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1 Introduction.

Let S = (Xi, Yi)
n
i=1 denote a sample of n independent and identically distributed (i.i.d.) observations

with distribution Z = (X,Y ), where Y ∈ R and X ∈ [0, 1]d for a fixed dimension d ∈ N≥1. We consider
the nonparametric regression model given by:

Yi = f0(Xi) + εi, (1.1)

where f0 : [0, 1]d −→ R represents the unknown regression function to be estimated using the
sample S and εi are error terms i.i.d. independent of Xi. Various parametric estimation methods,
such as linear regression and logistic regression [Hosmer Jr et al., 2013] are well established, along with
nonparametric methods like splines [Marsh and Cormier, 2001]. This thesis focuses on nonparametric
regression using deep neural networks.

In a classical setting, it is typically assumed that εi ∼ N(0, σ2). However, this can be insufficient
in some scenarios. One such scenario involves the presence of outliers, which will be the focus of this
thesis. Outliers are observations that differ significantly from the other observations, this can be due
to measurement errors, but they can also be inherent to the data structure. While one approach to
dealing with outliers is to detect and remove them, this strategy poses problems as it may lead to
underestimation of extreme scenarios. Instead of discarding outliers, we propose to model and work
with them by assuming a different distribution for εi. To do so, we explicitly do not require εi to have
zero mean. In Section 3, εi is assumed to be sub-exponential [see Definition 3.1], while in Section 4
and Section 5, εi is only assumed to have a certain number of finite moments.

As previously mentioned, in this thesis, estimating the regression function f0 will be done using
deep neural networks. Many consider the Mark I, in Rosenblatt [1961], to be first implementation of a
neural network. Since his work in 1961, there have been significant advances in computer hardware and
software. This abundance of compute power, combined with more data, allowed the previously not so
popular deep neural network to become a central tool in modern artificial intelligence. With this rise
in popularity among computer scientists came a growing theoretical interest among mathematicians,
especially in recent years. Some notable works are Schmidt-Hieber [2020], Shen et al. [2022], Jiao et al.
[2023] and Shen et al. [2021]. All of these papers prove upper bounds on the approximation error
made by neural networks. This thesis focuses in particular on the work of Jiao et al. [2023] and Shen
et al. [2021]. Jiao et al. [2023] give an upper bound on the prediction error of the so called empirical
risk minimizer [see Section 2.3] under the assumption that εi is sub-exponential and square loss. We
generalize this result to a milder condition on εi. Furthermore, Shen et al. [2021] show similar upper
bounds on the prediction error, but for a general loss function that is Lipschitz continuous.

Source Loss function ε assumption Convergence rate

Jiao et al. [2023] [Lemma 3.7] Square loss ε is sub-exponential O
(

(logn)5

n

)
Ours [Lemma 4.1] Square loss E[|ε|2+δ] <∞, δ > 0 O

((
logn
n

) δ
4+δ

)
Shen et al. [2021] [Lemma 5.1] Lipschitz cont. loss E[|ε|1+δ] <∞, δ > 0 O

(
logn

n
δ

1+δ

)
Table 1: An overview of convergence rates on the prediction error of the empirical risk minimizer
covered in this thesis for various loss functions and assumptions on ε. In all cases it is assumed that
f∗ [see (2.3)] can be written as a neural network.

Some important results covered in this thesis can be best summarized in Table 1, where for each
loss function and assumption on εi, the convergence rate of the empirical risk minimizer is given.
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Furthermore, using these results we obtain that the empirical risk minimizer is a consistent estimator
for f∗. From this it will follow that deep neural networks are robust against mean-zero outliers when
square loss is used. At the same time, it will show that if there are outliers in the data that do not
have expectation 0, a bias will created when square loss is used.

In a small simulation study in Section 6, some simple regression functions are approximated using
neural networks. Then, the convergence rate is estimated and compared to what we theoretically
predict.

2 Preliminaries.

In this section, we introduce ReLU neural networks along with the general problem of regression and an
estimation approach. We start with the standard square loss function and show some general properties
of the square loss. Then we introduce a more general loss function that is Lipschitz continuous. Finally,
we show how the regression setting can incorporate the presence of outliers in the data.

2.1 Neural networks.

Definition 2.1 (Multi-layer Perceptron). Consider some vector (p0, p1, . . . , pD, pD+1) ∈ ND+2 for
some D ∈ N. A multi-layer perceptron (MLP) is a function f : Rp0 −→ RpD+1 that can be expressed
as a composition of simpler functions

f(x) = LD ◦ σ ◦ LD−1 ◦ σ ◦ · · · ◦ σ ◦ L1 ◦ σ ◦ L0(x) for x ∈ Rp0 ,

where Li(x) :=Wix+ bi for a weight matrix Wi ∈ Rpi+1×pi and bias vector bi ∈ Rpi+1 of the i-th layer
for i = 0, 1, . . . . ,D. Furthermore, pi is the width of layer i, (p0, p1, . . . , pD, pD+1) is called the width
vector and σ is the activation function which is often chosen to be the rectified linear unit (ReLU) by
σ(x) = max(0, x). The maximum is taken component-wise, that is,

max(0, x) := (max(0, x1),max(0, x2), . . . ,max(0, xn)) for any x ∈ Rn.

Each Li in Definition 2.1 is called a layer of the network. The input layer is the first layer L0

and the output layer is the last layer LD. All layers between the input and output layer are called
hidden layers. The D in Definition 2.1 is called the depth of the network. Note that these only
include the number of hidden layers and that the network has a total of D + 2 layers. Also define
W := max{p1, . . . , pD} as the maximum width and the number of neurons U :=

∑D
i=1 pi, note that

the neurons in the input and output layers are not counted. Furthermore, we define the size of the
network as the total number of parameters, that is, S :=

∑D
i=0 pi+1 · (pi + 1). Activation functions

other than ReLU are also common. In general, an activation function is usually defined only for
x ∈ R, but always taken component-wise for vectors in Rn. Commonly chosen activation functions
are the sigmoid function given by x 7→ 1

1+e−x , also known as the logistic function, and the hyperbolic

tangent function tanh(x) = e2x−1
e2x+1 . In Fig. 2.1, these activation function are displayed. Notice how the

behaviour of the hyperbolic tangent and sigmoid function are very similar. This similarity is captured
in the identity tanh(x) = 2σ(2x)− 1, where σ is the sigmoid activation function. An overview of these
and more activation functions is given by Sharma et al. [2017]. In the remainder of this thesis, we will
be working with the ReLU activation function.

In computer science it is common for authors to introduce neural networks in a different way than
we have done. The MLP is visualized as a graph with weighted directed edges as in Fig. 2.2 and
Fig. 2.3, where each edge represents a weight parameter and on each vertex, the linear combination
is taken between the input of the previous layer and the weights connecting the two layers, then a
bias is added and the activation function is applied. When one writes the activation of the whole
layer in terms of matrix multiplication and vector additions, as is done in Fig. 2.3, one finds the same

3



(a) sigmoid: x 7→
(
1 + e−x

)−1
(b) tanh: x 7→ e2x−1

e2x+1
(c) ReLU: x 7→ max(0, x)

Figure 2.1: Three commonly used activation functions in neural networks.

expression as we have used in our definition. Thus showing that both approaches define the same
structure. This approach also clarifies why the name ”neural network” is used. Notice that the width
vector p in Definition 2.1 fully defines the structure of the network in Fig. 2.2, for this reason p will
be also be referred to as the architecture.

... ...
...

...

...

input
layer

hidden layers

output
layer

Figure 2.2: A visualization of a multi-layer perceptron [see Definition 2.1] with D = 3. Each vertex
and edge represents a neuron and weight respectively.

A useful fact about ReLU networks is that any piecewise-linear function can always be expressed
using a ReLU network, where the notion of piecewise-linearity is naturally extended to real-valued
functions on Rn [Arora et al., 2016, see Definition 3]. Conversely, any ReLU network is a piece-wise
linear function. The latter follows immediately from the definition. The first statement is however less
trivial, it is proven by Arora et al. [2016] in Theorem 2.1.

A network with a piecewise-linear activation function with finitely many infliction points is also
a piecewise-linear function. Therefore, any network with piecewise-linear activation function can be
expressed with a ReLU network. From this it follows that all error bounds and convergence results
in this thesis can be generalised to networks with a piecewise-linear activation function with finitely
many infliction points with suitable adjustments.
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(1)
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= σ
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0
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(1)
1
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1
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a
(m)
1
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. . .
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
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...
xn
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
b
(1)
0

b
(2)
0
...

b
(m)
0




a(1) = σ ◦ L0(x), where

L0(x) :=W0x+ b0.

Figure 2.3: The inner workings of a neural network as defined in Definition 2.1 of the first hidden layer.
The activation of the first neuron is the linear combination of the inputs xi with the weights w1,i, to

which a bias b
(1)
0 is added and an activation function σ is applied. The activation of the whole layer

can be written in terms of matrix multiplication and addition with L0(x) = W0x + b0, which aligns
with the original definition of an MLP.

2.2 Network function classes.

In Definition 2.1 a width vector p = (p0, . . . pD+1) is used. In this thesis we focus our attention on
the regression problem introduced in Section 1, that is, we try to estimate the unknown regression
function f0 : [0, 1]d → R using neural networks. Hence p0 = d and pD+1 = 1. From now on, we
will only consider network that have input dimension d and output dimension 1. So any network
architecture p with depth D will satisfy p ∈ AD := {(d, p1, . . . , pD, 1) | p1, . . . , pD ∈ N}.

For each width vector, or architecture, there are many possible MLP’s with width vector p. That
is, one can choose between all possible weight matrices Wi and bias vectors bi for i = 1, . . . ,D. Denote
the function class of all MLP’s with width vector p ∈ AD that are bounded by some 0 < B < ∞ by
NNB

p . That is,

NNB
p := {f as in Definition 2.1 | f has architecture p, ∥f∥∞ ≤ B} , (2.1)

where ∥f∥∞ := supx∈[0,1]d |f(x)|. The architecture p is allowed to depend on the sample size n, so
p =: pn. This will allow the network to become deeper and wider as the sample size increases, which
will give pleasant asymptotic results. Throughout this thesis, we will often omit the subscript for
notational simplicity.

For a fixed depth D, the set of all architectures with depth D is AD, taking the union over all
depths gives the set of all possible architectures A :=

⋃
D≥0AD. In order to compare different function

classes NNB
p and NNB

p′ , we propose to define a partial ordering on the set of architectures A.

Definition 2.2 (Partial ordering). Let X be some set. Now (X,≤) is a partially ordered set if for all
a, b, c ∈ X,

1. a ≤ a, (Reflexivity)
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2. a ≤ b and b ≤ a =⇒ a = b, (Antisymmetry)

3. a ≤ b and b ≤ c =⇒ a ≤ c. (Transitivity)

The relation ≤ is a partial ordering on the set X. Note that every two elements a, b ∈ X need not be
comparable. When this is the case, ≤ is called a total ordering.

Using Definition 2.2 we can define a partial ordering on the set of architectures A. Let p, p′ ∈ A,
assume p ∈ AD and p′ ∈ AD′ . Now

p ≤ p′ ⇐⇒ D ≤ D′ and pi ≤ p′i for all i = 1, . . . ,D. (2.2)

It is clear that this relation is indeed a partial ordering by the fact that (N,≤) is a partial ordering.
Some examples of this partial ordering are (d, 3, 1) ≤ (d, 3, 1, 4, 1) and (d, 1, 2, 1) ≤ (d, 2, 3, 1).

One should imagine the network with architecture p fitting inside of the network with architecture p′

whenever p ≤ p′ [see Fig. 2.2]. One might think intuitively that NNB
p ⊆ NNB

p′ when p ≤ p′, since
one network ’fits’ inside of the other. This intuition turns out to be correct, which will be proven in
Proposition 2.5. In order to prove this proposition, we shall first prove two useful lemmas.

Lemma 2.3 (Monotonicity of depth). Consider NNB
p for some p = (d, p1, . . . , pD, 1) with depth

D ∈ N. Set p′ = (d, p1, . . . , pD, 1, 1), that is, p
′ has the same architecture as p but extended one layer

with width 1. Now
NNB

p ⊆ NNB
p′ ,

that is, making the network deeper does not lose expressive power.

Proof. For any f ∈ NNB
p , we can write f as

f(x) = LD ◦ σ ◦ LD−1 ◦ σ ◦ · · · ◦ σ ◦ L1 ◦ σ ◦ L0(x) for x ∈ Rd.

Now set a(x) := σ ◦LD−1 ◦σ ◦ · · · ◦σ ◦L1 ◦σ ◦L0(x) ∈ RD as the activation of the second to last layer
of f . Observe that a(x)j ≥ 0 for all j = 1, . . . , pD since σ(x) = max(0, x). Define L∗(x) := x = IDx+0
for any x ∈ RD, now we can write f as

f(x) = LD ◦ a(x) = LD ◦ σ ◦ L∗ ◦ a(x).

We have written the function f as a network with architecture p′, thus showing f ∈ NNB
p′ . Which

proves the result.

Lemma 2.4 (Monotonicity of width). Fix some j ∈ {1, . . . ,D} and consider NNB
p for some p =

(d, p1, . . . , pj , . . . , pD, 1) with depth D ∈ N. Set p′ = (d, p1, . . . , pj + 1, . . . , pD, 1), that is, p′ has the
same architecture as p but layer j is one wider than in p. Now

NNB
p ⊆ NNB

p′ ,

that is, making the network wider does not lose expressive power.

Proof. For any f ∈ NNB
p , we can write f as

f(x) = LD ◦ σ ◦ · · · ◦ σ ◦ Lj ◦ σ ◦ Lj−1 ◦ σ ◦ · · · ◦ σ ◦ L0(x) for x ∈ Rd.

By making the j-th layer one wider, Lj−1 and Lj change in structure. Write

Lj−1(x) =


w11 w12 . . . w1pj−1

w21 w22 . . . w2pj−1

...
...

. . .
...

wpj1 wpj2 . . . wpjpj−1




x1
x2
...

xpj−1

+


b1
b2
...
bpj


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and

Lj(x) =


u11 u12 . . . u1pj

u21 u22 . . . u2pj

...
...

. . .
...

upj+11 upj+12 . . . upj+1pj



x1
x2
...
xpj

+


v1
v2
...

vpj+1

 .

To make the j-th layer one wider without changing the function f we define

L′
j−1(x) =


w11 w12 . . . w1pj−1

w21 w22 . . . w2pj−1

...
...

. . .
...

wpj1 wpj2 . . . wpjpj−1

0 0 . . . 0




x1
x2
...

xpj−1

+


b1
b2
...
bpj

0


and

L′
j(x) =


u11 u12 . . . u1pj 0
u21 u22 . . . u2pj 0
...

...
. . .

... 0
upj+11 upj+12 . . . upj+1pj

0




x1
x2
...
xpj

xpj+1

+


v1
v2
...

vpj+1

 ,

that is, we add zeros to the weight matrix and bias vector of Lj−1 in such a way that L′
j−1(x) = ( —

Lj−1(x) — , 0)T . Using that σ(0) = 0, it follows that

L′
j◦ σ ◦ L′

j−1(x) = L′
j


|

σ ◦ Lj−1(x)
|
0



=


u11 u12 . . . u1pj

0
u21 u22 . . . u2pj

0
...

...
. . .

