Universiteit

U Leiden
The Netherlands

Classifiers versus Normalizing Flows for uncertainty-aware estimation

of a signal ratio
Sluijter, Benjamin

Citation
Sluijter, B. (2025). Classifiers versus Normalizing Flows for uncertainty-aware estimation
of a signal ratio.

Version: Not Applicable (or Unknown)
) License to inclusion and publication of a Bachelor or Master Thesis,
License: 2023

Downloaded from: https://hdl.handle.net/1887/4104579

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/4104579

Classifiers versus Normalizing
Flows for uncertainty-aware
estimation of a signal ratio.

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

PHYSICS
Author : Benjamin Sluijter
Student ID : $2354276
Supervisor : Dorothea Samtleben
External supervisor : Benjamin Nachman

Berkeley (CA), United States of America, October 2024

Classifiers versus Normalizing
Flows for uncertainty-aware
estimation of a signal ratio.

Benjamin Sluijter

Huygens-Kamerlingh Onnes Laboratory, Leiden University
P.O. Box 9500, 2300 RA Leiden, The Netherlands

October 2024

Abstract

In recent years, many advancements have been made in the field of Simulation-
Based Inference (SBI), due to the lack of tractable likelihoods in modern
physics experiments. In the High-Energy Physics (HEP) literature, a pop-
ular choice for doing SBI is by using binary classifiers, which can be used
to obtain likelihood ratios by means of the likelihood-ratio trick. In the
Astrophysics literature, on the other hand, more research is done on Nor-
malizing Flows, which directly model the likelihoods. In this thesis, we
compare the two methods, assessing their performance on a general HEP
problem: inference of a signal ratio in the presence of a nuisance param-
eter. We perform this comparison on both a toy Gaussian example and a
realistic Higgs decay example and do not find a clear winner over the two
cases. We do find interesting qualitative differences, especially for poorly
performing models, suggesting that it may be beneficial to implement both
methods rather than selecting just one.

Acknowledgements

First and foremost, I would like to thank Benjamin Nachman for welcom-
ing me into his Machine Learning for Fundamental Physics group at LBNL
and opening up this incredible opportunity for me. His guidance in this
research project has been invaluable.

I am immensely grateful to Sascha Diefenbacher for my daily supervision
and for patiently answering all my questions in the middle of her own
work.

Thanks to everyone else at the lab, including Alkaid Cheng, Jordan Dud-
ley, Jonas Glombitza, Aishik Gosh, Radha Mastandrea, Vinicius Mikuni,
Dennis Noll, Inbar Savoray, and Gurpreet Singh for all the valuable dis-
cussions and for helping me on practical matters.

Finally, I would like to thank Dorothea Samtleben for her supervision from
Leiden, including our meetings at very inconvenient hours.

Version of October 2024— Created October 11, 2024 - 08:42

Contents

1 Introduction

2 Theory
2.1 Uncertainty aware inference of the signal ratio
2.2 Method of normalizing flows
2.3 Method of binary classifiers
2.3.1 Likelihood ratio
2.3.2 Likelihood ratio trick
2.3.3 Classes
2.4 Confidence Intervals and Wilks theorem

3 Methods

3.1 Datasets
3.1.1 Gaussian case
3.1.2 Higgs case
3.1.3 Bootstrapsets

3.2 Models
3.2.1 Classifier model
3.2.2 Flow model

3.3 Analysis
331 NLL(u,z)
3.3.2 Confidence Intervals (Cls): coverage and mean width
3.3.3 Overlap
3.34 Plotting contours

4 Results
4.1 True likelihood coverages
4.2 Main results

Version of October 2024— Created October 11, 2024 - 08:42

10
10
10
11
11
12

15
15
15
16
18
18
18
19
19
20
20
22
23

25
25
26

6 CONTENTS

421 Gaussian large distance case 27

422 Gaussian small distance case 29

4.2.3 Higgs case 30

5 Conclusion 35
References 37

A z parameter space edges 41
B Parabolic fit assumption 43

Version of October 2024— Created October 11, 2024 - 08:42

Chapter 1

Introduction

Today’s experiments in the physical sciences, such as those at the Large
Hadron Collider, are more complicated than ever. The theory behind these
experiments does not provide analytical relations between observables
and theory parameters. In other words, one cannot access a function p(D|6)
describing the likelihood of theory parameters 6 given observations D.
These experiments make use of simulators, which allow one to input the-
ory parameters 6 and stochastically output possible observations D, but,
crucially, not the other way around. Performing inference in these situa-
tions calls for so-called likelihood-free inference, also known as simulation-
based inference.

The conventional approach to this problem is to project the data to some
summary statistics. A likelihood function in the resulting lower dimen-
sional data can then be estimated for example with histograms. However,
recent years have seen a lot of research in the use of machine learning mod-
els and specifically Neural Networks, as these potentially use more of the
information in the high dimensional data that these experiments entail.
One type of models that have been proposed for analysis in the LHC is
that of classifiers, which can be used to model the ratio of the likelihood
p(D|6) to some reference likelihood p(D|6p) by means of the likelihood
ratio trick [1-3]. For parameter inference of 6, this ratio is just as useful as
the likelihood itself.

Another type of models, that are used to directly model the likelihood
itself, are Normalizing Flows [4, 5]. These have been used in the liter-
ature for example in [6], in a Bayesian setting where they are combined
with priors to calculate posteriors of GW parameters. Although Normal-
izing flows and classifiers both have their extra features (Flows can be used
for fast sampling from the distribution and Classifiers can be used to do

7

Version of October 2024— Created October 11, 2024 - 08:42

8 Introduction

reweighting), both can theoretically be used for the same simulation-based
inference problems [7, 8]. However, there is no concrete comparison be-
tween the two, where they are evaluated on the same problem.

In this work, we compare a conditional normalizing flow and a classifier
model on the common High-Energy Physics problem of inferring a signal
ratio in the presence of a nuisance parameter.

Version of October 2024— Created October 11, 2024 - 08:42

Chapter 2

Theory

2.1 Uncertainty aware inference of the signal ra-
tio

The parameter of interest is the signal-to-background ratio, from here on

referred to as y, defined as:

_ p(siglp)
= plokgln) &1

Since we know that, per definition, p(sig|u) + p(bkg|ly) = 1, we can
rewrite to:

p(siglu) = i1 i : (2.2)
1
p(bkg|u) = PE (2.3)

We want to infer this y parameter, based on some observed data D =
{x;}, consisting of both signal and background events. The distributions
of the two may depend on some nuisance parameters z and are denoted
as p(x;|sig, z) for signal and p(x;|bkg, z) for background. Hence, the total
probability of observing x;, given signal ratio y and nuisance parameter z
is given by:

_r
ur1f

Under the assumption that our data is i.i.d., the likelihood of finding
the observed data {x;} is

. 1
p(xilp, z) = (xilsig,z) + mp(xilbkg,z) (2.4)

Version of October 2024— Created October 11, 2024 - 08:42

10 Theory

1
Pt z) =TT pailsi z) + —gplalikg,] @)

The idea of likelihood-free inference in this context is that we do not
have access to these likelihoods, but that we do have access to a signal
and a background simulator, both with tunable z parameter, allowing us
to sample x ~ p(x|sig,z) and x ~ p(x|bkg,z). Data sampled from these
simulators can be used to train machine learning models to approximate
the likelihood or the likelihood ratio, which will be explained in the next
sections.

