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Abstract

This thesis focuses on the task of separating detector events caused by
atmospheric neutrinos from those caused by atmospheric muons. Perfor-
mance on this task is analysed using simulated data of these events as they
are detected in the KM3NeT/ORCA10 detector setup. We present a new
procedure for training the Machine Learning (ML) classifiers that handle
this separation task. This most notably includes separating the data into
track- and shower- like events, and training separate classifiers on these
subsets of data. We show a significant improvement in the resulting neu-
trino signal when compared to the current classification procedure.





Chapter 1
Introduction

Neutrino research plays a crucial role in advancing our understanding of
the universe, particularly in areas such as particle physics, astrophysics,
and cosmology. Neutrinos, nearly massless subatomic particles, interact
weakly with matter. This makes them notoriously difficult to detect. Yet
studying their properties, such as neutrino oscillations, is essential for an-
swering fundamental questions about the nature of matter and the struc-
ture of the Standard Model. One of the key questions in neutrino physics is
the mass ordering of neutrinos (NMO), a topic that the KM3NeT’s Oscilla-
tion Research with Cosmics in the Abyss (ORCA) detector aims to address.

The ORCA detector, located at the bottom of the Mediterranean Sea,
is designed to measure atmospheric neutrinos. These neutrinos are pro-
duced when cosmic rays collide with the Earth’s atmosphere, and their
oscillations provide insights into the neutrino mass hierarchy. However,
a significant challenge in such measurements comes from the background
signals generated by atmospheric muons, which are also produced in cos-
mic ray interactions. These muons mimic the signatures of neutrinos,
making it difficult to distinguish between them. Because the frequency of
muon events is several orders of magnitude higher than that of neutrino
events, getting a strong and clean neutrino signal is non-trivial.

This thesis therefore focuses on the suppression of the muon back-
ground in ORCA10, a phase of the ORCA detector comprising 10 of the
foreseen 115 Detection Units (DUs). The task of separating muon events
from neutrino events is critical for the success of the ORCA experiment, as
the presence of muons introduces significant noise into the neutrino signal
on which analysis of the oscillation properties is performed.

The core methods for reconstructing particle interactions in the detec-
tor are well-established. This work contributes by refining the data se-
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6 Introduction

lection procedure and machine learning techniques used, and thereby en-
hancing the strength and purity of the neutrino signal. The analysis pre-
sented here uses a new procedure where the detector data is split into two
subsets with different properties. This allows the classification models to
improve their performance on these subsets. This improvement is essen-
tial for the precise measurement of neutrino occurrences and, ultimately,
for determining the neutrino mass hierarchy and refining the oscillation
parameters.

In chapter 2 we will first explore the physics of neutrinos, particularly
atmospheric neutrinos, and their interactions. Chapter 3 will provide a
more detailed description of the ORCA detector and its operational prin-
ciples. Chapter 4 will cover the machine learning techniques used in this
work to improve the separation of muon events from neutrino events.
Chapter 5 includes the data processing and analysis steps used for this
work. Chapter 6 will explain the experimental methods employed to gain
our final results. In chapter 7 the results of these methods will be shown.
Then the results will be discussed and a conclusion on this work will be
provided in chapter 8. Lastly, chapter 9 finishes with an outlook on future
research possibilities.

6
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Chapter 2
Neutrino Physics

Neutrinos are extremely light particles that are difficult to detect because
they only weakly interact with matter. Neutrinos are often separated into
groups based on their production process and location. Examples are so-
lar neutrinos and neutrinos from nuclear decays. The neutrinos of interest
to this work, and in the appropriate energy range for the KM3NeT de-
tectors, are separable into two groups. The first group are cosmic neutri-
nos, produced in extra-galactic sources. The second group are atmospheric
neutrinos, neutrinos formed when cosmic rays hit the earth’s atmosphere.
Atmospheric neutrinos are the target of neutrino oscillation research, and
therefore by extension also of this work. This chapter will provide an in-
troduction to neutrinos, covering the basics and properties of interest in
the context of this project. First we shall briefly go over the origin and rel-
evance of neutrino research in physics. Then atmospheric neutrinos will
be discussed in more depth, as they are the neutrinos targeted by ORCA.
The chapter closes with a section on the oscillation properties of neutrinos.

2.1 Relevance

Exploration of neutrino properties has already produced significant scien-
tific progress. The experimental evidence for neutrino oscillations solved
an open problem in the detection ratio between two different neutrino
flavours, muon-neutrinos (νµ) and electron-neutrinos (νe) in the atmospheric
flux [25]. It also explained the deficit of νe in the solar neutrino flux [11, 20].
For their work on neutrino physics, Takaaki Kajita and Arthur B. McDon-
ald were rewarded the 2015 Nobel Prize in physics. The evidence for
neutrino oscillations indicated that neutrinos have non-zero mass (see sec.
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8 Neutrino Physics

2.5). This showed the incompleteness of the Standard Model, which pos-
tulated neutrinos to have zero mass. Therefore theoretical extensions of
the Standard Model such as Seesaw mechanisms [31] were proposed. The
existence of sterile neutrinos such as postulated by the Seesaw mechanism
are a possible candidate for dark matter [12], the nature of which is one
of the greatest open questions in (astro)physics. Currently, the main ques-
tion surrounding neutrino oscillations, and the question KM3NeT/ORCA
aims to solve, is that of the neutrino mass ordering (see sec. 2.5). De-
termining the correct mass ordering would narrow down which mecha-
nisms (such as Seesaw mechanisms) are responsible for neutrinos’ mass.
This additionally has impact on the viability of leptogenesis [19][23] as an
explanation of the matter/anti-matter asymmetry in the universe.

Detectors with capabilities to detect neutrinos reliably and with high
accuracy in direction and energy, enable researchers to look very deep
into the universe, and far into the past. Neutrinos’ small interaction cross-
section make them the ideal particle for such purposes, as they pass mostly
unhindered through gas and other matter in their path. And because they
are not deflected by magnetic fields, they point back straight to their ori-
gin.

2.2 Standard Model

Neutrinos are part of a theory called the Standard Model. The Standard
Model describes three fundamental forces of nature: the weakforce, the
strongforce, and the electromagnetic force. It also describes the elementary
particles that exist in the Universe. Neutrinos fall under a subcategory of
elementary particles called leptons. Leptons are particles that have spin 1

2 ,
and only interact through the electromagnetic- and weakforce. There are
three generations of leptons, giving rise to three types of neutrinos. Each
generation consists of two leptons. One of them carries charge, such as the
electron e, and one of them is neutral, such as νe. These two together (with
their respective anti-particles) constitute the 1st generation of leptons. The
2nd and 3rd generations with the muon-neutrino νµ and tau-neutrino ντ

respectively, are structured in the same way. These three different types of
neutrinos are referred to as the different neutrino flavours.

The Standard Model does not cover the effects of gravity. Neither does
it cover the quantum effects that produce the neutrino oscillations cov-
ered later on in this chapter. It is therefore known that despite its large
number of successful predictions, such as the existence of the W, Z and
Higgs Bosons, the Standard Model provides an incomplete description of

8

Version of October 11, 2024– Created October 11, 2024 - 09:35



2.3 Atmospheric Neutrinos 9

Figure 2.1: Schematic representation of a possible production channel for atmo-
spheric muon-neutrinos (νµ) and muons (µ). Here a cosmic ray consisting of a
proton (P) collides with the nucleus (N) of an atom in earth’s atmosphere. This
collision produces a pion (π), and other particles of lesser interest here denoted
with X. The resulting pion is unstable, and decays into a muon and a muon-
neutrino.

elementary particles.

2.3 Atmospheric Neutrinos

2.3.1 Production

The formation of atmospheric neutrinos is caused by cosmic rays, which
consist mostly of protons, colliding with nuclei in the earth’s atmosphere.
These collisions produce π and in lesser quantity K mesons [29]. Mesons
are another group of sub-atomic particles. These mesons are unstable and
decay into neutrinos and other particles, some of which subsequently de-
cay into neutrinos. A possible and common production channel is shown
in figure 2.1.

2.3.2 Flux

To study neutrino oscillations, we naturally need values for the expected
neutrino flux for each neutrino flavour. These flux values depend on many
variables. The strength of the earth’s magnetic field as a factor of detection
site longitude, air temperature and density, and the angle of the incoming
neutrinos are a couple of examples. Increasing the accuracy of the flux
values is an ongoing effort. This work uses the values as found by Honda
et al. [26] for the Frejus site.
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10 Neutrino Physics

2.4 Interaction Cross-section

Because neutrinos interact only through the weakforce, they have an ex-
tremely small interaction cross-section. This interaction cross-section is a
quantifier for the probability of particles to interact with the matter they
pass through. It depends on the energy of the neutrino, and of the type of
interaction of that specific neutrino. The two different interaction groups
are Neutral Current and Charged Current, enacted through Z and W bosons
respectively [36].

2.5 Oscillations

2.5.1 Discovery

Oscillation between the different neutrino flavours was first theorized to
occur in analogy to the oscillation of other particles, called Kaons. While
those oscillations were well established, it took some time before experi-
mental indications of neutrino oscillations were found. Among the first
of these indications were the deficit of νe in the solar neutrino flux mea-
sured in the Homestake experiment, and the discrepancy between ob-
served and expected ’muon-like’ detection signals in the Kamiokande de-
tector [20][25]. It was not until 10 years later that neutrino oscillations was
concluded to be the cause for this deficit, based on new data with higher
statistics from the Super-Kamiokande detector [22][28].

2.5.2 Flavour Mass

The three different neutrino flavours can be described as superpositions of
three mass eigenstates of neutrinos (see fig. 2.2). This is what causes the
oscillations between the different flavours as a function of time, and it can
be described as the evolution between quantum eigenstates of the neu-
trino. It follows that the three mass eigenstate neutrinos can also be writ-
ten as superpositions of the neutrino flavours, as this constitutes merely a
change of basis.

να = ∑
i=1,2,3

U∗
αiνi (2.1)

νi = ∑
α=e,µ,τ

Uαiνα (2.2)

Where νi indicates the i-th neutrino mass eigenstate and Uαi is the mix-
ing coefficient between the different states. Here ∗ indicates the complex

10
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2.5 Oscillations 11

Figure 2.2: A depiction of how the neutrino mass eigenstates are composites of
the neutrino flavours. Figure is taken from Cahn et al. (2013) [13]. Here the term
hierarchy is used in stead of ordering.

conjugate of the coefficient. The ordering of the neutrino eigenmasses by
increasing mass, the Neutrino Mass Ordering (NMO) is still and open ques-
tion. There are two options. Normal Ordering (NO): m1 < m2 < m3, and
Inverse Ordering (IO): m3 < m1 < m2. Solving this question is one of the
main goals of the ORCA detector.

