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Abstract

This thesis investigates the e�cacy of various classification methods in handling data with

class imbalance and biased labelled samples, with a specific focus on applications relevant

to the Netherlands Labour Authority (NLA). The study explores semi-supervised methods

including label propagation, label spreading, and self-learning, in addition to supervised

and the Jacobusse & Veenman methods. The performance of these methods is evaluated

through simulations representing di�erent scenarios of class imbalance and labelling bias.

Key performance metrics such as Precision@100 and algorithmic bias are used to determine

the most e�ective approach under varying conditions. Findings indicate that while

supervised methods are adequate for balanced datasets with no labelling bias,

semi-supervised methods exhibit superior performance in scenarios characterized by class

imbalance and labelling bias, despite their higher algorithmic bias. The study highlights

the importance of choosing methods tailored to specific data characteristics and analysis

objectives. Moreover, the research stresses the need for future studies to use larger and

more diverse datasets, incorporating additional feature types and exploring di�erent levels

of class imbalance and labelling bias. This will enhance the generalizability and practical

applicability of the results, particularly in the context of large-scale datasets such as those

managed by the NLA. The implications of this research extend to improving predictive

modeling practices, ensuring better allocation of inspection resources, and promoting fair,

healthy, and safe working conditions across various sectors.

Keywords: algorithmic bias, class imbalance, machine learning, labelling bias,

semi-supervised learning, supervised learning, predictive modeling, mean reciprocal rank

(MRR), pseudo-labelling, random forest classifier, simulation-based approach, data

imbalance, model performance, precision@100, label propagation, label spreading,

Netherlands Labour Authority, algorithmic bias.
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Classification Approaches for Data With Class Imbalance and Biased Labelled Sample

The Netherlands Labour Authority (Nederlandse Arbeidsinspectie, or NLA), part of

the Ministry of Social A�airs and Employment (het ministerie van Sociale Zaken en

Werkgelegenheid), is dedicated to ensuring fair, healthy, and safe working conditions, as

well as socio-economic security for every worker in the Netherlands (Sociale Zaken en

Werkgelegenheid, 2022). The NLA also investigates cases of fraud, exploitation, and

organized crime in the labour market. Much of this work is done through close cooperation

with employers across di�erent sectors, involving inspections to monitor compliance with

labour laws and regulations. However, with nearly 9.8 million employed people in the

Netherlands, keeping up with every violation is not an easy task for the NLA’s team of

only about 1,800 workers (Centraal Bureau voor de Statistiek, 2023; Ministerie van Sociale

Zaken en Werkgelegenheid, 2024). To address this challenge, the NLA uses its team’s

expertise to focus on high-risk segments that require closer attention. Therefore, the NLA

selects cases for targeted interventions through direct contact (Cluster 1), indirect influence

via other organizations (Cluster 2), and communication strategies (Cluster 3), reaching

about 13.9% of companies in Clusters 1 and 2 and finding violations in 23 to 50% of the

cases, depending on the labour law. Recently, Machine learning has also been incorporated

as a tool to interpret the vast amount of data on labour relations in the Netherlands and

extract useful information about employers with a high chance of maintaining unfair,

unhealthy, or unsafe working conditions.

Machine learning has become a popular tool in regulatory practices. Crime

forecasting tools, which analyze historical data to predict future incidents, have been

implemented worldwide, enabling inspectorates to allocate resources more e�ciently and

e�ectively (Shah et al., 2021). For example, Germany’s Precobs system has been applied to

forecast residential burglaries, while the Metropolitan Police Service in London has

explored predictive models to manage resources more e�ciently (Mugari & Obioha, 2021).



The NLA is experimenting with similar machine learning techniques to gain insight into

work conditions in the Netherlands. It is developing pilots that use available data to

identify patterns and associations between employer characteristics and a higher chance of

labour law violations. By doing so, the NLA aims to organize its inspections more

e�ectively, focusing its limited resources on high-risk situations, thereby improving overall

compliance with labour laws.

To classify companies as compliers or violators based on their characteristics,

supervised machine learning is the most straightforward technique. It operates on the

premise that specific features of companies—such as their industry or number of

employees—can be indicative of their compliance status. By analysing these features, it

becomes possible to predict the likelihood of a company being a violator or complier.

Supervised learning algorithms, such as decision trees, support vector machines, and neural

networks, are widely used in various domains for classification tasks due to their ability to

process large datasets and identify complex patterns (James et al., 2013). These algorithms

can be trained on labelled data where the compliance status (complier or violator) is

known to develop predictive models. Once trained, these models can be applied to new

unlabelled data to predict the compliance status of other companies, thereby enhancing the

e�ciency and e�ectiveness of resource allocation for inspections.

In the case of the NLA, labels are known through inspections, where inspectors assess

compliance by visiting workplaces to review documents, observe working conditions, and

interview employees and management. Findings are documented, feedback is provided to

the employer, and corrective actions are recommended, resulting or not in a fine. This

systematic approach ensures accurate labelling of companies as compliant or

non-compliant. However, these inspections cover only a fraction of the employers in the

Netherlands and are not done on a random sample of the population. If the samples were

randomly selected and adequately distributed across various sectors and if the number of

samples were large enough, the data could likely be used successfully in supervised learning



methods to predict risks of law violations. But this is not the case because inspections are

strategically targeted at segments with a higher probability of problematic labour relations,

according to the NLA’s expertise. This labelling bias results in a sample that does not

represent the entire population of employers, leading to skewed datasets and causing

supervised models to under-perform when applied broadly (Mehrabi et al., 2021).

Therefore, despite having data on features from nearly all employers in the Netherlands,

only these few select cases are labelled and suitable for inclusion in supervised learning

methods by the NLA. Furthermore, societal biases can influence which groups are targeted

for inspection, potentially resulting in models that unfairly prioritize certain segments and

overlook others (Bruggeman et al., 2023). So, if any bias is present in the labelled sample,

such as the disproportionate targeting of specific industries, it could be perpetuated by the

supervised machine learning algorithms (Lum & Isaac, 2016).

In addition, the class imbalance within the population can represent a challenge in

the use of prediction models. In this case, the target class, or the violators, represents only

a small fraction of employers. This imbalance poses several challenges in e�ectively

utilizing machine learning for law enforcement and compliance tasks. Firstly, class

imbalance can lead to biased models that prioritize the majority class (compliers) over the

minority class (violators). Without precautions, supervised algorithms trained on

imbalanced data tend to achieve high accuracy on the majority class while performing

poorly in detecting violators (Jacobusse & Veenman, 2016). Secondly, the scarcity of

violator instances makes it di�cult for machine learning algorithms to learn meaningful

patterns that distinguish violators from compliers. As a result, these algorithms may

struggle to generalize and accurately classify unseen cases of non-compliance.

Addressing both class imbalance and labelling bias requires innovative strategies that

can better capture the complexities of this type of data (Van Gi�en et al., 2022).