2.2 Method of normalizing flows

One type of machine learning model that can be used is that of normal-
izing flows [5]. A normalizing flow consists of a simple base probability
distribution 77(#) and an invertible, differentiable function f that trans-
forms variable u into variable x. This leaves one with a new probability
distribution over x, p¢(x), that is given by the change of variable rule for
probability densities [4]:

pr(x) = (7 (x))ldet(?L) @6)

When taking the function f to be a neural network, one can optimize the
parameters of this net with gradient descent, such that p¢(x) approximates
a desired probability function p(x). By taking a neural network that de-
pends on a context parameter, one can also model conditional probabili-
ties, which is done for example in [6]. In our case, we have the nuisance
parameter z as context parameter and we then train one normalizing flow
to approximate p(x|sig,z) and another flow to approximate p(x|bkg,z).
These are then combined to obtain the approximation of the total likeli-
hood p({x;}|u, z) with eq. 2.5.

2.3 Method of binary classifiers

2.3.1 Likelihood ratio

For this method, instead of finding the likelihood of (y,z) given some data
{x;}, we try to find the likelihood ratio to reference values (j, zo). This is

10

Version of October 2024— Created October 11, 2024 - 08:42

2.3 Method of binary classifiers 11

obtained from eq. 2.5 as:

Pxitpz) wooplxilsigz) 1 p(x|bkg, 2)
p(Citiio o)~ LT pGailio o) i r Ttz 7

This allows us to write the factors in eq. 2.1 as (taking yp = 1):

p(xlp,z) p [2 p(x|sig, z) 1 [2 p(x|bkg,z)

p(xlpo=1,20) p+1 P(x|518r20)+79(x|bk8z20)] pt1

Now, the two terms in brackets can be estimated with the help of ma-
chine learning by means of the ”likelihood ratio trick”.

2.3.2 Likelihood ratio trick

When a binary classifier with input vector x is “Bayes optimally trained”
with respect to a binary cross-entropy loss, the output will be:

p(x[+)
X) = (2.9)

P00 = 6+)
with + indicating the positive class and - the negative class. Hence, by a
simple transformation, we obtain the likelihood ratio:

pixd+) _ f(9) 210

pixl-) 1-f(x)

So all that is left is choosing the positive and negative class in the right
way.

2.3.3 Classes

In our case the nuisance parameter z is added to the input vector, giving:

pxzl=) 1-f(xz)

One classifier model, which we will call fg;,, is trained to approximate
the first term in brackets in eq. 2.8 and another one, fy,, to approximate
the second term in brackets.

The generative process of the positive class works as follows: First, z is
drawn from a distribution that we will denote as p(z). This can be any
distribution, but in this thesis we used a uniform one. Next, x is obtained

pOczl+) _ flx2) o

11

Version of October 2024— Created October 11, 2024 - 08:42

p(x|sig,zo) + p(x|bkg, zo
(2.8)

L

12 Theory

from the signal simulator in the case of f;;, and from the background sim-
ulator in the case of fj;,, where the simulator its z value is set to the value
that we just obtained. This gives p(x,z|+) = p(x|z,sig)p.(z) for fs;, and
p(x,z|+) = p(x|z, bkg)p=(z) for fyg.

For the negative class, there is no difference between f;, and fyy,. First, z
is drawn from the same distribution p,(z). x is then obtained from either
the signal or the background simulator, each with a probability of 50%.
The z value of the simulator is set to the fixed reference value zy. This
gives p(x,z|—) = [5p(x|zo, sig) + 3 p(x|z0, bkg)]p-(z) for both fy;e and fokg-
Dividing p(x, z|+) by p(x,z|—), the p;(z) factors cancel out, and the terms
in brackets in eq. 2.8 are obtained from the two different classifiers.

2.4 Confidence Intervals and Wilks theorem

A Confidence Interval (CI) with coverage « is an interval in a parameter
space © that depends on observation X and on average contains the true
parameter 6,¢, & - 100% of the time, where the underlying distribution is
some p(x|6).
In case of access to the function p(x|@), one can construct such a CI exactly,
which requires the procedure of finding a so-called confidence belt (see for
example chapter 9.2 of [9]). However, especially for higher dimensional
data x, this gets computationally infeasible, which is why it is common to
make use of approximations such as Wilks theorem.

When Wilks theorem applies [10], it says that the random variable
—2logA(X), with

_ p(X|9, 91, . én)
p(X|6,61,..,61)

A(X) (2.12)

, is approximately distributed as a chi-squared distribution x? for a
sufficient number of observations. Here, 0 is the parameter over which the
CI will be calculated, and the {6;} are all remaining theory parameters.
Hence, for any choice of threshold value ¢, the probability that the random
variable —2logA is observed below threshold ¢, is given by the integral
over the chi-squared function:

t
P(—2logh < t) = /0 C()dt (2.13)

Of course, this only holds when A is calculated from observation x with
the true 6, which we do not know. However, if we calculate —2logA(x) for

12

Version of October 2024— Created October 11, 2024 - 08:42

2.4 Confidence Intervals and Wilks theorem 13

threshold | coverage

—2logA <1 | 68.3%

—2logA < 4 | 95.4%

—2logA <9 {99.7%
Table 2.1: Examples of thresholds on —2logA that can be used to construct Cls
with Wilks theorem and the resulting CI coverages. These follow from equation
2.13

a sufficiently large range on ® and the CI is constructed as the interval on
® for which —2logA(x) is below threshold t:

CI={0 € O|—2logh <t} (2.14)

, we know that the probability that the true 0 is included is the probability
that the true —2/ogA is below t, which is given by eq. 2.13.

Thus, this gives one a straightforward method to construct a CI by simply
choosing some threshold f, where the corresponding coverage can be cal-
culated very easily. Some examples of common choices are given in table
2.1.

13

Version of October 2024— Created October 11, 2024 - 08:42

Chapter

Methods

3.1 Datasets

We performed the comparisons on two different datasets. One is a parti-
cle physics dataset similar to the one in [11], where the signal is a Higgs
boson decay and the background a Z boson decay. We will refer to this
dataset as the Higgs case. The downside of the Higgs case is that we do not
have access to the true likelihoods. This is why we will first compare the
modeltypes on a toy example, consisting of simple Gaussian probability
densities, allowing us to compare the results of the models to the true an-
swer. We used two variants of this Gaussian case, which we will refer to as
the Gaussian large distance case and the Gaussian small distance case.

