Strictly speaking, our experiments give only evidence for boxes which correspond to
a mixture that contains a single LD-box, but we believe that the stability of the bound also
holds more generally.

9like in figure 3.2
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We emphasise that both conjectures about the causal structures bound,
IC-tightness and stability under wirings for non-isotropic boxes with a sin-
gle LD-box, are only supported by extensive numerical evidence but not
proven. Future work thus might aim for a rigorous analytical proof and
a justification for the specific benefit of the causal structures bound in the
specific case of non-isotropic box mixtures with a single LD-box.

• Providing a modular numerical framework for device-independent
non-locality
Lastly, this work also yielded a methodological and IC-independent contri-
bution in form of a modular and efficient numerical framework for study-
ing bipartite non-locality within the device-independent paradigm. 10 It
features the convenience of a natural syntax for working with bipartite no-
signaling boxes, the NPA hierachy, Bell inequalities and wirings. Although
common Bell inequalities, IC bounds and wirings are readily implemented,
it can be easily extended with custom Bell inequalities or wirings.

To our knowledge, a flexible codebase for working with bipartite no-signaling
distributions P(a, b|x, y) has not existed yet. While some specialised code
on the broader topic of non-locality has been published for MATLAB
and Python in the past, we aim to encourage efforts towards establish-
ing a more efficient, open-source, and high-level codebase for (device-
independent) non-locality research. Considering that this field of research
involves a lot of optimisation tasks, we believe this would be best achieved
using more suitable languages such as Julia.

4.2 Limitations & Future directions

In the last few years, research on IC has gathered new momentum and
has thereby discovered increasingly larger sets of no-signaling boxes that
violate the principle. However, both in proposing more general formu-
lations of IC and in generalising the derivation of explicit constraints on
distributions P(a, b|x, y), there are still several aspects and scenarios that
one could account for when applying IC as a bounding principle.

10Accessible via GitHub: https://github.com/t-rothe/ABoxWorld
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IC formulations

First, regarding the generalisation of the RAC-based IC formulation, only
the works by Chaves et al [22] and Yu et al [23] readily contributed a few
ideas11 with new perspectives on IC. To follow up on those, we would
suggest to find IC formulations which also address the following two fun-
damental aspects:

• Restriction to EARACs as information retrieval task — EARACs are
an important type of bipartite information retrieval task for which
the advantage of non-locality can be easily demonstrated. Therefore,
EARACs are also a natural framework to formalise IC, as has been
done throughout the literature on this topic. However, it would be
of interest to study IC also within the context of other information
retrieval tasks for which the success of the game is primarily deter-
mined by the amount of information that is communicated between
the parties. This could yield universal tighter IC bounds, yield spe-
cialised IC bounds that are tighter in specific no-signaling slices, or
make the derivation of IC bounds less dependent on the chosen pro-
tocol in the game.
The nonlocal torpedo game, presented in [54], might be an interesting
variation on a standard EARAC, but other bipartite games might be
even more exciting.
Especially the choice of a suitable objective could make a crucial dif-
ference. A limitation of the EARAC objective g = αβ is namely the
boolean criterion for defining success. That is, instead of maximis-
ing some continuous "score", party B can either completely win or
completely fail in each round of the EARAC game. This causes also
the retrievable information ∑i I(g : αβ|β = i) on the left hand side
of 2.14 to be a (piecewise) discontinous function with respect to dis-
tributions P(a, b|x, y). Using instead an information retrieval game
with a smooth, differentiable objective would simplify the optimisa-
tion of IC bounds over any complex search space (such as wirings)
by employing gradient-based methods.

Of course, decoupling the formulation IC completely from any spe-
cific information retrieval task would be an the best solution.
In their proposal for a re-formulation of IC, Yu et al made in [23] a

11I.e. respectively maximising the information gain from received messages by exploit-
ing correlation between data bits, and accounting for the possibility of the retrieval of
partial or relative information
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first attempt on this. However, to derive a constraint solely in terms
of P(a, b|x, y) distributions, they ultimately still need to reintroduce
the EARAC. Moreover, the resulting constraint is not an explicit an-
alytical expression; rather, it requires numerically solving a convex
optimisation problem for each P(a, b|x, y) box to assess the violation
of IC.

• Fixed entropy measure & Independence of rounds — All proposed
formulations of IC (see 3.1) are stated as inequalities that involve
some form of mutual information, satisfying the properties in eq.
2.9 - 2.13. In [65], an equivalent entropic variant of the original IC
formulation in 2.14 was introduced which requires slightly fewer as-
sumptions about the considered entropy measure H.

