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Abstract

Majorana particles are unique quasiparticles that exhibit a non-abelian
exchange statistic, and by exploiting that property one could braid them.

In condensed matter systems Majorana quasiparticles occur as
zero-energy edge states of topological superconductors, for example in
the Kitaev chain. The common protocols proposed to braid these edge

states are carried out in real space. In this thesis we investigate the
possibility to braid Majorana quasiparticles within a one-dimensional
superconductor via their parameter space. We utilise the geometrical

phases that particles can obtain from adiabatic changes of the
Hamiltonian along closed curves in the parameter space. In the first part,

the mathematical background is established that is essential for
understanding geometrical phases. In the second part of the study,

several extensions of the Kitaev chain are proposed and examined for the
presence of loops that give rise to nontrivial geometrical phases. We

show how several topological phase transitions occur in those models.
Finally, we present a noncontractible loop in the parameter space of a

one-dimensional topological superconductor, albeit with a trivial
corresponding geometrical phase.
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Chapter 1
Introduction

Ever since Ettore Majorana hypothesised the existence of fermions that
are their own antiparticle in 1937 [47] people have been looking for such
particle. Although the existence of elementary Majorana particles seems
very unlikely nowadays, there is still possibility left. Those particles may
exist as quasiparticles in certain condensed matter systems. One model
that describes such a system, and that has been of much interest, is the
so-called Kitaev chain proposed by Alexei Kitaev in 2001 [33].

It appears, as we will see in Chapter 7, that those Majorana quasiparti-
cles occur as edge states in the Kitaev chain. Furthermore, they are stable
under continuous transformations of the Hamiltonian, i.e. they are topo-
logically protected.

One interesting property of Majorana particles is their so-called non-
abelian exchange statistic, the permutation of those particles do not neces-
sarily commute. This permutation of Majorana particles is called braiding
and will be further explained in Chapter 7. This property makes them
particularly intriguing for quantum computing applications, as informa-
tion can be stored in the braided particles. However, to be able to utilise
these properties we have to find a protocol to perform the braiding. One
of the possibilities is so-called braiding in the parameter space. In this
thesis we will explore the possibilities of this kind of braiding in different
extensions of the Kitaev chain.

First we will establish the relevant mathematical background. This
consists, among other things, of Lie groups, Lie algebras, and principal
bundles. These notions are used to define connections on principal bundles
in Chapter 3.

In Chapter 4 we will shift our focus to physical applications and in-
troduce the adiabatic theorem. Moreover, we will investigate how the geo-

Version of June 30, 2024– Created June 30, 2024 - 19:38

7



8 Introduction

metrical concepts from the previous chapters combined with the adiabatic
theorem give rise to so-called geometrical phases of quantum states when
moved along closed curves.

To be able to apply this theory to many-body systems we introduce the
formalism of second quantisation. This enables us to formulate models is
an elegant manner. Subsequently, we will study the symmetries of second
quantised Hamiltonians. This symmetries will turn out to be topologically
protected.

In Chapter 7 we will provide a definition of being topologically pro-
tected, and consider topological phases in matter. Afterwards the Kitaev
chain will be introduced, and braiding will be further explained.

To perform braiding in the parameter space we have to overcome two
problems. The problem of increasing the degeneracy will be discussed in
Chapter 8, and the problem of the existence of noncontractible loops in
parameter space in Chapter 9 and 10. Here several extension of the Ki-
taev chain will be proposed and the parameter spaces explored to find not
simply connected connected components of the parameter space where
Majorana particles exist in the chain and the gaps does not close. More-
over, we will make some remarks about the topological phase transitions
that occur.

This thesis is meant to present a topic from theoretical physics that
serves as a coat rack for several mathematical concepts. We will encounter
numerous topics from mathematics that relate to the physical problem of
the manipulation of quantum states in a one-dimensional superconductor.
The style of writing of this text is aimed to serve both the physicists and
mathematicians, but the main focus remains on the physical systems.

The assumed prior mathematical knowledge for this thesis is basic
group theory, topology, analysis, and an advanced undergraduate-level
understanding of differential geometry. Moreover, some familiarity with
representations and discrete Fourier transforms might be beneficial. Re-
garding the physics, it is assumed that the reader has an undergraduate-
level understanding of quantum mechanics and solid-state physics. Through-
out this thesis we will make use of the standard convenient h̄ = c = 1.

8
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Chapter 2
Lie groups and Lie algebras

Lie groups bridge the gap between smooth manifolds and groups. This
chapter is meant to familiarise the reader with some basic concepts of
those Lie groups and their Lie algebras, starting with the definitions of Lie
groups and Lie algebras. Subsequently, the action of Lie groups will be
discussed. Finally, a relation between differential forms and Lie algebras
is established by introducing Lie algebra valued forms. The presented
content is mainly based on [39], [15], and [64]. Because the aim of this
chapter is to obtain a basic understanding of the mathematical concepts
for later use in physical applications, rather than a thorough mathematical
comprehension, we will refer to the relevant books for the proofs.

2.1 Lie groups

Let us start with the definition that will play a central role in this section.

Definition 2.1.1. A Lie group is a group G that is also a smooth manifold
without boundary, such that the multiplication m : G × G → G and the
inversion i : G → G are smooth maps.

Notice that our knowledge about Lie groups is already quite extensive,
since the results and properties of both groups and smooth manifold apply
to Lie groups as well.

Example 2.1.1. The group of invertible n × n matrices over R or C with
standard multiplication, GL(n, R) respectively GL(n, C), is a Lie group.
We know that this is a smooth manifold. The multiplication of matrices is
smooth since the entries of the product of two matrices are polynomials in

Version of June 30, 2024– Created June 30, 2024 - 19:38
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10 Lie groups and Lie algebras

the entries of the original matrices. Because of Cramer’s rule the inversion
of a matrix is smooth as well.

The fact that invertible matrices form a Lie group is an interesting re-
sult that hints that they are, often as matrix groups, omnipresent in physics
since matrices are. We will shortly see many more applications of Lie
groups.

2.2 Lie algebras

Via the theory of differential manifolds, Lie groups give rise to another
algebraic object that is of great interest to us. We will first consider those
objects in such a way that one does not need any knowledge about differ-
ential geometry, and later we will see how they relate to Lie groups.

Definition 2.2.1. Let L be a vector space with a bilinear form [−,−] : L ×
L → L satisfying the following properties for all x, y, z ∈ L:

1) [x, y] = −[y, x] (skew-symmetry);

2) [[x, y], z] + [[z, x], y] + [[y, z], x] = 0 (Jacobi identity).

Then L is called a Lie algebra.

In the context of Lie algebras the corresponding bilinear form is called
the Lie bracket. For readers with a background in physics these brackets
might remind them of the commutator of matrices and that is no coinci-
dence.

Example 2.2.1. Let Mat(n, K) with K = R or K = C be the vector space of
all n × n matrices over K. Then Mat(n, K) together with the map [−,−] :
Mat(n, K)× Mat(n, K) → Mat(n, K) defined by [A, B] = AB − BA is a Lie
algebra as discussed in [39].

The structure of a Lie algebra can also be given in a coordinate depen-
dent manner. This might be convenient when a natural basis of the vector
space is available or when explicit calculation have to be done. Therefore
this alternative way of talking about Lie algebras is common in physics
literature.

Proposition 2.2.1. Let (h, [−,−]) be an n-dimensional Lie algebra and {ei}n
i=1

a basis for h. Then the Lie bracket is uniquely defined by the set of so-called
structure constants { f k

ij : i, j, k ∈ {1, ..., n}} where [ei, ej] =: f k
ijek. □

10
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2.2 Lie algebras 11

At first glance it is not clear from Def. 2.2.1 how Lie algebras and groups
are related. However, we will shortly see how tightly intertwined they are.
For this we first consider a Lie group G and an element g ∈ G, and we de-
fine the left-action of g, Lg : G → G, by Lg(h) := gh and similarly the
right-action Rg : G → G by Rg(h) = hg.

With this left-action we are able to introduce the following property
a vector fields can posses: a smooth vector field X ∈ X(G) is called left-
invariant if for all g ∈ G the push-forward of the corresponding left-actions
acts trivially on the vector fields, i.e. (Lg)∗X = X and thus for all h ∈ G
((Lg)∗X)(h) = X(gh). This left-invariance provides a way of constructing
a Lie algebra from a Lie group.

Proposition 2.2.2. Let G be a Lie group and XL(G) the set of all left-invariant
smooth vector fields over G. Define the Lie bracket [−,−] : XL(G)×XL(G) →
XL(G) by [X, Y] f = XY f − YX f . Then (XL(G), [−,−]) is a Lie algebra. □

The proof of this theorem, however differently formulated, can be found
in Chapter 7 of Sontz’ book [64].

Although this already enables us to construct a Lie algebra from a Lie
group, by a simple observation we can replace the set of left-invariant
smooth vector fields by a more intuitive space. The important observa-
tion is that any left-invariant smooth vector field is uniquely determined
by its value at the unity element of the under lying Lie group.

Corollary 2.2.1. Let G be a Lie group and e ∈ G the unit, then (TeG, [−,−]),
where for all a, b ∈ TeG and X, Y ∈ XL(G) such that a = X(e) and b = Y(e)
the Lie bracket is defined by [a, b] := [X, Y](e), is a Lie algebra. □

The Lie algebra as constructed in Corollary 2.2.1 corresponding to a Lie
group G is called the Lie algebra of G and is denoted by g. This Lie algebra
of G is the tangent space along the Lie group at the element of unity, and
therefore Lie groups and algebras are indeed closely related. This relation
can be made explicit in the following examples discussed in [39]. Firstly,
the invertible n × n-matrices and all the n × n-matrices are related in this
way.

Example 2.2.2. The Lie algebra of GL(n, K) is Mat(n, K), so gl(n, K) =
Mat(n, K).

Moreover, there exists an interesting relation between manifolds, dif-
feomorphisms and vector fields by considering Lie groups and algebras.

Example 2.2.3. Let M be a smooth manifold, then Diff(M) is a Lie group
and X(M) is the Lie algebra of Diff(M).

Version of June 30, 2024– Created June 30, 2024 - 19:38

11



12 Lie groups and Lie algebras

2.2.1 Actions of Lie groups

Equipped with the basic definitions we can dive deeper into the interplay
between Lie groups and general smooth manifolds in the form of an action
on the manifold. For the remainder of this chapter M will denote a smooth
manifold and G a Lie group.

Definition 2.2.2. Let Φ : G × M → M be a smooth map that is a left group
action of G on M. Now define a map X : g → X(M) by

Xξ(x) := dtΦ(gξ(t), x)|t=0.

Here gξ is the integral curve of Xξ , and Xξ is a vector field on M called the
infinitesimal generator of the action Φ corresponding to ξ.

At first sight this definition can be perceived as non-transparent. So to
obtain an intuitive idea of this map we make the remark that, as discussed
in Chapter 1 of [15], for real matrix groups GL(n, R) the infinitesimal gen-
erator of linear operations corresponding to a matrix A ∈ GL(n, R) is A
itself. This generator will be use to us in Chapter 3.

Before arriving there we need to elaborate a little bit on the action of Lie
groups, where we will make use of the relation between Lie algebras and
the tangent space at the unity element in the correspong Lie group.

Combining the left- and right-action of, we obtain a so-called inner au-
tomorphism, also know as conjugation, given by Ig := Lg ◦ R−1

g : G → G
for a g ∈ G. This gives rise to a linear operation Te Ig : TeG → TeG, and
by identifying the tangent space of a Lie group at the unity with its Lie
algebra this is linear operation on g.

Definition 2.2.3. The adjoint representation of G is the map Ad : G →
Aut(g) defined by Adg := Te Ig.

To create an intuitive feeling for what the adjoint representation of an
element g ∈ G, i.e. Adg, means, it might be fruitful to once again consider
the case of matrices.

Example 2.2.4. Let G = GL(n, K), and g ∈ G. This g is an invertible matrix
and the left- and right action are left respectively right multiplication with
g respectively g−1. Via the tangent map this conjugation action becomes
a conjugation action on the Lie algebra. Since the Lie algebra of GL(n, K)
is a matrix gorup, the adjoint representation is given by Adg(A) = gAg−1

for all A ∈ gl(n, K) = Mat(n, K).

12
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2.3 Lie algebra-valued differential forms 13

2.3 Lie algebra-valued differential forms

For our eventual use of Lie algebras we have to consider them in a context
of differential forms. Let Ωk(M) denote the space of k-forms on M where
k ∈ Z≥0.

Definition 2.3.1. Let (h, [−,−]) be a Lie algebra. Define the set of h-valued
(differential) forms by Ω(M, h). If α ∈ Ωk(M, h), then αx(v1, ..., vk) ∈ h for
all x ∈ M and v1, ..., vk ∈ T∗

x M.

When a basis {e1, ..., er} of h is given, we can explicitly write every
α ∈ Ω(M, h) as α = αi ⊗ ei where αi ∈ Ω(M), since Lie algebras are a
finite-dimensional vector space. Using this representation of the elements
we can extend the notion of Lie brackets to the context of Lie algebra-
valued differential forms.

Definition 2.3.2. Let (h, [−,−]) be a Lie algebra, and f k
ij the structure con-

stants of h corresponding to a basis {ei}r
i=1, then the (extended) Lie bracket is

a bilinear form (−,−) : (Ω(M, h))× (Ω(M, h) → Ω(M, h) where (α, β) :=
(αi ∧ βi)⊗ [ei, ej] = f k

ij(α
i ∧ βj)⊗ ek for all α ∈ Ωk(M, h), β ∈ Ωl(M, h) and

k, l ∈ Z≥0.

As the difference between the Lie brackets and extended Lie brackets is
often discarded, we will write [−,−] for an extended Lie brackets as well
and we will call it Lie brackets as well. For further use we will list the
following properties of the Lie brackets that are just defined.

Proposition 2.3.1. Let h be a Lie algebra, k, l, m ∈ Z≥0, α ∈ Ωk(M, h),
β ∈ Ωl(M, h), and c ∈ Ωm(M) then:

i) [α, β] = (−1)kl+1[β, α];

ii) (−1)km[[α, β], c] + (−1)ml[[c, α], β] + (−1)kl[[β, c], α] = 0;

iii) d[α, β] = [dα, β] + (−1)k[α, dβ]. □

The proof of this follows from the elementary properties of exterior
derivatives, wedge products and tensor products.

Now let us look into how the left- and right-action of Lie groups related
to Lie algebra valued forms.

Definition 2.3.3. A left-invariant differential form on a Lie group G is a dif-
ferential form, α ∈ Ω(G), that is invariant under the pull back of the left-
action of g, i.e. L∗

gα = α, for all g ∈ G. The set of all left-invariant differen-
tial forms on G is denoted by ΩL(G).

Version of June 30, 2024– Created June 30, 2024 - 19:38
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14 Lie groups and Lie algebras

Since both the exterior derivative as the wedge product commute with
the pull-back operation, chapter 14 of [39], we can conclude that ΩL(G) is
invariant under those operations.

Using the relation between Lie algebras corresponding to Lie groups
and tangent spaces to that Lie group at the unit element, we can relate
left-invariant differential forms on G to Lie algebras.

Remark. There exists a bijective map between left-invariant 1-forms, Ω1
L(G) and

the cotangent space T∗
e G:

Ω1
L(G) ∋ α 7→ α(e) ∈ T∗

e (G). (2.1)

Recall that for the Lie algebra g of G we have that g ∼= TeG. Moreover,
if {ei}i∈I is a basis of g, then by Prop. 2.2.1 and Def. 2.3.2 the relations
[ei, ej] = f k

ijek for i, j ∈ I completely determine the structure of g.

Proposition 2.3.2. Let {θ1, ..., θn} the basis of T∗
e G that is dual to the basis

{e1, ..., en} of TeG. Let θk
L ∈ Ω1

L(G) be the unique left-invariant 1-form such that
θk

L(e) = θk. Then the following holds

dθk
L(e) = −1

2
f k
ijθ

i
L ∧ θ

j
L (2.2)

which is called the Maurer-Cartan equation. □

The proof of Prop.2.3.2 is omitted here, but it immediately follows from
the Cartan formula [15].

Let us now consider the following specific example of a left-invariant
g-valued 1-forms on the Lie group G.

Definition 2.3.4. The Maurer-Cartan or canonical form on G is a left-invariant
g-valued 1-form ω0 : G → g defined by

[ω0(X)](g) := [(Lg−1)∗X](e) ∈ g (2.3)

for all g ∈ G and X ∈ X(G).

This Maurer-Cartan form just pushes forward a smooth vector field
from a point g to the point e. This form has some interesting properties and
it will be of great use in Chapter 3. Notice that if {e1, ..., en} and {θ1, ..., θn}
are bases as in Prop. 2.3.2, then we can write ω0 = θk

L ⊗ ek [15]. Such
a expression in basis elements will enable us to do calculations with the
Maurer-Cartan form. Furthermore, it introduces a way of working locally,
without everything being globally defined, on a manifold G, which will
be essential for making the connection between the physical applications
and the general theory that is developed here.

14
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2.3 Lie algebra-valued differential forms 15

Proposition 2.3.3. The Maurer-Cartan form satisfies

dω0 = −1
2
[ω0, ω0]. (2.4)

Proof. Given the bases {e1, ..., en} and {θ1, ..., θn} of G resp. g as before we
can make use of the observation ω0 = θk

L ⊗ ek. Then the Maurer-Cartan
equation form Prop. 2.3.2 yields

dω0 = d(θk
L ⊗ ek) = (dθk

L)⊗ ek =

(
−1

2
f k
ijθ

i
L ∧ θ

j
L

)
⊗ ek = −1

2
[ω0, ω0].

This result can be seen as a direct consequence of the Maurer-Cartan
equation and therefore it is often mentioned in the same breath. Althought
following result is a little technical, will be essential to the next chapter.

Proposition 2.3.4. Under the right action of G the Maurer-Cartan form ω trans-
forms as follows:

R∗
gω0 = Adg−1ω0 (2.5)

for all g ∈ G.

So the pull-back of the Maurer-Cartan form at g is the image of ω0
under adjoint representation at g−1 as defined in Def. 2.2.3. The proof of
this is omitted here, and can be found in chapter 10 of Sontz’ book [64].

To conclude this chapter we can apply the just developed general the-
ory to one of the most important Lie groups, the invertible matrices GL(n, K).

Example 2.3.1. Consider GL(n, K) with n ∈ Z≥0 and K = R, C. The as-
sociated Lie algebra to that group is gl(n, K) = Mat(n, K). The Maurer-
Cartan form on GL(n, K) boils down to ω0 = g−1dg with g ∈ GL(n, K)
[15]. Furthermore, we verify Prop. 2.3.3 and Prop. 2.3.4 for this Lie group.
Since dg−1 = −g−1d(g)g−1 we obtain

dω0 = d(g−1dg) = dg−1 ∧ dg = −g−1dg ∧ g−1dg

= −ω0 ∧ ω0 = −1
2
[ω0, ω0].

For Prop. 2.3.4 we have

R∗
hω0 = (gh)−1d(gh) = h−1g−1(dg)h = h−1ω0h = Adh−1ω0

for all h ∈ GL(n, K). This shows both Prop. 2.3.3 and Prop. 2.3.4 in the case
of matrix Lie groups.
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Chapter 3
Bundles and connections

In this chapter we will use the concepts from the study of Lie groups and
their algebras to define principal bundles and connections thereon, pri-
marily following [15] and [64]. These connections are an attempt to obtain
a notion of parallel transport on a manifold. Afterwards, will introduce
the holonomy group, which will be of major importance throughout the
rest of this text. Furthermore, over the course of the chapter the perspec-
tive is shifted from a purely mathematical viewpoint to one of theoretical
physics, and we will conclude with two physical applications. Because
our focus still lies on the physical applications of the developed theory,
we will refrain from including the proofs of all results.

3.1 Principal bundles

In this section we will enrich the structure of a manifold by attaching an-
other structure, a so-called fibre, to every point in that manifold and com-
bining those pointwise structures. To do that we make use of the action
of Lie groups and so both of the previous chapter and the preliminary
knowledge come together here.

Definition 3.1.1. Let E, M and F smooth manifolds. E is called the bundle
space, M the base space, and F the standard fibre. Let G be a Lie group which
acts faithfully on F, i.e. there is a Φ : G × F → F such that if Φ(g, f ) = f ,
then g = e. Let π : E → M, called the bundle projection be a smooth map
such that for each x ∈ M the so-called fibre Fx := π−1(x) is homeomorfic
to F. Furthermore we demand:

i) local triviality of the bundle: for every open covering {Uj} of M there

Version of June 30, 2024– Created June 30, 2024 - 19:38
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18 Bundles and connections

exist sets of smooth maps {φj} and {ϕj} with

φj : π−1(Uj) → Uj × F (3.1)

ϕj : π−1(Uj) → F (3.2)

such that φj is a diffeomorphism and φj(p) = (π(p), ϕj(p)) for all
p ∈ M, and the following diagram commutes

π−1(Uj) Uj × F

Uj.

φj

π Can.Proj. (3.3)

The set {(Uj, φj)} is called a family of local trivialisations;

ii) The restriction of ϕj to the fibre over x ∈ Uj, i.e. Fx = π−1(x), defines
a diffeomorphism

ϕj,x := ϕj|Fx : Fx → F. (3.4)

For all x ∈ Uj ∩ Uk this yields a diffeomorphism

ϕk,x ◦ ϕ−1
j,x : F → F (3.5)

that corresponds to an element of G, i.e. there exist a so-called tran-
sition function γkj : M → G such that Φ(γkj(x),−) = ϕk,x ◦ ϕ−1

j,x .

Then the quintuple (E, M, π, G, F) is called a fibre bundle.

It is interesting to notice that the whole structure of a fibre bundle is
encoded by its transition functions as follows from the next proposition.

Proposition 3.1.1. Transition functions satisfy the following conditions

i) γii(x) = e, x ∈ Ui;

ii) γij(x) = (γji(x))−1, x ∈ Ui ∩ Uj;

iii) γjk(x)γkl(x) = γjl(x), x ∈ Uj ∩ Uk ∩ Ul (cocycle condition).

Furthermore, a fibre bundle is up to isomorphism determined by the set of transi-
tion functions satisfying the conditions above. □

18
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3.1 Principal bundles 19

For a neat proof of this proposition on the role of transition functions
in determining fibre bundles one could consult chapter 5 of Husemöller’s
book [25].

Shortly, we will shrink our scope to a specific kind of fibre bundles, but
before doing so we will consider a straight forward example of a general
fibre bundle.

Definition 3.1.2. A fibre bundle (E, M, π, G, F) is called trivial if E ∼=Diff
M × F, i.e. there exists a diffeomorphism h : M × F → E such that
π(h(x, f )) = x for all x ∈ M and f ∈ F.

It is easily checked that a trivial fibre bundle indeed satisfies the condi-
tions of a fibre bundle. The study of trivial fibre bundles, however, is not
too interesting. Therefore we will consider another class of fibre bundles
which has an intriguing structure which turns out to be strongly related
with the action of Lie groups on manifolds.

Definition 3.1.3. A principal (G-)bundle is a fibre bundle (E, M, π, G, F)
where the standard fibre and the structure group coincide, i.e. G = F,
and G acts on itself by left-translation Lg.

Such a principle bundle is often referred to as a (principal) G-bundle
π : E → M over M, and with the quadruple (E, M, π, G). Equipped with
Def. 3.1.3, we want to know when such a principle bundle is trivial. This
can be decided in the following way.

Definition 3.1.4. A (smooth) local section of a fibre bundle (E, M, π, G, F)
is a (smooth) map h : U → E, where U ⊂ M is open, and such that
π ◦ h = id|U. A local section is called global if U = M.

With this definition we can formulate condition for a principle bundle
to be trivial.

Proposition 3.1.2. A principle G-bundle is trivial if and only if it admits a global
section.

For a proof of this proposition we refer to chapter 9 of [64]. Although
finding a global section can be, and often is, extremely hard and cumber-
some this result still reduces the question to finding a right inverse of the
bundle projection.

Before stating the most important result of this section, it might be need
to consider an example of a principle bundle that is not necessarily trivial.
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20 Bundles and connections

Example 3.1.1. Let G be a Lie group and H ⊂ G a closed subgroup. Then
(G, G/H, π, H) with canonical projection π : G → G/H defines a princi-
ple H-bundle. □

Other interesting examples are so-called Hopf-bundles over projective
spaces as first studied by Hopf [24]; especially the monopole and instaton
bundle are of great importance in physics as discussed in [15]. It goes
beyond the scope of this thesis to go further into these bundles.

An interesting and important property of principle G-bundles is that
there exists a natural smooth and free right action on the bundle space
such that the orbits of that action coincide with the fibres as discussed in
chapter 6 of [53]. Moreover, there is an even stronger result is proven in
[53], that brings back Lie groups in the discussion of fibre bundles.

Theorem 3.1.1. Every principle G-bundle is obtained from the right action of a
Lie group G on a manifold E. □

This fact will be thoroughly used in the next section, where we will ex-
plore the structure of G-bundles even further to define a notion of parallel
transportation on manifolds.

3.2 Ehresmann connections

The concept that we want to make rigorous in this section is the idea of
parallel transportation. In a plane it is unambiguous what is meant by
moving parallel to a line, but already on a familiar manifold as a sphere
this is no longer clear what moving parallel to a curve means. We will
do this for principal bundles, but the concepts can be generalised to fibre
bundels. For the remainder of the chapter, let (P, M, π, G) denote a prin-
cipal G-bundle, such a bundle is endowed with a canonical right action,
R̃ : P × G → P, according to Thm. 3.1.1.

Let us first specify the conditions that we want for parallel transport.
Consider a (piecewise) smoot curve γ : [0, 1] → M. Then a connection
provides a rule for parallel transporting the fibre F along the curve γ. This
rule defines a smooth map Tγ : Fγ(0) → Fγ(1) satisfying the following
conditions:

i) Tγ depends smoothly on γ;

ii) Tγ1∗γ2 = Tγ1 ◦ Tγ2 , where γ1, γ2 are two curves as defined above and
∗ is the concatenation operation;

20
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3.2 Ehresmann connections 21

iii) Tγ−1 = (Tγ)−1, where γ−1(t) = γ(1 − t).

This map Tγ is called the operator of parallel transport determined by the
connection, but how to find such a map - or if it even exists - is not yet
clear.

So we have an idea of what a connection should encode for. With this
idea we will now work towards the formulation of a connection, but we
need some other definitions before we are able to do so.

Definition 3.2.1. Let v ∈ TpP and p ∈ M. We call v a vertical vector if
v ∈ Tpπ−1(p), i.e. v is vertical at p if it is tangent to the fibre passing
through p. The space of all vertical vectors at p is called the vertical subspace
of TpP, i.e. Vp := {v ∈ TpP : v ∈ Tpπ−1(p)}.

We can also write Vp = {v ∈ TpE : (Tpπ)(v) = 0} where Tpπ is the
tangent map, or derivative, at p corresponding to π. We can also define
the space of vertical vector fields on E: Xver = {X ∈ Γ(TE) : X(p) ∈
Vp}. Provided with a vertical subspaces it is a natural next step to define
a horizontal counterpart.

Definition 3.2.2. Let Vp a vertical subspace of TpP, the a horizontal subspace
of TpP denoted by Hp is a complementary subspace to Vp. An element of
Hp is called a horizontal vector.

Notice that for all v ∈ TpP we can write v = hor(v) + ver(v) where
hor : TpP → Hp and ver : TpP → Vp a projection on the subspace Hp
respectively Vp. Now we are equipped with all of the vocabulary to define
a connection.

Definition 3.2.3. An Ehresmann connection on the principal G-bundle
(P, M, π, G), is a smooth map

E ∋ p 7→ Hp ⊂ TpP (3.6)

where Hp is a horizontal subspace at p that satisfies the following condi-
tions:

i) the derivative map Tpπ : Hp → Tπ(p)M is an isomorphism for all
p ∈ P;

ii) the assignment of horizontal subspace is compatible with the right
action of G, i.e. (TpR̃g)(Hp) = Hp·g for all p ∈ P and g ∈ G.

Let us investigate how this definition corresponds to parallel transport.
We need the following definition to connect those two concepts.

Version of June 30, 2024– Created June 30, 2024 - 19:38

21



22 Bundles and connections

Definition 3.2.4. Let ζ : [0, 1] → E be a smooth curve. ζ is called horizontal
if dtζ(t) is horizontal for all t ∈ [0, 1]. Furthermore, Let γ : [0, 1] → M be a
smooth curve, a smooth curve γ̃ : [0, 1] → E is called a lift of γ if π ◦ γ̃ = γ.
If γ̃ is a horizontal curve, then it is called a horizontal lift.