... 0
upj+11 upj+12 . . . upj+1pj

0




|
σ ◦ Lj−1(x)

|
0

+


v1
v2
...

vpj+1

 = Lj ◦ σ ◦ Lj−1(x).

By above observation we can also write f with architecture p′ as

f(x) = LD ◦ σ ◦ · · · ◦ σ ◦ L′
j ◦ σ ◦ L′

j−1 ◦ σ ◦ · · · ◦ σ ◦ L0(x) for x ∈ Rd,

which proves that f ∈ NNB
p′ , which in turn proves the result.

Using Lemma 2.3 and Lemma 2.4 we can prove the following proposition.

Proposition 2.5 (Monotonicity of architecture). Let p, p′ ∈ A be such that p ≤ p′, then

NNB
p ⊆ NNB

p′ .

Proof. One should first note that Lemma 2.3 and Lemma 2.4 can be extended to an arbitrary number
of extra hidden layers and wider layer respectively by induction. Since p ≤ p′, p has at most the depth
of p′ and each layer of p is less wide than p′. Now it follows by the lemmas for arbitrary width and
depth that NNB

p ⊆ NNB
p′ .
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Above proposition shows that no expressive power is lost when making the architecture of the
network larger in the sense of (2.2). One might be tempted to think that it is best to choose the
architecture p to be as deep and wide as possible, since the network class only gains expressive power.
More expressive power is however not necessarily a good thing, as it poses some practical issues.

The first problem is overfitting the data. As you make the network more complex you allow the
network to have more degrees of freedom to overfit the data. Other than not making the network
unnecessarily large, solutions for overfitting have been proposed like dropout [Srivastava et al., 2014]
among many regularization techniques [Goodfellow et al., 2016, see ch.7].

The second problem is that training larger neural networks is more difficult. Neural networks are
optimized using gradient descent methods like described in chapter 8 of Goodfellow et al. [2016]. For
larger networks these optimization methods become computationally expensive and unstable, hence
giving preference to smaller networks when possible.

It should be noted that Jiao et al. [2023] and Shen et al. [2021], which are both written by the
same authors, use a slightly different neural network function class. We will use and build upon some
of their work, so it is import to recognize the difference in the function class they define and the one
defined in (2.1).

The function class FD,W,U,S,B is the set of all MLP’s that have depth D, maximum width W,
number of neurons U and size S such that ∥f∥∞ ≤ B for some 0 < B < ∞. Notice that the
architecture of the networks in FD,W,U,S,B is not uniquely defined since it only poses constrains on the
depth, maximum width, number of neurons and size. This is a practical disadvantage without giving
any benefit in return. It is therefore that we prefer to use network class NNB

p instead.

2.3 Estimation of regression function.

Remember from Section 1 that we assume

Yi = f0(Xi) + εi,

where f0 was the unknown regression function and εi are i.i.d. error terms independent of Xi. This
section introduces the general problem of estimating the regression function. A common approach to
estimating the relation between X and Y , is to find some measurable function f : [0, 1]d → R that
minimizes the loss L(f(X), Y ) for some loss function L : R2 → R, note that the loss is still a random
variable depending on X and Y .

Many loss functions can be chosen, a common loss function is the square loss L(a, y) := (a − y)2,
also known as the MSE loss or L2 loss.

Let Z
d
= (X,Y ), then for any measurable function f the risk R(f) is defined as the expected loss,

that is,
R(f) := EZL(f(X), Y ).

One would like to minimize this risk over the set of all measurable functions M([0, 1]d) to find an
optimal estimator f∗ defined by

f∗ := arg min
f∈M([0,1]d)

R(f). (2.3)

In practice, the distribution of (X,Y ) is unknown and one only has access to a sample
S = {(Xi, Yi)}ni=1 with sample size n. For any f , we define the empirical risk of f on the sample S as

Rn(f) :=
1

n

n∑
i=1

L(f(Xi), Yi).

In the context of neural networks, we would like to find the network from the function class NNB
p

defined in (2.1) that minimizes this empirical risk. This estimator is called the empirical risk minimizer
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(ERM) f̂n, formally defined by

f̂n ∈ arg min
f∈NNB

p

Rn(f).

To evaluate the quality of any estimator f we define its excess risk R(f)−R(f∗). In particular, we will

show bounds on the expected excess risk ES

[
R(f̂n)−R(f∗)

]
, called the prediction error, of the ERM

f̂n under various assumptions on the error ε and loss function L. In Section 2.4 we show some basic
properties of the square loss function, which will be used in error bounds in Section 3 and Section 4.
In Section 2.5 a general loss function is introduced that is Lipschitz continuous in both its arguments.
For this Lipschitz loss we prove similar error bounds as for the square loss.

In order to provide an upper bound on the prediction error, several results from empirical process
theory are used. Here we only present some basis concepts that will be needed for our upper bounds,
for a more thorough overview on the theory we highly recommend van der Vaart and Wellner [1996].

We first introduce the pseudodimension, which is a measure of complexity for a function class. The
following is the definition given in Bartlett et al. [2019].

Definition 2.6 (pseudodimension). Let F be a function class of functions from [0, 1]d to R. The
pseudodimension of F , written Pdim(F), is the largest integer m for which there exists x1, . . . , xm ∈
[0, 1]d and y1, . . . , ym ∈ R such that for any b1, . . . , bm ∈ {0, 1} there exists f ∈ F such that

f(xi) > yi ⇔ bi = 1 for all i.

Throughout this thesis we will work with the pseudodimension of the network class NNB
p . In

particular, we make use of an upper bound on the pseudodimension proven by Bartlett et al. [2019].
They showed that

Pdim(NNB
p ) ≤ C · SD logS,

for some constant C > 0. Furthermore, in our upper bounds on the prediction error, we require the
sample size n to be greater or equal to the pseudodimension Pdim(NNB

p ).
Another concept from empirical process theory we use is the covering number. For any sequence

x = (x1, . . . , xn) ∈ ([0, 1]d)n, let

NNB
p

∣∣
x
:= {(f(x1), . . . , f(xn))

∣∣f ∈ NNB
p }

denote the subset of Rn of evaluated points. For any positive δ > 0, let N (δ, ∥ · ∥∞,NNB
p

∣∣
x
) denote

the covering number of NNB
p

∣∣
x
under the norm ∥ · ∥∞ with radius δ. That is, the smallest number

of δ-balls needed to cover NNB
p

∣∣
x
. Using this, the uniform covering number Nn(δ, ∥ · ∥∞,NNB

p ) is

defined as the maximum covering number over all x ∈ ([0, 1]d)n, that is,

Nn(δ, ∥ · ∥∞,NNB
p ) := max

x∈([0,1]d)n
N (δ, ∥ · ∥∞,NNB

p

∣∣
x
). (2.4)

2.4 Least square estimation.

Under some assumptions on L,X and ε, the true regression function f0 equals the optimal solution
f∗. For instance, set L(a, y) = (a− y)2 as the square loss and assume E[ε] = 0. Then, f∗ = f0, which
is a special case with µε = 0 in the following lemma.

Lemma 2.7. Consider the regression model in (1.1) with square loss L(a, y) = (a − y)2. Then, the
optimal solution f∗ is biased in the sense that

f∗ = f0 + µε,

where µε = E[ε1]. Furthermore, R(f∗) = R(f0)− µ2
ε.

9



Proof. Define f̃0 := f0 + µε and ε̃i := εi − µε for all i. Observe that

Yi = f0(Xi) + εi = f̃0(Xi) + ε̃i

and E[ε̃i] = 0. The risk of any f ∈ M([0, 1]d) can be decomposed by independence of X and ε̃ as

R(f) = E
[
(f(X)− Y )2

]
= E

[
(f(X)− f̃0(X)− ε̃)2

]
= E

[
(f(X)− f̃0(X))2

]
+ E[ε̃]E

[
f(X)− f̃0(X)

]
+ E

[
ε̃2
]
= E

[
(f(X)− f̃0(X))2

]
+ E

[
ε̃2
]
.

From this it is concluded that f∗ = f̃0 = f0 + µε since R(f̃0) = E
[
ε̃2
]
and R(f) ≥ E

[
ε̃2
]
for all

f ∈ M([0, 1]d).
The final statement follows by direct calculation,

R(f∗) = E
[
(f∗(X)− Y )2

]
= E

[
([f0(X)− Y ] + µε)

2
]
= R(f0)− µ2

ε.

Lemma 2.7 shows that the square loss is an excellent choice when one is certain that the noise
ε has zero mean, since a consistent estimator for f∗ will be consistent with respect to the unknown
regression function f0. At the same time, above lemma shows that the whole estimation approach is
flawed from the beginning in the sense that estimating f∗ will result in a biased estimator if µε ̸= 0.
It begs the question whether a better loss function exists such that f∗ is close to f0 even if the noise
has non-zero mean. This question remains unanswered throughout this thesis, though it is definitely
worth further exploration.

Lemma 2.8. Consider the regression model in (1.1) and denote L(a, y) = (a− y)2 as the square loss.
For any random sample S = {(Xi, Yi)}ni=1 and function f : [0, 1]d → R, depending possibly on the
random sample S,

R(f)−R(f∗) = ∥f − f∗∥2L2(ν) := EX

[
(f(X)− f∗(X))

2
]
,

where ν denotes the density of X. Furthermore, if one assumes E[ε1] = 0, the prediction error of the

ERM f̂n ∈ argminf∈NNB
p
Rn(f) satisfies

ES

[
R(f̂n)−R(f0)

]
= ES

[
∥f̂n − f0∥2L2(ν)

]
≤ ES

[
R(f0)− 2Rn(f̂n) +R(f̂n)

]
+ 2 inf

f∈NNB
p

∥ f − f0∥2L2(ν).

Proof. The proof is originally given by Jiao et al. [2023] in Lemma 3.1 only for E[ε1] = 0. We present
the proof with more details to accompany the reader, we also generalize the first statement to E[ε1] ̸= 0.

First we consider the case when E[ε1] = 0. By direct calculation it holds that for any f , depending
possibly on the random sample S,

R(f)−R(f0) = EZ [L(f(X), Y )− L(f0(X), Y )]

= EZ

[
f(X)2 − 2f(X)Y + Y 2 − f0(X)2 + 2f0(X)Y − Y 2

]
= EZ

[
f(X)2 − 2f(X)Y − f0(X)2 + 2f0(X)Y

]
Observe that EZ [Y f0(X)] = EZ

[
f0(X)2

]
+ EZ [εf0(X)] = EZ

[
f0(X)2

]
since ε is independent of X.

Similarly, EZ [Y f(X)] = EZ [f0(X)f(X)], which implies

R(f)−R(f0) = EX

[
f(X)2 − 2f(X)f0(X) + f0(X)2

]
= EX

[
(f(X)− f0(X))

2
]

= ∥f − f0∥2L2(ν). (2.5)
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Now assume µε := E[ε1] ̸= 0, set f̃0 = f0 + µε and ε̃i = εi − µε for any i. Observe that E[ε̃i] = 0
and

Yi = f0(Xi) + εi = f̃0(Xi) + ε̃i.

Hence by the just proven equality it follows that R(f) − R(f̃0) = ∥f − f̃0∥2L2(ν). By Lemma 2.7 we

have f̃0 = f0 + µε = f∗, which proves the first result.

By definition of the ERM, Rn(f̂n) ≤ Rn(f) for any f ∈ NNB
p . Hence

Rn(f̂n)−Rn(f0) ≤ Rn(f̄)−Rn(f0),

where f̄ ∈ arg inff∈NNB
p
∥f − f0∥2L2(ν). Taking expectation on both sides we get

ES

[
Rn(f̂n)−R(f0)

]
≤ R(f̄)−R(f0) = EZ

[
Y 2 − 2f̄(X)Y + f̄(X)2 − Y 2 + 2f0(X)Y − f0(X)2

]
= EZ

[
−2f̄(X)f0(X) + f̄(X)2 + f0(X)2

]
= EX

[
(f̄(X)− f0(X))2

]
= ∥f̄ − f0∥2L2(ν).

Since f̄ ∈ arg inff∈NNB
p
∥fn − f0∥2L2(ν), we thus have

ES

[
Rn(f̂n)−R(f0)

]
≤ inf

f∈NNB
p

∥f − f0∥2L2(ν). (2.6)

Multiplying (2.6) by 2 and adding (2.5) we obtain

ES

[
∥f̂n − f0∥2L2(ν)

]
+ 2ES

[
Rn(f̂n)−R(f0)

]
≤ ES

[
R(f̂n)−R(f0)

]
+ 2 inf

f∈NNB
p

∥f − f0∥2L2(ν).

Rearranging terms gives

ES

[
∥f̂n − f0∥2L2(ν)

]
≤ ES

[
R(f̂n)−R(f0)− 2Rn(f̂n) + 2R(f0)

]
+ 2 inf

f∈NNB
p

∥f − f0∥2L2(ν)

= ES

[
R(f0)− 2Rn(f̂n) +R(f̂n)

]
+ 2 inf

f∈NNB
p

∥f − f0∥2L2(ν),

which proves the last inequality.

Lemma 2.8 shows that the excess risk is not just the difference in risk, it is in fact a distance in
the sense of a metric [Munkres, 2000, see section 20]. Showing that the excess risk of any estimator f
converging to zero, is equivalent to showing convergence of f to f∗ in L2(ν), which is a much stronger
result.

2.5 Lipschitz loss estimation.

Lemma 2.7 shows that under the square loss, the optimal estimator f∗ is biased in the sense that
f∗ = f0+µε. It would be better if f∗ is equal, or at least close to, f0. To achieve this one can consider
a different loss function, a robust loss function L : R2 → R. Shen et al. [2021] give several examples of
robust loss functions.

• Least absolute deviation (LAD) loss: L(a, y) = |a− y|, (a, y) ∈ R2.

• Quantile loss: L(a, y) = ρτ (a− y), (a, y) ∈ R2, where

ρτ (x) =

{
τx if x ≥ 0

(τ − 1)x if x < 0
for some τ ∈ (0, 1).
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• Huber loss: L(a, y) = hζ(a− y), (a, y) ∈ R2, where

hζ(x) =

{
x2

2 if |x| ≤ ζ

ζ|x| − ζ2

2 if |x| > ζ
for some ζ > 0.

• Cauchy loss: L(a, y) = log
(
1 + κ2(a− y)2

)
, (a, y) ∈ R2, for some κ > 0.

• Tukey’s biweight loss: L(a, y) = Tt(a− y), (a, y) ∈ R2, where

Tt(x) =

 t2

6

[
1−

{
1−

(
x
t

)2}3
]

if |x| ≤ t

t2

6 if |x| > t
for some t > 0.

All above loss function can be written as a function of the difference a− y, Fig. 2.4 displays them as
a function of this difference. Furthermore, all loss functions are continuous and λL-Lipschitz in both
arguments, that is, ∣∣L(a1, ·)− L(a2, ·)

∣∣ ≤ λL
∣∣a1 − a2

∣∣,∣∣L(·, y1)− L(·, y2)
∣∣ ≤ λL

∣∣y1 − y2
∣∣,

for any a1, a2, y1, y2 ∈ R.
One would like to have an identity relating f∗ and f0 as is given in Lemma 2.7 for the square loss.

For this general Lipschitz continuous, we cannot formulate such a relation. However, the following
does hold.