All works on IC to date, including the experiments in this thesis,
have implicitly chosen Shannon entropy as the relevant measure of
information for computing the explicit IC bounds with respect to
distributions P(a, b|x, y). To some extent this choice makes sense as
it quantifies the "average" information content of random variable
g about αβ, which is coherent with the implicit assumption that, in
an experimental realisation of an EARAC, the success probability
P(g = αβ|β) is estimated by repeating the non-local game through-
out multiple independent rounds.
Alternatively, however, one could also study IC for EARACs in a one-
shot scenario. Concretely, party B could make each guess g for query
β with knowledge of all previous guesses and queries that he made.
In this case, using either a more conservative or a more optimistic
entropy measure can make a difference and might even be more ap-
propriate to maximise the strength of IC bounds. In the context of
cryptographic applications, for example, the so-called min-entropy
is preferred.

Renyi entropies form a broad family of entropies that are commonly
used in (quantum) information theory. The Shannon entropy is a
special case within this family, specifically it is equivalent to the
RÃ©nyi entropy of order α = 1. Unfortunately, there is no com-
monly agreed definition for Renyi mutual information that could be
used in the original IC formulation (eq. 2.14) [78]. This is because
the generalisation of Shannon entropy to Renyi entropies weakens
some of the strong properties of Shannon entropy, like the chain rule
H(X|YZ) = H(XY|Z)− H(Y|Z). Nevertheless, one might carelessly
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consider to just substitute Renyi entropies into the purely entropic
IC inequality from [65]. However, also in that case the proof of the
validity of IC fails on the lack of the (strong) chain rule. Therefore,
the general validity of IC with respect to an arbitrary type of Renyi
entropy is inconclusive.

In the end, one might rightfully question the need for considering
other entropy measures by referring to the success of current IC for-
mulations with Shannon entropy. However, we object to this since
there has not yet been given any rigorous justification for why it is
the correct entropy measure in the context of IC. To some degree the
choice of Shannon entropy seems arbitrary and the impact of alterna-
tive entropies should be studied in future work.

(Derivation of) IC bounds

Subsequently, regarding the derivation of explicit constraints on no-signaling
distributions P(a, b|x, y) from any given IC formulation, numerous as-
sumptions about the applied protocol and wirings are necessary. Such
specific choices then naturally lead to some substantial limitations. No-
tably:

• Fixed protocol — Throughout this work, we assumed that the two par-
ties in an EARAC always use the van Dam protocol. While this protocol
is optimal for EARACs with a single PR-box, it is possible that other no-
signaling boxes could perform better with different deterministic, possibly
even probabilistic, protocols. Equally when applying wirings, the relation
between the effective box outputs (a, b) and box inputs (x, y) can heavily
change such that different protocols perform much better than van Dam.
However, to fulfill the necessity to specify a protocol, whilst ensuring an
optimal success probability in an EARAC, one would have to optimise
the protocol for each box P(a, b|x, y) individually. This seems intractable
when computing IC bounds analytically and has a dramatic impact on the
runtime when computing them numerically.
Among many possible future directions, one could start by surveying the
IC bounds obtained for various universally12 applied protocols. Beyond
this basic approach, one could also try to develop an efficient adaptive
protocol that depends on the box P(a.b|x, y), but without requiring opti-
mization for each individual box

12I.e. independent of the box P(a.b|x, y)
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Eventually, the exploration of various protocols might also be key in con-
structing IC bounds that are independent of any specific protocol.13 How-
ever, it is unclear whether such general bounds can exist at all. The protocol
dependence is namely due to the generally undefined random variables
(ff, g, µ, µ′) that appear in all of the IC formulations. To reduce the IC in-
equality I(ff : g) ≤ I(µ : µ′) to a constraint solely in terms of P(a, b|x, y),
one thus needs to exactly specify how the variables (ff, g, µ, µ′) are related
to the box inputs and outputs (x, y, a, b).
The big question is then whether any IC formulation can be defined that
purely relies on (x, y, a, b). While this is possible for most other operational
principles, we expect that this is inherently impossible for IC.

• Fixed type of communication channel — Related to the choice of a pro-
tocol is the selection of the type of (noisy) channel between party A and B.
Throughout this thesis, we only used the binary symmetry channel, as orig-
inally proposed by Miklin and Pawlowski in [26]. In that same work [26], it
was noticed that generalised dit-input dit-output communication channels
yield the strongest IC bound for a non-zero channel capacity κ ̸= 0 if d ≥ 3.
In contrast, the optimal channel capacity for the binary symmetric channel
(d = 2) was found in the limit of a vanishing capacity κ → 0. While the
reason for this discrepancy between bit- and dit-channels remains open,
this curious finding shows the high potential for learning something new
about IC by simply considering other (noisy) channel types, particularly
those with higher-dimensional inputs and outputs.

While preparing this thesis, we started14 experimenting with more com-
plex channels as well. See appendix C for a preliminary description and
schematic of our (somewhat deviating) approach.

Alternatively, future work could also study EARACs for the case of asym-
metric bit-channels. We tried to use the method in [27] to derive IC bounds
for the binary erasure and (asymmetric) Z-channel, for example, but found
that it does not apply to those cases. Seeking a generalisation of the method
in [27] to a broader set of channel types is thus also desirable.