An Ehresmann connection on a manifold defines what the horizontal
subspaces are, and therefore what horizontal curves are. Now let γ(t) be
a curve in M with γ(0) = x0 and γ(1) = x1. Let p0 ∈ Fx0 and assume
that there exist a unique horizontal lift γ̃ of γ such that γ̃(0) = p0. Then
we can define the operator of parallel transport as the map that sends the
point p0 to the end point of the horizontal lift of γ, i.e. Tγ(p0) := γ̃(1) ∈
Fx1 . This map being well-defined heavily depends on the uniqueness and
existence of horizontal lifts. However, the question remains how to find
those lifts. In chapter 10 of [64] a differential equation is obtained which
solution is the lift we are looking for. This smooth differential equation
in combination with the uniqueness and existence theorem for solution of
systems of smooth ordinary differential equations with given initial values
yields both the existence and the uniqueness of these lifts. Everything
that remains is to check if this map indeed satisfies the conditions of an
operator of parallel transportation. The last two are easily checked with
the definition of lifts, and the third one follows from the construction of
the lift given in [64]

Now we have seen the definition of an Ehresmann connection, this is a
description of a connection in terms of vectors in TP. However, it we can
define connection in terms of differential forms. That definition turns out
to be equivalent to the Ehresmann connection [64].

Before we are able to define this form, we have to notice that for all
p ∈ M the fibre passing through p is isomorphic to G, i.e. Fπ(p)

∼= G,
and so the tangent space to the fibre at p, i.e. the vertical subspace at
p, is tangent to the structure group. Therefore the vertical subspace is
isomorphic to the Lie algebra of the structure group, i.e. Vp ∼= g.

Let us study that isomorphism in more depth. Let ξ ∈ g and Xξ the
corresponding infinitesimal generator of the right action of G on P corre-
sponding to ξ as defined in Def. 2.2.2. The fibres being the orbits of the
right action leads to the infinitesimal generator being tangent to the fibre.
Therefore Xξ(p) ∈ Vp for all p ∈ P, and the map φp : g → Vp defined
by φp(ξ) = Xξ(p) defines an isomorphism. This map effectively is the in-
finitesimal generator of the right action for a fixed point p ∈ P, for a fixed
ξ ∈ g the infinitesimal generator gives rise to a so-called fundamental vector
field p 7→ Xξ(p).

This isomorphism is of interest to us, since now for all v ∈ Vp there

22
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3.2 Ehresmann connections 23

exists a unique element v ∈ g such that Xv(p) = v. This enables us to
define the following map that is an equivalent of Def. 3.2.3 for connection
on a principal bundle.

Definition 3.2.5. Let (P, M, π, G) be a principal bundle and let A : P ×
X(P) → g be a g-valued 1-form on P defined by Ap(u) := ver(u(p)). The
1-form A is called a connection (1-)form on the principal bundle.

So the connection form on a principal bundle sends a vector field at a
point p in the base space to the unique element of g such that the infinitesi-
mal generator at p evaluated at that element yields the vertical component
of the vector field at p.

This g-valued 1-form on P can be restricted to a fibre, and since the
fibres are diffeomorphic to the structure group G the restricted connection
form A can be considered as a g-valued 1-form on G. This map satisfies
A|G(g) = g for all g ∈ G. Using Def. 2.2.2 and Def. 2.3.4 one finds that
A|G is indeed the Maurer-Cartan form on G. Then Prop. 2.3.4 immediately
yields the following result.

Theorem 3.2.1. Let A be a connection form on a principal bundle. The canonical
right action of G on P induces the transformation rule

R̃∗
gA = Adg−1A (3.7)

for all g ∈ G. □

This transformation rule provides us how the connection form changes
under the pull-back of the right action. In specific cases of G being a matrix
Lie group this enables us to write down an explicit transformation law for
the connection form.

Example 3.2.1. Let G be a matrix Lie group and A a connection form on a
principal bundle, then R̃∗

gA = g−1Ag for all g ∈ G. □

To be able to apply a version of Stokes’ theorem in the end of this sec-
tion we need to define a map that behaves similar as an exterior derivative.
Before doing so we need the definition of yet another kind of derivation.

Definition 3.2.6. Let V a vector space and let D : Ωk(E, V) → Ωk+1(E, V)
be a map from V-valued k-forms to V-valued (k + 1)-forms defined by

Dα(u1, ..., uk+1) := dα(hor(u1), ..., hor(uk+1)) (3.8)

for all α ∈ Ωk(E) and all u1, ..., uk+1 ∈ X(E). The map D is called the
covariant exterior derivative.
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24 Bundles and connections

This means that the covariant exterior derivative evaluated at
(u1, ..., uk+1) ∈ X(E)k+1 consists of evaluating the exterior derivative at the
horizontal projection of each term of that vector. Since we can write down
the exterior derivative using the Cartan formula as described in [15], the
exterior covariant derivative can be written as

Dα(u1, ..., uk+1) =
k+1

∑
i=1

(−1)iver[horui, α(horu1, ..., ĥorui, ..., horuk+1)]

+
k

∑
i=1

k+1

∑
j=i+1

(−1)i+jα([horui, horuj], horu1, ..., ĥorui, ..., ĥoruj, ..., horuk+1).

(3.9)

This covariant derivative enables us to define the following map.

Definition 3.2.7. Let A be a connection form on a principal bundle. Then
the g-valued 2-form F := DA is the curvature form on a principle bundle
corresponding to A.

Since the exterior covariant derivative is often impractical to work with,
an alternative expression for the curvature form in terms of the connec-
tion form would be more than welcome. Fortunately, the Cartan formula,
Eq. 3.2, yields the following result.

Proposition 3.2.1. Let A a connection form and F := DA the corresponding
curvature form. Then F satisfies the following Cartan structure equation

F = dA+
1
2
[A,A] (3.10)

with d the exterior derivative and [−,−] the extended Lie bracket, Def. 2.3.2.

For a proof of this theorem one should consult chapter 11 of [64]. The
exterior derivative and the Lie bracket are much more intuitive. Especially
for the example of matrices groups this yields the following rule immedi-
ately.

Example 3.2.2. Let G be a matrix group and A a connection form, then
A = dA+A∧A. Furthermore

R̃∗
gF = d(g−1Ag) + (g−1Ag) ∧ (g−1Ag) = g−1(dA+A∧A)g = Adg−1F .

(3.11)

24
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3.2 Ehresmann connections 25

Furthermore, let us state the following version of the Bianchi identity,
which is an covariant analogue of the Bianchi identity for exterior deriva-
tives.

Theorem 3.2.2 (Bianchi Identity). Let F be a curvature 2-form on E. The
curvature satisfies the following Bianchi identity

DF = 0. (3.12)

A proof for this theorem is provided by Sontz in chapter 11 of [64]. This
identity has important applications as we will see in Section 3.3.

For the remainder of this chapter, let π : P → M denote a principal G-
bundle endowed with a connection form A, and denote the corresponding
curvature by F .

3.2.1 Holonomies

Here we will revisit the interpretation of connection in terms of parallel
transport. Let γ : [0, 1] → M be a smooth curve, and define the operator
of parallel transport Tγ : π−1(γ(0)) → π−1(γ(1)) along γ by p 7→ γ̃(1).
Here γ̃ is the unique horizontal lift of γ with γ̃(0) = p. This parallel
transportation commutes with the right action of G on P, i.e. p′ = p · g
implies Tγ(p′) = Tγ(p) · g. For a proof of this statement one could consult
chapter 10 of Sontz’ book [64].

When we consider closed curves or loops, the lift also returns to the
same fibre. Because the right action on the fibres is transitive and free this
means there exist a unique element of G that sends the starting point of
the horizontal lift to its end point.

Definition 3.2.8. Let γ : [0, 1] → M be a closed curve, i.e. γ(0) = γ(1),
and consider the operator of parallel transport Tγ : Fγ(0) → Fγ(1) = Fγ(0).
Then there exists a unique Φ(γ̃) ∈ G such that

Tγ(γ̃(0)) =: γ̃(0) · Φ[γ̃]. (3.13)

The element Φ[γ̃] is called the holonomy of a loop γ with respect to the
connection A. The holonomy group of the connection with reference point
p0 ∈ P is defined by

Hol(p0) := {Φ[γ̃]|γ closed , γ(0) = γ(1) = π(p0), γ̃(0) = p0} (3.14)

The holonomy group of a connection with reference point p0 ∈ P is a
subgroup of the structure group G. This group consists of all the elements
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of G that by the canonical right action on a fibre send p0 to the end point
of a possible horizontal lift of a possible loop in M starting at π(p0).

By Def. 3.2.8 it seems like the holonomy group depends on the refer-
ence point in the fibre above γ(0). Since we will consider loops in the base
space and we want to study their holonomy groups, we want to find some
relation between holonomy groups with reference points in the same fibre.

Proposition 3.2.2. Let γ be a loop in M, p0, p′0 ∈ Fγ(0) two reference points.
Then there exists a g ∈ G such that Hol(p′0) = g−1Hol(p0)g.

Proof. Because the canonical right action of G on the fibre, Fπ(p0) = Fπ(p′0)
,

is transitive there exists a g ∈ G such that p′0 = p0 · g. Let Tγ be the
operator of parallel transportation along a curve γ with γ(0) = γ(1) =
π(p0). On the one hand, this yields

Tγ(p′0) = p′0Φ[γ̃′] = p0 · g · Φ[γ̃′],

and on the other hand the compatibility of the operator of parallel trans-
port and the canonical right action yields

Tγ(p′0) = Tγ(p0) · g = p0 · Φ[γ̃] · g.

Since the right action is free this means that Φ[γ̃′] = g−1 · Φ[γ̃] · g.

Prop. 3.2.2 says that the holonomy groups of two reference points in
the same fibre are conjugated subspaces of G and therefore isomorphic.
This means that all holonomy groups with reference points in the same
fibre are isomorphic. Hence we can omit writing the reference point and
just refer to a holonomy group corresponding to a point in the base space.

3.3 Local connections and gauge transformations

In this section we will pave the way towards physics. This mostly consist
of moving away from a global description of connections and towards a
description in terms of local trivialisations. This shift in formalism is mo-
tivated by the fact that the base space often has some physical value, and
therefore we would like to define local connections and curvatures there.

Let us now consider f : U → P with U ⊂ M a local section of the
principal bundle, and let α be a g-valued form on P, i.e. α ∈ Ω(P, g). This
form can be pulled back via f , f ∗α ∈ Ω(U, g). This same procedure can be
carried out for connection and curvature forms.

26
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3.3 Local connections and gauge transformations 27

Definition 3.3.1. Let {(Ui, φi)} be a family of trivialisations. For every x ∈
Ui define fi(x) := ϕi,x(e), ϕi,x as defined in Def. 3.1.1. Then A(i) := f ∗i A is
the connection form in the local trivialisation φi, and F(i) := f ∗i F the curvature
form in the local trivialisation φi.

This enables us to express the connection and curvature on the base
space, albeit only on in a local trivialisation. We want to know what hap-
pens when we change from local trivialisation. When it is known how
the local connection changes between different local trivialisations we can
go from one to the other, and through this consider the connection on the
complete base space.

Theorem 3.3.1. Let (Ui, φi) and (Uj, φj) be two local trivialisations. Consider
the transition function γji, and ω0 the canonical Maurer-Cartan form on G. Then
the local connections A(i) and A(j) are related as follows:

A(i)(x) = Adγ−1
ji (x)A(j)(x) + (γ∗

jiω0)(x), (3.15)

and the local curvatures F(i) and F(j) as follows:

F(i)(x) = Adγ−1
ji (x)F(j)(x) (3.16)

for all x ∈ Ui ∩ Uj.

These transformation laws, of which the proof can be found in chapter
10 of Nakahara’s book [54], do not look too friendly. This changes how-
ever when we consider the example of G a matrix Lie group, because the
adjoint representation with matrix Lie groups is a well-behaved map.

Example 3.3.1. Consider the situation of Thm. 3.3.1 with G a matrix Lie
group. Then Eq. 3.15 and Eq. 3.16 become

A(i)(x)(u) = γ−1
ji (x) · A(j)(x)(u) · γji(x) + γ−1

ji (x) · dγji(x)(u),

respectively

F(i)(x)(u, v) = γ−1
ji (x) · F(j)(x)(u, v) · γji(x)

for all x ∈ Ui ∩ Uj and all u, v ∈ Tx M.

From this example we see that, although the local connection obtains
an extra factor when transformed, the local curvature is transformed by
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just conjugating. The physicists would say that the local curvature trans-
forms in a tensorial way. This property hints on the curvature being a nice
object to work with.

Now we will make a transition from the vocabulary and formalism of
mathematics to that of physicists. First of all, a local section f : U → P
is called a local gauge. Just as with local section a local gauge gives rise to
a local connection and curvature form. A local connection form becomes
a (local) gauge potential, and a local curvature form becomes a (local) gauge
field. Also the use trivialisation moves to the background.

Definition 3.3.2. Let (Ui, φi) and (Uj, φj) be two local trivialisations, and
denote the transition function from (Ui, φi) to (Uj, φj) by γji : Ui ∩Uj → G.
This transition is called a (local) gauge transformation.

Let f , f ′ : U → P be two local gauges, then they differ by a gauge trans-
formation, i.e. there exists a g : U → G such that f ′(x) = g(x) · f (x) for
all x ∈ U, because the transition function between the two corresponding
local trivialisation always exists.

In the case of finite-dimensional manifolds and G = Diff(M), every
diffeomorphism can be represented as a matrix and therefore G is a matrix
group. From Ex. 3.3.1 it then follows that a local gauge transformation
induces the following transformation

A′ = g−1 · A · g + g−1 · dg (3.17)

of gauge potentials for A′ = f ′∗A, A = f ∗A, and f ′ = g · f , and

F′ = g−1 · F · g (3.18)

of the corresponding gauge fields. Two gauge potentials are said to be
gauge equivalent if there exist a gauge transformation g such that Eq. 3.17
holds.

Now we have “translated” local trivialisations of connections and cur-
vatures to gauges potentials and fields. We want to do the same for the
notion of holonomies, since it will turn out that those will play a big role
in the physical theory of geometrical phases.

Let γ be a closed curve in U, and let f : U → P be a local gauge. This
gives rise to a closed curve f ◦ γ with starting and end point p0 = f (γ(0)).
Now let γ̃ be the horizontal lift of γ, and let Φ[γ̃] be its holonomy. It turns
out [15] that

Φ[γ̃] = P exp
(∫

f (γ)
A
)
= P exp

(∫
γ

A
)
=: Φ f [γ] (3.19)

28
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3.3 Local connections and gauge transformations 29

where P denotes a path ordering operator, A = f ∗A the local gauge po-
tential in the gauge f , and Φ f [γ] is called the Wilson loop in the local gauge
f . For the Wilson loop changing from local gauge, i.e. f ′(x) = g(x) · f (x)
for all x ∈ U, induces the transformation law

Φ f ′ [γ] = g(γ(0))−1 · Φ f [γ] · g(γ) (3.20)

similarly to Prop. 3.2.2. This gives rise to a value that is the same for all
equivalent gauges, since the trace of the Wilson loop is invariant under
gauge transformation according to Eq. 3.20.

Equipped with some theory about gauge transformations, gauge po-
tentials, and gauge fields, is a perfect moment to introduce some examples
of physical theories that can be formulated in terms of gauge potentials
and gauge fields.

3.3.1 Electrodynamics

Electrodynamics, and especially Maxwell’s laws, is arguably the biggest
accomplishment of physics in the nineteenth century. Later it turned out
that the theory of electrodynamics was already a relativistic theory in it-
self, and that fact comes forward in the gauge potential formulation of
the theory. Although we will not dive deep into the whole description of
electrodynamics as a gauge theory, shortly we see two of Maxwell’s laws
occur from a purely mathematical reasoning.

Let the base space M be a four dimensional pseudo-Riemannian man-
ifold. This is our physical Minkowski space-time. Consider U ⊂ M an
open subset, and let Aµ : R → R a component function of the U(1)-
valued 1-form A := iAµdxµ. We can define a local gauge g : U → U(1) be
g(x) = eiλ(x) with λ : U → R smooth. So at every point in our space-time
we can smoothly assign a phase. Then we can write down the transforma-
tion law for our gauge potential:

A′ = g−1Ag + g−1dg = e−iλ(x)(iAµdxµ)eiλ(x) + e−iλ(x)eiλ(x)idλ

= iAµdxµ + idλ = i(Aµ + ∂µλ)dxµ = A + idλ.

This yields the know rule from undergraduate electrodynamics that you
may add the derivative of a continuous differentiable function to your
potential without changing the physics. That exactly corresponds to the
gauge transformations of assigning a different phase to a point in your
space-time.
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Let us now consider the curvature, using the Cartan structure equation
Eq. 3.10. We make use of the fact that U(1) is abelian, and therefore it
holds that [A, A] = 0, this yields

F = DA = dA +
1
2
[A, A] = dA = d(iAµdxµ)

= i∂ν Aµdxν ∧ dxµ =
i
2
(∂ν Aµ − ∂µ Aν)dxν ∧ dxµ =:

i
2

Fµνdxµ ∧ dxν,

which leaves us with the following relation between the component func-
tions of the gauge field and potential

Fµν = ∂µ Aν − ∂ν Aµ (3.21)

Furthermore, in this abelian case the gauge field is invariant under gauge
transformation. This is what you would expect from a physical point of
view, since the components of the gauge field consist of physical informa-
tion which should not be affected by a change in gauge.

Given the gauge field, or the local curvature, we can work a version of
the Bianchi identity:

0 = d2A = dF =
i
2
(Fµνdxµ ∧ dxν) =

i
2

∂λFµνdxλ ∧ dxµ ∧ dxν

=
i
6
(∂µFνλ + ∂νFλµ + ∂λFµν)dxµ ∧ dxν ∧ dxλ.

Therefore ∂µFνλ + ∂νFλµ + ∂λFµν = 0, and it turns out that this expression
that simply followed from a mathematical identity, corresponds with both
Faraday’s law of induction and Gauss’ law of magnetism. How this for-
malism works in more detail, how it is related to Lorentz transformation,
and how the other Maxwell’s laws are obtain from these gauge potentials,
goes beyond the scope of this example. A more elaborate consideration
of Maxwell’s laws in the formalism of connections on principal bundles is
found in chapter 12 of [64].

3.3.2 Yang-Mills

Yang-Mills theory is a widely studied physical theory investigated not
only because of its physical applicability, but also because of the geometri-
cal beauty. Here we will only slightly touch upon this topic from a geomet-
rical point of view and try to point out the similarities between Yang-Mills’
and Maxwell’s theory.

30
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3.3 Local connections and gauge transformations 31

Consider a structure group SU(N) with N > 1. Let {L1, ..., LN2−1} be
a basis of the Lie algebra su(N). For this vectors we define the structure
constants

[La, Lb] =: f c
abLc. (3.22)

Consider the following local connection

A = Aµdxµ

and local curvature
F =

1
2

Fµνdxµ ∧ dxν.

With our knowledge about su(N) we now that we can represent the gen-
erators L1, ..., LN2−1 by anti hermitian matrices. Then we can express the
gauge potential and gauge field as follows

Aµ = Aa
µLa, Fµν = Fa

µνLa. (3.23)

To compare the geometry underlying Yang-Mills theory with the geom-
etry of electrodynamics we will consider the relation between the gauge
potential and gauge field.

From the structure formula in Eq. 3.10, which easily generalises to local
curvature, the follow relation is obtained

1
2

Fµνdxµ ∧ dxν =
1
2
(∂µ Aν − ∂ν Aµ)dxµ ∧ dxν +

1
2
[A, A]. (3.24)

In component functions Eq. 3.24 reads

Fµν = ∂µ Aν − ∂ν Aµ + [Aµ, Aν]. (3.25)

Be careful that in this step we have used two different Lie-brackets de-
noted by the same symbols, one for differential forms, Def. 2.3.2 and one
for elements of a Lie algebra, Def. 2.2.1. Moreover, making use of Eq. 3.22
and Eq. 3.23 this yield the following relation for every generator

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ + f a

bc Ab
µ Ac

ν. (3.26)

By comparing the gauge field in classical electrodynamics, Eq. 3.21, and
Yang-Mills theory, Eq. 3.26, one could say that for every generator La a the
Lie algebra su(N) Aa

µ is a gauge potential analogue to the electromagnetic
gauge potential. The same could be say about the field, albeit with an
additional factor due to the group SU(N) not being commutative.
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32 Bundles and connections

Furthermore, if we define a covariant derivative Dµ := 1∂µ − Aµ, then
we obtain

DµFνλ + DνFλµ + DλFµν = 0, (3.27)

which is similar to the identity in electrodynamics that encapsulates both
Faraday’s and Gauss’ law. Therefore Yang-Mills theory can be interpreted
as a noncommutative version of Maxwell’s theory of electrodynamics.

32
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Chapter 4
Geometrical phases

This chapter delves into an important approximation in quantum mechan-
ics, the adiabatic approximation. This approximation is applicable when the
Hamiltonian is “slowly” perturbed. Firstly, the adiabatic theorem is in-
troduced as an asymptotic property of unitary operators. Subsequently,
the results of the adiabatic theorem is utilised to define connections, the
Berry-Simon and the Wilczek-Zee connection. Eventually, we will observe
that the adiabatic approximation can lead to a non-trivial transformation
of quantum states.

4.1 Adiabatic theorem

Let us consider a Hamiltonian H(t) that continuously changes over a time
T from an initial state H(t0) to a final state H(t1), with T := t1 − t0.
Rewrite the Hamiltonian as H(s) where s := (t − t0)/T. The main idea of
the adiabatic approximation is that in the infinitely slow limit, i.e. T → ∞,
a system that is initially in an eigenstate of H(0) will pass into an eigen-
state of H(1). This idea originated from Ehrenfest’s work on classical me-
chanics and the old quantum theory [17], and was later extended to quan-
tum mechanics by Born and Fock [13]. Shortly we will see what the exact
conditions are for the adiabatic approximation, and how it can be rigor-
ously formulated mainly following the work of Kato and the textbook of
Messiah [30], [51].

Theorem 4.1.1 (Adiabatic theorem). Let H(s) be a continuous Hamiltonian,
with s ∈ [0, T]. Assume that H(s) has a discrete spectrum with eigenvalues
{Ej(s)}j for all s ∈ [0, T]. Define {Pj(s)}j as the set of projections onto the
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34 Geometrical phases

eigenspaces, i.e. Pj(s) projects a vector on the eigenspace corresponding to Ej(s).
Suppose that the following conditions hold:

i) Ej and Pj depend continuous on s for all s ∈ [0, T];

ii) the eigenvalues remain distinct, i.e. Ei(s) ̸= Ek(s) for all Ei, Ek ∈ {Ej}j
and s ∈ [0, T];

iii) the derivatives dsEj(s), dsPj(s), and d2
s Pj(s) are piece-wise continuous for

all s ∈ [0, T].

Furthermore, denote the evolution operator satisfying the Schrödinger equation
by UT(s), i.e.

idsUT(s) = TH(s)UT(s), (4.1)

where H(s) is the diagonalised Hamiltonian, i.e. H(s) = ∑j Ej(s)Pj(s). Then
UT(s) has the asymptotic property

lim
T→∞

UT(s)Pj(0) = Pj(s) lim
T→∞

UT(s) (4.2)

for all Pj ∈ {Pj}j.

Before this theorem can be proven a couple of remarks should be made.
First of all, it is important to note that the spectrum does not have to be
continuous [30]. However, to simplify the proof a bit this is assumed. Sec-
ondly, the theorem boils done to Eq. 4.2 which says that it does not matter
whether you first project onto an eigenspace, and subsequently let that
state evolve through time, or if you first let a state evolve through time
and then project it onto an eigenspace. Therefore Thm. 4.1.1 is indeed in-
line with the main idea of the adiabatic approximation that the eigenstates
of the initial Hamiltonian are deformed into eigenstates of the final Hamil-
tonian, provided infinitely slow and continuous changes of the Hamilto-
nian.

Furthermore, some preparations should be done for the proof of Thm. 4.1.1,
because exactly solving the Schrödinger equation, Eq. 4.1, using integra-
tion is no longer possible since the eigenvectors of H(s) - despite being in
the same Hilbert space - under go some kind rotation. We want to trans-
form the Hamiltonian in such a way that exactly solving the Schödinger
equation becomes feasible again.

Introduce a unitary operator A(s) satisfying

Pj(s) = A(s)Pj(0)A†(s). (4.3)

34
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4.1 Adiabatic theorem 35

This operator sends the eigenvectors of H(0) to the corresponding eigen-
vectors of H(s) that follow from continuity. It is not yet completely evident
how this A(s) is defined. The existence of such a A(s) becomes clear by
defining it as the solution to the following differential equation

ids A(s) = K(s)A(s), A(0) = 1 (4.4)

where K(s) is a Hermitian operator that obeys the commutation relations

[K(s), Pj(s)] = idsPj (4.5)

for all projections on eigenspaces. This is a necessary requirement of K(s)
since it is immediately yielded by differentiating Eq. 4.3 and Eq. 4.4. Fur-
thermore, A(s) and Pj(s) satisfying Eq. 4.4 and Eq. 4.5 respectively implies
that

ds(A†(s)Pj(s)A(s)) = 0

for all s ∈ [0, 1], and hence

A†(s)Pj(s)A(s) = A†(0)Pj(0)A(0) = Pj(0).

Therefore Eq. 4.5 is restrictive enough on K(s). However, there is still
some ambiguity in the definition of K(s). This can be resolved by the im-
posing the condition

Pj(s)K(s)Pj(s) = 0. (4.6)

Combining this yields an expression for K(s) [51]

K(s) = i ∑
j
(dsPj(s))Pj(s). (4.7)

Now K(s) has been found and it is continuous. Since this means that
Eq. 4.4 has a solution, by Peano’s existence theorem, and therefore the
existence of a A(s) is proven. Using Eq. 4.3 we can write our Hamiltonian
is the so-called rotating axis representation

H(A)(s) := A†(s)H(s)A(s). (4.8)

Similarly we can rewrite other operators is the rotating axis representation,

U(A)(s) := A†(s)UT(s) (4.9)

and
K(A)(s) := A†(s)K(s)A(s). (4.10)
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36 Geometrical phases

Combining Eq. 4.1, 4.4, 4.8, 4.9, and 4.10 we obtain an alternative formula-
tion of the Schrödinger equation

idsU(A)(s) = [TH(A)(s)− K(A)(s)]U(A)(s), U(A)(0) = 1. (4.11)

In the proof of the adiabatic theorem that we will give shortly, we will
see that in the limit T → ∞ the effect of K(A) on the solution of Eq. 4.11 is
negligible, yielding an straight forward solvable differential equation.

Proof. Let ΦT(s) be the solution of the following Schrödinger equation

idsΦT(s) = TH(A)(s)ΦT(s), ΦT(0) = 1. (4.12)

One can find ΦT by integrating the equation

ΦT(s) = ∑
j

e−iTφj(s)Pj(0), (4.13)

where
φj(s) :=

∫ s

0
Ej(t)dt. (4.14)

Now define a new unitary transformation using this solution

W := Φ†
TU(A)

T = Φ†
T A†UT. (4.15)

Because ΦT satisfies Eq. 4.12 and U(A) Eq. 4.11, we obtain a Volterra equa-
tion of the second kind for W

W(s) = 1 + i
∫ s

0
K(t)W(t)dt, (4.16)

where
K := Φ†

TK(A)ΦT. (4.17)

We want to show that the integral part of Eq. 4.16 vanishes when T → ∞.
Therefore we will look into the components of K.

Before doing so, notice that any Hermitian operator L can be written in
a spectral decomposition form, which reads

L = ∑
j,k

Pj(0)LPk(0) =: ∑
j,k

Ljk. (4.18)

From Eq. 4.3, 4.13, and 4.17 we obtain the spectral decomposition of K with
components

K jk = eiT(φj−φk)K(A)
jk := eiT(φj−φk)A†PjK(s)Pk A. (4.19)

36
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4.1 Adiabatic theorem 37

From this expression it becomes clear why Eq. 4.6 is imposed, since this
yields K jj = 0.