All training sets consist of separate signal and background sets. In the test
sets, signal and background events are mixed according to the y value of
the test set, as Ngj¢pa = int(Ntoml(#)), where int() means rounding off
to an integer, Ng;q,q1 is the number of signal events in the test set and Njy,
is the test set size. The amount of background events in the test set is then

given by Nbackground = Niotal — Nsignal-

3.1.1 Gaussian case

For our Gaussian example we generate our own data, very similar to [11].
Signal data is drawn from a 2-dimensional Gaussian with a standard de-
viation of 1 and a mean given by polar coordinates: ¢ = z (with z the
nuisance parameter) and r = 0.5 or r = 2. r = 0.5 gives us the small
distance case and r = 2 the long distance case. Background data is gener-

15

Version of October 2024— Created October 11, 2024 - 08:42

16 Methods

ated identically, except for the radial polar coordinate of the mean being
r = —0.5 or r = —2 for the small and the long-distance case respectively.
Examples are given in figure 3.1. Since we generate the samples ourselves,
we have infinite training and test data at our disposal.

For each model we trained, we generated a new training set of 10° events;

bkg bkg
sig sig

Figure 3.1: Gaussian datasets. Left: large distance case with z = m/4. Right:
small distance case with z = 1t /4.

5-10° signal and 5 - 10° background events. The z values for the events
were drawn from a uniform distribution on the interval [0, 0.57|. For each
classifier model, an additional training set was generated, with the same
amount of events, but a fixed z value of zg = 0.257 for all events. We will
refer to these two training sets respectively as the z training set and the zg
training set.

Each validation batch is generated from scratch, where the z values are ei-
ther drawn from the uniform distribution on the interval [0, 0.57t] or set to
zo = 0.257t.

Finally, for each model we tested, we generated a new set of test sets.
Such a set consists of 5 test sets of 9000 events for each of 9 parameter
combinations of y and z, given by a grid of 4 = [0.1,0.2,0.3] by z =
[0.1577,0.2571,0.357], giving us a total of 45 independent 9000-event test
sets.

3.1.2 Higgs case

The data for the physical case was simulated with open-source software
Pythia 8.2 [12] and Delphes 3.5.0 [13]. Pythia was used to simulate 13 TeV
center-of-mass energy proton-proton collisions. Subsequently, Delphes
was used to simulate the collision products being measured by the AT-
LAS detector.

16

Version of October 2024— Created October 11, 2024 - 08:42

3.1 Datasets 17

| signal background
train 41-10° 2.9-10°
validation | 2.0 - 10° 2.0-10°
test 5x45-10° 5x1.2-10°

Table 3.1: Datasizes in Higgs dataset

The signal consists of a Higgs boson decaying to a pair of tau leptons
(H — 77) events and the background consists of a Z boson decaying to
a pair of tau leptons (Z — 77). In both processes, one T particle decays
hadronically and one decays leptonically. The energy scale of the hadron-
ically decaying 7, the Tau Energy Scale (TES) [14], forms a systematic un-
certainty and is used as the nuisance parameter z in our experiment. Data
was simulated with the nominal TES value of 1.0 and the effect of non-
nominal values is applied afterward with a skewing function [15], follow-
ing [11, 16].

There are 30 different features that describe the events. However, for sim-
plicity we used only two: the invariant mass of the hadronic tau and the
lepton, DER _mass_vis, and the ratio between the transverse momentum of
the lepton and that of the hadronic tau, DER_pt_ratio_lep_had. The distri-
butions of these two features for z values of 0.9, 1.0, 1.1 are given in 3.2.
We picked specifically these two for their large dependence on the nui-
sance parameter. We used a simulated dataset consisting of a training set,
a validation set, and 5 separate test sets, each consisting of a background
part and a signal part. The sizes of the sets are given in table 3.1.

0.6
0.6 1 — sig, z=0.9
—— bkg, z=0.9
—— sig, z=1.1

— bkg, z=1.1

— sig, z=0.9
—— bkg, z=0.9
—— sig, z=1.1

0.4 4 — bkg, z=1.1

o
S

density

density
©
N

0.01 0.0 @

DER_mass_vis DER_pt_ratio_lep_had

Figure 3.2: Higgs dataset.

For each flow/classifier model, we took the entire training and valida-
tion sets and sampled z values from a uniform distribution on the interval
[0.8,1.2]. All events were then skewed according to their z value. For each
classifier model, an additional zy training/validation set was constructed

17

Version of October 2024— Created October 11, 2024 - 08:42

18 Methods

by taking the full training/validation set again and leaving the z values at
zop = 1.0, thus not shifting the events in feature space.

Each model was tested on test sets with 9 parameter combinations of y and
z, given by a grid of y = [0.1,0.2,0.3] by z = [0.93,1.00,1.07]. 9 of these
test sets were taken from each of the 5 independent test datasets given in
figure 3.1, by mixing signal events and background events according to p
and then skewing the events according to z, giving a total of 45 test sets.

3.1.3 Bootstrapsets

To extract more statistics from the 9000 event test sets, we used bootstrap-
ping. Bootstrapping means sampling multiple datasets from the same
dataset by sampling with replacement. Specifically, we sampled (with re-
placement) 100 sets consisting of 1000 events from each 9000 event test set.
These 1000 event sets, we will from here on refer to as bootstrapsets.

Note that we fixed the Nsj¢;q1 and Npgckground numbers in the testsets (see
3.1), such that the Nij¢/q1 and Npackground in the bootstrapsets are distributed

binomially with p(sig|u) = /7 and p(bkg|u) = 7.

3.2 Models

3.2.1 Classifier model

We implemented our classifier models with PyTorch [17]. The signal and
background models are identical fully connected deep neural networks
with 3 input nodes (2 features and the z value), 3 hidden layers of 120
nodes, ReLU activation functions, and one node in the final layer with
Sigmoid activation to give a binary outcome. We use the Adam optimizer
with learning rates of [1e-6, 3e-6, 1e-5, 3e-5, le-4, 3e-4] and a batch size of
512. Each batch must be constructed in a sophisticated way to satisfy the
theory laid out in 2.3.3: a 512-instance batch consists of 256 positive class
instances and 256 negative class instances. For the positive class, we take
instances from the z training set, signal for the signal model, and back-
ground for the background model. For the negative class, we sample 256
instances from the zg training set, with 50% probability for each instance
to be signal or background. Finally, we replace the z values of the 256 neg-
ative class instances (all zg) by the set of z values from the positive class.
In the Gaussian case, we trained for 30k iterations, and in the Higgs case,
we trained for 100k iterations.