In either case, by exploring various types of communication channels, we

13This would also better fit the device-independent paradigm in which we would rather
like to treat the physical system completely as a black box.

14I.e. Yet to be completed
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might deepen our understanding about how exactly no-signaling correla-
tions are used in the decoding process of an EARAC. That is, what "type"
of information 15 should be transmitted via the channel for maximising
the information retrieval, and what exact role the correlated information
between box-output a and b play in the decoding process.

• Focus on simple wirings of up to N = 24 box copies — In our un-
successful search for post-wiring violations of the causal structures bound
from [22], we only considered a certain type of wirings that is described by
combinations of a single wiring W, a single box P, and the number N of
identical copies of P.16 Despite this subset of wirings being powerful for
identifying violations of the other two IC bounds, this type of wirings is
rather simple. There are many more complex wirings for N ≥ 3 for which
post-wiring violations of the causal structures bound could exist.
On the one hand, one could use different wirings between different pairs
of boxes, rather than applying the same wiring W repeatedly. When
N = 3, this gives the wired box W2(W1(P, P), P)) for two wirings W1 and
W2, for example. On the other hand, instead of wiring N copies of the
same box P(a, b|x, y), one could also wire N different no-signaling boxes
{P1, . . . , PN}.17

Unfortunately, in both of these cases the search space grows exponentially
with N, compared to the constant number of wiring-box combinations in
our experiments. Even with our restriction to extremal wirings, our search
space was vast. Thus, for the more complex types of wirings, a brute-force
approach through all possible (extremal) wirings and boxes becomes in-
tractable.
Hence, more efficient methods for the wiring optimisation are required
to make progress on testing the stability of the causal structures bound
under wirings. In [72], for example, the authors proposed an efficient
gradient-based method for finding post-wiring violations of the principle
of non-trivial communication complexity by maximising the CHSH func-
tional SCHSH (eq. 2.6) over the full set of wirings. To apply this to any IC
bound, however, one would first have to find a continuous and differen-
tiable objective function that is maximised whenever the strength of the IC
bounds is maximised.

15Or, equivalently, what part of the information in the data (α0, ..., αn)
16Recall that while W can only wire two boxes at a time, N box copies can be wired by

iterative application of the wiring. I.e. for N = 3, either W(W(P, P), P) or W(P, W(P, P)).
17In that case, all those boxes must satisfy the bound before the wiring is applied.
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• Wirings can (probably) not distill isotropic boxes — While our dis-
cussion has primarily concentrated on the tightness of IC bounds for non-
isotropic slices of the no-signaling polytope, there are also a few isotropic
slices for which no tight IC bound is known yet. Furthermore, one could
argue that having tight bounds for isotropic boxes is more relevant than
for non-isotropic boxes since many of the potential applications of IC in
quantum information processing involve symmetric setups and objectives.
In some quantum key distribution (QKD) protocols, for example, symme-
tries in the bipartite distribution P(a, b|x, y) are crucial and biases in the
box outputs (a, b) could potentially even form a security risk.
Future research should thus focus specifically on generalising IC such that
the bounds are strengthened specifically for isotropic boxes, even if the
bounds become somewhat weaker for non-isotropic boxes. As before, this
might either be done by proposing a new formulation of IC or by optimis-
ing the EARAC protocol.

As before, wirings promise here to be a simple method to identify new IC-
violating boxes and to explore the minimum extent to which IC bounds can
be strengthened further. However, strong evidence suggests that wirings
cannot distill the non-locality of isotropic boxes [75]. Therefore, in contrast
to non-isotropic boxes, we cannot use wirings to strengthen IC bounds in
isotropic slices.
An interesting alternative direction in this context could be the use of non-
locality recycling, rather than non-locality distillation. Instead of providing
the parties in an EARAC with more than one copy of a no-signaling box,
the parties are given a single box that they are allowed to query multiple
times in a sequential manner18. In the appendix, chapter B, we briefly in-
troduce the concept of time-ordered distributions as a generalisation of no-
signaling boxes. Furthermore, we illustrate the use of time-ordered boxes
in EARACs and derive a trivial generalisation of the quadratic Uffink-like
IC bound (eq. 2.17) on the set of time-ordered distributions. Finally, we
propose a formulation of IC that could be used for a numerical study of IC
in the context of time-ordered correlations.

To our knowledge, not a single study has yet examined whether the tem-
poral correlations in time-ordered boxes offer any advantages over stan-

18Within the quantum framework this corresponds to multiple sequential measure-
ments on one and the same quantum state. I.e. without preparing a fresh copy of the state
in between the measurements.
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dard no-signaling boxes in non-local games like EARACs. Consequently,
whether IC bounds on isotropic boxes can actually be strengthened via
non-locality recycling remains an open but relevant question.