Lemma 2.9. Consider the regression model in (1.1) with some continuous loss function L. Assume
that L can be written as a difference between its two inputs, that is, L(a, y) = ψ(a − y) for some
function ψ. Also assume that this function ψ is symmetric, differentiable, monotonically increasing on
[0,∞), and strictly monotonically increasing in at least some neighbourhood. Then, if E[ε] < ∞, and
ε has a symmetric density that is decreasing on [0,∞), the optimal solution f∗ satisfies

f∗ = f0.

Indeed, the loss functions we have discussed above, except for the quantile loss, satisfy the assump-
tions of above Lemma 2.9. Hence, if ε is symmetric with existing mean, the optimal solution is robust
against possible symmetric outliers, like those generated by a t-distribution.

Proof. For any f , using the tower property, the risk of can be written as

R(f) = EZ [L(f(X), Y )] = EZ [ψ(f(X)− Y )] = E(X,ε) [ψ(f(X)− f0(X)− ε)]

= E(X,ε) [ψ(ε− {f(X)− f0(X)})] = EX

[
Eε

(
ψ(ε− {f(X)− f0(X)})

∣∣X)] .
Instead of minimizing this expression directly, we consider the function λ(µ) := Eεψ(ε − µ) for any
µ ∈ R. In the following, it is proven that λ has a unique minimum at µ = 0. This statement was
originally proven in Maronna et al. [2019, Thm 10.2].

Observe that

λ′(µ) = −
∫
R
fε(x)ψ

′(x− µ)dx.
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While doing some substitutions, using the fact that ψ′ is odd and fε even, this can be written as

λ′(µ) = −
∫ ∞

µ

fε(x)ψ
′(x− µ)dx−

∫ µ

−∞
fε(x)ψ

′(x− u)dx

= −
∫ ∞

0

fε(x+ µ)ψ′(x)dx+

∫ µ

−∞
fε(x)ψ

′(µ− x)dx

= −
∫ ∞

0

fε(x+ µ)ψ′(x)dx+

∫ ∞

0

fε(x− µ)ψ′(x)dx

=

∫ ∞

0

ψ′(x) [fε(x− µ)− fε(x+ µ)] dx.

Observe from this that λ′(−µ) = −λ′(µ) for all µ and λ′(0) = 0. We now show that λ′(µ) > 0 for
µ > 0.

If x and µ are positive, then |x − µ| < |x + µ|, hence it follows that fε(x − µ) > fε(x + µ) by
assumption on fε. Also note that by assumption on ψ, we have ψ′(x) ≥ 0 for all x ≥ 0 and ψ′(x) > 0
for all x ∈ (a, b) for some 0 ≥ a < b. Since ψ′ is strictly positive in at least some positive neighbourhood,
and fε(x − µ) > fε(x + µ), we conclude that the integral must be positive. That is, λ′(µ) > 0 for
µ > 0. By being odd, λ′(µ) < 0 for µ < 0. Hence the only minimum is µ = 0.

Above segment shows that for any X ∈ [0, 1]d, Eε

(
ψ(ε− {f(X)− f0(X)})

∣∣X) has a unique min-
imum at f∗(X) = f0(X). Thus,

Eε

(
ψ(ε− {f∗(X)− f0(X)})

∣∣X) ≤ Eε

(
ψ(ε− {f(X)− f0(X)})

∣∣X) ,
for all X ∈ [0, 1]d and all measurable functions f . Note that if f ≤ g for two positive and measurable
functions f and g, one has E[f(X)] ≤ E[g(X)]. From this it follows that f∗ = f0 is also the unique
minimum of the risk R over all measurable function f .

In Section 5 any loss function can be considered, as long as it is λL-Lipschitz in both its arguments,
and L(a, y) = 0 for any a = y ∈ R. All just mentioned loss functions satisfy these properties.
Furthermore, Shen et al. [2021] give the value of the Lipschitz constant λL, along with information
about continuity, convexity and differentiability in Table 2. Without any further proof, we will use the
information from Table 2 throughout Section 5 and Section 6.

Source: Shen et al. [2021]

LAD Quantile Huber Cauchy Tukey
Hyper parameter NA τ ∈ (0, 1) ζ > 0 κ > 0 t > 0

λL 1 max(τ, 1− τ) ζ κ 16t
25

√
5

Continuous TRUE TRUE TRUE TRUE TRUE

Convex TRUE TRUE TRUE FALSE FALSE

Differentiable FALSE FALSE TRUE TRUE TRUE

Table 2: An overview of different robust loss functions. Note that ”NA” stands for not applicable.
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Figure 2.4: Different loss functions that are λL-Lipschitz in both its arguments and satisfy L(x, x) = 0
for any x ∈ R, along with the square loss, which is not Lipschitz continuous. For the shown Huber loss,
ζ = 1; Cauchy loss, κ = 1; Tukey loss, t = 4.685. The chosen value for t is copied from Belagiannis
et al. [2015]. Each loss function can be expressed a function of the difference a − y, for any y, a ∈ R.
The loss functions are displayed as a function of this difference.

2.6 Modelling outliers.

To model the outliers in the regression model from (1.1), we will first have to introduce so called
mixture distributions.

Consider an event A with P(A) =: α, where an outlier is observed, that is, ε takes an extreme
value. To model these large values we use some outlier distribution function F , meaning ε takes values
with distribution function F on event A. Conversely, on the complement Ac a normal observation is
made. A commonly used distribution is a normal distribution with mean zero and finite variance σ2,
denoted by Φσ, where ε takes values with distribution function Φσ on Ac. Now by the total law of
probability

Fε(t) = P(ε ≤ t) = P(ε ≤ t|Ac)P(Ac) + P(ε ≤ t|A)P(A) = Φσ(t)(1− α) + F (t)α.

Such a combination of distributions is called a mixture distribution. Note that, if F is differentiable, ε
has density

fε(t) =
dFε(t)

dt
= (1− α)f(t) + αφσ(t),

where f is the density of the outlier distribution and φσ is the density of Φσ. The contamination
model just described is known as the Tukey-Huber model [Maronna et al., 2019, see p.19].

Various choices for outliers distributions can be made. A normal distribution with higher variance,
say 10σ2, could be used. To get even more extreme outliers a t-distribution or Fréchet distribution
can be used, where the Fréchet has non zero mean since it is only defined for positive values. The
theoretical results will be formulated without specifying an outlier distribution, but in the simulations
[see Section 6], the three just described distributions will be used. Table 3 gives a brief overview of
relevant properties of these distributions.

expectation moments finite
normal distribution N(0, 10σ2) 0 all moments are finite

t-distribution t(ν) 0 if ν > 1 k-th moment finite for k < ν
Fréchet distribution Fréchet(λ) Γ

(
1− 1

λ

)
if λ > 1 k-th moment finite for k < λ

Table 3: An overview of possible outlier densities with some basic properties.
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3 Square loss with sub-exponential error.

In this section we present an error bound on the prediction error ES

[
R(f̂n)−R(f∗)

]
under the

assumption that ε is sub-exponential. Furthermore, we show that the ERM f̂n is a consistent estimator
for the optimal estimator f∗. Before the prediction error bound is covered, sub-exponential random
variables are introduced together with their properties.

3.1 Sub-exponential distributions and their properties.

Let us start with defining when a random variable is sub-exponential.

Definition 3.1 (Sub-exponential random variable). A real-valued random variableX is sub-exponential
if there exists a K > 0 such that

E exp (λ|X|) ≤ exp (Kλ) for all λ with 0 ≤ λ ≤ 1

K
.

It should be emphasized that this definition does not define the distribution of X, it is only a
property that X can have.

The given definition does not give much insight into the behaviour of sub-exponential random
variables. However, the following proposition from Vershynin [2018, page 32] gives a few equivalent
properties for sub-exponential random variables.

Proposition 3.2 (Sub-exponential properties). Let X be a random variable. If any of the following
conditions holds, then X is sub-exponential. Furthermore, all conditions are equivalent.

(i) There exists a K1 > 0 such that the tails of X satisfy

P(|X| ≥ t) ≤ 2 exp (−tK1) for all t ≥ 0.

(ii) There exists a K2 > 0 such that the moments of X satisfy

∥X∥Lp := (E|X|p)
1
p ≤ K2p for all p ≥ 1.

(iii) There exists a K3 > 0 such that the moment generating function of |X| satisfies

E exp (λ|X|) ≤ exp (K3λ) for all λ with 0 ≤ λ ≤ 1

K3
.

(iv) There exists a K4 > 0 such that the moment generating function of |X| is bounded at some point,
namely

E exp (K4|X|) ≤ 2.

Moreover, if EX = 0 then properties (i)− (iv) are also equivalent to the following one.

(v) There exists a K5 > 0 such that the moment generating function of X − EX satisfies

E exp (λX) ≤ eK
2
5λ

2

for all λ with |λ| ≤ 1

K5
.

Proof. The proof is given by Vershynin [2018, page 32].

Remark. Property (v) shows that X has all moments finite, since the moment generating function
MX(t) := E[etX ] exists in a neighbourhood around zero and

E[Xn] =
dnMX

dtn

∣∣∣∣
t=0

.
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Property (i) shows that the tails of X must decay exponentially, hence the name ”sub-exponential”.
This observation is the original motivation for the definition and demonstrates that normal and expo-
nential distributions are sub-exponential, given that their tails decay with rates exp (−t2) and exp (−t)
respectively. We will delve into more detailed examples later. First we derive some valuable properties
of sub-exponential random variables, namely that the set of sub-exponential random variables is closed
under finite linear combinations.

Proposition 3.3. Let a1, . . . , an ∈ R and X1, . . . Xn be random variables such that every Xi is sub-
exponential. Then

∑n
i=1 aiXi is also sub-exponential.

Proof. We first prove that for any sub-exponential random variable X, it follows that aX is sub-
exponential for any a ∈ R. By property (iv) of Proposition 3.2 there exists a K > 0 such that

E exp(K|X|) ≤ 2.

Set K̃ := K
|a| > 0. Then

E exp(K̃|aX|) = E exp(K̃|a||X|) = E exp(K|X|) ≤ 2.

Thus by property (iv) of Proposition 3.2 we conclude that aX is sub-exponential. Now let X1 and
X2 be two sub-exponential random variables and define α := 1

2 min(α1, α2) where α1, α2 > 0 are
such that E exp(α1|X1|) ≤ 2 and E exp(α2|X2|) ≤ 2 by property (iv) of Proposition 3.2. By using
Cauchy-Schwarz it follows that

E exp(α|X1 +X2|) ≤ E[exp(α|X1|) exp(α|X2|)] ≤
√

E[exp(2α|X1|)]E[exp(2α|X2|)]

≤
√

E[exp(α1|X1|)]E[exp(α2|X2|)] ≤
√
2 · 2 = 2,

hence X1 +X2 is sub-exponential. Combining the two results above and using induction we conclude
that any finite linear combination of sub-exponential random variables is sub-exponential.

Corollary 3.3.1. Let X be a sub-exponential random variable and C ∈ R. Then X + C is again
sub-exponential.

Proof. Note that C = δC where δC is the point mass at C. Then for all λ ∈ R

E[eλ|δC |] = eλ|C|.

Hence by property (iii) of Proposition 3.2 it follows that δC is sub-exponential. By applying Proposi-
tion 3.3 to X + C = X + δC the result follows.

Note that Corollary 3.3.1 shows that X is sub-exponential if and only if X−EX is sub-exponential.
This can be a computational benefit when showing a random variable is sub-exponential. The result
is also heavily used in the proof of Corollary 3.6.1.

Example. Let X ∼ N(µ, σ2) and Y := X − µ, then Y ∼ N(0, σ2). Now

E exp (λ(X − EX)) = E exp (λY ) = exp

(
σ2

2
λ2
)

for all λ ∈ R.

Hence by property (v) of Proposition 3.2 any normal distribution is sub-exponential.

Example. Let X ∼ Exp(λ). Then

P(|X| ≥ t) = P(X ≥ t) = e−λt ≤ 2e−tλ for all λ ∈ R.

Thus by property (i) of Proposition 3.2 we conclude that X is sub-exponential.
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Example. Let X1, . . . Xn ∼ Exp(λ) be n i.i.d. random variables, then
∑n

i=1Xi ∼ Γ(n, λ) [see Grim-
mett and Welsh, 2014, ex. 10, p. 103]. By previous example Xi is sub-exponential for all i, hence∑n

i=1Xi is also sub-exponential by Proposition 3.3. We conclude that Γ(n, λ) is sub-exponential for
any n ∈ N and λ > 0.

With the preceding examples we have demonstrated that many common distribution are sub-
exponential. However, there remains a big class of sub-exponential distributions that we have not
covered, the set of bounded distributions. Let X be a random variable that is bounded. X does not
have tails, hence the tails decay exponentially. Therefore we expect X to be sub-exponential. To prove
this we first introduce the notion of sub-Gaussian random variables and Hoeffding’s inequality.

Definition 3.4 (Sub-Gaussian random variable). A real-valued random variable X is sub-Gaussian
if there exists a K > 0 such that

P(|X| ≥ t) ≤ 2 exp(−t2K2) for all t ≥ 0.

A similar proposition to Proposition 3.2 exists for sub-Gaussian random variables. For more in-
formation on sub-Gaussian random variables it is recommended to read chapter 2.5 from Vershynin
[2018]. For our purposes the following lemma [Vershynin, 2018, p. 34] is sufficient.

Lemma 3.5 (Sub-exponential is sub-Gaussian squared). A random variable X is sub-Gaussian if and
only if X2 is sub-exponential.

Example. Let X1 . . . Xn be n i.i.d. standard normal random variables. The tail of Xi can be bounded
by

P(|Xi| ≥ t) = 2P(Xi ≥ t) = 2

∫ ∞

t

1√
2π
e−

x2

2 dx. Set u := x− t, then

= 2

∫ ∞

u=0

1√
2π

exp

(
− (u+ t)2

2

)
du ≤ 2

∫ ∞

u=0

1√
2π
e−

1
2 t

2

e−
1
2u

2

du

= 2e−
1
2 t

2

∫ ∞

u=0

1√
2π
e−

1
2u

2

du = 2e−
1
2 t

2

P(Xi ≥ 0) ≤ 2e−
1
2 t

2

for all t ≥ 0.

So Xi is sub-Gaussian by definition for all i. From Lemma 3.5 and Proposition 3.3 we know that
Z :=

∑n
i=1X

2
i is sub-exponential, where Z has by definition a χ2 distribution with n degrees of

freedom. Thus we conclude that any χ2 distribution is sub-exponential.

Theorem 3.6 (Hoeffding’s inequality). Let X1, . . . Xn be independent random variables. Assume that
Xi ∈ [ai, bi] a.s. for all i. Then for any t ≥ 0 we have

P

[
|

n∑
i=1

(Xi − EXi)| ≥ t

]
≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Corollary 3.6.1. If X is a random variable such that X ∈ [a, b] then X is sub-exponential.

Proof. Define Y := X − a and observe Y ∈ [0, c] where c := b− a. By Hoeffding’s inequality we have

P[|
√
Y | ≥ t] ≤ 2 exp

(
− 2t2

(
√
c)2

)
= 2 exp

(
−2

c
t2
)
.

