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Chapter 1

Introduction

Given the central role elliptic curves play in number theory and algebraic geometry,
it is desirable to describe all isomorphism classes of elliptic curves, i.e. construct a
moduli spaces for elliptic curves. In algebraic geometry, an elliptic curve E over a
field k may be defined as a smooth projective connected curve of genus 1 over k
together with a k-rational point O ∈ E(k). They are most interesting because there
is a unique structure of k-group variety on the curve E for which O is the identity
section.

Over the field C of complex numbers elliptic curves can be studied from an ana-
lytic point of view as complex tori. A k-dimensional complex torus Ck/L is a compact
Lie group that is the quotient of Ck by a co-compact lattice L inside Ck, i.e. a discrete
Z-submodule L of C that is free of rank 2k. To an elliptic curve E ! Spec C, the
analytification functor defined in Section 2.6 attaches a compact Riemann surface
Ean. The uniformization theorem asserts that Ean is isomorphic to a 1-dimensional
complex torus C/Λ for a co-compact lattice Λ in C unique up to homothety (scaling
by a nonzero complex number). In fact, (·)an provides an equivalence of categories
between that of elliptic curves over SpecC and 1-dimensional complex tori. In the
remainder of this introduction, the term complex elliptic curve will be used as syn-
onym for 1-dimensional complex torus.

The uniformization theorem lies at the heart of the construction of the coarse
moduli spaces of elliptic curves Y (1), a (1-dimensional, connected, noncompact)
complex manifold whose points are in bijection with isomorphism classes of elliptic
curves (see Section 5.1 for a discussion of moduli spaces). Ideally there should exist a
holomorphically varying family of elliptic curves over Y (1), called a universal elliptic
curve, which effectuates this bijection.

An obstacle hereto is that every elliptic curve E/k admits at least one nontrivial
isomorphism, namely inversion, and even more if E has complex multiplication by
C. A fundamental technique in moduli theory is to rigidify the objects under study
through the endowment of an extra structure. For a 1-dimensional complex torus
E = C/Λ we have a canonical isomorphism H1(E;Z) ∼= Λ. An H1-structure on E
is an isomorphism ψ : Z2 ! H1(E;Z). The set of H1-structures on E is denoted
[H1–str]E and has a natural action of SL2(Z) = Aut (Z2) given by

SL2(Z)× [H1–str]E ! [H1–str]E , γψ = ψ ◦ γt
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where γt is the transpose of γ.
Let Γ be a congruence subgroup. Then a Γ-structure on E is defined to be an

element of the orbit space Γ\ [H1–str]E. We have that Γ(N)-structures correspond
to isomorphisms ψ : (Z/NZ)2 ! E[N ] such that eN(ψ(0, 1), ψ(1, 0)) = ζN , where
eN is the Weil pairing on the N -torsion subgroup E[N ]. We have that Γ1(N)- and
Γ0(N)-structures correspond to points resp. cyclic subgroups of order N on E.

To formulate the existence of a fine moduli space for the moduli problem of el-
liptic curves with an H1-structure, we are led to consider holomorphically varying
families of elliptic curves. Given a complex manifold M , an elliptic curve over M is
a proper submersive holomorphic map f : E ! M with a section e : M ! E such
that for every point m ∈ M the fibre (Em, e(m)) is an elliptic curve. In Section 4.2
we describe a construction of such relative elliptic curves as quotients V/L of a holo-
morphic line bundle V on M by a co-compact lattice L inside V .

Again, an M -elliptic curve may admit nonidentity morphisms over M . In Sec-
tion 4.1, following [Conc], we give a construction, functorial in elliptic curves E/M ,
of a local system H1(E/M) of rank-2 free Z-modules on M whose fibre over m ∈M
is the first homology group of the fibre Em with Z-coefficients, that is, one has
H1(E/M)m = H1 (Em;Z). An H1-trivialized elliptic curve over M is, by definition,
an elliptic curve E/M together with an isomorphism Z2 ×M ! H1(E/M) of local
systems over M . In Section 5.2 we define a functor [H1–str] : CManop ! Set send-
ing M to the set of H1-trivialized elliptic curves over M up to isomorphism over
M .

Theorem 1.0.1. The functor [H1–str] is represented by (E = V/L,Ψ)! H, where

Z2 ×M
Ψ
−! L :=

{
(mτ + n, τ) : (m,n) ∈ Z2, τ ∈ H

}
⊂ V := C × H,

((m,n), τ) 7! (mτ + n, τ).

We paraphrase this result by saying that (E ,Ψ)! H is the universal H1-trivialized
elliptic curve.

Now let Γ be a congruence subgroup of SL2(Z). As in the absolute case we define
a notion of Γ-structure on a relative elliptic curve E ! M , and interpret Γ(N)-,
Γ1(N)- and Γ0(N)-structures in terms of N -torsion data for integers N ≥ 1. All
elliptic curves with a Γ-structure are rigid if and only if Γ is torsion-free. If this
holds, a universal elliptic curve with a Γ-structure (EΓ,ΓΨ) ! Y (Γ) is constructed
as the quotient of (E ,ΓΨ)! H by Γ.

We next turn to constructing a complex surface DΓ that compactifies EΓ. At a
regular cusp of Γ, say of width h, the family of elliptic curves EΓ ! Y (Γ) degenerates
to a so-called Néron polygon

Ch =
(
CP1 × Z/hZ

)
/((0, i) ∼ (∞, i+ 1))

a cycle of h transversally intersecting projective lines. This is a singular complex
analytic space, whose regular locus Creg

h = C∗ × Z/hZ has a group structure that
extends to an action on Ch. A generalized elliptic curve is, roughly speaking, a family
of elliptic curves but allowing Néron polygons as degenerate fibres; see Chapter
Chapter 9 for a precise definition.
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Theorem 1.0.2. Let Γ be a torsion-free congruence subgroup of SL2(Z) such that
all cusps of Γ are regular. Then there exists a generalized elliptic curve DΓ ! X(Γ)
extending EΓ ! Y (Γ) whose fibre over a cusp t ∈ Cusps(Γ) is a Néron ht-gon, where
ht is the width of t.

The Shioda modular surfaces DΓ(N) provide the following modular interpretation of
the set of cusps of X(N).

Theorem 1.0.3. Let N ≥ 3 be an integer. Then there exists a generalized elliptic
curve DΓ(N) ! X(N) whose singular fibres are Néron N-gons, together with an
isomorphism ΨN : (Z/NZ)2 ×X(N)! Dsm

Γ [N ], such that we have a bijection

|X(N)|! {elliptic curves or Néron N-gons with a level-N structure }/ ∼= .

We prove this result as Proposition 9.2.1, and the analogue for Γ1(N) as Proposi-
tion 9.3.2.

Suppose that Γ̃ is a subgroup of Γ. Then any Γ̃-structure defines also a Γ-
structure, and there is a natural map pΓ̃,Γ : Y (Γ̃)! Y (Γ) given by Γ̃τ 7! Γτ , which

extends to a holomorphic map X(Γ̃)! X(Γ) mapping Cusps(Γ̃) onto Cusps(Γ). We
show this lifts to a holomorphic map of the corresponding Shioda modular surfaces.

Theorem 1.0.4. Let Γ̃ ⊂ Γ be congruence subgroups of SL2(Z). Suppose that Γ is
torsion-free with no irregular cusps. Then there exists a holomorphic map DΓ̃ ! DΓ

extending the natural map EΓ̃ = Γ̃\E ! Γ\E = EΓ. The map

DΓ̃ ! DΓ ×X(Γ) X(Γ̃)

is a projective desingularization.

Now let k ≥ 2 be an integer. Then the k-fold fibre power

EkΓ = EΓ ×Y (Γ) EΓ ×Y (Γ) · · · ×Y (Γ) EΓ
is a complex torus of relative dimension k over Y (Γ). Under the same hypothesis
on Γ as in Theorem 9.1.1, we show there is a (k+ 1)-dimensional complex manifold
KSkΓ compactifying EkΓ, called the k-th Kuga-Sato variety attached to the congruence
subgroup Γ.

Theorem 1.0.5. Let Γ ⊂ SL2(Z) be a torsion-free congruence subgroup such that
all cusps of Γ are regular. Let k ≥ 1 be an integer. Then there exists a projective-
algebraic (k + 1)-dimensional complex manifold together with a proper holomorphic
map f : KSkΓ ! X(Γ), and a multiplication map m : KSk,smΓ ×X(Γ) KSkΓ ! KSkΓ that
restricts over the open modular curve Y (Γ) ⊂ X(Γ) to the Y (Γ)-complex torus EkΓ of
relative dimension k that is the k-th power of the universal elliptic curve EΓ ! Y (Γ).

Moreover, we show in Theorem 1.0.4 that KSkΓ is projective-algebraic, i.e. it origi-
nates from a projective C-variety. Furthermore, we show in Section 10.3 that if Γ̃ ⊂ Γ
is an inclusion of groups satisfying the hypotheses of Theorem 1.0.5 then there is a
natural holomorphic map KSk

Γ̃
! KSkΓ.
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We conclude this introduction by giving an overview of the method employed to
construct the Kuga–Sato variety KSkΓ. Chapter 1 lists the various objects we en-
counter on the way. Its first column indicates the category in which the objects in
that row live. We start in the top row, and with each step move one row down until
we arrive at the desired compact complex spaces in the bottom row.

The construction of a local model for KSkΓ at a regular cusp of width h is ini-
tiated in the algebraic category of algebraic varieties over C. In Chapter 7 we dis-
cuss how in toric geometry one constructs complex toric varieties from combina-
torial data consisting of cones in a finite-dimensional real vector space, called a
rational partial polyhedral decomposition. This yields an equivalence of categories
F : RPPD! CTorVrt from the category of rational partial polyhedral decompo-
sitions to the category of complex toric varieties, used to pass from the first row to
the second.

As the notation suggests, Gk = G ×G0 G ×G0 · · · ×G0 G is the k-fold fibre power of
G ! G0. This is a (k + 1)-dimensional toric variety corresponding to a fan Σk in a
(k+1)-dimensional real vector space, which is singular for k ≥ 2. Following [Sch97]
we perform a sequence of blowups centered at nonsingular closed subvarieties

Gk⟨k − 1⟩! Gk⟨k − 2⟩! . . .! Gk⟨1⟩! Gk⟨0⟩ = Gk

corresponding to a sequence of star-subdivisions Σk⟨k−1⟩! . . .! Σk⟨1⟩! Σk⟨0⟩,
see Section 2.5 and Section 7.5 for the definition of the italicized terms.

The reduced analytic spaces in the third row are obtained from the algebraic
objects in the second row by applying the analytification functor (·)an described in
Section 2.6, restricting to the open unit disk ∆ and then taking a suitable quotient.
The objects in the final row are obtained by glueing the objects in the third row and
the fourth row together, along the open cover of X(Γ) provided in Theorem 3.5.4.

RPPD (N0,Σ0) (N1,Σ1)
(
Nk,Σk

) (
Nk,Σk⟨l⟩

) (
Nk,Σk⟨k − 1⟩

)
CTorVrt G0 G Gk Gk⟨l⟩ Gk⟨k − 1⟩

CAnSp /∆ ∆ Tateh Tatekh Tatekh⟨l⟩ KSkh
CMan /Y (Γ) Y (Γ) EΓ EkΓ EkΓ EkΓ
CAnSp /X(Γ) X(Γ) DΓ Dk

Γ Dk
Γ⟨l⟩ KSkΓ

Table 1.1: An overview of the various objects encountered in this thesis. The first
column indicates in which category the objects live. Here k ≥ 1 and 0 ≤ l ≤ k − 1
are integers.
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Chapter 2

Preliminaries

In this section we discuss the background results from complex-analytic and alge-
braic geometry. The toric construction of Shioda modular surfaces and Kuga–Sato
varieties runs through the category of algebraic C-varieties and that of complex-
analytic spaces. In Section 2.1 we introduce the category of (reduced) complex(-
analytic) spaces CAnSp and its full subcategory of complex manifolds, and defines
Section 2.2 various properties of morphisms in CAnSp: proper, finite, flat and sub-
mersive. In Section 2.3 we discuss quotients by proper and free actions in (categories
admitting a forgetful functor to) the category of topological spaces.

Then we flip to the algebraic category, introduce the category of C-varieties. We
define projective morphisms of schemes in Section 2.4, and define the Spec and
Proj construction. In Section 2.5 we include a dicussion of desingularizations and
blowups.

In Section 2.6 we show how a C-variety X gives rise to a complex space Xan

through a process called analytification. and show how a C-variety functorially gives
rise to a C-analytic space.

2.1 Complex spaces

In this section we define complex(-analytic spaces), which for us will always be
reduced. A more detailed treatment can be found in [Fis76][Chapter 0].

Definition 2.1.1. A C-ringed space is a pair X = (|X|,OX) consisting of a topo-
logical space |X| and a sheaf of C-algebras OX on |X| whose stalk OX,p at every
point p ∈ |X| is a local C-algebra with trivial residue field C.

A morphism ϕ : X ! Y of C-ringed spaces is a pair
(
|ϕ|, ϕ#

)
consisting of a

continuous map |ϕ| : |X| ! |Y | and a homomorphism of sheaves of C-algebras
OY ! |ϕ|∗OX

For every p ∈ |X| the homomorphism OY,|ϕ|(p) ! OX,p is then a local homomorphism
of local C-algebras (i.e. ϕ is a morphism of locally ringed spaces).

Example 2.1.2. Every open subset W ⊂ Cn, together with the sheaf OW of holo-
morphic functions on W is a C-ringed space, which by abuse of notation will also
be denoted W .
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Definition 2.1.3. Let n ∈ Z≥0. A complex manifold M of dimension n is a C-ringed
space M = (|M |,OM) with |M | Hausdorff and such that each point p ∈ |M | admits
an open neighborhood p ∈ U ⊂ |M | with (U,OM |U) isomorphic to the C-ringed
spaces (W,OW ) constructed in Example 2.1.2 for an open subset W of Cn.

Definition 2.1.4. Let W ⊂ Cn be an open subset. We say A ⊂ W is an analytic
subset if for every p ∈ A there exist an open neighborhood p ∈ U ⊂ W and
f1, f2, . . . , fn ∈ OW (U) such that

A ∩ U = {x ∈ U | f1(x) = f2(x) = . . . = fn(x) = 0} .

Note that any analytic subset of W is closed in W .

Example 2.1.5. Let A be an analytic subset of an open subset W of Cn. We define
the sheaf of ideals JA ⊂ OW by letting for every open subset U ⊂ W

JA(U) = {f ∈ OW (U) | f(x) = 0 for all x ∈ A ∩ U} .

Then we have A := supp (OW/JA), and we set OA = (OW/JA)|A. Then (A,OA) is
a C-ringed space, which by abuse of notation will also be denoted A.

Definition 2.1.6. A complex-analytic space or complex space is a C-ringed space
X = (|X|,OX) with |X| Hausdorff such that each p ∈ |X| admits an open neigh-
borhood p ∈ U ⊂ |X| that is isomorphic to one of the C-ringed spaces constructed
in Example 2.1.5, i.e. there exists an isomorphism (U, OM |U) ∼= (A,OA) for some
analytic subset A of an open subset W of Cn for some n ∈ Z≥0.

Definition 2.1.7. We denote C–RSp the category of C-ringed spaces, and CMan
and CAnSp its full subcategories of complex manifolds resp. (reduced) complex-
analytic spaces.

Note that a morphism ϕ : X ! Y in CAnSp is determined by |ϕ|, because holo-
morphic functions separate the points of Cn. Therefore we will also call a morphism
in CAnSp or CMan a holomorphic map. An isomorphism in CAnSp will be called
a biholomorphism.

Consider local models A ⊂ W ⊂ Cn and B ⊂ V ⊂ Cm as in Example 2.1.5. Then
a holomorphic map ϕ : A ! B is a map of sets |ϕ| : A ! B such that for every
p ∈ A there exists an open subset p ∈ U ⊂ W and a holomorphic map ϕ̃ : U ! Cm

with ϕ̃|A∩U = ϕ|A∩U .

Proposition 2.1.8. The category CAnSp has all finite fibre products.

Proof. As in the category of schemes, this is a local question. Let k ∈ Z≥0 and for
each i ∈ {1, 2, . . . , k} let Ai be an analytic subset of an open subset Wi of complex
ni-space Cni for some ni ∈ Z≥0. Let X be a C-analytic space and let fi : Ai ! X be
holomorphic maps.

The cartesian productW = W1×W2×· · ·×Wk is an open subset of Cn1+n2+...+nk

and the set-theoretic fibre product A = A1 ×X A2 ×X · · · ×X Ak is an analytic
subset of W . Thus we obtain the categorical fibre product of the morphisms fi as
in Example 2.1.5 from A and W .
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2.2 Some classes of holomorphic maps

In this section we discuss four propeties a holomorphic map of complex-analytic
spaces could have: proper, finite, flat and submersive.

Definition 2.2.1. Let ϕ : X ! Y be a continuous map of topological spaces. We
say ϕ is connected if for every y ∈ Y the fibre f−1(y) is connected and nonempty.

Lemma-Definition 2.2.2 (proper, finite). Let ϕ : X ! Y be a continuous map of
locally compact Hausdorff spaces. We call ϕ proper if it satisfies the following two
equivalent conditions:

(i) for any compact subset K of Y the set ϕ−1(K) is compact;

(ii) ϕ is closed and all fibres of ϕ are compact.

We call ϕ finite if it satisfies the following two conditions:

(i) ϕ is proper and every point p ∈ X is an isolated point in its fibre ϕ−1(ϕ(p));

(ii) ϕ is closed and has finite fibres.

Proof. See [Fis76][Def. 1.10] for a proof of these equivalences.

Theorem 2.2.3. Let ϕ : X ! Y be a holomorphic map of complex spaces, let
p ∈ |X| and set q = |ϕ|(p). Then the following are equivalent:

(1) OX,p is a finitely generated OY,q-module;

(2) dimC (OX,p/mY,qOX,p) <∞;

(3) p is an isolated point of its fibre Xq.

If p is an isolated point of Xϕ(p) then there are open neighborhoods U ⊂ X of p and
V ⊂ Y of q such that ϕ|U : U ! V is finite.

We now define two technical properties of a morphism of complex spaces ϕ : X ! Y ,
which will be part of the definition of a generalized elliptic curve in Section 6.5.
The first, flatness, captures algebraically that the fibres Xm = ϕ−1(m) of the mor-
phism ϕ ‘vary smoothly’ with m. The second, having reduced fibres, encapsulates
that no ‘multiple fibres’ occur. For a discussion of flatness and tensor products,
see [MR86][§7].

Definition 2.2.4 (flatness, reduced fibres). Let ϕ =
(
|ϕ|, ϕ#

)
: X ! Y be a

morphism of C-analytic space. Let p ∈ |X| and set q = |ϕ|(p).

(1) We say ϕ is flat at p if the C-algebra homomorphism OY,|ϕ|(p) ! OX,p is flat. We
say ϕ is flat if it is flat at every point of X.

(2) We say the fibre of ϕ over q is reduced at p if the C-algebra OX,p⊗OY,q
(OY,q/mY,q)

is reduced. We say ϕ has reduced fibres if for every point p of X the fibre of ϕ
over |ϕ|(p) is reduced at p.

In the remainder of this section, we consider a holomorphic map ϕ : X ! Y of
complex-analytic spaces.

Proposition 2.2.5. If ϕ is flat, then |ϕ| is open. If X and Y are complex manifolds,
the converse holds.
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Proof. See [Fis76][Prop. 3.19 and Cor. 3.20]

Lemma 2.2.6. Let ϕ : X ! Y be a flat morphism with reduced fibres, of not
necessarily reduced C-analytic spaces. If Y is reduced, then so is X. If Z is a reduced
C-analytic space and ψ : Z ! Y is holomorphic, then the fibre product X ×Y Z in
the category of not necessarily reduced C-analytic spaces is reduced.

Proof. The first statement follows from [MR86][Thm. 23.9] which states that if
(A,mA)! (B,mB) is a flat local homomorphism of local rings, then A and B/mAB
being reduced implies that B is reduced.

Proposition 2.2.7. If ϕ is finite, the following conditions are equivalent:

(i) ϕ is flat;

(ii) ϕ∗OX is locally free;

(iii) The function Y ! Z≥0, q 7!
∑

x∈Xq
dimC OXq ,x is locally constant.

Proof. See [Fis76][Prop. 3.13].

Definition 2.2.8 (submersive). Let ϕ : X ! Y be a holomorphic map of complex
spaces. Let p ∈ |X| and set q = |ϕ|(p) ∈ |Y |. We say ϕ is submersive at p if there
exist open neighborhoods p ∈ U ⊂ X and q ∈ V ⊂ Y , an open subset Z ⊂ Ck and
a biholomorphism U ! W × V such that the following diagram commutes

U W × V

V.

∼=

ϕ pr2

We say ϕ is submersive if it is submersive at every point of X. A submersion is a
submersive holomorphic map.

Theorem 2.2.9. The following conditions are equivalent:

(i) ϕ is a submersion at p;

(ii) ϕ is flat in p and Xϕ(p) is a manifold at p;

If X and Y are complex manifolds, then these conditions are also equivalent to:

(iii) the map of tangent spaces (dϕ)p : TpX ! Tϕ(p)Y is surjective.

Proof. See [Fis76][Thm. 3.21]

Proposition 2.2.10. If ϕ is flat then the set {p ∈ X : Xϕ(p) is not a manifold in p}
is an analytic subset of X.

Proof. See [Fis76][Prop. 3.22].

Next, we show that the fibre product of two holomorphic maps of complex mani-
folds, taken in the category CAnSp as in Proposition 2.1.8, is again a holomorphic
manifold provided at least one of the maps is a submersion.
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Lemma 2.2.11. Let f : X ! Y be a holomorphic submersion of complex mani-
folds. Then for any holomorphic map T ! Y from a complex manifold T , the fibre
product XT := X ×Y T exists in the category of complex manifolds, and the pullback
fT : XT ! T of f is again a submersion.

In particular, for every y ∈ Y the fibre Xy := f−1(y) is a complex manifold. The
assignment y 7! dim (Xy) defines a locally constant function on Y . If dim (Xy) = d
for every y ∈ Y , then we say f has relative dimension d.

2.3 Quotients by proper actions

In this section we discuss quotients of holomorphic manifolds by group actions. If
the action is particularly well behave, in the sense that it is proper and free, then
the quotient always exists as a holomorphic manifold.

Recall that a map of topological spaces ϕ : X ! Y is called proper if for every
compact subset K ⊂ Y the inverse image ϕ−1(K) is a compact subset of Y .

Definition 2.3.1. A continuous left action Γ×Y ! Y , (γ, y) 7! γ ·y of a topological
group Γ on a topological space Y is called proper if the map

Γ× Y ! Y × Y,

(γ, y) 7! (γ · y, y)

is proper. If Y is Hausdorff, then it suffices to show for any compact subset K ⊂ Y
that

ΓK := {γ ∈ Γ : (γ ·K) ∩K ̸= ∅} (2.1)

is a compact subset of Γ.
The stabilizer of a point y ∈ Y is defined to be the group

Γy := {γ ∈ Γ : γ · y = y}. (2.2)

We say that the action is free if Γy is trivial for every y ∈ Y .

Proposition 2.3.2. Let Γ be a discrete group and let Y be a locally connected locally
compact Hausdorff topological space. Let Γ×Y ! Y, (γ, y) 7! γy be a free left action
of Γ on Y by homeomorphisms. Then the following statements are equivalent:

(1) the action of Γ on Y is proper;

(2) for any compact subset K ⊂ Y the set {γ ∈ Γ : (γ ·K) ∩K ̸= ∅} is finite;

(3) the following two statements are true:

(i) the quotient map Y ! Γ\Y is a covering map;

(ii) the quotient space Γ\Y is Hausdorff.

(4) the following two statements are true:

(i) every point y ∈ Y has a neighborhood U such that γU ∩ U = ∅ for every
nonidentity element γ ∈ Γ\{1};
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(ii) if y ∈ Y and y′ ∈ Y lie in distinct Γ-orbits, there exist neighborhoods V
of γ and V ′ of γ′ in Y such that (γ · V ) ∩ V ′ = ∅ for all γ ∈ Γ.

Proof. The equivalences are contained in [Lee11][Thm. 12.14, Prop. 12.21, Prop.
12.23, Prop. 12.24, Prop. 12.25, Thm. 12.26].

Lemma 2.3.3. Let Γ be a topological group acting from the left on Hausdorff topo-
logical spaces X and Y . Suppose that f : X ! Y is a Γ-equivariant continuous map.
If the action of Γ on Y is proper (resp. free, resp. has finite stabilizers), the action
of Γ and X is proper (resp. free, resp. has finite stabilizers).

Proof. Let x ∈ X and γ ∈ Γ such that γ · x = x. Since f is Γ-equivariant, we find
that γ · f(x) = f(γ · x) = f(x). Thus the isotropy group Γx of x is contained in the
isotropy group Γf(x) of f(x). So Γy being trivial (resp. finite) for every y ∈ Y implies
that Γx is trivial (resp. finite) for each x ∈ X. We conclude that the action of Γ on
X is free (resp. has finite stabilizers), if this holds for the Γ-action on Y .

Next, we claim that if K ⊂ X is compact, then the set ΓK defined by (2.1) is
closed in Γ in any case. In fact, since X is Hausdorff and K is compact, the set K
is closed in X. The inverse image of X \ K under the continuous Γ × X ! X is
an open subset U = {(γ, x) ∈ Γ × X : γ · x /∈ K} of Γ × X. If γ ∈ Γ\ΓK then
{γ} ×K ⊂ U . Since K is compact, there exists a neighborhood V of K such that
V ×K ⊂ U . Then γ ∈ V ⊂ Γ\ΓK , which shows that Γ\ΓK is open in Γ, i.e. that
ΓK is closed in Γ.

Now suppose the action of Γ on Y is proper. Let K ⊂ X be a compact subset.
Since f is continuous, its image L := f(K) in Y is compact as well. Since the action
of Γ on Y is assumed to be proper, the set ΓL := {γ ∈ Γ : (γ ·L)∩L ̸= ∅} is compact.
By Γ-equivariance of f , the set ΓK := {γ ∈ Γ : (γ ·K) ∩K ̸= ∅} is a subset of ΓL.
Therefore ΓK is a closed subset of the compact set ΓL, hence ΓK is compact, as we
had to show.