Every 50 iterations, the validation loss was calculated with the validation

18

Version of October 2024— Created October 11, 2024 - 08:42

3.3 Analysis 19

batches constructed in the same way as the training batches, but with a
batch size of 20000 instead of 512, and the events being newly generated
in the Gaussian cases and coming from the validation set in the Higgs
case.

For each of the above-mentioned learning rates, 30 models were trained
for each of the Gaussian cases and 40 models were trained for the Higgs
case.

3.2.2 Flow model

We implemented our normalizing flows with the nflows package [18]. The
signal and background models are identical and consist of 4 layers of
masked piecewise rational-quadratic autoregressive transforms [4] with
64 hidden features, 10 bins, a tail bound of 7, linear tails, 2 blocks, using
residual blocks and with ReLU activation, followed by a random permu-
tation layer. The base distribution is a normal distribution. We have two
input features and one context feature the nuisance parameter z. We use
the Adam optimizer with learning rates of [1e-6, 3e-6, 1e-5, 3e-5, 1e-4, 3e-4]
and batch size of 512.

In the Gaussian case, we trained for 30k iterations and in the Higgs case,
we trained for 100k iterations.

Every 50 iterations, the validation loss was calculated with batches of size
4000, and the events being newly generated in the Gaussian cases and
coming from the validation set in the Higgs case.

For each of the above-mentioned learning rates, 30 models were trained
for each of the Gaussian cases and 40 models were trained for the Higgs
case.

3.3 Analysis

As mentioned in the methods section, for each combination of dataset,
model, and learning rate, we trained a number of independent models; 30
in the Gaussian case and 40 in the Higgs case. We trained more models for
the Higgs case, as that is the most relevant case.

Naturally, for the "true likelihood” model in the Gaussian case, all 30 mod-
els are exactly the same, so only the data is different. We tested each of the
models on 45 different test sets, consisting of five independent test sets for
each of nine different (y, z) values). We will now explain how we assessed
the performance of each model on each test set, where we will start with
the concept of the Negative Log Likelihood scan, referred to as NLL(y, z).

19

Version of October 2024— Created October 11, 2024 - 08:42

20 Methods

331 NLL(u,z)

To test a model on some test data {x;} (either bootstrap set or full test set),
we calculate its NLL(y, z), where NLL stands for Negative Log Likelihood
for this data, which is done in the following way.

For every event x; in the test set, we scan over a grid of (y,z) values
and calculate the negative log of the model’s prediction. Giving us (the
model’s approximation to) —log[p(x;|u, z)] for the flow and —log[p(x;|u,z)] +
log[p(x;i|po, z0)] for the classifier. For both the Gaussian and the Higgs case
we used 600 u values, evenly spaced between 0 and 0.5. We used 300 z
values, evenly spaced between 0.17t and 0.47t for the Gaussian case and
between 0.9 and 1.1 for the Higgs case. Note that these are smaller z pa-
rameter spaces than the ones we trained the models on. This was done
for the reason that the classifiers often attributed erroneously high likeli-
hoods towards the edges of the z parameter space it was trained on (see
appendix A).

We then have a 2D array of negative log likelihoods, for each event. By
summing these 2D arrays for all the events {x;} we get the negative log-
likelihood for the full dataset, since with i.i.d. data: —log[p({x;}|p, z)] =
—Yiloglp(x;|u,z)]. Finally, we subtract the minimum value in the 2D ar-
ray from the whole array, to obtain what we refer to as NLL(y, z).

NLL(p,z) = —log[p({xi}|u, z)] +C (3.1)

Where C is a constant with respect to y and z, which carries no relevant
information. For the classifier, the log[p({x;}|#o,z0)] term is absorbed in
this C, making NLL(u, z) comparable between flow and classifier models.
An NLL(p,z) in itself is interesting to visualize, which we will do (3.3.4,
and it can also be used to calculate CIs, which we will talk about next.

3.3.2 Confidence Intervals (Cls): coverage and mean width

Confidence Intervals give a method of measuring how good the modeled
likelihood function is, without access to the true likelihood function. We
construct 68.3% Cls and therefore, the closer we find the coverage to 68.3%,
the better the modeled likelihood function. This is in the theoretical situa-
tion where the true likelihood CIs give an exact coverage of 68.3%. How-
ever, due to non-exact CI construction and limited statistics, both of which
will be discussed in this section, even for the true likelihood CIs we might
observe some deviation from this value. Luckily, in the Gaussian cases,
we could calculate the true likelihood coverages as well to compare too.
For the Higgs case, we have to use what we learn from the true likelihood

20

Version of October 2024— Created October 11, 2024 - 08:42

3.3 Analysis 21

« Data
— Fit

NLL-min(NLL)

005 010 015 020 025 030

Figure 3.3: Example of a ju CI construction. In blue are the values of the NLL(y, 2).
The horizontal dashed line indicates the —2logA = 1 line and the vertical lines
indicate the boundaries of the constructed CI. Horizontal and vertical line inter-
sections do not always coincide exactly with the fit, due to parabolic assumption.

coverages and mean widths in the Gaussian case, to draw conclusions.

Construction of Cls

We constructed Confidence Intervals for both i and z, using the theory in
2.4. Looking at equation 2.12, for the y CI case we have § = y and 6; = z
and for the z case, we have 0 = z and 6; = u. We first take the NLL(6, 6;)
and profile over the §; parameter, giving us NLL(8,8;). Next, we fit this
to a 4th-degree polynomial, in order to get the full profile likelihood in-
stead of just the values on our grid. By subtracting the minimum from the

fit, NLL(9,0;), we obtain log[p K%IZ Zi)] = —logA({x;}), where we use

eqg. 3.1 and see that the constant cancels The Confidence Interval is then
obtained by taking the interval —logA < 0.5, corresponding to a coverage
of 68.3%. An example of this procedure with 6 = y is given in figure 3.3.
Note that the intersections of the CI boundaries and the —2logA = 1 line
are not exactly on our fit. This is due to the fact that we used the assump-
tion that our fits would be polynomials of 2nd-degree, which is not always
exactly true. In appendix B we address the difference this makes, which
is that, according to the 4th-degree fits, we constructed CIs of maximally
~75% coverage and minimally around ~65%.

21

Version of October 2024— Created October 11, 2024 - 08:42

22 Methods

Analysis of Cls

We measured the coverage for each test set by constructing a CI for each
of its bootstrap sets and calculating the fraction that contained the true
parameter. Using bootstrapping to measure the coverage can lead to a
bias in the observed coverage compared to the true coverage, as shown in
[19]. This bias might depend on the sizes of the bootstrap set n and that of
the test set N. Therefore, we did an experiment where we measured true
likelihood coverages as a function of k = N /n, shown in section 4.1. For
our main experiments, we use k = 9 and n = 1000, which means with our
9000 event test sets, we have 1000 event bootstrap sets.

