
Phenomenology of k-essence dark energy in the Cosmic Microwave
Background
Liao, Dehong

Citation
Liao, D. (2024). Phenomenology of k-essence dark energy in the Cosmic Microwave
Background.
 
Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master Thesis,
2023

Downloaded from: https://hdl.handle.net/1887/4082304
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/4082304


Phenomenology of k-essence dark
energy in the Cosmic Microwave

Background

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

PHYSICS

Author : Dehong Liao
Student ID : Removed due to privacy reasons
Supervisor : Dr. A. Silvestri
Second corrector : Dr. S.P. Patil

Leiden, The Netherlands, August 1, 2024





Phenomenology of k-essence dark
energy in the Cosmic Microwave

Background

Dehong Liao

Huygens-Kamerlingh Onnes Laboratory, Leiden University
P.O. Box 9500, 2300 RA Leiden, The Netherlands

August 1, 2024

Abstract

K-essence dark energy is a generalization of quintessence dark energy by
promoting the canonical kinetic term X to a function of X and the field ϕ.
K-essence dark energy can serve as a kind of Early Dark Energy (EDE)
which energy contribution to the universe is limited in a narrow redshift
window around the time of recombination and then dilutes way. EDE is
a potential solution to Hubble tension, which refer to the fact that the lo-
cal measurements give a Hubble constant that is not consistent with the
value inferred from early-universe data such as cosmic microwave back-
ground. In this paper, we proposed a ξX2 EDE model which includes a
non-canonical kinetic term ξX2 as an attempt to resolve the Hubble ten-
sion and discuss its dynamics in detail. After performing Markov Chain
Monte Carlo analyses, we find ξX2 EDE model predicts a Hubble constant
H0 of 71.09+0.84

−0.72 km/s/Mpc using a collection of datasets and is in agree-
ment with SH0ES determination H0 = 73.04 ± 1.04 at ∼ 1.5σ. A model
parameter ξVi is 2 σ non-zero supporting the existence of ξX. The over-
all fit to the datasets in our model is improved by -21.2 compared with
ΛCDM when analysing with a SH0ES’ H0 prior.
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Chapter 1
Introduction

1.1 ΛCDM model

The ΛCDM model, or the Lambda cold dark matter model, is the current
standard model of cosmology. It has proven to be simple, extremely pre-
dictive and robust against observation. In this section, we would like to
provide a self-contained description, which help to understand the pillars
of the model as well as why and how we will go beyond ΛCDM.

• Mathematical Foundation: General relativity

At large scales, gravity is the only relevant force that will influence the
dynamics of the universe. General Relativity (GR) is a geometric theory of
gravitation published by A. Einstein in 1915. In GR, gravity is a geometric
property of the four-dimensional spacetime and the math used to describe
it is differential geometry. The Einstein’s field equations, which relates the
geometry of spacetime with matter within it, can be written as:

Rµν −
1
2

Rgµν + Λgµν = 8πGTµν (1.1)

where Greek letters µ, ν represents spacetime coordinates, µ, ν = 0, 1, 2, 3
(On contrary, Latin letters represents spatial coordinates, i,j, ... = 1,2,3).
Hereinafter we use c = 1 unless otherwise stated. Rµν is the Ricci tensor
and R is the Ricci scalar, R = Rµ

µ, gµν is the metric tensor, Tµν is the energy-
momentum tensor and G is the Newton gravitational constant. Finally we
note that Λ appears in the equations, which is the so-called cosmological
constant (CC).

• Physical assumptions
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2 Introduction

The most important assumption made within ΛCDM is the so-called
Cosmological Principle, stating that our universe is isotropic and homoge-
neous everywhere. Being isotropic at some points in the universe means
space looks the same at these points in all direction, while homogeneity
implies the metric is the same throughout the universe. Isotropy and ho-
mogeneity can well describe the observed nature of the universe.

In a isotropic, homogeneous and expanding universe, the metric has
the following form:

ds2 = gµνdxµdxν = −dt2 + a2dσ2 (1.2)

where

dσ2 =
dr2

1 − kr2 + r2dΩ2 (1.3)

when writing metric, we are using the (-,+,+,+) convention. Here r is the
comoving coordinate and a = a(t) is the scale factor. This metric is the
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metric when taking cur-
vature k into account. k is often normalize to:

k ∈ {−1, 0, 1} (1.4)

k = -1 corresponds to a constant negative curvature which describes a open
universe. k = 1 corresponds to a constant positive curvature and close
universe, while k = 0 corresponds to no curvature, i.e., flat universe.

Measurements shows that we are living in a flat universe, in this case
the FLRW metric is given by:

ds2 = −dt2 + a2(dx2 + dy2 + dz2) (1.5)

It is useful to introduce the conformal time η:

η(t) ≡
∫ t

0

1
a(t′)

dt′ (1.6)

In terms of η, the FLRW metric in a flat spacetime can be written as:

ds2 = a2(−dη2 + dx2 + dy2 + dz2) (1.7)

An important quantity we will be discussing throughout this work is
the Hubble parameter describing the expansion rate of the universe:

H = ȧ(t)/a(t) ≡ da(t)
dt

/a(t), or,H = a′(η)/a(η) ≡ da(η)
dη

/a(η) (1.8)

and today’s Hubble parameter H(t0) is denoted as H0. H0 has the unit
km/s/Mpc, and sometimes we also use another dimensionless parameter
h, h = H0/(100km/s/Mpc).

2
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1.1 ΛCDM model 3

• Constituents of the Universe

In the above discussion, we denote all constituents (except for CC) of
the universe, or the right hand side of Einstein field equations, as matter.
From now on, we divide this general ’matter’ into normal baryon matter,
cold dark matter (CDM), photon and neutrino. The first two and the last
two species are often called ’matter’ and radiation, respectively.

In background cosmology, matter, radiation and cosmological constant
are all considered as perfect fluids, which can be completely characterized
by the rest-frame mass density ρ (also dubbed as energy density) and the
isotropic rest-frame pressure p (or simply pressure). A minimally coupled
scalar field can also be regarded as a perfect fluid. The general form of the
energy-momentum tensor for a perfect fluid is:

Tµν = (ρ + p)UµUν + pgµν (1.9)

where Uµ = dxµ/dt is the four-velocity of the fluid with respect to the
observer.

Under this construction, the energy density and pressure for a species
i can be read from the energy momentum tensor:

ρi = −T0
0 (1.10)

pi =
1
3

T j
j (1.11)

A equation of state (EoS) parameter is defined for the perfect fluid:

w =
p
ρ

(1.12)

In cosmology, matter is pressureless, wm = 0, radiation has wr = 1
3

while wΛ = −1

• The Friedmann equations

Einstein’s field equations are the fundamental equations for ΛCDM
and essentially all results in cosmology can be derived from the them. In
its most general form, Einstein’s field equations is a set of ten partial differ-
ential equations. However, after adopting the FLRW metric, the number
of independent equations can be reduced to two, which are the Friedmann
equations:
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4 Introduction

H2 =
8πGρ

3
+

Λ
3

(1.13)

(1st Friedmann equation), and

ä
a
= −4πG

3
(ρ + 3p) +

Λ
3

(1.14)

(2nd Friedmann equation)
Eq (1.13) is the 00 component of Eq (1.1), while Eq (1.14) is a linear

superposition of Eq (1.13) and the ii component of Eq (1.1).
The continuity equation can also be derived:

ρ̇ + 3H(ρ + p) = 0 (1.15)

When studying the dynamics of the universe, the dimensionless den-
sity parameter is useful:

Ωi =
ρi

ρcrit
(1.16)

where the critical density ρcrit is the total energy density of a flat universe:

ρcrit =
3H2

0
8πG

(1.17)

Then in ΛCDM we have:

Ωm + Ωr + ΩΛ = 1 (1.18)

• Cosmological constant or dark energy

Cosmological constant is introduced (again, after A. Einstein abandoned
it well-before the foundation of ΛCDM) to ΛCDM to explain the acceler-
ated expansion of the universe [1]. The origin of cosmological is not stated
in ΛCDM, but historically a possible explanation to it is related to the vac-
uum energy density ρV , which has a energy momentum tensor of the form:

< Tµν >V= −ρV gµν (1.19)

compare it with Eq (1.1) assuming no matter or radiation exists, it is straight-
forward to find that ρΛ = ρV . However, very intuitively, the scale of the
vacuum energy can be estimated by [2][3][4]:

ρV ∼
∫ Mmax

0

4πk2dk
(2π)3

1
2

√
k2 + m2 ∼ M4

max (1.20)

4
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1.1 ΛCDM model 5

where Mmax is the cutoff scale, m is the mass of the field that contributes
to the vacuum energy. If the known particles in Standard Model are to
make vacuum contribution, Mmax should be about 100 GeV, leading to a
ρV ∼ 108GeV. However, this is greater than the observed value of ρΛ
by about 54 orders of magnitude. A possible solution to it is introducing
another field that cancels ρV no matter how large it is. To do so, the energy
density of this field should be extremely fine-tuned, causing the so-called
fine-tuning problem.