Techniques such as oversampling the minority class (violators) or under-sampling the

majority class (compliers) can be used to balance the dataset (Chawla et al., 2002).



Additionally, cost-sensitive learning, where misclassification costs are incorporated into the

learning process, can help create models that pay more attention to the minority class

(Elkan, 2001). Ensemble methods, such as boosting, can also be e�ective in dealing with

class imbalance by combining multiple weak classifiers to create a stronger model (Freund

& Schapire, 1997). Another approach involves using propensity scores to balance the

distribution of features between di�erent groups, ensuring fair comparisons. Propensity

scores estimate the e�ect of a treatment by accounting for covariates that predict receiving

the actual treatment (Williamson & Forbes, 2014). They are calculated using a model to

predict the likelihood of an instance being in the treatment group (in our case, the labelled

sample), given its features. These scores are then used to match or weight instances,

helping to mitigate labelling bias and leading to more reliable conclusions in the analysis of

compliance and non-compliance among employers.

Semi-supervised methods

In scenarios where there is a large amount of data about the features but only a few

labelled cases like what happens in the NLA, semi-supervised learning methods can be

particularly useful. Semi-supervised methods use the large amount of unlabelled data to

inform the learning process and create better predictive models even with only a small

amount of labelled data (Olivier. Chapelle et al., 2006). Techniques such as self-training,

label spreading and label propagation can be applied to enhance model performance in

such contexts. These methods could help the NLA to make the most of the data at its

disposal to better predict and address labour law violations.

One simplified semi-supervised method used by the NLA is commonly known as the

“Jacobusse & Veenman Method” (Jacobusse & Veenman, 2016). This technique

addresses class imbalance and labelling bias by incorporating unlabelled cases into the

training process, helping to balance the training dataset. It assumes that most of the

unlabelled cases are non-violators, e�ectively capturing the characteristics of cases not



reached by inspections and balancing out the trade-o� of potentially mislabelling some

violators as compliers. Additionally, since inspectors often target specific segments, even

compliers in these inspections share many traits with violators. So, the “Jacobusse &

Veenman Method” improves the model’s predictions by excluding true compliers from the

training set. However, while this approach can enhance model performance by utilizing

unlabelled data, it relies on the assumption of a high class imbalance. If this assumption is

incorrect, treating all unlabelled cases as compliers can introduce significant noise into the

model, potentially impairing its accuracy. Nevertheless, the “Jacobusse & Veenman

Method” remains a practical and straightforward solution for creating more balanced

training datasets in the presence of severe class imbalance.

Beyond the “Jacobusse & Veenman Method”, other semi-supervised learning

techniques o�er more dynamic approaches to leveraging both labelled and unlabelled data

(Oliveira & Berton, 2023). One such technique is self-learning (or self-training), which

begins with a base classifier trained on the labelled data and then iteratively labels a

subset of unlabelled data based on the classifier’s predictions. This approach refines the

model by incorporating these newly labelled instances into the training set (Rizve et al.,

2021; Triguero et al., 2015). While self-learning can improve performance, it is sensitive to

biases in the initial labelled dataset and can amplify errors if the base classifier is poorly

calibrated.

Another semi-supervised technique is label propagation, which assigns

pseudo-labels through a similarity graph constructed from both labelled and unlabelled

data. Labels are propagated from known to unknown data points, typically using a fixed

similarity matrix and “clamping” mechanisms to manage label confidence (Bengio et al.,

2006; Iscen et al., 2019). Label propagation is e�ective in situations with class imbalance

but can potentially amplify existing biases.

Label spreading also uses a similarity graph but di�ers in its approach to label



distribution. It uses the normalized graph Laplacian to spread the labels, making the

method more robust to noise and outliers compared to label propagation (Zhou et al.,

2003). However, it also has the potential to propagate biases if the similarity relationships

reflect the inherent imbalances in the data.

Although semi-supervised methods can enhance predictive performance, they also

have the potential to exacerbate algorithmic bias if not carefully managed. These methods

often rely on unlabelled data, which, if unrepresentative or biased, can distort the learning

process. Algorithmic bias refers to systematic and unfair deviations in predictions that

arise from skewed training data, flawed assumptions, or limitations of the algorithms

themselves, potentially leading to unequal model performance across di�erent demographic

groups and resulting in discriminatory outcomes (Baker & Hawn, 2022). For example,

models trained on disproportionately represented data might unfairly target or neglect

certain groups, reinforcing existing inequalities. Therefore, it is necessary to monitor and

address these biases to ensure that semi-supervised learning methods contribute to fair and

equitable outcomes, rather than perpetuating or amplifying existing disparities.

Research question

In the context of the NLA, there is a significant need to systematically compare

methods for addressing samples with labelling bias, using the extensive amount of

unlabelled data available. This exploratory study will compare the “Jacobusse & Veenman

Method”, self-learning, label spreading, label propagation, and a supervised learning

method. Additionally, a post-hoc self-learning technique based on the “Jacobusse &

Veenman Method” will be tested and discussed. The goal is to address the issues of class

imbalance and labelling bias in the use of machine learning in the NLA. Methodologically,

it seeks to compare these techniques, aiming to improve the accuracy of predictive models,

potentially leading to more targeted and e�cient allocation of inspection resources, thereby

fostering safer and more equitable working conditions.



Research Question 1: How does the “Jacobusse & Veenman Method” compare to

the supervised learning method in terms of precision and algorithmic bias in scenarios with

class imbalance and labelling bias?

• Hypothesis 1: The “Jacobusse & Veenman Method” will have higher precision and

lower algorithmic bias than the supervised learning method in these scenarios.

Research Question 2: Do semi-supervised methods outperform the supervised

learning method in scenarios with class imbalance and labelling bias?

• Hypothesis 2: The semi-supervised methods will have better precision levels than

the “Jacobusse & Veenman Method” and supervised learning method in these

scenarios.

Methods

This study uses simulations to test 6 machine learning methods under 6 scenarios: 2

levels of class imbalance and 3 levels of labelling bias. All simulations and models in this

study were conducted using Python (Van Rossum & Drake Jr, 1995). The complete code

can be found in Appendix B.

Simulating a population

First, populations with di�erent proportions of each class are created (see Figure 1

for an illustration). A matrix X with predictor variables (features) and a binary outcome

(class labels) is generated (see details in Appendix B). In summary, 20 features are used:

18 follow a normal distribution, with random means between 0 and 1 and random standard

deviations between 0.8 and 1.1; and 2 are multimodal, created by mixing di�erent normal

distributions. The coe�cients for each feature are random values uniformly distributed



between 0 and 1. The class labels 0 (compliers) and 1 (violators) are defined using a

logistic function:

÷i = b0 +
20ÿ

j=1
bjxij + ei,

where:

• ÷i is the linear predictor for the i-th observation;

• b0 is the intercept term;

• bj are the coe�cients for the j-th feature xij;

• xij is the value of the j-th feature for the i-th observation in Matrix X; and

• ei is the error term, following a normal distribution N(µ = 0, ‡2 = 2).