Lemma 2.3.4. Let Γ (resp. Γ′) be a group acting freely by homeomorphisms from
the left on a topological space X (resp. X ′) such that the quotient map X ! Γ\X
(resp. X ′ ! Γ′\X ′) is a covering space. Then the group Γ×Γ′ acts freely by homeo-
morphisms on X ×X ′, and the map X ×X ′ ! (Γ\X)× (Γ′\X ′) is a covering space
that is a quotient map for the action of Γ× Γ′.

Let p : X ! Y be a covering map, and let f : E ! Y be any continuous map.
Then the pullback E ×Y X ! E of p along f is again a covering map.

Proof. All statements follow directly from the definitions.

Theorem 2.3.5. Let Γ be a discrete group acting properly on a complex manifold
Y via biholomorphisms. Assume either that Y is a Riemann surface, or that Γ acts
freely. Then the topological space Γ\Y is Hausdorff, and admits a unique structure
of complex manifold such that π : Y ! Γ\Y is holomorphic. The map π : Y ! Γ\Y
is a categorical quotient in the category of complex manifolds for the action of Γ
on Y , i.e. for any Γ-invariant holomorphic map ρ : Y ! Z there exists a unique
holomorphic map f : Γ\Y ! Z such that ρ = f ◦ π.

If Y is a Riemann surface, so is Γ\Y , and the ramification index eπ(y) of π at
y ∈ Y is equal to #image (Γy ! Aut (OY,y)).
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If Γ acts freely, then π is a covering map and a local analytic isomorphism.
If the image of Γ in Aut(Y ) is finite, then π is proper with finite fibres.

Proof. The case that Γ acts freely and properly is standard. For the case that Y is
a Riemann surface one may consult [Cona][Prop. 3.1], whose proof determines the
ramification indices of π to be as indicated.

Remark 2.3.6. In a similar way way one shows the category of C-analytic spaces
admits a categorical quotient for a proper and free action of a discrete group Γ on
a C-analytic space Y .

Suppose f : Y ! Z is a Γ-invariant holomorphic map to a C-analytic space. The
universal property of a categorical quotient yields a holomorphic map f̄ : Γ\Y ! Z.
For every z ∈ Z the fibre f−1(z) is Γ-stable, and Γ acts properly and freely on this
fibre. Further, we have an isomorphism

f̄−1(z) ∼= Γ\f−1(z).

2.4 Projective morphisms of schemes

In this section we define projective morphisms of schemes.
We start with a general construction of the relative (homogeneous) spectrum.

Lemma 2.4.1. Let S be a scheme.
(a) Let A a quasi-coherent sheaf of OS-algebras. Then functorially in S-schemes
f : T ! S we have bijections

MorS(T, SpecS A) ∼= HomOS−Alg(A, f∗OT ).

(b) Let A be a quasi-coherent sheaf of graded OS-algebras that is locally finitely
generated in degree 1. Then functorially in S-schemes f : T ! S we have bijections

MorS(T,ProjS A) ∼= {(L, ψ : f ∗A!
⊕
d≥0

L⊗d)}/ ∼=,

where we consider pairs (L, ψ) consisting of an invertible OT -module L and and a
homomorphism ψ of OT -algebras preserving the grading such that ψ1 : f

∗A1 ! L is
surjective.

Proof. [dJm][Lemmas 01LV and 01O4]

If Ec is a coherent module on a Noetherian scheme, then using this construct we
can attach a projective bundle to E , with the following universal property.

Theorem-Definition 2.4.2. Let Y be a Noetherian scheme, and let E be a coherent
OY -module. Then there exists a proper Y -scheme

PY (E) = ProjY (Sym
• E), (2.3)

called the projective bundle over Y attached to E, with the following universal prop-
erty. Given a Y -scheme f : X ! Y , the Y -morphisms from X to P(E) correspond
to isomorphism classes of pairs (L, ψ) with L a line bundle on T and ψ : f ∗E ! L
an epimorphism.
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Proof. See [dJm][Section 01OA, Lemma 0104]

Definition 2.4.3. Let Y be a Noetherian scheme and let f : X ! Y be an Y -
scheme. We say f is projective if there exists a coherent OY -module E and a closed
embedding X ! P(E) over Y .

In particular, for every coherent OY -module E the structure morphism P(E) ! Y
is projective. Clearly any projective morphism is proper.

We now give a more intrinsic criterion for a proper morphism to be projective,
in terms of so-called (very) ample line bundles.

Definition 2.4.4. Let f : X ! Y be a proper morphism of Noetherian schemes.
We say a line bundle L on X is f -base point free if the adjunction map f ∗f∗L! L
is an epimorphism.

Let L be an f -base point free line bundle on X. The universal property of P(f∗L)
associates to the epimorphism f ∗f∗L! L an Y -morphism denoted

ϕL : X ! P(f∗L).

Note that since f is proper, we have that f∗L is a coherent OY -module by Grothen-
dieck’s Coherence Theorem, see e.g. [Vak][Theorem 18.9.1].

We say L is f -very ample if ϕL is a closed embedding.
We say L is f -ample if for every quasi-compact open subset U of Y there exists

k0 ≥ 1 such that L⊗k|U is ample with respect to f−1(U)! U for all k ≥ k0.

See [dJm][Section 01VG and Lemma 02NO] for other definitions of relative ampli-
tude which are more customary in the literature. The notion of amplitude is local
on the target scheme Y in the following sense.

Lemma 2.4.5. Let f : X ! Y be a proper morphism of Noetherian schemes, and
let L be a line bundle on X. Then the following are equivalent.

(1) L is (very) ample relative to f : X ! Y ;

(2) there exists an open cover {Ui} of X such that L|f−1(Ui) is (very) ample on
f−1(Ui)/Ui;

(3) for every affine open subset U of X we have that L|f−1(Ui) is (very) ample on
f−1(Ui)/Ui.

Proof. This lemma follows from the definition of ϕL : X ! PY (f∗L) being local on
Y in a suitable sense.

Proposition 2.4.6. Let Y be a Noetherian scheme and f : X ! Y a proper
morphism. Then f is projective if and only if there exists an f -very ample line
bundle on X.

Proof. Suppose that L is an f -very ample line bundle on X. By definition of relative
very amplitude, L defines a closed embedding ϕL : X ! P(f∗L) over Y . We conclude
that f is projective.

The converse holds by [dJm][Lemma 01VR, (1) ⇐⇒ (4)].
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2.5 Blowups of schemes

In this section we define the blowup of a scheme along a closed subscheme, which
provides an example of closed embeddings. Our exposition closely follows [Vak].

Definition 2.5.1. Let X be a scheme. If Y is a closed subscheme of X, we de-
note IY = ker(OX ! j∗OY ) the sheaf of ideals attached to Y , where j : Y ↪! X
is the closed embedding. If g : Z ! X is any morphism, the pullback g∗Y of
Y by g is the closed subscheme of Z defined by the inverse image ideal sheaf
g−1IY · OZ := Image(g∗IY ! g∗OX

∼= OZ).

Definition 2.5.2. 1. An open subset U of X is called schematically dense in X if
the sequence 0! OX ! i∗OU is exact, where i : U ↪! X is the open embedding.

2. A closed subscheme Y of X is called locally principal if X admits a cover by open
affines U = SpecA such that Γ(U, IY ) = fA for some f ∈ A.

3. An effective Cartier divisor on X is a closed subscheme D of X satisfying one,
hence all, of the following three conditions:

(a) the ideal sheaf ID is an invertible sheaf of OX-modules;

(b) X admits a cover by open affines U = SpecA such that Γ(U, ID) = fA for
some nonzerodivisor f ∈ A;

(c) D is locally principal and the open subset X \D of X is schematically dense.

Definition 2.5.3. Let Y be a closed subscheme of X of finite presentation, i.e. such
that IY is a finite type sheaf of ideals. The blow-up of X along Y , or with center
Y is a final object in the category of X-schemes p : Z ! X such that the pullback
p∗Y of Y by p is an effective Cartier divisor on Z.

A blow-up of Y along X exists, is unique up to a unique morphism, and will be
denoted β : BlY X ! X. The effective Cartier divisor β∗Y is called the exceptional
divisor of BlY X and we write EYX for it.

The following lemma describes the behaviour of blow-ups under change of base.

Theorem 2.5.4. (1) Let g : Z ! X be any morphism, and put W = g∗Y . Let
j : Z ↪! Z be the schematic closure of (Z \W ) ×X BlY X inside Z ×X BlY X.
The morphism pr1 ◦j : Z ! Z induced by the first projection is the blow-up of
Z along W .

(2) Let g : Z ! X be a flat morphism (e.g. an open immersion), and put W = g∗Y .
The first projection pr1 : Z ×X BlY X ! Z is the blow-up of Z along W .

Proof. (1) Denote EZ = j∗(EYX) the pullback of EYX to Z; it is a locally principal
closed subscheme being the pullback of one. Since j : Z \ EZ ! (Z \W )×X BlY X
is an isomorphism, Z \ EZ is schematically dense in Z. We conclude that EZ is an
effective Cartier divisor on Z.

To check the universal property, let t : T ! Z be a morphism with D := h∗W
an effective Cartier divisor on T . Since h∗W = (g ◦ t)∗Y , there exists a unique X-
morphism T ! BlY X by the universal property of BlY X. By the universal property
of the fibre product, there exists a unique Z-morphism h : T ! Z ×X BlY X.
We are done if we can show h factors through Z. Indeed, since we have that
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h−1((Z \W )×X BlY X) = T −D, the pullback h∗Z contains the open subset T −D,
which is schematically dense in T since D is an effective Cartier divisor on T . Hence
h∗Z = T , i.e. h factors through Z.
(2) Let us show that if f : U ! V is a flat morphism, and D is an effective
Cartier divisor on V then f ∗D is an effective Cartier divisor on U . Indeed, since
f is flat it transforms the exact sequence 0 ! IY ! OX into the exact sequence
0! f ∗(IY )! f ∗(OX). This implies that the ideal sheaf of f ∗D, namely f−1IY ·OZ ,
is isomorphic to f ∗(IY ), which is an invertible sheaf since IY is one.

The second projection pr2 : Z ×X BlY X ! BlY X is flat, since it is pulled back
from the flat morphism f . By what we have shown above, pr∗2(EYX) = pr∗1W is an
effective Cartier divisor on Z ×X BlY X. The verification of the universal property
is executed as in part (1).

Theorem 2.5.5. Let I be the ideal sheaf of a closed subscheme Y of X. Then the
blowup of X along Y is the X-scheme

BlY X = ProjX(
⊕
d≥0

Id).

Proof. See [Liu06][Def. 8.1.11 and Prop 8.1.15].

Example 2.5.6. We compute the blow-up of affine n-space X = AnZ along the origin
Y . Let A = Z[X1, . . . , Xn] and I = (X1, . . . , Xn) ⊂ A, so X = SpecA and Y = V (I).
There is an isomorphism of graded rings

A[T1, . . . , Tn]/(XiTj −XjTi : 1 ≤ i, j ≤ n)!
⊕
d≥0

Id,

Ti 7! Xi

sending Ti to Xi ∈ I in degree 1. We conclude that

BlY X = V+({XiTj −XjTi : 1 ≤ i, j ≤ n}) ⊂ PnA, (2.4)

with affine patches given by

D+(T1) = SpecZ[X1, S2, . . . , Sn]/(Xj − SjX1 : 1 ≤ j ≤ n)
∼= SpecZ[X1, X2/X1, . . . , Xn/X1] ∼= AnZ.

Example 2.5.7. Let B be a ring, and J = (f1, . . . , fn) be a finitely generated ideal.
Set Z = SpecB and W = V (J). We compute BlW Z using Theorem 2.5.4(1) and
the previous Example 2.5.6, whose notation we keep in use. Let g : Z ! X be the
morphism corresponding to A ! B,Xi 7! fi, so that g∗Y = V (IB) = V (J) = W .
By the blowup-closure lemma Theorem 2.5.4(1) BlW Z is the schematic image of the
open embedding

(Z \W )×X BlY X ↪! ×X BlY X = ProjB[T1, . . . , Tn]/(fiTj − fjTi : 1 ≤ i, j ≤ n).

Since this morphism is quasi-compact, its schematic image may be computed work-
ing affine open by affine open [Vak][Theorem 8.3.4]. Let us compute the schematic
image of

(Z \W )×X D+(T1) ↪! ×X BlY X = SpecB[S2, . . . , Sn]/(fj − Sjf1) =: SpecB1.
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The pullback of J to SpecB1 is the principal ideal generated by f1, so this is the
inclusion of the distinguished open subset D(f1) inside SpecB1. Since (B1)f1

∼= Af1 ,
its schematic image is cut out by the kernel of the homomorphism B1 ! Af1 sending
Sj to fj/f1. Thus BlW Z ∩pr−1

2 (D+(Ti)) is the spectrum of the sub-A-algebra of Af1
generated by {fj/f1 : 2 ≤ j ≤ n}.

2.6 Géométrie Algébrique et Géometrie Analy-

tique

Definition 2.6.1. A C-variety is a reduced separated scheme locally of finite type
over C. The category of C-varieties is denoted C–Vrt.

The category C–Vrt admits all finite fibre products. The final object is Spec C. The
fibre product of X1 and X2 over X0 taken in the category C–Vrt of C-varieties is
the greatest reduced closed subscheme [Har77][Example 3.2.6] of the fibre product
of X1 and X2 over Y taken in the category of C-schemes [Har77][Thm. II.3.3].

In a functorial way one may attach to a C-variety a complex-analytic spaces.

Lemma-Definition 2.6.2. Let X be a C-variety. Then there exists a complex-
analytic space Xan and a morphism of C-ringed spaces jX : Xan ! X such that for
every complex-analytic space Z and morphism of C-ringed spaces g : Z ! X there
exists a unique holomorphic map h : Z ! Xan with g = jX ◦ h. This defines an
analytification functor

(·)an : C–Vrt! CAnSp,

X 7! Xan,

f 7! f an.

(2.5)

Proof. For a detailed treatment of the analytification functor see [Ser56][§2].

Let us now give a more explicit description of the functor (·)an. First consider
an affine C-variety Y = SpecC [z1, . . . , zn] / (f1, f2, . . . , fm). Then we have that
Y an := {x ∈ Cn : f1(x) = f2(x) = . . . = fm(x) = 0}, which is an analytic sub-
space of Cn because polynomial functions are holomorphic. A general C-variety X
is obtained by glueing affine C-varieties Yα, and this glueing data is used to glue
the Y an

α into the C-analytic space Xan. We conclude that jX : Xan ! X induces a
bijection |Xan|! X(C).

Secondly, consider a morphism of C-varieties f : X ! Y , which by work-
ing locally we may assume to be affine: X = SpecC [x1, . . . , xk] / (g1, . . . , gl) and
Y = SpecC [z1, . . . , zn] / (f1, . . . , fm). Then f is given by a homomorphism of C-
algebras f# : C [z1, . . . , zn] / (f1, . . . , fm) ! SpecC [x1, . . . , xk] / (g1, . . . , gl). For ev-
ery 1 ≤ i ≤ n choose hi ∈ C [x1, . . . , xk] such that f# (zi) = hi. Then the holo-
morphic map (h1, . . . , hn) : Ck ! Cn restricts to the morphism of complex-analytic
spaces f an : Xan ! Y an.

Lemma 2.6.3. The analytification functor (·)an is faithful and preserves all finite
fibre products. The restriction of (·)an to the full subcategory of complete C-varieties
is fully faithful.
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Proof. Faithfulness holds because a morphism f : X ! Y of (reduced) C-varieties
is determined by the induced map on C-points X(C)! Y (C). The assertion about
full faithfulness can be found in [GR71][Exposée XII, Corollaire 4.5]. Preservation
of finite fibre products may be proved either using the universal property or the
explicit description of (·)an given.

Lemma 2.6.4. Let X be a C-variety, and let f : X ! Y be a morphism of C-
varieties. Then the following equivalences hold:

(1) X is smooth over C if and only if Xan is a complex manifold;

(2) X is connected in the Zariski topology if and only if Xan is connected in the
analytic topology;

(3) f is proper if and only if fan is proper;

(4) f is flat if and only if fan is flat;

(5) X ! SpecC is proper if and only if Xan is compact.

(6) Suppose that X and Y are smooth over C. Then f is smooth if and only if f an

is a holomorphic submersion.

(7) f has reduced fibres if and only if f an has reduced fibres.

Proof. See [GR71][Exposée XII, Prop. 3.1].

Remark 2.6.5. It follows from Lemma 2.6.4(1) that the analytification functor re-
stricts to a functor

(·)an : C–Vrtsm ! CMan (2.6)

from the category of smooth C-varieties to the category of complex manifolds.

Theorem 2.6.6. Let X be a complete C-variety. The functor that associates, to
each coherent OX-module F , its pullback Fan on Xan by jX : Xan ! X is exact and
an equivalence of categories.

Proof. See [GR71][Exposée XII, Théorème 4.4].

Theorem 2.6.7. Let f : X ! Y be a proper morphism of C-varieties and F a
coherent OX-module. Then for every integer p ≥ 0 there is a canonical isomorphism

(Rpf∗F)an ! Rpf an
∗ (Fan).

Proof. See [GR71][Exposée XII, Théorème 4.2].

Theorem 2.6.8. Let X be a complete C-variety, and F a coherent OX-module.
Then for any integer p ≥ 0 the canonical morphism Hp(X,F) ! Hp(Xan,Fan) is
an isomorphism.

Proof. See [GR71][Exposée XII, Corollaire 4.3].
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2.7 Projective-algebraic complex spaces

In this section we give criteria for a complex space X to be algebraic, i.e. to be
isomorphic to V an for a C-variety V . We will see this holds for compact Riemann
surfaces in Theorem 2.7.2, and for analytic subspaces of a projective space CPn as
Chow’s Theorem 2.7.3. Moreover, we prove a relative version of Chow’s theorem
in Corollary 2.7.8 in terms of relatively very ample analytic line bundles. Finally
we show in Lemma 2.7.9 that the analytification functor preserves relative very
amplitude of a line bundle. These results will be used in Chapter 10 to prove that
the Kuga–Sato varieties we construct are actually algebraic.

Definition 2.7.1. We say a (reduced) complex space X is algebraic if it lies in
the essential image of the analytification functor. We say a complex space Y is
projective-algebraic if there exists a projective C-variety V and a biholomorphism
X ∼= V an.

Theorem 2.7.2. Let X be a compact Riemann surface. Then X is projective-
algebraic.

Proof. See [Dem][Corollary VII.14.3].

Theorem 2.7.3. Let X be an analytic subset of a complex projective space CPn,
with homogeneous coordinates (z0 : z1 : . . . : zn). Then X is the common zero set of
finitely many homogeneous polynomials Pj(z0, ..., zn) (1 ≤ j ≤ t). In particular we
have that X = V+(P1, P2, . . . , Pt)

an is projective-algebraic.

Proof. This is Chow’s theorem, see [Dem][Theorem II.8.10].

Lemma 2.7.4. Let fi : Xi ! Y (1 ≤ i ≤ k) be holomorphic maps of complex spaces
with common target Y . If each Xi is projective-algebraic, then the fibre product

X1 ×Y X2 ×Y · · · ×Y Xk

is projective-algebraic.

Proof. By induction it suffices to treat the case k = 2. By definition X1 ×Y X2 is
the subset of X1 ×X2 which is the preimage under f1 × f2 : X1 ×X2 ! Y × Y of
the diagonal {(y, y) ∈ Y } ⊂ Y × Y . The diagonal {(y, y) ∈ Y } is locally given by
analytic equations and is closed in Y × Y by virtue of the Hausdorff assumption on
Y . Hence ∆ is an analytic subset of Y × Y , whence its preimage X1 ×Y X2 is an
analytic subset of X1×X2. Each Xi is projective-algebraic by assumption, so we may
assume it is an analytic subset of CPni for some integer ni > 0. The Segre embedding
provides a closed embedding CPn1 × CPn2 ! CP(n1+1)(n2+1) − 1. We conclude that
X1 ×Y X2 is an analytic subset of CPn with n = (n1 +1)(n2 +1)− 1, and an appeal
to Chow’s theorem concludes the proof.

The projective bundle construction given in Theorem–Definition 2.4.2 also applies
in the analytic category, as the following theorem asserts.
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Theorem-Definition 2.7.5. Let Y be a complex analytic space and let E be a
coherent-analytic sheaf on Y . Then there exists a complex space PY (E) over Y such
that for each holomorphic map f : X ! Y of complex spaces, the Y -morphism from
X into PY (E) correspond bijectively to isomorphism classes of pairs (L, ψ) consisting
of a line bundles L on X and an epimorphism ψ : f ∗E ! L. We call PY (E) ! Y
the projective bundle over Y attached to E.

Proof. See [Fis76][Def 1.9].

Lemma 2.7.6. Let X be a projective manifold and E a coherent-analytic sheaf on
X. Then PX(E) is projective.

Proof. Let X0 be a projective C-variety such that X = Xan
0 . By Theorem 2.6.6 there

exists a coherent sheaf E0 on X0 such that E = Ean
0 . Let P(Ean

0 ) be the algebraic
projective bundle of E0 over X0. Then comparing the constructions of the projective
bundles in the algebraic and analytic category yields that P(Ean

0 ) = P(E0)an.

Definition 2.7.7. Let f : X ! Y be a proper morphism of complex spaces. Let L
be a line bundle on X. Then E = f∗L is a coherent sheaf on Y by Remmert’s direct
image theorem, see [Dem][Theorem IX.5.1]. We call L very ample on X/Y or f -very
ample if the adjunction morphism f ∗E = f ∗f∗L ! L is an epimorphism and the
induced map X ! P(E) is a closed embedding.

Our motivation for introducing relatively very ample line bundle is the following
corollary, which will be used in Section 10.4 to prove that Kuga–Sato varieties are
projective–algebraic.

Corollary 2.7.8. Let f : X ! Y be a proper morphism of complex spaces and
suppose that L is an f -very ample line bundle. If Y is projective, then X is projective.

Proof. Let E = f∗L be the direct image of L by f . Then E is a coherent-analytic
sheaf on Y . By Lemma 2.7.6 the projective bundle P(E) over Y is a projective-
algebraic complex space. Since L is f -very ample, there exists a closed embedding
of X into P(E). Since the composition of closed embeddings is a closed embedding,
we conclude that X is isomorphic to a closed analytic subspace of a projective space.
By Chow’s theorem Theorem 2.7.3 we conclude that X is projective-algebraic.

The analytification functor preserves very ample line bundles.

Lemma 2.7.9. Let f : X ! Y be a proper morphism of C-varieties. Let L be an
f -very ample line bundle on X. Then Lan is an f an-very ample line bundle on Xan.

Proof. The first condition that the line bundle L be f -very ample states that
the adjunction map f ∗f∗L ! L is an epimorphism in the category of coherent
sheafs on X. We have to show the analogous statement that the adjunction map
(f an)∗f an

∗ (Lan) is an epimorphism in the category of coherent sheafs on Xan. Since
the functor (·)an : Coh(X) ! Coh(Xan) is exact by Theorem 2.6.6, it follows that
(f ∗f∗L)an ! Lan is an epimorphism in the category of coherent sheafs on Xan. The
definition of f an implies that (f ∗F)an = (f an)∗Fan for any coherent sheaf F on Y .
Further, by Theorem 2.6.7 we have that (f∗L)an = f an

∗ (Lan). It follows that

(f an)∗(f an
∗ (Lan) = (f an)∗((f∗L)an) = (f ∗f∗L)an ! Lan
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is an epimorphism in the category of coherent analytic sheafs on X, as desired.
It remains to be checked that the Y an-morphism ϕLan : Xan ! P(f an

∗ Lan) at-
tached to the above epimorphism is a closed embedding. We saw in the proof of
Lemma 2.7.6 that P(f∗L)an = P((f∗L)an) and in the first paragraph that one has
(f∗L)an = f an

∗ Lan. Since L is f -very ample the Y -morphism ϕL : X ! P(f∗L) at-
tached to the epimorphism f ∗f∗L ! L is a closed embedding. By we have that
(ϕL)

an : Xan ! P(f∗L)an is a closed embedding. It is plain that via the isomorphism
P(f∗L)an = P((f∗L)an) = P(f an

∗ Lan) we have (ϕL)
an = ϕLan . We conclude that ϕLan

is a closed embedding, as desired.
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Chapter 3

Modular curves

This chapter reviews the classical construction of the complex-analytic open modular
curve Y (Γ) attached to a congruence subgroup Γ of SL2(Z) as the quotient of the
upper half-plane H by the action of Γ via fractional linear transformations, and of
its compactification X(Γ) by adding a finite set of cusps Cusps (Γ). The end result
of this procedure is encoded in Theorem 3.5.4 which identifies the compactified
modular curve X(Γ) with the pushout of a certain diagram of open embeddings of
Riemann surfaces. This description of X(Γ) lies at the basis of our construction in
later chapters of various objects living over X(Γ).

Examples of congruence subgroups which play a prominent role in the theory are
Γ(N),Γ1(N) and Γ0(N) for integers N ≥ 1. Therefore we will explicitly determine
their sets of cusps Cusps(N), Cusps1(N) resp. Cusps0(N). The points of the modular
curves Y (N), Y1(N) resp. Y0(N) attached to these congruence subgroups are in
bijection with isomorphism classes of elliptic curves with a level-N structure resp.
point of exact order N resp. cyclic subgroup of order N . For a general congruence
subgroup Γ we also provide a modular description of Y (Γ) as classifying so called Γ
structures. In Section 5.3, we will define these structures in the relative setting, and
discuss moduli spaces for them.

3.1 The action of SL2(Z) on H

The story starts with an action of the special linear group of degree 2 over Z

SL2(Z) =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
on the Poincaré upper half-plane

H = {z ∈ C : ℑz > 0}.

Lemma 3.1.1. A proper action of SL2(Z) on H via biholomorphisms is given by

SL2(Z)× H! H(
γ =

(
a b
c d

)
, τ

)
7! [γ](τ) =

aτ + b

cτ + d

(3.1)
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For every point τ ∈ H, the stabilizer SL2(Z)τ = {γ ∈ SL2(Z) : [γ](τ) = τ} is finite.

Proof. It is straightforward to verify associativity that the unit matrix operates as
the identity. If a, b, c, d ∈ R are such that ad − bc > 0, then τ 7! (aτ + b)/(cτ + d)
defines an automorphism of the Riemann sphere CP1 = C∪{∞}, called a fractional
linear transformation or Möbius transformation, that leaves the open subset H ⊂ C
invariant. This shows that [γ] : H! H is a biholomorphism for every γ ∈ SL2(Z).

[Miy05][Thm. 1.5.3] asserts that SL2(Z) acts properly on H. The stabilizers of
points in H are determined in [Miy05][Thm. 4.1.3] to be finite cyclic subgroups, of
order 2, 4 or 6 .