4.3 Conclusion

In conclusion, many open questions about IC’s ability to constrain the set
of no-signaling distributions P(a, b|x, y) remain, even a decade after its
proposal.

While for other operational principles, such as Local Orthogonality or
Macroscopic Locality, general and tight bounds were found, an IC-tight
bound probably remains out of reach for a while. Currently, the most
accurate approach to certifying the validity of IC for a given box is the
use of two complementary IC bounds by Yu et al [23] and Chaves et al
[22]. Yu’s generalised bound provides the strongest constraint for symmet-
ric bipartite distributions P(a, b|x, y) (i.e. isotropic boxes), while Chaves’
generalisation excels for more asymmetric distributions (i.e. non-isotropic
boxes). Although the original quadratic IC bound from [16] is the weakest
of all IC bounds, it remains useful because of its explicit and simple poly-
nomial form.
In the end, neither of the two generalised bounds from [22, 23] turns out
to be IC-tight, and it remains unclear how closely any IC bounds can ulti-
mately approach the quantum boundary.

Furthermore, we have seen that the extend to which non-locality distilla-
tion can be used to violate IC bounds with a few copies of a given non-local
box is limited. Only for the original Uffink-like IC bound from [16] and
Yu’s generalised bound from [23], we did find boxes which satisfy these
IC bounds but violate them after applying certain wirings. For Chaves’
bound, in contrast, no such post-wiring violations were found, forming
evidence for its stability under wirings. However, validating this evidence
for stability by extending the search to wirings beyond the extremal (de-
terministic) ones we focused on in this work, as well as to more complex
combinations of multiple wirings, will be very challenging. Despite our fo-
cus on simple wirings, which led to a radical reduction of the wiring search
space, the search for post-wiring violations within the massive number of
possible wirings remained computationally very demanding.
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Moreover, the broader question of whether19 the IC principle itself is stable
under wirings cannot be assessed until an IC-tight and explicit constraint
is identified.

To make any substantial progress on IC and to address the mentioned
limitations, it will be necessary to (paritally) overcome some of the unique
challenges associated to IC in comparison to other operational principles.
Especially the protocol-dependence and the formulation in terms of very
non-linear quantities, such as entropies or mutual information, have led to
a rather slow progress in generalizing and strengthening IC bounds. Con-
cretely, these challenges prevent us from obtaining general, yet simple and
explicit polynomial IC bounds, thereby heavily complicating the analytical
study of this topic.

It would be particularly interesting to see whether one can describe and
formulate IC within bipartite and non-local information retrieval games
that are very different from RACs. 20. But even when restricted to RACs,
many variations on the standard EARAC scenario remain to be explored
in more depth. This includes, but is not restricted to, EARACs with other
communication channels or more complex LOCC-compatible21 operations
(e.g. by allowing parties to sequentially query their part of the no-signaling
box multiple times).
Although IC research began to shift its focus towards multipartite scenar-
ios [25, 69, 70], there remains so much to be learned about the bipartite
case. Specifically, what are the most resource efficient strategies to opti-
mise performance in information retrieval tasks? and what aspects of such
non-local games have the biggest impact on the strength of IC bounds?

19Probably, yes, since it’s a physically motivated information-theoretic principle [75]
20RACs are restricted by the rather arbitrary objective to require exact retrieval of data

bits with a certain queried index, i.e. requiring gβ = αβ as a boolean indicator of success.
21i.e. Local Operations and Classical Communication
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Appendix A
Deriving & rationalising
Information Causality

Given the rules of an (EA)RAC, information causality is implied from nat-
ural properties of mutual information, which we stated in eq. 2.9 - 2.13:

I(−→α : µ′, B)− I(−→α , B : µ′|µ) = I(−→α : µ′, B)− I(µ.−→α , B : µ′) + I(µ, µ′)

= I(−→α : µ′|B) + I(−→α : B)− I(µ : µ′|−→α , B)− I(−→α , B : µ′) + I(µ : µ′)

≤ I(−→α : µ′|B)− I(−→α , B : µ′) + I(µ : µ′)

= I(−→α : µ′|B)− I(−→α : µ′|B)− I(B : µ′) + I(µ : µ′)

= I(µ : µ′)− I(B : µ′) ≤ I(µ : µ′) ≡ κ (A.1)

Note that the above is just a slight modification of the derivation presented
in Appendix A of [27]. At the moment of writing this thesis, we were
namely not able to follow and reproduce the derivation in the pre-print of
that paper.