The width of the CIs is summarized as the mean width over the CIs of
the 100 bootstrapsets. Hence, for each test set, we obtain a coverage and a
mean width number for both y and z.

3.3.3 Overlap

For the Gaussian case, we have the full true likelihoods. This informa-
tion we exploit by comparing the full likelihood, as approximated by the
model, with the true likelihood, by overlapping the two. We do this for
1 dimensional profiled likelihoods NLL(y) = NLL(u,Z2) (1 overlap) and
NLL(z) = NLL(f1,z) (z overlap), but also with the full 2 dimensional likeli-
hood NLL(u, z) (total overlap). We will now show the procedure for NLL(6),
where 0 is either y, z or (y, z).

First, we calculate the likelihood as:

p({x:}|6) - A = e NHHO (3.2)

where A is some constant that we do not care about.
We eliminate the constant by means of normalization:

A-p({xi}16)
O{xi}) = 3.3
Prorm (81:3) A - Yria p({xi}16) 39
Overlap between the normalized likelihood as calculated by the model,
Pnorm, and the true normalized likelihood, prorm,true, is given by:

1
006716110 =1- 5 Z ’Pnorm({xi}lg) - Pnorm,true({xiHG)‘ (34)
grid

Where the), is either the sum over the full grid (0 = (u,z)) or the
1D versions of it (0 = p/z).
This gives a metric that equals 1 when the likelihood is exactly the same as

22

Version of October 2024— Created October 11, 2024 - 08:42

3.3 Analysis 23

the true likelihood (up to a constant factor) and goes to 0 when it is com-
pletely wrong.

The overlap number for each test set was obtained by calculating the over-
lap on each of its 100 bootstrapsets and then averaging over those.

3.3.4 Plotting contours

We visualize our results by plotting the 0.5 and 2.0 contours of the NLL(y, z).
This allows us to show contours for 9 different test sets in one figure, one
for each of the (y,z) combinations that we used. In all the contours we
show in this thesis, we constructed the NLL(y, z) for a full 9000 event test
set and then divided by 9. This way, one obtains something that can be
considered as the expected value of a bootstrap NLL(,z) over the full
test set.

23

Version of October 2024— Created October 11, 2024 - 08:42

Chapter I

Results

4.1 True likelihood coverages

For this experiment, we calculated coverages for the true likelihoods in the
two Gaussian cases, both with and without bootstrapping.

Every non-bootstrapping coverage number was calculated on 2700 inde-
pendent test sets of 1000 events; 300 for each of the 9 (y, z) parameter
combinations discussed in 3.1.1. This was then done four times to obtain
four coverage numbers, over which mean and std were calculated, which
are represented as [mean-std, mean+std] bands in figure 4.1.

The bootstrapping coverages were calculated for two different sizes of
bootstrap sets, being n = 1000 and n = 5000. We used test set sizes dif-
ferent from the N = 9000 test set size in our main experiments, in order to
obtain a range of k = N /n values. The bootstrapping results are given as
the lines in figure 4.1. Each bootstrap value was obtained by calculating
the coverage on the 100 bootstrap sets of each of 45 test sets (see 3.1.1) and
averaging over those.

The non-bootstrapping bands are all found between 66% and 70% with
the z bands being smaller than the y ones. Interestingly, for low k, all the
small case coverages and the large case z coverages, are way below their
corresponding non-bootstrapping values, at around 52%. For higher k,
coverage rapidly increases to around 65%. However, the curves slowly
flatten out, making it seem like they need much higher k to reach their non-
bootstrapping coverage. The large case i coverages on the other hand, are
already found in the corresponding non-bootstrapping band for k > 3.
Furthermore, it seems like the coverages only depend on the ratio k and
not on the absolute sizes n and N.

25

Version of October 2024— Created October 11, 2024 - 08:42

26 Results

0.70 +

—— small, 5000, mu
== —— small, 5000, z
o small, 1000, mu
—— small, 1000, z
—=- large, 5000, mu
-=-=- large, 5000, z
large, 1000, mu
—--- large, 1000, z
small, 1000, mu
small, 1000, z
large, 1000, mu
0509 / large, 1000, z

0.65 1

0.60 -

coverage

0.55 A

T
1 2 3 4 5 6 7 8 9

Figure 4.1: Coverages in the Gaussian case of Cls constructed with true likeli-
hoods, with and without bootstrapping. The bands show the non-bootstrapping
results and the lines show the bootstrapping results as a function of k, which is
the fraction between the bootstrap set size (numbers in the legend) and the full
test set size.

4.2 Main results

As described in 3.3, for each model we trained, we calculated a number of
metrics on a total of 45 test sets. The metrics are y and z CI coverage, p and
z CI mean width, and in the Gaussian case also y, z, and total overlap. We
averaged these numbers over the 45 test sets to get a final value of these
metrics for each model.
The mean and standard deviations over the 30/40 models we trained are
shown in figure 4.2 as lines with bands, for all our experiments. For the
Gaussian case, we also show the results with the true likelihood. Just like
for the classifier and flow models, the true likelihood was assessed on 30
sets of 45 test sets. The fact that the true likelihood results also have bands
(standard deviations), is due to the fact that in the Gaussian case, the 30
sets of 45 testsets are all different. The true likelihood results are not shown
for the overlaps, since the true likelihood results there are 1 by construc-
tion (you get pirue — Prrue) in eq. 3.4.

From these figures, we choose for each of the three cases the "best”
learning rates to take into our further analysis. These are stated in table
4.1.

26

Version of October 2024— Created October 11, 2024 - 08:42

4.2 Main results 27

[g
o

l
|
\
)

mu_overla
(=]

©
mu_overla

o

I

o
e /

|

L

o
N
a

4
o

= 04]
~ 0.2 —_— :|0'2- ﬂOW
0.0 1
' class

ps
(=]
o
ps

o
=]

total_overla|
o [=]
N »
(2
|
total_overla
o o
N -

°
~

ges

%
\

05 3
S, 0.60 1 8 goay
> S !
] >
E o554 £044 i . E 02
2 £ 2
£ S £ 0.0
2 0.036 2 0.10 H \'_\<
il o Z10.09 _——
3 3 = 5
E 0035 £ 0.9 = E 008
=2
g E . . ‘ 2 o007

o
o

z_coverages
[=]
-
%
2z coverages
g o <
-
coverag
o o
N »

mean_widths
o o
o o
@ 5 o
w o N
z_mean_widths
o o
N
w o
z_ mean_widths
4 o
o =)
N w
N s

<)
o
rages
=]
o

\

o
N
o

~' 0.030

10-6 1075 104 1076 1075 1074 1076 10-° 1074

learning rate learning rate learning rate
Large distance Small distance Higgs

Figure 4.2: All metrics as a function of learning rate. Lines and bands are means
and standard deviations over the models.