Let us again define an auxiliary operator

F(s) :=
∫ s

0
K(t)dt, (4.20)

for which the components are immediately clear by Eq. 4.19

Fjk =
∫ s

0
eiT(φj−φk)K(A)

jk dt. (4.21)

By partially integrating these components we obtain

Fjk =
1
iT

(eiT(φj(t)−φk(t))
K(A)

jk (t)

Ej(t)− Ek(t)

s

0

−
∫ s

0
eiT(φj(t)−φk(t)) d

dt

 K(A)
jk (t)

Ej(t)− Ek(t)

 dt

)
. (4.22)

We want to show that these components all converge to 0. For the diagonal
components we already have Fjj = 0. Therefore we will only consider
the off-diagonal components, where we use our assumption that Ej(s) ̸=
Ek(s) for all s ∈ [0, 1] and j ̸= k. Using the triangle inequality we obtain

||Fjk|| ≤
1
T

(∣∣∣∣∣
∣∣∣∣∣eiT(φj(t)−φk(t))

K(A)
jk (t)

Ej(t)− Ek(t)

∣∣∣∣∣
∣∣∣∣∣

+

∣∣∣∣∣
∣∣∣∣∣eiT(φj(t)−φk(t))

K(A)
jk (t)

Ej(t)− Ek(t)

∣∣∣∣∣
∣∣∣∣∣

+
∫ s

0

∣∣∣∣∣
∣∣∣∣∣eiT(φj(t)−φk(t)) d

dt

 K(A)
jk (t)

Ej(t)− Ek(t)

 ∣∣∣∣∣
∣∣∣∣∣dt

)

=
1
T

(∣∣∣∣∣
∣∣∣∣∣ K(A)

jk (s)

Ej(s)− Ek(s)

∣∣∣∣∣
∣∣∣∣∣+
∣∣∣∣∣
∣∣∣∣∣ K(A)

jk (0)

Ej(0)− Ek(0)

∣∣∣∣∣
∣∣∣∣∣+

∫ s

0

∣∣∣∣∣
∣∣∣∣∣ dtK

(A)
jk (t)

Ej(t)− Ek(t)

∣∣∣∣∣
∣∣∣∣∣dt

+
∫ s

0

∣∣∣∣∣
∣∣∣∣∣ K(A)

jk (t)

(Ej(t)− Ek(t))2 (dtEj(t)− dt(Ek(t))

∣∣∣∣∣
∣∣∣∣∣
)

. (4.23)
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38 Geometrical phases

Since Ej(s), Ek(s), and K(A)
jk (s) and their derivatives are least piecewise

continuous on [0, 1], they are bounded. Therefore, it follows that

F(s) = O(T−1) (4.24)

for T → ∞.
Returning to the integral of Eq. 4.16, we can write it as∫ s

0
K(t)W(t)dt = F(s)W(s)−

∫ s

0
F(t)dtW(t)dt (4.25)

and by substituting dtW = i−1K(t)W(t) this becomes∫ s

0
K(t)W(t)dt = F(s)W(s)− i−1

∫ s

0
F(t)K(t)W(t)dt (4.26)

Now let ε(T) ∈ R be an upper bound of ||F|| for a given T with ε(T) =
O(T−1), and let δ ∈ R be an upper bound of ||K||. Notice that W is a
unitary operator, this yields:∣∣∣∣∣

∣∣∣∣∣
∫ s

0
K(t)W(t)dt

∣∣∣∣∣
∣∣∣∣∣ ≤ ||F(s)W(s)||+ s sup(||F(t)K(t)W(t)||)

≤ ||FW||+ s||F(t)K(t)W(t)|| = (1 +−1 δs)ε(T). (4.27)

Hence Eq. 4.16 can be written as

W = 1 + O(T−1). (4.28)

Substituting Eq. 4.28 in the definition of our auxiliary operator W, Eq. 4.15,
yields

UT(s) = A(s)ΦT(s)(1 + O(T−1)), (4.29)

thus
lim

T→∞
UT(s) = A(s)ΦT(s). (4.30)

For both A(s) and ΦT(s) we know how they commute with the projections
Pj(s) and Pj(0), Eq. 4.3 and Eq. 4.13. Therefore we conclude

A(s)ΦT(s)Pj(0) = Pj(s)A(s)ΦT(s). (4.31)

Eq. 4.31 together with Eq. 4.30 verifies the asymptotic property

lim
T→∞

UT(s)Pj(0) = Pj(s) lim
T→∞

UT(s).

38
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4.1 Adiabatic theorem 39

The adiabatic theorem is a beautiful piece of mathematics, but un-
fortunately in physics the limit of T → ∞ can never be fulfilled. Al-
though the value of T can be enormous, and the Hamiltonian can vary
extremely “slow”, the change of the Hamiltonian still happens in finite
time. Therefore in physics the adiabatic theorem is never directly applica-
ble, one would always make use of the adiabatic approximation. In the adia-
batic approximation on replaces the evolution operator with its asymptotic
one that occurs in the adiabatic theorem.

When one follows the derivation of the adiabatic approximation in
Sakurai’s [61] or Messiah’s [51] book on quantum mechanics the following
constraint on the energies is obtained for the adiabatic approximation to
hold for a state starting in the eigenspace corresponding to Ei(0)

|⟨Ej(s)|ds|Ei(s)⟩|
|Ej(s)− Ei(s)|

<< 1 (4.32)

for all energies Ej with j ̸= i, and all s ∈ [0, 1] [61]. This criterion can be
equivalently formulated as

maxs∈[0,1]

{√
∑j ̸=i |⟨Ej(s)|ds|Ei(s)⟩|2

}
mins∈[0,1],j ̸=i{|Ej(s)− Ei(s)|}

<< 1 (4.33)

which can be physically interpreted as the ratio between the maximum
angular velocity of |Ei(s)⟩ in the numerator and the minimum Bohr fre-
quency in the denominator being much smaller than one [51].

At first sight these criteria do not look easily verifiable. However, in
certain cases this the ratio can be estimated in a straight forward way. Con-
sider a system with a state starting in the ground state with corresponding
energy E1(s) = 0, and an energy gap of E between the ground state and
the other states. In this system the denominator is just the energy gap
in the spectrum, i.e. E. The numerator can be bounded from above by
1, because of the normalisation of the states. Therefore the criterion for
applying the adiabatic approximation to states in the zero-energy ground
state and a gapped spectrum becomes

1
E
<< 1. (4.34)

Yet one more step is required is to obtain an indication for the “slow-
ness” of the variation of the Hamiltonian, namely the criterion in terms of
energy has to be translated to a criterion in terms of time. To do that we
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40 Geometrical phases

make use of the uncertainty relation of time and energy

δtδE ≥ 1
2

(4.35)

which says that the uncertainty in time multiplied by the uncertainty in
energy is bounded from below. By considering the equality in Eq. 4.35 a
relation between the energy and time can be obtained. Let δE be the energy
gap and δt the time scale of the adiabatic variation of the Hamiltonian,
then the criterion for applying the adiabatic approximation becomes

2δt =
1
E
<< 1. (4.36)

The criteria in Eq. 4.32 and Eq. 4.33 are generally used as the conditions
a system has to satisfy for being suitable for applying the adiabatic approx-
imation. However, it is shown by Marzlin and Sanders that those equiv-
alent criteria may not be enough, when the change in the eigenstates is
significant [50]. Fortunately, there exist some additional conditions which
ensures that the approximation is still widely applicable [72]. Going in
to the details of these conditions would go beyond the scope of this the-
sis. However, it is important to notice that the problems with the original
criterion, Eq. 4.32, occur when the changes in the Hamiltonian are small in-
stead of taking place “slowly” [46]. Therefore we assume that when slow
variations of the Hamiltonian are considered - a naive notion of adiabatic
movement - the criterion of Eq. 4.33 is sufficient, and corollaries such as
Eq. 4.36 hold.

4.1.1 Ehrenfest’s intermezzo

Let us take a moment to step back from the mathematical formulation of
the adiabatic theorem and take a moment to reflect on the physical mean-
ing. In the spirit of Paul Ehrenfest, one of the founders of the adiabatic
principle [17] and a physicist of huge importance for the physics com-
munity in Leiden, we should try to develop some understanding of the
theorem without any of the mathematics. Ehrenfest once said in a letter
to Oppenheimer: ”If you intend to mount heavy mathematical artillery again
during your coming year in Europe, I would ask you not only not to come to Ley-
den, but if possible not even to Holland...” [34]. In line with his metaphor of
dogs and fleas to explain irreversible processes, we will come up with a
metaphor for the adiabatic theorem.

Image the old town of Leiden, surrounded by the canals, “de singels”.
A student needs to clear his head after an excruciatingly difficult exam,

40
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4.2 Berry phase 41

and decides to go for a run. We can think of the student running at his own
constant pace as a system in an eigenstate. The eigenstate is characterised
by the movement of his legs and his heart beat. Then, with a change of
the reference frame, we take the student to be fixed and the canals and
the whole of Leiden to move around him, these form the changing poten-
tial. The running pace translate to the relevant time scale, and since the
average running speed is not too high we call this adiabatic movement.
Because the turns in the road and road crossing only come towards the
runner slowly the runner can keep its pace with only minor changes in di-
rection and speed. Hence the runner stays in the same eigenstate despite
the changing potential around him.

Now imaging a different system, a cyclist, riding by the old canals
around Leiden. His pace is much faster, and so the potential landscape,
i.e. his surroundings, change much faster. The result is that the cyclist
has to use his breaks constantly, and slow down and accelerate several
times during his round trip. This means that the cyclist does not stay in
his eigenstate, which can be understood from the point of view of the adi-
abatic theorem, since the student does not cycle slow enough and the adi-
abatic approximation does not apply.

4.2 Berry phase

In 1984 M. Berry theoretically discovered that periodic adiabatic changes
in the Hamiltonian could lead to an additional phase of a state that was
non-trivial, i.e. that had a physical consequences and could not be brushed
away with a gauge transform [12]. This additional phase can be explained
using the result of the adiabatic theorem and the geometric formalism of
connections and gauges.

Let M be a smooth manifold, H a finite-dimensional Hilbert space, and
consider a smooth Hamiltonian H : M → C∞(H) with H(x) being Her-
mitian for all x ∈ M. Furthermore, we make the same assumptions for
the eigenvalues and projections on the corresponding eigenspaces as in
the adiabatic theorem, Thm. 4.1.1, and on top of that we assume that those
projections and energies are smooth. For every x ∈ M we denote the
nth eigenspace of H(x) by Hn(x), and we attach the fibre Fx := PHn(x).
Therefore we obtain the bundle space

P :=
⊔

x∈M
Fx =

⊔
x∈M

PHn(x), (4.37)

which we will refer to as the nth spectral bundle of H.
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For the remainder of this section we will assume that the nth eigenspace
is non-degenerate. This simplifies the fibres defined above drastically. Let
|ψ(x)⟩ be a nth ground state of H(x), then PHn(x) = {eiθ|ψ(x)⟩ : θ ∈
R} ∼= U(1), since the space is non-degenerate. This gives rise to a princi-
pal U(1)-bundle.

We want to endow this principal U(1)-bundle with a connection which
captures the adiabatic theorem. A natural way of assigning a horizontal
subspace to the fibres, is to call a vector |h(x)⟩ ∈ TxP horizontal if it is
orthogonal to |n(x)⟩, i.e. Pn(x)|h⟩ = 0. That this is smooth should follow
from the smoothness of Pn. A connection defined in this way is called a
Berry-Simon connection [15], [62]. In this assignment it is crucial that a state
that started in the nth eigenspace, remains there. Therefore this connection
heavily depends on the adiabatic theorem, Thm. 4.1.1.

Let us study how we can interpret this in terms of horizontal lifts. Let
γ : [0, 1] → M be a smooth curve in M, then γ̃ : [0, 1] → P is a horizontal
lift with respect to the Berry-Simon connection if γ̃ satisfies

Pn(γ(s))∂sγ̃(s) = 0 (4.38)

Therefore a horizontal lift in this case would lift a point x from a curve
in the parameter space M to an nth eigenstate of H(x) which is in the so-
called Born-Fock gauge, i.e. Pn(γ(s))∂s|n(γ(s))⟩ = 0. This can physically be
seen that adiabatic evolution corresponds to parallel transport, since one
can find that for adiabatic evolution one automatically fulfils the Born-
Fock gauge [15].

From now on we might discard writing the projection operators ex-
plicitly as above and write them in the so-called bra-ket notation, where a
projection is written as Pn(x) = |n(x)⟩⟨n(x)|. When one is not familiar
with this convention, an comprehensive introduction can be found in un-
dergraduate quantum mechanics textbooks [19].

The local section x 7→ |n(x)⟩ of the nth spectral bundle gives rise to a
u(1)-valued 1 form. This (local) Berry-Simon connection 1-form is given by

A(n)(x) := i⟨n(x)|∂sn(x)⟩ds = i⟨n(x)|dn(x)⟩. (4.39)

Expressing Eq.4.39 in local coordinates (xµ) defines the component func-
tions of the local connection

A(n)(x) = i⟨n(x)|dn(x)⟩ = i⟨n(x)|∂µn(x)⟩dxµ =: A(n)
µ (x)dxµ. (4.40)

Equipped with the connection 1-form it is reasonable to consider the holon-
omy of a curve C ⊂ M with respect to the Berry-Simon connection. With

42
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this holonomy we define the Berry phase γ(C) of a state in the nth eigenspace
corresponding to the curve C with respect to given connection

eiγn(C) := exp
(∮

C
A(n)

)
= exp

(
i
∮

C
⟨n|dn⟩

)
. (4.41)

From Eq. 4.41 and U(1) being Abelian it is immediately clear that the Berry
phase is gauge invariant. This phase does not depend on a gauge is solely
dependent on the geometry of the curve in the base space, the structure
of the principal bundle and the connection on the fibres. Hence the Berry
phase is an example of a geometrical phase.

This integral over the curve C can be transformed to a integral over a
surface by introducing the (local) Berry-Simon curvature

F(n) = dA(n) = −1
2

Im(⟨∂µn|∂νn⟩ − ⟨∂νn|∂µn⟩)dxµ ∧ dxν (4.42)

where the components are defined by

F(n)
ij := Im(⟨∂µn|∂νn⟩ − ⟨∂νn|∂µn⟩). (4.43)

Let Σ be a submanifold M such that ∂Σ = C, then applying Stokes’ theo-
rem [39] to Eq. 4.41 yields

eiγn(C) = exp
(∮

C
A(n)

)
= exp

(∫
Σ

F(n)
)

. (4.44)

In physics the Berry-Simon connection is derived from the assumption
that after a adiabatic loop the gained phase can be divide in a dynamical
part and a geometrical part

φ(t) = −
∫ t

0
En(τ)dτ + γn(t) (4.45)

where γn(t) is the geometrical phase. Eventually, manipulating the state
ψ(t) = eiφ(t)ψ(0) and the Schrödinger equation yields the same integral
expression as Eq. 4.41. For a long time it was thought that this phase could
be cancelled by an appropriate gauge transformation, which turned out
to be not the case [12]. From this alternative derivation it becomes clear
that there is a one-to-one correspondence between the holonomies of a
principle u(1)-bundle in mathematics and the Berry phase in physics.

The Berry phase and geometrical phases in general are essential to ex-
plain certain phenomena in classical optics [56], molecular physics [43],
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electrodynamics [1], and condensed matter [77]. Some of these phenom-
ena, such as the Aharonov-Bohm effect [1], were known well before the
theoretical discovery of the Berry phase.

Let us quickly discuss a methods to measure a Berry phase. In this
method one state should be prepare and divided in two subsystems. One
of them is cycled adiabatically, while the other is not. When brought
back together the phase difference results into a certain interference which
differs from the initial state. One of the hardships of finding the Berry
phase is taking into account the dynamical phase that should be sub-
tracted, which can difficult because phases are defined up to 2π. With
a protocol such as described above Zhang et. al. succeed in measuring a
Berry phase in optical fibres in 1986 [77].

4.3 Wilzcek-Zee phase

In last section we defined a connection on a bundle space P with the fibres
being the projective non-degenerate nth eigenspaces. However, degen-
erate eigenstate are omnipresent in physics, and the adiabatic theorem is
applicable to systems with degenerate eigenstates as well. Therefore it is
interesting and possible to generalise the notion of a Berry phase to a non-
degenerate setting as shown by Wilzcek and Zee [75].

Let M,H, and H be as in last section, and this gives rise to the bundle
space from Eq. 4.37. Now say that Hn(x) is m-fold degenerate, with m > 1.
Let {|ψi⟩}m

i=1 be an orthonormal basis of of Hn(x), then the fibres can be
expressed as

Fx := PHn(x) =

{
|φ(x)⟩ =

m

∑
i=1

U j
i |ψj(x)⟩ : U ∈ U(m)

}
∼= U(1), (4.46)

where the fibres are identified with the unitary group of degree n. Eq. 4.46
enables us to consider a principal U(m)-bundle over M.

Equipped the setting is similar to that of the Berry phase and hence it
is natural to try generalising the Berry-Simon connection. Here we call a
vector |h(x)⟩ ∈ TxP is horizontal if it is orthogonal to the basis {|ψi⟩}m

i=1,
i.e. ⟨ψi(x)|h⟩ = 0 for all i ∈ {1, ..., m}. The connection defined in this way
is called a Wilczek-Zee connection [75].

If C : [0, 1] → M a smooth curve with a lift C̃ : [0, 1] → P given by
C̃(s) = (φ1(t), ..., φm(t)), then this lift is horizontal if for all i, j ∈ {1, ..., m}
it holds that ⟨ψi|∂s φj⟩ = 0. This means that having a state in the gen-
eralised Born-Fock gauge the physical analogue of being parallel trans-
ported with respect to the Wilczek-Zee connection.
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4.3 Wilzcek-Zee phase 45

Similarly to the non-degenerate case the local section x 7→ |φ⟩ gives
rise to a u(m)-valued 1-form, the so-called Wilczek-Zee connection 1-form,
where every element of the matrix is defined in the following way(

A(m)
)

ij
(x) := i⟨ψj(x)|∂sψi(x)⟩ = i⟨ψj(x)|dψi(x)⟩. (4.47)

Notice that these are not the component function expressed in local coor-
dinates, but the entries of the matrix A(m)(x) since A(m) is u(m)-valued. In
local coordinates (xµ) the component functions (per entry) read(

A(m)
µ

)
ij

:= i⟨ψj(x)|∂µψi(x)⟩. (4.48)

This connection is very similar to the Berry phase. However, there are
some essential differences, mainly because U(m), in contrast to U(1), is
non-abelian. This has some important implication for the transformation
of the connection. Let {|ψ′

i⟩}m
i=1 be a new basis orthonormal basis of Hn(x)

obtained from {|ψi⟩}m
i=1 by applying the unitary transformation U. One

can check that this results in the transformation rule(
A′(n)

)
ij
=
(

U · A(n) · U† + i(dU) · U†
)

ij
(4.49)

which is exactly what you would expect for a gauge potential.
Similar to the Berry-Simon curvature in the non-degenrate case, we can

define a u(m)-valued 2-form called the (local) Wilczek-Zee curvature

F(n) = dA(n) − iA(n) ∧ A(n), (4.50)

the entry functions of which can be expressed as(
F(n)

)
ij
=

1
2

(
∂µ

(
A(n)

ν

)
ij
− ∂ν

(
A(n)

µ

)
− i
(
[A(n)

µ , A(n)
ν ]
)

ij

)
dxµ ∧ dxν,

(4.51)
and therefore the component functions can be defined by(

F(n)
µν

)
ij

:= ∂µ

(
A(n)

ν

)
ij
− ∂ν

(
A(n)

µ

)
− i
(
[A(n)

µ , A(n)
ν ]
)

ij
. (4.52)

The components look way more complicate than the non-degenerate
case. Fortunately, Eq. 4.49 and Eq. 4.50 provide a transformation rule for
the curvature that is quite neat and in line with what you would expect
from a gauge field

F′(n) = U · F(n) · U†, (4.53)

Version of June 30, 2024– Created June 30, 2024 - 19:38

45
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i.e. the curvature transforms in a tensorial way.
A non-degenerate counterpart of the Berry phase, the geometric Wilczek-

Zee factor can be defined as the holonomy of a curve C ⊂ M with respect
to the Wilczek-Zee connection as the path ordered integral

V(C) := P exp
(∮

C
A(n)

)
, (4.54)

where P is the path ordering operator that takes care of the order of oper-
ations. This is necessary because the connection is u(m)-valued and two
elements of u(m) do not necessarily commute.

Making use of Stokes’ theorem Eq. 4.54 can be rewritten in terms of the
curvature

V(C) = P exp
(∫

Σ
F(n)

)
, (4.55)

where Σ ⊂ M is a submanifold such that ∂Σ = C. From Eq. 4.55 and the
transformation rule of the Wilczek-Zee factor, Eq. 4.53, it is immediately
clear that the geometrical Wilczek-Zee factor is gauge invariant.

An actually measurement of the geometric Wilczek-Zee factor can be
done in a way that is similar to measuring the Berry phase. Although
there has been a lot of theoretical and experimental interest in the non-
degenerate counterpart of the Berry phase, synthesised systems that ex-
hibit these factors are rare. A lot of contemporary research goes into de-
signing cold-atom systems that give rise to non-trivial Wilson loops [66].
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Chapter 5
Second quantisation

The main aim of many-body quantum mechanics is to describe the prop-
erties of systems with many particles. In this chapter a formalism will
be introduced that is extremely suitable for this purpose, second quantisa-
tion. Following [5] and [49], we will build up a description of fermionic
many-body systems from first principles that encapsulates both the indis-
tinguishability of quantum particles and the anti-symmetry of fermionic
wave functions. The fermionic Fock space and creation and annihilation op-
erators will be introduced. It turns out that an algebra of these opera-
tors unique determine our formalism. We will conclude the discussion of
second quantisation with several elementary applications and a by high-
lighting the similarities between the creation and annihilation operators
and the familiar ladder operators. By the end of the chapter we are fully
equipped to describe many-body systems in a concise manner.

5.1 First and second quantisation

The name second quantisation of course implies that there exist a formal-
ism called first first quantisation. This is indeed true, such a formalism
exists. Let us start with a classical system that is described by a phase
space with pi a momentum vector and xj a position vector. Now we want
to quantise our phase space. Although quantising a space is an active field
of research in mathematical physics, using canonical quantisation is most
common in physics. This means that we impose the following condition
on the momentum and position vector pi and xi:

[pi, xj] = −iδij, (5.1)
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48 Second quantisation

where [−,−] is the commutator and δij the Kronecker delta. This is a
very intuitive way of quantising a space. However, the problems occur
when one wants to describe interactions in a system that is quantised us-
ing canonical first quantisation. To include interactions in the Hamilto-
nian of a system all configurations of the particles in the system have to be
added by hand.

Fortunately, there is away around this. Let π(x) be a vector field corre-
sponding to the momentum in phase space, and let ψ(x) be a vector field
corresponding to the positions. Then the idea of second quantisation is
imposing the condition

[π(x), ψ(y)] = −iδ3(xi − yi), (5.2)

where δ3(xi − yi) is the three dimensional Dirac delta function. As a conse-
quence of this formalism the interactions are embedded in the description
[52].

The conclusions drawn in this section are hand-wavy, since no actual
quantisation is performed, no system is specified, and no interaction is de-
scribed explicitly. However, the second quantisation has enough advan-
tages to make it the most popular description in contemporary physics. In
the following section we will not perform an explicit quantisation. We will
construct a formalism for many body systems from first principles, with-
out explicitly referring to the quantisation of a phase space. Nevertheless,
it should be ensured that the formalism arising from Eq. 5.2 and the for-
malism that will be constructed in the following sections are two sides of
the same coin as one can see in chapter 1 of Kaku’s book [52].

5.2 Number representation and Fock space

Let us consider a system of N particles. When such a system is first en-
countered, it is natural to write down the state of each of these particles
separately. This sounds most reasonable to do, because the system con-
sists of N particles, and from a classical point of view this would mean
that we have to deal with N different or distinct particles. In quantum
mechanics however, we know that fermions and bosons are indistinguish-
able particles. This enables us to represent the total state of our system
by just describing the number of particles in a specific state. Moreover, in
this new formalism we want to let go of the fixed particle number, since
there are systems, e.g. systems displaying superconductivity, where parti-
cle number is not conserved. This occupation number representation will be
formalised further in this chapter.
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5.2 Number representation and Fock space 49

Before we go any further with formalising this number representation,
it is important to be aware of another problem we have in many-body sys-
tems. Namely that the total wave function of a system should be anti-
symmetric for fermions and symmetric for bosons. Which means that
switching two (indistinguishable) particles must lead to a minus sign in
front of the wave function in the case of fermions and to no changes in the
case of bosons. Taking care of that requirement is very cumbersome if the
states of all particles are represented separately.

Because of the different nature of bosonic and fermionic wave func-
tions, both types of particles behave very differently. Therefore the for-
malism of systems of bosons and systems of fermions is quite different.
Here we will only study fermionic systems.

We will start with a single particle Hilbert space H, and assume that it is
finite-dimensional, dim H =: m. H is a Hilbert space over C that consists
of all (not necessarily normalised) states of a single particle. The space be-
ing finite-dimensional is not necessary for the construction of the theory,
but since it makes some definitions clearer and only finite-dimensional
spaces are considered, it is still assumed. Now we need to construct a
space for a many-body system of fermions, that has both the indistin-
guishability and the anti-symmetric properties internalised.

Definition 5.2.1. Let H be a finite-dimensional Hilbert space, then we de-
fine the fermionic Fock space over H by

F := Λ(H) :=
⊕

n∈Z≥0

Λn(H), (5.3)

where

Λn(H) = Span{v1 ∧ ... ∧ vn : vj ∈ H, j ∈ {1, ..., n}}. (5.4)

When an orthonormal basis B := {hi}i of H is provided, then
Λn(H) = {hi1 ∧ ... ∧ hin : i1 < ... < in ≤ m, hij ∈ B, j ∈ {1, ..., n}}.
Therefore we can write every element of the fermionic Fock space as a
(formal) linear combination of wedge products.

One peculiar subspace in this direct sum is the one-dimensional Hilbert
space Λ0(H), the space generated by linear combination of the wedge
product of zero vectors. We call this space the vacuum space with vacuum
states as elements. We denote the generator of that vacuum space by |0⟩,
to which we often refer as the vacuum state even though nor the choice
of a generator nor the choice of a vacuum state is unambiguous, and al-
though the notation can be confussion it is important to keep in mind that
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|0⟩ as vacuum state and the 0 as zero element of the vector space are differ-
ent elements. The vacuum state is fundamental to our occupation number
representation as we will shortly see.

To obtain the occupation number representation of a state from ele-
ments of the Fock space, we look at an element of Λn(H) for a specific n,
and we choose an (ordered) orthonormal basis of H, i.e. {h1, ..., hm} where
m = dim(H). Let |ψ⟩ := vi1...in hi1 ∧ ... ∧ hin ∈ Λn(H) where the states in
the wedge products are ordered and no state occurs more than once. Then
every term hi1 ∧ ... ∧ hin can be written as |n1, n2, ..., nm⟩ where nj = 1 if
j ∈ {i1, ..., in} and nj = 0 otherwise. Hence the state |ψ⟩ can be written as
a linear combination of those number states.

At first sight it may seem that information is lost when a step is made
from a wedge product to a number state representation, since we only reg-
ister if a state is in the wedge product instead of the specific position in the
expression. Fortunately that is not the case. Firstly because we can order
the states in a wedge product by changing only the sign of the prefactor.
Secondly because the wedge product can be reconstructed from the num-
ber representation state, namely we include hi in the wedge product if and
only if ni = 1.

Now we are able to write a general fermionic many-body state in the
occupation number representation. Let |ψ⟩ ∈ F and let the single parti-
cle Hilbert space be of dimension m, then |ψ⟩ = cn1,n2,...,nm |n1, n2, ..., nm⟩.
This notation includes the anti-symmetry of the wave function and the in-
distinguishability of the particles implicitly. It is important to notice that
such a state above can, and often will, consist of terms with different total
number of particles.

5.3 Creation and annihilation operators

Last section provided us with a space that describes the possible state of
a fermionic many-body system. However, a thorough and useful study of
these spaces, i.e. physical fermionic many-body systems, is only possible
when we there are maps available that act on the states in the Fock space.
These operators should create or annihilate particles in a certain state.

Definition 5.3.1. Let H be a finite-dimensional Hilbert space and {hi}i an
orthonormal basis of H. A linear operator a†

i : F → F defined by hi1 ∧ ...∧
hin 7→ hi ∧ hi1 ∧ ... ∧ hin , exterior multiplication with hi, is called a creation
operator for a particle in state hi. A linear operator ai : F → F defined by
hi1 ∧ ... ∧ hin 7→ h′i ⌟ hi1 ∧ ... ∧ hin , interior multiplication by h′i, is called an
annihilation operator for a particle in state hi with dual h′i.
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5.3 Creation and annihilation operators 51

In Def. 5.3.1 there is some slight abuse of notation in the definition of
a annihilation operator. Normally we would have a vector space V, and a
map Λn(V∗) → Λn−1(V∗) that is defined by

ω1 ∧ ... ∧ ωn 7→ v ⌟ ω1 ∧ ... ∧ ωn :=
n

∑
j=1

(−1)j−1ω j(v)ω1 ∧ ... ∧ ω̂i ∧ ... ∧ ωn

where ω̂ j is omitted from the wedge product. For the annihilation oper-
ator the role of the vectors and covectors are switched. This is possible
however, because of the fact that Hilber spaces are reflexive, and hence
the evaluation maps provides a canonical isometry between the Hilbert
space and its bidual [60]. Therefore the vectors hij can be identified with
the evaluation map in hij which yields the expression:

h′i ⌟ hi1 ∧ ... ∧ hin : =
n

∑
j=1

(−1)j−1evhij
(h′i)hi1 ∧ ... ∧ ĥij ∧ ... ∧ hin

=
n

∑
j=1

(−1)j−1δiij hi1 ∧ ... ∧ ĥij ∧ ... ∧ hin , (5.5)

where we have made use of the basis {hj}j of H being orthonormal. From
this it becomes clear that despite the abuse of notation an annihilation op-
erator for a particle in state hi is indeed interior multiplication by its dual
h′i.