The probability pi of being class 1 (violator) is modelled using the logistic link

function:

pi = logit(÷i) = 1
1 + e≠÷i

,

where:

• pi is the probability of the i-th observation belonging to class 1 (violator) instead of

class 0 (complier); and

• logit(÷i) transforms the linear predictor ÷i into the probability pi using the logistic

function.



Figure 1 . Manipulation of class Proportions in the population.

The intercept is adjusted to set the class proportions while keeping the classification

threshold fixed at 0.5. If pi Ø 0.5, the observation is class 1; otherwise, it is class 0. Two

levels of class proportions are simulated: equal distribution and 95% class 0. For this study,

20,000 cases are simulated, divided into two populations of equal size and class proportions.

The first, referred to as the “current population” in this study, is used as the main

population from which a labelled sample is extracted. The second is reserved as a test set.

Selection of the labelled sample

Five percent of the current population, amounting to 500 cases, are marked as

labelled and retain their true target values. The remaining 95% (9,500 cases) are marked

as unlabelled, with their true labels removed. The labelled sample always includes at least

20% (100) randomly selected cases, reflecting the ideal conditions of the NLA, where

approximately 20% of inspections would be random.

The degree of labelling bias is manipulated to simulate di�erent scenarios. In no-bias

scenarios, all 500 labelled samples are randomly chosen. With labelling bias, the labelled

samples are selected based on a set class proportion. To achieve this, the current



population is sorted based on a linear combination of the two most informative features

(see Appendix B for details on how this combination is computed). The labelled cases are

sampled from the top of this sorted list until the desired class proportion is reached. This

approach aims to mimic the varying levels of focus of inspections on categories of

employers with higher rates of infractions.

Three levels of labelling bias are tested: no bias (Figure 2), moderate bias (Figure 3),

and extreme bias (Figure 4). An example of the distribution of cases per class in each

scenario can be seen in Table 1.



Figure 2 . Unbiased labelled sample

Figure 3 . Sample with moderate labelling bias (50% to class 1).

Figure 4 . Sample with extreme labelling bias (95% to class 1).



Table 1

Sample of Simulated Composition for Each Scenario - random state 42

Scenario Class 0 (random) Class 1 (random) Class 0 (biased) Class 1 (biased)

Balanced population, No labelling bias 250 250 0 0

Balanced population, Moderate labelling bias 47 53 203 197

Balanced population, Extreme labelling bias 47 53 0 422

Unbalanced population, No labelling bias 475 25 0 0

Unbalanced population, Moderate labelling bias 99 1 151 249

Unbalanced population, Extreme labelling bias 99 1 0 474

Note. A slight variation in the sample composition can occur between simulations due to random chance, depending on how

many of the 20% random cases were selected for each class. In situations of extreme labelling bias and more than 25 cases

randomly selected for class 0, like in this example, the labelled sample can exceed 500 cases to achieve a higher proportion of

class 1 cases.



Classification methods

For each combination of class imbalance and labelling bias (six scenarios in total), six

di�erent approaches are tested on the same test set. Random forest was chosen to be the

main classifier for all methods, except label propagation and label spreading, which have

their own algorithms based on data similarities. This classifier was chosen because it is

commonly used in the NLA, for its ease of interpretation and flexibility even in complex

data structures. Additionally, random forest classifiers are robust to over-fitting, especially

with a large number of trees.

These are the approaches that are tested:

• Supervised Method: A random forest classifier is trained using only the labelled

data.

• “Jacobusse & Veenman Method” (Jacobusse & Veenman, 2016): A random

forest classifier is trained using labelled and unlabelled data, as follows:

1. The labelled data of class 1 is kept in the training set because class 1 data

(violators) are likely to be the target class of interest and the most informative

for the classification task. Keeping this data ensures the model can learn the

characteristics of this class accurately.

2. The labelled data of class 0 is removed because the “Jacobusse & Veenman

Method” follows the assumption that the labelling process was biased towards

class 1. Therefore, labelled cases of class 0 are too similar to those of class 1,

meaning that removing them can help to di�erentiate the classes.

3. The unlabelled data is included in the training set with a pseudo-label ‘0’. This

approach assumes that unlabelled instances are more likely to be compliers

(class 0), helping to balance the training data and providing more examples for



the model to learn the characteristics of class 0 without explicitly using the

potentially biased labelled data.

• “Revised Jacobusse & Veenman Method”: This ad hoc technique, based on the

“Jacobusse & Veenman Method”, uses a semi-supervised logic to create an hybrid

training set, following these steps:

1. The unlabelled data is divided into 5 folds.

2. In 5 rounds, 4 folds are joined with the labelled data and used to predict the

class probability of the unlabelled cases in the remaining fold using the

“Jacobusse & Veenman Method”. For each round, a di�erent training set is

created, where labelled data of class 1 is kept, labelled data of class 0 is

removed, and unlabelled data is included with a pseudo-label ‘0’.

3. After the 5 rounds, a final training sample is created with labelled cases of class

1, unlabelled cases with a probability of over 50% of being class 1, and the

remaining unlabelled cases with a pseudo-label ‘0’. Similar to the “Jacobusse &

Veenman Method”, the labelled cases of class 0 are excluded from the training

set.

4. A random forest classifier is then trained on this final sample.

• Self-learning: The algorithm starts with a small labelled dataset and iteratively

expands it by labelling unlablelled data points that it is confident about (O. Chapelle

et al., 2009; Oliveira & Berton, 2023). If follows these steps:

1. Starts with a smaller dataset Dl = (xi, yi)nl
i=1 where xi are features of the labelled

cases, and yi are their corresponding labels. Also, has a larger dataset of

unlabelled cases Du = (xj)nu
j=1, where xj are the features of the unlabelled cases.

2. A random forest classifier is trained on Dl.

3. Labels are predicted for Du using the trained model.



4. Data points are selected from Du for which the model’s prediction confidence

exceeds a threshold confidence.

5. These confidently predicted cases are added to Dl with their predicted

pseudo-labels.

6. Iterates steps 2 to 5 until either a maximum number of iterations is reached, or

until no new pseudo-labels are added, or all unlabelled samples have been

labelled.

In this study, this method is operationalised using Scikit-learn’s

SelfTrainingClassifier (SelfTrainingClassifier, 2024).

• Label Propagation: This technique propagates labels across similar data points on

a multidimensional space (Iscen et al., 2019; Zhu & Ghahramanih, 2002). In

summary, each point receives information about the label of its neighbours while

retaining its initial information. In the end, each unlabelled point is assigned to the

class that has provided the most information throughout the iteration process. The

algorithm follows these steps (Bengio et al., 2006):

1. An a�nity matrix W is constructed to represent the similarity between data

points, which are computed using the radial basis function with a

hyper-parameter “ controlling how far the influence of a single data point

reaches.