4.2.1 Gaussian large distance case

Histograms of the 30 flow models with learning rate 3 - 107¢ and the 30
classifier models with learning rate 3 - 10> of the large distance case are
shown in figure 4.3. For both classifier and flow, we see that u overlaps are
close to 1, and y coverages and mean widths are close to the true likelihood
results. This is reflected in the contours of these models, some examples
for one flow model and one classifier model being shown in figure 4.4.
One can see that in terms of u the model contours are very close to the
true contours.

The flow model does have 3 outliers, with low p overlap/coverage.

The z overlaps and coverages are not as close to the desired values. This

27

Version of October 2024— Created October 11, 2024 - 08:42

28 Results

| large distance small distance Higgs
Flow 3-10°° 1-107° 3-10°°
Classifier | 3-107° 3-107° 1-1074
Table 4.1: Learning rates picked for further analysis based on the results shown
in figure 4.2.

can be seen from the model contours, having a small systematic mismatch
with the true contours, depending on the true z value. For the flow for
example, for z = 0.1571 we see the model systematically overestimating z,
for z = 0.257 it underestimates the parameter and for z = 0.357 it over-
estimates it again. To illustrate what, by eye, small differences in contours
reflect big differences in overlap/coverage: for the classifier example, the
bottom row of contours (z = 0.1577) correspond to a mean z overlap of 0.89
and mean z coverage of 0.61, while the top row (z = 0.357) corresponds to
a mean z overlap of 0.36 and a mean z coverage of 0.54. Differences in the
size of this mismatch per model are reflected in the z overlap histograms,
where the flow and classifier both have performances spread out between
0.2 and 0.8. Interestingly, while the flow seems comparable or even better
than the classifier in terms of z overlap, the z coverages are clearly better
for the classifier. The classifiers also have higher z mean widths, where
the distribution seems to be more centered on the true value than the flow
distribution.

Flow Classifier
large distance small distance | large distance small distance
i overlap 0.95 0.55 0.94 0.69
z overlap 0.47 0.41 0.52 0.47
total overlap | 0.47 0.29 0.52 0.41
J coverage 0.65 0.61 0.66 0.64
Z coverage 0.52 0.50 0.60 0.63
y mean width | 0.035 0.096 0.036 0.089
z mean width | 0.032 0.15 0.031 0.17

Table 4.2: Metric values corresponding to the Gaussian case contours in figure
4.4.

28

Version of October 2024— Created October 11, 2024 - 08:42

4.2 Main results

=
o

N models

15

o]

flow
classifier

0.4 0.6 0.8

mu_overlaps

N models
[
w o w

o

flow
classifier

mu_coverages

true

N models

=
o

v

o

flow
classifier

mu_mean_widths

25«‘
0

true

0.03450.03500.03550.0360 0.0365

flow

flow 10
classifier

flow
6
classifier

classifier

o

IS

N models
N s
N models
o)

N models

z_mean_widths

N

z_coverages

‘ 2 true ‘
1.0 0

50«‘
0

o

04 06
z overlaps

00 02 038

0.030 0.035 0.040

0.4

0.5 0.6

flow
classifier

o

IS

large distance case

N models

N

=}

0.0 0.2 0.4 0.6 1.0

total_overlaps

0.8

Figure 4.3: Histograms of all metrics for the 30 flow (with Ir=3e-6) and 30 classifier
(with Ir=3e-5) models that we trained in the Gaussian large distance case. Values
for 30 times the true likelihood are also shown in green.

4.2.2 Gaussian small distance case

For the small distance case, we see that the contours (examples shown in
figure 4.4) are much wider than for the large distance case. Also, we now
observe an interesting difference with the flow contours being much more
squiggly than the classifier contours.

The story with regard to z estimation is pretty similar to the large distance
case. There is a clear systematic error in z estimation as a function of true
z, size of the error coming in variety, leading to a large spread in z overlaps
and z coverages in the histograms in figure 4.5. Furthermore, we again see
similar z overlaps for flow and classifiers, while coverages are better for
the classifiers and mean widths are higher and closer to the truth.

The major change compared to the large distance case is observed in the
p prediction, for which models are not all as accurate as in the large dis-
tance case. For a lot of models, a global offset between the model- and
true contours is found in the y dimension, like in the classifier example in
figure 4.4. For fewer, the difference is more z dependent, like in the flow
example, where y is overestimated at low z and underestimated at high

29

Version of October 2024— Created October 11, 2024 - 08:42

30 Results

Large distance case Small distance case
1.2 — model 1.2
‘@ - - frue

1.0 A ' 1.0 1

N 0.8 1 @ ¢ $ N 0.8

Flow
0.6 - 0.6
0.4 1 0.4 -
00 01 02 03 04 0.0
u

1.2 1 — model
*# — = true
. I

1.0

Class " ﬂ#@@

0.6
0.4 4
T T T
0 0.1 0.2 0.3 0

0.

.4
U

Figure 4.4: Examples of contours in the Gaussian case. Metric averages over the
9 test sets in each figure are given in 4.2.

z. These differences are observed in the histograms where we now see u
overlap values spread out between 0.2 and 0.8 for the flow and 0.4 and
0.8 for the classifier. A large part of the u coverages are found below the
lowest true value of 0.65. For the y mean widths, the most noticeable is
the systematically too high values for the flow.

4.2.3 Higgs case

In the Higgs case, we do not have access to the true contours, to assess di-
rectly in what way the model contours are wrong. However, trends can be
observed when looking at the models with higher coverages versus those
with lower coverages for both of the models. An example for both model
types with high coverages (on the high end of the coverage distributions
observed in figure 4.7) is shown as examples 1 in figure 4.6. These are rel-

30

Version of October 2024— Created October 11, 2024 - 08:42

4.2 Main results 31
flow flow 6 flow
6 classifier ©n 10 classifier w classifier
S 3
$: g’
5
84 z z2
£
z > 0 T T 0 T T
mu_coverages mu_mean_widths
0 25 true ‘ 25 «‘ true
0.2 0.4 0.6 0.8 0 o
mu_overlaps 0.45 050 0.55 0.60 0.65 0.090 0.095 0.100 0.105 0.110
flow 75 flow 0 flow
8 dlassifier © dlassifier) classifier
g 50 3
Qg o o 5
K £ £
<1 z 25 z
€4
z 0.0 0
2 z_coverages z_mean_widths
0 25 true ‘ 25 “ true
00 02 04 06 08 10 0 o
z_overlaps 0.3 0.4 0.5 0.6 0.14 0.16 0.18 0.20
flow
8 classifier
n .
o small distance case
o
€4
z
2
0
0.0 0.2 0.4 0.6 0.8 1.0
total_overlaps

Figure 4.5: Histograms of all metrics for the 30 flow (with Ir=1e-5) and 30 classifier
(with Ir=3e-5) models that we trained in the Gaussian small distance case. Values
for 30 times the true likelihood are also shown in green.

atively similar. Examples with lower coverage however, shown as exam-
ples 2 in the same figure, show larger differences. The classifiers typically
have a global offset from the true parameters, such as the lower y and z
in this example. The flows on the other hand typically have this diagonal
pattern, with the over- or underestimation of y relying heavily on the true
Z parameter.