3.2 Congruence subgroups

Let N ≥ 1 be an integer. The canonical map πN : SL2(Z)! SL2(Z/NZ) is surjective
[Miy05][Theorem 4.2.1(1)]. We define the principal congruence subgroup of level N
to be the kernel of πN ,

Γ(N) =

{(
a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1 mod N, b ≡ c ≡ 0 mod N

}
.

More generally, a subgroup Γ ⊂ SL2(Z) is called a congruence subgroup if there
exists an integer N ′ ≥ 1 such that Γ ⊃ Γ (N ′). The greatest common divisor
N = gcd {N ′ ≥ 1 : Γ ⊃ Γ (N ′)} of all such integers N ′ is called the level of Γ. For
positive integers N1 and N2 it holds that Γ (N1) ∩ Γ (N2) = Γ (lcm (N1, N2)) and
Γ (N1) Γ (N2) = Γ (gcd (N1, N2)), so the level N of Γ is minimal with respect to the
property that Γ ⊃ Γ(N). Examples which will play a key role in the sequel include

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 mod N

}
the preimage under πN of the upper triangular matrices, and

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1 mod N, c ≡ 0 mod N

}
the preimage under πN of the unipotent upper triangular matrices. In sum, all
squares and rectangles in the following diagram are cartesian.

Γ(N) Γ1(N) Γ0(N) SL2(Z)

{(
1 0
0 1

)} {(
1 ∗
0 1

)} {(
∗ ∗
0 ∗

)}
SL2(Z/NZ).

⊂ ⊂ ⊂

⊂ ⊂ ⊂

The indices of any two horizontally aligned inclusions in the top and bottom row
are equal, and determined as follows.
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Lemma 3.2.1. With p denoting a prime divisor of N , we have

(SL2(Z) : Γ0(N)) = N
∏
p|N

(
1 +

1

p

)
,

(Γ0(N) : Γ1(N)) = N
∏
p|N

(
1− 1

p

)
,

(Γ1(N) : Γ(N)) = N.

Proof. This is the content of [Miy05][Thm. 4.2.1, Thm. 4.2.4(2) and Thm. 4.2.5].

For N ≤ 2 we have −1 ∈ Γ(N). For N > 2 we have −1 ∈ Γ0(N)\Γ1(N).

Proposition 3.2.2. Let N ≥ 1 be an integer.

(1) The congruence subgroup Γ(N) is torsion-free if and only if N ≥ 3.

(2) The congruence subgroup Γ1(N) is torsion-free if and only if N ≥ 4.

(3) The congruence subgroup Γ0(N) is not torsion-free for every N ≥ 1.

Proof. See [Dia06][§3.9].

3.3 The open modular curve Y (Γ) = Γ\H
Proposition 3.3.1. Let Γ ⊂ SL2(Z) be a congruence subgroup. There exists a local
analytic isomorphism

pΓ : H! Y (Γ)

to a connected Riemann surface that is a categorical quotient for the action of Γ on
H in the category of complex manifolds.

Proof. By Lemma 3.1.1 the action of SL2(Z) is proper with finite stabilizers, so that
of the subgroup Γ ⊂ SL2(Z) is as well. By Theorem 2.3.5 a categorical quotient for
this Γ-action on the Riemann surface H exists, which is a local analytic isomorphism
pΓ : H! Y (Γ) to a Riemann surface. Connectedness of H implies that of the quotient
Y (Γ).

Definition 3.3.2. The open modular curve attached to a congruence subgroup Γ
of SL2(Z) is the Riemann surface

Y (Γ) := Γ\H.

Suppose that Γ̃ ⊂ Γ ⊂ SL2(Z) are two congruence subgroups of SL2(Z). Since the
map pΓ : H ! Y (Γ) is Γ-invariant, it is also Γ̃-invariant. Because pΓ̃ is universal
among Γ̃-invariant holomorphic maps out of H, there exists a unique holomorphic
map

pΓ,Γ̃ : Y
(
Γ̃
)
! Y (Γ) (3.2)

such that pΓ,Γ̃ ◦ pΓ̃ = pΓ.
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3.4 The set of cusps Cusps(Γ) = Γ\P1(Q)

Using the same formula (3.1) as in Lemma 3.1.1, we define an action of SL2(Z) on
the projective line over Q

P1(Q) = Q ∪ {∞}.

Lemma 3.4.1. A transitive action of SL2(Z) on P1(Q) is given by the formula

SL2(Z)× P1(Q)! P1(Q)(
γ =

(
a b
c d

)
, s

)
7!

as+ b

cs+ d
.

Proof. See [Dia06][§2.4].

The stabilizer of ∞ ∈ P1(Q) is the parabolic subgroup

P := SL2(Z)∞ =

{
±
(

1 n
0 1

)
: n ∈ Z

}
. (3.3)

Hence there is an isomorphism of SL2(Z)-sets

SL2(Z)\P
∼
−! P1(Q),

γP 7! [γ](∞) =: sγ.
(3.4)

Definition 3.4.2. Let Γ be a congruence subgroup of SL2(Z). The set of Γ-orbits
in P1(Q) under the action Lemma 3.4.1 will be denoted

Cusps(Γ) = Γ\P1(Q) =
{
Γs : s ∈ P1(Q)

}
.

The elements of Cusps(Γ) will be called cusps of Γ.

The isomorphism of SL2(Z)-sets 3.5 induces a bijection

Γ\SL2(Z)/P ! Cusps(Γ)
ΓγP 7! Γ[γ](∞).

(3.5)

Since the congruence subgroup Γ has finite index in SL2(Z), it follows that Cusps(Γ)
is a finite set.

Let γ ∈ SL2(Z). The subgroup P ∩ γ−1Γγ of P depends only on on the double
coset ΓγP , so it makes sense to set

Pt = Pγ,Γ := P ∩ γ−1Γγ, where t = Γ[γ](∞). (3.6)

Since the index of the congruence subgroup γ−1Γγ in SL2(Z) is finite, P ∩ γ−1Γγ is
a finite-index subgroup of P . Because P ∼= {±1} × Z, the finite-index subgroups of
P come in three families parametrized by an integer h ∈ Z≥1 :
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Ph =

{
±
(

1 nh
0 1

)
: n ∈ Z

}
,

P+
h =

{(
1 nh
0 1

)
: n ∈ Z

}
,

P−
h =

{(
(−1)n nh

0 (−1)n

)
: n ∈ Z

}
.

In pertaining to indices we have h = (P : Ph) and Ph = {±1} × P+
h = {±1} × P−

h .

Definition 3.4.3. The width of a cusp t ∈ Cusps(Γ) is the positive integer h = ht
such that Pt ∈

{
Ph, P

+
h , P

−
h

}
.

We call t a regular cusp if Pt ∈
{
Ph, P

+
h

}
and an irregular cusp if Pt = P−

h .

For a cusp t of Γ having width h, we have Pt = Ph if −1 ∈ Γ and Pt ∈
{
P+
h , P

−
h

}
if

−1 /∈ Γ (e.g. if Γ is torsion-free). If t = Γs with s ∈ P1(Q) then we have

ht = (P : ±Pt) = (SL2(Z)s : ±Γs).

Definition 3.4.4. For every N ≥ 1, we denote the sets of cusps of the congruence
subgroups of the shape Γ(N),Γ1(N) and Γ0(N) by

• Cusps(N) = Cusps(Γ(N));

• Cusps1(N) = Cusps (Γ1(N));

• Cusps0(N) = Cusps (Γ0(N)) .

In the remainder of this section, we describe the cusps of the congruence subgroups
Γ(N),Γ1(N) and Γ0(N) for every integer N ≥ 1.

Definition 3.4.5. Let N ∈ Z≥1. We denote the image of the parabolic subgroup P
under the canonical map πN : SL2(Z)! SL2(Z/NZ) by

P̄N =

{
±
(

1 b
0 1

)
: b ∈ Z/NZ

}
. (3.7)

Since Γ(N)\SL2(Z) ∼= SL2(Z/NZ), setting Γ = Γ(N) in (3.6) gives an isomorphism
of SL2(Z/NZ)-sets

Cusps(N) ∼= SL2(Z/NZ)/P̄N . (3.8)

Definition 3.4.6. The images of the congruence subgroups Γ1(N) and Γ0(N) under
the canonical map πN : SL2(Z)! SL2(Z/NZ) will be denoted respectively by

Γ̄1(N) =

{(
1 b
0 1

)
: b ∈ Z/NZ

}
,

Γ̄0(N) =

{(
d−1 b
0 d

)
: b ∈ Z/NZ, d ∈ (Z/NZ)×

}
.

Now (3.7) induces bijections

Cusps1(N) ∼= Γ1(N)\SL2(Z/NZ)/P̄N ,

Cusps0(N) ∼= Γ0(N)\SL2(Z/NZ)/P̄N .
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Proposition 3.4.7. Let N ≥ 1 be an integer and let Γ ∈ {Γ(N),Γ1(N),Γ0(N)}.
Then the number of cusps of Γ is given for N ≤ 4 by the table

N 1 2 3 4
Cusps(N) 1 3 4 6
Cusps1(N) 1 2 3 3
Cusps0(N) 1 2 2 3

and for N ≥ 5 by

#Cusps(N) =
1

2
N2

∏
p|N

(
1− 1

p2

)
=

#SL2(Z/NZ)
2N

,

#Cusps1(N) =
1

2

∑
0<d|N

ϕ(d)ϕ(N/d),

#Cusps0(N) =
∑
0<d|N

ϕ(gcd(d,N/d)).

Proof. See [Dia06][§3.9].

Proposition 3.4.8. Let N ≥ 1 be an integer and let Γ ∈ {Γ(N),Γ0(N),Γ1(N)}.
Then all cusps Γs of Γ are regular with the sole exception of s = 1/2 when Γ = Γ1(4).

Proof. See [Dia06][§3.8].

3.5 The compactified modular curve X(Γ) = Γ\H∗

Let Γ be a congruence subgroup of SL2(Z). The aim in this section is to describe
the classical compactification of the open modular curve Y (Γ) = Γ\H from Defini-
tion 3.3.2 by adding the set Cusps(Γ) from Definition 3.4.2 to it, which results in a
compact connected Riemann surface denoted X(Γ).

The compactification procedure is classical and can be found in any textbook
on modular forms, see e.g. [Dia06][§2.4] or [Shi94][§1.5]. Therefore we have opted
for a summarily treatment omitting many proofs. Our modest aim is to describe
the end result X(Γ) in Theorem 3.5.4 as the pushout of a certain diagram of open
embeddings of Riemann surfaces involving Y (Γ) and open disks in C centered at 0.
This description of X(Γ) as a pushout provides a uniform framework for the con-
struction of a wide class of geometric objects living over X(Γ), which is one of the
principal aims of this thesis. It inevitably involves quite a bit of notation, which we
will introduce in the present section and return to frequently in later chapters.

Theorem 3.5.1. For any congruence subgroup Γ of SL2(Z) there exists a (Haus-
dorff) compact Riemann surface X(Γ) containing Y (Γ) as the open complement of
a finite set Cusps(Γ).

If Γ1 is a second congruence subgroup of SL2(Z) with Γ1 ⊂ Γ, then the map (3.2)
extends to a holomorphic map

pΓ,Γ1 : X (Γ1)! X(Γ) (3.9)

mapping Cusps (Γ1) surjectively onto Cusps(Γ).
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We have constructed actions of SL2(Z) on the sets H and P1(Q). In [Miy05][§1.7] it
is shown that the union of these two SL2(Z)-sets

H∗ := H ∪ P1(Q) (3.10)

admits a unique topology for which

• H is an open subset with its usual topology;

• P1(Q) is a discrete closed subset;

• a fundamental system of neighborhoods of ∞ is given by the sets {z ∈ C : ℑz > l}
for l ∈ R≥1;

• the induced action of SL2(Z) on H∗ is via homeomorphisms.

Let Γ be a congruence subgroup of SL2(Z) and form the quotient topological space

X(Γ) := Γ\H∗.

Lemma 3.5.2. The topological space X(Γ) is compact and Hausdorff.

Proof. See [Miy05][Lemma 1.7.7, Theorem 4.1.2(2), Corollary 1.9.2]. The compact-
ness of X(Γ) is stated in this reference by saying that Γ is a Fuchsian group of the
first kind).

Since the decomposition (3.10) is Γ-stable, we have that

X(Γ) = Y (Γ) ⊔ Cusps(Γ)

is the union of an open subset Y (Γ) and a finite closed set Cusps(Γ).

Next we make the topological space X(Γ) into a Riemann surface by endowing
it with a complex structure. By Proposition 3.3.1 we already have a complex struc-
ture on the open subset Y (Γ) = Γ\H. So it remains to give complex charts centered
at the cusps. First we define certain (punctured) neighbhorhoods of the cusps in
X(Γ).

Consider the following punctured neighborhood resp. neighborhood of the cusp
∞ in H∗

U∞ = {τ ∈ C : ℑ(τ) > 1} ⊂ H, U∗
∞ = U∞ ∪ {∞} ⊂ H∗

For every γ ∈ SL2(Z) one has that [γ] (U∞) ∩ U∞ ̸= ∅ only if [γ](∞) = (∞). Since
P acts on H via translation by some integer, U∞ is stable under P .
Let s ∈ Q = P1(Q)\{∞} be another cusp. We set Us := [γ] (U∞), where γ ∈ SL2(Z)
is any element such that [γ](∞) = s. Then Us does not depend on the choice of
γ, since any other γ′ ∈ SL2(Z) with [γ′] (∞) = s is of the shape γ′ = γδ for some
δ ∈ P , so that [γ′] (U∞) = [γ] ([δ] (U∞)) = [γ] (U∞). An open neighborhood of the
cusp t = Γs ∈ Cusps(Γ) in X(Γ) is given by Γs\U∗

s = {t} ⊔ Γs\Us.
Note also that Us∩Us′ = ∅ for two distinct cusps s, s′ ∈ P1(Q) (cf. [Miy05][§1.7]).

Therefore an open neighbhorood of the set Cusps(Γ) in X(Γ) is given by⊔
s

Γs\U∗
s = Cusps(Γ) ∪

⊔
s

Γs\Us,

where s ∈ P1(Q) ranges over a system of orbit representatives for Γ\P1(Q).
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Notation 3.5.3. For a positive integer h set

Vh := {qh ∈ C : 0 < |qh| < exp(−2π/h)} ,
V ∗
h := {qh ∈ C : |qh| < exp(−2π/h)} = Vh ∪ {0}.

Let P ′
h ∈

{
Ph, P

+
h , P

−
h

}
. There exists an analytic isomorphism

eh : P
′
h\U∞

∼
−! V ∗

h

P ′
hτ 7! exp(2πiτ/h)

(3.11)

which extends to a homeomorphism

eh : P
′
h\U∗

∞
∼
−! Vh

P ′
h∞ 7! 0.

Let γ ∈ SL2(Z), and set s = [γ](∞) and t = Γs. Recall that in (3.6) we defined

Pt = Pγ,Γ = γ−1Γsγ = P ∩ γ−1Γγ.

Let h be the width of t, so Pt ∈ {Ph, P+
h , P

−
h }. We take as a complex chart of X(Γ)

centered at t the composite

Γs\U∗
s

[γ−1]
! Pt\U∗

∞
eh! Vh. (3.12)

Since (3.11) is a biholomorphism, this chart is compatible with those in the com-
plex atlas on Y (Γ). Thus we have constructed a complex atlas on X(Γ), and the
construction of the Riemann surface X(Γ) is complete. We encode the end result of
this procedure in the following theorem.

Theorem 3.5.4. Let Γ be a congruence subgroup of SL2(Z) and R be a set of double
coset representatives for Γ\SL2(Z)/P . Then the Riemann surface X(Γ) = Γ\H∗ in
Theorem 3.5.1(1) is the pushout of the following diagram of topological spaces, in
which we set h = hγ and s = sγ⊔

γ∈R Pγ,Γ\U∞
⊔
γ∈R Γsγ\Us

⊔
γ∈R Vh̃ Y (Γ)

X(Γ).

⊔[γ]∼=⊔
eh

(3.13)

Proof. This follows from Theorem 3.5.1(1) and the preceding discussion.

Notation 3.5.5. (1) Let h ∈ Z≥1. There is a unique action P ! Aut(Vh), δ 7! [δ]h
of P on Vh via biholomorphism such that for each δ ∈ P the following diagram
commutes

U∞ V ∗
h

U∞ V ∗
h .

eh

[δ] [δ]h

eh
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For z ∈ Vh and n ∈ Z we have[(
−1 0
0 −1

)]
h

(z) = z,

[(
1 n
0 1

)]
(z) = ζnNz. (3.14)

(2) Let d ∈ Z≥1 and set h̃ = dh, so that h̃ is a multiple of h. Denote pd : ∆! ∆ the
map given by pd(z) = zd, which restricts to a map

pd : Vdh ! Vh,

z 7! zd.
(3.15)

Note that [δ]h ◦ pd = pd ◦ [δ]h̃ for each δ ∈ P . If P ′
h̃
∈
{
Ph̃, P

+

h̃
, P−

h̃

}
is a subgroup of

P ′
h and δ ∈ P , then the following diagram commutes:

P ′
h̃
\U∗

∞ Vh̃

P ′
h\U∗

∞ Vh.

eh̃

[δ] [δ]h◦pd

eh

(3.16)

Theorem 3.5.6. Let Γ ⊂ Γ̃ be two congruence subgroups of SL2(Z). Choose sets R
and R̃ of double coset representatives for Γ\SL2(Z)/P resp. Γ̃\SL2(Z)/P. Then for
each β ∈ R̃ there exist α(β) ∈ Γ,γ(β) ∈ R and δ(β) ∈ P with α(β)β = γ(β)δ(β).
For every β ∈ R̃ we have that Pβ,Γ̃ ⊂ Pγ(β),Γ and d(β) := hβ,Γ̃/hγ(β),Γ is an integer.

The quotient map pΓ,Γ̃ : X(Γ̃) = Γ̃\H ! X(Γ) = Γ̃\H in Theorem 3.5.1(2) is the
pushout of the following morphism between the rows of the diagram below induced
by γ : R̃! R, in which we set s = [γ](∞), h = hΓs s̃ = sβ and h̃ = hΓ̃s̃:⊔

β∈R̃ V
∗
h̃

⊔
β∈R̃ Pβ,Γ̃\U∞

⊔
β∈R̃ Γ̃s̃\Us̃ Y (Γ̃)

⊔
γ∈R V

∗
h

⊔
γ∈R Pγ,Γ\U∞

⊔
γ∈R Γs\Us Y (Γ).

⊔([δ(β)]h◦pd(β))

⊔eh̃ ⊔[β]

⊔[δ(β)] ⊔[α(β)] pΓ,Γ̃

⊔eh ⊔[γ] (3.17)

Proof. Let β ∈ R̃. We have α(β)β = γ(β)δ(β) with α(β) ∈ Γ and δ(β) ∈ P , so
ΓβP = Γγ(β)P , i.e. β and γ define the same cusp Γs̃ = Γs of X(Γ). Recall from
(3.6) that for ϵ ∈ SL2(Z) the subgroup Pϵ,Γ depends only on the cusp of X(Γ)
defined by ϵ; in particular we have Pβ,Γ = Pγ,Γ. Hence the inclusion Γ̃ ⊂ Γ implies
that Pβ,Γ̃ ⊂ Pβ,Γ = Pγ,Γ. This in turn implies that

d(β) = hβ,Γ̃/hγ(β),Γ =
(
P : Pβ,Γ̃

)
/
(
P : Pγ(β),Γ

)
=

(
Pγ(β),Γ : Pβ,Γ̃

)
is an integer.

Next we show there is a morphism between the rows of the diagrams as asserted.
Let again β ∈ R̃ be given. Since s = [α(β)](s̃) we have Γ̃s̃ ⊂ Γs̃ = α(β)−1Γsα(β).
Therefore Pβ,Γ̃ ⊂ Pγ,Γ and α(β)Γ̃s̃ ⊂ α(β)Γs, whence there are well-defined vertical
maps in the middle of diagram. We have seen that the left square commutes in
(3.16). The identity α(β)β = γ(β) implies that the middle square commutes. The
right square commutes since α(β) ∈ Γ. This concludes the proof.
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Remark 3.5.7. In particular, taking Γ̃ = Γ, we see that the diagrams (3.13) for
various choices of a set R of double coset representatives for Γ\SL2(Z)/P are each
isomorphic, hence the pushouts of these diagrams are also isomorphic. Therefore we
could have defined X(Γ) as the pushout of any of these squares.

3.6 Modular curves as moduli spaces of elliptic

curves

This section recollects some classical facts about the torsion of complex elliptic
curves. Without proof we give the modular description of the points of the Riemann
surfaces Y (N), Y1(N) and Y0(N) for integers N ≥ 1 as parametrizing isomorphism
classes of complex elliptic curve with some additional structure on their N -torsion
subgroup, see Theorem 3.6.2. These definitions and results will be generalized in
Chapter 4 to the relative setting of an elliptic curve living over a general base
complex manifold, as opposed to the final object {∗} of CMan.

A complex elliptic curve may be defined as a compact connected complex Lie
group of dimension 1. By the uniformization theorem, there exists a co-compact
lattice Λ ⊂ C (that is, Λ = Zω1 + Zω2 for some R-basis (ω1, ω2) of C ) and an
isomorphism E ∼= C/Λ. We fix such an isomorphism, and work in the sequel with
E = C/Λ. A point of E is a coset z + Λ with z ∈ C, but when it is clear from the
context that a point of E is meant, we may simply write z instead of z + Λ.

The universal covering space of E is the projection map C ! C/Λ = E. Let
H1(E;Z) be the first singular homology group of E with Z-coefficients. The map
Λ! H1(E;Z) sending λ ∈ Λ to the homology class of the loop [0, 1]! E, t 7! tλ is
an isomorphism, whenceH1(E;Z) is a free rank-2 abelian group. AnH1-trivialization
of E is a choice of isomorphism ψ : Z2 ! H1(E;Z).

For an integer N ≥ 1, the N -torsion subgroup of E is described as

E[N ] =
1

N
Λ/Λ ∼= Λ/NΛ = H1(E;Z)⊗Z (Z/NZ).

A level-N structure ϕ on E is an isomorphism of groups ϕ : (Z/NZ)2 ! E[N ]. It is
equivalent data to give the (Z/NZ)-basis (ϕ(1, 0), ϕ(0, 1)) of E[N ]. A point of exact
order N of E is an element of E generating a subgroup of order N , i.e. the image
of 1 ∈ Z/NZ under an injective homomorphism Z/NZ ! E. A cyclic subgroup of
order N of E is a subgroup of E isomorphic to Z/NZ, i.e. the image of an injective
homomorphism Z/NZ! E.

There exists an alternating non-degenerate bilinear map eN : E[N ]×E[N ]! µN ,
called the Weil eN -pairing on E, determined by the condition that for every Z-basis
(ω1, ω2) of Λ we have

eN

(
1

N
ω1,

1

N
ω2

)
= ζ

sgn(ℑ(ω2/ω1)),
N

where ζN = exp(2πi/N). If ϕ is a level-N structure, then ζ = eN(ϕ(0, 1), ϕ(1, 0)) is
a primitive N -th root of unity, and we say that ϕ has Weil pairing ζ ∈ µ×

N .
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Example 3.6.1. Let τ ∈ H. Consider the co-compact lattice Λτ := Zτ + Z, and
set Eτ = C/Λτ . Then a level- N structure with Weil pairing ζN on E is given by
Ψτ = (τ/N, 1/N) : (Z/NZ)2 ! E[N ], (m,n) 7! (mτ + n)/N . The point τ

N
∈ E[N ]

has exact order N , and it generates a cyclic subgroup (Z/NZ) · τ
N

of order N of E.

Theorem 3.6.2. Let N ≥ 1 be an integer.

(1) The following map is a well-defined bijection between the set of points of the
Riemann surface Y (N) = Γ(N)\H and the set of isomorphism classes of complex
elliptic curves with a level-N structure with Weil pairing ζN :

|Y (N)| ∼
−!

{
complex elliptic curves with a level-N

structure with Weil pairing ζN

}
/ ∼=,

Γ(N)τ 7!

(
Eτ ,Ψτ =

(
τ

N
,
1

N

))
.

(3.18)

(2) The following map is a well-defined bijection between the set of points of the Rie-
mann surface Y1(N) = Γ1(N)\H and the set of isomorphism classes of complex
elliptic curves with a point of exact order N :

|Y1(N)| ∼
−! {complex elliptic curves with a point of exact order N}/ ∼=,

Γ1(N)τ 7!
(
Eτ ,

τ

N

)
.

(3.19)

(3) The following map is a well-defined bijection between the set of points of the Rie-
mann surface Y0(N) = Γ0(N)\H and the set of isomorphism classes of complex
elliptic curves with a cyclic subgroup of order N :

|Y0(N)| ∼
−! {complex elliptic curves with a cyclic subgroup of order N}/ ∼=,

Γ0(N)τ 7!
(
Eτ , (Z/NZ) · τ

N

)
.

(3.20)

Proof. See [Dia06][Thm. 1.5.1]
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Chapter 4

Relative elliptic curves

In Section 3.6 we considered a complex elliptic curve, which we defined as a compact
connected complex Lie group of dimension 1. The Uniformization Theorem gives an
isomorphism E ∼= C/Λ, where Λ is a co-compact lattice in C that is naturally iden-
tified with the first singular homology group H1(E;Z).

This chapter relativizes this theory by considering holomorphically varying fami-
lies of elliptic curves. LetM be a holomorphic manifold. An elliptic curve overM is,
roughly speaking, a holomorphic manifold E with a map to M such that the fibre
Em over every point m ∈M is elliptic curves. See Section 4.1 for precise definitions
of various kinds of geometric objects living over M . We state in Theorem 4.2.6 the
analogue of the uniformization theorem for elliptic curves over M .

There exists a natural pairing on the N -torsion E[N ] of E with values in the
group µN of complex N -th roots of unity, called the Weil pairing and defined in Sec-
tion 4.5. We define this pairing by uniformizing E as the quotient of a holomorphic
line bundle by a lattice. In Theorem 4.3.1 we construct this lattice by assembling
the fibral homology groups H1(Em;Z) into a local system H1(E/M) of rank-2 free
Z-modules on M . This local system plays a pivotal role in Chapter 5, where it is
used to define various enrichments of elliptic curves.

4.1 Elliptic curves over a complex manifold

Let M be a complex manifold.