This implies that
√
Y is sub-Gaussian by definition, which is equivalent to Y being sub-exponential

by Lemma 3.5. Since
X = Y + a,

we conclude by Corollary 3.3.1 that X is sub-exponential.
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Thus far we have seen that sub-exponential random variables have nice properties. Furthermore,
many common distribution such as normal, chi-squared, exponential, gamma and bounded distribu-
tions are all sub-exponential. As mentioned before, being sub-exponential implies that all moments
are finite. Therefore any distribution that does not have all moments finite, is not sub-exponential.
Examples are Cauchy, Pareto and t-distributions.

3.2 Prediction error bound for sub-exponential error and square loss.

In the following we derive an upper bound on the prediction error ES

[
R(f̂n)−R(f∗)

]
, we then show

the empirical risk minimizer is consistent with respect to the optimal estimator f∗. The results in this
subsection hold for sub-exponential error ε and are originally proved by Jiao et al. [2023], though we
present a different proof and a slightly different statement in Theorem 3.8 than the theorem given in
Jiao et al. [2023].

Lemma 3.7. Consider the regression model from (1.1). Assume that ε is sub-exponential and ∥f0∥∞ ≤
B−|µε| with B ≥ 1 and µε := E[ε1]. Let f̂n ∈ argminf∈NNB

p
Rn(f) denote the empirical risk minimizer

over NNB
p and L(a, y) = (a− y)2 the square loss. Then, for n ≥ 1

2Pdim(NNB
p ),

ES

[
R(f̂n)−R(f∗)

]
= ES∥f̂n − f∗∥2L2(ν)

≤ C0B5(log n)5
1

n
SD logS + 2 inf

f∈NNB
p

{R(f)−R(f∗)}

= C0B5(log n)5
1

n
SD logS + 2 inf

f∈NNB
p

∥f − f∗∥2L2(ν),

where C0 is a constant independent of d, n,B,D,W and S.
Proof. We first consider the case when E[ε] = 0. By Lemma 3.2 from Jiao et al. [2023], we have, for
all n ≥ 1

2Pdim(NNB
p ),

E∥f̂n − f0∥2L2(ν) ≤ C0B5(log n)5
1

n
SD logS + 2 inf

f∈NNB
p

∥f − f0∥2L2(ν).

By Lemma 2.7 we have f0 = f∗ and by Lemma 2.8 we have

∥f − f0∥2L2(ν) = R(f)−R(f0)

for any f , which proves the result for E[ε] = 0.
Whenever E[ε] ̸= 0, set f̃0 := f0 + µε and ε̃i := εi − µε. Observe that

Yi = f0(Xi) + εi = f̃0(Xi) + ε̃i for all i

and E[ε̃] = 0. Also note that

∥f̃0∥∞ = ∥f0 + µε∥∞ ≤ B + |µε| − |µε| = B,

hence by the just proven result for zero-mean error, we obtain the result since f̃0 = f∗ by Lemma 2.7.

Lemma 3.7 gives a non-asymptotic upper bound on the prediction error ES

[
R(f̂n)−R(f∗)

]
. The

upper bound consists of two terms. The second term is clearly zero if f∗ can be expressed directly
as an MLP in the function class NNB

p . Note that the first term converges to 0 as n → ∞ if the
architecture of p is fixed. One should observe that taking the architecture fixed also fixes the second
term. Hence a trade-off must be made between making sure the first term converges to zero with the
sample size, and allowing the network to grow with the sample size to decrease the second term. The
following theorem shows that both terms can converge to zero with the sample size under suitable
assumptions.

18



Theorem 3.8 (consistency of ERM under square loss and sub-exponential error). Consider the regres-
sion model in (1.1). Assume that ε is sub-exponential, f0 is continuous on [0, 1]d, ∥f0∥∞ ≤ B − |µε|
with B ≥ 1 and µε := E[ε1]. Also assume that each layer of p has at least width d + 1 and p has

depth D ≥ 3. Let f̂n ∈ argminf∈NNB
p
Rn(f) denote the empirical risk minimizer over NNB

p and

L(a, y) = (a− y)2 the square loss. If the architecture p satisfies,

S → ∞ and B5(log n)5
1

n
SD logS → 0 as n→ ∞.

Then, the prediction error of the ERM f̂n satisfies

lim
n→∞

ES

[
R(f̂n)−R(f∗)

]
= lim

n→∞
ES

[
∥f̂n − f∗∥2L2(ν)

]
= 0.

Furthermore, if f0 ∈ NNB
p , the condition that S → ∞ can be dropped.

Proof. First observe that for n large enough, we have

E
[
R(f̂n)−R(f∗)

]
≤ C0B5(log n)5

1

n
SD logS + 2 inf

f∈NNB
p

{R(f)−R(f∗)} ,

by Lemma 3.7. Hence it suffices to show that

inf
f∈NNB

p

{R(f)−R(f∗)} = inf
f∈NNB

p

∥f − f∗∥2L2(ν) → 0 as n→ ∞,

since B5(log n)5 1
nSD logS → 0 by assumption.

Let us first consider the case when D → ∞ as n → ∞. Set qn := (d, d + 1, d + 1, . . . , d + 1, 1) as
the architecture with constant width d+ 1 and depth D − 2. Hanin and Sellke [2017] show that there
exists a sequence of networks {gn}n≥1, each with architecture qn, such that ∥gn − f∗∥∞ → 0.

One would like to have gn ∈ NNB
p , but gn need not be bounded by B. To solve this issue one can

truncate gn at level B. Define the truncation operator TB at level B by

TBx =

{
x if |x| ≤ B
B · sign(x) if |x| > B

for all x ∈ R.

The truncation operator TB is a piecewise linear function with two infliction points, it can therefore
also be expressed as an MLP with one hidden layer. In fact,

TBx = max(0, 2B −max(0,B − x))− B = σ(2B − σ(B − x))− B.

The image of gn is compact, and hence bounded, since the domain [0, 1]d of gn is compact. Therefore
l := minx∈[0,1]d gn(x) exists. Now define g∗n := TB ◦ gn, denote the architecture of g∗n by q∗n :=

(d, d + 1, . . . , d + 1, 1, 1, 1), so g∗n ∈ NNB
q∗n
. Observe that g∗n has depth D and q∗n ≤ p since p has a

width of at least d+ 1 at each layer.
By Lemma 2.7 we have ∥f∗∥∞ = ∥f0 + µε∥∞ ≤ B. Since g∗n is equal to gn but truncated at level

B, we have
∥g∗n − f∗∥∞ ≤ ∥gn − f∗∥∞ → 0.

Combining this with Proposition 2.5, we obtain

lim
n→∞

inf
f∈NNB

p

∥f − f∗∥2L2(ν) ≤ lim
n→∞

inf
f∈NNB

q∗n

∥f − f∗∥2L2(ν) ≤ lim
n→∞

∥g∗n − f∗∥2L2(ν)

= lim
n→∞

∫
[0,1]d

(g∗n − f∗)2dν ≤ lim
n→∞

∥g∗n − f∗∥2∞
∫
[0,1]d

dν

= lim
n→∞

∥g∗n − f∗∥2∞ = 0.
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Now we consider the case when W → ∞ as n → ∞. Hornik [1991] shows that there exists a
sequence of MLP’s {hn}n≥0 with one hidden layer and width wn ≤ W such that ∥hn − f∗∥∞ → 0 as
n→ ∞. Denote the architecture of hn by an := (d,wn, 1). Just like before we can truncate hn to get
a network h∗n := TB ◦ hn with architecture (d,wn, 1, 1, 1).

We know that W → ∞ as n→ ∞, where W is maximum width of p. Now for each n, denote

in = arg max
1≤i≤D

pi,

where p = (d, p1, . . . , pD, 1). Now we add identity layers in front of the hidden layer of h∗n such that
h∗n has width wn at hidden layer in. We can do this by setting the weight matrices to Id and the bias
vectors to 0. Hence we have written h∗n using a network with architecture a∗n := (d, d, . . . , d, wn, 1, 1, 1).
Observe that a∗n ≤ p, where we used the assumption that D ≥ 3 and pi ≥ d + 1 for all i. By
Proposition 2.5, we obtain in the same way as before,

lim
n→∞

inf
f∈NNB

p

∥f − f∗∥2L2(ν) ≤ lim
n→∞

inf
f∈NNB

a∗
n

∥f − f∗∥2L2(ν) ≤ lim
n→∞

∥h∗n − f∗∥2L2(ν) = 0.

Notice that if W → ∞ and D → ∞ as n→ ∞, the above proof for W → ∞ still works. Hence we
have proven that

inf
f∈NNB

p

{R(f)−R(f∗)} = inf
f∈NNB

p

∥f − f∗∥2L2(ν) → 0 as n→ ∞,

under the assumption that S → ∞ as n→ ∞, which proves the result.
If f0 ∈ NNB

p , it follows that f∗ ∈ NNB
p . Therefore

ES

[
R(f̂n)−R(f∗)

]
≤ C0B5(log n)5

1

n
SD logS+2 inf

f∈NNB
p

∥f−f∗∥2L2(ν) = C0B5(log n)5
1

n
SD logS → 0

by assumption. This proves the final remark that if f0 ∈ NNB
p , the assumption that S → ∞ can be

dropped.

Under the assumption that µε = 0 and other slightly different assumptions, Theorem 3.8 has
originally been proven in Jiao et al. [2023, Theorem 4.1]. They claim that the statement follows
immediately from Yarotsky [2018, Theorem 1], which seems difficult to verify. They also state their
version of Theorem 3.8 without assuming that each layer has width at least d + 1 and p has depth
D ≥ 3. In an unpublished but often cited article on arXiv, Hanin and Sellke [2017] prove in Theorem
1 that ReLU networks of constant width w are dense in C([0, 1]d,R) only for w ≥ d + 1. This shows
that the assumption on the minimum with of d+ 1 is a necessary assumption which has been left out
by Jiao et al. [2023, Theorem 4.1].

Our assumption that D ≥ 3, is purely one of convenience. It is used in the proof only to ensure
the approximating network is bounded by B. Without this assumption it is still true that the network
is bounded by B + η for some small η > 0, since the network approximates f∗ with maximum error η
and f∗ is bounded by B.

Remember from Lemma 2.7 that for the square loss we have f∗ = f0+µε. Theorem 3.8 shows that
the ERM f̂n converges to f∗ = f0 + µε in expectation in L2(ν) if ε is sub-exponential. If one assumes
the contamination model introduced in Section 2.6, it clearly holds that µε = αµoutl, where α is the
mixture rate and µoutl is the expectation of the outlier density.
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In Section 3.1 it is shown that a normal distribution is sub-exponential. Furthermore, if the outlier
density is sub-exponential, ε is sub-exponential as a mixture of sub-exponential random variables [see
Proposition 3.3]. Hence by Theorem 3.8,

f̂n → f0 + αµoutl in L
2(ν) in expectation.

First of all, if there are no outliers, that is α = 0, the ERM f̂n is a consistent estimator for f0.
Whenever there are outliers, but the outlier density is sub-exponential and has zero mean, f̂n is still
a consistent estimator for f0 despite the presence of outliers. The ERM is robust against mean zero,
sub-exponential outliers. An example of a mean zero, sub-exponential outlier density is a normal
distribution with higher variance and zero mean.

At the same time, if one has sub-exponential outliers that do not have zero mean, the ERM f̂n will
be biased. The larger the proportion of outliers, that is the mixture rate α, the larger the bias will
become. Examples of such distributions are exponential, gamma and χ2

n distributions.

4 Square loss with general error density.

In Lemma 3.7 and Theorem 3.8 from the previous section we have seen error bounds and convergence
results for the square loss under the assumption that the error ε is sub-exponential. In this section we
prove that similar results still hold for any distribution for ε as long as E[|ε|2+δ] <∞ for some δ > 0.

4.1 Generalized square loss prediction error bounds and convergence.

The following is a generalized version of Lemma 3.7.

Lemma 4.1. Fix δ > 0 and consider the regression model in (1.1). Assume that E[|εi|2+δ] < ∞ and

∥f0∥∞ ≤ B − |µε| for B ≥ 1 and µε := E[ε1]. Let f̂n ∈ argminf∈NNB
p
Rn(f) denote the empirical risk

minimizer (ERM) and L(a, y) = (a− y)2 the square loss. Then, for all n ≥ 1,

ES

[
R(f∗)− 2Rn(f̂n) +R(f̂n)

]
≤ c0n

− δ
4+δB4 logNn

(
n−1, ∥ · ∥∞,NNB

p

)
,

for some constant c0 > 0 independent of n, d,D,W,U ,S and B. Furthermore, for n ≥ Pdim(NNB
p ),

we have

ES

[
R(f̂n)−R(f∗)

]
= ES∥f̂n − f∗∥2L2(ν)

≤ C0

(
log n

n

) δ
4+δ

SDB5 logS + 2 inf
f∈NNB

p

{R(f)−R(f∗)}

≤ C0

(
log n

n

) δ
4+δ

SDB5 logS + 2 inf
f∈NNB

p

∥f − f∗∥2L2(ν),

where C0 > 0 is some constant independent of n, d,D,W,U ,S and B.

Proof. The proof is quite long, therefore the proof is given in its own section [see Section 4.2].

One should first note that the remark given about Lemma 3.7 still for this lemma.
Assuming that f0 ∈ NNB

p , which implies f∗ ∈ NNB
p , Lemma 3.7 gives a convergence rate of

O
(

(logn)5

n

)
for sub-exponential ε. Since any sub-exponential random variable has all moments finite,

one could also apply above lemma with ”δ = ∞”. This would result in a convergence rate of O
(

logn
n

)
,

which is similar to the rate given by Lemma 3.7.
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In order to properly define the risk R, that is, the risk is finite, one needs to assume E[|ε|2] < ∞.
So if ε has second finite moment, one can define the risk. If ε has slightly more moments finite, that

is, E[|ε|2+δ] < ∞ for some δ > 0, we obtain convergence of the ERM f̂n of order O

((
logn
n

) δ
4+δ

)
when assuming f0 ∈ NNB

p . This shows that Lemma 4.1 gives convergence in the mildest possible
assumption ε. Also observe that the larger δ, the faster the convergence will be, which is natural.

Using above lemma, Theorem 3.8 has a generalized formulation where ε is assumed to have (2+δ)-
th finite moment for some δ > 0 instead of being sub-exponential. This generalization is given in the
following theorem.

Theorem 4.2 (consistency of ERM under square loss). Fix δ > 0 and consider the regression model
from (1.1). Assume E[|εi|2+δ] < ∞, f0 is continuous on [0, 1]d and ∥f0∥∞ ≤ B − |µε| with B ≥ 1

and µε := E[ε1]. Let f̂n ∈ argminf∈NNB
p
Rn(f) denote the empirical risk minimizer over NNB

p and

L(a, y) = (a− y)2 the square loss. Also assume that each layer of p has at least width d+ 1 and p has
depth D ≥ 3. If the architecture p satisfies,

S → ∞ and

(
log n

n

) δ
4+δ

SDB5 logS → 0 as n→ ∞.

Then, the prediction error of the ERM f̂n satisfies

lim
n→∞

ES

[
R(f̂n)−R(f∗)

]
= lim

n→∞
ES

[
∥f̂n − f∗∥2L2(ν)

]
= 0.

Furthermore, if f0 ∈ NNB
p , the condition that S → ∞ can be dropped.

Proof. The proof is exactly the same is the proof of Theorem 3.8, while replacing Lemma 3.7 with
Lemma 4.1.