To circumstance this worrisome problem, people proposed to interpret
cosmological constant as a separate component of the Universe, namely
the Dark Energy (DE). The simplest example of DE is quintessence [5][6], in
which DE is a scalar field ϕ with action:

S =
∫

d4x
√
−g(X − V(ϕ)) (1.21)

where X ≡ −1
2 gµν ▽µ ϕ ▽ν ϕ is the canonical kinetic energy and V(ϕ)

some potential.
Upon the assumption of FLRW metric, the energy density and pressure

of the scalar field is:

ρϕ =
1
2

ϕ̇2 + V(ϕ) (1.22)

pϕ =
1
2

ϕ̇2 − V(ϕ) (1.23)

Quintessence’s EoS parameter is:

wϕ =
pϕ

ρϕ
=

1
2 ϕ̇2 − V(ϕ)
1
2 ϕ̇2 + V(ϕ)

(1.24)

such that wϕ > −1 and approximate CC (w = -1) when V is is completely
flat.

Many DE models are not connected to canonical terms, for example,
K-essence [7] and Galileon dark energy [8]. In K-essence, the Lagrangian
is a function of X and ϕ, i.e., it has the action:

S =
∫

d4x
√
−gK(ϕ) p̃(X) (1.25)

The introduction of non-canonical kinetic term has interesting conse-
quences and we will show it in the rest of this work.
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6 Introduction

Figure 1.1: Definition of angular diameter distance, source:[61]

1.2 The Hubble tension

1.2.1 Tension between early and late time determination of
H0

The Hubble constant H0 can be determined through a variety of meth-
ods. These methods can be can divided into local late-time measurements
and the those depend on early-universe observation (e.g., CMB) assuming
ΛCDM. These methods give mean values of H0 varying from 67 km/s/Mpc
to 76 km/s/Mpc [9], while the most severe tension appears between SH0ES’
result 73.04 ± 1.04 [10] and PLANCK 2018’s result 67.27 ± 0.54 [11], with
the difference reaching ∼ 5σ. We would like to briefly discuss the methods
used by them.

• Inferring H0 from CMB data assuming ΛCDM

Consider an object of comoving scale r in the universe, when observing
from earth, it subtends an angle of θ, which is the angular size of the object,
DA ≡ r

θ is the comoving angular diameter distance. For an illustrative
picture, see Fig. (1.1)

If we define the comoving sound horizon of last-scattering surface as
r⋆s , then we have:

θ⋆s =
r⋆s

D⋆
A

(1.26)

where θ⋆s and D⋆
A are the angular size angular size and comoving diameter

distance of last-scattering surface, respectively.
r⋆s and D⋆

A can be expressed as:

r⋆s =
∫ ∞

z⋆

cs(z′)
H(z′)

dz′ (1.27)

D⋆
A =

∫ z⋆

0

1
H(z′)

dz′ (1.28)

6
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1.2 The Hubble tension 7

where cs(z) ≡ (3(1 + R(z)))−1/2 is the sound speed of the photon-baryon
fluid, R(z) ≡ 3ρb

4ργ
= 1

z+1
3ωb
4ωγ

is the baryon-to-photon energy ratio, ωi =

Ωih2, i = baryon, cdm, radiation and Λ. [12][13]
Ignoring the cosmological constant, all terms on the right hand side

of Eq (1.27) depends on ωb, ωr and ωm. ωr is precisely measure by CMB
temperature, so r⋆s depends only on ωb and ωm. Briefly speaking, ωm is
determined through its impact on potential envelope, a scale-dependent
boosting of oscillation power, which can be read from CMB power spectra.
Variations of another quantity, ωb, will change the peak heights in CMB
temperature power spectra as well as the damping scale, thus can also be
derived from CMB.

Finally, we note that θ⋆s is related to the spacing between peaks in CMB
spectra as θ⋆s = π/∆ℓ. [14]. We combine Eq (1.26 - 1.28) to give:

θ⋆s =
H0r⋆s

c
∫ z⋆

0
dz′

E(z′)

(1.29)

where E(z) is the dimensionless normalized Hubble parameter:

E(z) ≡ H(z)
H0

=
√

Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + 1 − Ωm,0 − Ωr,0 (1.30)

where Ωi,0 is today’s value of Ωi.
The denominator on the right hand side of Eq (1.29) is determined by

local measurements. We can conclude that H0r⋆s = const, so H0 can be
calculated using the information about CMB.

• Local Measurement: Luminosity distance of SNIa

When we measures the energy flux of a luminous source of absolute
luminosity L at a distance dL from earth, we are actually measuring its
apparent luminosity l:

l =
L

4πd2
L

(1.31)

where dL is called the luminosity distance. In an expanding flat universe,
the luminosity distance can be written as:

dL(z)th = c(1 + z)
∫ z

0

dz′

H(z′)
(1.32)

Note that only from now and until the end of this subsection we will write
the speed of light c explicitly.
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8 Introduction

We then define the dimensionless Hubble free luminosity distance:

DL(z) =
H0dL

c
(1.33)

The apparent magnitude m(z)th is related to DL as:

m(z)th = M + 5lg[DL(z)] + 5lg[
c/H0

Mpc
] + 25 (1.34)

where the apparent magnitude m is defined as:

m = −2.5lg(
l
l0
) (1.35)

lg(x) ≡ log10(x), l is a reference flux, and the absolute magnitude M of a
source is the apparent magnitude a source would have if it was 10pc away
from earth. M is a calibration for the distance ladder approach (for ex-
ample, geometric anchors - Cepheids - SNIa). By measuring the apparent
magnitude we can determine DL(z) and subsequently H0.

1.2.2 Solutions to the Hubble tension

As mentioned before, Hubble constant obtained through late-time and
early-time methods is not consistent with each other and the results given
by the former is usually larger. Here we review some of the attempts to
alleviate the tension, for a list of solutions, see[15]

1. Void
The universe is not completely uniform, therefore, a possibility exists

that we are living in an underdense region. If so, the local measurement
of Hubble constant will be higher than the universal one, which can be
observed from the following relation [16]:

∆H0

H0
= −1

3
δ f (Ωm)Θ(δ, Ωm) (1.36)

where δ is the local density contrast, f (Ωm) is the growth rate of density
perturbations and Θ is a non-linear correction which is small for typical
size underdensities. From the above relation it is clear that underdensity,
δ < 0, leads to a higher local H0. However, such a local void would cause
large scale outflows, and it is found that the SNIa luminosity distance-
redshift relation is not consistent with the local underdensity large enough
to explain the Hubble tension at 4-5σ [17]. Along with other evidence
(e.g.,[18]), this fact highly disfavours the void scenario.