2. A diagonal degree matrix D is constructed where each diagonal entry represents

the sum of similarities for each data point.

3. A label vector Ŷ (0) is initialised with the initial labels or -1 for unlabelled cases.

4. Pseudo-labels for the unlabelled cases are assigned iteratively, so that

Ŷ (t+1) Ω D≠1WŶ (t) until convergence to Ŷ (Œ).

5. The final label of each data point is defined by the sign of ŷ(Œ)
i .



In this study, this method is operationalised using Scikit-learn’s LabelPropagation

(LabelPropagation, 2024).

• Label Spreading: This technique also spreads labels across closest data points.

However, it normalises the edge weights by computing a graph Laplacian matrix

(Bengio et al., 2006; Zhou et al., 2003). As a result, it ensures that labels change

gradually and smoothly between nearby points, so that neighboring points in the

graph do not have drastically di�erent labels. It follows these steps:

1. An a�nity matrix W is constructed to represent the similarity between data

points, which are computed using the radial basis function with a

hyper-parameter “ controlling how far the influence of a single data point

reaches.

2. A diagonal degree matrix D is constructed where each diagonal entry represents

the sum of similarities for each data point.

3. The normalized graph Laplacian L Ω D≠1/2WD≠1/2 is computed.

4. A label vector Ŷ (0) is initialised with the initial labels or -1 for unlabelled cases.

5. A parameter for – (influence of initial labels on propagated labels) is set.

6. Pseudo-labels are assigned iteratively, so that Ŷ (t+1) Ω –LŶ (t) + (1 ≠ –)Ŷ (0)

until convergence to Ŷ (Œ).

7. The final label of each data point is defined by the sign of ŷ(Œ)
i .

In this study, this method is operationalised using Scikit-learn’s Scikit-learn’s

LabelSpreading (LabelSpreading, 2024).

Performance Measures

Since the goal is to optimise inspector e�ciency by targeting inspections with a

higher likelihood of uncovering violations, precision is the primary performance metric.

Therefore, precision at top-100 (“precision@100”) is chosen to compare the performance of

mailto:precision@100


di�erent approaches on the same scenario. This metric evaluates the precision for the top

100 instances ranked with the highest probability of belonging to class 1. In the context of

inspector allocation, this metric is particularly relevant as it indicates the model’s

e�ectiveness in prioritizing the most likely cases with violations.

To complement precision at top-100, algorithmic bias serves as an additional

performance measure. This is a broad concept with varying definitions, often encompassing

di�erent aspects of fairness and discrimination in automated systems (Baker & Hawn,

2022). In this study, algorithmic bias is objectively measured by assessing how closely the

top 100 predicted violators align with actual violators in the test set. This measure utilizes

a centroid distance comparison, calculated by determining the Euclidean distance between

centroids of the true class 1 instances in the test set and the top 100 predicted class 1

instances.

These combined measures provide a comprehensive evaluation of the model’s

performance, balancing accuracy with fairness in the prediction outcomes, which is

particularly critical in semi-supervised models, which tend to accentuate existing biases in

the labelled sample.

Hyperparameters tuning

For each machine learning approach, a set of hyper-parameters must be optimised to

best fit the model to the characteristics of the data. During hyper-parameters

optimisation, Mean Reciprocal Rank (MRR) is chosen as a scorer for model

comparison. This method optimises a model to generate an e�cient rank of cases with the

highest probability of belonging to class 1, aligning well with the primary metric of

precision@100 (Efimov, 2023). A direct optimisation of the precision@100 is not always

possible for hyper-parameters tuning because cross-validation is used, resulting in many

cases in folds with only a couple hundreds cases or less. Especially with class imbalance in

mailto:precision@100
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the population, this can represent only very few true cases of class 1 per fold. So, the

measurements of precision@100 on these cases would be distorted and not always indicative

of a good performance in the test set. MRR, on the other hand, provides a more stable and

reliable measure, irrespective of the absolute number of cases in each fold. Essentially,

MRR provides a single measure of ranking quality, where higher values indicate better

performance, particularly emphasizing the importance of top-ranked items.

To calculate MRR, predicted cases are sorted by the probability of belonging to class

1. The following formula is then applied:

RRq = 1
1 + ’ ◊ rankq

,

MRR = 1
|Q|

ÿ

qœQ

RRq.

Here, RRq (Reciprocal Rank) is calculated for each relevant item q in the list. The

rank, in this case, means how many true instances of class 1 were found up to that point in

the ranking of highest prediction probabilities of belonging to class 1. A decay factor ’ of

0.5 is also included to gradually reduce the weight of higher-rank cases, increasing the

contribution of lower-ranked cases to the score. For example, if the three instances with the

highest predicted probabilities of belonging to class 1 actually belong to classes 1, 0, 1

respectively, then the RR of the two relevant items are calculated as follows:

RR1 = 1
1+0.5◊1 = 0.666 and RR3 = 1

1+0.5◊2 = 0.5. The Mean Reciprocal Rank (MRR) is the

average of the reciprocal ranks of all items up to the position Q. So, in our example,

MRR = 2/3+1/2
3 = 0.388. This formula is adapted to only account for the top-100 cases

(Q = 100), aligning with precision@100 as the main evaluation metric.

In this research, the following hyper-parameters of the random forest classifier were

optimised for the best MRR:

• the number of trees in the forest, ranging from 10 to 200, which determines the

mailto:precision@100
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number of trees in the forest;

• the percentage of features to consider when looking for the best split, ranging from

0.1 to 0.725, which controls the number of features to consider in each tree;

• the maximum depth of the tree, ranging from 2 to 20, which helps prevent over-fitting

by limiting the tree’s growth;

• the minimum number of samples required to split an internal node, ranging from 2 to

10, which specifies the minimum number of samples required to split an internal node

and helps control over-fitting;

• and the minimum number of samples required to be at a leaf node, ranging from 1 to

10, which defines the minimum number of samples required to be at a leaf node and

also helps in preventing over-fitting.

Semi-supervised methods are particularly sensitive to their hyper-parameters, as their

performance heavily depends on the correct identification and propagation of pseudo-labels,

which can be significantly a�ected by sub-optimal settings. For the self-learning method,

beyond the random forest hyper-parameters, the following were also optimised:

• Criterion: Determines how pseudo-labels are selected: either probability threshold or

the labels of the neighbouring cases.

• Probability threshold: The probability threshold for the assignment of the

pseudo-label, if using the threshold criterion (ranging from 0.1 to 1 in increments of

0.1).

• Number of neighbours: The number of neighbours (3, 5, or 10) consulted to predict a

pseudo-label, if using the criterion of similarity with the neighbouring cases.