For the flow, it seems like there is a clearer distinction in ‘'good” models,
looking like example 1 vs ‘bad” models, looking like example 2, where for
the classifier, there seems to be more of a spectrum with smaller and big-
ger global offsets. This can be seen nicely from the y coverage histogram
in figure 4.7. Furthermore, from these histograms, we see a significant
difference again in the mean width distributions. Interestingly, z mean
widths are now, opposite to the Gaussian case, smaller for the classifiers
and bigger for the flows.

31

Version of October 2024— Created October 11, 2024 - 08:42

32

Results

Example 1 Example 2

1.100 1.100

1.050 A 1.050 A

1.025 1.025 A

N 1.000 — 1.000 -i!‘“ 1‘39

Flow ‘ s> =

0.975 - 0.975 -

0.950 - 0.950 -

0.900 T T T 0.900 T T

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.3 0.4
u

1.100 1.100

1.050 1.050

1.025 - 1.025 -

N 1.000 A @ 1.000 4 c:“v»‘__
N Qx TS

Class SRABID

0.975 4 0.975 -

0.950 - 0.950

0.900 T T ™ 0.900 T r T

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.3 0.4
u

Figure 4.6: Examples of contours, examples 1 show better performing models and
examples 2 worse. Metric averages over the 9 test sets in each figure are given in

table 4.3.
Flow Classifier
Example 1 Example 2 | Example1 Example 2
U coverage 0.68 0.56 0.67 0.60
Z coverage 0.66 0.59 0.68 0.48
u mean width | 0.095 0.087 0.098 0.085
z mean width | 0.014 0.014 0.014 0.13

Table 4.3: Metric values corresponding to the Higgs case contours in figure 4.6.

32

Version of October 2024— Created October 11, 2024 - 08:42

33

4.2 Main results
25 1 flow flow
classifier 12.5 1 classifier
20 A
K] wn 10.0
[[
15 A
g 'é 7.5
=z 107 Z 5.0
5 2.5
0= T T T 0.0 — T T T T
0.2 0.4 0.6 0.8 0.07 0.08 0.09 0.10 0.11
mu coverage mu mean width
flow flow
15 4 classifier 15 4 classifier
0 0
[} [}
T 101 3 10
1S 1S
=2 =2
5 51
0= T T T 0= T T T T
0.2 0.4 0.6 0.8 0.010 0.012 0.014 0.016 0.018

Z coverage

z mean width

Figure 4.7: Histograms of coverages and mean widths for the 40 flow (with Ir=3e-

6) and 40 classitier (with Ir=1e-4) models that we trained in the Higgs case.

Version of October 2024— Created October 11, 2024 - 08:42

33

Chapter

Conclusion

We have tested classifier models and normalizing flows models on two
different Gaussian toy cases and one physical "Higgs” case, where for the
Gaussian toy cases, we also compared to the true likelihood results. We
found both model types able to find the true (j, z) values in all three cases.
However, the quality of the modeled likelihoods strongly differed per case
and model.

As is often the case with Machine Learning, there seems to be no clear
overall winner between the model types. In the Gaussian case, the clas-
sifiers seemed to perform better, and in the Higgs case, the flow models
seemed slightly better. The question also arises how fair the comparison is
in the first place. We saw how much the influence of the learning rate is on
the performances and that is only one of the many tunable hyperparame-
ters. Only little optimization was done for these hyperparameters, due to
the fact that there is such a big difference in model performance between
identically trained models. Therefore, one has to train a large ensemble
of models (like the 30/40 we did here) before you can decide confidently
in what direction to adjust a HP. Doing this for multiple HPs at the same
time was not feasible for this project.

Furthermore, it is open to question whether the 68.3% Confidence Inter-
vals by themselves are sufficient to judge the performance of these models.
This, as the classifiers significantly outperform the flows in Gaussian case
z coverage, but not in z overlaps. A confidence interval (CI), of course,
only captures a fraction of the information contained in the full underly-
ing likelihood. We cannot rule out the possibility that the flow might have
performed better with, for example, 95% ClIs. It is also noteworthy that
coverage measurements like ours are scarce in the literature related to this
topic, where most other papers solely compare the found contours to true

35

Version of October 2024— Created October 11, 2024 - 08:42

36 Conclusion

contours.

However, for anyone who is considering using coverage measurement
with bootstrapping, our Gaussian case true likelihood results are a very
useful addition to [19]. We do not only confirm the bias found there, but
we show here that this bias decreases with increasing k factor. Further-
more, the similar trend we found for different bootstrap set sizes, for Cls
on two very different parameters, and for both the small and large distance
cases, possibly suggests some upper bound on this bias. However, this re-
lation should be investigated on more and completely different datasets in
order to confirm this.

The most interesting findings are our more qualitative results. We saw
clear differences in the contours between the flow and the classifier mod-
els, both in the small distance case and the Higgs case. Now, the parti-
cle physicist’s biggest nightmare is multiple methods confidently giving
them the same wrong answer. Our Higgs case shows a beautiful example
of two different methods looking similar when they are performing well,
but completely unalike when they are performing badly. Hence, we have
shown here that applying both these model types to the same problem and
obtaining consistent results can greatly strengthen ones conclusions.

36

Version of October 2024— Created October 11, 2024 - 08:42

Bibliography

[1]

(2]

3]

[7]

8]

[9]

Kyle Cranmer, Juan Pavez, and Gilles Louppe. Approximating like-
lihood ratios with calibrated discriminative classifiers. 6 2015.

Johann Brehmer, Kyle Cranmer, Gilles Louppe, and Juan Pavez. Con-
straining effective field theories with machine learning. Physical Re-
view Letters, 121, 2018.

Shahzar Rizvi, Mariel Pettee, and Benjamin Nachman. Learning like-
lihood ratios with neural network classifiers. Journal of High Energy
Physics, 2024, 2024.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakar-
ios. Neural spline flows. In Advances in Neural Information Processing
Systems, volume 32, 2019.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende,
Shakir Mohamed, and Balaji Lakshminarayanan. Normalizing flows
for probabilistic modeling and inference, 2021.

Stephen R. Green and Jonathan Gair. Complete parameter inference
for gw150914 using deep learning. Machine Learning: Science and Tech-
nology, 2, 2021.

Johann Brehmer, Felix Kling, Irina Espejo, and Kyle Cranmer. Mad-
miner: Machine learning-based inference for particle physics. Com-
puting and Software for Big Science, 4, 2020.