8
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1.2 The Hubble tension 9

2. Increasing Ne f f
In ΛCDM, The energy density of radiation ρr is determined by photon

energy density via the following relation:

ρr = ργ[1 +
7
8
(

4
11

)
4/3

Ne f f ] (1.37)

where Ne f f is the number of relativistic degrees of freedom. To model the
three neutrino species in Standard Model, we usually adopt Ne f f = 3.046
[19]. An increase in Ne f f means extra relativistic species and higher en-
ergy density at recombination, which leads to a higher H0 according to the
sound horizon - Hubble constant relation. However, as discussed in Sec-
tion II.1, if we change ρr while fix ρb, peak heights in CMB spectra will be
altered which conflicts with the current precise measurement. By allow-
ing a self-interaction in the new species, it is possible for the peak heights
to remain unchanged at the cost of change other cosmological parame-
ters. Kreisch et al. [20] followed this idea and found Nedd = 4.02 ± 0.29
as well as H0 = 72.3 ± 1.4. The problem with this scenario is that the self-
interaction requires a mediator of mass keV - 100 MeV, which is subject to
stringent cosmological and laboratory bounds [21].

3. Modified recombination
There exists other approaches to reduce the r⋆s without adding new

components to the universe. Here we present some examples.
Varying electron mass. In [22] the recombination history is modified

by assuming a time-dependent electron mass me. In order not to affect
the CMB power spectra, the fractional variation ∆x for quantity x, x ∈
ωb, ωm, a⋆ need to satisfy:

∆ωb = ∆ωm = −∆a⋆ (1.38)

where a⋆ is the scale factor at recombination and ∆x ≡ log(x/xbaseline). We
also noticed that r⋆s ∝ a⋆. Through changing me we change the the energy
levels of hydrogen EH, which implies:

∆me = −∆a⋆ (1.39)

therefore, an increase in electron mass will lower a⋆, i,e. r⋆s , making a
varying me a possible solution to Hubble tension.

In order to resolve the tension, we need the electron mass at recombi-
nation to be about 5% larger than that at today. However, authors of [23]
argue that increasing me at recombination will affect big bang nucleosyn-
thesis (BBN): the helium fraction will become larger and the deuterium

Version of August 1, 2024– Created September 4, 2024 - 14:38
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10 Introduction

abundance will be smaller. Using BBN constraint, they conclude that me
at BBN is only ∼ 1% greater than its current value.

Similar modification to the recombination can also be achieved by in-
creasing the fine structure constant α [22]: a stronger electromagnetic in-
teraction means nuclei can star to form at higher temperature. That is,
the recombination redshift z⋆ will increase which leads to a smaller r⋆s .
The problem with this modification is that, based on CMB power spec-
tra, δα/α is of order 10−3 [24]. The resulting change in the recombination
sound horizon is too small to address the Hubble tension.

1.2.3 The EDE solution to the tension

Currently a promising approach to address the Hubble tension is early
dark energy (EDE)(examples given below). EDE is a new component of
the universe which is usually modeled as a scalar field. EDE is dynami-
cally relevant at z >> 1 and its energy contribution is localized around
recombination.

The addition of EDE can increase H0 as follows. Again consider Eq
(1.29), but this time a different r⋆s on the numerator due to EDE:

θ⋆s =
H0r⋆,ede

s

c
∫ z⋆

0
dz′

E(z′)

(1.40)

In Eq (1.27), H(z′) = (z′, ρm, ρr) (again neglecting CC), and after in-
troducing EDE, H′(z′) = (z′, ρm, ρr, ρede). Apparently an extra component
EDE will increase H(z) around recombination thus lower the comoving
sound horizon, leading to an increase in H0. In this sense EDE is expected
to address the Hubble tension. This is supported by our analyses in Sec-
tion III, where we show that the original ∼ 5σ tension is reduced to about
1.5σ. A plethora of EDE models have been proposed (for a review, see [9]).
Here we give some examples of the models as well as briefly discuss some
challenges to the EDE scenario.

• EDE models

Axion-like Early Dark Energy[25, 26]. In this model EDE is described
by a canonical scalar field ϕ (i.e., its Lagrangian is X - V. X is the kinetic
term) with V(θ) = m2 f 2[1 − cos(θ)]n, where m is the axion mass, f is the
axion decay constant and θ = ϕ/ f . This model is inspired by ultra-light
axion and n=1 corresponds to the axion potential. It is a convention in

10
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1.2 The Hubble tension 11

EDE models to use ”phenomenological parameters”, fractional EDE en-
ergy density fede and critical redshift zc when doing analysis (detailed dis-
cussion can be found in the following section).

New Early Dark Energy (NEDE)[27, 28]. NEDE uses two scalar fields
ψ and ϕ to model EDE, and has the following potential:

V(ψ, ϕ) =
λ

4
ψ4 +

1
2

βM2ψ2 − 1
3

αMψ3 +
1
2

m2ϕ2 +
1
2

γϕ2ψ2. (1.41)

where m, M is the mass of ϕ, ψ, respectively, λ, α, β, γ are dimensionless
couplings. In NEDE a first-order phase transition occurs shortly before
recombination. The energy density of DE after transition is lower than
that before transition, and in this sense NEDE experience a decay around
z⋆. NEDE model predicts a H0 = 71.4 ± 1.0km/s/Mpc and is compatible
with SH0ES measurement they use (74.03 ± 1.42 km/s/Mpc) with ∼ 1.5σ
difference.

Other EDE models includes EDE coupled to neutrinos [29] or DM [30][31],
Acoustic Early Dark Energy (AEDE) [32], Rock ’n’ Roll EDE [33], α-attractors
EDE [34], Early Modified Gravity [35] in which the scalar field is coupled
to the Ricci scalar, etc.

Challenges to EDE Though EDE provide possible solutions to Hubble
tension, it introduces some new problems which need to be treated with
care. One of these problems is the so-called second coincidence problem.
In order to modify the sound horizon at recombination while keep the
low-z universe unaffected, EDE must have a significant contribution to the
total energy close to matter-radiation equality. It may be the case that there
exists many EDE-like fields, but only the one active at matter-radiation
equality catches our interest, because those become active latter behave
just like DE while those become active at very early times can hardly affect
the CMB [36][37][1806.10608]. However, one still needs to explain why
there are so many such fields in the universe. Other problem includes:

S8 tension: S8 ≡ σ8(Ωm/0.3)0.5, where σ8 is the the root-mean-squared
of matter fluctuations on a 8h−1 Mpc scale. Weak lensing surveys (e.g.,
CFHTLenS [38]) give S8 that is different from Planck’s result at 2-3 σ. Un-
fortunately, the addition of EDE usually increases the inference of σ8, lead-
ing to a greater tension. It is argued that the reason is EDE predicts higher
CDM density.

No preference over EDE when excluding SH0ES: this a problem when
analysing data using Markov Chain Monte Carlo (MCMC) analysis. When
the dataset does not include a Gaussian prior on H0 based on SH0ES mea-
surement, usually it does not favor EDE over ΛCDM and predict a small
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12 Introduction

value of fede. It is possibly caused by the prior volume effect which will be
discussed in Section III.

1.3 Outline

The rest of this work is structured as follows: in Section II we will focus
on the theory aspects of ξX2 EDE model starting from its Lagrangian and
using the least action principle to derive its EoM. Combining with Hubble
equation equation and continuity equation for other components, it allows
us to obtain a set of equations governing the background dynamics. The
linear perturbation theory will also be discussed, before we move on to
solve ξX2 EDE’s dynamics and study its properties in detail.

Section III is devoted to the Numeric Analysis of the model. We in-
troduce our selection of cosmological datasets and model parameters for
the MCMC analysis, which can be divided into ones with SH0ES and
those without SH0ES. We find that these two choices give greatly differ-
ent results in terms of reconstructed model parameters and best-fit χ2, but
all lead to the conclusion that ξX2 EDE can reduce the Hubble tension.
Changes to some other ΛCDM parameters are also discussed.

Finally, we give our conclusion and outlook in Section IV.