Definition 4.1.1. (1) A complex manifold over M or M-complex manifold is a
complex manifold X together with a holomorphic map f : X ! M . We let
CMan/M be the category of complex manifolds overM , in which the morphisms
are commutative triangles

X Y

M.

h

f g

(2) The full subcategory of CMan consisting of those holomorphic maps f : X !M
which are submersive is denoted C/M .
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The category C/M admits all finite fibered products, by Lemma 2.2.11 and the fact
that identity maps and compositions of holomorphic submersions are submersive.

Definition 4.1.2. (1) An M -group is a complex manifold G with a submersion
f : G ! M , a multiplication map m : G ×M G ! G and an identity section
e :M ! G such that (f : G!M,m, e) is a group object of the category C/M .

(2) Let g ∈ Z≥0. AnM-complex torus of relative dimension g is a proper, connected,
holomorphic submersion f : G!M of relative dimension g with a structure of
commutative M -group.

(3) An M-elliptic curve is an M -complex torus of relative dimension 1.

By abuse of notation, often we will refer to an M -group (f : G ! M,m, e) simply
by the underlying holomorphic map f : G ! M , or even the underlying complex
manifold G.

Definition 4.1.3. Let h :M ′ !M be a holomorphic map of complex manifolds.
If f ′ : X ′ !M ′ and f : X !M are complex manifolds over M ′ respectively M ,

then we say a holomorphic map h̃ : X ′ ! X covers h if f ◦ h̃ = h ◦ f ′.
If X ′ is an M ′-group and X is an M -group, then a homomorphism of M-groups

from X ′ to X covering h is a holomorphic map h̃ : X ′ ! X covering h such that
for every m′ ∈M ′ the map X ′

m′ ! Xh(m′) is a homomorphism of groups.

This defines a category of relative Lie groups over CMan. We denote CTor resp.
Ell its full subcategory spanned by relative complex tori resp. elliptic curves.

Example 4.1.4. If M = {∗} is a point, then an M -complex torus resp. M -elliptic
curve is a classical complex torus resp. complex elliptic curve.

Example 4.1.5. Let k ∈ Z≥0 and for each i ∈ {1, 2, . . . , k} let fi : Gi !M be anM -
group. Then we can form a product M-group f : G = G1×M G2×M · · ·×M Gk !M
as the product of the group objects fi : Gi !M in C/M .

If each fi is an M -complex torus of relative dimension, then f is an M -complex
torus of relative dimension g1 + g2 + . . .+ gk.

Now let us provide context to Example 4.1.5(2) by giving an alternative description
ofM -elliptic curves. We first discuss the classical equivalence between elliptic curves
and pointed genus-1 Riemann surfaces.

Theorem-Definition 4.1.6. Let C be a connected compact Riemann surface. Then
there exists an integer g = g(C) ∈ Z≥0, called the genus of C such that the following
are true:

(1) As a topological space C is homeomorphic to a g-holed torus. Here a 0-holed
torus is understood to be the 2-sphere S2.

(2) The first singular homology group of C with Z-coefficients is free of rank 2g, i.e.
H1(C;Z) ∼= Z2g.

(3) One has dimC H
1 (C,OC) = g, where OC is the structure sheaf of OC.

(4) One has dimC H
0 (C,Ω1

C) = g, where Ω1
C is the sheaf of holomorphic 1-forms on

C.
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(5) One has degKC = 2g − 2, where KC is the canonical divisor class on C.

Proof. See any introductory textbook on Riemann surfaces, e.g. [Mir95]

To sum up, the genus g(C) of a compact connected Riemann surface C satisfies

g(C) = dimC H
1 (C,OC) = dimC H

0
(
C,Ω1

C

)
=

1

2
(deg (KC) + 1) .

Let X be a compact connected Riemann surface. From the classical theory of elliptic
curves we know that X admits a structure of complex Lie group if and only if
g(X) = 1, and when g(X) = 1 for each point e ∈ X there exists a unique group
law on X for which e is the identity element. Furthermore, a holomorphic map
h : X ! X ′ of elliptic curves is a homomomorphsim if and only if h(e) = e′, where
e and e′ denote the identity elements of X resp. X ′.

Theorem 4.1.7. The assignment (X,m, e) 7! (X, e) defines an equivalence of cat-
egories from the category of elliptic curves to the category of compact connected
Riemann surfaces of genus 1 endowed with a point.

Proof. See [Mil06][Chapter II, §1].

Example 4.1.8. Let a, b ∈ C such that 4a3 + 27b2 ̸= 0. Then the Weierstrass
equation

E : Y 2Z = X3 + aXZ2 + bZ3

defines a complex submanifold of CP2 with homogeneous coordinates (X : Y : Z),
which is a compact connected Riemann surface E of genus 1. The choice of the point
O = (0 : 1 : 0) yields a complex Lie group law on E with identity element O.

We have the following relative version of Theorem 4.1.7. We define an M-curve of
genus 1 to be a proper holomorphic submersion f : X ! M of complex manifolds
such that each fibre Xm is a compact connected Riemann surface of genus 1.

Theorem 4.1.9. The assignment (f : X ! M,m, e) 7! (X, e) defines an equiva-
lence of categories from the category ofM-elliptic curves to the category ofM-curves
of genus 1 endowed with a section.

Proof. This is a relative version of Abel’s theorem, see [Conc][4.19].

Example 4.1.10. Let a, b : M ! C be holomorphic functions such that in each
point m ∈M one has 4a(m)3 + 27b(m)2 ̸= 0. Then the Weierstrass equation

E : Y 2Z = X3 + a(m)XZ2 + b(m)Z3

defines a complex submanifold of the M -complex manifold CP2 ×M ! M , with
homogeneous coordinates (X : Y : Z) on the fibres, which is an M -curve E !M of
genus 1. The choice of the section O : m 7! {((0 : 1 : 0),m)} ∈ Em makes E ! M
into an M -elliptic curve with identity section O.
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4.2 Quotients modulo relative lattices

Recall from the classical theory of complex tori that each compact connected com-
plex Lie group X of dimension, say g, is isomorphic to Cg/Λ, where Λ is a co-compact
lattice in Cg, i.e. Λ is a free Z-submodule of Cg such that the natural map Λ⊗ZR! Cg

is an isomorphism. On the level of morphisms, homomorphisms h : Cg/Λ! Cg′/Λ′

of complex tori correspond bijectively to C-linear maps ψ : Cg ! Cg′ with ψ(Λ) ⊂ Λ′.

Theorem 4.2.1. There exists an equivalence of categories between the category of
complex tori and the category of inclusions of a free Z-module as a co-compact lattice
in a finite-dimensional C-vector space.

The aim of this section is to state a relative version of this result, which is proved
in [Ric21]. First, we need a relative notion of free Z-module and of finite-dimensional
C-vector space over a complex manifold.

Definition 4.2.2. Let M be a complex manifold, and let r, g ∈ Z≥0.

(1) A local system of rank-r free Z-modules over M is an M -complex manifold L
with a structure of Z-module on each fibre Lm such that each point m ∈M has
an open neighborhood U with L×M U ∼= Zr × U .

(2) A holomorphic rank-g vector bundle over M is an M -complex manifold V with
a structure of C-vector space on each fibre Vm such that each point m ∈M has
an open neighborhood U with V ×M U ∼= Cg × U .

Note that L and V as in the above definition areM -groups. Next, we need a relative
notion of co-compact lattice.

Definition 4.2.3. Let M be a complex manifold.

(0) A co-compact lattice inclusion over M is a homomomorphism of M -groups
j : L ! V with L and V as in Definition 4.2.2 such that r = 2g and the
scalar-extension jR : L⊗Z R! V is an isomorphism of real C∞-vector bundles.

(1) Let h : M ′ ! M be a morphism in CMan, and j : L ! V and k : Λ ! W
be co-compact lattice inclusions over M resp. M ′. A homomorphism of relative
co-compact lattice inclusions from (k : Λ ! W ) to (j : L ! V ) covering
h : M ′ !M is a pair (χ, ψ) of homomorphism of relative Lie groups covering h
fitting in a commutative diagram

Λ L

V W.

χ

k j

ψ

(2) We denote Lat the category of relative co-compact lattice inclusions and mor-
phisms of such. We define the functor Lat! CMan by sending an object j as
in part (0) to M , and a morphism (χ, ψ) as in part (1) to h :M ′ !M . We de-
note the fiber category over the complex manifold M by Lat/M . For g ∈ Z≥0 we
write Latg for the full subcategory of Lat spanned by those objects j : L! V
for which V has rank g.
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The proposition below defines a functor Lat ! CTor by taking quotients modulo
relative lattices.

Proposition 4.2.4. (0) Let j : L ! V over M be as in Definition 4.2.2(0). Let
q : V ! V/L be the set-theoretic quotient map for the equivalence relation ∼L

on the set V such that v ∼L v
′ if and only if v and v′ lie over the same point

m ∈ M and v − v′ ∈ Lm inside Vm. Then there exists a unique structure of
M-complex torus on V/L such that there is an exact sequence of M-groups

0! L! V
q
! V/L! 0. (4.1)

(1) Let (χ, ψ) covering h :M ′ !M be as in Definition 4.2.2(1). Then there exists a
unique homomorphism of relative complex tori χ : W/N ! V/L giving a homo-
morphism of short exact sequences of relative Lie groups covering h :M ′ !M .

0 N W W/N 0

0 L V V/L 0.
j

χ ψ ψ

k

Proof. We mention the various steps in the construction of a structure ofM -complex
torus on V/L, referring to [Cond] for proofs of the claims made. Endow V/L with
the quotient topology for ∼L. Then q : V ! V/L is universal among ∼L-invariant
continuous maps out of V , whence there is a natural continuous map V/L!M . In
[ibid., Prop 2.2] it is shown that q : V ! V/L is a covering map, and that V/L!M
is proper.

According to [ibid., Thm. 3.2] there is a unique complex manifold structure on
V/L relative to which q : V ! V/L is a local analytic isomorphism, and this makes
V/L!M into a submersion. Finally [ibid., Cor 3.3] shows there is a unique struc-
ture of M -group V/L that makes q : V ! V/L into an M -group homomorphism.
Since each fibre of V/L ! M is a connected complex manifold of dimension g, we
conclude that V/L!M is an M -complex torus.

The reader may find part (1) in [ibid., Thm. 3.2], or verify it by herself.

Remark 4.2.5. Let j : L ! V be a co-compact lattice inclusion over M . The con-
struction of V/L is compatible with base change by a morphism h : M ′ ! M in
CMan, in the following sense (for proofs, see again [ibidem, Thm 3.2 and Cor. 3.3]).

Denote j′ : L′ ! V ′ the base change of j : L! V by h. Then j′ is a co-compact
lattice inclusion overM ′ and the natural map V ′/L′ ! (V/L)×MM

′ is anM ′-group
isomorphism.

Theorem 4.2.6. The constructions in Proposition 4.2.4 define an equivalence of
categories over CMan,

Lat! CTor,

(j : L! V )! V/L,

(χ, ψ) 7! ψ.
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Proof. It follows from Remark 4.2.5 that the functor Lat! CTor is a morphism of
fibered categories over CMan in the sense of [Ols16][Def. 3.1.3(ii)]. By [ibidem, Prop.
3.1.10] a morphism of fibered categories is an equivalence if and only if it induces an
equivalence on each fibre category. Thus it suffices to show that Lat/M ! CTor/M
is an equivalence for every object M of CMan, which is [Ric21][Theorem 4.3.2].

4.3 Relative homology and tangent bundles

Theorem 4.3.1 (Ehresmann). Let f : E !M be a proper holomorphic submersion
of complex manifolds. For every contractible open subset U ⊂ M , there exists a
C∞-manifold F and a C∞-diffeomorphism E ×M U ∼= F × U over U .

Proof. See [Voi02][Theorem 9.3].

Now let π : E ! M be a proper holomorphic submersion of complex manifolds,
and let p ∈ Z≥0. For every m ∈ M the singular homology group of the fibre Em
with Z-coefficients Hp (Em;Z). Our aim is to glue the fibral homology together into
a global object.

Proposition 4.3.2. Let p ∈ Z≥0. Let f : X !M be a proper holomorphic submer-
sion. Then there exists a local system Hp(E/M) of Z-modules whose stalk at m ∈M
is given by

Hp(E/M)m = Hp (Em;Z) (4.2)

Proof. Every complex manifold is locally contractible, so the contractible open sub-
sets of M form a basis for the topology on M . We will construct a sheaf on this
basis for M , in the sense of [dJm][Def. 009J]

Consider a contractible open subset U ⊂ M . By Ehresmann’s fibration Theo-
rem 4.3.1 there exists a C∞ manifold F and a C∞ diffeomorphism f−1(U) ∼= F ×U
over U . Using this diffeomorphism and the contractibility of U , for every m ∈ U we
see that ιU,m : Em ! E×M U admits a retraction, hence is a homotopy equivalence.
Thus (ιU,m)∗ : Hp (Em;Z)! Hp (f

−1(U);Z) is an isomorphism. Similarly, if V ⊂ U
is a second contractible open subset, then the inclusion ιU,V : E ×M V ! E ×M U
is a homotopy equivalence, and (ιU,V )∗ : Hp(E ×M V ;Z) ! Hp(E ×M U ;Z) is an
isomorphism

The sections of the sheaf Hp(E/M) over a contractible open subset U of M are
defined to be

Γ(U,Hp(E/M)) = Image(Hp(E ×M U ;Z)!
∏
m∈U

Hp(Em;Z))

s 7! (ιU,m)
−1
∗ (s).

Now consider an inclusion V ⊂ U is of contractible open subsets. We contend
that the projection map

∏
m∈U Hp(Em;Z)!

∏
m∈V Hp(Em;Z) send Γ(U,Hp(E/M))

into Γ(V,Hp(E/M)). This follows from ιU,V : Hp(f
−1(V );Z) ! Hp(f

−1(U);Z)
being an isomorphism and the fact that ιU,V ◦ ιV,m = ιU,m for each m ∈ M .

It is straightforward to verify this defines a sheaf on the basis of contractible
open subsets of M . Using [ibid.][Lemma 009N] it defines a locally constant sheaf
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Hp(E/M) of free Z-modules on M , whose stalk at m ∈ M is by construction
Hp(E/M)m = Hp (Em;Z).

Lemma 4.3.3. Consider a commutative square in CMan, in which f and f ′ are
proper submersions:

X ′ X

M ′ M.

h̃

f ′ f

h

Then for each p ∈ Z≥0 there exists a natural homomorphism of relative Lie groups
Hp(E

′/M ′)! Hp(E/M) covering h :M ′ !M given in a point m′ ∈M by the map
Hp(E

′
m′ ;Z) ! Hp(Eh(m);Z) on singular homology groups induced by the restriction

h̃ : E ′
m′ ! Eh(m′).

Proof. For every pair of contractible open subsets U ′ ⊂ M ′ and U ⊂ M such that
h (U ′) ⊂ U , the map H1(h̃/h) is defined as

Γ
(
U,Hp (E

′/M ′)
)
= H1p

(
(π′)

−1
(U ′) ;Z

)
h̃∗−! Hp

(
π−1(U);Z

)
= Γ

(
U,Hp(E/M)

)
.

In a similar way to Proposition 4.3.2 we obtain from this the required homomorphism
of sheaves.

Let us record a special case of this proposition, to be used frequently in Chapter 5.

Corollary 4.3.4. A homomorphism of elliptic curves

E ′ E

M ′ M

h̃

π′ π

h

induces a homomorphism of local systems of rank-2 free Z-modules on M ′

H1(h̃/h) : H1 (E
′/M ′)! h∗H1(E/M) (4.3)

whose stalk at m′ ∈M ′ is the induced map on singular homology

H1(h̃/h)m′ : H1 (E
′
m′ ;Z)! H1

(
Eh(m′);Z

)
. (4.4)

Remark 4.3.5. For any m′ ∈M ′, the map H1(h̃/h)m′ is either zero or injective with
image of finite index. The degree of h̃ at m′, denoted deg(h̃) (m′), is set to be 0 if
the map is zero, and the index of the image if the map is nonzero. The function
deg(h̃) :M ′ ! Z thus defined is locally constant and called the degree of h̃. We say
h̃ is cartesian if deg(h̃) = 1, i.e. if H1(h̃/h) is an isomorphism.

Now consider a holomorphic submersion f : X ! M , not necessarily proper. We
can glue the tangent bundles T (Xm) of the fibres Xm = f−1(m) into a holomorphic
vector bundle over X.
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Proposition-Definition 4.3.6. (1) Let f : X ! M be a submersive holomorphic
map of complex manifolds, say of relative dimension g. Then there exists a
holomorphic vector bundle TX/M of rank g over X whose stalk at x ∈ X is the
kernel of (df)x : TxX ! Tf(x)M . We call TX/M the relative tangent bundle of
X/M .

(2) Let f ′ : X ′ ! M ′ be a second holomorphic submersion of complex manifolds,
and let h̃ : X ′ ! X be a holomorphic map covering h :M ′ !M. Then there is
a homomorphism of holomorphic vector bundles TX′/M ′ ! TX/M covering h.

Proof. See [Fis76][§2.7 and Theorem 2.19]

4.4 Uniformization of M-complex tori

Theorem 4.4.1. Let X be a classical complex torus. Then there exists a short exact
sequence of complex Lie groups

0! H1(X;Z)
ι
! TeX

exp
! X ! 0, (4.5)

where
(i) exp is the unique holomorphic homomorphism such that (d exp)0 = id if we
identify T0(TX,e) ∼= Tx,e
(ii) the map ι−1 : (ker exp) ! H1(X;Z) sends v ∈ TeX with exp(v) = e to the
homology class of the loop [0, 1]! X, t 7! exp(tv).

Proof. See [Mum70][Section 1, (2)].

Corollary 4.4.2. Let X = V/L be a complex torus, given as the quotient of a
co-compact lattice L inside a finite-dimensional C-vector space V . Then there is an
isomorphism of short exact sequences of complex Lie groups

0 L V V/Λ 0

0 H1(X;Z) TeX X 0,

q

(dq)0

exp

where the middle map is the isomorphism (dq)0 : V = T0V ! T0(V/L) = T0X of
tangent spaces at 0 induced by the local analytic isomorphism q : V ! X.

Proof. The homomorphism of complex Lie group q ◦ (dq)−1
0 : TeX ! X induces on

tangent spaces at 0 the map (dq)0◦(dq)−1
0 = id. Thus q◦ it coincides with exponential

map exp : TeX ! X since it satisfies the characterising property.
It follows that (dq)0 restricts to an isomorphism ker q ∼= ker exp, whence there is

a unique isomorphism L! H1(X;Z) making the diagram commute.

We formulate a relative version of this result for complex tori over a complex man-
ifold, as Theorem 4.4.3.
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Theorem 4.4.3. Let (X, e) ! M be a complex torus over M . Then there exists a
short exact sequence of M-groups

0! H1(E/M)! e∗TX/M
exp
−−! X ! 0 (4.6)

whose fibre above m ∈M is

0! H1(Xm;Z)! Te(Xm)
exp
! Xm ! 0, (4.7)

Proof. We define (4.6) as the disjoint union of the short exact sequences (4.7) for
the various m. All properties are stalkwise, except for holomorphicity of the maps
in (4.6). In view of the essential surjectivity of the functor Theorem 4.2.6, it is
harmless to assume that X = V/L is the quotient modulo a relative co-compact
lattice inclusion j : L! V .

Since q : V ! X is a local analytic isomorphism overM , there is an isomorphism
e∗(dq) : V = e∗TV/M ∼= e∗TX/M of holomorphic vector bundles over M , which is the
middle vertical map in a commutative diagram

0 L V V/L 0

0 H1(X/M ;Z) e∗TX/M X 0.

It follows that e∗(dq) restricts to an isomorphism ker q ∼= ker exp, whence there is a
unique isomorphism L ! H1(X/M ;Z) of local systems of free Z-modules making
the above diagram commute.

4.5 Weil pairing on abelian varieties

Let X ! M be an M -elliptic curve, or more generally a principally polarized M -
complex torus to be defined in Definition 4.5.7. For each N ∈ Z≥1 Definition 4.5.9
constructs a nondegenerate alternating bilinear map eN : X[N ]×M X[N ]! µN on
the N -torsion X[N ] of X with values in the group µN of complex N -th roots of
unity, called the Weil eN -pairing.

Proposition-Definition 4.5.1. Let N ≥ 1 be an integer and X !M be a complex
torus of relative dimension g. Then there exists an isomorphism

H1(X/M)⊗ (Z/NZ)! X[N ] (4.8)

and X[N ] is a local system of rank-2g free (Z/NZ)-modules. If N1 is a positive divisor
of N , and can: Z/NZ ! Z/N1Z is the canonical map, then there are commutative
diagrams

H1(X/M)⊗ (Z/NZ) X[N ] H1(X/M)⊗ (Z/hZ) X[N1]

H1(X/M)⊗ (Z/N1Z) X[N1], H1(X/M)⊗ (Z/NZ) X[N ].

1⊗can [N/N1]X 1⊗[N/N1]X

⊂
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Proof. Let V/L ∼= X be a uniformization of X, so that L = H1(X/M). We find that

X[N ] = (V/L)[N ] =
1

N
L/L

[N ]
−−!
∼

L/NL = H1(X/M)⊗ (Z/NZ.)

Now the verification of the commutativity of the above diagrams comes down to
that of the diagrams below, which is plain:

1
N1
L/L L/N1L

1
N
L/L L/NL

1
N
L/L L/NL, 1

N1
L/L L/N1.

[N1]

[1] [N1/N ]

[N ]

[N/N1] [1]

[N ] [N1]

Definition 4.5.2. Let V ! M be a holomorphic vector bundle over a complex
manifold M . A Hermitian metric on V is the assignment to each point m ∈M of a
complex inner product Hm : Vm × Vm ! C such that for any two C∞ local sections
s1 and s2 of V the function m 7! Hm(s1(m), s2(m)) is C∞ smooth.

Lemma 4.5.3. Any holomorphic vector bundle admits a Hermitian metric.

Proof. This is proved using partitions of unity subordinate to a trivializing open
cover of the base manifold, see [Huy05][Prop. 4.1.4]

Definition 4.5.4. Let L be a Z-module. A symplectic form ω on L is a unimod-
ular nondegenerate alternating bilinear map ω : L × L ! Z, meaning that for all
v ∈ L the map ω(v, ·) : L ! Z defined by ω(mv, ·)(w) = ω(v, w) is Z-linear and
satisfies ω(v, v) = 0, and that the resulting map L 7! Hom(L,Z), v 7! ω(v, ·) is an
isomorphism of Z-modules.

Example 4.5.5. Let g ≥ 0 be an integer. We define the standard symplectic form
ωg on Z2g to be the non-degenerate alternating bilinear form ωg : Z2g × Z2g ! Z
that is given on the standard basis of Z2g by the matrix

ωg =

(
0 −1g
1g 0

)
(4.9)

where 1g is the g × g-identity matrix.

Lemma 4.5.6. Let ω be a symplectic form on a Z-module L. Then there exists an
integer g ≥ 0 and an isomorphism (Z2g, ωg) ∼= (L, ω) of Z-modules endowed with a
symplectic form.

Proof. See [Bou59][Chap. 9, §5, Theorème 1].

Definition 4.5.7. Let f : X ! M be an M -complex torus, with canonical uni-
formization X ∼= V/L, where L = H1(E/M) and V = e∗TX/M . A principal polar-
ization on X is a Hermitian metric H : V ×M V ! C on V whose imaginary part
Ω = ℑH : V ×M V ! R restricts to a symplectic form L×M L! Z on L.

Proposition 4.5.8. Let f : E ! M be an M-elliptic curve. Then there exists a
unique prinicpal polarization on E.
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Proof. Let E = V/L be the canonical uniformization of E as in Definition 4.5.7. By
virtue of the asserted uniqueness, we can work locally on M . Thus we may assume
there exists a global frame (τ1, τ2) for the local system of rank-2 free Z-modules L.
Choose a Hermitian metric H on V using Lemma 4.5.3. Since V has rank 1, the
Hermitian metric H is unique up to a positive real-valued C∞ function on M . Then
H is a principal polarization if and only if |Hm(τ1(m), τ2(m))| = 1 for every m ∈M .
Since H(τ1, τ2) : m 7! Hm(τ1(m), τ2(m)) is a nowhere vanishing C∞ function on M ,
H/|H(τ1, τ2)| is the desired principal polarization on E.

Definition 4.5.9. (Weil pairing) Let f : X ! M be a principally polarized M -
complex torus. Write Ω for the symplectic form on H1(X/M) corresponding to the
principal polarization. Let N ∈ Z≥1 and identify Z/NZ ∼= µN via a + NZ 7! ζaN .
Then the Weil eN -pairing is the unique nondegenerate alternating bilinear map

eN : X[N ]×M X[N ]! X[N ] (4.10)

such that the following diagram commutes:

(H1(X/M)×M H1(X/M))⊗ (Z/NZ) X[N ]×M X[N ]

Z/NZ
M

µNM .

Ω⊗idZ/NZ eN

a+NZ 7!ζaN

4.6 Quotients of elliptic curves

We now discuss quotients for the action of a group on a relative elliptic curve, which
we will define in Definition 4.6.1 below. The results of this section will be used in
Chapter 5 to construct from a ‘universal’ elliptic curve over the upper half plane H
ones over open modular curves Y (Γ) = Γ\H.

Definition 4.6.1. Let G be a discrete group, and let E ! M be an elliptic curve.
Then an action of G on E !M is a homomorphism G! AutEll(E/M), i.e. a pair
of homomorphisms G ! Aut(E), g 7! [g]E and G ! Aut(M), g 7! [g] making for
every g ∈ G an isomorphism of elliptic curves

E E

M M.

[g]E

[g]

Lemma 4.6.2. Let G be a discrete group acting on an elliptic curve E ! M .
Assume the action of G onM is proper and free. Then there exists a unique structure
G\E ! G\M of elliptic curve on the map of topological spaces G\E ! G\M such
that

E G\E

M G\M

πE

πM
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is a cartesian homomorphism of elliptic curves and a categorical quotient in the
category of relative elliptic curves for the action of G on E/M .

Proof. Since G acts freely and properly on M , it also acts freely and properly on E
by Lemma 2.3.3. It follows from Theorem 2.3.5 that orbit spaces G\E resp. G\M
admits a unique structure of complex manifold such that πE resp. πM is a covering
map and a local analytic isomorphism. Since the map E ! M is G-equivariant
and the map M ! G\M is G-invariant, their composite E ! G\M is G-invariant.
Since E ! G\E is initial among G-invariant maps out of E, there exists a unique
holomorphic map G\E ! G\M which makes the diagram commute.