2.5.3 2-Flavour Approximation

To better understand neutrino oscillations, this section shall work out an
example under the assumption that there are only 2 flavours of neutrinos.
This simplifies the process and the resulting equations. The 3-flavour case
is a natural extension of this example. We shall closely follow the example
given by Nauta (2022) [35].

Assume the existence of two flavour states νe and νµ, and two mass
eigenstates ν1 and ν2. The unitary matrix U describing the mixing between
these states is then the 2d rotation matrix.(

νe
νµ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
ν1
ν2

)
and

(
ν1
ν2

)
=

(
cos θ sin θ
− sin θ cos θ

)(
νe
νµ

)
(2.3)

The solution for the time-dependant evolution of νµ is then given by equa-
tion 2.4.

|νµ(t)⟩ = − sin θe−iE1t |ν1⟩+ cos θe−iE2t |ν2⟩ (2.4)

Using equation 2.3 to substitute out the mass eigenstates we can then write
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12 Neutrino Physics

the probability of νµ oscillating to νe as shown in equation 2.5.

P(νµ → νe)(t) = |⟨νe|νµ⟩|2 =

| cos θ sin θ(e−iE2t − e−iE1t)|2 = sin2(2θ) sin2(
E2 − E1

2
t)

(2.5)

As neutrinos have extremely low mass, atmospheric neutrinos are always
in the ultra-relativistic regime. Because of this, we can use x ≈ t and
m ≪ E to rewrite equation 2.5.

P(νµ → νe) = sin2(2θ) sin2(
∆m2

21L
4E

) (2.6)

Now it becomes clear how the mass squared difference between neutrino
flavours and the mixing angle θ influence the oscillation between two neu-
trino flavours.

2.5.4 3-Flavours

When extending to the full 3-flavour case, the unitary matrix now describ-
ing the mixing between the flavour and mass states is called the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix [34]. This is often shown in its
decomposed version as shown in equation 2.7.1 0 0

0 c23 s23
0 −s23 c23

 c13 0 s13e−iδCP

0 1 0
−s13e−iδCP 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

 (2.7)

For legibility, here sij = sin θij and cij = cos θij. δCP is called the CP-
violating phase, which when non-zero creates a difference between neutrino-
and anti-neutrino interactions. Increasing the accuracy with which these
parameters and the mass squared differences are known is the goal of neu-
trino oscillation research

2.5.5 Matter Effects

Up and until now we have treated the oscillations as if they occur in vac-
uum. However for oscillation research the main interest is in upgoing neu-
trinos, neutrinos that have passed through the earth on their way to the
detector. This has multiple reasons. Downgoing atmospheric neutrinos
that reach the detector on their way down from the atmosphere have not
travelled distances long enough to produce significant oscillations. Also

12
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2.5 Oscillations 13

important are matter effects. These effects describe how the potential felt
by neutrinos as they move through matter changes the effective mass and
effective mixing angles, thus altering the oscillation probabilities. The po-
tential effects all neutrinos with NC interactions the same, and thus its
effects are not measurable. However the potential produces measurable
effects through CC interactions. Combining measurements of the matter
effect with high precision measurements of oscillation parameters is how
the full ORCA detector will aim to solve the NMO problem [36].

Version of October 11, 2024– Created October 11, 2024 - 09:35

13





Chapter 3
Detector

3.1 KM3NeT

KM3NeT is an international collaboration of research institutes and uni-
versities that is implementing deep-sea neutrino telescopes/detectors in
the Mediterranean sea. The full KM3NeT architecture consists of two
seperate detectors: Astroparticle Research with Cosmics in the Abyss
(ARCA) and Oscillation Research with Cosmics in the Abyss (ORCA).
ARCA will be used to study the energy spectrum, energy and flavour com-
position of neutrinos from (extra) galactic sources [5]. ORCA focusses on
the oscillation of atmospheric neutrinos. A key difference between ARCA
and ORCA is the energy range they are optimized to detect. For ORCA
this is in the range 0-100GeV, while ARCA is optimized for energies in the
TeV range. This is also what makes ORCA different from other neutrino
detectors such as IceCube [24]. The goal of ORCA is to refine oscillation
parameter values and determine the correct NMO, by analysing the fluxes
of upgoing neutrinos [6].

3.2 ORCA

The ORCA detector is situated at 42◦ 48′ N 06◦ 02′ E at a depth of 2450 m,
about 40 km offshore from Toulon, France [7]. It is placed at this depth
to shield it from noise. Fully finished, it will consist of 115 Detection
Units (DUs). A DU is a string consisting of 18 Digital Optical Modules
(DOMs) [17]. For reference, see figure 3.1. The DOMs detect photons from
neutrino collisions and the resulting particles (see sec. 3.3). This is done
through the 31 photo-multiplier tubes (PMTs) housed in each DOM [7].
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16 Detector

Figure 3.1: A visual representation of a DU (left) and a DOM (right). This image
was taken from the letter of intent for KM3NeT2.0 [7].

16
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3.3 Detection Principles 17

The vertical spacing between each DOM is about 9m starting about 40m
from the seabed, and the horizontal spacing between each DU is about
20m [7]. Deployment of the detector happens in phases, with multiple
DU deployment runs per phase. At the moment of writing this work, 23
DUs have been deployed. However, this work will focus on the detector
setup with 10 DUs dubbed ORCA10. This is because the latest iteration of
data processing is available for ORCA10. Therefore, improvements made
on ORCA10 simulation data may already lead to improvements to the os-
cillation analyses being done with ORCA10. Potential improvements the
classification process for ORCA10 can also be transferred to newer data.

3.3 Detection Principles

This section will discuss the radiation processes that enable the detection
of our events of interest and give rise to the different detection signatures.
We shall also brief discuss the data taking procedure for the detector.

3.3.1 Bremsstrahlung

Bremstrahlung is radiation caused by charged particles as they are de-
flected by the charged particles in the medium they are travelling through
[36]. It is the (de)acceleration caused by this deflection that produces the
radiation.

3.3.2 Cherenkov Light

The source of light which enables event detection is a phenomenon called
Cherenkov radiation. Cherenkov radiation occurs when a charged parti-
cle moves through a medium faster than a wavefront of light could [27].
The change in electromagnetic field caused by the passing of this parti-
cle causes excitations in the medium, which in turn causes photons to be
released. Due to the particle’s speed, the wavefronts of light interfere to
produce what is called the Cherenkov cone. This cone of light moves away
from the particle’s track under the characteristic Cherenkov angle θc. The
value of this angle is determined by the refractive index n of the medium
and the speed of the particle. For all events of interest for oscillation anal-
ysis, Cherenkov light is the dominant source of hits in the detector [35].
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18 Detector

3.3.3 Data Taking

The DOMs and PMTs are constantly online, i.e. continuously recording
data. However, due to the significant presence of background noise, dis-
cussed further in section 3.5, the number of hits registered by the PMTs is
extremely high. Transferring, storing, and analyzing this vast amount of
data would be an overwhelming task. To address this, filters are applied
directly at the detector site. These filters ensure that only hits occurring
within a small time window, and with a sufficient number of hits across
different DOMs that can be causally connected within that window, are
transmitted for further analysis.

3.4 Signatures

This section will explain the two distinct event signatures observed in the
detector. Before going into the processes behind these signatures, we shall
briefly discuss a characteristic important for all events relevant for oscilla-
tion analysis.

3.4.1 Zenith

An important property for particles as they arrive at detectors is the zenith
angle θz. The zenith angle is defined as the angle between the direction of
the neutrino and the line straight up from the detector. Using ORCA con-
vention, upgoing events have cos θz < 0. Because on the scale of neutrino
oscillation lengths neutrino production can be approximated to be at one
average height, θz parameterizes the length the neutrino has travelled be-
fore reaching the detector. This is naturally important for oscillation anal-
ysis. Selecting only events reconstructed as upgoing is also a crucial part
of filtering out the muon background noise that will be further discussed
in section 3.5.

3.4.2 Shower

Shower events are caused by all NC, and CC νe(νe) and ντ(ντ) (with a
branching rate of 83%) neutrino interactions. In these events, a high frac-
tion of the neutrino’s energy goes into the production of lower energy par-
ticles. These particles may in turn decay into more particles of even lower
energy. This process continues until the leftover energy is insufficient for
particle creation. Each of the charged particles created in this shower, if

18
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3.4 Signatures 19

Figure 3.2: A figure showing the characteristic track and shower signatures in the
OCRCA detector, with the dots and strings representing DOMs and DUs respec-
tively. Image taken from Nauta (2022) [35].

they have sufficient energy, may in turn produce Cherenkov radiation. For
what are called hadronic showers, which are caused by NC interactions, the
process described above covers the full process.

However for electromagnetic showers caused by CC interactions there
is an extra effect. The highly energetic electrons and positrons that are
formed not only produce Cherenkov radiation, but also give rise to high
energy bremsstrahlung. These high-energy photons may through pair-
production result in more electron/positron pairs. These in turn may pro-
duce more bremsstrahlung, again giving rise to a shower [36].

Due to the rapid loss and dissipation of energy in the shower processes,
the showers produced by atmospheric neutrinos are very concentrated.

3.4.3 Track

Track events are caused by CC νµ(νµ) and ντ(ντ) (with a branching rate
of 17%) interactions [7]. This is caused by the µ produced in these inter-
actions. As the rest mass of muons is roughly 200 times that of electrons,
their deceleration through interaction with the water happens at a slower
rate. Because of this, the bremstrahlung produced by these muons does
not have enough energy to give rise to pair-production of electrons/positrons.
Their mass is conversely still low enough, that with a lifetime of about 2.2
microseconds they are sufficiently stable to traverse the full detector vol-
ume without decaying [16]. Due to these factors, these events can be very
well approximated by only taking account the Cherenkov cone produced
by the muon.
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20 Detector

3.5 Background Noise

There are also a variety of processes that produce noise that may be de-
tected. Among these are dark noise, bioluminescence and radioactive potassium-
40 (K-40) decay [35]. Dark noise is thermal noise produced by the PMTs
themselves. Bioluminescence is the light produced by certain organisms
in the sea, and K-40 noise is due to potassium present in the seawater.
These noise signals grouped together are also called optical noise. Optical
noise is filtered out or removed from the data with relative ease. There-
fore we will largely ignore it in this work and focus on the main source of
background noise in the data: atmospheric muons.