Just like we remarked after Theorem 3.8, if the contamination model from Section 2.6 is assumed
for ε, we have, under the assumption that the outlier density has (2 + δ)-th finite moment,

f̂n → f0 + αµoutl in L
2(ν) in expectation.

Where α is the proportion of outliers, or the mixture rate, and µoutl is the expectation of the outlier
density.

Many outlier densities used to model outliers are not sub-exponential. Hence Theorem 3.8 is not
applicable. However, our generalization assumes much less about the outlier density. Hence outlier
densities like a t-distribution or a Fréchet distribution can also be used with some conditions on their
parameters [see Table 3].

Theorem 4.2 shows that when there are no outliers, f̂n is a consistent estimator for f0. Conversely,
when there are outliers with non-zero mean, f̂n will be a biased estimator for f0 with bias αµoutl. If
there are outliers, but with zero mean, f̂n is still a consistent estimator for f0. This shows that f̂n is
robust against zero mean outliers, such as outliers following a t-distribution.

4.2 Proof of Lemma 4.1.

In the following we present the proof of Lemma 4.1. The proof is an adaptation of the proof of Lemma
3.2 from Jiao et al. [2023]. In their work they assumed ε to be sub-exponential. We work under the
milder assumption that E

[
|εi|2+δ

]
< ∞. This change in assumption results in a different bound in

the proof. However, many parts are still the same because they do not require any assumption on ε.
For these parts, we have provided more details than Jiao et al. [2023] did to make the proof easier to
follow. Let us first consider the case when E[ε] = 0.
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Let S := {Zi}ni=1 := {(Xi, Yi)}ni=1 be a random sample of i.i.d. observations with distribution Z =
(X,Y ) and S′ := {Z ′

i}ni=1 := {(X ′
i, Y

′
i )}ni=1 be another sample of i.i.d. observations with distribution

Z that is independent of S. Define

g(f, Zi) := (f(Xi)− Yi)
2 − (f0(Xi)− Yi)

2

for any f and observation Zi. Now

ES

[
R(f0)− 2Rn(f̂n) +R(f̂n)

]
= ES

[
EZ(Y − f0(X))2 − 2

1

n

n∑
i=1

(Yi − f̂n(Xi))
2 + EZ(Y − f̂n(X))2

]

= ES

[
1

n

n∑
i=1

{
−2g(f̂n, Zi)− 2(f0(Xi)− Yi)

2
}
+ EZ(Y − f0(X))2 + EZ(Y − f̂n(X))2

]
,

since Z ′
i is independent from S and Z ′

i has distribution Z we have

= ES

[
1

n

n∑
i=1

{
−2g(f̂n, Zi)− 2(f0(Xi)− Yi)

2 + EZ′
i

(
(Y ′

i − f0(X
′
i))

2 + (Y ′
i − f̂n(X

′
i))

2
)}]

,

taking expectation with respect to the whole sample S′ instead of just Z ′
i gives

= ES

[
1

n

n∑
i=1

{
−2g(f̂n, Zi)− 2(f0(Xi)− Yi)

2 + ES′

(
g(f̂n, Z

′
i) + 2(Y ′

i − f0(X
′
i))

2
)}]

= ES

[
1

n

n∑
i=1

{
−2g(f̂n, Zi) + ES′g(f̂n, Z

′
i)
}]

+
1

n

n∑
i=1

(
−2ES(f0(Xi)− Yi)

2 + 2ES′(f0(X
′
i)− Y ′

i )
2
)

= ES

[
1

n

n∑
i=1

{
−2g(f̂n, Zi) + ES′g(f̂n, Z

′
i)
}]

since S and S′ are independent.

Thus we have derived that

ES

[
R(f0)− 2Rn(f̂n) +R(f̂n)

]
= ES

[
1

n

n∑
i=1

{
−2g(f̂n, Zi) + ES′g(f̂n, Z

′
i)
}]

. (4.1)

Using Lemma 2.8 we can bound the prediction error with

ES

[
∥f̂n − f0∥2L2(ν)

]
≤ ES

[
R(f0)− 2Rn(f̂n) +R(f̂n)

]
+ 2 inf

f∈NNB
p

∥f̂n − f0∥2L2(ν). (4.2)

The remaining part of the proof focuses on giving an upper bound for ES

[
R(f0)− 2Rn(f̂n) +R(f̂n)

]
.

For a shorter notation define

G(f, Zi) := ES′ [g(f, Z ′
i)]− 2g(f, Zi) for all i and f ∈ NNB

p .

Observe that ES

[
R(f0)− 2Rn(f̂n) +R(f̂n)

]
= ES

[
1
n

∑n
i=1G(f̂n, Zi)

]
by above definition and (4.1).

Let βn ≥ B ≥ 1 be a positive constant depending on the sample size n. Define the truncation
operator Tβn at level βn by

Tβn
x =

{
x if |x| ≤ βn

βn · sign(x) if |x| > βn
for all x ∈ R.

Set fβn
(x) := E

[
Tβn

Y
∣∣X = x

]
for all x as the regression function of the truncated Y . In similar

fashion as before we define

gβn(f, Zi) := (f(Xi)− TβnYi)
2 − (fβn(Xi)− TβnYi)

2 and
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Gβn
(f, Zi) := ES′ [gβn

(f, Z ′
i)]− 2gβn

(f, Zi) for all i and f ∈ NNB
p .

Then for any f ∈ NNB
p and any i we have∣∣g(f, Zi)− gβn

(f, Zi)
∣∣ = ∣∣(f(Xi)− Yi)

2 − (f0(Xi)− Yi)
2 − (f(Xi)− Tβn

Yi)
2 + (fβn

(Xi)− Tβn
Yi)

2
∣∣

=
∣∣(fβn(Xi)− TβnYi)

2 − 2f(Xi)Yi − f0(Xi)
2 + 2f0(Xi)Yi + 2f(Xi)TβnYi − (TβnYi)

2
∣∣

=
∣∣(fβn

(Xi)− Tβn
Yi)

2 − f0(Xi)
2 − 2Yi(f(Xi)− f0(Xi)) + 2f(Xi)Tβn

Yi − (Tβn
Yi)

2
∣∣

=
∣∣(fβn

(Xi)− Tβn
Yi)

2 − (f0(Xi)− Tβn
Yi)

2 − 2f0(Xi)Tβn
Yi − 2Yi(f(Xi)− f0(Xi)) + 2f(Xi)Tβn

Yi
∣∣

=
∣∣(fβn(Xi)− TβnYi)

2 − (f0(Xi)− TβnYi)
2 + (f(Xi)− f0(Xi)) · 2TβnYi − 2Yi(f(Xi)− f0(Xi))

∣∣
=
∣∣(fβn

(Xi)− Tβn
Yi)

2 − (f0(Xi)− Tβn
Yi)

2 + 2(Tβn
Yi − Yi)(f(Xi)− f0(Xi))

∣∣
≤
∣∣(fβn(Xi)− TβnYi)

2 − (f0(Xi)− TβnYi)
2
∣∣+ 2

∣∣f(Xi)− f0(Xi)
∣∣ · ∣∣TβnYi − Yi

∣∣.
Since ∥f0∥∞ ≤ B and ∥f∥∞ ≤ B we get

∣∣f(Xi)− f0(Xi)
∣∣ ≤ ∥f0∥∞ + ∥f∥∞ ≤ 2B. Thus

≤
∣∣(fβn

(Xi)− Tβn
Yi)

2 − (f0(Xi)− Tβn
Yi)

2
∣∣+ 4B

∣∣Tβn
Yi − Yi

∣∣
=
∣∣fβn

(Xi)
2 − 2fβn

(Xi)Tβn
Yi − f0(Xi)

2 + 2f0(Xi)Tβn
Yi
∣∣+ 4B

∣∣Tβn
Yi − Yi

∣∣
=
∣∣(fβn

(Xi) + f0(Xi))(fβn
(Xi)− f0(Xi))− 2Tβn

Yi(fβn
(Xi)− f0(Xi))

∣∣+ 4B
∣∣Tβn

Yi − Yi
∣∣

≤
∣∣fβn

(Xi)− f0(Xi)
∣∣ · ∣∣fβn

(Xi) + f0(Xi)− 2Tβn
Yi
∣∣+ 4B

∣∣Tβn
Yi − Yi

∣∣.
Note that fβn

(Xi) ≤ βn, f0(Xi) ≤ B ≤ βn and Tβn
Yi ≤ βn. Therefore∣∣fβn

(Xi) + f0(Xi)− 2Tβn
Yi
∣∣ ≤ 4βn,

which implies ∣∣g(f, Zi)− gβn(f, Zi)
∣∣ ≤ 4βn

∣∣fβn(Xi)− f0(Xi)
∣∣+ 4B

∣∣TβnYi − Yi
∣∣.

Notice that ∣∣Tβn
Yi − Yi

∣∣ = {0 if |Yi| ≤ βn∣∣βn · sign(Yi)− Yi
∣∣ if |Yi| > βn

.

if Yi > βn then
∣∣βn·sign(Yi)−Yi∣∣ = Yi−βn ≤ |Yi|. Similarly

∣∣βn·sign(Yi)−Yi∣∣ = βn−Yi = |Yi|−βn ≤ |Yi|
whenever Yi < −βn. Thus it holds in general that

∣∣Tβn
Yi − Yi

∣∣ ≤ {0 if |Yi| ≤ βn

|Yi| if |Yi| > βn
,

or written more simply as
∣∣TβnYi − Yi

∣∣ ≤ |Yi|1{|Yi|>βn}. It follows that∣∣g(f, Zi)− gβn
(f, Zi)

∣∣ ≤ 4βn
∣∣fβn

(Xi)− f0(Xi)
∣∣+ 4B|Yi|1{|Yi|>βn}.

By conditional Jensen’s inequality:∣∣fβn(Xi)− f0(Xi)
∣∣ = ∣∣E [TβnYi

∣∣X = Xi

]
− E

[
Yi
∣∣X = Xi

] ∣∣
=
∣∣E [TβnYi − Yi

∣∣X = Xi

] ∣∣
≤ E

[∣∣TβnYi − Yi
∣∣ ∣∣X = Xi

]
,

thus ES

(∣∣fβn
(Xi)− f0(Xi)

∣∣) ≤ ES

(
E
[∣∣Tβn

Yi − Yi
∣∣ ∣∣X = Xi

])
= ES

(∣∣Tβn
Yi − Yi

∣∣). Combining this
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with the above result yields

ES [g(f, Zi)] = ES [g(f, Zi)− gβn
(f, Zi) + gβn

(f, Zi)]

≤ ES

[∣∣g(f, Zi)− gβn
(f, Zi)

∣∣+ gβn
(f, Zi)

]
≤ ES

[
4βn

∣∣fβn
(Xi)− f0(Xi)

∣∣+ 4B|Yi|1{|Yi|>βn} + gβn
(f, Zi)

]
≤ ES [gβn

(f, Zi)] + 4βnES

(∣∣fβn
(Xi)− f0(Xi)

∣∣)+ 4βnES

[
|Yi|1{|Yi|>βn}

]
≤ ES [gβn

(f, Zi)] + 8βnES

[
|Yi|1{|Yi|>βn}

]
≤ ES [gβn

(f, Zi)] + 8βnES

[
|Yi|

|Yi|1+δ

β1+δ
n

]
= ES [gβn(f, Zi)] + 8

E
[
|Yi|2+δ

]
βδ
n

(4.3)

Note that f0 being continuous implies that f0(Xi) is bounded and therefore sub-exponential by
Corollary 3.6.1 since Xi is bounded. Now for all i

E
[
|Yi|2+δ

]
= E

[
|f0(Xi) + εi|2+δ

]
≤ 21+δ

(
E
[
|f0(Xi)|2+δ

]
+ E

[
|εi|2+δ

])
<∞,

by the Cr-inequality and using the fact that f0(Xi) is sub-exponential and E[|εi|2+δ] <∞ by assump-
tion. Analogously it holds that

ES [gβn
(f, Zi)] ≤ ES

[∣∣g(f, Zi)− gβn
(f, Zi)

∣∣+ g(f, Zi)
]

≤ ES [g(f, Zi)] + 8βnES

[
|Yi|1{|Yi|>βn}

]
≤ ES [g(f, Zi)] + 8

E
[
|Yi|2+δ

]
βδ
n

.

Using this in combination with (4.3) we obtain that

ES

[
R(f0)− 2Rn(f̂n) +R(f̂n)

]
= ES

[
1

n

n∑
i=1

G(f̂n, Zi)

]

= ES

[
1

n

n∑
i=1

{
ES′g(f̂n, Z

′
i)− 2g(f̂n, Zi)

}]

=
1

n

n∑
i=1

{
ESES′

[
g(f̂n, Z

′
i)
]
− 2ES

[
g(f̂n, Zi)

]}
≤ 1

n

n∑
i=1

{
ESES′

[
gβn

(f̂n, Z
′
i)
]
+ 8

E
[
|Yi|2+δ

]
βδ
n

− 2ES

[
g(f̂n, Zi)

]}

≤ 1

n

n∑
i=1

ESES′

[
gβn

(f̂n, Z
′
i)
]
+ 8

E
[
|Yi|2+δ

]
βδ
n

− 2ES

[
gβn

(f̂n, Zi)
]

+ 16
E
[
|Yi|2+δ

]
βδ
n

= ES

[
1

n

n∑
i=1

Gβn
(f̂n, Zi)

]
+ 24β−δ

n E
[
|Yi|2+δ

]
= ES

[
1

n

n∑
i=1

Gβn
(f̂n, Zi)

]
+ c1β

−δ
n , (4.4)

where c1 := 24E
[
|Yi|2+δ

]
is a constant not depending on βn and n.
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Observing that for any f ∈ NNB
p :

1

n

n∑
i=1

Gβn
(f, Zi) =

1

n

n∑
i=1

(ES′ [gβn
(f, Z ′

i)]− 2gβn
(f, Zi))

=
1

n

n∑
i=1

ES′ [gβn
(f, Z ′

i)]−
2

n

n∑
i=1

gβn
(f, Zi)

= ES′ [gβn(f, Z
′
1)]−

2

n

n∑
i=1

gβn(f, Zi),

it follows that the tail of 1
n

∑n
i=1Gβn

(f̂n, Zi) is bounded as

P

{
1

n

n∑
i=1

Gβn(f̂n, Zi) > t

}

≤ P

{
∃f ∈ NNB

p :
1

n

n∑
i=1

Gβn
(f̂n, Zi) > t

}

= P

{
∃f ∈ NNB

p : EZ′
1
[gβn

(f, Z ′
1)]−

2

n

n∑
i=1

gβn
(f, Zi) > t

}

= P
{
∃f ∈ NNB

p : E
[
(f(X)− Tβn

Y )2 − (fβn
(X)− Tβn

Y )2
]
− 2

n

n∑
i=1

{
(f(Xi)− Tβn

Yi)
2 − (fβn

(Xi)

− Tβn
Yi)

2

}
> t

}
= P

{
∃f ∈ NNB

p :
1

2
E|f(X)− TβnY |2 − 1

2
E|fβn(X)− TβnY |2 − 1

n

n∑
i=1

{
(f(Xi)− TβnYi)

2 − (fβn(Xi)

− TβnYi)
2

}
>

1

2
t

}
= P

{
∃f ∈ NNB

p : E|f(X)− TβnY |2 − E|fβn(X)− TβnY |2 − 1

n

n∑
i=1

{
(f(Xi)− TβnYi)

2 − (fβn(Xi)

− Tβn
Yi)

2

}
>

1

2

(
t+ E|f(X)− Tβn

Y |2 − E|fβn
(X)− Tβn

Y |2
)}

= (∗).