We transport the structure of elliptic curve on E ! M to the induced map
on G-orbit spaces G\E ! G\M via (πE, πM). Since πM is a covering map, we
can cover G\M by open subsets V for which there exists an open subset U ⊂ M
such that π−1

M (V ) =
⊔
g∈GG · U , and then for each such U and g ∈ G we have

that ([g]E, [g]) : EU/U ! Eg·U/(g · U) is an isomorphism. Therefore there is a
unique elliptic curve structure on (G\E)V ! V having the property that the pair
(πE, πM) : Eg·U/(g · U) ! (G\E)V /V is an isomorphism for every g ∈ U , equiva-
lently, such that (πE, πM) : Eπ−1

M (V )/π
−1
M (V ) ! (G\E)V /V is an isomorphism, and

on varying V over a covering of G\M these glue together to a unique elliptic curve
structure on G\E ! G\M making the map (πE, πM) : E/M ! (G\E)/(G\M) an
isomorphism.

It remains to be shown that (πE, πM) is a quotient map for the G-action in the
category of elliptic curves. Let (ρ̃, ρ) : E/M ! X/Y be a G-invariant homomor-
phism of ellptic curves. Since πE resp. πM is a quotient map for the G-action on E
resp. M in the category of complex manifolds, there exists a unique holomorphic
map f̃ : G\E ! X resp. f : G\M ! Y such that ρ̃ = f̃ ◦ πE resp. ρ = f ◦ πM .
To show that (f̃, f) is a homomorphism of elliptic curves, we may and do work lo-
cally over an open subset V ⊂ G\M for which there exists an open subset U ⊂ M
such that (πE, πM) : EU/U ! (G\E)V /V is an isomorphism. Then the fact that
(f̃, f) ◦ (πE, πM) = (ρ̃, ρ) is a homomorphism implies that (f̃, f) is a homomorphism
over V , as remained to be shown.

Remark 4.6.3. Mutatis mutandis the proof of Lemma 4.6.2 goes through for any kind
of ‘object over a base manifold’ provided the definition is local on the base, such
as complex tori, holomorphic vector bundles, local systems of Z-modules, relative
Lie groups, and also for the following kinds of ‘enriched’ elliptic curves encountered
in Chapter 5: elliptic curves with an H1-structure, with a Γ-structure, with an N -
structure, with a point of exact order N and with a cyclic subgroup of order N .
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Chapter 5

Universal elliptic curves

5.1 Moduli spaces

We denote the opposite of a category C by Cop .

Definition 5.1.1 (presheaf, sheaf). A presheaf on the category of complex mani-
folds CMan is a functor

F : CManop ! Set .

We say the presheaf F is a sheaf if for every complex manifoldM and open covering
{Ui}i∈I of M the restriction maps define a bijection

F(M)!

{
(si)i∈I ∈

∏
i∈I

F (Ui) : si|Ui∩Uj
= sj|Ui∩Uj

for all (i, j) ∈ I × I

}
,

s 7!
(
s|Ui

)
i∈I .

Thus the functor F : CManop ! Set is a sheaf precisely when for every complex
manifoldM the restriction F |M of F to the category of open subsets ofM is a sheaf
on the topological space M in the usual sense.

Example 5.1.2. Let M be a complex manifold. The functor hM : CManop ! Set
sending an object M to the set hM(M) = {ϕ : M !M | ϕ is holomorphic } and a
morphism h : M ′ !M to the map hM(h) : hM(M)! hM (M ′), ϕ 7! ϕ◦h is a sheaf
on CMan. The sheaf axiom is verified because holomorphicity is a local condition.

Definition 5.1.3. (fine moduli space) Let F be a presheaf on CMan. A fine
moduli space for F is a complex manifold M together with a natural isomorphism
θ : F ! hM of functors CManop ! Set.

Remark 5.1.4. Suppose the functor F classifies some kind of ‘structures’ living over
a base manifold, with restriction maps being given by pullback. Then the data of
a fine moduli space θ : F ! hM is equivalent to a complex manifold M together
with a ‘structure’ αuniv on M which is universal in the sense that for any other
‘structure’ α over some complex manifold M there is a unique holomorphic map
ϕ :M !M pulling back αuniv on M to α on M .
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Example 5.1.5 (Grassmannian). Let 0 ≤ k ≤ n be integers. Define the sheaf
Gk,n on CMan by letting Gk,n(M) be the set of rank-k holomorphic subbundles
E ⊂ Cn ×M of the trivial rank-n vector bundle over M . If h : M ′ ! M is a holo-
morphic map and E ∈ F (M), then F (h)(E) := h∗E is defined to be the preimage
h∗E ⊂ Cn ×M ′ of E ⊂ Cn ×M under idCn ×h : Cn ×M ′ ! Cn ×M .

In classical algebraic geometry one constructs (see e.g. [GH78][Ch. 1, Section 5])
a projective manifold G(k, n), called a Grassmannian, and a natural isomorphism
θ : Gk,n ! hG(k,n), i.e., a fine moduli space for Gk,n. In particular, θ(∗) is a bijection
from the set Gk,n(∗) of k-dimensional linear subspaces of Cn to the set hG(k,n)(∗) of
points of G(k, n). Furthermore θ(G(k, n))−1

(
idG(k,n)

)
∈ Gk,n(G(k, n)) corresponds

to a rank-k holomorphic subbundle E ⊂ Cn × G(k, n) that is universal. That is,
for every holomorphic manifold M and rank-k holomorphic subbundle E ⊂ Cn×M
there exists a unique holomorphic map f = θ(E) :M ! G(k, n) such that E = f ∗E .

Definition 5.1.6 (coarse moduli space). Let F : CMan ! Set be a functor. A
coarse moduli space for F is a complex manifold M with a natural transformation
θ : F ! hM that is bijective on ∗-valued points, i.e. the map θ∗ : F (∗)! hM(∗) to
the underlying set of M is bijective.

Note that every fine moduli space for a sheaf F on CMan is also a coarse moduli
space.

Remark 5.1.7. In the literature one often imposes the additional condition for the
functor θ : F ! hM to be a coarse moduli space, viz. that for any complex manifold
N and natural transformation η : F ! hN there exists a unique holomorphic map
ϕ : M ! N such that η = hϕ ◦ θ. Since this condition will not play a role in the
sequel, we have chosen to omit it.

5.2 H1-structures

In this section, we introduce H1-trivialized elliptic curves in Definition 5.2.1, and
show in Theorem 5.2.3 that the functor [H1–str] classifying H1-trivialized elliptic
curves admits a fine moduli space E ! H.
Let ω1 : Z2 × Z2 ! Z be the standard symplectic form on Z2 represented on the

standard basis by the matrix

(
0 −1
1 0

)
. For any complex manifold M this defines

a constant symplectic form on the local system of rank-2 free Z-modules Z2 ×M
over M , which we also denote ω1.

Definition 5.2.1. (1) LetM be a complex manifold and E be anM -elliptic curve.
An H1-structure on E/M is an isomorphism

ψ :
(
Z2 ×M,ω1

)
! (H1(E/M), •) (5.1)

of local systems of rank-2 free Z-modules which carries the constant standard
symplectic form ω1 on Z2 ×M to the intersection pairing • on H1(E/M).

(2) An H1-trivialized elliptic curve is a relative elliptic curve together with an H1-
structure.
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(3) A homomorphism (E ′ !M ′, ψ′)! (E !M,ψ) of H1-trivialized elliptic curves
is a homomorphism (h̃ : E ′ ! E, h : M ′ ! M) of elliptic curves such that
ψ ◦ (1Z2 × h) = H1(h̃/h) ◦ ψ′ (latter condition implies that (h̃, h) is cartesian).
If h is the identical map on M ′ = M , we say it is an isomorphism over M and
write (E ′ !M,ψ′) ∼=M (E !M,ψ).

Let (E ! M,ψ) be an H1-trivialized elliptic curve, and let h : M ′ ! M be a
holomorphic map. Then there exists up to isomorphism over M ′ a unique H1-
trivialized elliptic curve (E ′ !M ′, ψ′) over M ′ such that there exists a homo-

morphism
(
h̃ : E ′ ! E, h :M ′ !M

)
of H1-trivialized elliptic curves. We refer to

h∗(E ! M,ψ) := (E ′ !M ′, ψ′) as the pullback of (E ! M,ψ) by h. It is plain
that id∗

M(E ! M,ψ) ∼= (E ! M,ψ) and that for a further holomorphic map
g : M ′′ ! M ′ we have g∗ (h∗(E !M,ψ)) ∼= (h ◦ g)∗(E ! M,ψ). This allows us to
define the following functor CManop ! Set.

Definition 5.2.2. Let [H1–str] : CMan ! Set be the functor, assigning to a
complex manifold M the set

[H1–str] (M) = {H1-trivialized elliptic curves over M} / ∼=M (5.2)

and to a holomorphic map M ′ !M the map

[H1–str] (h) : [H1–str] (M)! [H1–str] (M
′) ,

(E !M,ψ) 7! h∗(E !M,ψ).

We will now construct a fine moduli space for the functor [H1–str]. Let V = C×H be
the trivial holomorphic line bundle over the upper half-plane H = {z ∈ C : ℑz > 0}.
It contains the trivial local system of rank-2 free Z-modules

L :=
{
(mτ + n, τ) : τ ∈ H, (m,n) ∈ Z2

}
⊂ C × H (5.3)

as a co-compact relative lattice. We let E := V/L! H be the corresponding quotient
elliptic curve, and endow it with the H1-structure

Ψ = (τ, 1) : Z2 × H
∼
! L = H1(E/H),

((m,n), τ) 7! (mτ + n, τ).
(5.4)

Theorem 5.2.3. The elliptic curve with H1-structure (E ! H,Ψ) is a fine moduli
space for the functor [H1–str]. In other words, given an H1-trivialized elliptic curve
(E ! M,ψ) there exists a unique holomorphic map h : M ! H fitting into a
Cartesian square

(E,ψ) (E ,Ψ)

M H.

h̃

h

Proof. This is [Conc][Theorem 6.7].
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5.3 The action of SL2(Z) on E ! H

In this section we define a natural action of SL2(Z) on the functor [H1–str]. Since
E ! H is a fine moduli space for [H1–str], via Yoneda’s lemma we obtain an action
of SL2(Z) on E ! H.

Fix an elliptic curve E ! M . Let [H1–str]E/M be the sheaf of sets on M that
assigns to an open subset U ⊂M the set of H1-structures on EU := E ×M U ! U ,
with the obvious restriction maps. The sheaf [H1–str]E/M locally admits a section.
This is merely a reformulation of the fact that H1(E/M) is a local system of rank-2
free Z-modules.

Let U ⊂ M be an open subset and ψ : Z2 × U ! H1 (EU/U) be an H1-
trivialization of EU/U , i.e. ψ ∈ [H1–str]E/M (U). Let SL2(Z)M be the constant
M -group assigned to the abstract group SL2(Z), so a section γ of SL2(Z)

M
over

U is a locally constant function γ : U ! SL2(Z). The composite

ψ ◦ γt : Z2 × U
γt×1U−−−−! Z2 × U

ψ
−! H1 (EU/U) .

defines one more H1-structure on EU/U . This defines an action of SL2(Z)M on
[H1–str]E/M :

γ · ψ = ψ ◦ γt, ψ ∈ [H1–str]E/M (U), γ ∈ SL2(Z)
M
(U).

Since SL2(Z) is the full automorphism group of (Z2, •) we have an isomorphism of
sheaves on M

SL2(Z)
M

× [H1–str]E/M ! [H1–str]E/M × [H1–str]E/M ,

(γ, ψ) 7! (γ · ψ, ψ).

Lemma 5.3.1. The sheaf [H1–str]E/M is an SL2(Z)-torsor over M .

Proof. This follows from (5.3) and [H1–str]E/M locally admitting sections.

In a similar way we define an action of SL2(Z) on the functor [H1–str]E/M . By
Theorem 5.2.3 we have [H1–str] ∼= hH. Thus by Yoneda’s lemma there is an induced
action of SL2(Z) on H, denoted γ 7! [γ], as well as a lift γ 7! [γ]E of this action to
E , that does not however respect the H1-trivialization Ψ. Instead, the maps [γ] and
[γ]E fit into the following cartesian square afforded by Theorem 5.2.3

(E ,Ψ ◦ γt) (E ,Ψ)

H H.

[γ]E

[γ]

(5.5)

Lemma 5.3.2. Let γ =

(
a b
c d

)
∈ SL2(Z). The automorphism [γ] of H is given

by

[γ] : τ 7!
aτ + b

cτ + d
(5.6)
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and the map [γ]E is induced by the line bundle automorphism of V = C × H, which
leaves L invariant and covers [γ], defined by

[γ]E : (τ, z) 7!

(
z

cτ + d
,
aτ + b

cτ + d

)
. (5.7)

Proof. We refer the reader to [Conb][Prop. 2.1] for this verification.

In this way we recover the classical left action of SL2(Z) on H via fractional linear
transformations or Möbius transformations defined in Lemma 3.1.1.

5.4 Γ-structures

Throughout this section, we let Γ ⊂ SL2(Z) denote a congruence subgroup. We
define Γ-structures on relative elliptic curves in Definition 5.4.1, and show in Propo-
sition 5.4.3 that the open modular curve Y (Γ) is a coarse moduli space for the
functor [Γ–str] classifying elliptic curves with a Γ-structure.

Definition 5.4.1. Let E !M be a relative elliptic curve.
(1) We denote by [Γ–str]E/M the quotient sheaf Γ\ [H1–str]E/M , i.e. the sheafification
of the presheaf on M given by U 7! Γ\([H1–str]E/M (U)).
(2) A Γ-structure on an elliptic curve E !M is a global section α ∈ [Γ–str]E/M(M).

Each H1-structure ψ on E/M defines naturally a Γ-structure on E/M denoted Γψ.
However, the map [H1–str]E/M (M) ! [Γ–str]E/M(M) is not surjective in general.
In the same vein, Γ ⊂ Γ′ ⊂ SL2(Z) are congruence subgroups, then a Γ-structure on
E/M naturally defines a Γ′-structure on E/M . Again, it is quite possible that the
map [Γ–str]E/M(M)! [Γ′–str]E/M (M) is not surjective.

Now let h̃ : E ′ ! E be a cartesian morphism of elliptic curves covering h :M ′ !M .
Pullback along h defines an SL2(Z)-equivariant morphism of sheafs on M

h̃∗ : [H1–str]E/M ! h∗ [H1–str]E′/M ′ (5.8)

which induces a morphism of sheafs

h̃∗ : [Γ–str]E/M ! h∗[Γ–str]E′/M ′ .

Definition 5.4.2. We say two elliptic curves with a Γ-structure (E ! M,α) and
(E ′ !M,α′) are isomorphic over M if there exists an isomorphism h̃ : E ′ ! E
of elliptic curves over M such that h̃∗(α) = α′. We denote [Γ–str](M) the set of
M -elliptic curves with a Γ-structure (E !M,α) up to isomorphism over M . Given
a holomorphic map h :M ′ !M , pullback defines restriction maps

[Γ–str](h) : [Γ–str](M)! [Γ–str] (M ′) ,

(E !M,α) 7! (h∗E !M ′, h∗α) ,

so that [Γ–str] : CManop ! Set becomes a functor. Furthermore, equivariance of
the map (5.2) allows us to define an action of the abstract group SL2(Z) on the sheaf
[H1–str] : CMan! Set, by γ · (E !M,ψ) = (E !M,γ · ψ).
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Proposition 5.4.3. Let Γ ⊂ SL2(Z) be a congruence subgroup. The presheaf [Γ–str]
on CMan admits a coarse moduli space

θΓ : [Γ–str]! hY (Γ), (5.9)

where Y (Γ) = Γ\H is a connected Riemann surface that is the categorical quotient
in CMan for the action of Γ on H, and the inverse of the bijection θΓ(∗) is given by

θΓ(∗)−1 : Y (Γ)! [Γ–str](∗),
Γτ 7! [(Eτ ,ΓΨτ )] .

In other words, the points of Y (Γ) are in bijection with isomorphism classes of
complex elliptic curves with a Γ-structure in such a way that for every elliptic curve
with a Γ-structure (E ! M,α) the map M ! Y (Γ), assigning to a point m ∈ M
the point of Y (Γ) corresponding to the isomorphism class of the fibre (Em, αm) is
holomorphic.

Proof of Proposition 5.4.3. By Lemma 3.1.1 the action of SL2(Z) is proper with
finite stabilizers, so a forteriori the same holds for the action of the subgroup
Γ ⊂ SL2(Z). By Theorem 2.3.5 a categorical quotient for this Γ-action on the Rie-
mann surface H exists, which is a local analytic isomorphism H! Γ\H =: Y (Γ) to
a Riemann surface. Connectedness of H implies that of its quotient Y (Γ).

For every γ ∈ Γ the H1-structures Ψ◦γt and Ψ on E define the same Γ-structure.
Hence the isomorphism ([γ]E , [γ]) in (5.5) ) is an automorphism of the elliptic curve
with a Γ-structure (E ,ΓΨ) ! H. In particular we have for every τ ∈ H an isomor-
phism (Eτ ,ΓΨτ ) ∼=

(
E[γ](τ),ΓΨ[γ](τ)

)
showing that the map θΓ(∗)−1 in the statement

of the proposition is well-defined. Conversely, any classical elliptic curve with a Γ-
structure is isomorphic to (Eτ ,ΓΨt) for a point τ ∈ H unique up to the Γ-action, so
we see that θΓ(∗)−1 is bijective.

Let (E,α)!M be an elliptic curve with a Γ-structure over a complex manifold
M . We have a ΓM -equivariant homomorphism of sheafs on M

[H1–str]E/M ! [H1–str] |M ∼= (hH)|M .

The quotient map H! Y (Γ) is Γ-invariant, so one sees that it induces a morphism
ΓM\hH|M ! hY (Γ)|M of sheaves on M . We defined [Γ–str]E/M = ΓM\ [H1–str]E/M ,
so there is an induced homomorphism

[Γ–str]E/M = ΓM\ [H1–str]E/M ! ΓM\hH|M ! hY (Γ)|M .

We let θΓ([(E,α)!M ]) ∈ hY (Γ)(M) be the image of α ∈ [Γ–str]E/M(M) under this
map in hY (Γ)(M). It is straightforward to see this assignment yields a well-defined
natural transformation θΓ that gives on ∗-valued points the bijection detailed in the
statement of the proposition.
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5.5 The universal elliptic curve EΓ ! Y (Γ) for a

torsion-free Γ

In the previous section, we considered a congruence subgroup Γ and showed that
the presheaf [Γ–str] admits a coarse moduli space Y (Γ). In this section, we prove
that if Γ is torsion-free, then in fact [Γ–str] admits a fine moduli space EΓ ! Y (Γ).

Definition 5.5.1 (rigidity). We say an elliptic curve (E !M,α) with a Γ-structure
is rigid if its only automorphism over M is the identity morphism.

Lemma 5.5.2. For a congruence subgroup Γ ⊂ SL2(Z), the following are equivalent:

(1) every elliptic curve (E !M,α) with a Γ-structure is rigid;

(2) Γ acts freely on H;

(3) Γ is torsion-free.

Proof. See [Cona][Prop. 4.2]

Example 5.5.3. In Proposition 3.2.2 we saw that Γ(N) is torsion-free if N ≥ 3,
and that Γ1(N) is torsion-free if N ≥ 4.

Theorem 5.5.4. Let the notation and hypotheses be as in Proposition 5.4.3 and
assume in addition that Γ ⊂ SL2(Z) is torsion-free. Then the natural transformation
θΓ : [Γ–str] ! hY (Γ) is a fine moduli space for [Γ–str]. The corresponding universal
elliptic curve with a Γ-structure is (up to isomorphism) the categorical quotient
(EΓ ! Y (Γ),ΓΨ) for the action of Γ on (E ! H,ΓΨ) in the category of elliptic
curves with a Γ-structure.

Proof. The action of SL2(Z) on H is free and proper in view of Lemma 5.5.2 resp.
Lemma 3.1.1. In Proposition 5.4.3 we showed the SL2(Z)-action on E ! H from
Section 5.3 restricts to an action of Γ on the elliptic curve with a Γ-structure
(E ! H,ΓΨ) in the sense of Definition 4.6.1. By Lemma 4.6.2 and Remark 4.6.3
there exists a categorical quotient for the Γ-action in the category of elliptic curve
with a Γ-structure, which we denote (EΓ := Γ\E ,ΓΨ)! Y (Γ) := Γ\H, which makes
the right square in the diagram below caresian:

(E,α) (E ,ΓΨ) (EΓ,ΓΨ)

M H Y (Γ).

(5.10)

Now we turn to proving that θΓ is an isomorphism. Let (E,α)!M be an elliptic
curve with a Γ-structure. It is to be demonstrated that there is a unique cartesian
diagram making up the outer rectangle of the above diagram. By Lemma 5.5.2 all
elliptic curves with a Γ-structure are rigid, so if such a diagram exists, it is unique.
Therefore the proof of existence can be carried out locally, so we may and do assume
that α stems from an H1-structure ψ on E, with α = Γψ. By Theorem 5.2.3 there
exists a unique cartesian diagram of H1-trivialized elliptic curves, as in the left
square of the above diagram. We already saw the right square is cartesian, so by
concatenation of cartesian squares we find that the outer rectangle is cartesian, as
desired.
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5.6 Level-N structures

In this section, N denotes a positive integer. We define the notion of a level-N
structure on a relative elliptic curve and define a GL2(Z/NZ)-action on the presheaf
[N–str] on CMan classifying level-N structures. We show the Weil pairing gives a
decomposition [N–str] =

⊔
ζ∈µ×N

[N–str]ζ , where each presheaf [N–str]ζ is isomorphic

to [Γ(N)–str], where Γ(N) is the principal congruence subgroup of level N defined
as

Γ(N) = ker (can : SL2(Z)! SL2(Z/NZ)) .

Let E !M be an elliptic curve.

Definition 5.6.1 (level-N structure). (1) A level-N structure on E/M is an iso-
morphism of M -groups

ψ : (Z/NZ)2 ×M ! E[N ]. (5.11)

Alternatively, a level-N structure on E/M is given by a pair of N -torsion points
(P,Q) ∈ E[N ]×E[N ] such that for everym ∈M the pair (Pm, Qm) ∈ Em[N ]×Em[N ]
is a basis for the (Z/NZ)-module Em[N ].
(2) We denote [N–str]E/M the sheaf on M that assigns to an open subset U ⊂ M
the set of level- N structures on EU := E ×M U ! U , with the obvious restriction
maps.

Let us write GL2(Z/NZ)
M

for the constantM -group assigned to the abstract group

GL2(Z/NZ), so a section γ of GL2(Z/NZ)
M

over U is a locally constant function
γ : U ! GL2(Z/NZ).

Lemma 5.6.2. The sheaf [N–str]E/M is a GL2(Z/NZ)
M
-torsor on M .

Proof. To define the action, let ψ ∈ [N–str]E/M(U) be a section over some open
subset U ⊂M , i.e. ψ : (Z/NZ)2 ×U ! EU [N ] is a level-N structure on EU/U . The
composite

ψ ◦ γt : (Z/NZ)2 × U
γt×1U−−−−! (Z/NZ)2 × U

ψ
−! EU [N ]

defines one more N -structure on EU/U . It is straightforward to check this defines
an action of GL2(Z/NZ)M on [N–str]E/M :

γ · ψ = ψ ◦ γt, ψ ∈ [N–str]E/M(U), γ ∈ GL2(Z/NZ)
M
(U). (5.12)

Since GL2(Z/NZ) is the full automorphism group of the (Z/NZ)-module (Z/NZ)2,
we have an isomorphism

GL2(Z/NZ)
M

× [N–str]E/M ! [N–str]E/M × [N–str]E/M ,

(γ, ψ) 7! (γ · ψ, ψ).

Since E[N ] is a local system of rank-2 free Z/NZ-modules, the sheaf [N–str]E/M
admits a section locally on M . We conclude the sheaf [N–str]E/M is a torsor under
GL2(Z/NZ)

M
.
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Definition 5.6.3 (Weil pairing of a level-N structure). The Weil pairing of a level-
N structure (P,Q) is defined to be the locally constant µ×

N -valued function

eN(Q,P ) :M
(Q,P )
−−−! E[N ]× E[N ]

eN−! µ×
N . (5.13)

We opted for the ‘reversal’ of P and Q in this definition, to be consistent with
requiring an H1-structure (τ, σ) to satisfy σ • τ = 1. Sending a level-N structure to
its Weil pairing defines a morphism of sheafs

[N–str]E/M ! µ×
NM

, (5.14)

equivariant with respect to the determinant map det : GL2(Z/NZ)! (Z/NZ)×. For
every primitive N -th root of unity ζ ∈ µ×

N , we write [N–str]ζE/M for the preimage of

{ζ}
M
, i.e. for the subsheaf of [N–str]E/M consisting of those level-N structures with

Weil pairing constantly equal to ζ.

It follows that

[N–str]E/M =
⊔
ζ∈µ×N

[N–str]ζE/M , (5.15)

where the disjoint union of the sheafs [N–str]ζE/M is by definition the sheafification

of the presheaf U 7!
⊔
ζ∈µ×N

[N–str]ζE/M(U) on M .

Lemma 5.6.4. For each ζ ∈ µ×
N there exists an isomorphism

[Γ(N)–str]E/M ∼= [N–str]ζE/M . (5.16)

Proof. We first prove this for the primitive N -th root of unity ζN = exp(2πi/N). Let
ψ : Z2×M ! H1(E/M) be an H1-structure on E/M . Then ψ induces by tensoring
with Z/NZ a level-N structure on E/M

ψ ⊗ 1Z/NZ : (Z/NZ)2 ∼= Z2 ⊗ (Z/NZ)
ψ⊗1Z/NZ
−−−−−! H1(E/M)⊗ (Z/NZ) ∼= E[N ]

whose Weil pairing is ζN := exp(2πi/N), as is clear from Definition 4.5.9.
In fact, this defines a morphism of sheafs on M

[H1–str]E/M ! [N–str]ζNE/M ,

equivariant with respect to SL2(Z)! SL2(Z/NZ). Since [H1–str]E/M resp. [Γ–str]ζNE/M
is a torsor under SL2(Z)

M
resp. SL2(Z/NZ), and Γ(N) = ker (SL2(Z)! SL2(Z/NZ))

we conclude that there is an isomorphism

[Γ(N)–str]E/M := Γ(N)\ [H1–str]E/M
∼
−! [N–str]ζNE/M

Γ(N)ψ 7! ψ ⊗ (Z/NZ).
(5.17)

For any commutative ring R, the determinant map det: GL2(R)
× ! R× is sur-

jective by virtue of the section
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⟨·⟩ : R× ! GL2(R)
×, ⟨r⟩ =

(
r 0
0 1

)
. (5.18)

Hence for m+NZ ∈ Z/NZ and ζ ∈ µ×
N we get an isomorphism

⟨m⟩ : [N–str]ζE/M ! [N–str]ζ
m

E/M ,

ψ = (P,Q) 7! ψ ◦ ⟨m⟩t = ([m]E(P ), Q)
(5.19)

Now let ζ ∈ µ×
N be an arbitrary element of C× having order N . Then there exists

unique r ∈ (Z/NZ)× such that ζ = ζrN = exp(2πir/N). Composing (5.32) with
(5.19) gives an isomorphism

[Γ(N)–str]E/M := Γ(N)\ [H1–str]E/M
∼
−! [N–str]ζE/M ,

Γ(N)ψ 7! (ψ ⊗ 1Z/NZ) ◦ ⟨m⟩,
(5.20)

where the map (ψ ⊗ 1Z/NZ) ◦ ⟨r⟩ is the composite

(Z/NZ)2 ×M
⟨r⟩
−! (Z/NZ)2

ψ⊗1Z/NZ
−−−−−! H1(E/M)⊗ (Z/NZ) ∼= E[N ].