Muons produced in the atmosphere by processes discussed in section
2.3 constitute almost all of the events that pass the initial filters and are
stored. This is because muons that reach the detector cause a track event
that is very hard to distinguish from track events caused by the muons
resulting from CC νµ(νµ) interactions inside of or near the detector. Luck-
ily, most of these muons can be filtered out because the lifetime of muons
with about 2.2 µ is too short for them to be able to pass through the earth.
They also interact too strongly with the matter in the earth. Therefore
there can be no truly upgoing atmospheric muons that reach the detector.
Thus selecting only events that are reconstructed to be upgoing removes
most of the muons. Still, due to imperfect reconstruction algorithms and
the sheer quantity of atmospheric muons, atmospheric muons that are in-
correctly constructed as upgoing still constitute about 98% of the signal
after filtering and general selection cuts (see sec. 5.2.1). To further sep-
arate muons from neutrinos, machine learning classification models are
used. Improving this classification process is the goal of this work. More
on the classifiers used and the results will be shown in chapters 4 and 7
respectively.

3.6 Reconstruction Algorithms

When a detection event occurs in the detector, the raw detection data is
used by reconstruction algorithms to reconstruct information about the
event and the potential neutrino. This information includes but is not lim-
ited to the position of the collision and the direction and energy of the
neutrino. Because the shower and track event signatures are so different,
two different reconstruction algorithms are used. This section will explain
the main principles behind both of these algorithms. For a more com-
plete overview of the reconstruction algorithms please refer to O’Fearraigh

20
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3.6 Reconstruction Algorithms 21

Figure 3.3: A schematic drawing of the coordinate system used for the track re-
construction algorithm. The z-axis is chosen such that it coincides with the direc-
tion of the muon.

(2024) [36].

3.6.1 Track

The first step of track reconstruction is determining the direction of the
track. This is done with maximum likelihood fits based on PMT hits. This
is done under the assumption that a clear Cherenkov cone is produced
by the track. Then the time residual between the hit time and the esti-
mated time of arrival of the Cherenkov cone of a track candidate can be
determined. Given the system as shown in figure 3.3, the expected time of
arrival t̂j of light at PMT j is given by equation 3.1.

t̂j = t0 +
zj

c
−

√
(xj − x0)2 + (yj − y0)2 tan θc

c
(3.1)

Because maximum likelihood fits are often plagued by local minima, mul-
tiple slightly different fit algorithms are applied consecutively, each boot-
strapping onto the results of the previous fit. The first prefit roughly scans
the space of causally connected hits for a couple of first track candidates by
minimizing the time residuals over consecutive hits using a least squares
fit. These track candidates are then improved upon with each consequent
fit iteration. The last direction fit performed by the Gandalf algorithm pro-
duces the final, most likely fit.

The hits within a pre-defined radius from this track fit are then back-
projected along the muon track. This allows for the reconstruction of the
start and end positions of the track, and thus also the tracklength. The
start of the track is also called the vertex. To estimate the energy, pre-
determined photo-electron distribution tables are used that describe the
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22 Detector

expected number of hits in a PMT as a result of the Cherenkov light from
a track or shower event. Combined with the PMT hit probabilities calcu-
lated during the direction fit, this allows for a likelihood fit of the muon
energy at the start of the track.

3.6.2 Shower

Shower reconstruction also occurs in separate consecutive steps. Because
the energy range of interest for ORCA is relatively low, the photon-emission
and electron/positron pair production cycle described in section 3.4.2 is
short-lived. The resulting shortness of the shower makes it difficult to
precisely determine the direction of the neutrino. To remedy this, the ver-
tex is reconstructed first. Again hits that are causally connected are se-
lected to eliminate background noise. The photons caused by the event
are assumed to spread along a spherical wavefront. Under this assump-
tion, equation 3.2 should hold for PMT j.

(t̂′j − t′0)
2 = (xj − x0)

2 + (yj − y0)
2 + (zj − z0)

2 (3.2)

Where t′ = nct with n the refraction index of seawater. By minimising
the difference between the left and right hand side of this equation across
all selected PMT hits, the vertex can be fitted. This process happens in it-
erations of increasing accuracy, similar to the track direction, ending in a
maximum likelihood fit. These fits also use tables for photo-electron dis-
tributions like the ones mentioned in the previous section, now following
the point-source assumption. Using the hit probabilities from the vertex
likelihood fit and these photo-electron distribution tables a prefit of the
event’s energy is made. With all previous vertex and energy fits as input,
along with electro-magnetic shower photo-electron distribution tables, a
prefit of the shower direction is then made. Finally a last maximum likeli-
hood fit is applied to both the energy and direction of the event, using all
previous fits and information as input.

3.7 Simulations

To verify observations made with the detector, simulations of events are
necessary. This section will explain the chain in which the simulated data
is created, and discuss the weighting of the simulated data.

22
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3.7 Simulations 23

3.7.1 Simulation Chain

This is done in a chain of different simulation software packages. This
chain starts by defining the model of the detector. For this work the ORCA10
version of the detector is used. Next, events are generated. For neutrinos
these events are generated using gSeaGen [9], and for muons MUPAGE
[14] is used. Both use Monte Carlo (MC) techniques to simulate events.
For the muon events only the muon itself and its path are simulated, as it
is assumed that the muon will not decay near the detector. For neutrinos,
the particles produced in the interaction events are simulated as well, as
these may produce light of their own. In either case, only events that are
close enough to the instrumented volume of the detector to trigger hits are
simulated.

From this point on the simulation process is the same for muons and
neutrinos. The next step is simulating the light that would be produced by
the particles in the event. Two packages are used for this process. JSirene
is a light-weight software that uses pre-computed PDF tables of the arrival
time of light. To verify the correctness of JSirene a Geant-4 [8] based pack-
age called KM3 is used. KM3 simulates the full propagation of individual
photons and is thus much computationally heavier. Both JSirene and KM3
take into account real PMT responses.

The trigger algorithms, JTriggerEfficiency and JTriggerEfficiencyRBR,
and the reconstruction algorithms as described in the previous chapter,
are now applied to create the data used for this work. These algorithms
are exactly the same as those that are applied to real data.

3.7.2 Weights

To get sufficient statistics for robust analysis, and to ensure the training
data for the classification models sufficiently covers all possible types of
events, events are simulated with a different energy dependence than that
of real data. This ensures that for example neutrinos with high energy
(E > TeV) are still represented in the data while their occurrence is rare.
This is compensated by giving a weight to each event. This weighting
process is automatically handled by the simulation software. This weight
is called w2 in the simulation software, and this nomenclature will be used
in this work as well. Figure 3.4 shows how the weighting of neutrinos
impacts the energy distribution of events.
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(a) (b)

Figure 3.4: The (a) unweighted and (b) weighted distributions of the true energy
of events in the shower-like training dataset. The weighted distribution also takes
into account neutrino oscillations, as will be discussed further in section 5.3.1.
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Chapter 4
Classification

As mentioned before, the goal of this work is to separate events with sig-
nals from neutrino interactions from events with signals from atmospheric
muons in ORCA10 data. This chapter will discuss the different classifica-
tion algorithms used for this work. As all of these algorithms are build on
decision trees, we will start there.

4.1 Decision Trees

Decision trees are among the most commonly used classification algo-
rithms. This is due partly to their relative simplicity and to their explain-
ability. Different than for other ML techniques, it is easy to follow the rea-
soning of a decision tree by looking at its structure. A decision tree starts
with a root node. Each node in a decision tree is split into two, based on a
split value for a feature of the dataset. The order in which the features are
selected and the split values are chosen to maximally separate the different
groups in the data from each other. There are different possible measures
to quantify this separation. Common examples are Gini impurity and log
loss. The log loss term for a single data instance in a dataset with k differ-
ent classes is shown in equation 4.1 [2], and is closely related to entropy of
information.

L = −∑
k

pk log pk (4.1)

Here k represents the index of the the different classes in the data. pk is the
estimated probability of the instance to belong to class k. The branches that
result from this initial split can then grow nodes and split again. This it-
erative process continues until all leaves of the tree, meaning all groups of
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data that will not be split again, are classified correctly. This also immedi-
ately showcases one of the dangers of using decision trees: they are prone
to overfit on the data. Therefore it is common to set a maximum depth
and/or minimum amount of datapoints in a leaf to combat this. Decision
trees are also limited because they perform poorly on data with complex
non-linear relations, such as is often the case in the physics setting.

4.2 Ensembles

A way to combat the disadvantages of decision trees is to combine the out-
put of multiple different trees to produce the final prediction. These types
of combined models are called ensembles in general, and decision forests in
the context of trees. While individual trees are very sensitive to overfitting
and variations, and thus have what is often called high variance, they have
low systematic error or bias. By averaging out the variance over multi-
ple trees, the final answer will have both low variance and low bias. Be-
cause of the higher dimensionality of the resulting decision space, deci-
sion forests are also capable of learning the complex non-linear relations
in data. There are two main methods for building decision forests, known
as bagging and boosting.

4.2.1 Bagging

Bagging is the strategy of training all of the trees in the ensemble in par-
allel on different subsets of the data. This increases the variance of each
individual tree, and increases the variations between trees. Due to these
variations the decision forest itself becomes robust to overfitting, and av-
eraging over the entire forest removes the variance. Because each tree is
initialised separately and trained on different data subsets, these types of
ensembles are often called Random Decision Forests.

4.2.2 Boosting

When the boosting method is used, trees are trained sequentially. This
allows each new tree to be trained specifically to improve upon the pre-
vious tree(s’)’s performance. Through this, a boosted decision forest also
lowers the total bias of the prediction, while still keeping variance low.
This method is most beneficial when the underlying relations in the data
are complex and non-linear. It also makes boosted decision forests bet-
ter at handling rare events in the dataset. These factors combine to make

26
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4.3 Model Options 27

boosted decision forests a natural choice for the classifier type in this work.
Following convention, tree ensembles using boosting are called Boosted
Decision Trees (BDTs).

4.2.3 Gradient Boosting

Gradient Boosting is a generalization of the boosting method, which for-
mulates the training process to have a cost function, and optimizes the
building of each consecutive tree through gradient descent of that cost
function [21].

4.3 Model Options

Multiple different BDT software packages were used for this work. The
GradientBoostingClassifier (GBC) from Scikit-Learn [38] is a popular choice.
Important for our research is that GBC allows the user to inspect the im-
portance of features in the decision making process. Because of the large
amount of features used, this narrows down the features selected for fur-
ther analysis (see sec. 5.3). However it is also very computationally expen-
sive for large datasets, as it enumerates all split candidates. This makes it
a poor choice for use with hyperparameter optimization. That is why the
HistGradientBoostingClassifier (HGBC) from Scikit-Learn was also con-
sidered. This uses essentially the same algorithm, but is much faster as it
uses histograms to bin the split candidates. However, it loses the avail-
ability of feature importance. Therefore it was chosen to not use HGBC.