12
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Chapter 2
Theory

2.1 From the principle of least action to equation
of motion

We consider a general Lagrangian L for a field ϕ and the associated action:

S =
∫

d4x
√
−gL (2.1)

where L = L(ϕ,▽µϕ) . If ϕ and ▽µϕ is changed by δϕ and δ(▽µϕ) =
▽µ(δϕ), respectively, then:

δL = L′ −L

=
∂L
∂ϕ

δϕ +
∂L

∂(▽µϕ)
▽µ (δϕ)

(2.2)

which leads to:

δS =
∫

d4x
√
−g

[
∂L
∂ϕ

δϕ +
∂L

∂(▽µϕ)
▽µ (δϕ)

]
(2.3)

integrating the second term on the right hand side by parts yields:√
−g

∫
d4x

∂L
∂(▽µϕ)

▽µ (δϕ) =
√
−g

∫
d4x ▽µ (

∂L
∂(▽µϕ)

δϕ)

−
√
−g

∫
d4x ▽µ (

∂L
∂(▽µϕ)

)δϕ

(2.4)

the first term can be converted to a surface term, therefore we can ig-
nore it.
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∴ δS =
√
−g

∫
d4xδϕ

[
−▽µ (

∂L
∂(▽µϕ)

) +
∂L
∂ϕ

]

δS = 0 ⇒ −▽µ (
∂L

∂(▽µϕ)
) +

∂L
∂ϕ

= 0 (2.5)

which is the so-called Euler-Lagrange equation. Solving Eq (2.5) for a
given L will result in its Equation of Motion (EoM).

2.2 ξX2 EDE model

As mentioned before, EDE has mainly been studied with the canonical
scalar field. In our model, we want to extend it to K-essence in which the
kinetic term is generalized to P(X). Explicitly, we consider a first order
correction ξX2. Adding a potential to drive the field evolution will result
in the Lagrangian for the ξX2 EDE model:

L = X + ξX2 − V (2.6)

where X ≡ −1
2 gµν ▽µ ϕ ▽ν ϕ, V = V0ϕ4, ξ, V0 > 0 are model parame-

ters
Use E-L equation (2.5) and note that for a scalar field ϕ, ▽µϕ is equiv-

alent to ∂µϕ, we have:

gµν ▽µ ▽νϕ − ξ ▽µ (gµν∂νϕgαβ∂αϕ∂βϕ)− Vϕ = 0 (2.7)

Expand Eq(2.7) and write down all terms explicitly:

⇒□ϕ − ξ[gαβ∂αϕ∂βϕ□ϕ

+ gµνgαβ ▽µ (∂αϕ)∂νϕ∂βϕ + gµνgαβ ▽µ (∂βϕ)∂νϕ∂αϕ]− Vϕ = 0
(2.8)

where □ϕ ≡ gµν ▽µ ▽νϕ, Vϕ ≡ ∂V
∂ϕ .

Eq (2.8) is the EOM of the scalar field ϕ in its most general form.
The energy-momentum tensor for a scalar field can be expressed as:

Tµν = −2
1√−g

δ(
√−gL)
δgµν (2.9)

substitute into Lagrangian (2.6):

14
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2.2 ξX2 EDE model 15

δ(
√
−gL) =

√
−g

[
−1

2
δgµν∂µϕ∂νϕ +

ξ

4
δgµνgαβ∂µϕ∂νϕ∂αϕ∂βϕ

+
ξ

4
δgαβgµν∂µϕ∂νϕ∂αϕ∂βϕ

]
+ δ

√
−g

[
−1

2
gµν∂µϕ∂νϕ +

ξ

4
(gµν∂µϕ∂νϕ)(gαβ∂αϕ∂βϕ)− V

]
(2.10)

using
δ
√−g
δgµν = −1

2
√
−ggµν

and

δgαβ

δgµν =
1
2
(δα

µδ
β
ν + δα

ν δ
β
µ)

It’s straight forward to show that:

Tµν = ∂µϕ∂νϕ − ξgαβ∂µϕ∂νϕ∂αϕ∂βϕ − 1
2

gµνgαβ∂αϕ∂βϕ

+
ξ

4
(gαβ∂αϕ∂βϕ)(gσρ∂σϕ∂ρϕ)− gµνV (2.11)

and

Tµ
ν = gµγTγν

= gµγ∂γϕ∂νϕ − δ
µ
ν (

1
2

gαβ∂αϕ∂βϕ + V)− ξgαβgµγ∂γϕ∂νϕ∂αϕ∂βϕ

+ δ
µ
ν

ξ

4
(gαβ∂αϕ∂βϕ)(gσρ∂σϕ∂ρϕ)

(2.12)

We can use the energy-momentum tensor to calculate the energy den-
sity ρede and pressure pede for the scalar field, i.e.:

ρede = −T0
0 (2.13)

pede =
1
3

Ti
i (2.14)
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16 Theory

2.3 Background Dynamics of ξX2 EDE

In the context of FLRW metric, Eq (2.8) simplifies to *:

1
a2 (−ϕ′′ − 2Hϕ′)− ξ[

1
a4 (2Hϕ′3 + ϕ′′ϕ′2)

+ gµνgαβ ▽µ (∂αϕ)∂νϕ∂βϕ + gµνgαβ ▽µ (∂βϕ)∂νϕ∂αϕ]− Vϕ = 0
(2.15)

To expand the remaining two (identical) terms in Eq (2.15), we use the
fact that ϕ = ϕ(t). It follows from the cosmological principle, i.e. isotropic
and spatially homogeneous, so all background quantities are only function
of time. Only µ = ν = α = β components will survive, which leads to:

gµνgαβ ▽µ (∂αϕ)∂νϕ∂βϕ = gµνgαβ ▽µ (∂βϕ)∂νϕ∂αϕ

= † 1
a4

[
(ϕ′′ −Hϕ)ϕ′2

] (2.16)

Combining all terms gives:

(1 +
3ξ

a2 ϕ′2)ϕ′′ + 2Hϕ′ + a2Vϕ = 0 (2.17)

which is the background EoM for scalar field ϕ.
Next, we calculate the energy density and pressure for the scalar field

using results from the Section 2.2:

⇒ ρede = −T0
0 =

1
2

1
a2 ϕ′2 + V +

3ξ

4
1
a4 ϕ′4 =

1
2

ϕ̇2 + V +
3ξ

4
ϕ̇4 (2.18)

pede = Ti
i =

1
2

1
a2 ϕ′2 − V +

ξ

4
1
a4 ϕ′4 =

1
2

ϕ̇2 − V +
ξ

4
ϕ̇4 (2.19)

(no sum over i), where ϕ̇ ≡ dϕ
dt

Rewriting Eq (2.17) in terms of ϕ̇,X and H instead of ϕ′, ϕ′2 and H, we
are able to give a set of equations governing the background dynamics of
our model, after taking into account matter, radiation and cosmological
constant:

*□ϕ = 1
a2 (−ϕ′′ − 2Hϕ′), gµν∂µϕ∂νϕ = − 1

a2 ϕ′2,H = a′
a

16
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2.4 Linear perturbation 17

H2 =
1
3
(ρr + ρm + ρΛ + ρede) ≡

1
3

ρtotal

ρede =
1
2

ϕ̇2 + V +
3ξ

4
ϕ̇4

(1 + 6ξX)ϕ̈ + 3H(1 + 2ξX)ϕ̇ + Vϕ = 0
˙ρm = −3Hρm

ρ̇r = −4Hρr

ρΛ = const.

(2.20)

2.4 Linear perturbation

Here we consider linear perturbations to the field and the metric:

ϕp(η, x) = ϕ(η) + δϕ(η, x)

gp
µν(η, x) = gµν(η) + δgµν(η, x)

where subscript p always denotes the perturbed quantities. In the fol-
lowing we omit the dependence of ϕ and gµν for simplicity.