Next, we define a presheaf [N–str] on CMan classifying relative elliptic curves with
a level-N structure. We show that the sheaf [N–str] on CMan admits a fine moduli
space.

Let h̃ : E ′ ! E be a cartesian morphism of elliptic curves covering h : M ′ ! M .
Then h̃ gives rise to an isomorphism E ′[N ] ∼= h∗E[N ]. Therefore a level-N struc-
ture ψ = (Z/NZ)2 × M

∼
−! E[N ] on E/M pulls back to a level-N structure

h∗ψ : (Z/NZ)2 ×M ′ ∼
−! E ′[N ]. Note that if ψ = (P,Q) then h∗ψ = (h∗P, h∗Q),

where h∗ : E(M)! E ′ (M ′) is given by pulling back sections.
We obtain a GL2(Z/NZ)-equivariant morphism of sheaves on M ′, compatible

with the Weil pairings, as shown in the commutative diagram

h∗([N–str]E/M) [N–str]E′/M ′

h∗(µ×
NM

) µ×
NM ′ .

h̃∗

h∗eN eN

∼

Definition 5.6.5. (1) Two elliptic curves with a level-N structure (E !M, (P,Q))
and (E ′ !M, (P ′, Q′) are said to be isomorphic over M if there exists an isomor-
phism h̃ : E ′ ! E of elliptic curves over M such that h̃ (P ′) = P and h̃ (Q′) = Q.

(2) We denote [N–str](M) the set of elliptic curves over M with a level-N
structure (E ! M, (P,Q)) up to isomorphism over M . Given a holomorphic map
h :M ′ !M , pullback defines restriction maps

[N–str](h) : [N–str](M)! [N–str] (M ′) ,

(E !M,ψ) 7! (h∗E !M ′, h∗ψ) .

This defines a presheaf [N–str] : CManop ! Set on CMan. (3) Let ζ ∈ µ×
N . We

denote [N–str]ζ the subpresheaf of [N–str] classifying relative elliptic curves with a
level-N structure with Weil pairing ζ.
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Proposition 5.6.6. Let ζ ∈ µ×
N . Then there exists an isomorphism of presheaves

on CMan
[N-str]ζ ∼= [Γ(N)-str]. (5.21)

Proof. This follows from Corollary 5.7.4.

Theorem 5.6.7. Let N ≥ 3 and let ζ ∈ µ×
N . Then sheaf [N–str]ζ admits a fine

moduli space (EΓ(N) ! Y (N), (Pζ , Qζ)).

Proof. It follows from Proposition 5.6.6, Theorem 5.5.4 and Example 5.5.3 that there
is an isomorphism [N–str]ζ ∼= [Γ(N)–str] ∼= hY (N). Let us explain what the universal
level-N structure (Pζ , Qζ) on EY (N) ! Y (N) is.

The universal H1-trivialized elliptic curve (E ! H,Ψ) has a level-N structure
(PN , QN) with Weil pairing ζN = exp(2πi/N) given by

(PN(τ), QN(τ)) =

(
τ

N
,
1

N

)
. (5.22)

For γ ∈ SL2(Z), the two H1-trivializations Ψ and Ψ ◦ γt induce the same level-N
structure if and only if γ ∈ Γ(N). Hence for γ ∈ Γ(N), the automorphism ([γ]E , [γ])
of E ! H preserves the level-N structure (PN , QN), which therefore descends to a
level-N structure denoted (PζN , QζN ) on EY (N) = Γ(N)\E ! Y (N) = Γ(N)\H.

For an arbitrary ζ ∈ µ×
N , let r ∈ (Z/NZ)× be such that ζ = ζrN . Then the

universal level-N structure with Weil pairing ζ on EY (N) ! Y (N) is given by
(Pζ , Qζ) := ([r](PζN ), QζN ).

Corollary 5.6.8. Let N ≥ 3. Then the disjoint union over all ζ ∈ µ×
N of the fine

moduli spaces (EΓ(N) ! Y (N), (Pζ , Qζ)) for [N–str]ζ constructed in Theorem 5.6.7
is a fine moduli space for [N-str] and we have

[N–str] ∼= hY (N)×µ×N
. (5.23)

Proof. This follows from Theorem 5.6.7 and the fact that the Weil pairing of a
level-N structure on a relative elliptic curve E/M is constant on each connected
component of M .

5.7 Points of exact order N

Let E !M be a relative elliptic curve.

Definition 5.7.1. A point of exact order N is a section P ∈ E(M) such that for
every m ∈M the element Pm of the group Em has order N .

Points of exact order N are in bijection with injective homomorphism of M -groups
Z/NZ

M
! E, in such a way that a point P corresponds to the homomorphism

sending 1 ∈ Z/NZ(M) to P ∈ E(M).
We denote [N–pt]E/M the sheaf on M that assigns to an open subset U ⊂ M

the set of points of exact order N of EU := E ×M U ! U , with the obvious
restriction maps. Note that if ψ = (P,Q) is a level-N structure on E(M), then
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ψ (ae1 + be2) = aP + bQ with a, b ∈ Z/NZ is a point of exact order N whenever a
and b generate the unit ideal of Z/NZ. In particular, there is a natural transformation
of sheaves on M

[N–str]E/M ! [N–pt]E/M ,

ψ = (P,Q) 7! ψ (e2) = Q.
(5.24)

Definition 5.7.2. We denote the image of the level-N congruence subgroup Γ1(N)
under the canonical map πN : SL2(Z)! SL2(Z/NZ) by

Γ1(N) =

{(
1 b
0 1

)
: b ∈ Z/NZ

}
. (5.25)

The map (5.24) is invariant for Γ̄1(N).

Lemma 5.7.3. Let ζ ∈ µ×
N . The assignment (P,Q) 7! Q yields an isomorphism of

sheaves on M
Γ1(N)\[N–str]ζE/M ! [N–pt]E/M . (5.26)

Proof. Let U ⊂ M be an open subset, and let ψ = (P,Q) and ψ′ = (P ′, Q′) be two
level-N structures on EU/U with Weil pairing ζ. Since [N–str]ζE/M is an SL2(Z/NZ)-
torsor, there exists a unique γ ∈ SL2(Z/NZ)M(U) such that ψ′ = γ · ψ = ψ ◦ γt.
Since ψ : (Z/NZ)2 ×M ! E[N ] is injective, we have that

Q = Q′ ⇐⇒ ψ′ (e2) = ψ (e2) ⇐⇒ γt (e2) = e2 ⇐⇒ γ ∈ Γ1(N)

This shows we have a well-defined injective morphism (5.26) of sheaves on M . We
conclude the proof by showing it induces a surjection on the stalks

Let m ∈ M . It remains to be shown that the map [N–str]ζEm
! [N–pt]Em ,

(Pm, Qm) 7! Qm is surjective. Let Qm ∈ [N–pt]Em be a point of Em of exact order
N . Since the Weil pairing eN : Em[N ]×Em[N ]! µN is nondegenerate, there exists
Pm ∈ Em[N ] such that eN (Qm, Pm) = ζ. Then (Pm, Qm) ∈ [N–str]ζEm

is a level-N
structure on Em with Weil pairing ζ, that maps to Qm, as desired.

Corollary 5.7.4. There exists an isomorphism of sheaves on M , to be described in
the proof,

[Γ1(N)–str]E/M
∼
−! [N–pt]E/M . (5.27)

Proof. Choose a primitive N -th root of unity ζ ∈ µ×
N , for example ζN = exp(2πi/N).

The required isomorphism is the composite of the isomorphisms

Γ1(N)\ [H1–str]E/M
∼= Γ1(N)\

(
Γ(N)\ [H1–str]E/M

)
, (5.28)

5.5
! Γ̄1(N)\[N–str]ζE/M

5.9
! [N–pt]E/M . (5.29)

It ought to be remarked that this composite is independent of the choice of the
primitive N -th root of unity ζ. Indeed, the isomorphism 5.5 for ζmN is obtained by
precomposing that for ζN with the diamond isomorphism

⟨m⟩ : [N–str]ζNE/M ! [N–str]
ζmN
E/M , (P,Q) 7! (mP,Q),

and the latter does not alter the second point in the level-N structure.
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Definition 5.7.5. We define a sheaf [N–pt] on CMan classifying relative elliptic
curves with a point of exact order N , in the same way as we defined [N -str] in
Definition 5.6.5.

5.8 Cyclic subgroups of order N

Let E !M be a relative elliptic curve.

Definition 5.8.1. A cyclic subgroup of order N on E/M is a closed subset G ⊂ E
such that Gm = G ∩ Em is a cyclic subgroup of order N of Em for every m ∈M .

Example 5.8.2. Let Q be a point of exact order N of E/M . Then

(Z/NZ) ·Q :=
N−1⋃
i=0

([i] ◦Q)(M) (5.30)

is a cyclic subgroup G of order N of E/M . For every m ∈M , we have that the fibre
Gm =

⋃N−1
i=0 [i] (Qm) ⊂ Em is equal to the subgroup of order N of Em generated by

the element Qm.

We denote [N–grp]E/M the sheaf onM that assigns to an open subset U ⊂M the set
of cyclic subgroups of order N of EU := E ×M U ! U , with the obvious restriction
maps.

Proposition 5.8.3. There exists an isomorphism of sheaves on M

[Γ0(N)–str]E/M
∼
−! [N–grp]E/M . (5.31)

We will give the proof of Proposition 5.8.3 at the end of this section, after having
doing some preparations.

Example 5.8.2 defines a morphism of sheaves [N–pt]E/M ! [N–grp]E/M given by
Q 7! (Z/NZ) ·Q. This morphism is invariant for the natural action of (Z/NZ)×on
[N–pt]E/M , where d ∈ (Z/NZ)× operates by Q 7! [d](Q). In fact, this morphism
descends to an isomorphism, as the following lemma asserts.

Lemma 5.8.4. There exists an isomorphism of sheaves on M

(Z/NZ)×\[N–pt]E/M ! [N–grp]E/M . (5.32)

Proof. Let m ∈ M be an arbitrary point. It suffices to show bijectivity of the map
on the stalk at m, which is [N–pt]Em ! [N–grp]Em , Q 7! (Z/NZ) · Q. This is the
plain statement that any cyclic subgroup of order N of an abelian group A has a
generator, which is unique up to taking (Z/NZ)×multiples.

Definition 5.8.5. We denote the image of the level-N congruence subgroup Γ0(N)
under the canonical map πN : SL2(Z)! SL2(Z/NZ) by

Γ0(N) =

{(
d−1 b
0 d

)
: b ∈ Z/NZ, d ∈ (Z/NZ)∗

}
. (5.33)
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Note that Γ1(N) is a normal subgroup of Γ0(N). The quotient Γ̄0(N)/Γ̄1(N) acts
on the sheaf Γ1(N)\[N–str]ζE/M . It is straightforward to check that the isomorphism

(5.32) of sheaves on M is equivariant with respect to the isomorphism of groups

Γ0(N)/Γ1(N)
πN−! Γ̄0(N)/Γ̄1(N)! (Z/NZ)×,(
d−1 b
0 d

)
Γ̄1(N) 7! d.

Proof of Proposition 5.8.3. The required isomorphism is the composite of the iso-
morphisms

Γ0(N)\ [H1–str]E/M
∼= (Γ0(N)/Γ1(N))\ [Γ1(N)–str]

(5.31)
! (Z/NZ)×\ [N–pt]

(5.32)
! [N–grp] .
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Chapter 6

Néron polygons and generalized
elliptic curves

In this chapter we consider degenerating families of elliptic curves, called generalized
elliptic curves. Roughly speaking, a generalized elliptic curve is a holomorphic map
of complex manifolds of relative dimension 1, whose fibres are either smooth elliptic
curves or ‘semistable’ degenerations thereof called Néron polygons. In the algebraic
case they were introduced by Deligne and Rapoport in their landmark paper [DR73]
in order to construct a modular compactification of certain moduli stacks of elliptic
curves. In the complex-analytic case we will define these in Section 6.5.

In Section 6.1 for N ≥ 1 we define the Néron N -gon CN as a cyclic chain (‘poly-
gon’) of N projective lines. We show that Creg

N
∼= C∗×(Z/NZ) is a complex Lie group

that acts on CN . In Definition 6.2.4, we define the analogue of the Weil eN -pairing on
the N -torsion E[N ] of a complex elliptic curve, for the N -torsion Creg[N ] of the reg-
ular locus of the Néron N -gon. Following [Del71][Chapitre IV], in Section 6.4 we will
show that the cusps of the modular curves X(N), X1(N) and X0(N) parametrize
isomorphism classes of Néron polygons with a certain level structure on their N -
torsion.

In Chapter 9 we will construct, for suitable congruence subgroups Γ of SL2(Z), a
generalized elliptic curve DΓ ! X(Γ) which compactifies EΓ ! Y (Γ). The fibre of
this so-called Shioda modular surface DΓ over a cusp t of X(Γ) having width h is a
Néron h-gon: DΓ|t ∼= Ch.

If Γ̃ ⊂ Γ is a second congruence subgroup of SL2(Z), then we will construct a
holomorphic extension DΓ̃ ! DΓ of the natural map pΓ,Γ̃ : EΓ̃ = Γ̃\E ! Γ\E = EΓ
which covers the natural map pΓ,Γ̃ : X(Γ̃) = Γ̃\H∗ ! Γ\H∗ = X(Γ) in Section 9.4. If

s̃ ∈ Cusps(Γ) has width h̃ and its image s = pΓ,Γ̃(s̃) ∈ Cusps(Γ) has width h, then
the map on the fibres DΓ̃|s̃ ! DΓ|s is a contraction map uh,h̃ : Ch̃ ! Ch that we will

define in Section 6.2 for positive integers h and h̃ with h dividing h̃.

6.1 The Néron polygon CN

In this section for each positive integer N we will construct the Néron N-gon CN as
the union of a Z/NZ-index family of projective lines, each transversally intersecting
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both of its neighbors so as to form a cyclic chain or ‘polygon’. In Chapter 8 we
will encounter a version of this with an infinite Z-indexed family of projective lines,
deemed a Néron chain. In fact, we can construct the Néron chain in one fell sweep
with the Néron polygons.

Definition 6.1.1. Let H ⊂ Z be a subgroup, and let N ∈ Z≥0 ∪ {∞} be its index.
We will call the quotient complex analytic space

CN = (CP1 × Z/H)/((0, i) ∼ (∞, i+ 1)). (6.1)

the N-sided Néron polygon or Néron N-gon if N ∈ Z≥0 and the Néron chain if
N = ∞.

The irreducible components of CN are projective lines indexed by i ∈ Z/H, with
the i-th line intersection the (i+ 1)-th transversely. The singular locus Csing

N of CN
consists of these N intersection points. The quotient map c : P1 × (Z/NZ)! CN is
an isomorphism away from Csing

N , so that

Creg
N = C∗ × (Z/H). (6.2)

We see that there is a natural structure of complex Lie group on Creg
N which in fact

extends to a holomorphic action map

m : Creg
N × CN ! CN (6.3)

determined by the commutativity of the following diagram

C× × (Z/H)× CP1 × (Z/H) CP1 × (Z/H)

Creg
N × CN CN ,

m̃

c×c c

m

where m̃ is given for all x ∈ C∗, y ∈ C ∪ {∞} = CP1 and i, j ∈ Z/H by

m̃((x, i), (y, j)) = (xy, i+ j).

Let H1 be a subgroup of H, and let N1 be its index. Then the Néron N -gon is a
quotient of the Néron N1-gon. To see this, define an action

a : Z/H × CN ! CN (6.4)

of Z/H on CH by biholomorphisms, by requiring commutativity of the diagram

(Z/HZ)× (CP1 × (Z/HZ)) CP1 × (Z/HZ)

(Z/HZ)× CN CN .

(m,(x,i))7!(x,i+m)

idZ/HZ ×c c

a
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Lemma 6.1.2. For subgroups H1 ⊂ H ⊂ Z, with indices N1 = (Z : H1) and
N = (Z : H), we have a natural isomorphism

CN ∼= (H/H1) \CN1. (6.5)

Proof. One checks that both are the quotient of CP1 × Z/H1Z by the same equiva-
lence relation.

6.2 Weil eN-pairing on CN

Let N ∈ Z≥1. The N -torsion of Creg
N is the free Z/NZ-module of rank 2

Creg
N [N ] = µN × Z/NZ.

The aim of this section is to define a nondgenerate alternating bilinear map

eN : Creg
N [N ]× Creg

N [N ]! µN , (6.6)

called the Weil eN -pairing, since it is the analogue of the Weil eN -pairing on the
N -torsion of an elliptic curve. We will construct this pairing in a somewhat ad-
hoc fashion, using the fact proved in Lemma 6.2.3 that any automorphism of CN
induces an automorphism of the rank-2 free Z/NZ-module Creg

N [N ] with determinant
1. See [AMRT10][§1.4, Definition (b) preceding Theorem 4.3] for a more intrinsic
definition in terms of ample line bundles of degree N on CN . So let us start with
determining the group Aut(CN) of automorphisms of CN which induce a group
automorphism of Creg

N .

Lemma 6.2.1. Let N ∈ Z≥1. Then there is an isomorphism

µN × {±1} ∼= Aut (CN) (6.7)

given for all ζ ∈ µN , u ∈ {±1}, x ∈ C∗ and i ∈ Z/NZ by

(ζ, u)(x, i) =
((
xζ i

)u
, ui

)
.

Proof. In [DR73][Prop. 1.10] the above formula is used to identify Aut(CN) with a
semi-direct product µN ⋊ {±1}. In fact, this semi-direct product is (also) a direct
product, since the involution (1,−1) of CN extending inversion on Csm

N is clearly a
central element of Aut(CN).

Lemma 6.2.2. There is an isomorphism of rank-2 free (Z/NZ)-modules

Φ : (Z/NZ)2 ! Creg
N [N ],

(1, 0) 7! (0, 1),

(0, 1) 7! (ζN , 0) .

(6.8)

Proof. Let (x, i) ∈ C∗ × (Z/NZ) = Creg
N . Since [N ]Creg

N
(x, i) = (xN , Ni) = (xN , 0),

we have (x, i) ∈ Creg
N [N ] if and only if xN = 1, that is, x ∈ µN .

We conclude that Creg
N = µ×

N × (Z/NZ). Since µN is a cyclic group of order N
generated by ζN , it is then clear that Φ is an isomorphism.
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Lemma 6.2.3. The following map, defined for i ∈ Z/NZ and u ∈ {±1} by

δ : Aut(CN) = µN × {±1}! P̄N ,

(ζ iN , u) 7! u

(
1 i
0 1

)
,

(6.9)

is an isomorphism such that for every α ∈ Aut (CN) we have

α ◦ Φ = Φ ◦ δ(α)t. (6.10)

The matrix ω1 =

(
0 −1
1 0

)
defines a (Z/NZ)-valued pairing

(Z/NZ)2 × (Z/NZ)2 ! Z/NZ,

((a, b), (c, d)) 7! (a, b)ω1(c, d)
t = bd− ac.

Using the isomorphisms Φ : (Z/NZ)2 ! Creg
N [N ] and Z/NZ! µN , a 7! ζaN we carry

ω1 over to a µN -valued pairing on eN : Creg
N [N ]× Creg

N [N ]! µN .

Definition 6.2.4. The Weil eN -pairing on the Néron N -gon CN is the map

eN : Creg
N [N ]× Creg

N [N ]! µN ,

((ζ, i), (η, j)) 7! ζj/ηi.
(6.11)

By construction the following diagram commutes:

(Z/NZ)2 × (Z/NZ)2 Creg
N × Creg

N [N ]

(Z/NZ) µN .

Φ×Φ

ω1 eN

a7!ζaN

Lemma 6.2.5. The Weil eN -pairing is a natural nondegenerate alternating bilinear
pairing on Creg

N [N ], that is, for all x, y, z ∈ Creg
N [N ] and α ∈ Aut (CN) we have

• eN(x, x) = 1 (alternating);

• eN(x,m(y, z)) = eN(x, y)eN(x, z) and eN(m(x, y), z) = eN(x, z)eN(y, z) (bilinear);

• if eN(x,w) = 1 for every w ∈ Creg
N [N ] then x = (1, 1) (nondegenerate);

• eN(α(x), α(y)) = eN(x, y) (natural).

Proof. Properties (1) and (2) are straightforward from the definition. For property
(3), simply note that if x = (ζ, i), then eN (x, (ζN , 0)) = ζ−iN and eN(x, (0, 1)) = ζ. To
show property (4), it suffices to show that Aut (CN) = µN × {±1} acts on Creg

N [N ]
via automorphisms of determinant 1. This is clear from Lemma 6.2.3, since visibly
we have PN ⊂ SL2(Z/NZ).
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6.3 Contractions

Let h and N be positive integers, with h dividing N . In Lemma 6.3.2 will construct
a surjective holomorphic map uh,N : CN ! Ch, which restricts to an isomorphism
u−1
h,N(C

reg
h ) = C∗ × (Z/NZ)[h] ! Creg

N = C∗ × (Z/hZ) given by (x, (N/h)i) 7! (x, i)
for all x ∈ C∗ and i ∈ Z/hZ, and contracts all irreducible components of CN not
meeting C∗ × (Z/NZ)[h].

Definition 6.3.1 (component group). Given a C-analytic spaceX, we denote π0(X)
the set of connected components of X. There is a natural map ν = νX : X ! π0(X)
sending a point x ∈ X to the connected component of x.

If G is a complex Lie group, then π0(G) has a unique group structure with respect
to which νG : G ! π0(G) is a homomorphism. We call π0(G) the component group
of G.

Now let N ∈ Z≥1. The regular locus of the Néron N -gon CN is the complex Lie
group Creg

N = C∗ × Z/NZ, which has component group π0 (C
reg
N ) = Z/NZ.

In the remainder of this section we fix a positive divisor h of N . Then we have
an isomorphism [h/N ] : (Z/NZ)[h] = (N/h)Z/NZ

∼
−! Z/hZ given for all i ∈ Z by

[h/N ]((N/h)i+NZ) = i+ hZ.

Lemma 6.3.2. Let h be a positive divisor of N . Then there exists a unique holo-
morphic map

u = uh,N : CN ! Ch (6.12)

that restricts to an isomorphism

u−1(Creg
h ) C∗ × (Z/NZ)[h]

Creg
h C∗ × (Z/hZ).

=

u idC∗ ×[h/N ]

=

(6.13)

The morphism u contracts onto one point each irreducible component of CN which
is the closure of a connected component of Creg

N whose order in π0 (C
reg
N ) = Z/NZ

does not divide h. Moreover, the following diagram commutes:

u−1(Creg
h )× CN CN

Creg
h × Ch Ch.

u×u u

Proof. See [DR73][Prop. IV.1.3].

Next, we compare the automorphism groups of CN and CN via the contraction map
uh,N : Cn ! Ch.

Lemma 6.3.3. For every automorphism α ∈ Aut (CN) = µN × {±1} there exists a
unique automorphism βh,N(α) ∈ Aut (Ch) = µh × {±1} with the property that

uh,N ◦ α = βh,N(α) ◦ uh,N . (6.14)
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If α = (ζ, u) ∈ µN × {±1} then βN/h(α) =
(
ζN/h, u

)
∈ µh × {±1}, and this defines

a surjective group homomorphism

βh,N : Aut (CN)! Aut (Ch) . (6.15)

Proof. We have to show that if α = (ζ, u) ∈ µN ×{±1} with ζ ∈ µN and u ∈ {±1},
then β =

(
ζN/h, u

)
∈ µh × {±1} satisfies β ◦ uh,N = uh,N ◦ α. It suffices to consider

the cases α = −1 and α = ζ ∈ µN . For the first case, note that uh,N intertwines the
involutions on CN and Ch defined by −1.

For the second case, let ζ ∈ µN , which preserves the irreducible components
of CN , and similarly ζN/h preserves the singular points of Ch. This shows that
β ◦ uh,N = uh,N ◦ α on each irreducible components of CN that is contracted onto a
singular point of Ch.

Now consider an irreducible component CP1 × {(N/h)i + NZ} of CN with is
mapped isomorphically by uh,N to the irreducible component CP1 × {i+ hZ} of Ch
via the identity map on CP1. The action of ζ on P1 × {iN/h + NZ} ⊂ CN is via
multiplication by ζ iN/h, while the action of ζN/h on P1×{i+hZ} is via multiplication

by
(
ζN/h

)i
= ζ iN/h. This shows that β◦uh,N = uh,N◦α on each irreducible component

of CN that is not contracted by uh,N , hence on all of CN .
Finally, since [N/h] : µN ! µh, ζ 7! ζN/h is a surjective homomorphism, so is

βh,N : µN × {±1}! µh × {±1}, (ζ, u) 7!
(
ζN/h, u

)
.

6.4 Modular interpretation of Cusps(N),Cusps1(N)

and Cusps0(N)

This section gives a modular interpretation for the sets of cusps of the modular curves
X(N), X1(N) and X0(N) introduced by Deligne and Rapoport in their seminal
paper [DR73].

Definition 6.4.1. Let h and N be positive integers.

(1) A level-N structure on Ch is a group isomorphism ϕ : (Z/NZ)2 ! Creg
h [N ]. The

set of level-N structures on Ch is denoted [N–str]Ch
.

(2) A point of (exact) order N on Ch is an element P of the group Creg
h having

order N . The set of points of exact order N on Ch is denoted [N–pt]Ch
.