The main BDT algorithm used for this work is the eXtreme Gradient
Boosting Classifier (XGBC) implementation form XGBoost [15]. In do-
ing so we follow earlier work done with ORCA6 data [18]. This algo-
rithm boasts improved scalability and computational efficiency for large
datasets, and has been used in the winning solutions of many machine
learning challenges. It has the feature importance variable available, and
also by default uses histograms of binned data to approximate the split
points.

4.4 Optimization

For many machine learning problems, the tuning of the hyperparameters
of a chosen model has significant impact on the model’s performance. As
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the goal of this work is to optimize classification performance, it is cru-
cial to take the optimization of hyperparameters into account. There are
many different packages available for hyperparameter optimization. This
work uses the optuna package [10] due to its ease of use across differ-
ent machine learning packages (Scikit-Learn/XGBoost). While multiple
sampling methods are available, for this work the sampler based on Tree-
Parzen Estimators (TPE) is chosen.

Tree-Parzen Estimation is a Bayesian based method. It works by fit-
ting the previously tested hyperparameter values with their correspond-
ing score to a distribution. The next set of hyperparameters is selected
by selecting the values in the hyperparameter search space that have the
highest probability of resulting in a better score [39].

28

Version of October 11, 2024– Created October 11, 2024 - 09:35



Chapter 5
Data

The data used for this work was extracted from the v9.0 version of ORCA10
MC simulations as described in section 3.7. The raw output files of these
simulations are then summarized in what are called dst files. To extract
the features used to train the classification models, and to clean the data,
the dst files are put through a pre-processing pipeline. The pre-processing
steps are shown in detail in appendix A. A complete list of all of the train-
ing variables and their importance as found by the XGBC basemodels for
track- and shower-like data can be found in appendix B. There an expla-
nation of the most important features is also already given. For the sake of
legibility, the prefixes ’T.feat Neutrino2020.’ and ’T.sum ’ will be dropped
from features names when discussing them.

This chapter will first introduce the concept of scores. Then the different
data selections used in this work will be shown. It finishes with an analysis
of these data selections, and a preliminary examination of the features that
are most important for classification.

5.1 Scores

For this work it is important to have the estimated probability for each
event to be a muon, a track event, or noise, as produced by the current
standard classification method [18, 32, 37]. This process includes applying
three separate BDTs to the data. Before training the track/shower and
neutrino/muon classifiers, a cut is made that leaves only events that are
reconstructed as upgoing. In both cases, the training sample consists of
105 datapoints for each class. For the track/shower classifier, νµ(νµ) and
νe(νe) CC events represent the track and shower classes, respectively. For
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the neutrino/muon classifier, an extra cut was made based on the fitted
likelihood of the event based on the track reconstruction algorithm. Here,
only νµ(νµ) CC (≈ 70%) and νe(νe) CC (≈ 30%) events were used to
represent the neutrino class in training. The probabilities for an event to
be in one of the classes as found by these classifiers, is called the score. The
track- noise- and muonscores are currently produced using the ParamPID
code [33].

5.2 Selection Cuts

To reduce the full dataset to only the subsets of the data that are of interest
to oscillation analysis, selection cuts are applied. We follow the selection
cuts as described on the KM3NeT internal wikipage [4]. Note that in these
selection cuts, the muonscore is mentioned. These muonscore based cuts
are not applied to the data, as for training and testing our new classifiers
we assume we do not yet have an available muon score. However the cut
values described here will be used to determine the benchmark figures
of merit later on by which we compare performance. This section will
explain the three selection cuts.

5.2.1 General Selection Cuts

The first selection is called the general selection cut. This cut in effect se-
lects all of the data that is of interest in oscillation analysis, without further
subdividing it. The cut criteria are:

• rectype JShower == 4000. This ensures that all of the selected events
are successfully reconstructed by the shower reconstruction algo-
rithm.

• rectype JGandalf == 4000. This ensures that all of the selected events
are successfully reconstructed by the track reconstruction algorithm.

• anti sparks DOM == 1 (Dist. to closest DOM >3m & maximum-
ToT triggerhit<160). These cuts ensures that light originating from
close to the DOMS and that trigger the DOMS for more that 160
nanoseconds are removed. In real data, these types of signals are
predominantly produced by electrical discharges or sparks originat-
ing in the DOMs themselves.

• cos zenith recoJGandalf <0. This selects only events that are recon-
structed by the Gandalf track reconstruction algorithm as going up.

30
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5.2 Selection Cuts 31

• noisescore ≤ 2e-5. This removes nearly all of the noise from the data
while removing a minimal amount of neutrinos.

• muonscore ≤ 2.9e-3. This cut aims to remove most of the muons
from the signal, while removing the least amount of neutrinos.

Besides these general selection criteria being applied to all of the data,
there are three other subsets of selection cuts that are made in the eventual
analyses. This is done because it improves the overall fit quality on the
oscillation parameters.

5.2.2 Track Selection Cuts

The track selections cuts select for events that are most likely tracks. We
will from here on out refer to this data as the track-like data. This is not
to be confused with data consisting of only true track events. While for
training and test purposes there is one set of track-like data, as no cuts
based on muonscore are made yet, this data set is further subdivided into
high and low purity tracks for analysis purposes.

Low Purity Tracks

The events that pass these criteria are most likely tracks, but the signal
might consist for a few percent of muons (see table 7.1).

• general selection cuts.

• trackscore > 0.56. Selects events that are likely track-like.

• 2 (GeV) ≤energy recoJEnergy < 50 (GeV). Selects the events within
the energy range of interest for tracks, as reconstructed by Gandalf.

High Purity Tracks

This selection aims to remove all muons in the signal.

• low purity tracks cuts.

• muonscore < 1.5e − 4.
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5.2.3 Shower Selection Cuts

• general selection cuts.

• trackscore ≥ 0.56.

• 2 (GeV) ≤ energy recoJShower < 1000 (GeV). Selects the events within
the energy range of interest for showers, as reconstructed by the
shower algorithm.

• cos zenith recoJShower < 0. Selects events that are upgoing accord-
ing to the shower reconstruction.

5.3 Data Analysis

5.3.1 Number of Events

When analysing the data, it is important to take into account the weight
of each simulated event. The correct weight of an event can be split into
two parts. First, the expected distribution of events per the atmospheric
neutrino flux as described in sec. 2.3 needs to be taken into account. This
is the w2 weight, as explained in section 3.7.2. The next step is taking
into account the oscillation of neutrinos. As explored in sec. 2.5, upwards
going neutrinos (may) oscillate during their path through the earth. The
correct weight wosc for a neutrino of flavour β arriving at the detector is
shown in equation 5.1.

wosc = w2 ∑
α=e,µ,τ

[ fα(E, cos θz)Pα→β(α, β, E, cos θz)]
texp

Ngen
(5.1)

Where fα is the atmospheric flux for neutrino flavour α with energy E and
arriving with zenith θz, according to the flux values determined by Honda
et al. [26]. Pα→i is the probability of neutrino of flavour α to oscillate
to flavour β, which also depends on the energy and the zenith. texp is
the amount of detector exposure time that simulation run represents, and
Ngen is the amount of these specific types of particles that were simulated
during the simulation run.

The data that is left per particle type is shown in tables 5.1 and 5.2 for
the shower- and track-like datasets respectively. Here the data is already
shown split into separate test and training datasets, with a 0.2:0.8 test:train
split ratio. This is done to allow for a test of the models on data that they

32
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type interaction # datapoints # real events exposure (yr)train test train test

muon 47375 11844 46113.2 11547.1 0.4

anumu NC 30457 7516 20.1 5.1 0.4
numu NC 42971 10883 64.3 16.7 0.4
anue CC 25190 6298 84.7 20.5 0.4
nue CC 43387 10847 216. 54.3 0.4
anutau CC 5995 1499 18.4 5.0 0.4
nutau CC 6945 1736 50.8 10.6 0.4
numu CC 39706 9786 307. 76.6 0.4
anumu CC 14146 3635 119.4 30.7 0.4

Table 5.1: An overview of the data per particle type after the shower selection
cuts. Exposure shows how much real data-taking time the simulation data used
for this work equates to.

have not seen during hyperparameter optimization. To keep the distribu-
tion of particles in the test and training datasets as close as possible to the
true distribution, the splitting was stratified using the particle types. This
is imperfect, as weights within particle types can vary significantly. That
is why undersampling of anutau CC events with about a factor 3 can be
observed in the track-like test dataset.

5.3.2 Feature Importance

To get a first sense of which features are important in classifying the data,
we use the feature importance results from the XGBC basemodel.

It is clear by looking at figures 5.2 and 5.1 that while the decision pro-
cess differs between the track- and shower-like data, there are a couple
of features that are important for both. Examples of this are parameters
that provide hit information such as the average z-position of the hits and
the difference in amount of hits used in reconstruction of the best upgo-
ing and downgoing tracks. It also seems that for classification on track-like
data, the top 5 features really dominate the classification in terms of impor-
tance. Whereas on the shower-like data, the importances are more spread
out. Note that this analysis is in no way conclusive. Different initiations of
the XGBC, different hyperparameters, and different splits on the data may
all impact the order and importance of the features. 1-dimensional his-
tograms are also not capable of capturing complex relations between fea-
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type interaction # datapoints # real events exposure (yr)train test train test

muon 497546 124386 484459.9 121095.1 0.4

anumu NC 7377 1741 3.5 0.8 0.4
numu NC 9831 2435 11.5 2.8 0.4
anue CC 5583 1396 11.5 3. 0.4
nue CC 8718 2180 28.6 7.0 0.4
anutau CC 1946 487 5.2 0.4 0.4
nutau CC 2067 516 12.6 3.5 0.4
anumu CC 43352 10941 362.1 91.9 0.4
numu CC 95896 23887 719.1 181.1 0.4

Table 5.2: An overview of the data per particle type after pre-processing and
the track selection cuts. Exposure shows how much real data-taking time the
simulation data used for this work equates to.

Figure 5.1: The top 15 most important features as determined by the basemodel
XGBC when trained on the track-like training dataset.
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5.3 Data Analysis 35

Figure 5.2: The top 15 most important features as determined by the basemodel
XGBC when trained on the shower-like training dataset.

tures that might give features importance in a higher dimensional phase-
space of features. However, these figures provide a starting point to fur-
ther analyse some of the features that are at least of reasonable importance
for classification. Features with relatively large importance are expected
to be relatively consistent in importance, and are likely to show a more
explainable impact on classification. In the next section, we shall therefore
take a closer look at the top 5 features for both shower- and track-like data.