In Newtonian gauge, the perturbed metric gp
µν is:

ds2 = −a2[(1 + 2Ψ)dη2 − (1 − 2Φ)dx2]

While

g00,p = − 1
a2

1
1 + 2Ψ

≈ − 1
a2 (1 − 2Ψ)

gii,p =
1
a2

1
1 − 2Φ

≈ 1
a2 (1 + 2Φ)

After perturbation, the first term in the EOM (2.8) becomes:

(□ϕ)p = gµν,p[∂µ∂νϕp − Γα,p
µν ∂αϕp] (2.21)

after expansion

(□ϕ)p = − 1
a2 [ϕ

′′+ 2Hϕ′− (Ψ′+ 3Φ′+ 4HΨ)ϕ′− 2Hϕ′′+ δϕ′′+ 2Hδϕ′−∇2δϕ]

(2.22)
The second term in the EOM (2.8) is more involved:
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(−ξ[gαβ∂αϕ∂βϕ□ϕ + gµνgαβ ▽µ (∂αϕ)∂νϕ∂βϕ + gµνgαβ ▽µ (∂βϕ)∂νϕ∂αϕ])
p

=− ξ[gαβ,p∂αϕp∂βϕp · (□ϕ)p ⟨A⟩
+ gµν,pgαβ,p(∂µ∂αϕp − Γρ,p

µα ∂ρϕp)∂νϕp∂βϕp ⟨B⟩
+ gµν,pgαβ,p(∂µ∂βϕp − Γρ,p

µβ ∂ρϕp)∂νϕp∂αϕp ⟨C⟩]
(2.23)

all components in ⟨B⟩ and ⟨C⟩ except for µ = ν = α = β = 0 are of
second or higher order or equal 0. Therefore,

⟨B⟩ = ⟨C⟩
= g00,pg00,p(ϕ′′ + δϕ′′ − Γρ,p

00 ∂ρϕp)(ϕ′ + δϕ′)
2

≈ 1
a4 [(ϕ

′)
2
ϕ′′ −H(ϕ′)

3 − 4Ψ(ϕ′)
2
ϕ′′ + (−Ψ′ + 4HΨ)(ϕ′)

3
+ (ϕ′)

2
δϕ′′ + (2ϕ′ϕ′′ − H(ϕ′)

2
)δϕ′]

(2.24)

we now have:

(2.23) = − ξ

a4 [3(ϕ
′)

2
ϕ′′ − 12Ψ(ϕ′)

2
ϕ′′ − 3(Ψ′ + Φ′)(ϕ′)

3

+ 3(ϕ′)
2
δϕ′′ + 6ϕ′ϕ′′δϕ′ − (ϕ′)

2∇2δϕ]

(2.25)

Finally, the third term in the EOM (2.8) simply become:

(−Vϕ)
p = −Vϕ − Vϕϕδϕ (2.26)

Instead of working in real space where δϕ = δϕ(η, x), we can do a
Fourier transform and go to the k-space:

δϕk(η, k) =
∫ 1

(2π)
3
2

δϕ(η, x)eik·xdx

where in k-space δϕ(η, x) is replaced by δϕk(η, k). The benefits of going
to k-space is that linear perturbation equations decouple into independent
equations for each Fourier mode. The dependence on spatial coordinates
vanishes and the evolution for each Fourier mode δϕk(η, k) only depends
on its time derivative and k = |k|.

After Fourier transform, the EOM for δϕk is:

[1 +
3ξ

a2 (ϕ
′)

2
]δϕ′′

k + [2H+
6ξ

a2 ϕ′ϕ′′]δϕ′
k + [k2 + a2Vϕϕ +

ξ

a2 (ϕ
′)

2k2]δϕk =

[2Ψ +
12ξ

a2 Ψ(ϕ′)
2
]ϕ′′ + [Ψ′ + 3Φ′ + 4HΨ +

3ξ

a2 (Ψ
′ + Φ′)(ϕ′)

2
]ϕ′ (2.27)

18
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2.5 Evolution of the field 19

The energy density perturbation and pressure perturbation, δρede and
δpede, for the scalar field can be obtained:

δρede = (ϕ̇ + 3ξϕ̇3)δϕ̇ + Vϕδϕ (2.28)

δpede = (ϕ̇ + ξϕ̇3)δϕ̇ − Vϕδϕ (2.29)

Similarly, we can also obtain the heat flux of the scalar fluid:

(ρede + pede)θ ≡ ikjδT0
j

(ρede + pede)σ ≡ −(k̂i · k̂ j −
1
3

δij)Σi
j

Σi
j ≡ Ti

j − δi
jT

k
k /3

(2.30)

The linearized Einstein equation yields [39]

−k2Φ + 3H(−Φ̇ +HΨ) = −4πGa2δρede

k2(−Φ̇ +HΨ) = 4πGa2(ρede + pede)θ

−Φ̈ +H(Ψ̇ − 2Φ̇) + (2
ä
a
−H2)Ψ − k2

3
(Φ + Ψ) =

4π

3
Ga2δpede

−k2(Φ + Ψ) = 12πGa2(ρede + pede)σ
(2.31)

which, supplemented with the evolution equations of ordinary species,
see [39], and Eq (2.27 - 2.30) equation, form a close system describing the
linear perturbation dynamics.

2.5 Evolution of the field

We explore the background dynamics by implementing the closed system
of equations Eq (2.20) in Mathematica. To simplify the calculation we use
x ≡ log(a) as the time variable.

We give our results in Figure (2.1 - 2.3). Figure (2.1) can roughly illus-
trate the behaviour of the field: Initially the field is frozen at some non-zero
ϕi. Its energy density is subdominant and remains nearly constant like a
cosmological constant. As the Hubble parameter decreases over time, at
some redshift the Hubble energy scale becomes roughly of the same order
of magnitude as the effective mass of the scalar field, i.e.:

H2 ∼ Vϕϕ (2.32)
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Figure 2.1: Evolution of ϕ and fede for two sets of initial conditions. EDE with
these initial conditions can produce the desired observables.

At this stage its energy fraction fede(z) increases with time because the
energy density of the dominant species (radiation) redshifts with time.
fede(z) peaks at a critical redshift zc when the field starts to roll (i.e., when
Eq (2.32) is satisfied‡) and quickly drops afterwards due to Hubble damp-
ing when the field experiences damped oscillation around its potential
minimum. fede(zc) is hereinafter refereed to as fede.

We also present in Figure (2.2a) the evolution of equation of the state
parameter for the EDE wede(x) as well as the effective equation of the state
parameter for the universe we f f (x), where we f f (x) = ptotal/ρtotal, ptotal

‡The field unfreezes when the driving force (proportional to the mass of the field at
this moment) is comparable to the damping (∼ H2)

20
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2.5 Evolution of the field 21

is the overall pressure of all components in the Universe. In these ex-
amples we use model parameters {ϕi, V0, ξVi} = {0.5, 1012, 1}. We use
ξVi ≡ ξV0ϕ4

i instead of ξ because, as we will explain in detail later in this
section, it is the parameter that is directly relevant to the non-canonical dy-
namical behavior of the field. This set of parameters roughly corresponds
to the best-fit values of { fede, zc, ξVi} we get in the MCMC analysis, thus
being representative. The evolution of energy density ρi for each compo-
nent of the Universe is also given in Figure (2.2b), where i can represent
matter, radiation, CC and EDE. We can conclude that at early time the
Universe is radiation-dominated and gradually evolves towards a matter-
dominated era, before it finally experience accelerated expansion caused
by both CC and EDE. Although wede(x) oscillates rapidly at low redshift,
we can tell from figure (2.2b)) that in average it decays with w ∼ 1

3 (which
may vary slightly depending on the three model parameters), i.e., the
scalar field studied mimics radiation at late times.

However, the dynamics of the field may change dramatically if we
change some of the model parameters. Figure (2.3a - 2.3c) shows the con-
sequences of increasing ϕi, V0, and ξ, respectively. In all three cases the
Universe evolution becomes dominated by the scalar field, which drasti-
cally changes the evolution of the field. We note that this is not realistic.