For label propagation and label spreading, the following hyper-parameters were

optimised:



• Gamma (“): A parameter for the RBF (Radial Basis Function) kernel that defines

the influence range of a single training example (0.1, 1, 10, 20, 30). Higher values

make the influence range smaller.

• Alpha (–): Specifically for the label spreading method, a clamping factor that

controls the influence of the true labels (0.1, 0.2, 0.3, 0.5). Higher values mean more

reliance on the true labels during spreading.

The primary hyper-parameter optimisation techniques used in this research are

genetic algorithms. These search heuristics mimic natural selection to identify optimal

solutions (Brownlee, 2011). They operate on a population of potential solutions, or genes,

applying selection, crossover, and mutation to evolve the solutions over several generations,

aiming to find the best set of hyper-parameters that maximize a fitness function. To

optimise the hyper-parameters of the random forest classifiers, a genetic algorithm was

implemented using GASearchCV (GASearchCV — sklearn genetic opt 0.10.1

documentation, 2023). Populations of 50 sets of hyper-parameters were tested using 5-fold

cross-validation over a maximum of 40 generations. The algorithm was set to stop if there

was no change in the average MRR after 2 generations, indicating population convergence.

Additionally, a mutation probability of 10% was used, meaning each gene had a 10%

chance of random alteration, maintaining diversity and avoiding local optima. These

hyper-parameters were optimised separately for each application of the random forest

classifier. For instance, in the “Revised Jacobusse & Veenman Method”, optimisation was

conducted for the models that calculated classes probabilities before assigning

pseudo-labels, and one more time for the final model evaluation.

For optimising the label spreading method, the data must indicate unlabelled cases

with a pseudo-class -1. GASearchCV cannot be used as it interprets -1 as a new class.

Therefore, TPOTClassifier (Olson, 2024) was used to apply a genetic search of the best

hyper-parameter set. This method also uses 5-fold cross-validation to test populations of



20 hyper-parameter sets per generation, stopping upon convergence to the optimal set.

For Self-Learning and Label Spreading, a full grid search was employed, given the few

parameters involved.

Analysis

In this study, the statistical approach uses simulation-based evaluations rather than

conventional statistical tests. The simulations allow for controlled experimentation across

the various scenarios of class imbalance and labelling bias. Unlike empirical studies,

simulations generate data under specified conditions, bypassing the need for assumptions

checking typically associated with empirical data. The adequacy of this approach lies in its

ability to systematically vary conditions, mimicking real-world scenarios of interest to the

NLA.

As previously mentioned, each simulation contains 6 scenarios, including 2 levels of

class imbalance and 3 levels of labelling bias. In each scenario, 6 di�erent machine learning

techniques are applied, and their performance is measured. To account for the inherent

variability in simulation-based studies, the entire simulation process is repeated 42 times

with di�erent random states. Throughout these iterations, performance metrics are

calculated and saved for each scenario and each method. The results are then averaged

across all seeds, resulting in informative tables and plots about the performance of each

model in every scenario.



Visualising the simulations

Figure 5 displays examples of simulated populations with unbalanced and balanced

classes.

Figure 5 . Examples of simulated populations with 95% class 0 cases (a) and balanced classes

(b), plotted with respect to their two most informative features. Although there is a visual

overlap of points representing the cases, the number of violators and compliers is the same

in plot b, representing the conditions illustrated on the right side of Figure 1.

Figure 6 illustrates the simulation of four di�erent types of samples derived from a

population with unbalanced classes (identical to the one in Figure 5, a).



Figure 6 . Di�erent samples extracted from an unbalanced population. Labelling bias is

evident in plots a and b, where coloured (labelled) cases cluster on one side, showing varying

proportions of class 1. Extreme labelling bias results in mostly red dots, indicating an inverse

proportion to the actual class distribution in the population. With no labelling bias (c), class

proportions and distributions match the original population. Plot d shows a train-set after

applying the "Jacobusse & Veenman Method" on a population with imbalanced classes and

extreme labelling bias (as in plot b). Here, unlabelled dots (previously grey) now have the

pseudo-label ’0’ (blue), while labelled class 0 cases have been removed (now in grey).



Results

This study aimed to compare a supervised machine learning method with

semi-supervised techniques for handling imbalanced and biased-labelled data while using

available unlabelled instances, mimicking scenarios encountered by the NLA. Forty-two

simulation iterations were conducted to assess each method’s performance based on

precision@100 and algorithmic bias. Other 3 performance metrics were also collected:

global precision, AUPRC, and precision@50, resulting in a total of 5 metrics. Each

iteration included 2 levels of class imbalance (50% for each class and 5% for class 1) and 3

levels of labelling bias (no bias, moderate bias, and extreme bias), resulting in 6 simulated

scenarios for each of the 6 tested methods. In total, methods were applied 42 iterations ◊ 2

levels of class imbalance ◊ 3 levels of labelling bias ◊ 6 methods = 1512 times, resulting in

the collection of 1512 ◊5 = 7560 performance measures.

Results of the simulations

The performance summary of all six models in populations with and without class

imbalance can be seen in Figures 7 and 8. The plots at the bottom include, in grey, the

indication of the average distance between the centroids of the true cases of class 1 in the

sample and the test set. These bars serve the purpose of providing additional insight into

the characteristics of the sample in each scenario. They are distinct from the algorithmic

bias represented by the coloured bars specific to each method, which refer to the distance

between the top 100 cases with the highest predicted probability of belonging to class 1

and the real class 1 cases in the test set.

Figure A1 (Appendix A) presents the outcomes of the six methods in one of the

simulations (random state 42). The plots show the top-100 cases ranked by their predicted

probability of belonging to class 1, distinguishing between true positives and false positives.

Additionally, the figure displays the centroids of these 100 predicted cases and of the true
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centroid of class 1 cases in the population, giving an indication of the magnitude of the

algorithmic bias en each situation.

Results indicate variations in precision@100 and algorithmic bias across di�erent

methods and scenarios (the complete list of indicators for all methods in all scenarios is

available in Tables A1 and A2, in Appendix A).

Findings Related to Hypothesis 1. The results indicate that, in scenarios with

class imbalance and labelling bias, the “Jacobusse & Veenman Method” consistently

outperformed the supervised learning method in terms of precision@100. This indicator is

superior in both the situations of moderate labelling bias (M = 0.538, SD = 0.069,

compared to M = 0.414, SD = 0.066 of the supervised method) and extreme labelling bias

(M = 0.6, SD = 0.077, compared to M = 0.525, SD = 0.071). In addition, the algorithmic

bias is lower for the “Jacobusse & Veenman Method” compared to the supervised method

at all levels of labelling bias (see Figure 7 and Table A1). Thus, the findings support

Hypothesis 1, giving evidence that the “Jacobusse & Veenman Method” provides better

performance under these conditions.