5.3.3 Feature Distributions

The histograms presented in this section are weighted according to the
event weights. They show the distribution of muons and neutrinos ac-
cording to a certain feature. To be able to better represent the difference in
distribution without taking into account the number of events, the distri-
butions are normalized.

Track-like Data

First we shall explain what the features represent.

• cos zenith recoJShower: the cosine of the zenith angle of the particle
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as reconstructed by the JShower algorithm.

• cherCond n hits: the amount of hits that fit the Cherenkov cone hy-
pothesis for the best fitted downgoing track minus those for the best
fitted upgoing track. The conditions for a hit to fit the Cherenkov
cone hypothesis are: a difference between expected and actual hit
time < 15 ns, a distance between the PMT and the track < 100 m,
and angle between PMT orientation and photon direction < 90 de-
grees.

• trackscore: the probability of the event to be a track event (see sec.
5.1).

• QupOvernHits: the quality of the best fitted upgoing track divided
by the amount of hits used in the fit. This indicates the goodness of
the upgoing track fit.

• angle shfit gandalf: the angle between the best fitting shower and
track reconstruction directions.

Figure 5.3a shows that the shower reconstruction algorithm (rightly)
reconstructs nearly all of the muons in the track-like data as upgoing. The
starkly different distribution make it clear why this is such an important
feature. Figure 5.3b shows that the hits for muons on average fit about as
wel to an upgoing as a downgoing Cherenkov cone. Clearly this makes it
difficult for the reconstruction algorithms to determine the direction of the
track for muons. It also is clear that if the feature value is larger than about
50, the event is almost always caused by a neutrino. As for the trackscore
in figure 5.3c, it seems that a large majority of the neutrinos in this cut
have a very distinct track-like signature. This is not true for muons, al-
though they should produce track-like signatures. This again indicates
the indistinct signature produced by these muons. This is affirmed by
QupOvernHits which is worse for muons than it is for neutrinos, as seen
in figure 5.3d. The on average large difference in direction between the
JShower and gandalf reconstructions in figure 5.3e also hints at badly de-
finable muon events. It is also very much in line with figure 5.3a.

The poor fit quality and indistinct up/down cherenkov cone signatures
are most likely due to these muon events being detected at the edge of the
detector volume, as can be seen in figure 5.4. More figures supporting
this claim both for the track- and shower-like datasets can be found in
appendix D.
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Shower-like Data

For the shower-like data we shall also first explain what the features rep-
resent.

• cherCond n hits trig dnMup: this feature is very similar to cher-
cond n hits dnMup, and the two are highly correlated. The only dif-
ference is that whereas cherCond n hits dnMup takes into account
all hits that fit the criteria, n hits trig dnMup only takes into account
the hits that pass the initial trigger filtering algorithms.

• cherCond hits meanZPosition: the mean z-coordinate of hits that fit
the Cherenkov cone hypothesis.

For cherCond n hits( trig) dnMup, and QupOvernHits the same ex-
planation for the distributions (figures 5.5a, 5.5c, 5.5b) holds as for the
track-like data. However the value ranges here are ab it larger. This is
likely because the reconstructed energy range allowed for the shower-like
data is larger than that for track-like data, going up to 1000 and 100 GeV
respectively. Higher energy events give off more light and thus usually
result in more hits. Figure 5.5d supports the claim that the muons is this
dataset are mostly detected at the edges of the detector volume. Whereas
the neutrinos are quite uniformly spread out across the z-axis of the detec-
tor. Lastly, figure 5.5e shows that the distance between the vertex fitted in
the prefit and the final reconstruction vertex is also much larger for muons
than for neutrinos. The extreme range on the distance is an artefact of
extremely poorly fitted events.
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(a) (b)

(c) (d)

(e)

Figure 5.3: Feature distributions for top 5 most important features for track-like
data classification, with seperate distributions for muon and neutrino data.
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(a) (b)

Figure 5.4: 2-dimensional distributions of the x- and y-positions of the track-like
events as reconstructed by the track algorithm.
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(a) (b)

(c) (d)

(e)

Figure 5.5: Feature distributions for top 5 most important features for shower-like
data classification, with seperate distributions for muon and neutrino data..40

Version of October 11, 2024– Created October 11, 2024 - 09:35



Chapter 6
Methods

This chapter describes the experimental methods used for the results in
this work. First the different performance targets used are explained. Then
the base model and its optimization are discussed.

6.1 Data Subsets

For this work, an approach different from the current workflow (see sec.
5.1) for training and testing a classifier to distinguish muons from neutri-
nos are used. Because the different selection cuts eventually used in oscil-
lation analysis are known, it makes sense to use these to create the separate
shower and track classification datasets. Because the signatures are differ-
ent, the optimal decision classification process is likely also different. This
is affirmed by the analysis in section 5.3. Creating these subsets before
classification necessitates training the noise and track/shower classifiers
first. This is entirely possible, even without changing anything from the
currently used approach.

6.2 Targets

6.2.1 Contamination and Efficiency

The muon contamination Cµ we define as the percentage of the leftover
signal that consists of muons. For the neutrino efficiency Eν, the percent-
age is determined by the ratio of neutrinos that are left after applying the
score threshold(s), compared to the full amount of neutrinos in the dataset.
For both Cµ and Eν, the event weights are taken into account.
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6.2.2 Optimization Targets

The optimization targets are determined by looking at the muon contam-
ination and neutrino efficiency at the ’old’ muonscore thresholds. This
is done separately for the test and train subsets for both the track- and
shower-like datasets. For the track-like data, these targets are also deter-
mined separately for the different Low Purity (LP) and High Purity (HP)
track muonscore thresholds.

The threshold values for the new models are then chosen such that the
contamination values achieved on the track LP/HP and shower training
sets match those of the ’old’ muonscore. This is done by looping over
threshold values assorted on an increasing log scale. When the Cµ mea-
sured at a threshold exceeds the optimization targets, the previous thresh-
old is taken as the threshold with which to produce the classification tar-
gets. In this way, the neutrino efficiency at the set muon contamination tar-
gets can used as the score value to be optimized. Note that as the threshold
previous to exceeding the muon contamination target is used, the perfor-
mance of the model is slightly underestimated.

For track-like data, the LP and HP performance needs to be optimized
at the same time. To achieve this the track optimization target is a combi-
nation of the neutrino efficiencies at the LP and HP thresholds. Because
increasing Eν for the HP dataset is most important, this is given a larger
weight in the combined score. The final score is reported in the following
equation 6.1.

scoretrack = 0.1ELP
ν + 0.9EHP

ν (6.1)

6.2.3 Classification Targets

The final targets for classification are slightly different from the optimiza-
tion targets. After determining the optimization targets, the target Cµ for
the different data subsets are known. Because the muonscore thresholds
are adapted for each different model to match these contamination values,
Cµ is omitted from the classification targets. Instead, we zoom in on Eν.
To get a more in depth analysis, the neutrino efficiency is determined per
particle type and interaction combination. Through this it becomes visi-
ble how difficult the different neutrinos and interactions are to distinguish
from muons.

42
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6.3 Models

6.3.1 Basemodels

The two basemodels used for the results in this work are the default im-
plementations of the XGBC [3] and GBC [1] for reasons explained earlier
in section 4.3. They are the same for both track- and shower-like data. In
all cases, the random seed is set to 42. This allows for reproducible results.
For the GBC, the amount of estimators (trees) used is changed from the
default 100 to 101. This removes unwanted behaviour of the muonscore in
edge cases.

6.3.2 Tuning

While base model results are produced for both XGBC and GBC, only the
XGBC models are optimized. This is due both to the much larger computa-
tional cost of the GBC models, and the superior performance of the XGBC
basemodels (see sec. 6.3). The hyperparameter tuning process occurs in
trials. In each trial, a 5-Fold cross-validation loop is applied to the train-
ing data. This means that a model with the new trial hyperparameters is
initialized and trained 5 times, on 5 different training and validation sub-
sets. When the loop is done the optimization target values across the full
training data are determined. In this way the optimization target values
are averaged, which increases stability in the optimization process. The
hyperparameters and the allowed value ranges that were used during this
procedure can be found in appendix C. The optimal hyperparameter val-
ues for the optimized models can also be found there. For both track- and
shower-like data, 500 trials were completed to arrive at the final model.

6.4 Test and Train

As discussed earlier in this report, the full data per event type (track/shower)
has been split into separate train and test datasets using stratification on
the particle type. Naturally the final check on model performance is pro-
duced by training the model on the full training dataset and testing it on
the test data. These are the results that will be indicated by ’test’. Due to
the 5-Fold CV procedure employed during optimization, results are also
available for the model on the training dataset. These will be indicated
with ’train’. For the results in this work, both of these will be included.
This enables us to verify whether the hyperparameters of the models have
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been overfitted to the training data set. If this is not the case, the train re-
sults are also valuable results, as the train dataset is larger and follows the
distribution of true data better.
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Chapter 7
Results

Here the results from our experiments are presented. The discussion about
the results and their interpretation will take place in the chapter 8.

7.1 Optimization Targets

From table 7.1 it is clear that for HP tracks, there should be no muons left
in the data. For LP tracks contamination of around 2% is accepted.