The first two steps are simply the chain rule eq. 2.12 applied I(−→α , B : µ′|µ)
and I(µ.−→α , B : µ′) respectively. From the second to third line we drop
I(−→α : B) since B’s subsystem B, before B’s measurement, is completely
uncorrelated with input data−→α at A’s side. Also we drop I(µ : µ′|−→α , B) in
the same step in exchange for an "≤" by using non-negativity of the mutual
information. From the third to fourth line, we apply the chain rule once
again to I(−→α , B : µ′). In the final step we use non-negativity to exchange
I(−→α , B : µ′) for a looser inequality, and we notice that the amount of in-
formation I(µ : µ′) shared between the original and received message is
ideally equal to the constant channel capacity κ.
The second term in the first line, I(−→α , B : µ′|µ), is difficult to interpret.
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However, it is merely a mathematical catalyst in the derivation and can
be dropped in the final expression. This is possible because it vanishes by
itself. The received message µ′ neither depends upon B’s subsystem B nor
contains it any extra information about −→α relative to the original message
µ, so indeed I(−→α , B : µ′|µ).

The statement of information causality in a EARAC setup then reads: [16]

I(−→α : µ′, B) ≤ I(µ : µ′) ≡ κ (A.2)

Which is exactly eq. 2.14 in chapter 2 of the main text.

It is worth highlighting the non-constant, but more restrictive, inequality
arising from not making the final step in the above derivation (eq. A.1):

I(−→α : µ′, B) ≤ I(µ : µ′)− I(B : µ′)

In fact, this inequality makes the key point of information causality ex-
plicit, namely that all information of B about A’s input data must flow via
the communication channel. Even if the shared no-signaling correlations
would encode some structural information about the data, they can’t be
decoded without an equivalent amount of information in the signaled mes-
sage. The reverse idea is the basis for quantum key distribution whereby
the no-signaling correlations are used as part of the key to access the en-
crypted message on the possibly exposed communication channel. In fact,
the inequality I(−→α : µ′, B) ≤ I(µ : µ′)− I(B : µ′) leads to an equivalent to
the classical Wyner-Ziv compression constraint in the rate-distortion frame-
work. A discussion of this equivalence is beyond the scope of this thesis,
but it can help to think of information causality as a trade-off between the
limiting quantity I(µ : µ′) − I(B : µ′) as the "rate" and the "distortion"
H(−→α |µ′, B).

We mentioned the tighter statement I(−→α : µ′, B) ≤ I(µ : µ′)− I(B : µ′) of
IC. Note that it involves the information arriving at B via the communica-
tion channel and the information flow from the correlated side-information
resulting from B’s measurements on his part the no-signaling box. The
statement of information causality in all usual works [16, 27] simplify this
inherent trade-off by implicitly assuming that no information about −→α is
allowed to come from B’s local measurement on B, such that I(B : µ′) is
small and the inequality I(−→α : µ′, B) ≤ κ nearly tight.
However, while this is a fully reasonable assumption within the framework
of quantum mechanics and when converging towards the quantum set of
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correlations, it is in conflict with our aim for a theory agnostic characterisa-
tion of the correlations bounds implied by information causality. Moreover,
it is a well-known approach in related fields of research, like quantum field
theory, to introduce virtual sources of some physical quantities that we can
let vanish later. Although it here rather complicates calculations, it might
help to investigate constraints more holistically and interpret extreme de-
mands on the main communication resource in the considered information
retrieval task.
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Appendix B
Information causality in sequential
measurement scenarios

B.1 Non-Locality Recycling

It was found that by performing sequentially multiple measurements on
the same copy of a quantum state, one can extract non-local statistics from
states which do not show non-locality in distributions resulting from any
single measurement. This type of genuinely spatio-temporal correlations
has since been called "hidden" non-locality.

The conditional distributions for bipartite experiments with s and t se-
quential measurements in subsystem A and B respectively have the form
P(a1, . . . , as, b1, . . . , bt|x1, . . . , xs, y1, . . . , yt). There are multiple types of se-
quential no-signaling correlations, depending on which operations can be
performed in between different measurements.
Post-selected sequential correlations are the most general type since they
allow arbitrary local transformations of the underlying physical resource
between measurements, which can also depend on previous outputs ai (bi)
and inputs xi (yi) of the sequential no-signaling box.

The simplest type of sequential correlations, on which we will focus, are the
so-called time-ordered correlations. For those, no operations on the physical
resource can be performed in between the measurements. Nevertheless,
the post-measurement state of the physical resource is assumed to encode
information about previous outputs ai (bi) and inputs xi (yi), it just can not
be deliberately processed further before the next measurement happens.
For (s, t) time-ordered scenarios, the measurements are assumed to be per-
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B.1 Non-Locality Recycling 91

formed in a definite order and outcomes of any measurement may depend
on previous inputs / outcomes, e.g. bi ̸= bi(yi, yj, bj) for any j < i (but not
vice-versa).

Definition B.1.1. Time-Ordered distributions —
A distribution P(a1, . . . , as, b1, . . . , bt|x1, . . . , xs, y1, . . . , yt) ≡ P(a

−→
b |x−→y ) is

called Time-Ordered if it satisfies the so-called Arrow-Of-Time (AoT) condiitions

P(b1|y1) = ∑
a

∑
b2

· · ·∑
bt

P(a
−→
b |x−→y )

and
P(bj|

←
y j

←
b j−1) = ∑

a
∑
bj+1

· · ·∑
bt

P(a
−→
b |x−→y ) (B.1)

for all j ∈ {2, . . . , t− 1} whereby
←
v k ≡ v1, . . . , vk.