Findings Related to Hypothesis 2. Semi-supervised methods based on point

similarity (label spreading and label propagation) had higher precision@100 compared to

the supervised learning and the “Jacobusse & Veenman” methods. This was not the case

for the self-learning method, which showed low precision@100 in all scenarios (See Figure 7

and Table A1). The label propagation method reached the highest overall precision@100 in

the simulations with unbalanced populations and labelling bias (M = 0.632, SD = 0.075

for moderate bias and M = 0.686, SD = 0.069 for extreme bias). Nevertheless, both label

propagation and label spreading showed an increase in algorithmic bias, which is an

important consideration for their practical application.
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Figure 7 . Performance of methods on unbalanced classes. Dots represent individual simu-

lations. The grey bars in the bottom plots indicate the average distance between the true

class 1 centroids in the sample and test set, distinct from the method-specific algorithmic

bias shown by colored bars.
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tions. The grey bars in the bottom plots indicate the average distance between the true

class 1 centroids in the sample and test set, distinct from the method-specific algorithmic

bias shown by colored bars.



Discussion

For the NLA and other institutions aiming to use machine learning for predictive

insights, it would be very handy to make use of all available information to improve their

models, not just the limited labelled cases. After all, the NLA has extensive access to data

about employers across the Netherlands, which can be translated into rich and useful

information, potentially helping to find and address situations of unfair, unhealthy, or

unsafe working conditions. This research aims to support this goal by comparing di�erent

semi-supervised methods in terms of ranking precision and algorithmic bias. These

methods were applied in six di�erent simulated scenarios, varying the composition of the

classes in the population and the level of labelling bias in the sample. As expected, the

results suggest that di�erent methods are optimal under varying conditions. Supervised

methods are preferred for balanced classes with no labelling bias, for their simplicity and

precision. In contrast, semi-supervised methods, despite higher algorithmic bias, may be

more suitable for unbalanced classes with labelling bias, as they generally achieved higher

precision@100.

Scenarios with class imbalance

The first hypothesis of this research was aligned with the findings of Jacobusse and

Veenman (2016), aiming to confirm that, in situations with class imbalance and selection

bias of the labelled sample, better predictions could be achieved by including unlabelled

cases in the training set. This set would then consist of real cases of class 1 and all

unlabelled cases, which would receive a pseudo-class 0. The simulations in this study,

which conceptually replicate the conditions of the experiment by Jacobusse and Veenman

(2016), support this hypothesis. As seen in Figure 7 and Table A1, for a population with

unbalanced classes, the “Jacobusse & Veenman Method” has a superior precision@100 than

the supervised method in both the simulations of moderate labelling and extreme labelling
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bias. This is due to the fact that only the labelled cases were used for the supervised

approach, limiting the amount of information available to the model and consequently

reducing its predictive accuracy. The presence of class imbalance exacerbates this issue by

making the minority class even more underrepresented. In this sense, labelling bias can be

somewhat beneficial for the supervised method, as it introduces more examples of class 1

cases into the sample, helping to capture the characteristics of this class. Because of that,

for a population with unbalanced classes, the best performance of the supervised method

occurs when labelling bias is extreme, resulting in the largest proportion of class 1 cases in

the training set (see an example of distribution of classes in Table 1). In this scenario, the

labelled class 1 sample closely matches the class 1 cases in the test set, as illustrated by the

grey bar in Figure 7, leading to improved precision compared to when there is no labelling

bias. However, because the labelling bias also skews the data in the direction of the most

informative features, the generalisability of the supervised model remains limited. By

incorporating unlabelled data, the “Jacobusse & Veenman Method” mitigates these issues,

providing a more comprehensive view of the data distribution and improving the

precision@100. Additionally, this method decreases algorithmic bias by using a more

diverse training set which includes unlabelled cases and thus better represents the true

distribution of the population across all features, leading to fairer and more balanced

predictions. So, when applied to an unbalanced population with labelling bias, as outlined

in its underlying principles, this method provides a straightforward solution to achieve a

balanced outcome with robust performance and reduced algorithmic bias, compared to the

supervised learning method (See Table A1).

As proposed in the second hypothesis, the semi-supervised methods, by dynamically

using the unlabelled data, reached even superior levels of precision@100 compared to the

“Jacobusse & Veenman Method”, except for the self-learning method. Label spreading

smooths the label information across the data graph by considering general similarity

between data points (Zhou et al., 2003). This smoothing is intended to prevent the model
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from fitting too closely to noisy or outlier data points, thereby enhancing its ability to

generalize. However, this uniform spreading can sometimes reduce the influence of the

minority class labels. In scenarios without outliers, such as in this study, this cautious

approach may have slightly compromised its performance compared to label propagation.

This other method not only spreads labels based on data similarity but also preserves the

initial labelled information throughout its iterative process, more easily allowing the

propagation of labels of rare cases (Bengio et al., 2006). This preservation helps maintain

the integrity of the initial labelled data, ensuring that the model learns from these

examples e�ectively. As a result, label propagation can achieve the highest precision@100

in simulations involving populations with unbalanced classes, even when faced with

extreme labelling bias. Nevertheless, this increase in precision comes with the cost of an

increase in algorithmic bias, although this e�ect is less accentuated for label propagation

compared to label spreading (see Figure 7 and Table A1). This increase is because

semi-supervised methods depend on the characteristics of the labelled data to disseminate

pseudo-labels to other instances. Even if this propagation is smoothed or anchored on the

original labels, these models will give more weight to cases that are more similar to the

initial labelled sample. Because of this, the cases with higher predictive probability of

belonging to class 1 will have a closer relation to the features that were more informative in

the selection of the labelled sample. Thus, because precision@100 is the main metric used

in this research, the results indicate that while semi-supervised methods can enhance

precision in top-ranked predictions, they also introduce some level of algorithmic bias that

needs to be carefully managed.

When it comes to the self-learning method, its e�ectiveness is dependent on the

performance of a base classifier trained on the labelled data (O. Chapelle et al., 2009). In

this study, this method was notably a�ected by the low representation of class 1 cases,

leading to precision@100 values that were very close to or even lower than those achieved

by the supervised method (see Figure 7 and Table A1). As a result, this method did not
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bring considerable gain that justifies its adoption.

Finally, it is worth noting that the performance of label spreading and label

propagation methods heavily relies on the accurate calibration of their hyper-parameters.

In this experiment, Mean Reciprocal Rank (MRR) was used as a metric for model

comparison, focusing on optimizing accuracy for the top 100 instances with the highest

predicted probability of belonging to class 1. This approach involved setting the

hyper-parameters alpha and gamma to low values, enhancing sensitivity to the underlying

data structure and improving accuracy for cases closely resembling true class 1 samples.