7.2 Models

Our results show a distinct pattern in models’ performances. The ’old’
and GBC basemodel performances are on average very similar. There are
deviations between the different test and train splits, and between differ-
ent particle types within these splits, where the best between the two of
them varies. The differences are largest on EHP

ν for track-like data in table
7.3. These large differences are possibly due to the imperfect split method

Cshower
µ (%) CHP

µ (%) CLP
µ (%)

test train test train Test train

2.08 1.42 0.0 0.0 2.66 1.70
Table 7.1: The muon contamination values established by the selection criteria
described in sec. 5.2 and using the ’old’ muonscore. These are the targets used
for the optimization procedure.
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type interaction %ν
EHP

ν (%) ELP
ν (%)

old gbc xgdc xgdc∗ old gbc xgdc xgdc∗

anumu NC 0.3 21.7 20.6 44.5 50.6 50.6 51.3 64.5 64.5
numu NC 1. 22.4 21.0 45. 48.7 48.5 50.0 62.8 64.9
anue CC 1. 32.3 28.1 56.4 58.8 64.9 57.4 72.6 73.7
nue CC 2.5 35.7 30.8 57.6 63.1 66.4 62.1 74.7 77.1
anutau CC 0.4 64.2 67.9 92.5 97.8 86.1 90.1 99.1 98.1
nutau CC 1.1 50.2 54.9 76.0 81.9 81.8 84.2 91.2 87.3
anumu CC 31.4 57.0 61.8 83.3 86.1 85.4 84.3 91.3 92.2
numu CC 62.3 55.7 60.0 81.6 84.5 83.4 83. 90.1 90.8

Table 7.2: Neutrino efficiency for different particle types and interactions as
achieved on the track-like training data for the different models. %ν shows what
percentage of the total neutrino signal in the dataset consists of each of the differ-
ent type-interaction combinations. Old indicates the performance of the current
classification methods (see sec. 5.1). xgdc indicates the basemodel XGDC, and
xgdc∗ indicates the XGDC after 500 steps of hyperparameter tuning (see sec. 6.3).
The best performance is made bold.

type interaction %ν
EHP

ν (%) ELP
ν (%)

old gbc xgdc xgdc∗ old gbc xgdc xgdc∗

anumu NC 0.3 30.5 34.7 56.1 45.9 56.1 53.4 67.8 71.5
numu NC 1. 21.2 33.5 57.9 46.6 53. 54.2 71.1 73.3
anue CC 1.0 27.1 32.9 56.1 46.6 56.4 52.0 67.3 71.1
nue CC 2.4 31.9 40.8 64.7 53.4 62.1 59.5 75.3 75.9
anutau CC 0.1 45.7 86.2 92.8 92.8 92.8 92.8 100. 100.
nutau CC 1.2 60.9 60.1 86.7 81.2 83.0 85.9 90.8 96.4
anumu CC 31.6 56.5 72.2 87.8 83.3 84.5 83.7 92.4 92.6
numu CC 62.4 55.7 70.8 86.7 81.9 83.7 83.2 91.7 92.1

Table 7.3: Neutrino efficiency for different particle types and interactions as
achieved on the track-like test data for the different models. %ν shows what per-
centage of the total neutrino signal in the dataset consists of each of the different
type-interaction combinations. Old indicates the performance of the current clas-
sification methods (see sec. 5.1). xgdc indicates the basemodel XGDC, and xgdc∗

indicates the XGDC after 500 steps of hyperparameter tuning (see sec. 6.3). The
best performance is made bold.
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type interaction %ν
Eν(%)

old gbc xgdc xgdc∗

anumu NC 2.3 69.0 68.5 83.1 82.9
numu NC 7.3 69. 67.5 81.8 82.1
anue CC 9.6 77.5 70.9 97.0 87.3
nue CC 24.5 79.3 71.8 88.1 88.4
anutau CC 2.1 90. 83.9 96.2 94.2
nutau CC 5.8 86.2 83.1 92.9 92.5
anumu CC 13.6 69.7 61.1 79.6 79.9
numu CC 34.9 67.8 60.7 78.9 79.2

Table 7.4: Neutrino efficiency for different particle types and interactions on
shower-like training data for the different models. %ν shows what percentage
of the total neutrino signal in the dataset consists of each of the different type-
interaction combinations. Old indicates the performance of the current classifi-
cation methods (see sec. 5.1). xgdc indicates the basemodel XGDC, and xgdc∗

indicates the XGDC after 500 steps of hyperparameter tuning (see sec. 6.3). The
best performance is made bold.

type interaction %ν
Eν(%)

old gbc xgdc xgdc∗

anumu NC 2.3 69.8 72.4 85.1 86.6
numu NC 7.6 67.3 69.6 83.7 85.6
anue CC 9.4 76.6 73.0 87.9 89.8
nue CC 24.7 78.6 75. 89.6 90.5
anutau CC 2.3 90.6 84.1 97.4 97.5
nutau CC 4.8 79.0 80.9 88.9 90.6
anumu CC 14. 69.8 64.7 82.2 84.4
numu CC 34.9 68.3 64.3 80.3 82.1

Table 7.5: Neutrino efficiency for different particle types and interactions on the
shower-like test data for the different models. %ν shows what percentage of the
total neutrino signal in the dataset consists of each of the different type-interaction
combinations. Old indicates the performance of the current classification meth-
ods (see sec. 5.1). gbc indicates the basemodel GBC, xgdc indicates the basemodel
XGDC and xgdc∗ indicates the XGDC after 500 steps of hyperparameter tuning
(see sec. 6.3). The best performance is made bold.
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(see sec. 5.3.1), which are exacerbated through the even smaller selection
of events that pass the HP selection criteria. Still, performance on the LP
selection criteria is again very similar.

Across all results, the XGDC models outperform the other two models.
Often with as many as 15 percentage points. This is a very significant
improvement over the old model.

When comparing the basemodel and tuned XGDC, there seems to be a
difference between the shower- and track-like datasets. On the track-like
data, the optimization procedure appears to have overfit the training data.
On the training data the HP efficiencies are highest across the board for
the tuned model, but on the test data the basemodel is at least as good for
all event types. However the LP efficiencies are highest on the test data for
the tuned model. This indicates that the balancing between the HP and LP
scores in the optimization target as defined in equation 6.1 is not optimal.

On shower-like data, the base model seems to slightly outperform the
tuned model on the training data. However the optimized model then
more strongly outperforms the base model on the test data. This is almost
the opposite of what one would expect given the results on the train data.

It appears that the margins for optimizing the XGDC model are very
small, and that optimizing is non-trivial for this dataset. The XGDC base-
model is clearly already a very strong choice without any tuning, making
tuning in this way almost absolute and inconsistent.

Our analysis also reveals a clear pattern in the relative difficulty of the
different particles and interaction types, which is consistent across the dif-
ferent models. For track-like data, ντ CC is quite consistently the easiest
to classify. νµ, νµ and ντ CC are also consistently easier. νµ NC, νµ NC and
νe CC seem to be consistently difficult for the classifier.

For shower-like data, the pattern is similar but slightly different. Again,
ντ CC is consistently the easiest. ντ, νe and νe CC are consistently easy. νµ

CC, νµ NC and νµ CC are on average difficult.
The most notable difference in relative difficulties between the track-

and shower-like data are that νµ and νµ CC were easy for the track clas-
sifiers but difficult for the shower classifiers. Conversely νe CC and to a
lesser extent νe CC are easy for the shower classifiers but relatively diffi-
cult for the track classifiers.

Figure 7.1 shows that the tuned XGBC model is not just better than the
current classification model at the specific optimization target points. The
improvements are consistent for all muon contamination targets.
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(a) (b)

Figure 7.1: The neutrino efficiency Eν plotted as a function of the muon contami-
nation Cµ for (a) the track-like and (b) the shower-like data. The label ’new’ here
represents the tuned XGBC model and ’old’ represents the performance of the
current classification models. The dotted threshold shows the muon contamina-
tion set as the target by the current models. For the track data, this is the threshold
for the Low Purity events. For more information refer to section 6.2. The events’
weights are taken into account.
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Chapter 8
Discussion

The big jump in performance of the XGDC models at first glance seems
almost too good to be true, as if there is something wrong with the data
selections or the the training features used. However, the fact that the re-
sults of the GBC basemodel are in line with ’old’ model, and often enough
worse, provides some assurance that the method itself is not faulty.

As the current procedure that produces the old performance also uses
a XGBC classifier, the difference in performance is likely largely due to
the different training data selection procedure. That would mean that the
procedure as described in this work, which zooms into the target region of
oscillation analysis data and splits the data into shower and track subsets,
is very promising and should perhaps become the standard. The different
feature importances as shown in section 5.3.2 seem to support the claim
that splitting the data into track- and shower-like subsets, allows classifiers
to focus on different feature phase-spaces. Seeing the difference between
the track and shower signature, it makes sense that the optimal way to
distinguish neutrinos from muons is different between the two subsets.

What could also be making a contribution is the amount of features
used for classification. In previous work with ORCA 6 data, only 23 fea-
tures were used in training the muon/neutrino classifiers [18]. In contrast,
the basemodels presented in this work use 132 features. The tuned XGBC
shower and track models use 74 and 99 features respectively. Assuming
the current classification method also used less features, it could be that
there is significant gain in performance possible by using more features.
This is supported by the fact the optimization procedure selects a large
amount of features for both the shower and track models.

Another contribution to the difference in performance could be the dif-
ferent sample sizes for the data. The size of the training datasets used for
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this work are about an order of magnitude larger than those used during
the old procedure.

The relatively poor performance of the GBC on the shower-like data
shows that this method of splitting the data may have a greater benefit for
the track-like data than for the shower-like data. This makes sense, as the
muons’ signatures are in essence track-like. Training a classifier on classi-
fication between track-like neutrino events and muons may allow the clas-
sifier to learn more subtle differences. Whereas a classifier that is trained
on track-like and shower-like events at the same time may learn to reject
muons partly based on their track-like signature, which would decrease
the performance of track-like data and boost performance of shower-like
data.

In terms of the relative difficulties of the different neutrino and interac-
tion types, it is interesting to see that there is some shift in which particles
are relatively difficult/easy for the classifiers between track- and shower-
like data. This pattern seems linked to the true signatures of the interac-
tions. In the track-like data, its seems that it is easier to distinguish events
that are true track events from muon events. These are νµ(νµ) and in a
percentage of cases ντ(ντ) CC events. Likewise, on shower-like data the
events that are true shower events are easier to distinguish from muon
events. These are all NC, νe(νe) CC and (most) ντ(ντ) CC interaction
events. This could be because true shower events that end up in the track
selection are likely poorly defined and reconstructed events. The same
holds for true track events in the shower selection. This shows that the
classifiers in general have the most difficulty with poorly defined events,
which coincides with our hypothesis that the muons that pass the selec-
tion criteria must inherently be poorly defined and reconstructed. This
also further supports the claim that the training data selection procedure
followed in this work has benefit.

Even taking into account the mechanism described above, the high per-
formance on ντ(ντ) events in both track- and shower-like data selections
is remarkable. A hypothesis would be that this is because of a direct corre-
lation between classification difficulty and energy. Higher energy events
give produce more light, and thus it is likely their signatures are better de-
fined. Because of the high rest mass of τ particles, the energy threshold for
their interactions is much higher. However as shown in figure 8.1, there
does not seem to be a clear correlation between neutrino energy and the
muonscore predicted by the tuned XGBC model.