Before studying the mathematical properties of these operators any
further it is important to stress the physical interpretation using the occu-
pation number representation of states. Be aware that we will use the same
notation for operators working on elements of the Fock space as above and
operators working on number states.

Consider |ψ⟩ = |n1, ..., ni, ...⟩ ∈ F and the creation operator a†
i . The

state |ψ⟩ corresponds to a wedge product where hj is included if and
only if nj ̸= 0. The operator a†

i adds the state hi to the wedge product,
and when the product is ordered again according to the ordered basis, a
factor (−1)si with si = ∑i−1

j=1 nj is added. Note that if |ψ⟩ already con-
tained a hi term this ordering is not well defined, but the wedge product
will become zero. Transforming back to the number representation yields
a†

i |ψ⟩ = (−1)si |n1, ..., ni + 1, ...⟩ if ni = 0, i.e. a particle in state i is created
if it was not yet occupied, and a†

i |ψ⟩ = 0 if ni = 1.
Similarly we are able to study the action of the annihilation opera-

tor ai on a state |ψ⟩. The operator ai effectively removes a term hi from

Version of June 30, 2024– Created June 30, 2024 - 19:38

51



52 Second quantisation

the wedge product representation of |ψ⟩ and it adds a factor (−1)si , as
described in Eq. 5.5, if it contains such a term, and it maps the prod-
uct to zero otherwise. In the number representation this yields ai|ψ⟩ =
(−1)si |n1, ..., ni, ...⟩ if ni = 1, and ai|ψ⟩ = 0 if ni = 0.

Provided with the knowledge about the action of the creation and an-
nihilation operators on the number states, we are able to build up certain
states from the vacuum. Starting from the vacuum state |0⟩ we can obtain
a arbitrary state by repeated application of creation operators, this yields:

|n1, n2, ...⟩ = ∏
i
(a†

i )
ni |0⟩. (5.6)

Here we see the essential role of the vacuum state. Equipped solely with
|0⟩ and the annihilation and creation operators we are able to construct ev-
ery element of the fermionic Fock space just by taking linear combinations
of expression of the form of Eq. 5.6. The observation that we just need
the operators a†

i and ai, and a vacuum state to describe every state in our
formalism will be made more rigorous in the remainder of this section. To
do so we need to study the mutual relations between the operators.

Returning to the definition it becomes clear that the annihilation opera-
tor is the Hermitian conjugate of the creation operator and vice versa [49].
Furthermore, there exist some simple anti-commutation relations which
will turn out to be essential in the use and description of these operators.

Proposition 5.3.1. Let H be a finite-dimensional Hilbert space with dim(H) =
m, {hi}i an orthonormal basis of H, and a†

i , ai the corresponding creation resp.
annihilation operator. Then the following anti-commutation relations hold:

{a†
i , a†

j } := a†
i a†

j + a†
j a†

i = 0; (5.7)

{ai, aj} := aiaj + ajai = 0; (5.8)

{a†
i , aj} := a†

i aj + aja†
i = δij. (5.9)

Proof. It is sufficient to consider basis elements of the Fock space. Let n ∈
Z≥0 and hi1 ∧ ... ∧ hin ∈ Λn(H). Then we find:

{a†
i , a†

j }(hi1 ∧ ... ∧ hin) = (a†
i a†

j + a†
j a†

i )(hi1 ∧ ... ∧ hin)

= a†
i (hj ∧ hi1 ∧ ... ∧ hin) + a†

j (hi ∧ hi1 ∧ ... ∧ hin)

= hi ∧ hj ∧ hi1 ∧ ... ∧ hin + hj ∧ hi ∧ hi1 ∧ ... ∧ hin

= hi ∧ hj ∧ hi1 ∧ ... ∧ hin − hi ∧ hj ∧ hi1 ∧ ... ∧ hin = 0.
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5.3 Creation and annihilation operators 53

Therefore {a†
i , a†

j } = 0, and by taking the Hermitian conjugate this implies
{ai, aj} = 0. For the last relation we will use Eq. 5.5:

{a†
i , aj}(hi1 ∧ ... ∧ hin) = (a†

i aj(hi1 ∧ ... ∧ hin) + aja†
i (hi1 ∧ ... ∧ hin)

= a†
i

(
n

∑
k=1

(−1)k−1δjik hi1 ∧ ... ∧ ĥik ∧ ... ∧ hin

)
+ aj

(
hi ∧ hi1 ∧ ... ∧ hin

)
=

n

∑
k=1

((−1)k−1 − (−1)k−1)δjik hi1 ∧ ... ∧ ĥik ∧ ... ∧ hin

+ δijĥi ∧ hi1 ∧ ... ∧ hin

= δijhi1 ∧ ... ∧ hin .

Therefore we indeed obtained {a†
i , aj} = δij.

From Prop. 5.3.1 it is immediately clear that operators are nilpotent.
This is a property of fermionic creation and annihilation operators, and
it implicitly encodes for the Pauli exclusion principle. When a particle is
added to an already occupied state, this yields a zero, i.e. multiple parti-
cles in one state is not allowed. Therefore there can be at most one particle
in a certain state, and hence annihilating the same state twice yields a zero.

The remainder of this section will consist of a more rigorous explana-
tion of the observation made earlier that we just need the annihilation and
creation operators, and a vacuum state to establish the formalism. For
this it is necessary to define a mathematical object that adds a structure of
multiplication of vectors to a vector space, or modules in general.

Definition 5.3.2. Let R a commutative ring. A(n) (associative) R-algebra A
is a ring with an operation · : A×A → A such that for all r, s ∈ R and
a, b ∈ A it satisfies

r · (ab) = (r · a)b = a(r · b;
r · (a + b) = r · a + r · b;
(r + s) · a = r · a + s · a;

(rs) · a = r · (s · a);
1 · a = a.

This operation is called scalar multiplication.

Here the multiplication sign of the scalar multiplication is often omit-
ted. A careful reader with a mathematical background might recognise
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relations that are very similar to that of a R-module, and indeed it is possi-
ble to define an associative R-algebra A as a ring A that is also a R-module
such that the ring addition and the module addition are the same opera-
tion and scalar multiplication satisfies

r · (xy) = (r · x)y = x(r · y)

for all r ∈ R and x, y ∈ A.
Familiarity with R-modules is not necessary, but this observation be-

comes useful when we recall that for the case that R is a field, a R-module
is just a R-vector space. That means that for a field K a K-algebra defines a
notion of multiplication of vectors in a vector space.

Let us now consider a C-vector space A generated by ai, bi for i ∈ I
where I is an index set. We can endow a structure of a C-algebra on A by
imposing the following anti-commutation relations:

{ai, bj} = δij, {ai, aj} = 0, {bi, bj} = 0. (5.10)

These relations are motivated by Eq. 5.7, 5.8 and 5.9 for creation and anni-
hilation operators. Let F be a vector space. We will assign to every ai and
bi a linear map Tai , Tbi : F → F sucht that T respects the commutations
relations, i.e. T{ai,bj} = {Tai , Tbj}, and Tbi = T†

ai
. We say that the algebra

A is unitarily represented in the vector space F . To stress the connection to
creation and annihilation operators we will denote Tai by ai, and Tbi by a†

i .

Remark. While for physical applications the relevant representation theory can
be formulated specifically for operators on a Fock space as above, the mathematical
theory underlying these principles can be generalised. This uses the notion of ∗-
rings, ∗-algebras, and ∗-algebra representations. Although a detailed discussion
of this would go beyond the scope of this thesis, the main idea is to assign a invo-
lution map to a ring, and from there develop the theory of algebra representations.
In physics this whole generalisation would be redundant, since the only ∗-ring
that is considered is C.

The Stone-Von Neumann theorem, originally proven by Jordan and Wigner
in 1928 [28], and discussed in chapter 2 of Altland and Simons book on
condensed matter [5], states that the representation above is unique up
to unitary transformations of the basis. For a proof of this statement an
explicit construction for a basis of F is given. In this proof the vacuum
state is defined as the state that has eigenvalue 0 for all operators of the
form a†

i ai with i ∈ I, and the elements of that form the basis are con-
structed as in Eq. 5.6. Therefore the vector space F of the representation
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5.4 Elementary applications 55

coincides with the fermionic Fock space in the text, and we can indeed
capture the formalism of second quantisation and the occupation number
representation solely with creation and annihilation operators and their
anti-commutation relations.

Equipped with this result we can, and will, from now on omit referring
to the fermionic Fock space and number states, and speak about operators
and sporadically about states of a single particle.

5.4 Elementary applications

To study physical system and to describe for instance changes of basis,
one-body interaction, and two-body interaction we need to know how to
apply creation and annihilation operators in those situation.

First of all, we want to transform the creation and annihilation opera-
tors along with a basis.

Proposition 5.4.1. Let {|λ⟩} and {|λ̃⟩} be two orthonormal bases of the single
particle Hilbert space. Then the creation operators transform as follows

a†
λ̃
= ∑

λ

⟨λ|λ̃⟩a†
λ (5.11)

and the annihilation operators transform similarly

aλ̃ = ∑
λ

⟨λ̃|λ⟩aλ. (5.12)

Proof. We have Id = ∑λ |λ⟩⟨λ|, |λ⟩ =: a†
λ|0⟩, and |λ̃⟩ =: a†

λ̃
|0⟩. From this

it follows

a†
λ̃
|0⟩ = |λ̃⟩ = ∑

λ

|λ⟩⟨λ|λ̃⟩ = ∑
λ

⟨λ|λ̃⟩a†
λ|0⟩.

Therefore a†
λ̃
= ∑λ⟨λ|λ̃⟩a†

λ. The annihilation operators follow immedi-
ately by taking the hermitian conjugate.

An important application of this change of basis would be the Fourier
transformation as we will see in Chapter 7.

Let us make a small side note. Although we assume a finite-dimensional
single particle Hilbert space, evertything that we will define in this section
can be generalised to an infinite case just by replacing the sums with inte-
grals.

Version of June 30, 2024– Created June 30, 2024 - 19:38

55



56 Second quantisation

Secondly, one-body operators represent the kinetic part of the Hamil-
tonian. This is an essential part of the description of physical systems.
Consider a one-body operator O1 and a basis {|λ⟩} of eigenvectors of that
operator. This means that O1 = ∑λ oλ|λ⟩⟨λ| with oλ := ⟨λ|O1|λ⟩ from
which it follows

O1 = ∑
λ

oλa†
λaλ. (5.13)

From Eq. 5.13 it is clear that a one body operator just engages with all
particles separately. A special kind of one-body operator is the so-called
occupation number operator

n̂λ = a†
λaλ (5.14)

which has the property n̂λ(a†
λ)

n|0⟩ = n(a†
λ)

n|0⟩. One can easily check this
using the anticommutation relations

n̂λ(a†
λ)

n|0⟩ = (a†
λaλa†

λ)(a†
λ)

n−1|0⟩ = a†
λ(1 + a†

λaλ)(a†
λ)

n−1|0⟩
= · · · = (a†

λ)
n(n + aλ)|0⟩ = n(a†

λ)
n|0⟩.

On top of that n̂λ commutes with all creation operators of different
states. Therefore we conclude that n̂λ just counts the number of particles
in state |λ⟩. In the fermionic case this means that it yield a 1 if the state
is occupied and a 0 otherwise. Using the occupation number operator we
can rewrite Eq. 5.13 as

O1 = ∑
λ

oλn̂λ. (5.15)

In general, for an arbitrary orthonormal basis B of the single particle
Hilbert space, Eq. 5.13 can be rewritten by applying a basis transformation

O1 = ∑
µ,ν∈B

⟨µ|O1|ν⟩a†
µaν. (5.16)

The two-body operators are used to describe pairwise interactions be-
tween particles. Embedding those interactions in a quantum many-body
system might be cumbersome because of the indistinguishability of parti-
cles. Fortunately, this is where second quantisation comes into its own. A
two-body operator O2 can be expressed as

O2 = ∑
µµ′νν′

⟨µ, µ′|O2|ν, ν′⟩a†
µa†

µ′aνaν′ (5.17)

where µ, µ′, ν, and ν′ are elements of an orthonormal basis of the single
particle Hilbert space [5].
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5.4 Elementary applications 57

We would like to conclude this chapter with making a connection be-
tween our creation and annihilation operators, and ladder operators. Let
us consider a Hamiltonian Ĥ, which is a complex polynomial of creation
and annihilation operators, and a creation operator a†

i . Assume that the
commutation relation between Ĥ and a†

i is given by

[Ĥ, a†
i ] = Eia†

i , (5.18)

where E ∈ R≥0 a positive constant. This seems quite a strong assumption,
but we will see that Hamiltonians that you encounter fulfil this property.

From Eq. 5.18 and the fact that the H is an observable - and thus Her-
mitian - the commutation relation of Ĥ with the annihilation operator ai
immediately follows

−[Ĥ, a†
i ]

† = −
(

Ĥa†
i − a†

i Ĥ
)†

= −
(
aiĤ − Ĥai

)
= [Ĥ, ai], (5.19)

and thus
[Ĥ, ai] = −Eia†

i . (5.20)

Consider an eigenstate of Ĥ, |ψ⟩, corresponding to an eigenvalue Eψ.
Applying a†

i to that eigenstate yields the state a†
i |ψ⟩, and by letting Ĥ act

on this state we obtain

Ĥa†
i |ψ⟩ =

(
[Ĥ, a†

i ] + a†
i Ĥ
)
|ψ⟩ = (Eψ + Ei)a†

i |ψ⟩. (5.21)

Hence a†
i |ψ⟩ is a new eigenstate of Ĥ with energy Eψ + Ei. Similarly, we

find that ai|ψ⟩ is and eigenstate with energy Eψ − Ei. Starting with just one
eigenstate this enables us to find several just by applying creation or an-
nihilation operators. A careful reader with a physical background might
recognise this construction from the harmonic oscillator, where this is es-
pecially powerful since it generates all the excited states from the ground
state [19].
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Chapter 6
Symmetries of second-quantised
Hamiltonians

Symmetries are essential in theoretical physics. They not only enable us
to analyse physical systems in a comprehensive manner, but often they
correspond to certain properties. Here we will investigate the symme-
tries of second-quantised Hamiltonians, starting with unitary transforma-
tions. Afterwards, important non-unitary symmetries are introduced, the
time-reversal, particle-hole, and chiral symmetry. It appears that the second-
quantised Hamiltonians which contain operators up to quadratic order
can be classified by these symmetries. In this chapter we shift entirely
from a mathematical viewpoint to one rooted in theoretical physics, which
has its influence on the style of writing. This might be a little awkward for
a reader with a mathematical background, but it will fit the expectations
of a physicist better.

6.1 Second-quantised Hamiltonians

In the formalism of second quantisation one-body operators are given by
Eq. 5.16, and hence a Hamiltonian of a non-interacting system can be writ-
ten as

Ĥ = ∑
ij

Ψ̂†
i hijΨ̂j, (6.1)

where Ψ̂†
i and Ψ̂j satisfy the canonical anticommutations relations as given

by Eq. 5.10, and hij ∈ R and so Ĥ is Hermitian [20]. Here h is also called
the first quantised or singel particle Hamiltonian.
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60 Symmetries of second-quantised Hamiltonians

The Hamiltonian of Eq. 6.1 is strikingly elegant, but quite restrictive
since there are no interactions. To introduce pairwise interactions two-
body operators should be added to the Hamiltonian. However, this new
terms cannot be expressed as the non-interacting Hamiltonian, making the
analysis much harder. Fortunately, there exists an approximation that en-
ables us to write particle number conserving interaction with one-body
operators, a mean field approximation. The main idea of this mean field ap-
proximation reduces the pairwise interaction to an interaction with an av-
erage field. Therefore the Hamiltonian of a mean field approximated sys-
tem with particle conserving pairwise interaction can be written as Eq. 6.1.
In the next Chapter 7 we will see an explicit example of such a mean field
approximation.

Besides particle number conserving interaction there exist interaction
that do not conserve the number of particles. The most most famous ex-
ample is the formation of Cooper pairs in superconductivity. The details
of superconductivity will be discussed in Chapter ?? in more depth, but
for now it is important to notice that this interaction can be approximated
by a mean field theory as well. This results in a Hamiltonian of the form

Ĥ = ∑
ij

Ψ̂†
i hijΨ̂j +

1
2 ∑

ij
Ψ̂†

i ∆ijΨ̂†
j +

1
2 ∑

ij
Ψ̂i∆∗

ijΨ̂j, (6.2)

where ∆ij ∈ C.
To overcome the problems of the violation of particle number conser-

vation that make it impossible to study the Hamiltonian in similar ways to
the non-interacting or mean field one from Eq. 6.1, a transformation can be
performed. A so-called Bogoliubov transformation introduces operators that
are a linear combination of creation and annihilation operators [5]. Those
operators preserve the number of Bogoliubons, a quasiparticle that partially
consists of a particle, something created by a creation operator, and par-
tially consists of a hole, something created by an annihilation operator.

The Bogoliubov transformation might be preformed by introducing a
Nambu spinor

χ̂† := (Ψ̂†
1, ..., Ψ̂†

N, Ψ̂1, ..., Ψ̂N). (6.3)

Using Eq. 6.3 we can write the Hamiltonian in Eq. 6.2 in a similar way as
Eq. 6.1

Ĥ =
1
2

χ̂†HBdGχ̂ =
1
2 ∑

ij
χ̂†

i (HBdG)ijχ̂j, (6.4)

where HBdG is called the (first quantised) Bogoliubov-de-Gennes (BdG) Hamil-
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6.2 Unitary symmetries 61

tonian which is given by

HBdG :=
(

h ∆
−∆∗ −h∗

)
. (6.5)

Notice that here the assumption that h is real can be dropped. One can
easily check that the same anticommutation relations hold for χ̂†

i and χ̂j

as for Ψ̂†
i and Ψ̂j. Therefore it is perfectly fine to only consider Hamilto-

nians of the form of Eq. 6.1, with the small adaption that hij ∈ C, for the
remainder of this chapter.

6.2 Unitary symmetries

In general a symmetry is a transformation of a system that preserve cer-
tain properties. This is a extremely vague statement, and therefore we will
look into a specific kind of symmetry. Consider a fermionic system that is
described by a second-quantised Hamiltonian Ĥ, Eq. 6.1, and the canon-
ical anticommutation relations. A system is symmetric under the action
of a unitary symmetry, if there exists a unitary matrix “representing” that
symmetry, U, that commutes with the Hamiltonian, i.e. ÛĤÛ−1 = Ĥ. For
the single particle Hamiltonian h this imposes the condition U†hU = h.

Since Û commutes with the Hamiltonian Ĥ, there exists a basis of our
Hilbert space such that both Ĥ and Û are block diagonal. Such a block is
called an irreducible representation of the symmetry [20].

One of the crucial roles of symmetries in quantum mechanics is that
they give rise to degeneracies. Let |ψ⟩ be an eigenstate of Ĥ with corre-
sponding energy E, and let Û be a symmetry of the Hamiltonian. Then we
obtain

ĤÛ|ψ⟩ = ÛĤ|ψ⟩ = EÛ|ψ⟩. (6.6)

So Û|ψ⟩ is an eigenstate of Ĥ with the same energy as |ψ⟩, which means
that E is a degenerate energy level, assuming that Û|ψ⟩ ̸= |ψ⟩. This im-
plies that degeneracies can be lifted by breaking a symmetry in a system
[61]. A famous example of this is the Zeeman splitting, where a magnetic
field breaks the rotational symmetry of the orbit of an atomic electron.

It is important to notice that, although we are not going in more depth
on how to find the corresponding matrix, there are differences in how to
obtain the unitary matrix between different symmetries. In some cases
one uses an infinitesimal generator, these are called continuous symmetries.
How these exactly relate to Lie algebras goes beyond the scope of this
thesis. Symmetries where the matrix is not obtained in that way are called
discrete symmetries [61].
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62 Symmetries of second-quantised Hamiltonians

6.3 Non-unitary symmetries

For thus far we have considered unitary transformations to block-diagonalise
the Hamiltonian. When all the unitary transformation that correspond to
symmetries of the Hamiltonian are performed we are left with irreducible
blocks. However, a natural question that arises is if this is all we can say
about the structure of the Hamiltonian. It turns out that there are three par-
ticular, non-unitary, symmetries which are essential to answer that ques-
tion: the time-reversal, the particle-hole/charge-conjugation, and the chi-
ral/sublattice symmetry.

6.3.1 Time-reversal symmetry

An important symmetry a system can posses in the so-called time-reversal
symmetry. This means that the system is invariant under the direction of
time, i.e. it does not matter if time goes backwards or forwards. Let us try
to understand the relation between the second-quantised Hamiltonian Ĥ
and this symmetry.

Define the time-reversal operator as

T̂ : t 7→ −t. (6.7)

This operator is the identity on the position operator and minus the iden-
tity on the momentum operator. Therefore the uncertainty principle im-
plies

T̂iT̂−1 = T̂[x̂, p̂]T̂−1 = −[x̂, p̂] = −i. (6.8)

Eq. 6.8 determines that the time-reversal operator should be expressed as
the combination of a unitary matrix, ÛT, and complex conjugation, K, i.e.

T̂ = ÛTK. (6.9)

Since T̂ is a symmetry of the second-quantised Hamiltonian Ĥ they should
commute. This imposes the following requirement on the single particle
Hamiltonian:

U†
Th∗UT = h. (6.10)

Furthermore, it might be interesting how the single particle Hamiltonian
transforms in k-space. For a system without spin it is derived in [20] that
h(k) transforms as

UTh(k)∗U†
T = h(−k). (6.11)

Let us conclude the discussion of the time-reversal symmetry with one
more observation. When T̂ is applied twice, there are two possibilities:
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6.3 Non-unitary symmetries 63

either T2 = id = 1 or T2 = −id = −1. These two possible squares of
the time-reversal operator lead to significant physical differences. It can
be shown that in systems that exhibit time-reversal symmetry Kramers’
degeneracy theorem applies if T2 = −1 and not if T2 = 1 [9], which states
that there exist pairs of time-reversed states that have the same energy.

6.3.2 Particle-hole symmetry

Another symmetry a system can exhibut is the particle-hole (PHS) or charge-
conjugation symmetry. For a system to posses this symmetry it means that
it is invariant under the change of particles and holes, i.e. the change of
creation and annihilation of particles.

The particle-hole operator is defined by

ĈΨiĈ−1 := (UC)
∗
ijΨ

†
j . (6.12)

Where the invariance of the canonical anticommutation relations imply
that UP is unitary. Since Ĉ is a symmetry, it commutes with Ĥ, and from
that it is clear that the single particle Hamiltonian transforms as

U†
Ch∗UC = −h. (6.13)

Therefore Ĉ is a antiunitary operator, and we can write Ĉ = ÛCK. This
form looks like the the time-reversal operator, and similarly C2 = ±1.

Moreover, the transformation of h in momentum space is similar, but
not the same, as in the case of time-reversal symmetry

UCh(k)∗U†
C = −h(−k). (6.14)

Physically this transformation makes sense, since with the creation of a
particle-hole pair one would expect two particles that are travelling in op-
posite directions, i.e. having momentum of opposite sign, and are coun-
terparts in terms of energy.

Finally, let us consider an important example of a Hamiltonian that
exhibits particle-hole symmetry, the (second quantised) Bogoliubov-de-
Gennes Hamiltonian, Eq. 6.4. The relation between χ̂† and χ̂ is given by

χ̂† = χ̂Tτx, (6.15)

where τx is the Kronecker product of the σx, a Pauli spin matrix, and the
identity of dimension N:

τx = σx ⊗ 1N =

(
0N 1N
1N 0N

)
. (6.16)
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64 Symmetries of second-quantised Hamiltonians

Using Eq. 6.15 to change χ̂† to χ̂ in Eq. 6.4, and vice versa, yields that

τxHBdGτx = −HBdG. (6.17)

Hence a Bogoliubov-de-Gennes Hamiltonian possesses the particle-hole
symmetry, with operator Ĉ = τxK.

Be careful that this symmetry is not a property of the system an sich,
but a symmetry imposed on the Hamiltonian by the Bogoliubov transfor-
mation. In Eq. 6.4 it seems that we double the degrees of freedom in the
system, which makes no physical sense. Fortunately, the imposed sym-
metry takes care of that apparent doubling of the degrees of freedom by
relating pairs of particles and holes, making half of the degrees of freedom
redundant.

Before considering the next symmetry, let us become aware of the fact
that the operation corresponding to the time-reversal and particle-hole
symmetry are unique up to unitary transformation, a proof of which can
be found in [44].

6.3.3 Chiral symmetry

Combining both time-reversal and particle-hole symmetry give rise to the
chiral symmetry, with corresponding operator

Ŝ := T̂ · Ĉ. (6.18)

The alternative combination of those operators, i.e. Ŝ := Ĉ · T̂, amounts to
a change of basis [20].

From our study of Ĉ and T̂ it follows that Ŝ commutes with the Hamil-
tonian Ĥ, and is antiunitary. However, with respect to the single particle
Hamiltonian the matrix that corresponding to the symmetry is S = US =
UT(UC)

∗, and thus it is unitary. On top of that it anticommutes with h

UShU†
S = UShU−1

S = −h (6.19)

both in real and momentum space. Because of that the eigenstates of h
come in positive-negative energy pairs [44].

The chiral symmetry is also know as the sublattice symmetry. When
a system can be divided into two sublattices that only interact with each
other, then such a system possesses the chiral symmetry, hence its alter-
native name. This immediately provides us with several examples of sys-
tems where the chiral symmetry is present.

Since S is unitary we solely have S2 = 1. With this piece of informa-
tion we can make a complete table of all the combinations of non-unitary
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6.3 Non-unitary symmetries 65

symmetries. The classes in this Table 6.1 have seemingly arbitrary names.
These classes refer to so-called Cartan classes from the first classification
of simple Lie algebras [14]. Going into the details here would go beyond
the scope of this thesis, and a reader interested in a mathematical treat-
ment of the classification of Lie algebras should turn to [23]. However,
the main idea is that one can study and classify Hamiltonians by consid-
ering the non-unitary symmetries that are present. How the symmetries
correspond to those classifying space is based on the early work of Wigner
[74] and Dyson [16] on random matrices, and the later work of Altland and
Zirnbauer [6], and Kitaev [32]. In the last two papers they discuss how cer-
tain topological properties of systems are the same in each class, and how this
can be explained by methods from K-theory. In the next chapter we will
discuss what those topological properties are in a little bit more depth, but
for a more comprehensive treatment one should consult Bernevig’s book
on topological insulators and superconductors [10].

Class Time-reversal Particle-hole Chiral
A 0 0 0
AI 1 0 0
AII -1 0 0
AIII 0 0 1
BDI 1 1 1
CII -1 -1 1
D 0 1 0
C 0 -1 0

DIII -1 1 1
CI 1 -1 1

Table 6.1: The classification of Hamiltonians of the form of Eq. 6.1 based on the
presence of time-reversal, particle-hole, and chiral symmetries. The names of the
classes refer back to the classification of simple Lie groups by Cartan [14]. A 0
indicates the absence of a symmetry, a -1 indicates the presence of that symmetry
with a corresponding operator squaring to -1, and a so does a 1 with a corre-
sponding operator squaring to 1.

Study the presence of these non-unitary symmetries in specific models
allows one to assign a symmetry class to those models. This relates them
to the broader physical context and provides insight about the behaviour
of the model.
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Chapter 7
The homogeneous Kitaev Chain

In this chapter we will explain what is meant by the topological properties
of last chapter. This is done by defining topologically protected properties
and topological phase transitions. It turns out that the topological phase of a
system can be determined by properties of the bulk according to the bulk-
boundary correspondence. Subsequently, we formulate an one-dimensional
superconducting chain that exhibits certain topologically protected prop-
erties, the Kitaev chain. To understand why this model is particularly in-
teresting, Majorana quasiparticles and the concept of braiding is introduced.
Here we propose braiding in the parameter space as an alternative for
braiding in real space. Eventually, we will investigate the topological
properties of the chain by considering the bulk spectrum

7.1 Topological phases

Let us consider a Hamiltonian H in which certain non-unitary symmetries
are present and which is gapped, i.e. the infimum of the set of positive
eigenvalues is larger than zero. In physics literature it is often said certain
properties, such as the symmetries, of such a Hamiltonian are topologi-
cally protected when small deformation of H do not effect those proper-
ties. We formalise that idea in the following definition.