As we observe from Fig (2.1) and (2.3), when some of the three model
parameters V0, ξ and ϕi become too large, the EDE will not experience a
physically acceptable evolution. This motivates us to look for more phys-
ically intuitive parameters, instead of ϕi, V0 and ξ, to parameterize the
model. From previous literature, (as concluded in [9]), a good set of pa-
rameters is { fede, zc}, where fede is the maximal energy fraction of the scalar
field and zc is the critical redshift when the energy fraction reaches this
maximum, as explained before. One needs one parameter in place of ξ

To this end we notice that the Lagrangian for the EDE Eq (2.6) can be
written as:

L = X(1 + ξX)− V

where ξX, hereinafter refereed to as the kinetic correction, measures
the degree to which the non-canonical kinetic term deviates from the canon-
ical kinetic term X. ξX is a function of time ξX = ξX(z) that has a maxi-
mum value (ξX)max at some redshift zm around zc (see Figure (2.4), again
we use parameters {ϕi, V0, ξVi} = {0.5, 1012, 1}). (ξX)max, or simply Xmax
since ξ is a number in our model, is a perfect choice for the fourth param-
eter. However, (ξX)max is not a combination of V0, ξ and ϕi itself, so we
find a quantity, ξVi, that has a close relation with (ξX)max. Eq (2.17) is an
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oscillation equation and when there is no damping, one has Vmax = Xmax,
where Vmax is the maximal potential energy. In case of the EDE, because
of damping, the first oscillation has most energy, thus both Vmax and Xmax
appears in the first oscillation. For the first oscillation, Vi determines Vmax,
thus also determines Xmax. We expect this to be a linear relation, and veri-
fies this guess in the following.

For a given (ξX)max and ϕi, we can find a ξ for each V0 such that the
field with initial condition ϕi, V0, ξ has that (ξX)max. Figure 2.5 shows ξ
versus V0 for four different ϕi. We observe that ξVi is roughly the same
for all ϕi, i.e., ξVi does not depend on ϕi, so the next is fixing ϕi and cal-
culate ξVi for different (ξX)max. We find that there is a linear relationship
between them (as shown in Figure 2.6), which supports our conjecture.

Most of EDE models, as concluded in [9], has a zc ∈ [103, 104] and a fede
around 0.1. We adopt [9]’s range of zc and allow fede to take values up to
0.5. As shown in Figure (2.7), within our interested range, for each ξVi, we
can always find some {ϕi, V0} that correspond to a certain { fede, zc}. It is
achieved via the so-called shooting procedure introduced in Sec. 3.1.

ϕi largely controls the value of fede, while V0 largely controls the value
of zc. Note that as ξVi increases, fede grows faster with ϕi, while the growth
of zc become slower when increasing V0.

22
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Figure 2.2: Evolution of ωe f f , ωede and different components’ energy density
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Figure 2.3: Evolution of ϕ and fede for three sets of initial conditions. These rep-
resents unhealthy behaviours of the scalar field
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Figure 2.7: Contours, first and second column: contours for ϕi, V0 and zc, fede,
respectively. Three rows: fixing ξVi = 0.1, 1, 10, f romtomtobottom.
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Chapter 3
Numeric Analysis

3.1 Analysis Methods

We run MCMC chains using the public code COBAYA [40][41]. We per-
form the analysis with a Metropolis-Hasting algorithm. When analysing
ξX2 EDE model, we assume flat priors on:

{Ωbh2, Ωch2, H0, ns, log(1010As), τreio, fede, log(1 + zc), lg(ξVi)}

. As for standard ΛCDM model, we assume flat priors on:

{Ωbh2, Ωch2, H0, ns, log(1010As), τreio}

where h = H0/(100km/s/Mpc) is today’s value of the dimensionless
Hubble parameter, nsis the primordial scalar spectral index, As is the ini-
tial super-horizon amplitude of curvature perturbations and τreio is the
reionization optical depth. For each model, we run two MCMC chains
with and without SH0ES prior on H0 [10]. Details of each parameter’s
prior can be found at Table (3.1).

We use a modified version of EFTCAMB [42][43][44][45] to solve back-
ground equations and implement a shooting method to calculate model
parameters ({ϕi, V0} using physical quantities { fede, zc}). This is achieved
as follows:

Given { fede,i, zc,i}, we want to find the corresponding {ϕi, V0}. How-
ever, camb can only do the inverse process, performing a map M: M({ϕi, V0})
= { fede, zc}. The standard method is then to use the scipy.optimize.root
function in python to find the root for the equation:
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fede,x/ fede,i − 1 = 0
zc,x/zc,i − 1 = 0

(3.1)

where M({ϕi,x, V0,x}) = { fede,x, zc,x} and {ϕi,x, V0,x} is the initial con-
dition we want to derive. In order to speed up the root function, a proper
initial guess of {ϕi,x, V0,x} is needed. We used the following guess:

V0 ∼
ρ f id

16 fede

ϕi ∼ 2
√

fede

(3.2)

where ρ f id is the fiducial energy density of the universe assuming neg-
ligible CC and EDE energy. It we assume that EDE’s kinetic energy is small
compared to its potential until zc, we can get the following approximate
relations:

V(ϕi) = 3H2
c fede

Vϕϕ = 9H2
c

(3.3)

where 3H2
c = 3H(zc)2 = ρ f id(zc). The second line in Eq (3.3) implies

that the scalar field’s initial mass (also its mass at zc under our assumption)
is proportional to the Hubble mass at zc. Solving the above equations we
can have Eq (3.2).

We adopt Planck’s assumption [11] on neutrino and model them as two
massless species and a single massive species with mass mν = 0.06eV.

The following consists of our datasets:

• Planck NPIPE (PR4) CamSpec high-ℓ TTTEEE [46]

• Planck 2018 low-ℓ TT and EE [11]

• Planck 2018 lensing [11]

• SH0ES’ measurement of H0 [10]: H0 = 73.04 ± 1.04kms−1Mpc−1

• The Pantheon dataset [47], which measures the luminosity distance
of 1048 Type-Ia supernovae ranging from redshift 0.01 < z < 2.3

• BAO datasets: the BAO 6dFGS at redshift z = 0.106 [48], BAO SDSS
DR7 at redshift z = 0.15 [49], and BAO SDSS DR16 [50].

28
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Parameter Prior
Ωbh2 0.01 < Ωbh2 < 0.03
Ωch2 0.1 < Ωch2 < 0.15

H0 (km/s/Mpc) 60 < H0 < 80
ns 0.8 < ns < 1.2

log(1010As) 1.61 < log(1010As) < 3.91
τreio 0.01 < τreio < 0.8
fede 0 < fede < 0.3

log(1 + zc) 7 < log(1 + zc) < 10
lg(ξVi) −2 < lg(ξVi) < 5

Table 3.1: Priors for model parameters used in MCMC

We choose the above datasets under these considerations: for an EDE
model, Planck’s measurement of CMB is necessary since it constraints the
physics around last-scattering, which is exactly the time when EDE man-
ifests itself, lowering the sound horizon and lifting the Hubble constant;
BAO is closely related to CMB and measures the physics of another time
period; luminosity distance of supernovae places a tight constraint on the
late-time revolution of the universe, while SH0ES’ measurement of H0 is
the most contributing part of the tension.

Convergence of an MCMC run is assessed using the Gelman-Rubin
criterion R-1 < 0.05.

We report the reconstructed mean(best fit) value of the cosmological
parameters, as well as their 1σ confidence interval in Table 3.2 (with SH0ES)
and Table 3.3 (without SH0ES), while the best-fit χ2 for each experiment
and each dataset are given in Table 3.4 (with SH0ES) and Table 3.5(with-
out SH0ES). In Figure (3.1) and (3.2), we plot the reconstructed posterior
distributions for both models.
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Parameter ΛCDM with SH0ES EDE with SH0ES
H0 68.27(68.49)+0.45

−0.47 71.09(71.42)+0.84
−0.72

100Ωbh2 2.239(2.246)+0.012
−0.015 2.245(2.237)+0.021

−0.020
Ωch2 0.1175(0.1172)+0.0009

−0.0010 0.1285(0.1289)+0.0037
−0.0031

ns 0.9690(0.9702)+0.0043
−0.0041 0.9815(0.9851)+0.0060

−0.0047
log(1010As) 3.051(3.054)+0.014

−0.015 3.063(3.064)± 0.014
τreio 0.061(0.063)+0.007

−0.008 0.058(0.059)+0.006
−0.007

fede - 0.086(0.091)+0.022
−0.019

log(1 + zc) - 8.195(8.254)+0.162
−0.207

lg(ξVi) - −0.169(0.183)+0.563
−0.314

Table 3.2: The mean(best fit) value and ±1σ error for cosmological parameters
reconstructed from the MCMC analysis with SH0ES.