The above is for a single-sided B, a (1, t)-sequential scenario, but can
easily be generalised to a mono-sequential A or two-sided sequential A
and B.
The AoT conditions ensure that the statistics at any point in the sequence
is independent of A’s side (full no-signaling) and independent of future/-
subsequent measurement outcomes/incomes of B.

Bell locality for (one-sided) time-ordered distributions then means the fol-
lowing [Def. 2 in [79]]:

Definition B.1.2. Time-Ordered Bell locality — A conditional distribution
P(a, b1, b2|x, y1, . . . , yt), which is time-ordered in the sense of def. B.1.1, is called
Time-Ordered Bell local (TO-local) if and only if

P(a, b1, . . . , bt|x, y1, . . . , yt) =
∫

Λ
dλQ(λ)Pλ(a|x)Pλ(b1, . . . , bt|y1, . . . , yt)

(B.2)
given some ensemble of marginal distributions ("processes")

{(Q(λ), Pλ(a|x), Pλ(a|x)Pλ(b1, . . . , bt|y1, . . . , yt)) |λ ∈ Λ}

, such that Q(λ) ≥ 0 and ∑λ Q(λ) = 1. Furthermore Pλ(b1, . . . , bt|y1, . . . , yt)
must satisfy the AoT conditions, i.e.

Pλ(b1|y1) = ∑
b2

Pλ(b1, b2|y1, y2)
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B.1 Non-Locality Recycling 92

While the CHSH family of Bell inequalities was sufficient to detect
Bell non-local distributions in the single measurement case, three different
types of Bell inequalities are needed for time-ordered case. [79]
For illustrative purposes, we consider only two one-sided sequential mea-
surement for B (i.e. distributions P(a.b1, b2|x, y1, y2) and only list here a
single instance of each type of Bell inequality. For the following, it helps to
interpret the sequential subsystem B as two (time-)separated subsystems
B1 and B2.

The first type of Bell inequality just accounts for non-locality in the first-
measurement of subsystem B and completely ignores the second measure-
ment (outcome) b2. Alternatively, instead of ignoring any measurements in
subsystem B2, we can also consider all possible input-output combinations
(y2, b2). Both views are fully equivalent.
However, sticking to the view of ignoring subsystem B2, we can simply
write down the canonical CHSH inequality between subsystems A and B1
as an example for first type of inequality: [79]

E00 + E01 + E10 − E11 ≤ 2

Where we have used the usual Bell correlators between subsystems A and
B1

Ekl ≡ 2P(a = b1|x = k, y1 = l)− 1 = 2

(
∑

i
∑

j
P(a = i, b1 = i, b2 = j|x = k, y1 = l, y2)

)
− 1

= ∑
a=b1

P(a, b1|x = k, y1 = l)− ∑
a ̸=b1

P(a, b1|x = k, y1 = l)

which we call marginal Bell correlators within the sequential scenario.
Note that the value of y2 in the last part can be chosen arbitrarily because
of the no-signaling property of TO distributions P(a, b1, b2|x, y1, y2).

For the second inequality, we only consider non-locality with respect to
the second measurement in subsystem B2. However, since the second mea-
surement depends upon what happens in subsystem B1, we now have to
fix a specific input-output pair (y1, b1). Thus for every (y1, b1) there is a
separate inequality: [79]

Eb1
0 y10 + Eb1

0 y11 + Eb1
1 y10 − Eb1

1 y11 ≤ 2
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B.1 Non-Locality Recycling 93

With the post-selected Bell correlators

Eb1
k y1l ≡ 2P(a = b2|x = k, y2 = l, (y1, b1))− 1

=

(
∑
a,b2

P(a, b1, b2|x = k, y1, y2 = l)

)−1(
∑

a=b2

P(a, b1, b2|x = k, y1, y2 = l)

− ∑
a ̸=b2

P(a, b1, b2|x = k, y1, y2 = l)

)

for each fixed (y1, b1). These correlators thus only consider correlations
within the bipartition of subsystem A and the (post-measurement) subsys-
tem B(2) after the first measurement.
Experimentally, fixing (y1, b1) would correspond to post-selecting the mea-
surement outcomes in subsystem B2 on those cases where B1 had input y1
and got output b1. In the first inequality, in contrast, the results in subsys-
tem B2 simply did not matter and could have been mixed, as can be seen
from the definitions of Exy1 and Eb1

x y1y2 respectively.