Definition 7.1.1. Let H, H′ : X → Y be continuous Hamiltonians with X, Y
subspaces of Rn, and assume that H is gapped. Let P be a property of H
that is not a property of H′. Then P is said to be topologically protected if for
every homotopy K : X × [0, 1] → Y with K(0) = H and K(1) = H′ there
exists a t ∈ (0, 1] such that K(t) is not gapped.
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Put differently, a property of a gapped Hamiltonian is topologically
protected if property cannot be altered by continuously transforming the
Hamiltonian without closing the gap. It turns out that the non-unitary
symmetries from Chapter 6 are topologically protected properties [32].

When there is a change in topologically protected properties in a sys-
tem we call this a topological phase transition. We would like to describe
such phase transitions in a similar way as “classical” phase transition where
a symmetry changes. Before we can introduce “topology” in the world of
phase transitions in this way, we need to discuss the classical theory of
phase transitions developed by Landau [37]. We will assume previous
knowledge on this topic as far as discussed in David Tong’s lecture notes
[71] or Landau’s and Lifshitz’ course on theoretical physics [36]. In Lan-
dau theory a second order (continuous) or first order phase transition is
characterised by a so-called order parameter, i.e. a parameter that is zero
in the one phase and non-zero in the other phase. The order parameter
often, but not necessarily, indicates some sort of order in a material such
as magnetic susceptibility in a Ising model for ferromagnetism.

The simple concept of Landau theory, and its generalisations, e.g.
Ginzburg-Landau theory [38], and its enormous successes in understand-
ing and classifying phase transitions, make it a widely applicable method
to describe phase transitions. Unfortunately, it turns out it is not always
possible to define an order parameter in the conventional manner that con-
tinuously changes from a zero to a non-zero value at the transition. It
turned out that there are phase transitions, those where topologically pro-
tected properties change, where the corresponding order parameter is a
so-called topological quantum number, e.g. in the case of the quantum Hall
effect [69]. Shortly, we will see some examples of such topological order
parameters. By use of those examples it will be made clear what is “topo-
logical” about those quantum numbers, this hopefully clears the skies of
the mathematicians that watch the physicist’s use of the word “topologi-
cal” with Argus’ eyes.

7.1.1 Topological quantum numbers

We will consider three of the most important topological order parameters,
how they relate to the Hamiltonian of the system and the mathematical
notion of topology.
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7.1 Topological phases 69

Chern numbers

Let us consider a principal G-bundle π : P → M where G = GL(n, C),
that is endowed with a connection A and a curvature F = DA. Together
with a local section s this will give rise to a local curvature F = s∗F . For
k ∈ {0, ..., n} we define the kth Chern form as

det
(

1 − i
2π

F
)
=:

n

∑
k=0

ck(F). (7.1)

It turns out that these forms give rise to a well-defined integral valued
integral for certain bundles [15]. Let our base space M be an oriented
compact manifold of dimension 2n, then we can define the Chern number
of the bundle as

Ch(M) =
∫

M
cn(F). (7.2)

In a physical case we can, given a suitable Hamiltonian, construct a
principal G-bundle with a spectral bundle as its bundle space, and endow
it with the Berry-Simon connection. In a certain gauge this naturally gives
rise to a local curvature and therefore a Chern number, assuming that the
base space is appropriate to define a Chern number.

One of the most famous examples of a phenomenon where the Chern
number plays a role as quantum order parameter is the quantum Hall ef-
fect. Here the topological invariant corresponds to the Hall conductance
in units of e2/h [69].

Winding number

The idea behind the winding number is that it assign a number to a smooth
function on a smooth manifold. This can be defined in the language of
differential geometry.

Definition 7.1.2. Let F : X → Y be a smooth map between compact,
connected, and orientable n-dimensional manifolds and a volume form
ω ∈ Ωn(Y). The Brouwer degree of F is defined by∫

X
F∗ω =: deg(F)

∫
Y

ω. (7.3)

For X = Y = Sn this Brouwer degree is known as the winding number of F.

It happens that deg( f ) ∈ Z, and that it is independent of the choice of
the volume form ω.

This topological quantum number is often encountered in the study of
systems with chiral symmetry [32]. In such systems the winding number
often indicate the number of edge states.
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Sign of the Pfaffian

The definition of the following topological quantum number is based in
differential geometry, but depends solely on our finite-dimensional Hamil-
tonian matrix. Let H̃ = (hij)

2n
i,j=1 be an antisymmetric 2n × 2n-matrix.

Then the Pfaffian of H̃ is defined by

pf(H̃) =
1

2nn! ∑
σ∈S2n

sgn(σ)∏ hσ(2i−1)σ(2i), (7.4)

where S2n is the symmetric group of degree n, and sgn is the sign map.
Shortly we will see what properties of the Pfaffian are such that is an ex-
cellent candidate for a topological order parameter. The property of the
Pfaffian that we want to isolate is its sign. Therefore we define the follow-
ing topological quantum number

Q(H̃) := sign(pf(iH̃)). (7.5)

A curious reader might carefully ask if this is well-defined, since we
take the sign of a possibly complex number. To explain this we have to
shine some light on the kind of matrices that we will encounter when we
want to calculate its Pfaffian. It turns out that this will often be Bogoliubov-
de-Gennes Hamiltonians. Although it goes beyond the scope of this thesis,
this can be explained by considering at the classes described by the sym-
metries in Table 6.1. One can assign a certain topological order parameters
to symmetry class, and the sign of the Pfaffian suits classes in which the
particle hole symmetry is present.

Starting from the general formulation of the BdG Hamiltonian in Eq. 6.5
we can apply a unitary transformation to obtain an anti-symmetric matrix
that contains the same physical information. The transformation yields
the following expression

H̃BdG =
1
2

(
1 1

i1 −i1

)
HBdG

(
1 −i1
1 i1

)
=

1
2

(
1 1

i1 −i1

)(
C S

−S∗ −C∗

)(
1 −i1
1 i1

)
=

1
2

(
C − C∗ + S − S∗ −i(C + C∗) + i(S + S∗)

i(C + C∗) + i(S + S∗) C − C∗ − (S − S∗)

)
. (7.6)

The Hamiltonian H̃BdG is antisymmetric, because ∆ is antisymmetric, H −
H∗ is antisymmetric, and H + H∗ is symmetric. The latter two statements
follow from the fact that H is Hermitian. It is possible, but cumbersome,
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7.2 Formulation of the model 71

to check that the Pfaffian of iH̃BdG is indeed real.

The work of Kitaev [32], among others, showed how the topologi-
cal quantum numbers are related to the symmetry classes in Table 6.1.
Since one can prove that each the topological quantum numbers is homo-
topy invariant, it is not possible to continuously deform the Hamiltonian
to change the topological quantum numbers, while preserving the sym-
metries present in the Hamiltonian. Otherwise that deformation of the
Hamiltonian would be a suitable homotopy, which contradicts the homo-
topy invariance of the values.

One may wonder what the physical quantities or properties are that
correspond to these order parameters. In the case of the Chern number
an example is already given. The other two parameters often occur in
system called topological insulators, insulators in which topological phase
transitions are present, or topological superconductors, superconductors in
which topological phase transitions are present. In this systems the wind-
ing number or the sign of the Pfaffian indicate the number of or the exis-
tence of so called edge states. Such edge states do not occur in the bulk
spectrum, i.e. the spectrum that is obtained when considering an infinite
size system without defects, but there existence is suggested by the topo-
logical order parameter. This is called the bulk-boundary correspondence,
which is thoroughly discussed from a mathematical perspective for topo-
logical insulators in [57].

For reasons that will become clear in the remainder of this chapter,
we are interested in studying superconducting toy models that do exhibit
such edge states. Therefore we will shift our focus to superconducting
models with topological phase transitions.

7.2 Formulation of the model

Although the role of topology in the quantum Hall effect was know since
the last decades of 20th century, it took until this millennium before super-
conductors where predicted that were topological non-trivial, i.e. in which
topological phase transitions were present. The first prediction of such a
system was by Read and Green [58], and that involved a two-dimensional
system. Within a year Kitaev proposed a one-dimensional system. That
system was a tight-binding and mean field approximation of a homoge-
neous chain of spinless fermions with p-wave superconductivity [33], the
so-called Kitaev chain. Let us consider the second quantised Hamiltonian
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of chain of length N with open boundary condition

Ĥ(µ, t, ∆) = −
N

∑
j=1

µc†
j cj −

N−1

∑
j=1

t(c†
j cj+1 + c†

j+1cj)+
N−1

∑
j=1

(∆c†
j c†

j+1 +∆∗cj+1cj),

(7.7)
where µ ∈ R is the chemical, or on-site, potential, t ∈ R the hopping ampli-
tude, and ∆ ∈ C the superconducting gap. Be aware of the fact that we can
take ∆ to be real, since the complex phase can be absorbed by a transfor-
mation of the operators.

Before we are being carried away by the beautiful properties that this
system has and by attempts to enrich it even further, we will stand still
with the physical meaning of each of the terms and how this toy model
came to be.

In a superconducting chain of fermions we have to consider three terms.
The first is an on-site or chemical potential that accounts for the energy
that is needed to add a particle to your system. In the formalism of second
quantisation this can be written down as the occupation number operator
that subtracts a certain chemical potential from the Hamiltonian for every
particle.

Secondly, interactions have to be considered. To obtain a Hamilto-
nian which only has pairs of creation and annihilation operators, such
as Eq. 6.1, a mean field theory is needed. In a chain of fermions in the
tight-binding approximation where there are a distinct number of sites
the Coulomb interaction, that is physically present, can be described by a
hopping term. This assign an energy to a particle jumping from one site to
another. In the tight-binding approximation it is reasonable to assume that
only nearest-neighbour interactions occur, since the electron are bound
tightly to their atoms or, more general, sites.

Thirdly, we have to include superconductivity. It goes beyond the
scope of this thesis to discuss the theory of superconductors in much depth,
but we need to point out some of the key-features. The mainstream de-
scription of superconductors is the BCS-theory, which is comprehensively
introduced in chapter 3 of Tinkham’s book [70]. The relevant mechanism
is the formation of pairs, so-called Cooper pairs, by conducting electrons in
a superconductor. There are different ways the electron can form pairs,
these depend on the orbitals which give the names s-, d-, p-, and f -wave
superconductivity. In the first two mechanisms the Cooper pairs are sin-
glet states, i.e. pairs of electrons with opposite spin, and in the latter two
they are triplet states, i.e. pairs of electrons with aligned spin. The de-
tails are not too relevant here, but let us notice that in a chain of spinless
fermions only fermions with the same spin, or aligned spin for that matter,
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can exist.
Although it might not be immediately clear, this results in problems

in experimental implementing this chain, since the existence of p-wave
superconductivity has not yet been experimentally discovered. In theory
there is nothing that prohibits this kind of superconductivity from occur-
ring, but in comparison to the mainstream s-wave superconductivity it is
rare and not dominant. Only recently strong evidence for p-wave super-
conductivity was found in two-dimensional systems [2], [21], [27].

Hopefully careful physics reader have survived until here reading about
“spinless fermions”, which is a contradictio in terminis, since fermions
have half-integer spin. This leaves us with the problem that the Kitaev
cannot be simply implemented in experiments. An idea to overcome this
problem is isolate one spin, for example by applying a magnetic field such
that the energy splitting of the different spin states due to the Zeeman-
effect is sufficiently large. This is indeed part of the solution, but more
adjustments need to be done. In this thesis we are not too much interested
in implementing theoretical models in experiments, and therefore we will
not go into much depth here. However, it is indeed possible to construct
a Hamiltonian that mimics the Kitaev chain, and that is physical feasible
by a semi-conducting wire in contact with a s-wave superconductor, this
so-called one-dimensional Rashiba nanowire is discussed in more depth
here [45]. This concludes the discussion of the terms in the Hamiltonian of
the Kitaev chain. Let us now introduce a phenomenon, which makes the
this chain especially interesting.

7.2.1 Majorana (quasi)particles

In 1937 Ettore Majorana predicts that uncharged fermions can be described
by a real wave function, and therefore there are their own antiparticles
[47]. A particle that is described by such a wave function, i.e. a particle
that is its own antiparticle, is called a Majorana particle. Since we con-
sider quasiparticles as states described with one wave function that are
a linear combination of elementary particles, but not elementary particles
themselves, we call quasiparticles that are their own antiparticles Majorana
quasiparticles.

Until now we have worked with a formulation of the second quantisa-
tion that uses the creation and annihilation operators, c†

i resp. ci, as a basis
of the operator algebra that is present on the background. Of course this
is not the only useful choice of a basis. We can define a basis of operators
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such that every element in the basis is self-adjoint, namely

γi,1 := c†
i + ci; (7.8)

γi,2 := i(c†
i − ci). (7.9)

Since self-adjoint operators describe particles that are their own antipar-
ticle, we call these Majorana operators. It is immediately clear that these
operators are indeed self-adjoint

γ†
i,1 = c††

i + c†
i = ci + c†

i = γi,1;

γ†
i,2 = −i(c††

i − c†
i ) = i(−ci + c†

i ) = γi,2.

Using the anti-commutation relations of the creation and the annihilation
operators, Eq. 5.7, 5.8, and 5.9, we obtain the following anti-commutation
relations for fermions:

{γi,1, γj,1} = 2δij; (7.10)

{γi,2, γj,2} = 2δij; (7.11)

{γi,1, γj,2} = 0. (7.12)

It immediately follows that γ2
i,1 = γ2

i,2 = 1. We will see that these rela-
tions make it possible to represent another kind of algebra with Majorana
operators than with the original creation and annihilation operators. Be-
fore diving into this mathematical interpretation of Majorana operators,
we will consider a unique property of those operators which has to do
with changing the order of the corresponding quasiparticles in a chain.

7.2.2 Physical braiding

Here we will explore the so-called non-abelian exchange statistic of Majo-
rana quasiparticles. It turns out that order of exchanging Majorana quasi-
particles matters, both one-dimensional systems [4] and two-dimensional
systems [26].

Let us first consider the exchange of Majorana quasiparticles, also called
braiding, in a 2D-system. Although 2D-systems are of minimal relevance
to the Kitaev chain, the concept of braiding works similar, and an explana-
tion in 2 dimensions is more intuitive. Therefore we follow the discussion
about two-dimensional braiding in the review paper of Leijnse [40]. In a
2D p+ x ± ipy superconductors, a specific case of p-wave superconductiv-
ity in 2 dimensions, Majorana quasiparticles are present at vortices where
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the superconducting gap vanishes [58]. Around such a vortex the super-
conducting gap is unambiguously defined, except at a branch cut where
the gap changes by 2π. Although the exact position of the branch cut
can be chosen freely, when two Majorana quasiparticles are exchanged, as
schematically shown in Fig. 7.1, one of them certainly crosses the branch
cut of the other, acquiring a phase of −1.

Figure 7.1: When two Majorana particles γi and γj centred at vortices in a two-
dimensional superconductor, depicted by red dots, are interchanged, one of them
crosses the branch cut at the dashed line.

Because of the fact that the particles are indistinguishable, the exchange
operation can be summarised by

γi 7→ −γj (7.13)

γj 7→ +γi. (7.14)

When one takes into account that other vortices are not related to this ex-
change, we can define an operator that is unique up to choice of the branch
cut and the choice of the exchange being (anti)clockwise. The transforma-
tion can be described by

γk 7→ BijγkB†
ij, (7.15)

where the braiding operator is given by

Bij =
1√
2
(1 + γiγj). (7.16)
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In the case of two vortices, and hence two Majorana quasiparticles,
there is just one braiding operator. For a 2n-fold degenerate ground state
where n > 1 there exist more braiding operators, and this is where the
interesting effect occurs. For exchanges where at least one quasiparticle is
shared we obtain the commutation relation

[Bi−1,i, Bi,i+1] = γi−1γi+1, (7.17)

and exchanges that take place on different Majoranas do commute.
It turns out that this braiding works similar in 1D systems. Even in a

1D nanowire that is used to experimentally implement the Kitaev chain
braiding is possible [4]. Of course there are differences in the intuition and
practicalities of this 1D braiding. Moving particles “around” each other is
not possible in a chain. Therefore we have to find alternatives.

In real space the main idea is to braid different chains that are close
together. This protocol is thoroughly studied, but yet there exists no ex-
perimental realisation. A neat discussion of braiding in real space can be
found in review papers of Beenakker [7, 8].

For an alternative way of braiding one has to make the observation
that braiding eventually boils down to the addition of a phase or a unitary
transformation. In this way braiding can be obtained via the parameter
space. When a system is in a topological non-trivial phase, there exists
a gap and edge states, we can perform an adiabatic loop and define a
Wilczek-Zee connection. When the relevant subspace of parameter space
is not simply connected these loops result in a non-trivial Wilczek-Zee fac-
tor. In the remainder of this thesis we will aim to perform such braiding in
the parameter space.

Finally, with this braiding it is possible to store information in a set
of Majorana quasiparticles. In this way Majorana quasiparticles are pro-
posed as building blocks for quantum computations [8].
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7.2.3 Mathematical braiding

In section 7.2.2 we have discussed the concept of braiding from a physi-
cal point of view. To obtain a broader understanding of braiding we will
roughly follow the discussion by Kauffman [31] to study the same concept
from a mathematical point of view.

Definition 7.2.1. Let Bn be a group generated by σ1, ..., σn−1 called elemen-
tary braids satisfying the following relations:

σiσj = σjσi, for |i − j| > 1; (7.18)

σiσi+1σi = σi+1σiσi+1, for i = 1, ..., n − 2. (7.19)

This group is called the Artin braid group (for n strands).

In trying to understand this group we might see Bn as a group of ac-
tions on n strands that are held on one side, where the elementary braid σi
corresponds to crossing the ith under the (i + 1)th strand.

In this interpretation the relation of Eq. 7.18 is perfectly in line with
our naive idea of braiding, since the order of braiding strands that do not
overlap should not matter. The relation is a little harder to see visualise
directly.

From this intuition behind braiding it is reasonable to ask if it is also
possible to braid the first and the last strand, physicist would ask if we
could “apply periodic boundary conditions”. This gives rise to the circular
Artin braid group.

Definition 7.2.2. Let Bc
n be an Artin braid group for n strands, and impose

the extra relation on the elementary braids

σnσ1σn = σ1σnσ1. (7.20)

The group Bc
n is called the Artin braid group (for n strands).

A natural step in studying this groups is studying its relation with cer-
tain vector spaces or algebras, i.e. studying representations of the group.
We have already seen the definition of an associative algebra when study-
ing the properties of creation and annihilation operators. For this group
however we will first define a specific kind of algebras that will turn out
to bridge the gap from braiding groups to Majorana fermions.
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Definition 7.2.3. Let m, n ∈ Z≥0 and consider the vector space Rm+n to-
gether with a degenerated quadratic form · : Rm+n ×Rm+n → Rm+n. A
(real) Clifford algebra is the associative algebra over R by m+ n orthonormal
basis elements {ei}m+n

i=1 such that the following relations are satisfied

ei · ei = 1, for 1 ≤ i ≤ m; (7.21)
ei · ei = −1, for m < i ≤ m + n; (7.22)
ei · ej = −ejei, for i ̸= j. (7.23)

The Clifford algebra as defined above is denoted by Cl(m, n). From
Eq. 7.23 it follows that it is only necessary to look at unordered combina-
tions of generators ei to construct basis vectors for the Clifford algebra as
vector space, and for that it is clear that Cl(m, n) is a vector space over R

of dimension 2m+n. Furthermore, we say that an element v ∈ Cl(m, n) that
can be constructed as a linear combination of unordered pairs of k unique
generators ei has grade k, and this is well-defined because of the remark
above.

This enables us to write the real Clifford algebra Cl(m, n) as a direct
sum of subspaces of the same grade. When the subspace of Cl(m, n) of
elements of grade k is denoted by Mk, then it holds that

Cl(m, n) = M0 ⊕ M1 ⊕ · · · ⊕ Mp+q. (7.24)

This decomposition shows a lot of structure that might be hidden in other
formulation of the Clifford algebra.

A subspace of the Clifford algebra that plays an important role in the
remainder of this section is the second Clifford algebra defined as the sub-
space of linear combinations of elements of even grade, i.e.

Cl+(m, n) := M0 ⊕ M2 ⊕ · · · . (7.25)

Equipped with the basis definition of real Clifford algebras we can again
involve Majorana operators in our discussion.

Let us consider n pairs of Majorana operators γi,1, γi,2, and consider
the real Clifford algebra Cl(2n, 0). Now we can do a similar observation
as with the creation and annihilation operators. Because γ2

i,1 = γ2
i,2 = 1

and different operators anticommute, we can send generators of Cl(2n, 0)
to Majorana operators. Just as we could represent the abstract algebra de-
fined by the relations in Eq. 5.10 with creation and annihilation operators,
we can represent Cl(2n, 0) with Majorana operators. The algebra defined
by the anticommutation relations in Eq. 5.10 is often called a fermionic al-
gebra, in the same spirit we could (unconventionally) say that Cl(2n, 0) is
a Majorana algebra.
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Finally we will return to braiding and to bridge the gap between Majo-
ranas and braiding with Clifford algebras. Before stating the main theorem
define Lv : Cl(k, 0) → Cl(k, 0) left multiplication by v ∈ Cl(k, 0) as the map
defined by Lv(w) = v · w, where · is the quadratic form associated to the
Clifford algebra. It is easy to see that this map is linear and well-defined.

Theorem 7.2.1 (Clifford Braiding Theorem). Let k ∈ Z≥0, Bc
k the circular

Artin braid group of n strands and Cl(k, 0) a real Clifford algebra. Then Bc
k can

be represented by a linear map φ : Bc
k → Aut(Cl(k, 0)) defined by

σi 7→ L 1√
2
(1+ei+1ei)

, for 1 ≤ i < k; (7.26)

σk 7→ L 1√
2
(1+e1ek)

. (7.27)

Proof. Using the relations Eq. 7.21 and 7.23 the defining properties of ele-
mentary braids can be checked.

It is important to keep in mind that in the theorem above the Clifford
algebra Cl(k, 0) is consider as a 2k dimensional vector space, and therefore
the representation is a group representation.

Notice that we only use elements of the second Clifford algebra Cl+(k, 0),
so we could even conclude that Bc

k can be represented in Cl+(k, 0). More-
over, it is important to stress that this is not the only possible represen-
tation of Bc

k, since it can be shown that the elementary braids here are of
order 8 [31], and in the definition of a (circular) Artin braid group that is
not required for those braids. That is a property of this representation that
is a little counter intuitive, since in our naive idea of braiding the operation
of crossing two strands has infinite order.

Nevertheless, we can braid Majoranas by identifying them with the
generators of a real Clifford algebra Cl(2n, 0), and then identify elemen-
tary braids with those (multi)vectors of Majorana operators according to
Eq. 7.26, and 7.27. This construction ultimaterly connects the notion of
Majorana operators with braiding.

Although this is a great result it, such braiding of Majoranas is not
enough to obtain a complete set of operators to carry out all unitary oper-
ations to some precision. Hence Majoranas and braiding are not a suitable
candidate for quantum calcultions, especially the possibilities with Majo-
ranas in 1D systems are limited [31]. On the contrary, the option to use
Majoranas and braiding for quantum memory is still on the table.

Furthermore, remember that they seldom mention the Artin braid group,
when they discuss braiding. Often they would just refer to some non-
trivial holonomy group as treated in section 7.2.2.
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7.2.4 Majorana (quasi)particles in a Kitaev chain

Provided with the homogeneous Kitaev chain, Eq. 7.7, we start our search
for the occurrence of Majorana quasiparticles. Firstly, we look into a spe-
cific set of parameters, t = |∆| = 0. Using Eq. 7.8 and Eq. 7.9 the expres-
sion from Eq. 7.7 can be rewritten as

Ĥ(µ) =
i
2

µ
N

∑
j=1

γj,1γj,2, (7.28)

where we have omitted a constant depending on µ. It is discussed in the
book of Altland and Simons [5] that this constant does not change the
properties of the operator as those are essentially fixed by there commuta-
tion relations. Immediately we observe that the excitations in this system,
i.e. the eigenvectors of this Hamiltonian, are paired Majorana operators,
and they have energy ±|µ|/2. All these state are local instead of edge
states.

𝟏,𝟏 𝟏,𝟐 𝟐,𝟏 𝟐,𝟐 𝟑,𝟏 𝟑,𝟐 𝟒,𝟏 𝟒,𝟐 𝟓,𝟏 𝟓,𝟐 𝟔,𝟏 𝟔,𝟐

𝟏,𝟐 𝟐,𝟏 𝟐,𝟐 𝟑,𝟏 𝟑,𝟐 𝟒,𝟏 𝟒,𝟐 𝟓,𝟏 𝟓,𝟐 𝟔,𝟏𝟏,𝟏 𝟔,𝟐

Figure 7.2: The upper chain depicts a Kitaev chain of 6 sites where all the Majo-
rana operators are paired locally at the same site. This system is in a topological
trivial phase. The lower chain depicts the same system where non-local pairing
of Majorana operators is present, the red dots form one physical edge state. This
system is in topological non-trivial phase.

Let us now consider another set of parameters, namely t = |∆| and
µ = 0. If ∆ is assumed to be real the homogeneous Kitaev Chain, Eq. 7.7,
can be rewritten as

Ĥ(t) = it
N−1

∑
j=1

γj+1,1γj,2. (7.29)

A careful reader directly notices that γ1,1 and γN,2 do not occur in this
Hamiltonian. This leaves us with a zero-energy state γ1,1γN,2 called a Ma-
jorana Zero Mode or MZM. A schematic depiction of this state can be found
in Fig. 7.2.
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7.3 Analytically solving the bulk spectrum 81

It is obvious that this state is an edge state, because both the Majorana
operators are located at the different ends of the chain, and the this eigen-
state is an effect of the open boundary conditions as periodic boundary
conditions would include γ1,1γN,2 in Eq. 7.29.

One should be aware about the fact that in a finite-sized system with
different t and ∆ or non-zero chemical potential there are no states that
exists exactly at the edge. The topologically protected edge states with
zero-energy that will occur will decay rapidly over the chain. So in a way
MZMs are ill-defined in that sense. Nevertheless, we will refer to those
edge states satisfying Eq. 7.8 and Eq. 7.9 as MZMs.

Now we have seen the first occurrence of MZMs in the homogeneous
Kitaev chain, but only for a specific parameter regime. Shortly we will
study the existence of these states for more general combinations of pa-
rameters, combinations where both the chemical potential and the hop-
ping are nonzero.

7.3 Analytically solving the bulk spectrum

Before we are able to study the general existence of MZMs as mentioned
above, we need to study the Hamiltonian of the chain in more depth and
rewrite Eq. 7.7 is such a way that we can investigate the bulk and subse-
quently the bulk-boundary correspondence.

The first step is to obtain a Hamiltonian of the form of Eq. 6.1 from
Eq. 7.7. We will consider this as a special case of an even more general
Hamiltonian, an example of an inhomogeneous Kitaev chain which is de-
scribed by the Hamiltonian

Ĥ(µj, tj, ∆j) := −
N

∑
j=1

µjc†
j cj −

N−1

∑
j=1

tj(c†
j cj+1 + c†

j+1cj)+
N−1

∑
j=1

(∆jc†
j c†

j+1 +∆∗
j cj+1cj),

(7.30)
where µj ∈ R the chemical potential on site j ∈ {1, ..., N}, and tj ∈ R

and ∆j ∈ C the hopping potential respectively the superconducting gap
between site j and j + 1 for all j ∈ {1, ..., N − 1}.

This Hamiltonian can be transformed by a Bogoliubov transformation
transformation. Let us use a Nambu spinor

χ̂† = (c†
1, ..., c†

N, c1, ..., cN), (7.31)

which can be used to obtain the Bogoliubov-de-Gennes Hamiltonian ac-
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cording to Eq. 6.4. The BdG Hamiltonian reads

HKC =

(
C S

−S∗ −C∗

)
, (7.32)

where

C′ =



−µ1 −t1 0 0 · · · 0 0
−t1 −µ2 −t2 0 · · · 0 0

0 −t2 −µ3 −t3 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · −µN−1 −tN−1
0 0 0 0 · · · −tN−1 −µN


(7.33)

and

S =


0 −∆1 · · · 0 0

∆1 0 · · · 0 0
...