(3) A cyclic subgroup of order N on Ch is a cyclic subgroupG of the group Creg
h hav-

ing order N . The set of cyclic subgroups of order N on Ch is denoted [N–grp]Ch
.

Example 6.4.2. Let N and h be positive integers.

(1) The standard level-N structure on CN is the isomorphism Φ that we defined in
Lemma 6.2.2, given by Φ(a, b) =

(
ζbN , a

)
for all a, b ∈ Z/NZ.

(2) Suppose that ϕ : (Z/NZ)2 ! Creg
h [N ] is a level-N structure. Then image

ϕ(0, 1) ∈ Creg
h [N ] of the vector (0, 1) ∈ (Z/NZ)2 is a point of exact order

N of Ch. This defines a forgetful map

[N–lvl]Ch
! [N–pt]Ch

,

ϕ 7! ϕ(0, 1).
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(3) Suppose that P ∈ Creg
h [N ] is a point of exact order N . Then P generates a a

cyclic subgroup (Z/NZ) · P := {[i](P ) : i ∈ Z/NZ} of order N on Ch. This
defines a forgetful map

[N–pt]Ch
! [N–grp]Ch

,

P 7! (Z/NZ) · P.

Remark 6.4.3. Let h ∈ Z≥1. From the canonical isomorphism Creg
h [N ] = µN×(Z/hZ),

we read off that the set [N–lvl]Ch
is nonempty if and only if N | h. On the other

hand, for every value of h there exists on Ch a point (ζN , 0 + hZ) of order N as
well as a cyclic subgroup µN × {0 + hZ} of order N , both contained in the identity
component C∗ × {0 + hZ} ∼= C∗ of Creg

h = C∗ × Z/hZ.

Definition 6.4.4. Let ζ ∈ µ×
N . We say a level-N structure ϕ on CN has Weil pairing

ζ if eN(ϕ(0, 1), ϕ(1, 0)) = ζ. We let [N–str]ζCN
⊂ [N–str]CN

be the subset consisting
of level-N structures that have Weil pairing ζ.

The Weil eN -pairing provides a decomposition [N–str]CN
=

⊔
η∈µ×N

[N–str]ηCN
.

Example 6.4.5. The standard level-N structure Φ on CN from Example 6.4.2(1)
has Weil pairing eN(Φ(0, 1),Φ(1, 0)) = eN ((ζN , 0) , (0, 1)) = ζN .

Definition 6.4.6. We define a left action of GL2(Z/NZ) on [lvl−N]CN
by

γϕ = ϕ ◦ γt.

Note that if ϕ has Weil pairing ζ, then γϕ = ϕ◦γt has Weil pairing ζdet(γ). Thus the
map [N–str]! µ×

N sending a level-N structure ϕ to eN(ϕ(0, 1), ϕ(1, 0)) is equivariant
for det : GL2(Z/NZ)! (Z/NZ)×. In particular, the action of SL2(Z/NZ) preserves
the decomposition [lvl− N]CN

=
⊔
ζ∈µ×N

[lvl− N]ζCN
.

Lemma 6.4.7. There exists a commutative diagram in which the horizontal maps
are bijective

SL2(Z/NZ) [N–str]ζN

Γ1(N)\ SL2(Z/NZ) [N–pt]

Γ0(N)\ SL2(Z/NZ) [N–grp] .

ϕ 7!ϕ(0,1)

P 7!(Z/NZ)·P

(6.16)

Proof. The top horizontal map is defined by sending γ ∈ SL2(Z/NZ) to γΦ = Φ◦γ;
it is an isomorphism because [N–str]ζNCN

is a simply transitive SL2(Z/NZ)-set.
Since the automorphism group of (Z/NZ)2 is GL2(Z/NZ), we see that the map

GL2(Z/NZ) ! [lvl−N]CN
, γ 7! Φ ◦ γt is bijective. Since the level-N structure γΦ

has Weil pairing ζ
det(γ)
N , it restricts to a bijection SL2(Z/NZ)! [lvl− N]ζNCN

.
The stabilizer of the vector (0, 1) ∈ (Z/NZ)× (Z/NZ) for the SL2(Z/NZ)-action

is given by
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Γ̄1(N) :=

{(
1 n
0 1

)
: n ∈ Z/NZ

}
=

{
γ ∈ SL2(Z/NZ) : γt(1, 0) = (1, 0)

}
.

Hence for γ1, γ2 ∈ SL2(Z) we have, using that Φ is injective,

Φ
(
γt1(0, 1)

)
= Φ

(
γt2(0, 1)

)
⇐⇒ γt1(0, 1) = γt2(0, 1) ⇐⇒ Γ̄1(N)γ1 = Γ̄1(N)γ2.

This equivalence says precisely that the top isomorphism SL2(Z/NZ)! [lvl−N]ζNCN
,

γ 7! γΦ = Φ ◦ γt, induces a well-defined injection Γ̄1(N)\SL2(Z/NZ)! [pt−N]CN
,

Γ̄1(N)γ 7! Φ (γt(0, 1)). It is surjective as well, because the top right map is surjective
owing to the nondegeneracy of the Weil eN -pairing, i.e. any point of exact order N
on CN can be extended to a level-N on CN structure with prescribed Weil pairing
ζ ∈ µ×

N .
Similarly, the top horizontal isomorphism is seen to descend to a well-defined

injective map Γ̄0(N)\SL2(Z/NZ) ! [N–pt]CN
, Γ̄0(N)γ 7! Φ (γt({0} × (Z/NZ)))

because the stabilizer of the subgroup {0}×Z/NZ ⊂ (Z/NZ)× (Z/NZ) is given by

Γ̄0(N) =
{
γ ∈ SL2(Z/NZ) : γt({0} × Z/NZ) = {0} × Z/NZ

}
.

To check it is surjective, we have to check the bottom right map is surjective, which
is clear since by definition a cyclic subgroup of order N on Creg

N is generated by an
element that has order N .

There is an evident action of Aut(Ch) on each of the sets [lvl−N]Ch
, [pt−N]Ch

and
[grp− N]Ch

.

Lemma 6.4.8. There exists a commutative diagram in which the horizontal maps
are bijective

Cusps(N) = SL2(Z/NZ)/PN Aut(CN)\ [N–str]ζNCN

Cusps1(N) = Γ1\ SL2(Z/NZ)/PN Aut(CN)\ [N − pt]CN

Cusps0(N) = Γ0(N)\ SL2(Z/NZ)/PN Aut(CN)\ [N − grp]CN
.

[ϕ]7![ϕ(0,1)]

[P ]7![(Z/NZ)·P ]

(6.17)

Proof. The diagram results from diagram (6.16) whose horizontal bijections inter-
twine the right action of PN and left action of Aut (CN) through equation (6.10).

Theorem 6.4.9. For each N ∈ Z≥1, we have the following modular interpretation
of the set of cusps Cusps(N) of the modular curve X(N):

Cusps(N) = {Néron N-gons with a level-N structure with Weil pairing ζN}/ ∼= .
(6.18)
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Proof. The bijection is provided by the top horizontal map in diagram (6.17).

Finally we give, following [DR73][Chapitre IV, §4], a modular description of the
cusps of the modular curves X1(N) and X0(N) in terms of so-called ample points
of order N resp. ample cyclic subgroups of order N on Néron polygons.

Definition 6.4.10. Consider a Néron polygon Ch for some h ∈ Z≥1.

(1) Let G be a cyclic subgroup of order N on Ch. We say that G is ample if it
meets each connected component of Creg

h . Equivalently we may demand that
(Z/NZ) ∼= G ! π0 (C

reg
h ) ∼= Z/hZ be a surjective homomorphism. We denote

the set of ample points of order N on Ch by [N–pt]ample
Ch

.

(2) We say a point P of exact order N on a Néron polygon Ch is ample if the cyclic
subgroup (Z/NZ) · P of order N generated by P is ample in the sense of part
(1) of this definition. It is equivalent to ask that the image of P in π0(C

reg
h ) have

exact order N . We denote the set of ample cyclic subgroups of order N on Ch
by [N–grp]ample

Ch
.

Remark 6.4.11. Let h ∈ Z≥1. There exists an ample point of exact order N (resp. an
ample cyclic subgroup of order N) on the Néron polygon Ch if and only if h divides
N .

Theorem 6.4.12. We have the following modular description of the sets Cusps1(N)
resp. Cusps0(N) of cusps of the modular curves X1(N) resp. X0(N):

Cusps1(N) = {Néron polygons with an ample point of exact order N}/ ∼=,
Cusps0(N) = {Néron polygons with an ample cyclic subgroup of order N}/ ∼= .

Proof. Let P ∈ [N–pt]CN
. Let h be the order of P in π0(C

reg
N ) = Z/NZ. We have

that P is ample if and only if h = N . If h < N then taking the image of P under the
isomorphism of complex Lie groups (6.13) gives an ample point P1 := uh,N(P ) ∈ Creg

h

of order N on Ch.
Conversely, let h be a positive divisor of N and consider an ample point P1 ∈ Creg

h

of order N on Ch. Then P1 lifts along uh,N to a point P of order N on CN , whose
order in π0(C

reg
N ) is h. The correspondence P ↔ P1 sets up a bijection between the

set of points of order N on CN whose order in π0(C
reg
N ) is h, and the set of ample

points of order N on Ch.
Assembling these bijections for all positive divisors h of N gives the bijection

[N–pt]CN
=

⊔
h

[N–pt]ample
Ch

.

Lemma 6.3.3 asserts that each automorphism of Ch lifts along uh,N to an automor-
phism of CN . It follows that the above bijection descends to a bijection

Aut(CN)\[N–pt]CN
∼=

⊔
h

Aut(Ch)\[N–pt]ample
Ch

.

The composition of the middle horizontal bijection in (6.17) with this bijection gives
the desired modular description of Cusps1(N).
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Moving on to Cusps0(N), the same reasoning for cyclic subgroups of order N as
was carried out for points of order N yields a bijection

Aut(CN)\[N–grp]CN
∼=

⊔
h

Aut(Ch)\[N–grp]ample
Ch

.

The composition of the bottom horizontal bijection in (6.17) with this bijection gives
the desired modular description of Cusps0(N).

6.5 Generalized elliptic curves

In this section we will define generalized elliptic curves where the generalization con-
sists in allowing the singular Néron polygons from Section 6.1 as fibres in addition to
smooth elliptic curves. In keeping with the functorial spirit of this thesis, we discuss
homomorphisms and pullbacks.

Recall from Theorem 2.2.9 that a flat holomorphic map f : X ! Y of complex
spaces is submersive at a point x ∈ X if and only if the fibre Xf(x) = f−1(f(x)) is a
complex manifold at x. We will write Xsm =

⋃
y∈Y f

−1(y)reg for the open subset of
X on which f is a submersion; its complement is an analytic (closed) subset denoted
Xnsm =

⋃
y∈Y f

−1(y)sing .

Definition 6.5.1. (1) Let M be a complex manifold. A generalized elliptic curve
over M consists of a proper, flat morphism with reduced fibres f : E ! M ,
where E is a complex space, together with a structure of M -group on Esm that
extends to an action of Esm on E over M , such that the fibre of these data over
a point m ∈ M are either an elliptic curve or a Néron polygon CN for some
N ∈ Z≥1.

(2) Let h : M ′ ! M be a morphism in CMan, and let f ′ : E ′ ! M ′ be a second
generalized elliptic curve. A homomorphism of generalized elliptic curves cover-
ing h is a holomorphic map h̃ : E ′ ! E covering h such that h̃ (E ′sm) ⊂ Esm

and the following diagram commutes:

E ′ sm ×M ′ E ′ E ′

Esm ×M E E.

h̃×h̃ h̃

We call h̃ cartesian if it induces a biholomorphism E ′ ∼
! E ×M M ′.

Example 6.5.2. (1) Any relative elliptic curve f : E !M is a generalized elliptic
curve.

(2) For every N ∈ Z≥1 and complex manifold M we have that CN ×M ! M is a
generalized elliptic curve, called the constant N-gon over M .

Lemma 6.5.3. Let h : M ′ ! M be a morphism in CMan and let f : E ! M be
a generalized elliptic curve. Then the fibre product f ′ : E ′ := E ×M M ′ ! M ′ is
naturally a generalized elliptic curve over M ′.
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Proof. The three properties of a morphism of complex spaces of being proper, of
being flat and of having reduced fibres are all stable under pullback. For every point
m′ ∈M ′ we have that E ′

m′
∼= Eh(m). In particular this shows that E ′sm = Esm×MM

′.
The group law E ′sm×M ′E ′sm ! E ′sm and action map E ′sm×M ′ E ′ ! E ′ are defined
as the base change of Esm×M Esm ! Esm resp. Esm×M E ! E along h :M ′ !M .
Then clearly the fibres of f ′ : E ′ ! M ′ are elliptic curves or Néron polygons, since
the fibres of f : E !M are such.

We have defined level-N structures, points of exact order N and cyclic subgroups
of order N in Definitions 5.6.1, 5.7.1 resp. 5.8.1 for relative elliptic curves and in
Definition 6.4.1 for Néron polygons. We conclude this section by giving the common
generalization of these definitions to generalized elliptic curves.

Definition 6.5.4. Let f : E !M be a generalized elliptic curve and let N ∈ Z≥1.

(1) A level-N structure on the generalized elliptic curve E/M is an isomorphism of
M -groups ϕ : (Z/NZ)2 ×M ! Esm[N ].

(2) A point of exact order N on E/M is a section Q :M ! Esm of f such that for
each point m ∈M the element Qm := Q(m) of the group (Em)

reg have order N .

(3) A cyclic subgroup of order N on E/M is an M -subgroup G ⊂ Esm such that
for each point m ∈ M the subgroup Gm := G ∩ Em of the group (Em)

reg have
order N .

We will say a point Q of exact order N resp. a cyclic subgroup G of order N on a
generalized elliptic curve E/M is ample if for each point m ∈M such that the fibre
Em is a singular Néron polygon, the point Qm resp. cyclic subgroup Gm is ample in
the sense of Definition 6.4.10.

Definition 6.5.5. Let f : E !M be a generalized elliptic curve and let N ∈ Z≥1.

(1) We will say a cyclic subgroup G ⊂ Esm of order N on E/M is ample if for every
m ∈M it intersects each connected component of the fibre (Esm)m.

(2) We will say a point Q of exact order N on E/M is ample if the cyclic subgroup
G := (Z/NZ) · P =

⋃N−1
i=0 [i]E(P ) it generates is ample in the sense of part (1)

of this definition.
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Chapter 7

Toric geometry

Toric geometry is a fruitful source of examples in algebraic geometry, a thesis this
thesis hopes to support. A toric variety is a C-variety which contains an algebraic
torus as an open dense subvariety. One builds a toric variety F (N,Σ) from two
ingredients: a finite free Z-module N , called the lattice, and a set of nicely arranged
cones in the finite-dimensional real vector space NR = N ⊗Z R, called the fan. The
torus can be thought of analytically as N ⊗Z C∗, but will be defined in schematic
parlance as TN = SpecC[M ], where M = Hom(N,Z) is the dual lattice of N . The
toric variety F (N,Σ) is acted upon by TN , such that the TN -orbits correspond to
the cones in the fan Σ. This orbit-cone correspondence is the subject of Section 7.3.

We call a pair (N,Σ) as above a rational partial polyhedral decomposition, or
RPP decomposition for short. The assignment of a toric variety F (N,Σ) to an RPP
decomposition is functorial. In fact, Theorem 7.1.8 states that F is an equivalence of
categories between the category of RPP decompositions and the category of normal
toric varieties and toric morphisms.

Section 7.3 discusses fibre products of toric varieties. Its central result is that the
fibre product of two toric morphisms is again a toric variety, provided one of the
morphisms is flat with reduced fibres.

In Section 7.4 we discuss projective toric morphisms. Section 7.5 provides a major
source of examples of these, viz. star-subdivisions. Section 7.4 includes a description
of (very) ample torus-invariant divisors relative to a toric morphism for technical
reasons detailed in Section 10.4.

7.1 Toric varieties from fans

In this section we will give a synopsis of the construction of a toric variety from
combinatorial data. We refer to [Ful93] for a comprehensive treatment including
proofs.

Definition 7.1.1. (1) A C-variety is, for us, an integral separated scheme locally
of finite type over C. A morphism of C-varieties is a morphism of schemes over
C. The category of C-varieties is denoted C–Vrt. We will write X × Y for the
product of two objects X and Y in C–Vrt, even though it is given by the fibre
products X ×SpecC Y in the category of schemes.
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(2) A C-algebraic group is a group object in the category of C-varieties. The category
of C-algebraic groups and homomorphisms thereof is denoted C–AlgGrp.

We now discuss how to construct an algebraic torus TN from a lattice N .

Definition 7.1.2. A lattice is a free Z-module of finite rank N . A homomorphism
between two lattices is an additive map.

We write Gm = Gm,C for the multiplicative algebraic group over C, whose C-points are
given by Gm(C) = C×. For each integer k ∈ Z the map z 7! zk is an endomorphism
of Gm, which gives an identification

HomC–AlgGrp (Gm,Gm) = Z.

Let N be a lattice. Then its Z-dual M = N∨ = HomZ(N,Z) is also a lattice.
Write TN = SpecC[M ] for the C-algebraic torus attached to N ; its C-points are
given by TN(C) = HomZ(M,C×) = N ⊗Z C∗. The group of 1-parameter subgroups
of TN is

HomC–AlgGrp (Gm, TN) = HomZ(Z, N) = N (7.1)

and the character group of TN is given by

HomC–AlgGrp (TN ,Gm) = HomZ(N,Z) =M. (7.2)

The assignment N 7! TN gives rise to an equivalence of categories from the category
of lattices to the category of algebraic tori over C. In particular, for two lattices N
and N ′ we have

HomC–AlgGrp (TN , TN ′) = Hom (N,N ′) . (7.3)

Composition gives a pairing

HomC–AlgGrp (TN ,Gm)× HomC–AlgGrp (Gm, TN)! HomC–AlgGrp (Gm,Gm) ,

(g, f) 7! g ◦ f
(7.4)

which under the above identifications corresponds to the duality pairing

⟨·, ·⟩ :M ×N ! Z. (7.5)

We now discuss a vast extension of the above construction of algebraic tori, which
produces torus embeddings.

Definition 7.1.3. (0) A torus embedding T ⊂ X consists of an algebraic torus T ,
contained as a Zariski-dense open subset in an algebraic variety X, together
with an action T ×X ! X that extends the group law on T , i.e. such that the
diagram

T ×X X

T × T T

⊂ ⊂
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commutes.

(1) A morphism from one torus embedding T ⊂ X to a second T ′ ⊂ X ′ is a
dominant morphism of algebraic varieties f : X ! X ′ that restricts to a sur-
jective group homomorphism f |T : T ! T ′ and is equivariant with respect to
the respective torus actions, in the sense that it renders the following diagram
commutative:

T ×X X

T ′ ×X ′ X ′.

f |T×f f

(2) When we say a torus embedding T ⊂ X has a certain property of C-schemes (i.e.
separated, normal, proper, smooth), then it is meant that X has that property.

In toric geometry one constructs a torus embedding starting from certain combinato-
rial data called a rational partial polyhedral decomposition, or RPP decomposition
for short.

For a lattice N , we will call the tensor product NR = N ⊗Z R the realification of
N , for it is a real vector space with integral structure N . Given subsets R ⊂ R and
σ ⊂ NR we write

R · σ =

{
n∑
i=1

rivi : n ∈ Z≥0, ri ∈ R, vi ∈ σ for all 1 ≤ i ≤ n

}
.

Let MR = M ⊗Z R = HomR (NR,R) be the dual vector space, with integral struc-
ture M . We have a duality pairing MR ⊗R NR ! R obtained from the duality
pairing M ⊗ N ! Z by the scalar extension Z ! R. Given u ∈ MR we write
u⊥ = {v ∈ NR : ⟨u, v⟩ = 0}; provided u ̸= 0 this is a hyperplane in NR.

Definition 7.1.4. Let N be a lattice and NR = N ⊗Z R its realification.

(1) A convex cone in NR is a subset σ ⊂ NR such that σ = R≥0 · σ.
(2) A convex polyhedral cone is a cone R≥0 · S for a finite subset S ⊂ NR.

(3) A rational convex polyhedral cone is a cone R≥0 · S for a finite subset S ⊂ N .

(4) The dimension of a cone σ ⊂ NR, denoted dim(σ), is defined to be the dimension
of its R-span, i.e. dim(σ) := dim(R · σ).

For any subset σ ⊂ NR we define its dual

σ∨ = {u ∈MR : ⟨u, v⟩ ≥ 0 for all v ∈ σ} (7.6)

which visibly is a convex cone. If σ is a (rational) convex polyhedral cone, then σ∨ is
again such a cone, and the duality theory of convex analysis states that (σ∨)∨ = σ,
see [Ful93][Section 1.2, (9), (1)]. A face of a convex polyhedral cone σ is a subset
u⊥∩σ for some u ∈ σ∨. If we write σ = R≥0 ·S, then the face of σ cut out by u equals
u⊥ ∩ σ = R≥0 · T with T = {v ∈ S : ⟨u, v⟩ = 0} ⊂ S. Therefore a face of a (rational)
polyhedral cone is again such a cone. Any intersection of faces of σ is again a face
of σ, and a face of a face of σ is a face of σ [Ful93][Section 1.2, statements (3), (4)].
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Proposition-Definition 7.1.5. For a convex polyhedral cone σ, the following are
equivalent:

(1) σ ∩ (−σ) = {0};
(2) R · σ∨ =MR;

(3) there exists u ∈ σ∨ with u⊥ ∩ σ = {0}.

A convex polyhedral cone is called strongly convex if it satisfies any, hence all, of
these equivalent conditions.

Proof. See [Ful93][Section 1.2, (13)] for a proof of these equivalences.

Let σ be a convex rational polyhedral cone in NR. Then the monoid Nσ := N ∩ σ is
a finitely generated monoid, see [Ful93][§1.2, Proposition 1]. The unit group of Nσ

is trivial, i.e. one has N×
σ := Nσ ∩ (−Nσ) = {0}, if and only if σ is strongly convex,

i.e. one has σ ∩ (−σ) = {0}.
Let σ be a strongly convex rational polyhedral cone. A nonzero n ∈ Nσ is called

indecomposable if n = n1 + n2 with n1, n2 ∈ Nσ implies that n1 = 0 or n2 = 0. The
set of indecomposable elements of Nσ is the smallest set of generators of Nσ.

Definition 7.1.6 (fan). Let N be a lattice. A fan in NR is a collection Σ of strongly
convex rational polyhedral cones in NR such that

• if σ ∈ Σ and τ is a face of σ, then τ ∈ Σ;

• if σ, τ ∈ Σ then σ ∩ τ is a face both of σ and of τ (hence belongs to Σ).

Definition 7.1.7. (0) A rational partial polyhedral decomposition or RPP decom-
position is a pair (N,Σ) consisting of a lattice N and a fan Σ in NR.

(1) A morphism h : (N,Σ)! (N ′,Σ′) between RPP decompositions is an additive
map h : N ! N ′ with finite cokernel such that its scalar extension hR : NR ! N ′

R

maps each cone in Σ into some cone of Σ′, i.e. for each σ ∈ Σ there exists σ′ ∈ Σ′

with hR(σ) ⊂ σ′.

By abuse of notation, if no ambiguity is likely to arise we will drop the subscript
from hR and simply write h : NR ! N ′

R.

Theorem 7.1.8. There exists an equivalence of categories from the category of ra-
tional partial polyhedral decompositions to the category of normal torus embeddings,
written (N,Σ) 7! (TN ⊂ F (N,Σ)), and h 7! F (h).

Proof. See [OM78][Theorem 4.1].

If Σ is the set of faces of a strongly convex rational polyhedral cone σ in NR, then we
will also write F (N, σ) for F (N,Σ). Denoting the duality pairing ⟨·, ·⟩ :M ×N ! Z
and Mσ = {ξ ∈M : ⟨ξ, σ⟩ ≥ 0}, we have F (N,Σ) = SpecC [Mσ].

For a general RPP decomposition (N,Σ), the toric variety F (N,Σ) is obtained
by gluing together the affine toric varieties F (N, σ) for the cones σ ∈ Σ, as we will
discuss in the next section.

Definition 7.1.9. A strongly convex rational polyhedral cone σ is called nonsingular
if there exists a Z-basis B of N and a subset S ⊂ B such that σ = R≥0 · S. We call
σ singular if it is not nonsingular.
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Theorem 7.1.10. For an RPP decomposition (N,Σ) we have the following equiv-
alences:

(1) F (N,Σ) is of finite type over C if and only if Σ is a finite set;

(2) F (N,Σ) is smooth over C if and only if each cone σ ∈ Σ is nonsingular;

(3) F (N,Σ) is proper over C if and only if
⋃
σ∈Σ σ = NR;

(4) F (N,Σ) is affine over C if and only if Σ consists of the faces of a single cone
in NR.

Proof. Parts (1), (2), (3) and (4) are proved as Thm. 4.1, Thm. 4.3, Thm. 4.5 resp.
Thm 4.2 in [OM78].

Definition 7.1.11. We say a morphism h : (N,Σ) ! (N ′,Σ′) of RPP decomposi-
tions is

(1) proper if for every σ′ ∈ Σ′ the set {σ ∈ Σ : h(σ) ⊂ σ′} is finite and its union is
h−1 (σ′);

(2) weakly semistable if for every σ ∈ Σ there exists σ′ ∈ Σ′ with h(N ∩σ) = N ′∩σ′.

Theorem 7.1.12. For a morphism h : (N,Σ) ! (N ′,Σ′) of RPP decompositions,
we have the following equivalences.

(1) F (h) is proper if and only if h is proper;

(2) F (h) is flat with reduced fibres if and only if h is weakly semistable;

(3) F (h) is birational if and only if h : N ! N ′ is an isomorphism of Z-modules.

Proof. Part (1) is classical and can be found for example in [OM78][Theorem 4.4].
Part (2) is more recent and proved in [Mol19][Theorem 2.1.4].
For part (3) note that F (h) is birational if and only if it restricts an isomorphism

of algebraic tori TN ! TN ′ . This happens precisely when h : N ! N ′ is an iso-
morphism, because the functor N0 7! TN0 from lattices to C-algebraic tori is fully
faithful by (7.3), hence reflects isomorphisms.

Notation 7.1.13. Let Σ be a fan in NR, and let k be a positive integer. We will
denote Σ<k = {σ ∈ Σ : dim(σ) < k} the subset of Σ consisting of those cones that
have dimension less than k. Then (N,Σ<k) is again an RPP decomposition, and
the natural map F (N,Σ<k)! F (N,Σ) is an open embedding complementary to a
closed subset of codimension at least k. For l ∈ Z≥0 we define Σ≤l = Σ<l+1, and let
Σ(l) = {σ ∈ Σ : dim(σ) = l} be the set of l-dimensional cones of Σ.