The third and last type of Bell inequality for TO distributions assesses
a special type of non-locality by taking also (joint) Bell correlators

Ek lv ≡ P(a = 0, b1 = b2|x = k, y1 = l, y2 = v)− P(a = 1, b1 = b2|x = k, y1 = l, y2 = v)
+ P(a = 1, b1 ̸= b2|x = k, y1 = l, y2 = v)− P(a = 0, b1 ̸= b2|x = k, y1 = l, y2 = v)

between all three subsystems A, B1 and B2 into account. Although this
definition looks confusing on first sight, An CHSH-like instance of the
third inequality type is then: [79]

E0 00 + E0 01 − E0 10 + E0 11 − E1 00 − E1 01 − E1 10 + E1 11

−
(

∑
b1

P(b1|y1 = 0)
[

Eb1
0 00 − Eb1

0 01 − Eb1
1 00 + Eb1

1 01

]
+P(b1|y1 = 1)

[
Eb1

0 10 + Eb1
0 11 + Eb1

1 10 + Eb1
1 11

] )
≤ 2

with P(b1|y1) ≡ ∑a,b2
P(a, b1, b2|a, y1, y2) for arbitrary (y2, b2) ∈ {0, 1}2

because of the AoT and no-signaling conditions.
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B.2 Bounding information retrieval in RACs with sequential measurements 94

Figure B.1: The van Dam protocol generalised to a Time-Ordered (1, t)-sequential
scenario within a bipartite EARAC setup between A and B in a (n, n, 2, 2) Bell
scenario. While A receives a dit-string −→α of fixed length n, B is queried with t
n-dimensional bits

−→
β . Each of the latter βi indicates which dit in −→α is supposed

to recovered by final output dits g(i)β . The two parties only share a noisy commu-
nication channel of κ ≡ I(µ : µ′) dits classical capacity.
The aim of maximising the number of correct guesses, g(i)β = αβ, is only a simple
example.

B.2 Bounding information retrieval in RACs with
sequential measurements

The statement of the IC principle stays the following:

I(−→α : µ′, B) ≤ I(µ : µ′)

Where κ is the capacity of the noisy communication channel. The proof
that this IC statement holds for Shannon and quantum mutual information
makes no reference to the properties of time-ordered boxes, Therefore, it
is identical to the proof of IC in [27] for the case of noisy communication
channels.
Similarly to non-sequential case, the mutual information I(−→α : µ′, B) can
be expressed more concretely in terms of the mutual information with
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B.2 Bounding information retrieval in RACs with sequential measurements 95

respect to the guesses (g(1), g(2), instead of the abstract subsystem B and
received message µ′. In a (1, t) sequential scenario with binary inputs
(x, y1, y2) and binary outputs (a, b1, b2):

I(−→α : µ′, B) ≥ I(−→α : µ′, B |y0) (B.3)

≥ I(−→α : µ′, B, g(0), B(b0|y0) |y0)

≥ . . .

≥ I(−→α : µ′, B
(
←−
b t−1|←−y t−1)

|←−g (t−1),←−y t−1) +
t−1

∑
k=0

I(vecα : g(k) |←−g (k−1),←−y k)

≥
t−1

∑
k=0

I(vecα : g(k) |←−g (k−1),←−y k)

≥ . . .

≥
t−1

∑
k=0

n−1

∑
i=0

I(αi : g(k) |←−g (k−1),←−y k)

=
t−1

∑
k=0

n−1

∑
i=0

I(αi : g(k) |←−g (k−1), yk = i,←−y k−1)

For simplicity we assumed that all guesses are made by different instances
of party B such that each guess gk is independent of all previous guesses
←−g k−1. Otherwise, the information from earlier guesses for the same in-
put value yk might be used to improve the current one. Note that this is
only assumed for the guessed values ←−g k−1, the post-measurement state
B
(
←−
b k−1|←−y k−1)

might thus still transfer some information about previous out-

puts
←−
b k−1 to the next output bk.

We then arrive at the time-orderd sequential generalisation of the Uffink-
like IC-bound from [27]:

t−1

∑
k=1

2−(k−1) ∑
←−
j (k−1)

(e(k)
0,(0,
←−
j (k−1))

+ e(k)
1,(0,
←−
j (k−1))

)2 +(e(k)
0,(1,
←−
j (k−1))

+ e(k)
1,(1,
←−
j (k−1))

)2 ≤ 4

(B.4)
whereby we have defined the time-ordered box biases

e(z)
i,
←−
l z
≡ 2P(a = bz|x = i,←−y z =

←−
l z)− 1 (B.5)

A.O.T
= 2P(a = bz|x = i,←−y t =

←−
l t)− 1 (B.6)
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More general protocol, including inter-dependencies between guesses and
partial box outputs b. We can calculate the mutual information I(−→α , ) as

I(−→α : µ′, B) ≥
t−1

∑
z=0

I(−→α : g(z) |←−y z,←−g (z−1)) (B.7)

=
t−1

∑
z=0

n−
(

H(g(z),−→α |←−y z,←−g (z−1))− H(g(z) |←−y z,←−g (z−1))
)