... . . . ...
...

0 0 · · · 0 −∆N−1
0 0 · · · ∆N−1 0

 (7.34)

the matrices that capture the model dependent parameters. This enables
use to rewrite Eq. 7.30 in the following way

Ĥ(µj, ti, ∆j) =
1
2

χ̂†HKCχ̂, (7.35)

and notice once again that this equality is only true up to a constant. How-
ever, as we have seen above, and as discussed in [5], this does not change
the physical properties of the Hamiltonian.

Although the formulation of the Kitaev chain in Eq. 7.32, 7.33, 7.34, and
7.35 is not too insightful, it enables us to numerically calculate the spec-
trum and the eigenstates including the edge states. We will make elabo-
rate use of that through this thesis and the investigation of this model and
similar ones in Chapter 8, 9, and 10. For certain parameter regimes the
explicit solutions of the homogeneous variant of this matrix are known
[41].

To obtain more insight in this model we will calculate the energy spec-
trum of the bulk. Let us assume periodic boundary conditions, and intro-
duce the Fourier transform of the creation and annihilation operators

c†
j :=

1√
N

∑
k

e−ijkdc†
k ; (7.36)

cj :=
1√
N

∑
k

eijkdck, (7.37)
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where d is the lattic constant, d†
k the creation operator in k-space, dk the an-

nihilation operator in k-space, and the summation is over k ∈ [−π/d, π/d]
where the values of k are equally spaced. Transforming the term with the
chemical potential leaves us with

− µ

N ∑
j

∑
k

∑
k′

eidk(k′−k)d†
kdk′ = − µ

N ∑
k

∑
k′

δkk′d†
kdk′ = −µ ∑

k
d†

kdk, (7.38)

and the term with hopping amplitude with

− t
N ∑

j

(
∑
k

∑
k′

eijd(k′−k)e−idkd†
kdk′ + ∑

k
∑
k′

eijd(k′−k)eidk′d†
kdk′

)

= − t
N ∑

k
∑
k′

δkk′
(

eidk′ + e−idk
)

d†
kdk′ = −2t ∑

k
cos(kd)d†

kdk. (7.39)

For the superconducting term we initially apply the same transformation
yielding

1
N ∑

j
∑
k

∑
k′

(
∆e−idk(j+1)d†

ke−idk′ jd†
k′ + ∆∗eidkjdkeidk′(j+1)dk′

)
=

1
N ∑

j
∑
k

∑
k′

(
∆e−idke−idk(k+k′)d†

kd†
k′ + ∆∗eidk′eidk(k+k′)dkdk′

)
= (∗). (7.40)

Unfortunately, we do not immediately recognise the Kronecker delta. How-
ever, the ks and k′s are summed over equally spaced values. Making use
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of that fact and replacing k′ by −k′ in Eq. 7.40 we obtain

(∗) = 1
N ∑

j
∑
k

∑
k′

(
∆eidkeijd(k−k′)d†

−kd†
k′ + ∆∗e−idk′eijd(k−k′)dkd−k′

)
=

1
N ∑

k
∑
k′

(
∆δk′keidk′d†

−kd†
k′ + ∆∗δk′ke−idkdkd−k′

)
= ∑

k

(
−∆eidkd†

kd†
−k + ∆∗e−idkdkd−k

)
=

∆
2

(
∑
k

(
eikdd†

−kd†
k − e−ikdd−kdk

)
+ ∑

k

(
−eikdd†

kd†
−k + e−ikddkd−k

))

=
1
2

(
∑
k

(
∆e−ikdd†

kd†
−k − ∆∗eikddkd−k

)
+ ∑

k

(
−∆eikdd†

kd†
−k + ∆∗e−ikddkd−k

))

=
1
2 ∑

k

(
−∆(eikd − e−ikd)d†

kd†
−k + ∆∗(eikd − e−ikd)d−kdk

)
=

1
2 ∑

k

(
−2i∆ sin(kd)d†

kd†
−k + 2i∆∗ sin(kd)d−kdk

)
. (7.41)

Combining Eq. 7.38, 7.39, and 7.41 we obtain the following Fourier trans-
form of the Kitaev chain

ĤKC(k) =
1
2 ∑

k
ψ̂†

k

(
−µ − 2t cos(kd) −2i∆ sin(kd)

2i∆∗ sin(kd) µ + 2t cos(kd)

)
ψ̂k, (7.42)

where ψ̂†
k := (c†

k , c−k) is a Nambu spinor. Notice that this is the Fourier
transform of Eq. 7.7, up to an unimportant constant.

The matrix in Eq. 7.42 is the Bogoliubov-de-Gennes Hamiltonian cor-
responding to the chain in k-space, and its (non-negative) eigenvalues
give the energies of the elementary excitations of the system. be aware
of the fact that it seems that this Hamiltonian allows excitations of nega-
tive energy. Those correspond to the excitations of holes, and therefore the
particle-hole symmetry instruct that they always come in pairs.

To obtain these energies we consider the characteristic polynomial of
the BdG Hamiltonian, where we again used our assumption that ∆ ∈ R:

(ε + µ + 2t cos(kd))(ε − (µ + 2t cos(kd))− 4∆2 sin2(kd) = 0 (7.43)

ε2 − (µ + 2t cos(kd))2 − 4∆2 sin2(kd) = 0. (7.44)

This yields the excitation energies

ε(k) = ±
√
(µ + 2t cos(kd))2 + 4∆2 sin2(kd). (7.45)
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7.3 Analytically solving the bulk spectrum 85

We observe that for µ = 0 there is a gap in the energy spectrum of 2|t|
between the lowest energy bulk state and zero-energy if |t| ≤ |∆| and 2|∆|
if |∆| < |t|. Furthermore, it is clear that in the case of |µ| = 2|t| the gap
closes, while for all |µ| ∈ [0, 2|t|) and ∆ ̸= 0 there is a gap present.
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Figure 7.3: (a) The analytic energy spectrum of the infinite homogeneous Kitaev
chain with periodic boundary conditions in k-space for the parameters µ = 1, t =
1, and ∆ = 1. (b) The numerical energy spectrum of the homogeneous Kitaev
chain with 50 sites and open boundary conditions for the parameters µ = 1, t = 1,
and ∆ = 1. These are the eigenvalues of the BdG Hamiltonian from Eq. 7.32. This
spectrum exhibits two energies of order 10−15 corresponding to edge states.

Let us compare the bulk spectrum with the spectrum that is obtained
by numerically diagonalising Eq. 7.32. The calculated spectra are shown
in Fig. 7.3 and Fig. 7.4 for different sets of parameters. Although both an-
alytical and numerical spectra look quite similar, we notice that Fig. 7.3b
exhibits energies which correspond to edge states, and which are approx-
imately zero, while Fig. 7.4b does not. In the bulk this can be observed by
the fact that the parity of the the electrons in the bulk changed. The first
one is in the topological non-trivial phase with a sign of the Pfaffian which
is 1, while the second one is in a topological trivial phase where the a sign
of the Pfaffian is valued -1. The topological phase transition happened at
the closing of the gap, |µ| = 2|t|.

We will conclude this chapter with some remarks on the symmetries
of the homogeneous Kitaev chain. We have already seen that the particle-
hole symmetry is present after the Bogoliubov transformation, with the
corresponding operator Ĉ = τxK. Hence the Kitaev chain exhibits PHS
with C2 = 1. Moreover, the model described a chain of spinless fermions,
and therefore we see that for a time-reversal operator we can take the con-
jugation operator, i.e. T = K, which commutes with the real Hamiltonian
Ĥ. So the Kitaev chain is time-reversal symmetric with T2 = 1. Since we
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Figure 7.4: (a) The analytic energy spectrum of the infinite homogeneous Kitaev
chain with periodic boundary conditions in k-space for the parameters µ = 3, t =
1, and ∆ = 1. (b) The numerical energy spectrum of the homogeneous Kitaev
chain with 50 sites and open boundary conditions for the parameters µ = 3, t = 1,
and ∆ = 1. These are the eigenvalues of the BdG Hamiltonian from Eq. 7.32.
This spectrum does not exhibit energies that are not already present in the bulk
spectrum.

obtain a operator corresponding to the chiral symmetry by Ŝ = Ĉ · T̂, the
chiral symmetry is also present in the Kitaev chain. Therefore it belongs
to the BDI-class, Table 6.1. When we would allow for complex pairing, i.e.
complex parameters in the Hamiltonian, the TRS is broken and the Kitaev
chain belongs to the D-class. According to Kitaev [32] these classes have
corresponding topological quantum numbers that take values in Z and Z2
respectively, being the number of MZMs at the edges and the existence of
MZMs respectively.

Equipped with the elementary knowledge of the homogeneous Kitaev
chain we will need to look into extensions of the model to facilitate braid-
ing of Majorana modes via the parameter space.
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Chapter 8
The inhomogeneous Kitaev chain

One of the problems we need to overcome before braiding in the param-
eter space would be possible is: how to obtain a ground state that is 2n-
fold degenerate with n > 1? However, when the degeneracy of Majorana
states is increased at the edges, for example by introducing spin to dou-
ble the degeneracy, the Majorana operators would most probably couple
to each other instead of forming non-local edge states. Therefore we will
discuss how topological defects and corresponding domain walls can be in-
troduced in the system, and how MZMs will form not only at the edges of
the chain, but also at those domain walls. In this chapter this behaviour is
numerically studied in finite-sized chains by consideration of spectra and
zero-energy edge states.

8.1 Topological defects

A well-informed reader might be familiar to so-called topological defects in
the context of field theories, solitons, and kink solutions as discussed in for
example [48] by Manton and Sutcliffe. However, let us develop a natural
idea of the concept of such defects.

Let us return to the main idea of a topological material. Recall we call a
material a topological material if there are certain edge states of the system
that cannot be destroyed by continuous deformations of the Hamiltonian
that respect the present symmetries. A mathematician would formulate
this as: there does not exist a homotopy between two Hamiltonian, one
with property of edge states and one without. Naturally the same vo-
cabulary can be used for defects. Then a topological defect would be a
inhomogeneity in a material, or in a Hamiltonian, that cannot be made up
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88 The inhomogeneous Kitaev chain

for by continuous deformations of that Hamiltonian.
An example of such a defect in gapped systems is a change in parame-

ters in the material in such a way that locally the parameters would close
the gap if they would extend to the entire system. The locality of this de-
fect implies that the edge states of the original homogeneous material are
unaffected. These regions in the system where the local parameters would
close the gap are called domain walls, and a common property of those
domain walls is that give rise to edge states besides not destroying the al-
ready present edge states at the boundaries of the whole system [68, 73].
Therefore we propose to introduce topological defects in the Kitaev chain
to increase the degeneracy.

8.2 Majorana zero modes at defects

For the homogeneous Kitaev chain, with a spectrum given by Eq. 7.45,
we can distinguish two ways the gap could close. The first way is by
vanishing of the superconducting gap, i.e. ∆ = 0, and the second way
by vanishing of the combined chemical potential and hopping amplitude
term, i.e. |µ| = 2|t|. We will consider chains where domain walls occur
because of parameters fulfilling these conditions locally.

8.2.1 Vanishing superconducting gap

Let us first assume that the hopping amplitude is non-zero. This is rea-
sonable, because for t = 0 we encounter a topological trivial situation in-
dependent of ∆. This enables us to normalise all terms by t. Furthermore,
we will leave µ constant over the whole chain. The defect will consist of
a change of the parameter ∆i in the matrix of Eq. 7.34 from ∆ to −∆ by
means of a strictly decreasing sinusoid is evaluated at l + 1 sites centred
around some site n ∈ {0, N} where N is the length of the chain. Be aware
of the fact that for it to be a topological defect, hence not influencing the
existence of edge states, the defect should not be centred near the edges.

Let us consider a finite-sized homogeneous Kitaev chain, length N,
with a defect centred in the middle, n = ⌊N/2⌋, with ∆ = t. Fig. 8.1a
exhibits both the gap and zero-energy states corresponding to MZMs that
you would expect for the homogeneous chain, and an additional pair of
zero-energy states.

Despite the fact that the spectrum shows the existence of zero-energy
states it is not at all clear from the spectrum that these new zero-energy
states are edge states. To ensure that the topological defect gives rise to a
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(b) Perturbed spectrum with defect

Figure 8.1: (a) The numerical energy spectrum of the homogeneous Kitaev chain
with 50 sites and open boundary conditions for the parameters µ = 1, t = 1, and
∆ = 1 with a defect in the superconducting gap centred around the 25th site that
is effecting 11 sites, i.e. n = 25 and l = 10. These are the eigenvalues of the BdG
Hamiltonian from Eq. 7.32 and four zero-energy states with energies of the order
of 10−7. (b) The spectrum of the same system with a white noise perturbation
of the parameters in Eq. 7.32 with noise level t/2. The zero-energy states have
energies in the order of 10−6.

edge state centred around the domain wall on should calculate the eigen-
states of the BdG Hamiltonian with the defect. Fig. ?? unambiguously
shows that the zero-energy states are positioned at the domain walls and
the edges of the chain. Be aware that the zero-energy states are mixed
states between states at the edges and at the domain walls. However, it is
clear that by suitable linear combination pure edge and defect states can
be obtained.

We already expected MZMs to form at those defects, but it is still cru-
cial to perform some cross-checks. On of the test to see if such a edge state
is indeed a MZM, is to include noise into the chain. An effective way of
doing this is to add white noise with a standard deviation of a fraction of
t, since t is the parameter used to normalise, to every parameter. In the
perturbed spectrum shown in Fig. 8.1b the gap and the zero-energy states
are still present.

Besides the fact that noise does not influence the existence of defect
states there is another strong indication that we are dealing with MZMs.
When one carefully inspects Fig. 8.2 and Fig. 8.3 it is noticed that there is
some relation between the ψi of the creation and annihilation operators.
It can be checked that these relations are obeying the basis transformation
form creation and annihilation operators to Majorana operators, i.e. Eq. 7.8
and Eq. 7.9. This implies that the founded eigenstates are self-adjoint, i.e.
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Figure 8.2: (a),(b),(c),(d) The eigenstates corresponding to the zero-energy modes
of a Kitaev chain of 50 sites with µ = 1, t = 1, and ∆ = 1 with a defect in the
superconducting gap centred around the 25th site that is effecting 11 sites, i.e.
n = 25 and l = 10. The x-axis depicts the Nambu spinor, Eq. 7.31, and the y-axis
the coefficients such that (ψ1, ..., ψ2N)(c1, ..., cN , c†

1, ..., c†
N)

T is a normalised state.
The shaded areas mark the position of the defect.

their own antiparticle.
Based on these examples it is premature to draw general conclusion.

However, in the Appendix A the results are shown for different parity of
the chain and different positions of the defect, and all these results show
similar properties as the examples in this section. Therefore it is safe to say
that Majorana quasiparticles do indeed occur at the domain walls imposed
by topological defects in the superconducting gap.

8.2.2 Chemical potential outside of the bandwidth

From Eq. 7.45 it is easily deduced that |µ| = 2|t| leaves us with a clos-
ing of the gap independent of the superconducting gap. The interval
(−2|t|, 2|t|) ⊂ R is called the bandwidth. For µ in that interval and ∆ ̸= 0
it is observed that MZMs are present in the homogeneous Kitaev chain.
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Figure 8.3: (a),(b),(c),(d) The perturbed eigenstates corresponding to the zero-
energy modes of Kitaev chain of 50 sites with µ = 1, t = 1, and ∆ = 1 with
a defect in the superconducting gap centred around the 25th site that is effect-
ing 11 sites, i.e. n = 25 and l = 10. The perturbation consists of random
noise with noise level t/2 that is added to every parameter in Eq.7.32. The x-
axis depicts the Nambu spinor, Eq. 7.31, and the y-axis the coefficients such that
(ψ1, ..., ψ2N)(c1, ..., cN , c†

1, ..., c†
N)

T is a normalised state. The shaded areas mark the
position of the defect.

With this knowledge we want to create a domain wall, and attached to
that MZMs.

Consider a homogeneous chain with ∆ ̸= 0, otherwise there are gap
closings independent of t, and vanishing chemical potential. We intro-
duce a defect in the same way as above with the necessary change that
now the defect consists of a chain in the hopping amplitude t that will
cross 0. Fig. 8.4a shows the spectrum of such a chain. Again the energies
present in the homogeneous system are present here, and there is a new
pair of zero-energy states. It is interesting to directly notice that, despite
the different nature of the defect, the spectrum of the system with a de-
fect in the superconducting gap and the spectrum of the system with a
defect in the hopping amplitude are the same up to minimal differences,
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in Fig. 8.1a the energies in the bulk seem a little bit more paired. This is
a consequence of the topological defects not influencing the bulk, and the
disagreements are most probably due to the finite size of the system.
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(a) Unperturbed spectrum with defect.
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(b) Perturbed spectrum with defect.

Figure 8.4: (a) The energy spectrum of the homogeneous Kitaev chain with 50
sites and open boundary conditions for the parameters µ = 1, t = 1, and ∆ =
1 with a defect in the superconducting gap centred around the 25th site that is
effecting 11 sites, i.e. n = 25 and l = 10. These are the eigenvalues of the BdG
Hamiltonian from Eq. 7.32 and four zero-energy states with energies of the order
of 10−7. (b) The spectrum of the same system with a white noise perturbation
of the parameters in Eq. 7.32 with noise level t/2. The zero-energy states have
energies in the order of 10−6.

When noise is introduced the observed zero-energy modes persist. This
is a strong indication for MZMs. In contrast with the unperturbed state the
perturbed bulk spectrum in Fig 8.4b differs from Fig. 8.1b, but we cannot
conclude anything about that since it is very well possible that this is due
to the noise that is different for both spectra.

We have still to verify that the new zero modes are indeed attached to
the domain walls, and Fig. 8.5 shows that this is indeed the case. Moreover,
even in the noisy chain this presence of the edge states at the defects is
clear, Fig. 8.6.

By comparing the eigenstates in Fig. 8.2 and Fig. 8.5 for a system with
a defect in the superconducting gap and hopping amplitude respectively
a significant differences presents itself. While there seems to be some sort
of oscillation in all zero-energy eigenstates of the system with a supercon-
ducting defect, in the case of a hopping defect there is a state which is
much “smoother”. Although the state as a whole still fulfils the relations
of Eq. 7.8 and Eq. 7.9, which implies that it is a MZM, it seems not possible
to separate the edge and defect states by taking a linear superposition of
the shown states. This dissimilarity persists when noise is added to the
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Figure 8.5: (a),(b),(c),(d) The eigenstates corresponding to the zero-energy modes
of a Kitaev chain of 50 sites with µ = 1, t = 1, and ∆ = 1 with a defect in
the hopping amplitude centred around the 25th site that is effecting 11 sites, i.e.
n = 25 and l = 10. The x-axis depicts the Nambu spinor, Eq. 7.31, and the y-axis
the coefficients such that (ψ1, ..., ψ2N)(c1, ..., cN , c†

1, ..., c†
N)

T is a normalised state.
The shaded areas mark the position of the defect.

system, Eq. 8.6. We are unaware of a possible explanation of this observa-
tion. However, it seems to indicate an important difference between the
two kinds of topological defects that does appear in the bulk. Neverthe-
less, we should take this into account when introducing defects for prac-
tical purposes in later analysis, since it drastically effects the possibility of
splitting the edge and defect states.

With the same degree of certainty as before for the superconducting
gap we can confidently conclude that MZMs occur at domain walls im-
posed by topological defects in the hopping amplitude.

A critical reader might not be convinced by the examples given in this
section, and they have every right to do so. However, besides the theoret-
ical background and the examples provided above the claims and discus-
sion in section are supported by much more evidence in Appendix A. This
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Figure 8.6: (a),(b),(c),(d) The perturbed eigenstates corresponding to the zero-
energy modes of Kitaev chain of 50 sites with µ = 1, t = 1, and ∆ = 1 with
a defect in the superconducting gap centred around the 25th site that is effect-
ing 11 sites, i.e. n = 25 and l = 10. The perturbation consists of random
noise with noise level t/2 that is added to every parameter in Eq.7.32. The x-
axis depicts the Nambu spinor, Eq. 7.31, and the y-axis the coefficients such that
(ψ1, ..., ψ2N)(c1, ..., cN , c†

1, ..., c†
N)

T is a normalised state. The shaded areas mark the
position of the defect.

puts us in the position to comfortably conclude that topological defects in
the the Kitaev chain that introduce domain walls increase the degeneracy
of the ground state by introducing MZMs at those defects without influ-
encing the overall properties of the bulk spectrum, such as the closing of
the gap.

Although we have successfully increased the degeneracy of the ground
state by introducing MZMs at domain walls, we are not yet able to perform
braiding in the parameter space. This is due to the fact that the subspace of
the parameter space of the (homogeneous) Kitaev chain where MZMs are
present is simply connected. Since the holonomy corresponding to a point
is 1, i.e. the identity of the holonomy group, this contractibility of every
loop immediately implies that the Wilczek-Zee phase is always trivial.
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Chapter 9
Extensions of the Kitaev chain

In Chapter 7 we have seen that braiding of MZMs in the parameter space
should be possible by utilising geometrical phases. However, to obtain
a non-trivial geometrical phase, noncontractible loops have to exists. Be-
cause the connected components of the parameter space of the homoge-
neous Kitaev chain where the gap does not close are all simply connected,
such loops do not exist.

In this chapter we will propose three extension of the Kitaev chain by
introducing a periodic perturbation on the chemical potential or the hop-
ping amplitude. These models are inspired by topological insulators [22],
and can be viewed as superconducting generalisations of those systems.
We will study the simply connectedness of the connected components of
the parameter space, and investigate some topological phase transitions.

9.1 Superconducting SSH-model

Let us first introduce a Kitaev chain with periodic perturbation on the hop-
ping amplitude, where the hopping alternates between two values. This
perturbation introduces a Peierls distortion which usually opens a gap in
the spectrum. Without superconducting term this models is now as the
SSH-model. In 1979 Su, Schrieffer and Heeger studied the existence so-
called soliton solutions in polyacetylene [65]. The alternating hopping was
due to the single and double bonds in the molecule, and the soliton so-
lution existed at a defect created by two single or double bonds. Much
later the SSH-model turned out to be a topological insulator. Topological in-
sulators are a class of materials predicted in 2005 [29] and experimentally
confirmed in 2006 [11], which have topologically protected properties an
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behave somewhat similar to insulators. Because of that interesting be-
haviour as a topological insulator we are interested in generalising it by
adding p-wave superconductivity.

The Hamiltonian of the SSH-model is

Ĥ(µ, t, δ) = −
N

∑
j=1

µc†
j cj −

N−1

∑
j=1

(t + (−1)jδ)(c†
j cj+1 + c†

j+1cj), (9.1)

where µ ∈ R the chemical potential, t ∈ R the hopping amplitude, and δ ∈
R a periodic perturbation of the hopping amplitude. Combining this with
the Kitaev chain leaves us with the Hamiltonian for the superconducting
SSH-model

Ĥ(µ, t, δ, ∆) =−
N

∑
j=1

µc†
j cj −

N−1

∑
j=1

(t + (−1)jδ)(c†
j cj+1 + c†

j+1cj)

+
N−1

∑
j=1

(∆c†
j c†

j+1 + ∆∗cj+1cj), (9.2)

where ∆ ∈ C is the superconducting gap. Notice that this model has a sub-
lattice structure, i.e. we can enlarge the unit cell and define the following
operators

bj := c2j−1; (9.3)

aj := c2j. (9.4)

To obtain an analytical expression for the spectrum of the bulk of this
model we will assume N = 0 mod 2, which should not be a very restrict-
ing property when N → ∞, and we will apply periodic boundary condi-
tions Substituting the sublattice operators in Eq. 9.2 adjusted for periodic
boundary conditions yields

Ĥ(µ, t, δ, ∆) =
M=N/2

∑
m=1

[
− µ(b†

mbm + a†
mam)

− (t − δ)(a†
mbm + b†

mam)− (t + δ)(b†
m+1am + a†

mbm+1)

+ (∆a†
mb†

m + ∆∗bmam + ∆b†
m+1a†

m + ∆∗ambm+1)
]
. (9.5)

The spectrum of the bulk should ideally be studied in k-space. The Fourier
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9.1 Superconducting SSH-model 97

transforms of am and bm,

a†
j :=

1√
N

∑
k

e−2ijkda†
k , b†

j :=
1√
N

∑
k

e−2ijkdeikdb†
k , (9.6)

aj :=
1√
N

∑
k

eijkdak, bj :=
1√
N

∑
k

e2ijkde−ikdbk, (9.7)

are obtained by small adjustments to Eq. 7.36 and Eq. 7.37. Be aware of the
fact that here k is summed over M equally spaced values in [−π/2d, π/2d].
Following a similar method as in section 7.3 we obtain

Ĥ(k) = ∑
k

[
− µ(b†

k bk + a†
k ak)− (t − δ)

(
e−ikda†

kbk + eikdb†
k ak

)
− (t + δ)

(
e−ikdb†

k ak + eikda†
kbk

)
+
(

∆eikda†
−kb†

k + ∆∗e−ikdbka−k + ∆e−ikdb†
k a†

−k + ∆∗eikda−kbk

) ]
.

(9.8)

Making elaborate use of the symmetric distribution of k in [−π/2d, π/2d]
we can simplify this even further to

Ĥ(k) = ∑
k

[
− µ(b†

k bk + a†
k ak) + 2 [t0 cos(kd)− iδ sin(kd)] b−ka†

−k

+ 2 [t cos(kd) + iδ sin(kd)] a−kb†
−k

− i∆ sin(kd)b†
k a†

−k − i∆ sin(kd)a†
kb†

−k

+ i∆∗ sin(kd)b−kak + i∆∗ sin(kd)a−kbk

]
. (9.9)

Introduce a Nambu spinor

ψ̂†
k = (b†

k , a†
k , b−k, a−k) (9.10)

to perform a Bogoliubov transformation to. Up to an insignificant constant
[5] we obtain

Ĥ(k) =
1
2 ∑

k
ψ̂†

kHSSH+scψ̂k, (9.11)

here the BdG Hamiltonian is given by

HSSH+sc =

(
C S
S† −C

)
, (9.12)
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where

C =

(
−µ −2 [t cos(kd)− iδ sin(kd)]

−2 [t cos(kd) + iδ sin(kd)] −µ

)
, (9.13)

and

S =

(
0 −2i∆ sin(kd)

−2i∆ sin(kd) 0

)
. (9.14)

Assuming ∆ is real, the BdG Hamiltonian can be written in a more concise
way using Pauli spin matrices

HSSH+sc =− 2δ sin(kd)σz ⊗ σy + µσz ⊗ 12 + 2t cos(kd)σz ⊗ σx

+ 2∆ sin(kd)σy ⊗ σx. (9.15)

The assumption that ∆ is real is not of much influence on the closing of the
gap as we will later see that only |∆|2 occurs in important expressions.

As made clear earlier the topological phase transitions occur when the
topological order parameter changes sign, and this can only happen when
the gap in the bulk closes. Therefore it is essential to know when zero-
energy states are present in the bulk. To investigate for which sets of pa-
rameters the gap closes we construct the critical manifold. This manifold
is a submanifold, perhaps with boundaries and corners, of the parame-
ter space where the determinant of the BdG Hamiltonian is zero, i.e. the
submanifold of the parameter space where zero-energy states are present
in the bulk. In the limit of an infinite chain the critical manifold can be
defined by

M := {x ∈ M : det(H(k, x)) = 0 for a k ∈ [−π/2d, π/2d]}, (9.16)

where M is the considered parameter space, in this case R3 × C. The de-
terminant of the BdG-Hamiltonian is easily obtained

det(HSSH+sc(k)) =− µ4 + (µ2 − 4t2 cos2(kd))2

+ (µ2 + 4(∆2 − δ2) sin2(kd))2

+ 8t2 sin2(2kd)(∆2 + δ2). (9.17)

This enables us to study the closings of the gap.
For a more comprehensive understanding of the bulk spectrum we cal-

culate the energies

ε(k) = ±
[
µ2 + 2∆2 + 2t2 + 2δ2 + 2(t2 − δ2 − ∆2) cos(2kd)

± 2
√

2
[
−2µ2δ2 cos2(kd) + µ2t2(1 + cos(2kd)) + 8∆2δ2 cos(kd)2

]1/2 ]1/2
.

(9.18)
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9.1 Superconducting SSH-model 99

When δ = 0 one can easily check that Eq. 9.18 reduces to Eq. 7.45. As
one notices, the expression for the energies becomes much more com-
plicated for this extended SSH-model than for the homogeneous Kitaev
chain. Therefore we stick to the critical manifold for the investigation of
the topology of the parameter space.