Parameter ΛCDM w/o SH0ES EDE w/o SH0ES
H0 67.51(67.37)+0.50

−0.38 68.60(68.01)+0.64
−0.91

100Ωbh2 2.225(2.221)+0.012
−0.013 2.223(2.205)+0.015

−0.017
Ωch2 0.1192(0.1194)+0.0008

−0.0012 0.1219(0.1195)+0.0013
−0.0030

ns 0.9651(0.9641)+0.0038
−0.0037 0.9697(0.9702)+0.0047

−0.0057
log(1010As) 3.044(3.040)+0.012

−0.015 3.048(3.046)+0.014
−0.015

τreio 0.056(0.054)+0.006
−0.008 0.057(0.055)+0.006

−0.007
fede - 0.029(0.007)+0.007

−0.029
log(1 + zc) - 8.694(9.948)+0.775

−0.835
lg(ξVi) - −0.321(1.213)+1.038

−0.799
Table 3.3: The mean(best fit) value and ±1σ error for cosmological parameters
reconstructed from the MCMC analysis without SH0ES.

30
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Datasets ΛCDM with SH0ES EDE with SH0ES
Planck high-ℓ TTTEEE 10550.40 10549.90

Planck low-ℓ TT,EE 420.86 417.75
Planck lensing 9.40 9.73

BAO 23.55 22.51
Pantheon 1034.77 1034.74

SH0ES 19.15 2.43
Total χ2

min 12058.20 12037.00
∆χ2

min 0 -21.20
Table 3.4: The best fit χ2 per dataset for ΛCDM and EDE with SH0ES. For com-
parison, a Λ CDM fit to Planck only yields χ2

high−ℓ = 10545.4, χ2
low−ℓ = 419.14 and

χ2
lensing = 9.04

Datasets ΛCDM w/o SH0ES EDE w/o SH0ES
Planck high-ℓ TTTEEE 10543.90 10542.10

Planck low-ℓ TT,EE 419.24 418.15
Planck lensing 8.93 9.25

BAO 24.78 23.03
Pantheon 1035.16 1035.06
Total χ2

min 12032.00 12027.60
∆χ2

min 0 -4.4
Table 3.5: The best fit χ2 per dataset for ΛCDM and EDE, without SH0ES

Version of August 1, 2024– Created September 4, 2024 - 14:38

31



32 Numeric Analysis

0.022 0.023

bh2

1

0

1

2

lg
(

V i
)

8

9

lo
g(

1+
z c

)

0.02

0.06

0.10

0.14

f e
de

0.04

0.06

0.08

re
io

3.02

3.06

3.10

lo
g(

10
10

A s
)

0.96
0.97
0.98
0.99

n s

68

70

72

H
0

0.120
0.125
0.130
0.135

ch
2

0.12 0.13

ch2
68 70 72

H0

0.96 0.97 0.98 0.99
ns

3.02 3.06 3.10
log(1010As)

0.04 0.06 0.08
reio

0.02 0.06 0.10 0.14
fede

8 9
log(1 + zc)

1 0 1 2
lg( Vi)

EDE
LCDM

Figure 3.1: Marginalized 1D and 2D posterior distributions of cosmological pa-
rameters, with SH0ES. Red: EDE, Blue: ΛCDM
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3.2 Implications of the reconstructed parameters

Table 3.3 shows the reconstructed parameters obtained in MCMC analy-
sis without including SH0ES measurement of H0. Before discussing the
six ΛCDM parameters, let us begin with the three EDE parameters fede,
log(1 + zc) and ξVi.

At the first sight these parameters appears abnormal: the EDE’s max-
imal energy budget, fede has a relatively small mean value (0.029) and a
negligible best-fit value (0.007), along with a highly-asymmetrical ±1σ in-
terval, which essentially means the existence of EDE is strictly constrained
by the datasets. log(1+ zc) and ξVi’s best-fit value is extremely large, lying
around their 2σ limit. We can also observe from Fig(3.2) that the contours
for the above parameters is high non-Gaussian.

[9] argues that this is caused by the so-called ’prior volume effects’.
Due to the nature of EDE model, only fede is correlated with H0 (recall that
fede serves to reduce the sound horizon at recombination, thus leading to
a higher H0), while log(1+ zc) and ξVi is not defined when fede → 0. If the
datasets do not favour a non-zero fede (that is, when SH0ES prior is absent),
the remaining two parameters will have no effect on the data, leading to
increased ΛCDM - like volume and a strong upper limits on EDE.

Because of the prior volume effects, analysis without SH0ES is unlikely
to provide us with insights into the EDE model. In the rest of this subsec-
tion, we will discuss the results we obtained via MCMC analysis with the
SH0ES prior.

As shown in Table 1, the ξX2 model shares the general characteristics of
the EDE models, namely that its maximal fractional energy contribution to
the total energy is ∼ 10% (about 9% in our case) at a critical redshift before
recombination. The left model parameter, ξVi, has a best-fit value about
1.52.

The ξX2 EDE predicts a 100ωb = 2.239(2.246)+0.012
−0.015, which is consistent

with ΛCDM value with only 0.25 σ difference. It is a unique feature of ξX2

EDE which worth some discussion.
In the previous papers about EDE, the authors usually report that EDE

gives a higher ωb, (denoted as ωb,ede) compared with ΛCDM’s value ωb,ΛCDM.
For example, in [33] ωb,ede is about 1 σ higher than ωb,ΛCDM (n=2 case), in
[28] the difference is ∼ 1.5σ (with SH0ES). Other two papers, [51] and
[31] also report differences of about 1.3 and 1.4 σ, respectively. In fact, this
common increase in ωb and the cause is first reported in [52], which argues
that the fractional change in ωb with respect to ΛCDM is proportional to
the fractional change in DA:

34
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δωb
ωb

∼ −(1 − α)
δDA

DA

where DA is the angular diameter distance to the last-scattering surface
and 0 < α < 1 is a parameter representing the inaccuracy of high-ℓ CMB
data.

The consistency between ωb,ede and ωb,ΛCDM in ξX2 EDE model means
that there exists a degeneracy between ωb and ξVi. As we can observe in
Fig (3.3), as ξVi increases, ωb is forced to have lower value, i.e., we trades
a non-zero ξVi for an unchanged ωb. This reveals one of the interesting
effects of adding a ξX2 term to the canonical kinetic term X.

In our EDE model, ωc increased dramatically by ∼ 3.1 σ. [52] predicts
the change in ωc to be:

δωc

ωc
∼ 2

δH0

H0
(3.4)

eq (3.4) yields δωc ∼ 0.0073, which is a good approximation for our
result.

Due to a larger ωc and an unchanged ωb, ξX2 EDE model gives an
increased ωm, this is indeed the consequence of varying H0 while keeping
today’s CMB temperature fixed. [53] argues that, based on CMB and BAO
constraints, ωm and h0 obeys the following relation:

ω−1
m h2

0 ≃ const.

thus a higher H0 (consequently h0) leads to a higher ωm.
The primordial spectral index ns is ∼ 1.7 σ larger in EDE, while the

initial super-horizon amplitude of curvature perturbations As in EDE is
consistent with that in ΛCDM with ∼ 0.6 σ. In our MCMC run, ΛCDM
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gives a ns ∼ 7 σ away from 1, while [11] gives ∼ 9 σ. EDE lowers this
value to ∼ 3 σ, which shows EDE’s potential to challenge the well-known
paradigm of slow-roll inflation [52]. The change in As have influence on
the physics of CMB lensing, but we will leave it for further exploration.
Finally, we observe that the reionization optical depth τreio is almost the
same in EDE and ΛCDM with a minor 0.3 σ’s discrepancy.