In conclusion, this work has analysed some of the most important fea-
tures in classifying muons and neutrinos in track and shower selection
samples. It has attempted to explain why these features are important
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(a) (b)

Figure 8.1: 2-dimensional distribution plots of the muonscore produced by the
tuned XGBC models on the (a) track-like and (b) shower-like test data sets and
the true energy for neutrinos.

in the decision process. After that, we have shown the performances
of different models. From these results, it is clear that a tuned XGBC
model combined with our training data selection procedure greatly out-
performs the model and data selection procedure currently used. This
shows promise in improving the quality of fit for the oscillation parame-
ters to ORCA data.
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Chapter 9
Outlook

The results in this work provide many promising avenues for further re-
search. A first step could be to exactly follow the training data selection
and sampling procedure as followed for the ’old’ score. This would al-
low for a better analysis of the exact effect of the different classification
algorithms. Performing an ablation study, one could even pinpoint which
parts of the full algorithm are have the most impact on model perfor-
mance.

In the same light, it would be interesting to also analyse the perfor-
mance of a HGBC model, both base and tuned versions. By comparing
these results to that of the XGBC, more information on the significance of
certain algorithm components could be gained. It would also allow for a
more in depth analysis of the effect of hyperparameter tuning.

Additionally, a more in depth analysis of the impact of the amount
of features provided to the model and which features to include, could
lead to a more well defined and optimized set of features to use use for
classification purposes.

There are specific aspects of the ’old’ training data selection procedure
that were likely chosen because they were found to be empirically better.
Adding components of the old procedure to the selection procedure used
for this work, such as using using only νµ(νµ) and νe(νe) CC events to
represent the neutrino class, could further improve performance on the
shower-like events.

The XGBC model allows the user to assign individual weight to events
in the training dataset. This would remove the need to use stratification
of any kind to balance the training and test data, and may also improve
performance.

Building on the strength of the XGBC models shown in this work, they

Version of October 11, 2024– Created October 11, 2024 - 09:35

55



56 Outlook

could be applied for classification of neutrino flavours. Or in the classi-
fication of neutrinos and muons in the downgoing signal. Classification
of downgoing neutrinos may lead to improved values for the expected
neutrino fluxes. Combined with improved overall neutrino classification
leading to a stronger neutrino signal, this would improve the fit of the
oscillation parameters.

For further analysis of model performance, the performances could be
determined on data in different energy and zenith bins. As the data is also
binned in this way for the oscillation parameter fits, this would provide
further insight into the quality of the neutrino signal relevant to the fit.

In terms of data analysis, it would be interesting to look at the distribu-
tions of important features per particle and interaction type. This would
allow further and more detailed analysis of why certain neutrino types are
harder to separate from muons than others.

In this work, the track and noise scores have been passed to the BDTs as
features. For track classification, the track score was a strongly influential
feature. By removing this score, one could analyse the impact of stacking
the results from sequential classifiers that focus on different properties in
the data.
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Appendix A
Data Pre-processing

A.1 PID 2 DST

To extract the features used as input for the machine learning models in
this work, an adapted version of the PID 2 DST git code [30] was used.
The changes to the code added a larger amount of features to extract from
the dst files, to attempt to get as much information as possible for the clas-
sification models. In this process, two standard ORCA pre-cuts on feature
values were made. These cuts are based on the likelyhood with which the
events are reconstructed by the track reconstruction algorithm, and the
amount of PMT hits that were triggered by the event. The cuts then are:
JG lik>40 & N trig hit ≥ 15. These pre-cuts are in place to remove events
that are very poorly defined, which would otherwise increase memory us-
age without being useful for eventual analyses. This also already reduces
the optical noise to negligible levels [18].

A.2 Handling Duplicates

Due to the way the features are extracted in this process, attempting to get
the maximum amount of features, there may be duplicate features in the
data. This is due to the different naming conventions that are present in
the feature extraction file. Therefore a check is performed to match fea-
tures that have exactly the same values. A list of the different names is
composed. The feature with the preferred alias is then kept, while the
other features are removed.
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A.3 Handling NaNs

There are different ways of handling missing values or NaNs in machine
learning applications. One option is to impute the missing values. This
means that the missing values are set to a certain value based on the rest of
the data. This can mean being set to the min/max/mean of the column, or
being predicted by a regressor based on the rest of the features. Imputing
can be solid option if the amount of features with NaN values is relatively
small. However even in such a case, the reason for the NaN in the data
can still make imputing a good or bad choice.

Because of limited time during this project, a more straightforward ap-
proach was chosen. NaNs were handled by either dropping columns with
1% or more of missing data or by removing rows with NaNs. Note that
in hindsight this step was not necessary, as the machine learning models
used in this work all have built in NaN support.

A.4 Handling Infinite Values

In handling (negative) infinite values, we set the value of that feature to
times 1.5 the (min) max value of the feature in the full dataset. If the low-
est value of a feature with negative infinite values is positive, the infinite
value is set to zero. If the highest value of a feature with positive infinite
values is negative, we also set the infinite values to 0.

A.5 Feature Renaming

Many of the feature names contain characters such as ”[”, ”]” and ”:”
which are not compatible with windows file names. Therefore these char-
acters were removed from the name or replaced by either ” ” or ”,” for ease
of transferring figures with the feature names in their name to windows
computers.
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Appendix B
Feature Importance

Rank Feature Importance

1 T.feat Neutrino2020.cherCond n hits dnMup 0.194
2 T.feat Neutrino2020.QupOvernHits 0.071
3 T.feat Neutrino2020.cherCond n hits trig dnMup 0.056
4 T.feat Neutrino2020.cherCond hits meanZposition 0.045
5 T.sum jppshower.prefit posfit distance 0.042
6 pos r JGandalf 0.035
7 closest ,1,1 0.021
8 T.feat Neutrino2020.n hits earlyTrig 0.021
9 T.feat Neutrino2020.QupMinusQdn 0.020

10 T.feat Neutrino2020.cherCond hits trig meanZposition 0.019
11 crkv nhits100 ,1,1 0.018
12 crkv nhits20 ,1,0 0.016
13 furthest ,0,1 0.015
14 meanZhitTrig 0.014
15 crkv nhits50 ,1,1 0.013
16 T.feat Neutrino2020.cherCond n hits dnf 0.012
17 crkv nhits50 ,1,0 0.011
18 T.sum jppshower.ratio prefit fits near best 0.011
19 cos zenith recoJShower 0.011
20 pos z recoJShower 0.010
21 ratio both tot jg 0.01
22 maximumToT triggerHit 0.01
23 T.feat Neutrino2020.cherCond n doms 0.009
24 noisescore 0.009
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25 closest ,0,0 0.009
26 T.feat Neutrino2020.dClosestApproach 0.009
27 T.feat Neutrino2020.cherCond n hits trig upf 0.008
28 T.feat Neutrino2020.zClosestApproach 0.007
29 crkv nhits20 ,1,2 0.007
30 T.feat Neutrino2020.gandalf Qdn 0.007
31 T.feat Neutrino2020.cherCond n doms trig 0.006
32 dist JSH JG track 0.006
33 T.sum hits.nlines 0.006
34 T.sum trig hits.atot 0.005
35 trigger mask 0.005
36 energy recoJEnergy 0.005
37 T.sum jppshower.mean tres selected hits 0.005
38 pos z recoJGandalf 0.005
39 crkv nhits100 ,1,0 0.005
40 closest ,0,1 0.005
41 furthest ,1,0 0.005
42 gandalf shfit lik ratio 0.005
43 T.sum jppshower.prefit posfit dt 0.005
44 E.trks.fitinf ,0,9 0.004
45 ratio both 100 jg 0.004
46 min dom dist 0.004
47 crkv nhits50 ,0,1 0.004
48 sumtot ,0,0 0.004
49 pos x recoJGandalf 0.004
50 E.trks.fitinf ,0,2 0.004
51 T.feat Neutrino2020.cherCond n hits upf 0.004
52 nTriggerHits 0.003
53 energy recoJShower 0.003
54 ratio E jshf gandalf 0.003
55 furthest ,1,1 0.003
56 closest ,1,2 0.003
57 crkv nhits100 ,0,1 0.003
58 gandalf shfit lik difference 0.003
59 cos zenith recoJGandalf 0.003
60 likelihood JGandalf 0.003
61 pos y recoJShower 0.003
62 E.trks.fitinf ,0,5 0.003
63 T.sum trig hits.nlines 0.003
64 T.sum hits.nhits 0.003
65 energy recoTracklength 0.003
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66 crkv nhits100 ,1,2 0.003
67 loglik jsh 0.003
68 dist crkv both jsh 0.003
69 crkv nhits ,0,1 0.003
70 log distance shfit gandalf for shfit time 0.003
71 angle shfit gandalf 0.003
72 T.sum trig hits.ndoms 0.003
73 crkv nhits ,1,0 0.003
74 sumtot ,0,1 0.003
75 crkv nhits100 ,0,0 0.003
76 crkv nhits20 ,0,0 0.003
77 T.feat Neutrino2020.cherCond n hits trig dnf 0.002
78 dist crkv both jg 0.002
79 E.trks.fitinf ,0,6 0.002
80 pos x recoJShower 0.002
81 crkv nhits ,1,2 0.002
82 sumtot ,1,0 0.002
83 crkv nhits50 ,0,0 0.002
84 furthest ,1,2 0.002
85 E.trks.fitinf ,0,16 0.002
86 sumtot ,1,2 0.002
87 E.trks.dir.y ,0 0.002
88 sumtot ,0,2 0.002
89 dt shfit gandalf 0.002
90 E.trks.fitinf ,0,14 0.002
91 E.trks.lik ,1 0.002
92 crkv nhits ,0,0 0.002
93 distance shfit gandalf 0.002
94 dist JG Jsh track 0.002
95 sumtot ,1,1 0.002
96 furthest ,0,0 0.002
97 furthest ,0,2 0.002
98 crkv nhits ,1,1 0.002
99 pos y recoJGandalf 0.002

100 shortest 4D dist jg jsh 0.002
101 E.trks.fitinf ,0,7 0.002
102 E.trks.fitinf ,0,15 0.002
103 T.sum jppshower.n selected hits 0.002
104 crkv nhits50 ,1,2 0.002
105 E.trks.fitinf ,0,1 0.002
106 beta0 0.002
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107 crkv nhits100 ,0,2 0.002
108 E.trks.dir.x ,1 0.002
109 T.feat Neutrino2020.gandalf nHits 0.002
110 crkv nhits ,0,2 0.002
111 T.sum hits.ndoms 0.002
112 E.trks.dir.x ,0 0.002
113 E.trks.dir.y ,1 0.002
114 crkv nhits200 ,0,1 0.002
115 E.trks.t ,0 0.002
116 closest ,0,2 0.002
117 crkv nhits200 ,0,0 0.001
118 trackscore 0.001
119 T.sum trig hits.tmax 0.001
120 crkv nhits200 ,1,1 0.001
121 crkv nhits50 ,0,2 0.001
122 crkv nhits200 ,1,0 0.001
123 crkv nhits200 ,0,2 0.001
124 E.trks.t ,1 0.000
125 T.feat Neutrino2020.gandalf Qup 0.
126 T.sum trig hits.tmin 0.
127 E.trks.fitinf ,0,13 0.
128 crkv nhits200 ,1,2 0.
129 crkv nhits20 ,0,1 0.
130 crkv nhits20 ,0,2 0.
131 crkv nhits20 ,1,1 0.
132 loglik jg 0.
Table B.1: Feature ranking for the shower-like data