Unfortunately studying the critical manifold is not too straightforward
because of the several parameters that play a role. To obtain a general
starting point for the study of the parameter space we consider several
specific values of the momentum kd.

Firstly, we investigate the middle of the Brillouin zone, i.e. kd = 0.
With kd = 0 Eq. 9.17 reduces to

(µ2 − 4t2)2 = 0. (9.19)

Hence the gap closes if |µ| = 2|t| independent of every other parameter
of the system, exactly as we would have expected from the homogeneous
Kitaev chain.

For the edges of the Brillouin zone, kd = ±π/2, the gap closes when

(µ2 + 4∆2 − 4δ2)2 = 0. (9.20)

So we identify the cone described by δ = ±
√

µ2/4 + ∆2 that is part of the
critical manifold. We can decide that t ̸= 0, since otherwise the gap closes
independent of ∆ as seen above, then we can normalise all the parameters
by dividing them by t. The cone of the critical manifold that is embed-
ded in the parameter space, that is 3 dimensional after remormalisation, is
depicted in Fig. 9.1.

The not simply connected subspace of Fig. 9.1 draws our attention. Let
us study the occurrence of gap closings in that space. Setting Eq. 9.17 to
zero and solving for the chemical potential µ yields

µ = ±2
[
t2 cos2(kd)− sin2(kd)(∆2 − δ2)± i[4t2∆2 cos2(kd) sin2(kd)]1/2

]1/2
.

(9.21)

For µ being a real number it is required that

4t2∆2 cos2(kd) sin2(kd) = 0, (9.22)

which enables us to study four distinct cases. The first one, t = 0, can be
discarded, since we have assumed that t ̸= 0. The restrictions on kd, being
kd = 0 or kd = ±π/2, reduce the problem to the already studied cases
before. The remain condition of interest is ∆ = 0, this can be regarded as
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100 Extensions of the Kitaev chain

Figure 9.1: The level set of det(HSSH+sc(±π/2) = 0 normalised by t by substitut-
ing t = 1 in Eq. 9.17. This is a part of the critical manifold of the superconducting
SSH-model.

a trivial situation since the model just reduces to an ordinary SSH-model.
However, for our understanding of the topological phase transitions of
this model it is crucial.

The gap closings in the shaded areas of Fig. 9.2 in combination with
the fact that for |µ| > 2|t| the gap is always closed tells us that the sub-
space that seemed not simply connected is actually divided into two sim-
ply connected subspaces. Therefore noncontractible loops cannot exist in
this parameter space. Nevertheless, we have found different topological
phases in the parameter space. Further (numerical) analysis could point
out which part of the parameter space is exhibiting edge states.

We could study another specific case of Eq. 9.17, namely the situation
of µ = 0. Substituting µ = 0 and normalising by t leaves us with

cos4(kd) + 2(∆2 + δ2) sin2(kd) cos2(kd) + (∆2 − δ2)2 sin4(kd) = 0. (9.23)

We immediately notice that every term of this expression is non-negative,
and it is easy to check that the only solution is kd = ±π/2 and ∆ = δ.

Despite the fact that a noncontractible loop is not possible, we are still
interested in the topological phase transitions that might occur. Therefore
we will perform a loop in the µ = 0 plane. Let γ : [0, 1] → R4 be defined
by γ(T) = (µ(T), t(T), δ(T), ∆(T)) with

µ(T) = 0, t(T) = 1, δ(T) = 0.5 sin(2πT), ∆ = 0.5 cos(2πT). (9.24)

For this loop we expect the gap to close at T = 1/4 + l/2 with l ∈
{0, 1, 2, 3}. So let us study the edge states of a finite-sized chain between

100
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Figure 9.2: The shaded areas are the parameter regimes in (µ/t, δ/t)-space where
the gap in the analytic bulk spectrum of the superconducting SSH-model closes
for a vanishing superconducting gap, ∆ = 0. These are the solutions of Eq. 9.22
for some kd ∈ [−π/2, π/2].

those closings. It is important to be careful with the parity of the number
of sites here as we will see shortly.

From the spectra in Fig. 9.6 it seems that no topological phase transi-
tion occurs, since there are zero-energy modes on both sides of the critical
manifold. However, the edge states themselves indicate a phase transi-
tion. In Fig. 9.4 the edge states and all there linear combinations satisfy
both Eq. 7.8 and Eq. 7.9, so those are MZMs. On the contrary, there are lin-
ear combination of the states in Fig. 9.5 that do not satisfy those relation.
Hence there are always edge modes present along the loop, but the nature
of these edge modes changes.

In the case of a chain with an even number of sites the topological
phase transitions can be recognised by the spectrum. In the parameter
regime where the chain with an odd number of sites exhibits MZMs the
chain with an even number exhibits two edge states, Fig. 9.6a and Fig. 9.6c,
which turn out to be MZMs, and in where the first exhibit different edge
states the there are four, Fig. 9.6b, or zero, Fig. 9.6d, edges modes present
in the chain with an even number of sites.

The different nature of the edge states in those finite system can also
be made clear by turning on the chemical potential. This leads to a split-
ting of ground state energies, Fig. 9.7. This is not expected for Majorana
modes and hence it makes clear that the nature of the edge states differs
tremendously.

All in all it turned out that a noncontractible loop in a topological non-
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Figure 9.3: (a),(b),(c),(d) The spectra of a superconducting SSH-model with 51
sites along a loop described by Eq. 9.24 at T = π/8, T = 5π/8, T = 9π/8, and
T = 13π/8 respectively. The spectra are identical.

trival parameter regime was not possible. However, this superconduct-
ing generalisation of the SSH-model exhibits interesting topological phase
transitions.

9.2 Staggering chemical potential

A next step in our search for a suitable not simply connected parameter
space is to consider related models with the idea that the Peierls distor-
tion, that is due to the perturbation of the 1D lattice, might open a gap
there via a different physical mechanism. A periodic perturbation of the
Kitaev chain that is very similar to the superconducting SSH-model is a
Kitaev chain with a periodic perturbation of the chemical potential. This
staggering chemical potential can be interpret as a the simplest version of

102
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Figure 9.4: (a),(b) The edge states corresponding to the point of the loop described
by Eq. 9.24 at T = π/8. (c),(d) The edge states corresponding to the point at T =
9π/8 on that loop. These states are MZMs. The x-axis depicts the Nambu spinor,
Eq. 7.31, and the y-axis the coefficients such that (ψ1, ..., ψ2N)(c1, ..., cN , c†

1, ..., c†
N)

T

is a normalised state.

a superconducting generalisation of the diagonal Harper model. This chain
is described by

Ĥ(µ, ν, t) =−
N

∑
j=1

(µ + (−1)jν)c†
j cj −

N−1

∑
j=1

t(c†
j cj+1 + c†

j+1cj)

+
N−1

∑
j=1

(∆c†
j c†

j+1 + ∆∗cj+1cj), (9.25)

where µ ∈ R the chemical potential, ν ∈ R a perturbation of that potential,
t ∈ R the hopping amplitude, and ∆ ∈ C the superconducting gap.

Exploiting the sublattice structure we can introduce the sublattice op-
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Figure 9.5: (a),(b) The edge states corresponding to the point of the loop de-
scribed by Eq. 9.24 at T = 5π/8. (c),(d) The edge states corresponding to the
point at T = 13π/8 on that loop. These states are not MZMs. The x-axis
depicts the Nambu spinor, Eq. 7.31, and the y-axis the coefficients such that
(ψ1, ..., ψ2N)(c1, ..., cN , c†

1, ..., c†
N)

T is a normalised state.

erator as in Eq. 9.3 and Eq. 9.4, and rewrite the Hamiltonian

Ĥ(µ, t, δ, ∆) =
M=N/2

∑
m=1

[
− (µ − ν)b†

mbm − (µ + ν)a†
mam

− t(a†
mbm + b†

mam + b†
m+1am + a†

mbm+1)

+ (∆a†
mb†

m + ∆∗bmam + ∆b†
m+1a†

m + ∆∗ambm+1)
]
. (9.26)

Similar to Eq. 9.5 we can perform a Fourier transform. The Fourier trans-
form of the hopping term is easily found as a specific case of the hopping
term in section 9.1, and the Fourier transform of the superconducting term
is exactly the same as the one in section 9.1. Therefore we only have to
perform the Fourier transform of the chemical potential, but that is sim-
ilar to the transformation in section 7.3, albeit with k equally spaced in
[−π/2d, π/2d] instead of [−π/d, π/d].

104
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Figure 9.6: (a),(b),(c),(d) The spectra of a superconducting SSH-model with 50
sites along a loop described by Eq. 9.24 at T = π/8, T = 5π/8, T = 9π/8, and
T = 13π/8 respectively.

The Fourier transform of Eq. 9.26 is then found to be

Ĥ(k) = ∑
k

[
− (µ − ν)b†

k bk +−(µ + ν)a†
k ak

+ 2t cos(kd)bka†
k + 2t cos(kd)akb†

k

− i∆ sin(kd)b†
k a†

−k − i∆ sin(kd)a†
kb†

−k

+ i∆∗ sin(kd)b−kak + i∆∗ sin(kd)a−kbk

]
, (9.27)

which after a Bogoliubov tranformation with the Nambu spinor of Eq. 9.10
can be represented, up to an unimportant constant, by

Ĥ(k) =
1
2 ∑

k
ψ̂†

kHStag.Chem.ψ̂k, (9.28)

Version of June 30, 2024– Created June 30, 2024 - 19:38

105



106 Extensions of the Kitaev chain

10 20 30 40 50

-2

-1

1

2

ϵ

(a) 50 sites, T = 5π/8

10 20 30 40 50

-2

-1

1

2

ϵ

(b) 51 sites, T = 5π/8

Figure 9.7: (a) The spectrum of a superconducting SSH-model with 50 sites along
a loop described by Eq. 9.24 and an additional chemical potential, µ = 0.1, at
T = 5π/8. (b) The spectrum of a superconducting SSH-model with 51 sites with
the same parameters.

here the BdG Hamiltonian is given by

HStag.Chem.(k) =
(

C S
S† −C

)
, (9.29)

where

C =

(
−(µ − ν) −2t cos(kd)

−2t cos(kd) −(µ + ν)

)
, (9.30)

and S is given by Eq. 9.14.
Similar to section 9.1 the BdG Hamiltonian can be written in a more

concise way using Pauli spin matrices, assuming ∆ is real,

HStag.Chem.(k) =µσz ⊗ 12 + νσz ⊗ σz + 2t cos(kd)σz ⊗ σx

+ 2∆ sin(kd)σy ⊗ σx. (9.31)

Just as for the superconducting SSH-model we are interested in the
closings of the gap. This can be investigate by finding the critical manifold,
and to be able to study the critical manifold calculated the determinant of
HStag.Chem,

det(HStag.Chem.) =(µ2 − ν2 − 4t2 cos2(kd))2

+ 8∆2 sin2(kd)(µ2 − ν2 + 2∆2 sin2(kd))

+ 8∆2t2 sin2(2kd). (9.32)
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9.2 Staggering chemical potential 107

Furthermore, the energy spectrum of the bulk is given by

ε(k) =±
[
µ2 + ν2 + 4t2 cos2(kd) + 4∆2 sin2(kd)

± 4
[
∆2ν2 sin2(kd) + µ2ν2/4 + µ2t2 cos2(kd)

]1/2 ]1/2
. (9.33)

We notice some similarities between Eq. 9.32 and Eq. 9.17, but a signif-
icant difference with the superconducting SSH-model is that the perturba-
tion on the chemical potential, ν, always occurs together with µ. This in
contrast with Eq. 9.17 where the perturbation of the hopping amplitude,
δ, occurs in combination with the superconducting gap. The latter most
probably leads to more unexpected closings and openings of the gap due
to the interplay of the different mechanisms that influence the gap, i.e. pe-
riodic perturbation and superconductivity, than the periodic perturbation
of the chemical potential that we study now. Nevertheless, we will iden-
tify some of the structure of the parameter space of this superconductive
chain with staggering chemical potential.

To obtain some understanding of the critical manifold of this model we
first consider the specific cases kd = 0 and kd = ±π/2.

From substituting kd = 0 into Eq. 9.32 and setting it to zero we obtain

(µ2 − ν2 − 4t2)2 = 0. (9.34)

This can be rewritten to an expression in µ

|µ| =
√

ν2 + 4t2, (9.35)

which in the homogeneous case, i.e. ν = 0, reduces to the know condition
for closing of gap |µ| = 2|t|. Fig. 9.8 shows how this condition leads to a
cone in the parameter space where now ∆ is just to normalise. It seems that
we have more freedom in varying the hopping amplitude in this model,
and perhaps even perform a loop around the just found cone. However,
when we consider t = 0 Eq. 9.32 reduces to

(µ2 − ν2 + 4∆2 sin2(kd))2 = 0, (9.36)

which has a solution for a kd ∈ [−π/2, π/2] when

µ2 ≤ ν2 ≤ µ2 + 4∆2. (9.37)

To understand how the requirement of Eq. 9.37 relates to the closing
of the gap, we consider the part of the critical manifold that arises from
kd = ±π/2. For that value Eq. 9.32 reduces to

(µ2 − ν2 + 4∆2)2 = 0, (9.38)
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Figure 9.8: The level set of det(HStag.Chem(0) = 0 normalised by ∆ by substituting
∆ = 1 in Eq. 9.17. This is a part of the critical manifold of the superconducting
chain with staggering chemical potential.

which can be solved for |ν|

|ν| =
√

µ2 + 4∆2, (9.39)

where we recognise the upper bound on ν imposed by Eq. 9.37.

Figure 9.9: The level set of det(HStag.Chem.(±π/2) = 0 normalised by t by substi-
tuting t = 1 in Eq. 9.17. This is a part of the critical manifold of the superconduct-
ing chain with staggering chemical potential.

That means that when we are in the not simply connected part of the
parameter space as seen in Fig. 9.9, there will be a closing of the gap at

108
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9.3 Superconducting Rice-Mele model 109

t = 0 when |ν| ≥ |µ|, and this implies that the gap surely closes when
t = µ = 0.

The most natural solution is to take t ̸= 0, and to try to perform a
loop in the not simply connected part of the parameter space as a result
of the cone in Fig. 9.8. When doing this one inevitably crosses the plane
described by ∆ = 0. Substituted in Eq. 9.32 this leaves us with

(µ2 − ν2 − 4t2 cos2(kd))2 = 0, (9.40)

which has solution for some kd ∈ [−π/2, π/2] when

ν2 ≤ µ2 ≤ ν2 + 4t2. (9.41)

Eq. 9.41 is extremely similar to Eq. 9.37, and it implies that when we are in
the not simply connected part of Fig. 9.8 there will surely be a gap closing
when |µ| ≥ |ν|. Therefore we conclude that it is not possible to perform
a loop in the seemingly not simply connected subspace of the parameter
space without closing of the gap along the loop.

Nevertheless, the different topological phase transitions in this param-
eter space can be very interesting. Despite the fact that more analysis of
the existence edge states is needed to obtain a full understanding of all
transitions, one can observe very intriguing critical manifolds, e.g. when
assumed that ∆ = t as we have seen in Eq. 7.29 the two cones of Fig. 9.8
and Fig. 9.9 will become perpendicular and divide the parameter space in
six regions which have different topological properties.

9.3 Superconducting Rice-Mele model

In Section 9.1 and Section 9.2 we have seen how simple perturbations of
the chemical potential and the hopping amplitude influenced the critical
manifold. However, the perturbation were not enough to open gaps in
such a way that a noncontractible loop would be possible. Since the per-
turbations on the chemical potential and the hopping amplitude open the
gap via different physical mechanisms it is thought that combining them
in one chain might lead to new regions of the parameter space where the
gap remains open.

A Kitaev chain with a staggering chemical potential and hopping am-
plitude is a simple superconducting generalisation of a combined off-diagonal
and diagonal Harper model. Moreover, it can be called a superconducting
SSH-model with periodic kicking or a superconducting generalisation of the Rice-
Mele model.
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Firstly we will describe such a system with the Hamiltonian

Ĥ(µ, ν, t, δ) =−
N

∑
j=1

(µ + (−1)jν)c†
j cj −

N−1

∑
j=1

(t + (−1)jδ)(c†
j cj+1 + c†

j+1cj)

+
N−1

∑
j=1

(∆c†
j c†

j+1 + ∆∗cj+1cj), (9.42)

where µ ∈ R the chemical potential, ν ∈ R the perturbation of the chemi-
cal potential, t ∈ R the hopping amplitude, δ ∈ R the perturbation of the
hopping amplitude, and ∆ ∈ C the superconducting gap.

Just as with the superconducting SSH-model and the Kitaev chain with
staggering chemical potential the Hamiltonian in Eq. 9.42 can be expressed
in sublattice operators, and Fourier transformed. Fortunately, in section
9.1 and 9.2 we have already transformed each term of this Hamiltonian.
Therefore we immediately obtain

Ĥ(k) =
1
2 ∑

k
ψ̂†

kHRM1ψ̂k, (9.43)

where the BdG Hamiltonian is given by

HRM1 =

(
C S
S† −C

)
, (9.44)

with

C =

(
−(µ − ν) −2(t cos(kd)− iδ sin(kd)

−2(t cos(kd) + iδ sin(kd) −(µ + ν)

)
(9.45)

and S is given by Eq. 9.14. If we assume ∆ to be real, this BdG Hamiltonian
can be written in terms of Pauli matrices

HRM1(k) =µσz ⊗ 12 + νσz ⊗ σz + 2t cos(kd)σz ⊗ σx

− 2δ sin(kd)σz ⊗ σy + 2∆ sin(kd)σy ⊗ σx. (9.46)

We expect the critical manifold of this superconducting Rice-Mele model
to be more complicated than the previous ones, because there might be
some interplay between the different perturbations. We predict that the
interaction between the two periodic perturbations will not close many
gaps, as different physical mechanisms are relevant, but they might open
the gap more often.
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To verify this prediction we consider the determinant of the relevant
BdG Hamiltonian

det(HRM1(k)) =− (µ2 − ν2)2 + 8t2(∆2 + δ2) sin2(2kd)

+ (µ2 − ν2 − 4t2 cos2(kd))2

+ (µ2 − ν2 + 4(∆2 − δ2) sin2(kd))2, (9.47)

where one recognises terms from both Eq. 9.17 and Eq. 9.32, and the bulk
spectrum reads

ε(k) =±
[
µ2 + 4t2 cos2(kd) + 4(∆2 + δ2) sin2(kd)

± 4
[
µ2(δ2 sin2(kd) + t2 cos2(kd) + ν2/4)

+ ∆2 sin2(kd)(ν2 + 4δ2 sin2(kd))
]1/2]1/2

. (9.48)

In line with the previous section we consider the middle and edges of
the Brillouin zone in more detail. For kd = 0 setting Eq. 9.47 to 0 yields

µ2 = ν2 + 4t2, (9.49)

which also occurs in the superconducting chain with staggering chemical
potential as obtained from Eq. 9.34.

On the other hand, at the edges of the Brillouin zone, i.e. kd = ±π/2,

µ2 + 4∆2 = ν2 + 4δ2, (9.50)

where we see both periodic perturbations occur.
Instead of studying this model in much depth in the way how it is

formulated here, we can reformulate this intuitive generalisation of the
SSH-model to a better know system, the Rice-Mele model.

An alternative formulation

A model with staggering chemical potential and a periodic modulation
of the hopping potential is also known as the Rice-Mele model [59]. This
model is of special interest to us since Thouless and Niu where able to con-
struct a protocol for adiabatic charge pumping in this model [55], which
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was experimentally realised in photons [35] and cold atoms [42]. The for-
mulation of the model is a little different then Eq. 9.47. The periodic per-
turbation is only applied to the odd sites. Now we are able to formulate
the superconducting generalisation of the Rice-Mele model

Ĥ(µ, ν, t, δ) =−
N

∑
j=1

(µ + (−1)jν)c†
j cj −

N−1

∑
j=1

(t + (j mod 2)δ)(c†
j cj+1 + c†

j+1cj)

+
N−1

∑
j=1

(∆c†
j c†

j+1 + ∆∗cj+1cj), (9.51)

where µ ∈ R the chemical potential, ν ∈ R a perturbation of that potential,
t ∈ R the hopping amplitude, δ ∈ R a perturbation on that parameter and
∆ ∈ C the superconducting gap. Notice that Eq. 9.42 can be recovered
from Eq. 9.51 by redefining t and δ in the following way

t 7→ t − δ

δ 7→ 2δ.

By performing a Fourier transformation and a Bogoliubov transforma-
tion, where we can make use of the results of the previous chapter and
leave the transformation of the perturbation as an exercise to the reader,
we immediately obtain

Ĥ(k) =
1
2 ∑

k
ψ̂†

kHRM2ψ̂k, (9.52)

where the BdG Hamiltonian is given by

HRM2 =

(
C S
S† −C

)
, (9.53)

with

C =

(
−(µ − ν) −2t cos(kd)− δeikd

−2t cos(kd)− δe−ikd −(µ + ν)

)
(9.54)

and S is given by Eq. 9.14.
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9.3 Superconducting Rice-Mele model 113

The critical manifold is quite complicated at first sight

detHRM2(k) =((µ2 − ν2)− δ(δ + t + e2ikdt))2

− 4e−ikdδt(µ2 − ν2 − δ2) cos(kd)

− 4t2(2µ2 − 2ν2 − (4 + e−2ikd)δ2) cos2(kd)

+ 16t3(t + 2δ) cos4 8∆2(µ2 − ν2

+ δ2 cos(2kd)) sin2(kd) + 16∆4 sin4(kd)

+ 8∆2t(t + δ) sin2(2kd), (9.55)

where one should keep in mind that despite the complex terms the critical
manifold will only take real values. This can be made explicit by working
out Eq. 9.55. However, we omit doing this here, since the result is not
much more insightful than considering the cases in the middle and the
edge of the Brillouin zone, i.e. kd = 0 and kd = ±π/2.

For the case of kd = 0 we obtain the condition

µ2 − ν2 − (δ + 2t)2 = 0. (9.56)

This results in a shifted cone in the parameter space when we assume t ̸=
0, and we normalise by it, Fig. 9.10.

Figure 9.10: The level set of det(HRM2(0) = 0 normalised by t by substituting
t = 1 in Eq. 9.55. This is a part of the critical manifold of the superconducting
Rice-Mele model.

Fig. 9.10 seems to admit a loop through a not simply connected sub-
space of R3. However, at δ = 2t the gap closes. Although it is not easily
perceived from Eq. 9.55, it can be explained by the observation that the
case of δ = 2t corresponds to the case of a vanishing hopping amplitude
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in our previous formulation of this model. At vanishing hopping ampli-
tude, or bandwidth, the gap closes in the model described by Eq. 9.42 and
so it does here.

At the edge of the Brillouin zone the critical manifold reads

(µ2 − ν2 + 4∆2 − δ2)2 = 0, (9.57)

which leaves us with a condition for the closing of the gap similar to
Eq. 9.50

µ2 + 4∆2 = ν2 + δ2. (9.58)

This condition leads to different cones of hyperboloids in parameter
space depending on the choice of the fourth parameter which can be zero
or non-zero. Fig. 9.11 shows the case of a hyperboloid for non-zero ∆.

Figure 9.11: The level set of det(HRM2(±π/2) = 0 normalised by ∆ by substitut-
ing ∆ = 1 in Eq. 9.55. This is a part of the critical manifold of the superconducting
Rice-Mele model.

From previous sections we can deduce that the parts where MZMs can
occur are not simply connected. One case cannot be deduced from previ-
ous section, namely if a loop around the the cone or hyperboloid described
by Eq. 9.58 for a constant µ would be possible. However, one can check,
with a topological invariant or by numerically calculating the spectrum of
a finite-sized chain, that only inside the cone or hyperboloid MZMs are
present. This provides us from preforming a loop in a not simply con-
nected space.
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Nevertheless, their is interesting behaviour to be discovered in this
model. To observe that behaviour we need to look into the loop of Thou-
less charge pump first. This loop is performed adiabatically slow and can
be described by

ν = sin(t), t = 1, δ = cos(t). (9.59)

The spectrum and the positive energy edge state of some points around
this point are visualised in Fig. 9.12, the negative energy edge state can
be found in Appendix B. The pumping of charge corresponds to the edge
state moving from one side of the the chain as a particle to the other side
as a hole and vice versa. As said earlier this loop is proposed, and experi-
mentally realised, in a Rice-Mele model, which originally does not have a
superconducting term, but what happens if we turn on the superconduc-
tivity in this model?

In a finite-dimensional chain this can be tested. It is important to notice
however that the parity of the number of sites is extremely important. In
numerical calculations with an even number of sites there are parts of the
Thouless loop without edge states and parts with 4n-fold degenerate edge
states. This indicates some topological phase transition in the finite chain.
A careful reader might be suspicious about the use of the word phase tran-
sition in a finite-sized chain. However, we use a intuitive notation of those
transition characterised by the existence of edge states.

On the other hand, in a chain with an odd number of sites we can
observe the Thouless loop and the influence of a superconducting gap.
Fig. 9.13 shows that at first the original edge states persist, and that the
superconducting gap tends to close that gap. When the loop from above
is performed for this ∆ similar behaviour is observed. After a closing of
the gap, exactly when Eq. 9.58 is fulfilled, increasing the superconducting
gap leads to an increase of the gap, to a certain extent. Moreover, by com-
paring Fig. 9.13c and Fig. 9.13e with Fig. 9.13d and Fig. 9.13f we observe
that the nature of edge states changed. It can be numerically shown that
performing the loop described by Eq. 9.59 does not change the energy of
the edge states anymore. Moreover, along the loop the lowest bulk energy
is constant as well. This can be understood in by the fact that turning on
the superconducting gap introduces a topological phase transition where
the nature of the edge states does change and MZMs are introduced.

9.4 A review

In this chapter we have studied essentially three different extensions of the
Kitaev chain with as common factor the periodic, or alternating, perturba-
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tion of the chemical potential or the hopping amplitude. This perturbation
lead to a distortion of the lattice and a corresponding opening of the gap.

Indeed we observed MZMs in all three of the extensions for nonzero
perturbations. Despite the fact not for all values of the parameter space
the system exhibited MZMs, this means that extensions of the Kitaev chain
inspired by topological insulators are possible, just as expected.

It is known that the periodic perturbations and the superconducting
gap open the gap in the spectrum via different physical mechanisms. In
the proposed extensions we observed how the mechanisms competed.
This lead to the existence of different types of edge states for different pa-
rameter regimes of the same model.

In the superconducting SSH-model we discovered how different edge
states exist in the µ = 0 plane. In finite-sized chains we observed how
MZMs were present for |δ| < |∆|, this would be the region where the su-
perconducting gaps dominated. For |δ| > |∆| the number of edge states
differed between finite-sized chains with different parity, and the spec-
trum exhibited a splitting of the energy of the edge modes, this would be
the region where the perturbation of the hopping amplitude dominated.
These phase transition gave insight in the topological structure of the su-
perconducting SSH-model.

In the superconducting Rice-Mele model we studied the effect of super-
conductivity on the edge states that play a crucial role in the well-known
Thouless charge pump. For a small superconducting gap the edge states
persist, but when Eq. 9.58 was satisfied the gapped closed and for a larger
superconducting gap MZMs were present. These had zero-energy inde-
pendent of nonzero, but small enough, chemical potential, which distin-
guishes them from the other edge states.

All of the proposed models contained a mean field superconductivity
term. In such models the PHS is present, since the Bogoliubov transfor-
mation imposes it. The existence of different types of edges states might
indicate that the studied models are in different symmetry classes for dif-
ferent parameter regimes.

We did not succeed in fully describing the topological phases of the
proposed extension substantiated by the calculation of topological quan-
tum numbers, nor have we found a explicit and comprehensible expres-
sion for the critical manifold. This is partial due to the complexity of the
critical manifold, and partial because the focus of our research lies on find-
ing a region of the parameter space where MZMs are present in the chain
and where we can perform a noncontractible loop.