=
t−1

∑
z=0

n−
[
∑

i
∑
←−
j z−1

1
nz

(
H(g(z),−→α |yz = i,←−y z−1 =

←−
j z−1,←−g (z−1))

− H(g(z) |yz = i,←−y z−1 =
←−
j z−1,←−g (z−1))

)]
with t = 2 and n = 2, we can calculate the mutual information by specify-
ing the following conditional probabilities:

P(g(0) = c|−→α = −→v , y0 = i) =
1
2
+

ec

2

(
∑
a,b0

δ

[
D(0)(E(−→v , a), b0, i) = c

]
(n−1

∑
k=0

δ[X(−→v ) = k] P(a, b0|x = k, y0 = i
))

P(g(1) = c, g(1) = r0|−→α = −→v , y1 = i, y0 = j0) =
1
2

+
ec

2

(
∑

a,b0,b1

δ

[
D(1)(E(−→v , a), b1, (j0, i), r0) = c

]
δ

[
D(0)(E(−→v , a), b0, (j0, i), c) = r0

]

·
(n−1

∑
k=0

δ[X(−→v ) = k] P(a, b0, b1|x = k, y1 = i, y0 = j0

))
with the kronecker delta δ[∗ = ∗∗] ≡ δ∗,∗∗. The above is fully deter-
mined by the time-ordered no-signaling box P(a, b0, b1|x, y0, y1). Note that
through the many interdependencies and the resulting kronecker delta fac-
tors, we can study the situation only numerically in this generality.
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Appendix C
Multi-bit channels in EARACs

Recall from the main text that in [26], it was noticed that generalised dit-
input dit-output communication channels yield the strongest IC bound for
a non-zero channel capacity κ ̸= 0 if d ≥ 3. In contrast, the optimal channel
capacity for the binary symmetric channel (d = 2) was found in the limit of
a vanishing capacity κ → 0. While the reason for this discrepancy between
bit- and dit-channels remains open, this curious finding shows the high
potential for learning something new about IC by simply considering other
(noisy) channel types, particularly those with higher-dimensional inputs
and outputs.

While preparing this thesis, we started experimenting with more com-
plex channels as well. However, we considered a different type of higher-
dimensional channel since the introduction of dit-channels generally only
makes sense when simultaneously no-signaling boxes P(a, b|x, y) with non-
bit outputs are used. That is, when a, b ∈ [d] with d the dimensionality of
the input and output of the communication channel. The equivalent of
a PR-box in a (n, n, d, d) Bell scenario could otherwise not reach optimal
performance in an EARAC anymore.
The focus of this thesis, however, are boxes in the simplest ((2, 2, 2, 2))
Bell scenario. To adhere to this focus, we can alternatively use multiple
bit-channels in such a way that they simulate the channels with higher-
dimensional inputs and outputs. Therefore, we started to investigate the
case of channels with d bit-valued inputs and d bit-valued outputs, which
can be considered equivalent to channels with a single 2d-dimensional in-
put and output for some d ∈ N. Notice that we must ensure that the
number n of data bits (α0, ..., αn) is larger than the maximal channel ca-
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pacity. Otherwise, if n = d, the RAC is a trivial task for party A and B.1

For a full schematic of the modified EARAC setup, see figure C.1 in the
appendix.

The open question is then whether also in this setting the strongest IC-
bound is obtained for a non-zero channel capacity κ whenever d ≥ 2. If
yes, why? If no, we may conclude that the optimality of a non-zero chan-
nel capacity for EARACs with dit-channels is not simply due to the higher
transmission rate of the channel, but rather a consequence of using boxes
in more complex (n, n, d, d) Bell scenarios.

1Consequently, to avoid more complex no-signaling boxes with n-dimensional input-
bits (i.e. (n, n, 2, 2)-boxes) for n > 2, we must also allow the parties to share multiple
copies of any box in the (2, 2, 2, 2) scenario.
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Figure C.1: Schematic of a bipartite Random Access Code (RAC) between space-
like separated parties A and B communicating with a noisy communication chan-
nel with d inputs and d outputs. Additionally, d copies of a no-signaling box
P(a, b|x, y) ∈ NS in a (2, 2, 2, 2) scenario are shared between the parties. Each
box copy has a unique identifier i ∈ {1, . . . , d} and takes one independently pro-
duced pair of inputs (xi, yi) with the corresponding index, and subsequently out-
puts the respective pair of outputs (ai, bi) into the tuples of independent outputs
(a1, . . . , ad) and (b1, . . . , bd). I.e. box copy i is fully represented by distribution
P(ai, bi|xi, yi).
While A receives a bit-string −→α of fixed length n, B is queried with only a single
n-dimensional bit β. The latter indicates the index of the bit in −→α which the final
"guess" gβ is supposed to recover. In particular, it is assumed that n = 2d such
that β = β1β2 . . . βd is the complete binary expansion of β ∈ [d]
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