The most significant change occurs in today’s Hubble parameter H0,
which strongly favour the ξX2 EDE model over ΛCDM. To make a com-
parison, ΛCDM’ H0 (68.27) is in tension with SH0ES’ measurement with
4.2 σ’s difference, while the EDE prediction is compatible with SH0ES’
measurement with ∼ 1.5σ difference. This illustrates ξX2 EDE model’s
ability to address the Hubble tension. We note that, on the one hand, the
ξX2 EDE model behaves better than most of the models (not only EDE
models) reviewed in [54] (Also note that the authors of [54] concludes that
EDE is a favoured kind of models). On the other hand, among a collection
of eight kind of EDE models[9], only two models, NEDE and axion-like
EDE, does better, reducing Hubble tension to ∼ 1.2σ and ∼ 1.1σ, respec-
tively. However, we must say this is not a rigours statement since different
models use different datasets and analysis methods (for example, they use
different prior on H0, depending on which SH0ES release they choose).
Despite this concern, the above reasoning still shows that EDE is one of
the most likely solution to the Hubble tension, and among various kind of
EDE models our ξX2 EDE model deserves scientific interests.

3.3 χ2 Analysis

Following what we did in the previous section, we begin by discussing
the best-fit χ2 for experiments without SH0ES prior (Table 3.5). The best-
fit χ2 is reduced by -4.4 compared with ΛCDM. Improvements come from
the fit to Planck high-ℓ (-1.80), Planck low-ℓ (-1.09) and BAO (-1.75), while
the fit to Planck lensing is worsened (by +0.32). EDE behaves as good as
ΛCDM when fitting the Pantheon Super Novae Ia dataset.

It might seem like that EDE is not strongly favoured since χ2 is only
reduced by 4.4. However, this is again due to the prior volume effects.
Though we cannot find from Table 3.5 evidence for EDE, we can use an-
other metric QDMAP measuring the level of tension, suggested in [54][55],
to support the EDE:

QDMAP =
√

χ2(with SH0ES)− χ2(w/o SH0ES) (3.5)

36
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(in units of Gaussian σ). Such metric can better capture the effects of
non-Gaussianity in the posterior distribution, which is the case of Fig (3.2).
Combining with information in Table 3.4, we have:

QΛCDM ∼ 5.1σ, QEDE ∼ 3.1σ

which tells us EDE helps resolve the Hubble tension.
Next we move forward to the experiments done with SH0ES prior,

whose results are given in Table 3.4. We find in Table 3.4 that the best-
fit χ2 is reduced by -21.2 compared with ΛCDM (greatly larger compared
with Table 3.5). The major improvement comes from SH0ES value of H0,
contributing ∼ −16.7 to χ2

min. We note that the addition of the EDE does
not spoil the fit to Planck dataset, in contrast, the best-fit χ2 is improved
by -3.3. For comparison, we also give in Table 3.4 the results for a fit to
Planck only. The fit to BAO is also improved by ∼ 1 while we don’t find a
statistically significant difference between the two model’s fit with respect
to Pantheon dataset.

We observe from the above discussion that, no matter comparing the
best-fit ξ2 or using the metric Q, the datasets favour EDE over ΛCDM.
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Chapter 4
Conclusion and Outlook

There has been a increasing tension between Hubble constant measured
in local regions using luminosity distance - redshift relation and those
inferred from CMB and BAO under the assumption of ΛCDM, recently
reaching ∼ 5σ level. It is proved that this discrepancy is not liked to
be caused by simple explanations, e.g., measurement uncertainty (for re-
views, see[56],[57]) or a large void around the earth. In addition, SNIa data
place tight bound on the deviation to late-time expansion history, thus
strongly constraints the late-time modifications to ΛCDM [58][59][60]. Un-
der this situation, changing the physics in the early-time become a favoured
approach which can, e.g., decrease the sound horizon at recombination to
increase the inferred H0. Among these solutions, EDE does well in main-
taining good fit to CMB spectra as well as in reducing the tension to a low
level. Unlike many previous EDE models that assuming a canonical scalar
field, we consider introducing a first-order correction to the canonical ki-
netic term, namely ξX2, which is inspired by K-essence DE[7].

In Section II, starting from the least action principle and the proposed
Lagrangian of ξX2 EDE and in the context of FLRW metric, we derived
EDE’s background as well as linearly perturbed EoM. When combined
with Hubble equation, background energy density of EDE and continu-
ity equation for matter, radiation and CC, we obtain a group of closed
equations that governs the background dynamics. We then focused on
the evolution of the EDE scalar field. Generally speaking, in ξX2 EDE the
scalar field is frozen at its initial value at early times behaving as CC be-
fore it starts to roll, quickly drop and finally oscillates around its potential
minimum. From Figure (2.2b) we are able to read EDE’s dilution rate and
find it dilutes like radiation at late times. The entire history of EoS param-
eter for the whole universe we f f is depicted in Figure (2.2a) which exhibits
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three stages of radiation, matter and CC domination, successively.
Apart from the commonly used phenomenological parameters, the en-

ergy fraction of EDE fede and critical redshift zc, we introduce the third
physically meaningful parameter ξVi to replace the original ξ, as it has a
linear relation with the maximum value of kinetic correction ξX. Using
shooting method, we give plots for constant V0, ϕi as well as zc, fede in
Figure (2.7). Roughly speaking, V0, ϕi determines the value of fede and zc,
respectively.

In Section III, we presented our numerical results. We run MCMC
chains using a combination of the following datasets: Planck NPIPE (PR4)
CamSpec high-ℓ TTTEEE, Planck 2018 low-ℓ TT and EE, Planck 2018 lens-
ing, Pantheon, BAO datasets as well as a SH0ES prior on H0 (MCMC
without SH0ES are also performed for comparison). We use flat priors
on (some function of) the six ΛCDM parameter as well as the three phe-
nomenological parameters for ξX2 EDE model. Reconstructed mean (best-
fit) value and ±1σ interval as well as best-fit χ2 for each dataset are re-
ported in Table 2-5, while the posterior distribution is given in Fig (3.1)
and (3.2).

Table 3 and 5 are results for MCMC analysis without SH0ES. Judging
from them alone it seems that EDE not favoured by the data, since mean
and best-fit value for fede is small. However, it is caused by the prior vol-
ume effect. If we use a different metric called QDAMP which compares
the difference between best-fit χ2 analysed with and without SH0ES, we
are able to find that ξX2 EDE is favoured over ΛCDM. Table 2 and 4 are
for analysis with SH0ES prior which is more resourceful. First, values of
fede and zc hints at an EDE that has a non-negligible (∼ 10%) contribution
to the total energy before recombination. The ξVi is 2σ non-zero which
supports the existence of the non-canonical kinetic term. As expected, the
most significant improvement compared with ΛCDM happens in H0, re-
ducing the Hubble tension to only ∼ 1.5σ. As for ωc and ns, the value pre-
dicted by EDE is about 3.1 and 1.7 σ larger, respectively, while the value
for τreio and As is consistent with ΛCDM with σ < 1. It is surprising to
find ωb in EDE is compatible with ΛCDM with only ∼ 0.25 σ difference,
which is at odds with many previous models where a > 1σ discrepancy
is found. It points at an interesting effect of the non-canonical kinetics
term and shows that we can trade a non-zero ξVi for an unchanged ωb.
While reducing the Hubble tension, the ξX2 EDE does not spoil the fit to
dataset, improving it by -21.2. In addition, the fit to Planck datasets alone
is improved by -3.3, showing EDE’s advantage over ΛCDM.

Some details of ξX2 EDE need to be further investigated. In future
works, we hope to gain a better understanding of the effect of non-canonical

40
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kinetic term, for example, explaining the reason for an unchanged ωb after
introducing EDE. It is also appealing to investigate other possible form of
non-canonical correction, as now we are using the simple first-order con-
nection ξX2. Finally, we can Use more detailed statistical methods (e.g.,
profile likelihood, Bayes evidence) to quantify tension in ξX2 EDE model.
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