Such a not simply connected subspace of the parameter space without
gap closings and with the presence of MZMs in the chain was not found. It
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9.4 A review 117

might be that our initial thought, that another mechanism than that of su-
perconductivity could open a gap at crucial points and therefore creating
a not simply connected subspace, was completely wrong. It might also be
that this is just not possible in the cases of the underlying mechanisms of
these three extension of the Kitaev chain. However, that a different mech-
anism would open the gap at vanishing ∆ while preserving the MZMs is
extremely unlikely, since in that case no one stops us from forgetting about
the superconductivity at all. That would mean a discovery of MZMs in a
not superconductive system, which would be a major surprise.
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Figure 9.12: (a),(c),(e) The spectrum of a Rice-Mele model with 51 sites perform-
ing a loop described by Eq. 9.59 at t = 0, t = π/3, and t = 5π/6 respectively. The
spectra show how throught the loop the energies of the edge states are lifted to
the bulk and brought back. (b),(d),(f) The positive energy edge state correspond-
ing to the spectra. The x-axis depicts the Nambu spinor, Eq. 7.31, and the y-axis
the coefficients such that (ψ1, ..., ψ2N)(c1, ..., cN , c†

1, ..., c†
N)

T is a normalised state.
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Figure 9.13: (a) The spectrum of a superconducting Rice-Mele model with 51 sites
with µ = 0.5, t = 1, δ =

√
3/2, and ∆ = 1. (c),(e) The corresponding (Majorana)

edge modes. (b) The spectrum of the same superconducting Rice-Mele model
with ∆ = 0.2. (d),(f) The corresponding edge modes are shown, and these are not
Majorana modes. The x-axis depicts the Nambu spinor, Eq. 7.31, and the y-axis
the coefficients such that (ψ1, ..., ψ2N)(c1, ..., cN , c†

1, ..., c†
N)

T is a normalised state.
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Chapter 10
Superconducting extensions of the
Kitaev chain

Until thus far we have looked into models with alternating chemical po-
tential and hopping amplitude. These models do not exhibit topological
non-trivial connected subspaces, i.e. connected subspaces that are not sim-
ply connected. Therefore we need to consider further extensions of the
Kitaev chain.

10.1 A fully staggering model

Firstly, we will consider a model with a simple periodic perturbation in
all parameters. This utilises the full capacity of the Peierls distortion by
creating larger unit cells, consisting of two sites, with alternating chemical
potential, hopping amplitude, and superconducting gap. Such a model is
described by the following Hamiltonian

Ĥ(µ, ν, t, δ, ∆, ζ) =−
N

∑
j=1

(µ + (−1)jν)c†
j cj −

N−1

∑
j=1

(t + (−1)jδ)(c†
j cj+1 + c†

j+1cj)

+
N−1

∑
j=1

(|∆|+ (−1)jζ)eiθc†
j c†

j+1 + (|∆|+ (−1)jζ)e−iθcj+1cj),

(10.1)

where µ ∈ R the chemical potential, t ∈ R the hopping amplitude, ∆ ∈ C

the superconducting gap, ν, δ, ζ ∈ R the corresponding perturbations and
θ = Arg(∆), and assume θ = 0. One could consider a perturbation that
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differs in phase with the superconducting gap. However, this would make
the analysis more difficult, and it turns out that this kind of perturba-
tion on the magnitude of the superconducting gap gives rise to interesting
structures already.

To study the bulk we can express Eq. 10.1 in sublattice operators, Fourier
transform it. In section 9.3 we have already performed this transformation
for all terms except for the periodic changing superconducting gap. Since
the Fourier transform is a linear operation we can solely focus on the ζ-
term. Fourier transforming this term immediately yields

∑
k

[
ζ(e−ikdb†

k a†
−k − e−ikda†

kb†
−k + ζ(eikda−kbk − eikdb−kak)

]
=∑

k
2 cos(kd)(ζb†

k a†
−k + ζa−kbk), (10.2)

where we again made elaborate use of of the fact that k is summed over
equally spaces values in he interval [−π/2d, π/2d].

Using Eq. 10.2 we find the Fourier transform of Eq. 10.1 up to an in-
significant constant

Ĥ(k) =
1
2 ∑

k
ψ̂†

kHFullψ̂k, (10.3)

where the BdG Hamiltonian is given by

HFull =

(
C S
S† −C

)
, (10.4)

where

S =

(
0 −2i∆ sin(kd) + 2ζ cos(kd)

2i∆ sin(kd)− 2ζ cos(kd) 0

)
(10.5)

and C is given by Eq. 9.45. Remember the assumption that both ζ and ∆
are real, then in terms of Pauli matrices this BdG Hamiltonian reads

HFull(k) =µσz ⊗ 12 + νσz ⊗ σz + 2t cos(kd)σz ⊗ σx − 2δ sin(kd)σz ⊗ σy

+ 2∆ sin(kd)σy ⊗ σx + 2ζσx ⊗ σy. (10.6)

Notice that the assumption that ∆ and ζ are real here does not change the
physical properties of our model, since we started with the assumption
that both superconducting gaps had the same phase.
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10.1 A fully staggering model 123

To obtain some elementary insight in the possible topological phase
transitions that could occur in this model the critical manifold has to be
studied. Hence we examine the level of 0 of the following expression

det(HFull) =− (µ2 − ν2)2 + 8 sin2(2kd)((t2 + ζ2)(∆2 + δ2)− 4tδ∆ζ)

+ (µ2 − ν2 − 4(t2 − ζ2) cos2(kd))2

+ (µ2 − ν2 + 4(∆2 − δ2) sin2(kd))2. (10.7)

Moreover the energy spectrum of the bulk is given by

ε(k) =±
[
µ2 + ν2 + 4(t2 + ζ2) cos2(kd) + 4(∆2 + δ2) sin2(kd)

± 4
[
µ2(δ2 sin2(kd) + t2 cos2(kd) + ν2/4)

+ ∆2 sin2(kd)(ν2 + 4δ2 sin2(kd))

+ ν2ζ2/2 + 4t2ζ2 cos4(kd) + 8tδ∆ζ sin2(2kd)
]1/2]1/2

. (10.8)

The first thing that catches our eyes is the pairing of t and ζ in Eq. 10.7
and Eq. 10.8. So besides the pairing of the superconducting gap and the
perturbation on the hopping amplitude, the pairing between the hopping
amplitude and the perturbation on the superconducting gap also occurs.
On top of that there is exists a term that depends on all four of them.

When the standard case of kd = 0 and kd = ±π/2 are studied, we
obtain the conditions

µ2 − ν2 − 4t2 + 4ζ2 = 0 (10.9)

and
µ2 − ν2 + 4∆2 − 4δ2 = 0 (10.10)

respectively.
Unfortunately, these standard cases do not provide a parameter space

that is om much interest to or goal of performing a noncontractible loop
without crossing a manifold. Nevertheless, such properties are hidden in
this model, but we need to consider some minor changes which we will
do shortly in Section 10.2.

Before we will dive deeper into those changes of this model, let us do
some simple observation. Firstly, it is clear that there exist regions in the
parameter space where there are 2 MZMs because turning of ζ reduces the
model to an already studied case of the superconducting Rice-Mele model.
The interesting part however is that in this the fully staggering chain one
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can find MZMs for zero chemical potential and hopping amplitude, and
no perturbation on both, and anon-zero superconducting gap and corre-
sponding perturbation. The most interesting part is that the spectrum in
Fig. 10.1 shows a 4-fold degenerate ground state, i.e. 4 MZMs, without any
defects. We have noticed that for non-zero chemical potential a splitting
of the ground state energies is introduced.

Despite the fact that we have to omit a description of the whole param-
eter space this 4-fold degeneracy in a chain without topological defect is
still worth mentioning.

10.2 A superconducting equivalent of the Rice-
Mele model

In an attempt to deform the fully staggering model and to endow a chain
with multiple independent p-wave superconductivity terms we consider
a superconducting equivalent of the Rice-Mele model. This means that we
have a tight binding chain with periodically perturbed chemical potential
and homogeneous hopping amplitude, and two superconducting terms.
One of these is present between all of the nearest neighbours, while the
other alternates. The Hamiltonian of this system can be described by

Ĥ(µ, ν, t, ∆1, ∆2) =−
N

∑
j=1

(µ + (−1)jν)c†
j cj

−
N−1

∑
j=1

t(c†
j cj+1 + c†

j+1cj)

+
N−1

∑
j=1

(∆1c†
j c†

j+1 + ∆∗
1cj+1cj)

+
N−1

∑
j=1

(∆1c†
2jc

†
2j−1 + ∆∗

1c2jc2j−1), (10.11)

where µ ∈ R the chemical potential, t ∈ R the hopping amplitude, and
∆1, ∆2 ∈ C p-wave superconductivity terms. Here we have simplified
further analysis by assuming that they have the same phase and in fact
are real, otherwise the interaction of the two terms adds to the complexity
of the model by introducing interference. Contrary to the fully staggering
model, the perturbation of the hopping amplitude is taken to be zero.
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Figure 10.1: (a) The edge states of a finite-sized fully staggering model with 50
sites where µ = ν = t = δ = 0, ∆ = 2, and ζ = 1. (b),(c),(d),(e) The corresponding
MZMs present in the chain without topological defect.

By performing the usual transformations, Fourier aand Bogoliubov,
and making use of results obtained earlier we obtain

Ĥ(k) =
1
2 ∑

k
ψ̂†

kHSC2ψ̂k, (10.12)
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where the BdG Hamiltonian is given by

HSC2 =

(
C S
S† −C

)
, (10.13)

with

S =

(
0 −2i∆1 sin(kd) + ∆2eikd

−2i∆1 sin(kd)− ∆2e−ikd 0

)
(10.14)

and C is given by Eq. 9.30. Notice that we omit explicitly working out the
transformation since this is not especially insightful and previous section
make the general idea perfectly clear.

To understand the topological phases for different regions in the pa-
rameter space we need to consider the 0 level set of the determinant of
HSC2(k)

det(HSC2(k)) =
[
µ2 − ν2 − 4t2 cos2(kd) + (|∆2| − sin2(kd)|∆1|)2

− 2i(|∆2| − 2|∆1|)t sin(2kd)
]
·
[
µ2 − ν2 − 4t2 cos2(kd)

+ (|∆2| − sin2(kd)|∆1|)2 + 2i(|∆2| − 2|∆1|)t sin(2kd)
]
,

(10.15)

which is obviously real despite the occurrence of i because of the multipli-
cation with the complex conjugate.

A quick skim over Eq. 10.15 convinces us that the corresponding crit-
ical manifold has an complicated structure. To obtain an elementary un-
derstanding this manifold we consider the middle and the edge of the
Brillouin zone. At kd = 0 Eq. 10.15 reduces to

(µ2 − ν2 + |∆2|2 − 4t2)2 = 0, (10.16)

and at kd = ±π/2 to

(µ2 − ν2 + (|∆2| − 2|∆1|)2)2 = 0. (10.17)

Let us consider a specific case where t = 2∆1, and ∆1 is used to nor-
malise al the energies. Then Eq. 10.16 gives rise to a hyperboloid with
an radius of 4 at ν = 0. Moreover, Eq. 10.17 induces a shifted cone in
the parameter space around (µ, ∆2) = (0, 2). Combining these to mani-
folds as embeddings of three dimensional parameter space consisting of
µ, ∆2, and ν yields a not-simply connected subspace within the hyper-
boloid, Fig. 10.2.
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Figure 10.2: The level set of det(HSC2(0)) = 0, in red, and the level set of
det(HSC2(±π/2)) = 0, in blue, for t = 2∆1 normalised by ∆1 by substituting
t = 2 and ∆1 = 1 in Eq. 10.16 and Eq. 10.17 respectively. This is a part of the
critical manifold of the superconducting equivalent of the Rice-Mele model.

The not simply connected subspace enclosed by the red and blue level
sets in Fig. 10.2 brings with it a little optimism. Let us consider a loop in
the ν = 0 plane around the point (µ, ∆2, ν) = (0, 0, 2), while obeying

µ2 + ∆2
2 < 16, (10.18)

which means that the loop does not cross the blue level set in Fig. 10.2.
Then the loop can be described by

t/2 = ∆1 = 1, ν = 0, µ = α sin(t), ∆2 = 2 + α cos(t), (10.19)

where α2 < 2.
In numerical calculations we can verify that there are MZMs present

in the system for every point on the loop in the parameter space, and this
observation does not depend on the parity of the number of sites. The exis-
tence of MZMs can be concluded, because at t = 0 the spectrum of a finite-
sized chain indicates the existence of zero-energy edge modes, Fig. 10.3c,
these edge modes are indeed MZMs as the edge states in Fig. 10.3a and
Fig. 10.3b clearly satisfy the relations of Eq. 7.8 and Eq. 7.9, and Fig. 10.3d
shows that the gap does not close along the loop.

Now we have found a noncontractible loop in the parameter space that
is complementary to the critical manifold. The question that remain how-
ever, is if this loop will give rise to a non-trivial geometrical phase.
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Figure 10.3: (a),(b) The edge states of a finite-sized superconducting equivalent of
the Rice-Mele model with 50 sites where µ = ν = 0, t/2 = ∆1 = 1, and ∆2 = 2.5.
(c) The corresponding spectrum of that model with the given parameters. (d)
The blue lines indicate the upper and lower bound of the positive bulk energy
spectrum around a loop described by Eq. 10.19 with α = 0.5, and the red lines
boundaries of the negative counterpart.

Solving the Schrödinger equation numerically

Now we have found the critical manifold we can perform a non-contractable
loop. The analytical calculation of the eigenstates in the adiabatic limit
however, can still be quite difficult. That leads to a numerical first ap-
proach of the problem. Consider SchrÃ¶dinger’s equation with an Hamil-
tonian that depends on µ, ν, t, ∆1, and ∆2:

i∂tψ̂ = H(µ, ν, t, δ, ∆1, ∆2)ψ̂, (10.20)

and consider a smooth loop γ : [0, T] → R5 with γ(0) = γ(T) defined by
t 7→ (µ(t), ν(t), t(t), ∆1(t), ∆2(t)), where all the component function are
smooth, see Eq. 10.19. Using this loop we can make the Hamiltonian time
dependent: Ĥ(t) = H(µ(t), t(t), ∆1(t), ∆2(t)). This enables us to write
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down a time dependent Schrödinger equation:

i∂tψ(t) = H(t)ψ(t). (10.21)

The question that still stands is how to solve this equation numerically
in the adiabatic approximation. First of all, we need to start with a ψ(0) in
the ground state. This boils down to solving H(0)ψ(0) = E0ψ(0) with E0
the lowest non-negative eigenvalue of H(0). Equipped with this starting
position point of the wave function, we are almost ready to do calculation.
However, it is important to look at the time scale of the varying of the
parameters and the time scale of the splitting, i.e. the eigenvalue not being
exactly zero due to the finite-sized of the system.

The splitting energy is the difference between the lowest non-negative
and highest non-positive eigenvalue of H(t). This is called the splitting
since we expect a degenerate zero-energy ground state and the finite size
lead, together with the PHS, to a +δE and −δE pair instead of two 0 en-
ergies. This value can be roughly estimated, as only it order of magnitude
is really of importance. To go from an energy to a time we use the energy-
time uncertainty principle, 4.36. Substituting the splitting energy, 2δE, in
Eq. 4.36 yields the time scale of the splitting:

t =
1

2δE
. (10.22)

In our case the splitting is of the order 10−8 and hence the loop should be
performed in a time of an order much smaller than 108.

From Fig. 10.4 it becomes clear that the edge states do not acquire
a non-trivial geometrical phase, and after repeating the loop numerous
times the noise increases without any indication of a small geometrical
phase showing up. So despite the fact that we solve the Schrödinger equa-
tion on a time scale much large then the time scale of the gap, on the order
of 1, and much smaller then the time scale of the splitting, on the order of
108, no geometrical phase occurs.

10.3 A review

In this chapter we have studied some topological properties of two mod-
els, and in both models there were two slightly different terms in the
Hamiltonian which made the chain a p-wave superconductor. Just like
the superconducting SSH-model with periodic kicking and the Rice-Mele
model the models in this chapter were related by a similar transformation.
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Figure 10.4: (a),(b) The edge states of a finite-sized superconducting equivalent of
the Rice-Mele model with 50 sites after one loop described by Eq. 10.19. (c),(d) The
edge states of a finite-sized superconducting equivalent of the Rice-Mele model
with 50 sites after twenty loops described by Eq. 10.19. In both cases the imagi-
nary and real part of the wave function are shows seperatly. The loop takes place
in T = 100.

In both these models we observed the existence of MZMs. In addi-
tion, in the first one we have also looked for different edge modes. For
zero hopping and chemical potential only the superconducting gap and
the corresponding perturbation have play a role. It is interesting to see
that the gap does not necessarily closes at t = 0, in contrary to all other
models that we have studied so far. In this case we observed a 4-fold de-
generate ground state. The edge states are not MZMs, because a nonzero
chemical potential introduces a splitting, and linear combinations of the
states in Fig. 10.4 are not MZMs. This again indicates that the different
mechanisms that create edge states in a chain are competing. Again the
distortion of the one-dimensional lattice places a role here.

Again the models contained a mean field superconductivity term. Hence
the models exhibit PHS. The existence of different types of edges states
indicates that the chains are in different symmetry classes for different pa-
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rameter regimes.
In the superconducting equivalent of the Rice-Mele model we found a

subspace of the parameter space without closings of the gap, where MZMs
were present in the chain, and that was not simply connects. In this sub-
space bounded by two parts of the critical manifold it was possible to con-
struct a noncontractible loop. Then we solved the Schrödinger equation
along that loop, to numerically determine the geometrical phase that a
state would acquire from adiabatic movement along that loop. In Fig. 10.4
the eigenstate after the loop is shown, and from comparison with Fig. 10.3
it is clear that the obtained phase is zero. Since the obtained geometrical
phase is essential for braiding in the parameter space, this would mean
that braiding is such a way cannot be achieved in this particular subspace.

Be aware that the geometrical phase turning out to be zero is perfectly
in line with the theory. Since the holonomy of a loop is dependent on the
connection, which we do not explicitly know here, it can be the unit even
though the loop is noncontractible. The other way around is not possible,
the holonomy of a contractible loop will always be the unit element in the
holonomy group.

All in all, a definite answer to the main question of this thesis if it is
possible to braid Majorana modes in the parameter space, cannot yet be
provided. In the next chapter we will do some recommendations for fur-
ther research, and how to go forward from here.
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Chapter 11
Conclusion and outlook

In this thesis we provided the elementary mathematical background for
studying of geometrical phases in many-body systems. This heavily re-
lies on the concept of connections and we have seen how the adiabatic
theorem gives rise to a connection on the parameter space of appropriate
Hamiltonians [12, 75].

Furthermore, we gave a construction of the formalism second quan-
tisation for fermionic many-body systems from first principles. It turned
out that this formalism is uniquely defined, up to unitary transformations,
by the creation and annihilation operators and their anticommutation rela-
tions according to the Stone-Von Neumann theorem [28]. One key advan-
tage of this formalism is that the relevant symmetries of second-quantised
Hamiltonian can be studied in a comprehensive manner, as demonstrated
in Chapter 6. These symmetries could be used to classify Hamiltonian, and
according to Kitaev [32] certain topologically protected properties could
be assigned to every symmetry class.

In Chapter 7 we defined topologically protected properties as proper-
ties of a Hamiltonian that could not vanish by continuous deformation of
the Hamiltonian without closing the gap. This is where we arrived at the
main topic of this thesis, braiding. The noncommutative exchange of Ma-
jorana zero modes gave rise to this concept, but utilising it was still not
possible. In the first place because of the fact that the existence of MZMs
has not yet been experimentally verified, and secondly because the pro-
tocols for braiding in real space have their experimental impracticalities.
Therefore we proposed to utilise the geometrical phases obtained by adi-
abatic movement to perform braiding in the parameter space. However,
we encountered two problems. First of all, for braiding we need at least
a 2n-fold degenerate ground state of MZMs, with n > 1, so we needed to
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increase the degeneracy. Furthermore, for braiding a non-trivial geomet-
rical phase is needed, therefore a noncontractible loop should be found in
the parameter space.

In Chapter 8 we showed how MZMs can occur at domain walls in
finite-sized chains without influencing the MZMs that were already present
at the edges of the chain. This would solve the problem of the degener-
acy. Although our analysis considered defects in the homogeneous Kitaev
chain, it is assumed that this generalises to extensions of the chain.

To solve the problem of the noncontractible loop we had to find a not
simply connected connected component of the parameter space were the
gap in the spectrum did not close and MZMs were present. To achieve this
we proposed different extensions of the Kitaev chain. The first category
of extension were superconducting generalisations of topological insula-
tors, which did not exhibited the relevant not simply connected subspaces.
However, we observed interesting topological behaviour of transitions be-
tween phases with different types of edge states.

The second category of extensions were models with different super-
conducting terms in the Hamiltonian, each term should prevent the gap
from closing when the other term vanishes. In this models we observed
some topologically interesting behaviour, and again the coexistence of dif-
ferent types of edge states in the same model, albeit at different param-
eter regimes. Furthermore, a not simply connected connected subspace
was found. Unfortunately, the numerical calculation of the corresponding
Wilczek-Zee factor of that loop yielded zero.

Therefore, we cannot conclude that braiding MZMs via the parame-
ter space is possible. Further extensions are necessary. One could try to
introduce periodic perturbations with a longer period. Moreover, Kitaev
chains and extensions could be considered with longer range interactions
[3], interactions on different ranges might open unexpected gaps. Alter-
natively, one could look into the phase of the superconductive gap. While
in the case of one superconducting term the superconducting gap can al-
ways chosen to be real by a trivial transformation of the creation and an-
nihilation operators, this is not necessarily true for two or more terms of
superconductivity, which might introduce interesting behaviour which re-
sembles interference. On top of that, the phase of the superconducting gap
could be varied along the chain [76], which give rise to Cooper pairs where
the momenta of the electrons do not cancel out.

When a extension of the Kitaev chain is found with the desired proper-
ties, there is one step in the analysis that is of major importance. To trans-
late the observations done on eigenstates of the Bogoliubov-de-Gennes
Hamiltonian to physical eigenstates, one should discard the unphysical
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eigenstate that is found solely because of the particle-hole symmetry. How-
ever, for states with zero energy the distinction between physical and un-
physical is not easily made. A approach is to select the eigenstate corre-
sponding to the positive energy in a finite-sized chain where the splitting
is still obvious, and follow this state as the size of the chain goes to infinity.

Let us finish this thesis with relating this work with the most recent
developments in research. Besides the elaborate theoretical research on
Majorana particles, the experiments are also still evolving. One example
is the search for p-wave superconductivity, a cornerstone of the Kitaev
chain. Although we still require a more conclusive proof, experiments
on the two-dimensional material UTe2 showed promising results for the
discovery of unconventional, p-wave, superconductivity in 2023 [2, 21, 27].

For those who are concerned about the influence of dissipation on the
occurrence of MZMs, theoretical predictions from 2024 say that even a
dissipative Rashba nanowire can host MZMs , albeit with a finite life-time
[18].

Further research on experimental implementations of the Kitaev chain
include coupling quantum dots through a two-dimensional electron gas in
a region proximitised by a superconductor [67]. Although only two dots
were coupled and therefore a chain with only two sites was created in
2024, the quantum dots are ideal for tuning to the interesting spots of the
parameter space. Being able to tune the parameters of a chain are essential
for braiding via the parameter space, therefore this is a promising step in
that direction.

The interest in the Kitaev chain reaches further than research groups
that are interested in its properties for quantum computing. This year an
bosonic equivalent, i.e. optomechanical Kitaev chain, was realised [63].
This chain is an example of a topological metamaterial which has promis-
ing applications in signal manipulation and sensing.

All in all, research to the Kitaev chain and Majorana quasiparticles is
still worth doing. Despite the difficulties in experimentally realising the
theoretical models there is progress, and with this possibility of experi-
mental realisation on the horizon, it would be interesting to further inves-
tigate the topological properties of extensions of the Kitaev chain.
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Appendix A
Eigenstates and spectra of Kitaev
chains with defects

In Chapter 8 defects in the homogeneous Kitaev chain are studied. Here
we provided the spectra and eigenstates of chains complementary to the
figures in Chapter 8. Finite-sized Kitaev chains with different parity and
with a centralised and non-centralised defects are considered for both de-
fects in the superconducting gap as the hopping amplitude. Because of
the topological protection, it is not fruitful consider many variations of
parameters for which MZMs exist at the edges. Hence only the configura-
tion µ = t = ∆ = 1 is considered. To reduce the number of figures in this
appendix the spectra and edge states are only provided for chains with
additional noise.

Notice that in all plots of edge states the x-axis depicts the Nambu
spinor, Eq. 7.31, and the y-axis the coefficients such that
(ψ1, ..., ψ2N)(c1, ..., cN, c†

1, ..., c†
N)

T is a normalised state, and the shaded ar-
eas mark the position of the defect.

From the figures of this appendix it is clear that the zero-energy modes
at the edges and domain walls persist a Kitaev chain with noise. The
eigenstates can be heavily disturbed, but both the position and the relation
between the coefficients of creation and annihilation operators are approx-
imately what we expected from Eq. 7.8 and Eq. 7.9. We can conclude that
the MZMs at edges and domain walls still exist in the chain with noise,
despite the noise level of the perturbation being high, i.e. almost of the
order of the parameters in the Hamiltonian..
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Defect of the superconducting gap

Fig. A.1, A.2, and A.3 are related to chains with a defect in the supercon-
ducting gap.
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Figure A.1: (a) The numerical energy spectrum of the perturbed inhomogeneous
Kitaev chain with 50 sites and open boundary conditions for the parameters µ =
1, t = 1, and ∆ = 1 with a defect in the superconducting gap centred around the
15th site that is effecting 11 sites, i.e. n = 15 and l = 10. These are the eigenvalues
of the BdG Hamiltonian from Eq. 7.32 and four zero-energy states with energies
of the order of 10−10. The perturbation consists of random noise with noise level
t/2 that is added to every parameter in Eq. 7.32 with noise level t/2. (b) The
numerical energy spectrum of a similar chain, but consisting of 51 sites with the
defect centred around the 25th site. The zero-energy states have energies of the
order of 10−7
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Figure A.2: (a),(b),(c),(d) The perturbed eigenstates corresponding to the zero-
energy modes of Kitaev chain of 50 sites with µ = 1, t = 1, and ∆ = 1 with a
defect in the superconducting gap centred around the 15th site that is effecting
11 sites, i.e. n = 15 and l = 10. The perturbation consists of random noise with
noise level t/2 that is added to every parameter in Eq.7.32.
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Figure A.3: (a),(b),(c),(d) The perturbed eigenstates corresponding to the zero-
energy modes of Kitaev chain of 51 sites with µ = 1, t = 1, and ∆ = 1 with a
defect in the superconducting gap centred around the 25th site that is effecting
11 sites, i.e. n = 25 and l = 10. The perturbation consists of random noise with
noise level t/2 that is added to every parameter in Eq.7.32.
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148 Eigenstates and spectra of Kitaev chains with defects

Defect in the hopping amplitude

Fig. A.4, A.5, and A.6 are related to chains with a defect in the hopping
amplitude.
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Figure A.4: (a) The numerical energy spectrum of the perturbed inhomogeneous
Kitaev chain with 50 sites and open boundary conditions for the parameters µ =
1, t = 1, and ∆ = 1 with a defect in the hopping amplitude centred around the
15th site that is effecting 11 sites, i.e. n = 15 and l = 10. These are the eigenvalues
of the BdG Hamiltonian from Eq. 7.32 and four zero-energy states with energies
of the order of 10−8. The perturbation consists of random noise with noise level
t/2 that is added to every parameter in Eq. 7.32 with noise level t/2. (b) The
numerical energy spectrum of a similar chain, but consisting of 51 sites with the
defect centred around the 25th site. The zero-energy states have energies of the
order 10−11
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Figure A.5: (a),(b),(c),(d) The perturbed eigenstates corresponding to the zero-
energy modes of Kitaev chain of 50 sites with µ = 1, t = 1, and ∆ = 1 with a
defect in the hopping amplitude centred around the 15th site that is effecting 11
sites, i.e. n = 15 and l = 10. The perturbation consists of random noise with
noise level t/2 that is added to every parameter in Eq.7.32.
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Figure A.6: (a),(b),(c),(d) The perturbed eigenstates corresponding to the zero-
energy modes of Kitaev chain of 51 sites with µ = 1, t = 1, and ∆ = 1 with a
defect in the hopping amplitude centred around the 25th site that is effecting 11
sites, i.e. n = 25 and l = 10. The perturbation consists of random noise with
noise level t/2 that is added to every parameter in Eq.7.32.
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Appendix B
Negative eigenstates along a
Thouless loop

The Thouless loop is described by Eq. 9.59. In Section 9.3 we have seen
some of the eigenstates along loop corresponding to positive energy in
Fig. 9.12. Here the eigenstates corresponding to the negative energy are
shown in Fig. B.1.
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152 Negative eigenstates along a Thouless loop
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Figure B.1: (a),(c),(e) The spectrum of a Rice-Mele model with 51 sites performing
a loop described by Eq. 9.59 at t = 0, t = π/3, and t = 5π/6 respectively.
(b),(d),(f) The negative energy edge state corresponding to the spectra. The x-
axis depicts the Nambu spinor, Eq. 7.31, and the y-axis the coefficients such that
(ψ1, ..., ψ2N)(c1, ..., cN , c†

1, ..., c†
N)

T is a normalised state.
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