Since |TβnY | ≤ βn, βn ≥ 1 and ∥f∥∞ ≤ B ≤ βn for all f ∈ NNB
p we can apply Theorem 11.4 from

Györfi et al. [2002, see p. 201] with ε = 1
2 and α = β = t

2 so that

(∗) ≤ 14Nn

(
t

80βn
, ∥ · ∥∞,NNB

p

)
exp

(
−

1
4 · 1

2 · 1
2 tn

214 · 3
2β

4
n

)
= 14Nn

(
t

80βn
, ∥ · ∥∞,NNB

p

)
exp

(
− tn

5136β4
n

)
.

Using the fact that for any real-valued random variable X we can write

E[X] =

∫ ∞

0

1− FX(x)dx−
∫ 0

−∞
FX(x)dx ≤

∫ ∞

0

1− FX(x)dx,
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we obtain for any an > 0 that:

ES

[
1

n

n∑
i=1

Gβn
(f̂n, Zi)

]
≤
∫ ∞

0

P

{
1

n

n∑
i=1

Gβn
(f̂n, Zi) > t

}
dt

≤
∫ an

0

1dt+

∫ ∞

an

P

{
1

n

n∑
i=1

Gβn
(f̂n, Zi) > t

}
dt

≤ an +

∫ ∞

an

14Nn

(
t

80βn
, ∥ · ∥∞,NNB

p

)
exp

(
− tn

5136β4
n

)
dt.

Observe that for a, b ∈ R>0 with a ≥ b it holds that Nn(a, ∥·∥∞,NNB
p ) ≤ Nn(b, ∥·∥∞,NNB

p ) since
there are less balls needed to cover the space when the radius of the balls is increased. Therefore

ES

[
1

n

n∑
i=1

Gβn
(f̂n, Zi)

]
≤ an +

∫ ∞

an

14Nn

(
t

80βn
, ∥ · ∥∞,NNB

p

)
exp

(
− tn

5136β4
n

)
dt

≤ an +

∫ ∞

an

14Nn

(
an

80βn
, ∥ · ∥∞,NNB

p

)
exp

(
− tn

5136β4
n

)
dt

=an + 14Nn

(
an

80βn
, ∥ · ∥∞,NNB

p

)
exp

(
− ann

5136β4
n

)
5136β4

n

n
.

Choose an =
5136β4

n

n log(14Nn(
1
n , ∥ · ∥∞,NNB

p )). Note that

an
80βn

=
5136β4

n

n
log(14Nn(

1

n
, ∥ · ∥∞,NNB

p ))
1

80βn
= log(14Nn(

1

n
, ∥ · ∥∞,NNB

p ))
321

5
β3
n

1

n

≥ log(14)
321

5

1

n
≥ 1

n
,

and therefore Nn(
1
n , ∥ · ∥∞,NNB

p ) ≥ Nn(
an

80βn
, ∥ · ∥∞,NNB

p ). From this we derive

ES

[
1

n

n∑
i=1

Gβn
(f̂n, Zi)

]
≤ log(14Nn(

1

n
, ∥ · ∥∞,NNB

p ))
5136β4

n

n

+ 14Nn(
1

n
, ∥ · ∥∞,NNB

p ) exp

(
− log(14Nn(

1

n
, ∥ · ∥∞,NNB

p ))

)
5136β4

n

n

=
5136β4

n

n

(
log(14Nn(

1

n
, ∥ · ∥∞,NNB

p )) + 1

)
.

Combining this with (4.4) we obtain that

ES

[
R(f0)− 2Rn(f̂n) +R(f̂n)

]
≤ ES

[
1

n

n∑
i=1

Gβn
(f̂n, Zi)

]
+ c1β

−δ
n

≤ 5136β4
n

n

(
log(14Nn(

1

n
, ∥ · ∥∞,NNB

p )) + 1

)
+ c1β

−δ
n .

(4.5)
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Choose βn = Bn
1

4+δ ≥ B, then

ES

[
R(f0)− 2Rn(f̂n) +R(f̂n)

]
≤ 5136B4n−

δ
4+δ

(
log(14Nn(

1

n
, ∥ · ∥∞,NNB

p )) + 1

)
+ c1B−δn−

δ
4+δ

= n−
δ

4+δ

[
5136B4

(
log(14Nn(

1

n
, ∥ · ∥∞,NNB

p )) + 1

)
+ c1B−δ

]
≤ n−

δ
4+δ

[
5136B4

(
log(14Nn(

1

n
, ∥ · ∥∞,NNB

p )) + 1

)
+ c1

]
.

≤ n−
δ

4+δ

[
2 · 5136B4 log(14Nn(

1

n
, ∥ · ∥∞,NNB

p )) + c1

]
Now observe that for any positive, strictly increasing function h : N → R, we have

k1h(n) + k2 = k1h(n) + h(1)
k2
h(1)

≤ h(n)

(
k1 +

k2
h(1)

)
= Kh(n),

for any constants k1 and k2 and K := k1 +
k2

h(1) . Applying this to above inequality results in

ES

[
R(f0)− 2Rn(f̂n) +R(f̂n)

]
≤ c0n

− δ
4+δB4 logNn

(
n−1, ∥ · ∥∞,NNB

p

)
,

for some constant c0 > 0. This proves the first part of the lemma for E[ε] = 0.

Lastly, the uniform covering number can be bounded by the pseudo dimension Pdim(NNB
p ) of

NNB
p . Which in turn can be bounded by properties of the function class NNB

p . By Theorem 12.2 in

Anthony and Bartlett [1999], for any n ≥ Pdim(NNB
p ),

Nn(n
−1, ∥·∥∞,NNB

p ) ≤
(

enB
n−1Pdim(NNB

p )

)Pdim(NNB
p )

=

(
en2B

Pdim(NNB
p )

)Pdim(NNB
p )

.

Moreover, by Bartlett et al. [2019], there exists a constant C > 0 such that

Pdim(NNB
p ) ≤ C · SD log(S).

Using the fact that Pdim(NNB
p ) ≥ 1, we obtain

logNn(n
−1, ∥·∥∞,NNB

p ) ≤ Pdim(NNB
p )
(
log(eBn2)− log Pdim(NNB

p )
)

≤ C · SD log(S)(log(eBn2))
= C · SD log(S) (2 log(n) + log(e) + log(B)) .

It is easy to check that 2 log(n) + log(B) ≤ 2B log(n) for all n ≥ 1. Furthermore, clearly log(e) ≤
2B log(n). Therefore

logNn(n
−1, ∥·∥∞,NNB

p ) ≤ 4C · SD log(S)B log(n).

Combining this with (4.5) for general βn ≥ B, we obtain

ES

[
R(f0)− 2Rn(f̂n) +R(f̂n)

]
≤ 5136β4

n

n

(
log(14Nn(

1

n
, ∥ · ∥∞,NNB

p )) + 1

)
+ c1β

−δ
n

≤ 5136β4
n

n
(4C · SD log(S)B log(n) + log(14) + 1) + c1β

−δ
n

≤ 5136β4
n

n
(12C · SD log(S)B log(n)) + c1β

−δ
n .
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Choose βn = B
(

n
logn

) 1
4+δ ≥ B, then

ES

[
R(f0)− 2Rn(f̂n) +R(f̂n)

]
≤ 12C · 5136SD log(S)B5

(
n

log n

) 4
4+δ−1

+ c1B−δ

(
n

log n

) −δ
4+δ

=

(
log n

n

) δ
4+δ

[
12C · 5136SD log(S)B5 + c1

(
1

B

)δ
]

≤
(
log n

n

) δ
4+δ [

12C · 5136SD log(S)B5 + c1
]

≤
(
log n

n

) δ
4+δ [

12C · 5136SD log(S)B5 + c1SD log(S)B5
]

≤ C0

(
log n

n

) δ
4+δ

SDB5 logS, (4.6)

for some constant C0 > 0. This gives the bound on the prediction error for E[ε] = 0 when combined
with (4.2) and Lemma 2.8.

The result can be generalized to E[ε] ̸= 0 in the same way as has been done in the proof of
Theorem 3.8.

5 Error bound with Lipschitz loss.

In this section we consider a general loss function that is Lipschitz continuous [see Section 2.5]. Similar
results to the ones from Section 4 are formulated, with the goal in mind to allow for more robust
estimation of the regression function.

5.1 Lipschitz loss prediction error bounds and convergence.

Let us first formulate a result similar to Lemma 3.7 and Lemma 4.1.

Lemma 5.1. Consider the regression model in (1.1) with unknown regression function f0 and target
function f∗ defined in (2.3). Assume that the loss function is λL-Lipschitz in both its arguments,

L(x, x) = 0 for all x ∈ R, E[|ε|p] < ∞ for some p > 1 and ∥f∗∥∞ ≤ B with B ≥ 1. Let f̂n ∈
argminf∈NNB

p
Rn(f) denote the empirical risk minimizer (ERM). Then, for n ≥ 1

2Pdim(NNB
p ),

ES

[
R(f̂n)−R(f∗)

]
≤ c0

(
λLB
n1−

1
p

)
logN2n(n

−1, ∥·∥∞,NNB
p ) + 2 inf

f∈NNB
p

{R(f)−R(f∗)},

where c0 > 0 is a constant independent of n, d, λL,B,S,W and D. Furthermore,

ES

{
R(f̂n)−R(f∗)

}
≤ C0

(
log n

n1−
1
p

)
λLBDS logS + 2 inf

f∈NNB
p

{R(f)−R(f∗)} ,

where C0 > 0 is a constant independent of n, d, λL,B,S,W and D.

It is important to note that Lemma 5.1 is not a generalization of Lemma 4.1 since the square loss
is not Lipschitz continuous. Hence one cannot be stated to be better than the other by comparing
convergence rates, since the loss functions considered are different.
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Under the assumption that f∗ ∈ NNB
p , a convergence rate of O

(
logn

n
1− 1

p

)
is obtained by above

lemma. When this is not the case, the right term in the upper bound will not vanish for a fixed
architecture and one will remain with an approximation error. Observe that when ε has more moments
finite, the convergence rate becomes faster, which is natural. When all moments are finite we obtain a

rate of O
(

logn
n

)
, which agrees with the rate for the square loss in Lemma 4.1 with all moments finite.

Finally, we show a similar consistency result to Theorem 4.2.

Theorem 5.2 (consistency of ERM under Lipschitz loss). Consider the regression model in (1.1) with
unknown regression function f0. Assume that the loss function L is λL-Lipschitz in both its arguments,
L(x, x) = 0 for all x ∈ R, E[|ε|p] <∞ for some p > 1 and, f∗ is continuous on [0, 1]d and ∥f∗∥∞ ≤ B
with B ≥ 1. Let f̂n ∈ argminf∈NNB

p
Rn(f) denote the empirical risk minimizer over NNB

p . Also
assume that each layer of p has at least width d + 1 and p has depth D ≥ 3. If the architecture p
satisfies,

S → ∞ and

(
log n

n1−
1
p

)
BDS logS → 0 as n→ ∞.

Then, the prediction error of the ERM f̂n satisfies

lim
n→∞

ES

[
R(f̂n)−R(f∗)

]
= 0.

Furthermore, if f∗ ∈ NNB
p , the condition that S → ∞ can be dropped.

Proof. The proof is similar to the proof of Theorem 3.8. The big difference is that we cannot write
R(f) − R(f∗) as a norm, which was possible for the square loss. Luckily, one can upper bound the
difference by the L1 norm. For any f ,

R(f)−R(f∗) = EZ [L(f(X), Y )− L(f∗(X), Y )] ≤ EZ

[∣∣L(f(X), Y )− L(f∗(X), Y )
∣∣]

≤ EX

[
λL
∣∣f(X)− f∗(X)

∣∣] =: λL∥f − f∗∥L1(ν).

Hence it follows that

inf
f∈NNB

p

{R(f)−R(f∗)} ≤ λL inf
f∈NNB

p

∥f − f∗∥L1(ν).

Above inequality was originally stated by Shen et al. [2021, Lemma 3.2].
The rest of the proof is exactly the same as the proof of Theorem 3.8, while using the fact that

convergence in L∞ implies convergence in L1 in combination with Lemma 5.1.

By definition of f∗ any estimator f will have a risk greater or equal to R(f∗). Theorem 5.2 shows

that the ERM f̂n reaches this minimal risk in the limit under suitable conditions. In the case of the
square loss, the excess risk could be expressed as a distance between f and f∗, which made the results
much stronger. For this general loss function this need not be the case, this makes the interpretation
of Theorem 5.2 slightly less strong than in Theorem 4.2.

The original goal of regression was to estimate f0. For the square loss it was known that f∗ = f0+µε.
For our general Lipschitz loss function, we know by Lemma 2.9 that f0 = f∗ for all loss functions,
excluding the quantile loss, introduced in Section 2.6, whenever ε has a symmetric density with zero
mean. Hence the ERM is a consistent estimator for f0 under symmetric, zero mean outliers, such as
those coming from a t-distribution. In general, for our general Lipschitz continuous loss function, the
relation between f0 and f∗ remains unknown for now, which makes it difficult to say how much better
using a different loss than the square one, really is, when non-symmetric outliers are present.
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5.2 Proof of Lemma 5.1.

In this section we present the proof of Lemma 5.1. The original proof was given by Shen et al. [2021]
in Lemma 3.1. It should be noted that the proof is very similar to the proof of Lemma 4.1.

Let S = {(Xi, Yi)}ni=1 be a sample of i.i.d. observations with distribution Z := (X,Y ). Also let
S′ = {(X ′

i, Y
′
i )}ni=1 be another sample independent of S and denote Z ′

i := (X ′
i, Y

′
i ) and Zi := (Xi, Yi).

Define
g(f, Zi) := L(f(Xi), Yi)− L(f∗(Xi), Yi)

for any f and observation Zi. Note that the ERM f̂n depends on the sample S, and its excess risk is

R(f̂n)−R(f∗) = EZ

[
g(f̂n, Z)

]
= ES′

[
1

n

n∑
i=1

g(f̂n, Z
′
i)

]
.

Hence its prediction error equals

E
{
R(f̂n)−R(f∗)

}
= ESES′

[
1

n

n∑
i=1

g(f̂n, Z
′
i)

]
. (5.1)

Define the best in class estimator f∗φ as the estimator in the function class NNB
p with minimal L

risk:
f∗φ = arg min

f∈NNB
p

R(f).