However, this setting led to lower global precision as higher-ranked cases beyond the top

100 were not prioritized in the optimization process (Table A1). This disparity highlights

that, while label propagation excels at ranking top instances accurately, its overall

performance across the entire dataset may vary with these specific hyper-parameters.

Adjusting hyper-parameters for improved global precision could potentially lead to the use

of higher values for alpha and gamma, which means that the models would be less

dependent on the initial labelled data to assign pseudo-labels. This could increase the

overall precision but at the cost of the accuracy of the lower-ranked predictions. Thus,

although the semi-supervised methods based on point similarity demonstrate their

usefulness in predicting lists of cases with the highest probability of being violators, their

utility for predictions with high global precision needs to be further investigated.

Balanced Population

The supervised method demonstrates strong performance in scenarios with balanced

classes and no labelling bias (see Figure 8 and Table A2). This result was anticipated, as

the labelled sample, containing an equal distribution of observations for each class, ensures

a representative dataset, leading to high precision and low algorithmic bias. Even when

moderate labelling bias was introduced, model performance remained robust due to the

consistent proportion of class 1 cases. With extreme labelling bias, the performance of the



supervised method showed a slight decline (M = 0.9, SD = 0.049). Only in these scenarios

the semi-supervised methods, including the “Jacobusse & Veenman Method,” achieved

higher precision@100, though this came with increased algorithmic bias, particularly for

label propagation and label spreading. So, for populations with balanced classes, the

supervised method provides good precision with controlled levels of algorithmic bias,

making it a reliable choice for such datasets.

Ad Hoc - “Revised Jacobusse & Veenman Method”

The “Revised Jacobusse & Veenman Method” is a semi-supervised approach that

builds on the original “Jacobusse & Veenman Method” to create a hybrid training set.

Initially, it divides the unlabelled data into 5 folds. Over 5 rounds, it combines 4 of these

folds with all labelled cases and uses this combined set to predict the class probability of

the unlabelled cases in the remaining fold, thereby creating a di�erent training set for each

round. In these training sets, labelled class 1 data is kept, labelled class 0 data is removed,

and unlabelled data is included with a pseudo-label ‘0’. After the 5 rounds, a final training

sample is formed, comprising labelled cases of class 1, unlabelled cases with over 50%

probability of being class 1, and the remaining unlabelled cases with a pseudo-label ‘0’.

labelled cases of class 0 are excluded. Finally, a random forest classifier is trained on this

final sample.

Across the simulations, the performance of this method was similar to the “Jacobusse

& Veenman Method” in terms of precision@100 and algorithmic bias, with a few

exceptions. For example, in populations with unbalanced classes and no labelling bias,

there are very few cases of class 1 in the labelled sample, making it di�cult to capture the

characteristics of this group and generalize to the entire population using supervised

methods. In this scenario, the “Jacobusse & Veenman Method” amplifies the issue by

further oversampling class 0, assigning pseudo-labels ‘0’ to all the unlabelled cases. The

“Revised Jacobusse & Veenman Method” mitigates this problem by assigning some
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additional pseudo-labels ‘1’ to the training set. Despite this improvement, the performance

of the other tested methods remains superior in this scenario.

The main drawback of the “Revised Jacobusse & Veenman Method” is its reliance on

a threshold to assign pseudo-labels ‘1’ to the unlabelled sample. By default, it assigns

pseudo-labels ‘1’ to every case with more than a 50% probability of belonging to class 1.

However, these thresholds are not universally applicable and depend heavily on the

distribution of classes in the population. Future research could explore ways to optimize

this threshold for di�erent scenarios, improving the method’s robustness and

generalisability.

Limitations and Future Directions

The methods, measures, and design employed in this study demonstrated strengths

and weaknesses by exploring various methods tailored to di�erent types of populations and

samples. The selection of Mean Reciprocal Rank (MRR) as an optimization metric proved

particularly e�ective in evaluating precision@100 for identifying instances with the highest

predicted probability of belonging to class 1, highlighting its relevance for practical

applications in similar contexts.

However, a notable limitation of this study stems from its simulation-based approach,

which relies on predefined characteristics to simulate the population. Simulations, by their

nature, are constrained by the assumptions and parameters set during their design. In this

study, simulations were used both to emulate the characteristics of a population and to

reproduce a situation of labelling bias.

For the creation of the population, 20 features were constructed to reflect real-world

scenarios, yet these features may not capture the full spectrum of complexities and

variability present in actual data. Real-world populations exhibit a broader range of

characteristics and interactions that simulations might oversimplify or fail to represent
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accurately. For instance, while the simulation uses predefined distributions and

relationships, real-world data often involves more complex, non-linear interactions and a

wider variety of feature types, including binary or categorical variables, which may

influence outcomes in nuanced ways. Consequently, the predictive models developed in this

study might not fully generalize to real-world scenarios where the data may deviate

significantly from these predefined patterns. Regarding the labelling process, the choice of

using a linear combination of the two most informative features aimed to replicate a

situation where inspectors prioritize segments of employers based on a few key

characteristics. However, this approach may not fully capture the intricate decision-making

processes of real inspectors, who might consider a broader and more complex set of criteria.

Future research could benefit from either using real data or developing more complex

simulations to validate and extend the findings of this study. Incorporating a more diverse

set of feature types and interaction terms, or validating models with real-world data, would

enhance the robustness of the findings and improve the applicability of the methods to a

wider range of real-world situations.

Another constraint is the relatively modest sample sizes in certain scenarios, such as

random sampling with only 25 cases, which may limit the generalisability of findings.

Given the substantial size of the employer population in the Netherlands—approximately

2,000,000 active establishments (CBS, 2022)—it is crucial to scale methods e�ectively to

handle large-scale datasets. Future studies should prioritize testing these methods on larger

and more diverse datasets to validate and extend results e�ectively. Furthermore, applying

these methods to real data or generating synthetic datasets based on real-world data will

be essential for validating their e�cacy in practical settings, thereby bridging the gap

between theoretical simulations and real-world applicability.

Finally, future research should explore various levels of class imbalance and labelling

bias to uncover insights for better model implementation. Investigating the percentage of

pseudo-labelled instances in the training data will reveal its impact on performance.



Similarly, examining the e�ects of di�erent proportions of biased-selected versus random

instances in the sample could refine methods and improve accuracy. Additionally,

understanding the impact of outliers on label spreading will help assess its robustness and

reliability in practical applications.

Conclusion

The findings from this study suggest that the choice of method should be contingent

upon the specific characteristics of the dataset and the objectives of the analysis. For

scenarios with severe class imbalance and pronounced labelling bias, methods that

e�ectively handle these challenges, such as the “Jacobusse & Veenman Method,” may be

particularly suitable. On the other hand, for more balanced datasets or where the focus is

on minimizing algorithmic bias, traditional supervised methods can work su�ciently well.