Rank Feature Importance

1 cos zenith recoJShower 0.464
2 T.feat Neutrino2020.cherCond n hits dnMup 0.098
3 trackscore 0.078
4 T.feat Neutrino2020.QupOvernHits 0.03
5 angle shfit gandalf 0.025
6 crkv nhits100 ,0,0 0.014
7 T.feat Neutrino2020.cherCond hits meanZposition 0.014
8 T.feat Neutrino2020.cherCond n hits dnf 0.014
9 closest ,1,1 0.011
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10 T.feat Neutrino2020.cherCond hits trig meanZposition 0.010
11 pos r JGandalf 0.009
12 sumtot ,0,0 0.009
13 crkv nhits50 ,1,1 0.009
14 T.feat Neutrino2020.cherCond n doms 0.007
15 T.feat Neutrino2020.n hits earlyTrig 0.007
16 crkv nhits50 ,0,1 0.006
17 ratio both tot jg 0.006
18 T.sum jppshower.prefit posfit distance 0.006
19 dt shfit gandalf 0.005
20 crkv nhits50 ,1,0 0.005
21 T.feat Neutrino2020.dClosestApproach 0.004
22 closest ,0,0 0.004
23 E.trks.fitinf ,0,2 0.004
24 meanZhitTrig 0.004
25 pos z recoJShower 0.004
26 T.feat Neutrino2020.zClosestApproach 0.004
27 T.feat Neutrino2020.QupMinusQdn 0.003
28 crkv nhits20 ,1,2 0.003
29 noisescore 0.003
30 maximumToT triggerHit 0.003
31 crkv nhits ,1,1 0.003
32 T.feat Neutrino2020.cherCond n hits trig upf 0.003
33 furthest ,1,1 0.003
34 likelihood JGandalf 0.003
35 furthest ,1,0 0.003
36 sumtot ,0,1 0.003
37 crkv nhits100 ,0,2 0.003
38 furthest ,1,2 0.003
39 pos z recoJGandalf 0.003
40 T.sum hits.nlines 0.003
41 cos zenith recoJGandalf 0.003
42 distance shfit gandalf 0.002
43 T.sum jppshower.ratio prefit fits near best 0.002
44 crkv nhits100 ,1,0 0.002
45 crkv nhits ,1,2 0.002
46 gandalf shfit lik difference 0.002
47 energy recoJEnergy 0.002
48 dist crkv both jg 0.002
49 crkv nhits100 ,1,2 0.002
50 T.sum trig hits.atot 0.002
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51 dist JSH JG track 0.002
52 closest ,1,2 0.002
53 T.feat Neutrino2020.cherCond n hits trig dnMup 0.002
54 T.feat Neutrino2020.cherCond n doms trig 0.002
55 T.sum hits.nhits 0.002
56 pos x recoJGandalf 0.002
57 sumtot ,1,2 0.002
58 furthest ,0,1 0.002
59 crkv nhits20 ,1,0 0.002
60 nTriggerHits 0.002
61 E.trks.fitinf ,0,5 0.002
62 loglik jsh 0.001
63 E.trks.fitinf ,0,9 0.001
64 crkv nhits ,0,2 0.001
65 crkv nhits ,1,0 0.001
66 crkv nhits100 ,1,1 0.001
67 trigger mask 0.001
68 shortest 4D dist jg jsh 0.001
69 min dom dist 0.001
70 sumtot ,1,1 0.001
71 sumtot ,1,0 0.001
72 loglik jg 0.001
73 sumtot ,0,2 0.001
74 ratio E jshf gandalf 0.001
75 T.sum trig hits.nlines 0.001
76 T.sum jppshower.mean tres selected hits 0.001
77 energy recoJShower 0.001
78 energy recoTracklength 0.001
79 E.trks.dir.x ,0 0.001
80 E.trks.fitinf ,0,7 0.001
81 gandalf shfit lik ratio 0.001
82 T.sum trig hits.ndoms 0.001
83 crkv nhits ,0,1 0.001
84 E.trks.fitinf ,0,16 0.001
85 T.feat Neutrino2020.gandalf Qdn 0.001
86 E.trks.t ,1 0.001
87 ratio both 100 jg 0.001
88 pos y recoJShower 0.001
89 crkv nhits ,0,0 0.001
90 crkv nhits50 ,0,0 0.001
91 dist crkv both jsh 0.001
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92 closest ,0,1 0.001
93 E.trks.lik ,1 0.001
94 E.trks.fitinf ,0,14 0.001
95 furthest ,0,0 0.001
96 pos x recoJShower 0.001
97 T.sum jppshower.prefit posfit dt 0.001
98 T.feat Neutrino2020.gandalf nHits 0.001
99 crkv nhits50 ,1,2 0.001

100 dist JG Jsh track 0.001
101 log distance shfit gandalf for shfit time 0.001
102 E.trks.fitinf ,0,15 0.001
103 E.trks.fitinf ,0,6 0.001
104 crkv nhits20 ,0,0 0.001
105 T.feat Neutrino2020.cherCond n hits upf 0.001
106 E.trks.dir.y ,0 0.001
107 T.feat Neutrino2020.cherCond n hits trig dnf 0.001
108 crkv nhits200 ,0,1 0.001
109 crkv nhits100 ,0,1 0.001
110 furthest ,0,2 0.001
111 pos y recoJGandalf 0.001
112 beta0 0.001
113 E.trks.dir.y ,1 0.001
114 closest ,0,2 0.001
115 T.sum hits.ndoms 0.001
116 E.trks.fitinf ,0,1 0.001
117 E.trks.dir.x ,1 0.001
118 T.sum jppshower.n selected hits 0.001
119 E.trks.t ,0 0.001
120 crkv nhits50 ,0,2 0.001
121 T.sum trig hits.tmax 0.000
122 crkv nhits200 ,1,2 0.000
123 crkv nhits20 ,1,1 0.000
124 crkv nhits200 ,0,0 0.000
125 crkv nhits20 ,0,1 0.000
126 crkv nhits200 ,0,2 0.
127 crkv nhits200 ,1,0 0.
128 E.trks.fitinf ,0,13 0.
129 crkv nhits200 ,1,1 0.
130 crkv nhits20 ,0,2 0.
131 T.sum trig hits.tmin 0.
132 T.feat Neutrino2020.gandalf Qup 0.
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Table B.2: Feature ranking for the track-like data
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Appendix C
Hyperparameters

The hyperparameters and their ranges used for optimizing the XGBC model
are:

• eta: float in range [0.1, 1.0]

• gamma: float in range [0, 0.5]

• max depth: int in range [3, 15]

• min child weight: int in range [1, 10]

• subsample: trial in range [0.3, 1]

• colsample bytree: float in range [0.2, 1]

• colsample bylevel: float in range [0.2, 1]

• colsample bynode: float in range [0.2, 1]

• reg lambda: [0, 2.5]

• alpha: [0, 2.5]

• scale pos weight: float in range [0.2, 5]

• n features: int in range [5, 110] with steps of 1

• grow policy: choice [”depthwise”, ”lossguide”]

The hyperparameter values for the tuned XGBC model on the shower
data are:
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• eta = 0.179366696215447

• gamma = 0.07464467596938863

• max depth = 15

• min child weight = 8

• subsample = 0.8593924117067859

• colsample bytree = 0.8787332316250065

• colsample bylevel = 0.8907988230784997

• colsample bynode = 0.9352157162619897

• reg lambda = 0.3240813905157929

• alpha = 0.1181044009985062

• scale pos weight = 1.9858829960470836

• n features = 74

• grow policy = depthwise

The hyperparameter values for the tuned XGBC model on the track
data are:

• eta = 0.18002961104233298

• gamma = 0.32204618525901385

• max depth = 11

• min child weight = 8

• subsample = 0.9953936477317626

• colsample bytree = 0.884793119891182

• colsample bylevel = 0.8461815581023293

• colsample bynode = 0.5148570860053796

• reg lambda = 0.6960181424058038

• alpha = 2.229285898333837
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• scale pos weight = 0.6606133472265183

• n features = 99

• grow policy = depthwise
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Appendix D
Reconstructed Vertices

(a) (b)

Figure D.1: 2d-histograms of the x- and y-positions of the events as reconstructed
by the shower algorithm for shower-like data.
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(a) (b)

Figure D.2: 2d-histograms of the x- and y-positions of the events as reconstructed
by the track algorithm for shower-like data.

(a) (b)

Figure D.3: Histograms of the z-position of the events as reconstructed by the
track and shower algorithms for shower-like data.
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(a) (b)

Figure D.4: 2d-histograms of the x- and y-positions of the events as reconstructed
by the shower algorithm for track-like data.

(a) (b)

Figure D.5: 2d-histograms of the x- and y-positions of the events as reconstructed
by the track algorithm for track-like data.
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74 Reconstructed Vertices

(a) (b)

Figure D.6: Histograms of the z-position of the events as reconstructed by the
track and shower algorithms for track-like data.
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Letter of intent for km3net 2.0. Journal of Physics G: Nuclear and Particle
Physics, 43(8):084001, jun 2016. doi: 10.1088/0954-3899/43/8/084001.
URL https://dx.doi.org/10.1088/0954-3899/43/8/084001.

[8] Sea Agostinelli, John Allison, K al Amako, John Apostolakis, Hen-
rique Araujo, Pedro Arce, Makoto Asai, D Axen, Swagato Banerjee,

76

Version of October 11, 2024– Created October 11, 2024 - 09:35

https://dx.doi.org/10.1088/0954-3899/43/8/084001


BIBLIOGRAPHY 77
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J. D. Zornoza, J. Zú niga, and N. Zywucka. Measurement of
neutrino oscillation parameters with the first six detection units of
km3net/orca, 2024. URL https://arxiv.org/abs/2408.07015.

[19] Sacha Davidson, Enrico Nardi, and Yosef Nir. Leptogenesis. Physics
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