By the definition of the ERM, we have

ES

[
1

n

n∑
i=1

g(f̂n, Zi)

]
= ES

[
1

n

n∑
i=1

L(f̂n, Zi)

]
− ES

[
1

n

n∑
i=1

L(f∗, Zi)

]

≤ ES

[
1

n

n∑
i=1

L(f∗φ, Zi)

]
− ES

[
1

n

n∑
i=1

L(f∗, Zi)

]
= ES

[
1

n

n∑
i=1

g(f∗φ, Zi)

]
. (5.2)

Multiplying both sides of (5.2) by 2 and adding (5.1) gives

2ES

[
1

n

n∑
i=1

g(f̂n, Zi)

]
+ ES

{
R(f̂n)−R(f∗)

}
≤ 2ES

[
1

n

n∑
i=1

g(f∗φ, Zi)

]
+ ESES′

[
1

n

n∑
i=1

g(f̂n, Z
′
i)

]
,

so

ES

{
R(f̂n)−R(f∗)

}
≤ ES

[
1

n

n∑
i=1

{
ES′ [g(f̂n, Z

′
i)]− 2g(f̂n, Zi)

}]
+ 2ES

[
1

n

n∑
i=1

g(f∗φ, Zi)

]

= ES

[
1

n

n∑
i=1

{
ES′ [g(f̂n, Z

′
i)]− 2g(f̂n, Zi)

}]
+ 2

[
1

n

n∑
i=1

R(f∗φ)−R(f∗)

]

= ES

[
1

n

n∑
i=1

{
ES′ [g(f̂n, Z

′
i)]− 2g(f̂n, Zi)

}]
+ 2

{
R(f∗φ)−R(f∗)

}
. (5.3)

It is seen that the prediction error is upper bounded by the sum of an expectation of a stochastic term
and an approximation error.

Next, we will focus on giving an upper bound of the first term on right-hand side of (5.3), and
handle it with truncation. In the following, for ease of presentation, write

G(f, Zi) := ES′ [g(f, Z ′
i)]− 2g(f, Zi) for any f ∈ NNB

p .
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Observe that (5.3) can be written as

ES

{
R(f̂n)−R(f∗)

}
≤ ES

[
1

n

n∑
i=1

G(f̂n, Zi)

]
+ 2

{
R(f∗φ)−R(f∗)

}
. (5.4)

Given a δ-uniform covering of NNB
p , we denote the centers of the balls by fj for j = 1, . . . ,N2n,

where N2n := N2n(δ, ∥ · ∥∞,NNB
p ) is the uniform covering number with radius δ < B under the

norm ∥ · ∥∞ defined in (2.4). Notice the 2n because we want to cover with respect to both samples
S and S′ simultaneously. By definition of the covering number, there exists a random j∗ such that

∥f̂n(Xi)−fj∗(Xi)∥∞ ≤ δ and ∥f̂n(X ′
i)−fj∗(X ′

i)∥∞ ≤ δ for any (X1, . . . , Xn, X
′
1, . . . , X

′
n) ∈ ([0, 1]d)

2n
.

Hence for any i = 1, . . . , n,∣∣g(f̂n, Zi)− g(fj∗ , Zi)
∣∣ = ∣∣L(f̂n(Xi), Yi)− L(fj∗(Xi), Yi)

∣∣
≤ λL

∣∣f̂n(Xi)− fj∗(Xi)
∣∣ ≤ λLδ,

and

1

n

n∑
i=1

ES [g(f̂n, Zi)] =
1

n

n∑
i=1

ES [g(fj∗ , Zi)] +
1

n

n∑
i=1

ES [g(f̂n, Zi)− g(fj∗ , Zi)]

≤ 1

n

n∑
i=1

ES [g(fj∗ , Zi)] +
1

n

n∑
i=1

ES

[∣∣g(f̂n, Zi)− g(fj∗ , Zi)
∣∣]

≤ 1

n

n∑
i=1

ES [g(fj∗ , Zi)] + λLδ,

where Zi can be replaced by Z ′
i since the covering covers with respect to both S and S′. Thus we have

by Jensen’s inequality,∣∣G(f̂n, Zi)−G(fj∗ , Zi)
∣∣ = ∣∣ES′ [g(f̂n, Z

′
i)]− 2g(f̂n, Zi)− ES′ [g(fj∗ , Z

′
i)] + 2g(fj∗ , Zi)

∣∣
≤
∣∣ES′ [g(f̂n, Z

′
i)]− ES′ [g(fj∗ , Z

′
i)]
∣∣+ 2

∣∣g(fj∗ , Zi)− g(f̂n, Zi)
∣∣

≤ ES′

[∣∣g(f̂n, Z ′
i)− g(fj∗ , Z

′
i)
∣∣]+ 2

∣∣g(fj∗ , Zi)− g(f̂n, Zi)
∣∣ ≤ 3λLδ,

and

ES

[
1

n

n∑
i=1

G(f̂n, Zi)

]
= ES

[
1

n

n∑
i=1

G(fj∗ , Zi)

]
+ ES

[
1

n

n∑
i=1

G(f̂n, Zi)−G(fj∗ , Zi)

]

≤ ES

[
1

n

n∑
i=1

G(fj∗ , Zi)

]
+ ES

[
1

n

n∑
i=1

∣∣G(f̂n, Zi)−G(fj∗ , Zi)
∣∣]

≤ ES

[
1

n

n∑
i=1

G(fj∗ , Zi)

]
+ 3λLδ. (5.5)

Let βn ≥ B ≥ 1 be a positive number that may depend on the sample size n. Denote Tβn
as the

truncation operator at level βn, that is,

Tβn
x =

{
x if |x| ≤ βn

βn · sign(x) if |x| > βn
for all x ∈ R.

Define the function f∗βn
: [0, 1]d → R pointwise by

f∗βn
(x) = arg min

f(x):∥f∥∞≤βn

E
[
L(f(X), Tβn

Y )
∣∣X = x

]
for any x ∈ R,
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where the minimum is taken over all measurable functions M([0, 1]d). By definition of f∗βn
and f∗, we

have for any measurable f ,

E[L(f∗βn
(Xi), Tβn

Yi)] ≤ E[L(f(Xi), Tβn
Yi)] and E[L(f∗(Xi), Yi)] ≤ E[L(f(Xi), Yi)].

For any f ∈ NNB
p and i = 1, . . . , n, set gβn(f, Zi) := L(f(Xi), TβnYi) − L(f∗βn

(Xi), TβnYi). Then
we have

E[g(f, Zi)] = E [L(f(Xi), Yi)− L(f∗(Xi), Yi)]

= E[gβn(f, Zi)] + E [L(f(Xi), Yi)− L(f∗(Xi), Yi)]

+ E
[
L(f∗βn

(Xi), TβnYi)− L(f(Xi), TβnYi)
]

= E[gβn
(f, Zi)] + E [L(f(Xi), Yi)− L(f(Xi), Tβn

Yi)]

+ E [L(f∗(Xi), Tβn
Yi)− L(f∗(Xi), Yi)]

+ E
[
L(f∗βn

(Xi), Tβn
Yi)− L(f∗(Xi), Tβn

Yi)
]

≤ E[gβn(f, Zi)] + E [L(f(Xi), Yi)− L(f(Xi), TβnYi)]

+ E [L(f∗(Xi), TβnYi)− L(f∗(Xi), Yi)]

≤ E[gβn(f, Zi)] + 2λLE
[∣∣TβnYi − Yi

∣∣] ≤ E[gβn(f, Zi)] + 2λLE
[
|Yi|1{|Yi|>βn}

]
≤ E[gβn(f, Zi)] + 2λLE

[
|Yi|

|Yi|p−1

βp−1
n

]
≤ E[gβn(f, Zi)] +

2λL

βp−1
n

E|Yi|p.

See the proof of Lemma 4.1 for more details as to why E
[∣∣TβnYi − Yi

∣∣] ≤ E
[
|Yi|1{|Yi|>βn}

]
.

By assumption, E|εi|p < ∞, hence E|Yi|p < ∞ since f0(Xi) is a bounded random variable. Simi-
larly,

E[gβn
(f, Zi)] = E[g(f, Zi)] + E[L(f∗(Xi), Yi)− L(f∗βn

(Xi), Yi)]

+ E[L(f(Xi), TβnYi)− L(f(Xi), Yi)]

+ E[L(f∗βn
(Xi), Yi)− L(f∗βn

(Xi), TβnYi)]

≤ E[g(f, Zi)] + E[L(f(Xi), Tβn
Yi)− L(f(Xi), Yi)]

+ E[L(f∗βn
(Xi), Yi)− L(f∗βn

(Xi), Tβn
Yi)]

≤ E[g(f, Zi)] +
2λL

βp−1
n

E|Yi|p.

Note that above inequalities also hold for g(f, Z ′
i) and gβn

(f, Zi). Define

Gβn(f, Zi) := ES′ [gβn(f, Z
′
i)]− 2gβn

(f, Zi)
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for any f ∈ NNB
p , then

ES

[
1

n

n∑
i=1

G(fj∗ , Zi)

]
= ES

[
1

n

n∑
i=1

{ES′ [g(fj∗ , Z
′
i)]− 2g(fj∗ , Zi)}

]

= ES

[
1

n

n∑
i=1

{ES′ [g(fj∗ , Z
′
i)]− 2g(fj∗ , Zi)}

]
+ ES

[
1

n

n∑
i=1

Gβn
(fj∗ , Zi)

]

− ES

[
1

n

n∑
i=1

{ES′ [gβn
(fj∗ , Z

′
i)]− 2gβn

(fj∗ , Zi)}

]

= ES

[
1

n

n∑
i=1

Gβn(fj∗ , Zi)

]

+ ES

[
1

n

n∑
i=1

{ES′ [g(fj∗ , Z
′
i)− gβn

(fj∗ , Z
′
i)] + 2(gβn

(fj∗ , Zi)− g(fj∗ , Zi))}

]

≤ ES

[
1

n

n∑
i=1

Gβn(fj∗ , Zi)

]
+

6λL

βp−1
n

E|Yi|p. (5.6)

Observe that for any f ∈ NNB
p , we have

|gβn(f, Zi)| = |L(f(Xi), TβnYi)− L(f∗βn
(Xi), Tβn

Yi)|
≤ λL|f(Xi)− f∗βn

(Xi)| ≤ λL(|f(Xi)|+ |f∗βn
(Xi)|)

≤ 2λLβn ≤ 4λLβn,

Furthermore,

σ2
g(f) := Var(gβn(f, Zi)) ≤ E[gβn(f, Zi)

2] ≤ E[|gβn(f, Zi)|gβn(f, Zi)]

≤ 4λLβnE[gβn
(f, Zi)],

where we used the fact that gβn
(f, Zi) ≥ 0. For each fj and any t > 0, let u := t

2 +
σ2
g(fj)

8λLβn
, by
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Bernstein’s inequality [Boucheron et al., 2013, section 2.7],

P

(
1

n

n∑
i=1

Gβn(fj , Zi) > t

)
= P

(
ES′ [gβn(fj , Z

′
1)]−

2

n

n∑
i=1

gβn(fj , Zi) > t

)

= P

(
ES′ [gβn

(fj , Z
′
1)]−

1

n

n∑
i=1

gβn
(fj , Zi) >

t

2
+

1

2
ES′ [gβn

(fj , Z
′
i)]

)

≤ P

(
ES′ [gβn

(fj , Z
′
1)]−

1

n

n∑
i=1

gβn
(fj , Zi) >

t

2
+

1

2

σ2
g(fj)

4λLβn

)

= P

(
nES′ [gβn(fj , Z

′
1)]−

n∑
i=1

gβn(fj , Zi) > nu

)

≤ exp

− n2u2

2
(
nσ2

g(fj) +
4nuλLβn

3

)


= exp

(
− nu2

(2u− t)8λLβn + 8uλLβn

3

)

≤ exp

(
− nu2

16uλLβn + 16uλLβn

3

)

= exp

(
− 1

16 + 16
3

· nu

λLβn

)
≤ exp

(
− 1

16 + 16
3

·
n 1

2 t

λLβn

)
≤ exp

(
− 1

43
· nt

λLβn

)
.

Using the union bound, above inequality leads to a tail probability bound of 1
n

∑n
i=1Gβn(fj∗ , Zi), that

is

P

(
1

n

n∑
i=1

Gβn(fj∗ , Zi) > t

)
≤ P

N2n⋃
j=1

{
1

n

n∑
i=1

Gβn(fj , Zi) > t

}
≤

N2n∑
j=1

P

(
1

n

n∑
i=1

Gβn(fj , Zi) > t

)

≤ N2n exp

(
− 1

43
· nt

λLβn

)
≤ 2N2n exp

(
− 1

43
· nt

λLβn

)
.

In the same way as we have done in the proof of Lemma 4.1, we obtain for any an > 0,

ES

[
1

n

n∑
i=1

Gβn
(fj∗ , Zi)

]
≤ an +

∫ ∞

an

P

(
1

n

n∑
i=1

Gβn
(fj∗ , Zi) > t

)
dt

≤ an +

∫ ∞

an

2N2n exp

(
− 1

43
· nt

λLβn

)
dt

= an + 2N2n exp

(
−an · n

43λLβn

)
43λLβn

n
.

Choosing an := log(2N2n) · 43λLβn

n , we have

ES

[
1

n

n∑
i=1

Gβn
(fj∗ , Zi)

]
≤ 43λLβn (1 + log(2N2n))

n
. (5.7)
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Setting δ = 1
n and βn = max(B, n

1
p ) and combining (5.4), (5.5), (5.6) and (5.7), we get

ES

{
R(f̂n)−R(f∗)

}
≤ ES

[
1

n

n∑
i=1

G(f̂n, Zi)

]
+ 2

{
R(f∗φ)−R(f∗)

}
≤ ES

[
1

n

n∑
i=1

G(fj∗ , Zi)

]
+ 3λL

1

n
+ 2

{
R(f∗φ)−R(f∗)

}
≤ ES

[
1

n

n∑
i=1

Gβn(fj∗ , Zi)

]
+

6λL

βp−1
n

E|Yi|p + 3λL
1

n
+ 2

{
R(f∗φ)−R(f∗)

}
≤ 43λLβn

n

(
log(2N2n(

1

n
, ∥ · ∥∞,NNB

p )) + 1

)
+

6λL

βp−1
n

E|Yi|p +
3λL
n

+ 2
{
R(f∗φ)−R(f∗)

}
=
λL
n

(
43βn

(
log(2N2n(

1

n
, ∥ · ∥∞,NNB

p )) + 1

)
+

6E|Yi|p

βp−1
n

· n+ 3

)
+ 2

{
R(f∗φ)−R(f∗)

}
= (∗)

Observe that βn = max(B, n
1
p ) ≤ Bn

1
p and βn ≥ n

1
p . Hence

(∗) ≤ λL
n

(
43n

1
pB
(
log(2N2n(

1

n
, ∥ · ∥∞,NNB

p )) + 1

)
+ 6E|Yi|pn

1
p + 3

)
+ 2

{
R(f∗φ)−R(f∗)

}
=
λL
n

(
n

1
p

[
43B

(
logN2n(

1

n
, ∥ · ∥∞,NNB

p ) + log 2 + 1

)
+ 6E|Yi|p

]
+ 3

)
+ 2

{
R(f∗φ)−R(f∗)

}
.

Similarly to the proof of Lemma 4.1, it follows that

(∗) ≤ λL
n

(
c1n

1
pB logN2n(

1

n
, ∥ · ∥∞,NNB

p ) + 3

)
+ 2

{
R(f∗φ)−R(f∗)

}
≤ c0

(
λLB
n1−

1
p

)
logN2n(n

−1, ∥ · ∥∞,NNB
p ) + 2 inf

f∈NNB
p

{R(f)−R(f∗)} ,

where c0 > 0 is a constant independent of n, d, λL,B,S,W and D. This proves the first result.
From the proof of Lemma 4.1, it is known that

N2n(n
−1, ∥ · ∥∞,NNB

p ) ≤ CSD log(S) log n,

for some constant C > 0. Therefore it follows that,

ES

{
R(f̂n)−R(f∗)

}
≤ C0

(
log n

n1−
1
p

)
λLBDS logS + 2 inf

f∈NNB
p

{R(f)−R(f∗)} ,

where C0 := C · c0 is a constant independent of n, d, λL,B,S,W and D.