The implications of this study extend beyond methodological advancements to

practical applications in fields reliant on predictive modeling. By addressing inherent

challenges like class imbalance and labelling bias, researchers and practitioners can enhance

the reliability and fairness of predictive models in real-world settings. These findings

contribute to ongoing e�orts to improve the accuracy and ethical considerations of machine

learning applications in various domains. In the context of the NLA, this study can help

bring insights for the development and future applications of techniques that help to assure

good working conditions across the Netherlands.
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Appendix A

Performance measures



Table A1

Performance Summary of Methods for Populations with Unbalanced Classes: Mean and Standard Deviation

Precision AUPRC P@50 P@100 Alg. Bias

Labelling Bias Method M SD M SD M SD M SD M SD

No bias Supervised 0.508 0.214 0.224 0.037 0.477 0.085 0.412 0.066 1.244 0.177

No bias Jacobusse & Veenman 0.268 0.317 0.185 0.043 0.395 0.120 0.347 0.095 1.186 0.229

No bias Revised Jacobusse & Veenman 0.389 0.272 0.197 0.043 0.406 0.112 0.371 0.096 1.217 0.235

No bias Self Learning 0.342 0.274 0.213 0.048 0.438 0.107 0.390 0.084 1.234 0.186

No bias Label Propagation 0.015 0.068 0.301 0.080 0.561 0.158 0.512 0.128 1.407 0.172

No bias Label Spreading 0.048 0.216 0.310 0.085 0.571 0.174 0.511 0.144 1.407 0.217

Moderate bias Supervised 0.119 0.014 0.227 0.033 0.471 0.083 0.414 0.066 1.151 0.226

Moderate bias Jacobusse & Veenman 0.621 0.211 0.315 0.040 0.595 0.095 0.538 0.069 0.986 0.088

Moderate bias Revised Jacobusse & Veenman 0.552 0.155 0.306 0.037 0.581 0.084 0.528 0.065 0.962 0.102

Moderate bias Self Learning 0.240 0.162 0.272 0.045 0.526 0.104 0.460 0.078 0.982 0.146

Moderate bias Label Propagation 0.210 0.256 0.360 0.049 0.720 0.084 0.632 0.075 1.204 0.110

Moderate bias Label Spreading 0.115 0.053 0.300 0.046 0.607 0.097 0.537 0.074 1.337 0.272

Extreme bias Supervised 0.073 0.008 0.309 0.042 0.581 0.088 0.525 0.071 0.986 0.127

Extreme bias Jacobusse & Veenman 0.630 0.112 0.371 0.041 0.662 0.095 0.600 0.077 0.921 0.071

Extreme bias Revised Jacobusse & Veenman 0.594 0.126 0.367 0.041 0.658 0.085 0.591 0.068 0.915 0.087



Table A1 continued

Precision AUPRC P@50 P@100 Alg. Bias

Labelling Bias Method M SD M SD M SD M SD M SD

Extreme bias Self Learning 0.074 0.006 0.311 0.040 0.569 0.089 0.522 0.070 0.985 0.120

Extreme bias Label Propagation 0.050 0.000 0.424 0.051 0.765 0.078 0.686 0.069 1.233 0.097

Extreme bias Label Spreading 0.050 0.000 0.406 0.051 0.744 0.080 0.655 0.073 1.321 0.114

Note. Main performance metrics are in bold. Additional performance metrics were also included for a more comprehensive

overview.



Table A2

Performance Summary of Methods for Populations with Balanced Classes: Mean and Standard Deviation

Precision AUPRC P@50 P@100 Alg. Bias

Labelling Bias Method M SD M SD M SD M SD M SD

No bias Supervised 0.718 0.021 0.791 0.021 0.987 0.018 0.980 0.016 1.677 0.120

No bias Jacobusse & Veenman 0.638 0.396 0.720 0.035 0.921 0.055 0.913 0.041 1.290 0.301

No bias Revised Jacobusse & Veenman 0.798 0.200 0.736 0.031 0.944 0.045 0.932 0.041 1.440 0.210

No bias Self Learning 0.700 0.038 0.768 0.045 0.967 0.042 0.959 0.043 1.636 0.214

No bias Label Propagation 0.651 0.251 0.805 0.057 0.944 0.096 0.940 0.095 1.770 0.540

No bias Label Spreading 0.736 0.080 0.818 0.028 0.974 0.031 0.974 0.026 1.903 0.268

Moderate bias Supervised 0.795 0.040 0.761 0.030 0.977 0.020 0.969 0.021 1.852 0.189

Moderate bias Jacobusse & Veenman 0.836 0.024 0.642 0.013 0.897 0.044 0.888 0.035 2.192 0.062

Moderate bias Revised Jacobusse & Veenman 0.820 0.026 0.630 0.016 0.880 0.059 0.871 0.036 2.144 0.063

Moderate bias Self Learning 0.779 0.040 0.745 0.032 0.974 0.028 0.965 0.022 1.875 0.185

Moderate bias Label Propagation 0.499 0.505 0.819 0.023 0.986 0.019 0.976 0.018 2.149 0.067

Moderate bias Label Spreading 0.955 0.156 0.839 0.023 0.996 0.013 0.993 0.013 2.078 0.164

Extreme bias Supervised 0.624 0.054 0.709 0.019 0.908 0.061 0.900 0.049 1.705 0.151

Extreme bias Jacobusse & Veenman 0.817 0.025 0.656 0.019 0.937 0.043 0.929 0.033 1.911 0.075

Extreme bias Revised Jacobusse & Veenman 0.788 0.021 0.645 0.017 0.876 0.041 0.865 0.040 1.975 0.083



Table A2 continued

Precision AUPRC P@50 P@100 Alg. Bias

Labelling Bias Method M SD M SD M SD M SD M SD

Extreme bias Self Learning 0.661 0.030 0.697 0.014 0.889 0.066 0.881 0.053 1.715 0.098

Extreme bias Label Propagation 0.500 0.000 0.750 0.020 0.959 0.034 0.944 0.033 2.307 0.054

Extreme bias Label Spreading 0.500 0.000 0.760 0.023 0.969 0.029 0.958 0.025 2.302 0.057

Note. Main performance metrics are in bold. Additional performance metrics were also included for a more comprehensive

overview.



Figure A1 . Example of 100 highest prediction probabilities for all 6 methods when applied

to a population with unbalanced classes and extreme labelling bias (as in Figure 5, a). Only

the 2 most informative features are displayed.



Appendix B

Code

All simulations in this study were created using Python (Van Rossum & Drake Jr, 1995).

The code is available via the link:

https://github.com/lexbsb/Classification-Approaches-for-Data-With-Class-

Imbalance-and-Biased-Labelled-Sample

https://github.com/lexbsb/Classification-Approaches-for-Data-With-Class-Imbalance-and-Biased-Labelled-Sample
https://github.com/lexbsb/Classification-Approaches-for-Data-With-Class-Imbalance-and-Biased-Labelled-Sample
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