Johann Brehmer and Kyle Cranmer. Simulation-based inference methods
for particle physics. 2022.

Glen Cowan. Statistical Data Analysis. Clarendon Press, Oxford, 1998.

37

Version of October 2024— Created October 11, 2024 - 08:42

38 BIBLIOGRAPHY

[10] S. S. Wilks. The large-sample distribution of the likelihood ratio for
testing composite hypotheses. The Annals of Mathematical Statistics, 9,
1938.

[11] Aishik Ghosh, Benjamin Nachman, and Daniel Whiteson.
Uncertainty-aware machine learning for high energy physics.
Physical Review D, 104, 2021.

[12] Torbjorn Sjostrand, Stefan Ask, Jesper R. Christiansen, Richard
Corke, Nishita Desai, Philip Ilten, Stephen Mrenna, Stefan Prestel,
Christine O. Rasmussen, and Peter Z. Skands. An introduction to
pythia 8.2. Computer Physics Communications, 191, 2015.

[13] J. De Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaitre,
A. Mertens, and M. Selvaggi. Delphes 3: A modular framework for
fast simulation of a generic collider experiment. Journal of High Energy
Physics, 2014, 2014.

[14] Victor Estrade, Cécile Germain, Isabelle Guyon, David Rousseau, and
Upsud Inp. Adversarial learning to eliminate systematic errors : a
case study in high energy physics. Deep Learning for Physical Sciences
Workshop (NIPS), 2017.

[15] victor estrade. victor-estrade/datawarehouse: First release, Decem-
ber 2018.

[16] Victor Estrade, Cécile Germain, Isabelle Guyon, and David Rousseau.
Systematics aware learning: A case study in high energy physics.
In ESANN 2018 - Proceedings, European Symposium on Artificial Neu-
ral Networks, Computational Intelligence and Machine Learning, 2018.

[17] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. Pytorch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems 32, pages
8024-8035. Curran Associates, Inc., 2019.

[18] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakar-
ios. nflows: normalizing flows in PyTorch, November 2020.

38

Version of October 2024— Created October 11, 2024 - 08:42

BIBLIOGRAPHY 39

[19] Robert Schall. The empirical coverage of confidence intervals: Point
estimates and confidence intervals for confidence levels. Biometrical
Journal, 54, 2012.

39

Version of October 2024— Created October 11, 2024 - 08:42

Appendix A

z parameter space edges

For a lot of the classifier models we saw issues arising when we scanned
the likelihood over the full z parameter space on which the model was
trained. Somehow, the classifiers always overestimate the likelihood to-
wards the edge of the seen z parameter space. The nearer the true param-
eter is to the edge the more likely this effect is to play a role. An example
of one of the small Gaussian case classifier models is shown in figure A.1,
where the NLL(y, z) was scanned over the full training space. Also, to
clearly illustrate the effect, we chose true z closer to the edges of the z
space with [0.057,0.2577,0.457].

As can be clearly seen, for high true z the contours are “pushed away”
to the edge of the z space. For this specific model, it only happens for
the high z values, but for others, it happens for the low z (Gaussian ex-
ample is symmetric in z). We saw this in the Higgs case as well. For the
Flow, we did not run into such problems. Training over a bigger parame-
ter space/scanning a over smaller parameter space solves the problem for
the classifier and should be possible in most practical applications, which
is what we did in this thesis as well.

41

Version of October 2024— Created October 11, 2024 - 08:42

42 z parameter space edges

Figure A.1: Example contours of a classifier model that is evaluated on its full
training parameter space. This can lead to an overestimation of the likelihood

towards the edges on the z space, which is observed here for the contours with
true z=0.457t.

42

Version of October 2024— Created October 11, 2024 - 08:42

Appendix B

Parabolic fit assumption

As mentioned in 3.3.2, we constructed the CIs in a way that basically
assumed our 4th-degree polynomial fits, were very close to 2nd-degree
shaped. We calculated the error that this gave, compared to calculating
the CIs without this assumption: for the ClIs of 9 test sets (1 for each true
(u,z)) we calculated the —2logA values of our 4th-degree polynomial fit
at the bounds of the CI (calculated with the 2nd-degree assumption). In
other words, in figure 3.3, the NLL value at the intersections between the
fit and the vertical lines, minus the NLL value at the minimum of the fit.
We then calculate the corresponding coverage values by means of eq. 2.13.
For CIs constructed without the 2nd-degree assumption, this experiment
would give 68.3%, by construction. What we get with our 2nd-degree as-
sumption is given in figure B.1. For the Gaussian case, we used the true
likelihood ClIs and for the Higgs case, we used two different classifiers and
two different flows, all with 60%+ mean average coverages, which all gave
similar results.

It is seen that asymmetry of the NLLs (see the one in figure 3.3)) give
distinct peaks at a lower- and higher than 68.3% coverage. The symmetric
but non-fully parabolic z NLLs give one peak centered around 68%. Note
that, since towards one bound of the CI, coverage is higher, and lower
towards the other bound, the measured coverage can be anywhere in be-
tween. This is what we see in the true likelihood, non-bootstrap coverages
(so no bootstrap bias) in 4.1, which do not get higher than 70%. Hence,
especially since we do not draw any conclusions based on differences in
coverage above 60%, we decided that the parabolic assumption should not
affect this thesis in a significant way.

43

Version of October 2024— Created October 11, 2024 - 08:42

44 Parabolic fit assumption

Gaussian large distance case Gaussian small distance case
u 1000 - u
1500 ? 800 A z
600 4
= 1000 4 =
400 A
500 4
200 4
0 T T T T T 0 T T —= T T
0.625 0.650 0.675 0.700 0.725 0.750 0.625 0.650 0.675 0.700 0.725 0.750
coverage coverage
H
600 - z
= 400 -
200
0 T T T T T T
0.65 0.70 0.75 0.80 0.85 0.90
coverage
Higgs case

Figure B.1: Coverages as calculated with eq. 2.13 from the —2logA (calculated
with 4th-degree polynomial fit) values at the edges of our ClIs, indicating possible
deviations to the coverage, due to the assumption of the fit being of 2nd-degree.

44

Version of October 2024— Created October 11, 2024 - 08:42

	Introduction
	Theory
	Uncertainty aware inference of the signal ratio
	Method of normalizing flows
	Method of binary classifiers
	Likelihood ratio
	Likelihood ratio trick
	Classes

	Confidence Intervals and Wilks theorem

	Methods
	Datasets
	Gaussian case
	Higgs case
	Bootstrapsets

	Models
	Classifier model
	Flow model

	Analysis
	NLL(,z)
	Confidence Intervals (CIs): coverage and mean width
	Overlap
	Plotting contours

	Results
	True likelihood coverages
	Main results
	Gaussian large distance case
	Gaussian small distance case
	Higgs case

	Conclusion
	References

	z parameter space edges
	Parabolic fit assumption