6 Experiments.

In this section we first introduce the procedure of estimating the empirical risk minimizer from some
function class NNB

p . Then, we demonstrate the approximation of the empirical risk minimizer for
some simple, univariate regression functions. This is done under the contamination model for ε with a
few different outlier densities. Finally, the prediction error is estimated for different sample sizes, and
compared to the theoretical rate provided by Lemma 4.1 and Lemma 5.1.
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6.1 Estimating and evaluating.

In for instance, linear regression, one has an explicit solution of the parameters of the ERM as function
of the random sample S. For neural networks such an explicit formulation does not exists. Instead,
optimization algorithms have been developed based on gradient descent. We will be using the Adam
optimization algorithm [Kingma and Ba, 2017]. Throughout our simulations the TensorFlow library
[Abadi et al., 2015] in Python is used, with the standard implemented hyperparameters for the Adam
optimizer.

Consider a random sample S. The Adam optimizer randomly initializes the weights and biases of
the network and optimizes these parameters using a gradient descent based method. By this process,
an estimator f̂train ∈ NNB

p is obtained. In the training process, the empirical risk Rn is optimized for,

hence f̂train will hopefully be a good approximation of the true ERM f̂n. Throughout our experiments,
we train each network for 1500 epochs with a batch size of n

15 . For all other parameters, the standard
implemented values are used. Early stopping with a patience of 50 is also used to prevent unnecessary
compute time.

Notice that the estimator f̂train depends randomly on the initialization of the parameters. Hence
one can have a bad, or good initialization. Since the optimizer can get stuck in local minima, this is
an issue. Therefore the network is trained t ∈ N times on the same sample with different parameter
initialization, resulting in estimators f̂train,1, . . . , f̂train,t, t ∈ N. From these estimators the estimator

with the least empirical risk is chosen, denoted by f̂ ttrain. That is,

f̂ ttrain = arg min
1≤i≤t

Rn(f̂train,i).

The hope is that by training multiple networks and taking the one with minimal empirical risk, one
gets a better approximation of the ERM f̂n.

For any estimator f , possibly depending the sample S, the riskR(f) is estimated using Monte Carlo
estimation. That is, we generate (X1, Y1), . . . , (XN , YN ) with distribution Z = (X,Y ) independent of
the sample S. Then, by the law of large numbers,

R̂(f) :=
1

N

N∑
i=1

L(f(X), Y )
p→ EZ [L(f(X), Y )] = R(f).

If the second moments of R(f) are finite, one can also obtain 95% confidence intervals for the true risk
R(f) using the central limit theorem.

The empirical risk Rn and risk R depend on a chosen loss function L. In our simulations, we
consider the square loss, the Huber loss with parameter ζ = 1 and Tukey’s biweight loss with parameter
t = 4.685 [Belagiannis et al., 2015].

6.2 Fitting univariate functions.

In the subsection we estimate various regression functions f0 for the square, Huber and Tukey loss.
While using the contamination model from Section 2.6 with a mixture rate of α = 0.2, standard
observation distribution N(0, 0.02) and three different outlier densities; normally distributed N(0, 0.2),
Fréchet distributed with λ = 3 and t-distribution with ν = 3. The distribution used for X is a uniform
distribution U(0, 1).

The regression functions to be estimated are

f0(x) = x,

f0(x) = x2,

f0(x) =
1

2
(1 + sin(6πx)) ,
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for any x ∈ [0, 1]. Observe that above functions have range [0, 1].
Throughout this subsection, the network architecture will be fixed at

p = (1, 50, 100, 200, 200, 200, 100, 50, 1).

For each outlier distribution, a sample S is generated with sample size n = 400. Then, for a given loss
function, f̂train,1, . . . , f̂train,30 are obtained by training the networks. Again, the estimator f̂30train with

the minimum empirical risk is used as our approximation for the ERM f̂n, that is,

f̂30train = arg min
1≤i≤30

Rn(f̂train,i).

In Fig. 6.1, the samples and ERM estimates are displayed for the regression function f0(x) = x.
For the normal outliers, which are relatively well behaved, all loss functions perform very well for such
a simple regression function. For the t-distributed outliers, we know that the ERM is a consistent
estimator for f0, which we see in Fig. 6.1, though some error is made due to the noise. Finally, for the
Fréchet outliers, it can be clearly seen that all loss functions result in a biased ERM. For the square
loss it was already known that a bias is created when non-zero mean outliers are present. Do note that
the bias of the Huber and Tukey loss is slightly smaller than the bias of the square loss.

In Fig. 6.2, the same conclusions can be made as from Fig. 6.1. Though one should note that, with
the Fréchet outliers, the larger bias of the square loss compared to the Tukey and Huber loss is even
clearer.

Finally, in Fig. 6.3, a more complicated regression function has been used. In the case of well
behaved outliers, that is, N(0, 0.2) outliers, all loss functions seem to result in a good approximation
of the regression function. When more extreme outliers are introduced, as is the case with t(3) and
Fréchet(3) outliers, the estimation algorithm itself seems to get unstable. This can by seen by the
fact that the square loss results in an almost straight line, which is clearly not equal to the empirical
risk minimizer. This highlights that even though the ERM has nice theoretical properties, it can be
difficult to well approximate the ERM even in quite simple circumstances.
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Figure 6.1: On the top row, three scatterplots are shown. Each sample, with sample size n = 400, has
been generated with the relation Yi = f0(Xi) + εi, where Xi ∼ U(0, 1), f0(x) = x and εi a mixture
between N(0, 0.02) and the given outlier distribution with mixture rate α = 0.2. Below, for three loss
functions, the ERM has been estimated using the sample above it and displayed in black, along with
the true regression function f0 in red.
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Figure 6.2: On the top row, three scatterplots are shown. Each sample, with sample size n = 400, has
been generated with the relation Yi = f0(Xi) + εi, where Xi ∼ U(0, 1), f0(x) = x2 and εi a mixture
between N(0, 0.02) and the given outlier distribution with mixture rate α = 0.2. Below, for three loss
functions, the ERM has been estimated using the sample above it and displayed in black, along with
the true regression function f0 in red.
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Figure 6.3: On the top row, three scatterplots are shown. Each sample, with sample size n = 400, has
been generated with the relation Yi = f0(Xi)+εi, where Xi ∼ U(0, 1), f0(x) =

1
2 (1 + sin(6πx)) and εi

a mixture between N(0, 0.02) and the given outlier distribution with mixture rate α = 0.2. Below, for
three loss functions, the ERM has been estimated using the sample above it and displayed in black,
along with the true regression function f0 in red.
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6.3 Checking the convergence rate.

Consider the regression model in (1.1). If the ERM f̂n is used to estimate f∗, Lemma 4.1 and
Lemma 5.1 give us a convergence rate depending on the moments of ε if it is assumed that f∗ ∈ NNB

p .
In the following we estimate the prediction error for the regression function f0(x) = x with various
outlier densities. Then, the convergence rate on the estimated prediction errors can be compared with
the theoretical ones. This helps us either indicate that the theoretical rate is sharp, or provide an
indication that the theoretical rate can be further improved.

In order to estimate the prediction error ES

{
R(f̂n)−R(f∗)

}
, one needs to know the function f∗.

Under the square loss we have seen in Lemma 2.7 that f∗ = f0 + µε, but for the Lipschitz continuous
loss function such a relation is not generally known. Instead of estimating the prediction error directly,

we will estimate the adjusted prediction error ES

[
R(f̂n)−R(f0)

]
. It is related to the prediction error

by

ES

[
R(f̂n)−R(f0)

]
= ES

{
R(f̂n)−R(f∗)

}
+ {R(f∗)−R(f0)} .

For the square loss it follows by Lemma 2.7 that

{R(f∗)−R(f0)} = −µ2
ε,

hence the adjusted prediction error will coincide with the prediction error whenever µε = 0. When ε
is symmetric with mean zero, and the other assumption on L from Lemma 2.9 are satisfied, we have
f∗ = f0, which implies R(f∗)−R(f0) = 0.

In our simulations, the contamination model from Section 2.6 is considered with mixture rate
α = 0.05. For the standard observation, a N(0, 0.02) distribution is used. For the outliers we consider
three different distributions; N(0, 0.2), t(3) and Fréchet(3). The network architecture will remain fixed
with

p = (1, 5, 1),

which ensures f∗ ∈ NNB
p . For each combination of loss function and outlier density, Lemma 3.7

or Lemma 5.1 gives a convergence rate on the prediction error. These are given in Table 4. These
theoretical rates can then be compared to an observed rate.

N(0, 0.2) t(3) Fréchet(3)

Square loss O
(

logn
n

)
O

(
5

√
logn
n

)
O

(
5

√
logn
n

)
Huber loss O

(
logn
n

)
O
(

logn
3
√
n

)
O
(

logn
3
√
n

)
Tukey loss O

(
logn
n

)
O
(

logn
3
√
n

)
O
(

logn
3
√
n

)
Table 4: The convergence rate of the prediction error of the given loss function with outlier density
when assuming f∗ ∈ NNB

p and normally distributed standard observations. The rates follow from
Lemma 4.1 and Lemma 5.1.

To obtain an empirical convergence rate, we must estimate the adjusted prediction error for various
sample sizes n. The sample size start at n = 50 and gets doubled 9 times, thus

n ∈ {50, 100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600}.

For each sample size n, we estimate the adjusted prediction error as described in Section 6.1 with t = 5
and N = 100000 for each loss function and outlier density. The result can be seen in Fig. 6.4 along
with 95% confidence intervals. In Fig. 6.4(a) and (b), we have symmetric zero-mean outliers. Hence
by Lemma 2.7 and Lemma 2.9 we know that f∗ = f0, which implies R(f∗) − R(f0) = 0. Thus the
adjusted prediction error agrees with the prediction error.
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Note that since

ES

[
R(f̂n)−R(f0)

]
= ES

{
R(f̂n)−R(f∗)

}
+ {R(f∗)−R(f0)} ,

the adjusted prediction error will converge to {R(f∗)−R(f0)} because the prediction error converges
to zero. Visually, we see in Fig. 6.4(a) and (b) that the adjusted prediction error converges to zero,
which then must be equal to {R(f∗)−R(f0)}.

For the square loss, and under suitable assumption that are satisfied, we know that the adjusted
prediction error satisfies

ES

[
R(f̂n)−R(f0)

]
= ES

{
R(f̂n)−R(f∗)

}
+ {R(f∗)−R(f0)}

→ {R(f∗)−R(f0)} = −µ2
ε = −α2µ2

outl,

where α is the mixture rate and µoutl is the expectation of the outlier density. When Fréchet(3) outliers
are present, µoutl = Γ

(
2
3

)
. Hence,

ES

[
R(f̂n)−R(f0)

]
→ −α2Γ

(
2

3

)2

≈ −0.00458 . . . .

This exactly agrees with the convergence of the square loss in Fig. 6.4(c). In Fig. 6.4(c) one also sees
that R(f∗)−R(f0) ̸= 0 for the Huber and Tukey loss. It clear that this difference is less than for the
square loss. In that sense, the Huber and Tukey loss are more robust against non-symmetric outliers
than the square loss, which was the original motivation for introducing these other loss functions.

Now one would like to compare the observed rate with our theoretical rates in Table 4. If our
observed rate matches the theoretical rate, dividing by the theoretical rate should result in a constant
line (after first centering the observed rate such that is converges to 0). If the observed rate is faster
than the theoretical rate, the line should go down.

In Fig. 6.5, the observed rates from Fig. 6.4 have been divided by the theoretical rates from Table 4.
For N(0, 0.2) outliers [see Fig. 6.5(a)], we observe that for small sample sizes, the observed rate is faster
than the theoretical rate. Note however, that the theoretical rate only applies for sample sizes greater
or equal to the pseudodimension, hence it is not a problem that the observed rate outperforms the
theoretical rate for small sample sizes. For larger sample sizes we observe an almost straight line in
Fig. 6.5(a), suggesting that our theoretical rate is sharp.

In both Fig. 6.5(b) and (c), we observe that the fraction keeps going down, even for larger samples
sizes. This shows that when ε has only a small number of finite moments, the observed rate is faster
than our theoretical rate, indicating that the theoretical rate can be sharpened further. One might
wonder what the correct rate is in Fig. 6.5(b) and (c). In Fig. 6.6, all observed rates have been divided
by logn

n . Note especially that for the t and Fréchet outlier, the observed seems to equal logn
n , instead

of our predicted rate. However, this does not show the rate can be sharpened to logn
n in general. The

correct theoretical rate needs to be further explored in future work.
It could be that our observed rate is only so fast because the network architecture is allowed to be

fixed since the regression function lies inside the network function class. If one has a more complicated
regression function, one has to grow the network with the sample size. It might be possible that this
will slow down the observed rate to the rate we predict theoretically. Further simulations are needed
to know for sure.
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Figure 6.4: The adjusted prediction error with different outlier distributions. In each sub figure, the
Huber loss, square loss and Tukey loss have been used. For each sample size, the estimated adjusted
prediction error has been calculated along with an asymptotic 95% CI. The outliers densities used are
N(0, 0.2), t(3) and Fréchet(3).
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Figure 6.5: The prediction error divided by the theoretical convergence rates from Table 4. In each
sub figure, the Huber loss, square loss and Tukey loss have been used. For each sample size, the
estimated fraction has been calculated along with an asymptotic 95% CI. Furthermore, each line has
been divided by a proper constant such that the results are of the same order. The outliers densities
used are N(0, 0.2), t(3) and Fréchet(3).
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Figure 6.6: The prediction error divided by the rate logn
n . In each sub figure, the Huber loss, square

loss and Tukey loss have been used. For each sample size, the estimated fraction has been calculated
along with an asymptotic 95% CI. Furthermore, each line has been divided by a proper constant such
that the results are of the same order. The outliers densities used are N(0, 0.2), t(3) and Fréchet(3).
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7 Conclusion and discussion.

We have seen non-asymptotic error bounds on the prediction error for the square loss, and for a more
general Lipschitz continuous loss function. When the regression function belongs to the class of neural
networks, convergence is obtained with a rate depending on the number of finite moments of ε.

Using these error bounds, we showed that the empirical risk minimizer is a consistent estimator for
the unknown regression function f0 when the error ε has zero mean and the square loss is used. For the
Lipschitz continuous loss function, the density of ε also has to be symmetric. This shows that the ERM
is robust against symmetric outliers generated by for example, a t-distribution. For the square loss it
has been proven that f∗ = f0 + µε. This shows that when outliers are present that do not have mean
zero, the ERM is a biased estimator for f0. The general relation between f∗ and f0 remains unknown
for our general Lipschitz continuous loss function. It is however crucial to understand this better in
order to say something about the effect of non-zero mean outliers under a robust loss function.

Finally, we estimated the ERM for some basic univariate regression functions. It became clear that
even for quite simple regression functions, the estimation procedure can be unstable. Then, we have
seen empirically that our theoretical convergence rate look tight when ε has all moments finite. When
ε has only a few finite moments, our theoretical convergence rate seems to fall behind the observed
rate. Hence, it might be possible to tighten the convergence rate further when ε has only a small
number of finite moments.
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