7.2 The orbit-cone correspondence

In this section, we show that given an RPP decomposition (N,Σ) the cones in the
fan Σ are in bijection with the TN -orbits of the toric variety F (N,Σ).

Theorem 7.2.1 (orbit-cone correspondence). (1) Let (N,Σ) be an RPP decompo-
sition, and let TN ⊂ F (N,Σ) be the associated torus embedding. Then there
exists a bijection
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Σ
∼
! TN\F (N,Σ),

σ 7! O(σ) := Hom
(
M ∩ σ⊥,C∗) . (7.7)

Let n be the rank of N . We have dimF (N, σ) = n − dim(σ). Moreover, the
Zariski-closure of O(σ) is

V (σ) := O(σ) =
⋃

τ∈Σ:σ⊂τ

O(τ). (7.8)

(2) Let h : (N,Σ)! (N ′,Σ′) be a homomorphism of RPP decompositions. Then we
have that F (h)(O(σ)) = O (σ′) where σ′ is the smallest cone of Σ′ containing
h(σ).

Proof. For part (1) see [CLS11][Theorem 3.2.6].
Before starting the proof of part (2), we make a couple of observations. Because

F (h) : F (N,Σ) ! F (N ′,Σ′) is equivariant with respect to the surjective homo-
morphism TN ! TN ′ the image under F (h) of a TN -orbit O(σ0) with σ0 ∈ Σ is a
TN ′-orbit O(τ0) for a uniquely determined τ0 ∈ Σ′.

Now consider two cones σ1, σ2 ∈ Σ. From part (1) it follows that σ1 ⊂ σ2 if
and only if O(σ2) ⊂ O(σ1) = V (σ1). Write O(τi) = F (h)(O(σi)) with τi ∈ Σ′

for i = 1, 2. If O(σ2) ⊂ O(σ1) then continuity of the map F (h) implies that
O(τ2) = F (h)(O(σ2)) ⊂ F (h)(O(σ1)) ⊂ F (h)(O(σ1)) = O(τ1). We conclude that
σ1 ⊂ σ2 implies τ1 ⊂ τ2.

Using part (1) it then follows that for σ0 ∈ Σ and τ0 ∈ Σ′ we have the implication

F (h)(O(σ0)) = O(τ0) =⇒ F (h)(F (N, σ0)) ⊂ F (N, τ0). (7.9)

We will now begin the actual proof of part (2). First of all since h(σ) ⊂ σ′ it
is clear that F (h)(O(σ)) ⊂ F (h)(F (N, σ)) ⊂ F (N ′, σ′). Now F (N ′, σ′) decomposes
into the orbits O(τ ′) with τ ′ a face of σ′. We conclude that F (h)(O(σ)) = O (τ) for
a certain face τ of σ′. It remains to prove that τ = σ′.

The implication (7.9) shows there is a toric morphism F (h) : F (N, σ)! F (N ′, τ).
By full faithfulness of the equivalence F , it must be induced by a morphism of RPP
decompositions h : (N, σ) ! (N ′, τ ′). In particular we have h(σ) ⊂ τ. Since τ ⊂ σ′

and σ′ is chosen to be the smallest cone in Σ′ with h(σ) ⊂ σ′ we conclude that
τ ′ = σ′, as was left to be shown.

Alternatively, σ ∈ Σ′ as in part (2) of the Orbit-Cone correspondence may be pinned
down as the unique cone of Σ′ such that h(σ) is contained in σ′ and meets the relative
interior of σ′.

Remark 7.2.2. Any reduced TN -stable closed subvariety of the toric variety F (Σ)
has the shape

⋃
ρ∈P O(ρ) for a unique subset P ⊂ Σ having the property that each

cone in Σ that contains a cone in P , belongs itself to P .

7.3 Fibre products of toric varieties

The purpose of this section is to show that the fibre product of two toric varieties
F (N1,Σ1) and F (N2,Σ2) over a third one F (N0,Σ0) taken in the category of C-
varieties may be described as a toric variety F (N,Σ) under mild conditions which
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are satisfied in the applications we have in mind. We start by showing that the
category of RPP decompositions has a final objects and (binary) fibre products.

Theorem 7.3.1. (1) The RPP decomposition (Z0, {{0}}) is the final object in the
category of RPP decompositions. We have that F (Z0, {0}) = SpecC is the final
object in the category of C-varieties.

(2) Let h1 : (N1,Σ1)! (N0,Σ0) and h2 : (N2,Σ2)! (N0,Σ0) be morphisms of RPP
decompositions. Then (N,Σ) = (N1 ×N0 N2,Σ1 ⊗Σ0 Σ2), where

Σ1⊗Σ0 Σ2 = {σ1 ×σ0 σ2 : σi ∈ Σi for all i ∈ {0, 1, 2} and h1 (σ1) ∪ h2 (σ2) ⊂ σ0}
(7.10)

is an RPP decomposition. The projection maps πi : N ! Ni (i = 1, 2) define
morphisms of RPP decompositions πi : (N,Σ) ! (Ni,Σi). The fibre product of
h1 and h2 in the category of RPP decompositions is given by (N,Σ) and the
morphisms πi.

Proof. Part (1) is left to the reader. For part (2) the reader may consult [Mol19][Def.
2.2.1] and the discussion following it.

Theorem 7.3.2. Let the notation be as in Theorem 7.3.1. If h2 is weakly semistable,
then π1 is weakly semistable and the diagram

F (N,Σ) F (N2,Σ2)

F (h,Σ1) F (N0,Σ0)

π2

π1 h1

h2

is cartesian in the category of C-varieties.

Proof. See [Mol19][Lemma 2.2.6].

Corollary 7.3.3. Let n ∈ Z≥0 and let hi : (Ni,Σi) ! (N0,Σ0) (1 ≤ i ≤ n)
be morphisms of RPP decompositions with common target. Then the fibre product
(N,Σ) of {hi : 1 ≤ i ≤ n} exists in the category of RPP decompositions. If at most
one of the morphism hi is not weakly semistable, then F (N,Σ) is the fibre product
of the collection of F (Ni,Σi) over F (N0,Σ0) in the category of C-varieties.

Proof. For n = 0 this is the content of Theorem 7.3.1(1). For n = 1 the statement
is trivial. For n = 2 this follows from Theorem 7.3.1(2) and Theorem 7.3.2.

Now let n ≥ 3 and suppose the statement has been proved for n− 1. By renum-
bering, we may assume that h1, . . . , hn−1 are weakly semistable, and then we find
that their fibre product (N ′,Σ′) is weakly semistable over (N0,Σ0). Furthermore
F (N ′,Σ′) is the fibre product of F (Ni,Σi) for 1 ≤ i ≤ n − 1 over F (N0,Σ0).
Applying the case of binary fibre products to (N ′,Σ′) and (Nn,Σn) completes the
induction step. The proof is concluded by induction on n.

Any category that has binary fibre products and a final object also has binary
products. Indeed, the fibre product of two objects over the final object is a product
for these two objects.
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Corollary 7.3.4. Let (N1,Σ1) and (N2,Σ2) be RPP decompositions. Then we have
that (N1 ×N2,Σ1 ⊗ Σ2) with Σ = Σ1⊗Σ2 := {σ1 × σ2 : σ1 ∈ Σ1, σ2 ∈ Σ2} is an RPP
decomposition, the projection maps πi : N1 × N2 ! Ni (i = 1, 2) define morphisms
of RPP decompositions πi : (N1 ×N2,Σ1 ⊗ Σ2) ! (Ni,Σi) (i = 1, 2), and together
these form the product of N1 and N2 in the category of RPP decompositions.

Moreover, the toric variety F (N1 ×N2,Σ1 ⊗ Σ2) together with the morphisms
F (πi) : F (N1 ×N2,Σ1 ⊗ Σ2)! F (Ni,Σi) (i = 1, 2) form the product of F (N1,Σ1)
and F (N2,Σ2) in the category of C-varieties.

Proof. The first statement follows on combining Theorem 7.3.1(1) and (2). For the
final statement we note that any morphism to the final object in the category of RPP
decompositions is weakly semistable, so that Theorem 7.3.2 may be invoked.

Remark 7.3.5. We remark in passing that fibre products in toric (or logarithmic)
geometry form in general a quite subtle subject, see e.g. [Ogu18] for an extensive
treatment.

7.4 Toric projective morphisms

In this section we first recall the definitions of prime, Weil and Cartier divisors. Then
we describe the torus-invariant divisors on a toric variety in terms of 1-dimensional
cones in the corresponding fan.

Definition 7.4.1. Let X be a normal (irreducible) C-variety X, which is locally
of finite type but not necessarily quasi-compact.

(1) A prime divisor Z on X is an irreducible closed subvariety of X of codimension
1. Let X be a normal irreducible C-variety. The local ring OX,Z of X along Z is
an integrally closed Noetherian local ring of Krull dimension 1, hence a discrete
valuation ring, whose field of fractions is the function field C(X) ofX. We denote
the normalized valuation corresponding to OX,Z by ordZ : C(X)× ! Z.

(2) A Weil divisor on X is a function Z 7! aZ that assigns to every prime divisor Z
on X an integer aZ ∈ Z such that each point in X has an open neighborhood U
which meets only finitely many prime divisors Z of X with aZ ̸= 0; we denote
this function by the formal sum D =

∑
Z aZZ. The set of Weil divisor on X is

a group for componentwise addition (
∑

Z aZZ) + (
∑

Z bZZ) =
∑

Z(aZ + bZ)Z,
called the divisor group of X and denoted Div(X).

(3) Let f ∈ C(X)×. Then div(f) =
∑

Z ordZ(f)Z defines a divisor on X. A divisor
having this shape is called a principal divisor. A Cartier divisor on X is a Weil
divisor D =

∑
Z aZZ such that X is covered by open subsets U for which D|U

is a principal divisor on U .

Now let X = F (N,Σ) be the (normal irreducible) toric variety attached to an RPP
decomposition (N,Σ). The open dense torus TN in X acts on the variety X via
automorphisms, and consequently on the set of prime divisors of X and on the
divisor group Div(X) of X. If ρ ∈ Σ(1), i.e. ρ is a 1-dimensional cone of Σ, then
via the Orbit-Cone correspondence we see that Dρ := V (ρ) is a prime divisor on Z.
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Each torus-invariant prime divisor onX has this shape, see [CLS11][§4.1]. The torus-
invariant Weil divisors on X are therefore given by

∑
ρ∈Σ(1) aρDρ where Σ(1)! Z,

ρ 7! aρ is an arbitrary map of sets. We denote by uρ the unique primitive vector of
a ray ρ ∈ Σ(1).

We now give a criterion for a torus-invariant Weil divisor D =
∑

Z aZZ to be
Cartier in terms of so-called support functions. We call the set |Σ| =

⋃
σ∈Σ σ ⊂ NR

formed as the union of all cones in Σ, the support of Σ.

Definition 7.4.2. A support function is a function ϕ : |Σ|! R that agrees on each
cone σ ∈ Σ with some R-linear function NR ! R and satisfies ϕ(M ∩ |Σ|) ⊂ Z.

Lemma 7.4.3. Let D =
∑

ρ aρρ be a torus-invariant Weil divisor on X. Then
D is Cartier if and only if there exists a support function ϕ : |Σ| ! R such that
ϕ(uρ) = −aρ for every ρ ∈ Σ(1).

Proof. See [CLS11][Theorem 4.2.12]

Since each cone σ ∈ Σ is the convex hull of the rays ρ ∈ Σ(1) contained in σ, a
Cartier divisor D has a unique support function, which we denote ϕD.

Definition 7.4.4. Let f : X ! Y be a proper morphism of C-varieties, and let L be
a line bundle on X. We say L is f -base point free if the adjunction map f ∗f∗L! L
is surjective. If L is f -base point free, then we we write ϕL : X ! PY (f∗L) for the
Y -morphism attached to the epimorphism f ∗f∗L ! L. We say L is f -very ample
if ϕL is a closed embedding. We say L is f -ample if for every quasi-compact open
subset U of Y there exists a positive integer k > 0 such that L⊗k|f−1(U) is very ample
relative to f : f−1(U)! U .

In case Y = SpecC, we will say that L is base-point-free (resp. very ample, resp.
ample) if it is f -base-point-free (resp. f -very ample, resp. f -ample).

Let (N,Σ) be an RPP decomposition. Let n = rkZ N = dimR NR. A subset S of NR

is called convex if tu+ (1− t)v ∈ S for all u, v ∈ S and t ∈ [0, 1]. We say Σ has full-
dimensional convex support if |Σ| is a convex subset of NR and each maximal cone
σ ∈ Σ has dimension dim(σ) = n.

Henceforth assume that |Σ| has full-dimensional convex support. A wall of Σ is
a cone τ ∈ Σ(n− 1) such that τ = σ ∩ σ′ for any two distinct σ, σ′ ∈ Σ(n).

Definition 7.4.5. Let S be a nonempty convex subset of NR. A function ϕ : S ! R
is called convex if for all u, v ∈ S and t ∈ [0, 1] we have the inequality

tϕ(u) + (1− t)ϕ(v) ≤ ϕ(tu+ (1− t)v). (7.11)

If in addition, the above inequality is an equation only if u and v belong to one and
the same cone of Σ, then we say ϕ is strictly convex.

Theorem 7.4.6. Let D be a torus-invariant Cartier divisor on a proper toric variety
X. Then the following statements are equivalent:

(1) the support function ϕD : |Σ|! R is convex;

(2) the line bundle OX(D) is base-point free.
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Proof. See [CLS11][Theorem 6.1.7].

Theorem 7.4.7. Let D be a torus-invariant Cartier divisor on a proper toric variety
X. Then the following statements are equivalent:

(1) the support function ϕD : |Σ|! R is strictly convex;

(2) the line bundle OX(D) is ample;

(3) the line bundle OX(kD) is very ample for all k ≥ max{1, n− 1}.

Proof. See [CLS11][Lemma 6.1.13 and Theorem 6.1.14].

Theorem 7.4.8. Let f : X ! X ′ be a proper toric morphism induced by a morphism
of RPP decompositions ϕ : (N,Σ) ! (N ′,Σ′). Let D be a torus-invariant Cartier
divisor on X. Then we have |Σ| = ϕ−1

R (|Σ′|), and the following equivalences hold.

(1) The line bundle OX(D) is f -base point free if and only if for each σ′ ∈ Σ′ the
restriction of the support function ϕD to ϕ−1

R (σ′) is convex.

(2) The line bundle OX(D) is f -ample if and only if for each σ′ ∈ Σ′ the restriction
of the support function ϕD to ϕ−1

R (σ′) is strictly convex.

Proof. We have already shown in Theorem 7.1.10(3) that f is proper if and only if
|Σ| = ϕ−1

R (|Σ′|).
(1) This follows from Theorem 7.4.6, relative base-point-freeness being Zariski-local
on the base and the fact that for every affine Noetherian scheme U = SpecA and
coherent OU -module F the map Γ(U,F)⊗A OU ! F is an epimorphism.
(2) See [CLS11][Theorem 7.2.11].

Theorem 7.4.9. Let f : X ! Y be a toric morphism. Then f is projective if and
only if f is proper and there exists an f -ample torus-invariant Cartier divisor D on
X.

Proof. See [CLS11][Theorem 7.2.12].

7.5 Star-subdivisions

There is an elegant geometric way of producing projective toric morphisms by per-
forming a star-subdivision on a fan.

A vector v in a lattice N , embedded as always in its realification NR = N ⊗Z R, is
called primitive if {α ∈ R : αv ∈ N} = Z.

Definition 7.5.1. Let (N,Σ) be an RPP decomposition, and v ∈ N be a primitive
vector. We define the star-subdivision of Σ at v to be the set consisting of the
following cones in NR:

• those cones in Σ that do not contain v;

• for a cone σ ∈ Σ containing v and a face τ of σ that does not contain v, the cone
spanned by τ and v.
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We will denote this set by Σ∗(v). Thus, the star-subdivision of Σ at v is given by

Σ∗(v) = {τ ∈ Σ | v /∈ τ} ⊔ {τ + R≥0 · v | v ̸∈ τ ∈ Σ and τ ∪ {v} ⊂ σ ∈ Σ} . (7.12)

Geometrically one obtains Σ∗(v) from Σ by decomposing each cone in Σ that contains
v into smaller cones with R≥0 · v as extremal ray. It is immediate from the definition
that {τ ∈ Σ : v /∈ τ} = {τ ∈ Σ∗(v) : v /∈ τ}, so formation of the star-subdivision of
Σ at v alters only the set of cones containing v.

Definition 7.5.2. A fan Σ′ in NR is called a refinement of Σ if each cone in Σ′ is
contained in a cone of Σ, and each cone in Σ is the union of cones in Σ′.

It follows from Theorem 7.1.12(1,3) that a refinement induces a proper birational
morphism F (idN) : F (N,Σ

′)! F (N,Σ).

Lemma 7.5.3. Let (N,Σ) and v be as in Definition 7.5.1. Then:

(1) the star-subdivision Σ∗(v) of Σ at v is a refinement of Σ;

(2) the induced toric morphism F (N,Σ∗(v))! F (N,Σ) is birational and projective.

Proof. (1) See [CLS11][Lemma 11.1.3].
(2) The morphism F (N,Σ∗(v)) ! F (N,Σ) is birational by Theorem 7.1.12(3).

It is projective by [CLS11][Lemma 11.1.6]

Let V be a set of primitive vectors in N ∩ |Σ| such that each cone σ ∈ Σ contains at
most one v ∈ V . Since forming the star-subdivision of Σ at a vector v0 only alters the
cones in Σ that contain v0, we can perform the star-subdivision of Σ simultaneously
at all vectors v ∈ V to obtain a refinement Σ∗(V ) of V . This fan Σ∗(V ) consists of
the following cones in NR:

• those cones in Σ that do not contain any v ∈ V ;

• for a cone σ ∈ Σ containing some v ∈ V and a face τ of σ that does not contain
v, the cone spanned by τ and v.

In a formula, the refinement Σ∗(V ) of Σ is the disjoint union

Σ∗(V ) = {τ ∈ Σ | τ ∩ V = ∅} ⊔
⊔
v∈V

{τ + R≥0 · v | v ̸∈ τ ∈ Σ and τ ∪ {v} ⊂ σ ∈ Σ} .

Remark 7.5.4. The assertions in Lemma 7.5.3 remain true if we replace v by V , i.e.
Σ∗(V ) is a refinement of Σ and F (idN) : F (N,Σ∗(V )) ! F (N,Σ) is a birational
projective toric morphism.
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Chapter 8

The Tate curve

Let h ≥ 1 be an integer. In this chapter we will describe a construction due to Tate
of a generalized elliptic curve Tateh ! ∆ over the unit disk with a single singular
fibre at 0 that is a Néron h-gon. This is the local model at a cusp of width h for the
compactification of the universal elliptic curve EΓ ! Y (Γ) to a generalized elliptic
curve DΓ ! X(Γ), to be constructed in Chapter 9.

We start by constructing a toric variety G over the affine line G0 = SpecC[q]
with an action of Z and a multiplication map Gsm ×G0 G ! G. Then we use the
analytification functor from Section 2.6 to obtain a complex manifold over ∆. It
inherits an action of Z over ∆, which will be shown to be proper and free. This
allows us to take the quotient for the action of the subgroup hZ ⊂ Z for every
h ∈ Z≥1. This quotient is the desired generalized elliptic curve Tateh, called the
h-sided Tate curve.

8.1 The toric variety G
Let N1 = Z{0,1} and let M1 = Hom (N1,Z) be its Z-dual. Consider the collection of
cones in N1

R

Σ1 = {0} ∪ {li : i ∈ Z} ∪ {σj : j ∈
1

2
+ Z}

given by

li = R≥0 · (1, i), σj = R≥0 · (1, j −
1

2
) + R≥0 · (1, j +

1

2
)

(here and in the rest of this section, i denotes an integer and j a non-integral half-
integer). Then li is the face that σi− 1

2
and σi+ 1

2
have in common, while σj is the

closed region bounded by lj− 1
2
and lj+ 1

2
. Further, σj ∩ σj′ = {0} if |j − j′| ≥ 2 and

li ∩ li′ = {0} whenever |i− i′| ≥ 1. Thus the conditions in Definition 7.1.6(1) for Σ1

to be a fan in N1
R are fullfilled.

Definition 8.1.1. We let G be toric variety attached to the RPP decomposition
(N1,Σ1).
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We will now describe G in quite a bit of detail. It is not difficult to see that

M1
li
= Z≥0 · {(−i, 1), (i,−1), (1, 0)},

M1
σj

= Z≥0 · {(
1

2
− j, 1), (j +

1

2
,−1)}.

We write χm ∈ C [M1] for the element m ∈ M1 viewed as a character of the torus
TN1 = SpecC[M1], and put

xi = χ(−i,1), yi = χ(i,−1), q = χ(1,0) ∈ C[M1]. (8.1)

The affine open subsets F (N1, σ) = SpecC[M1
σ ] ⊂ F (N1,Σ1) for the nonzero cones

σ ∈ Σ1 are given by

F (N1, σj) = SpecC[xj− 1
2
, yj+ 1

2
] ∼= A2

C,

F (N1, σi− 1
2
) ∩Xσ

i+1
2

= Xli = SpecC[q, xi, yi]/(xiyi − 1) ∼= A1
C ×C GC.

The gluing of F (N1, σi− 1
2
) = SpecC[xi−1, yi] and F (N1, σi+ 1

2
) = SpecC[xi, yi+1]

along F (N1, li) = SpecC[q, xi, yi]/(xiyi − 1) is described as follows: we have that
F (N1, li) ⊂ F (N1, σi− 1

2
) is the open subset where yi is invertible, whereas F (N

1, li)

is the open subset of F (N1, σi+ 1
2
) where xi is invertible, and the coordinates are

related by:

xi−1 = xiq,

yi+1 = yiq.
(8.2)

Consider the fan (N0,Σ0) where N0 = Z{0} and Σ0 = {{0}, τ 0} consists of the
two faces of the strongly convex rational polyhedral cone

τ 0 = R≥0 · 1 ⊂ R = (N0)R.

Let M0 = Hom(N0,Z) = Z{0} be the Z-dual of N0. The monoid (M0)τ0 = Z≥0 · 1 is
free with generator 1, so that F (N0,Σ0) = SpecC[q] is an affine line over C, whose
affine coordinate we again denote q = χ1.

Lemma 8.1.2. The homomorphism of lattices

π : N1 = Z{0,1} ! N0 = Z{0},

(a0, a1) 7! a0,
(8.3)

defines a weakly semistable morphism of RPP decompositions (N1,Σ1)! (N0,Σ0).

Proof. We need only show that for every cone σ ∈ Σ1 there is a cone τ ∈ Σ0 with
π(σ ∩ N1) = τ ∩ N0. This is the case since h(li ∩ N1) = τ 0 ∩ N0 = h(σj ∩ N1) for
all i ∈ Z and j ∈ 1

2
+ Z, and trivially h({0} ∩N1) = {0} ∩N0.

Now by functoriality π induces a toric morphism

f = F (π) : G = F (N1,Σ1)! G0 = F (N0,Σ0), (8.4)
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which extends the map SpecC[π∗] : TN1 = SpecC[M1] ! TN0 = SpecC[M0] of
algebraic tori obtained from π∨ : M0 ! M1. The fact that q := χ1 ∈ C[M0]
gets pulled back to q := χ(1,0) ∈ C[M1] justifies calling both characters q. Since

xj− 1
2
yj+ 1

2
= χ( 1

2
−j,1)χ( 1

2
+j,−1) = χ(1,0) = q we have the coordinate description

F (π) : F (N1, σj) = SpecC[xj− 1
2
, yj+ 1

2
]! F (N0, τ 0) = SpecC[q],

xj− 1
2
yj+ 1

2
 [ q.

(8.5)

Lemma 8.1.3. The open subset where the morphism f = F (π) : G ! G0 is smooth
is given by

Gsm = F (N1,Σ1
≤1) =

⋃
i∈Z

F (N1, li). (8.6)

Proof. Since smoothness of a morphism is local on the source, we may restrict our
attention to the affine open subset F (N1, σj) corresponding to a maximal cone σj
of the fan Σ1. There the morphism F (N1, σj) = SpecC[xj− 1

2
, yj+ 1

2
]! G = SpecC[q]

is given by q 7! xj− 1
2
yj+ 1

2
according to equation (8.6). It follows from the Jacobi

criterion that the morphism is smooth but at the point O(σj) = V (xj− 1
2
, yj+ 1

2
).

Hence Gsm ∩ F (N1, σj) = F (N1, lj− 1
2
) ∪ F (N1, lj+ 1

2
), as desired.

Given a scheme X and a global regular function g ∈ OX(X), we denote V (g)
the closed subscheme of X where g vanishes, and D(g) its open complement. In
this notation, the origin of the affine line G0 = SpecC[q] is given by V (q), and its
complement is denoted D(q).

We will now examine the fibre G×G0 V (q) of f = F (π) over the origin V (q) ⊂ G0.

Lemma 8.1.4. The fibre G×G0 V (q) is the union of a Z-indexed family of projective
lines {V (li) : i ∈ Z}, with V (lj− 1

2
) and V (lj+ 1

2
) intersecting transversally in V (σj).

Proof. We will make frequent use of the Orbit-Cone correspondence Theorem 7.2.1.
Since π maps each nonzero cone of Σ1 surjectively onto τ 0 ∈ Σ0, we have that
f−1(D(q)) = O({0}). Since V (li) = V (σi− 1

2
) ∪ O(li) ∪ V (σi+ 1

2
), it follows that

G ×G0 V (q) =
⋃
i∈Z V (li).

Let j ∈ 1
2
+ Z. Locally on the affine open subset F (N1, σj) we have that

F (N1, σj) ∩ V (q) = V (xj− 1
2
) ∪ V (yj+ 1

2
) ⊂ SpecC[xj− 1

2
, yj+ 1

2
] = F (N1, σj) (8.7)

is given by the union of the two coordinate axes V (xj− 1
2
) = F (N1, σj) ∩ V (lj+ 1

2
)

and V (xj+ 1
2
) = F (N1, σj) ∩ V (lj− 1

2
). For each i ∈ Z≥1 we see that the orbit

O(li) = F (N1, li) ∩ V (q) = SpecC[xi, yi]/(xiyi − 1) is a projective line with two
points removed, the origins V (σi− 1

2
) and V (σi+ 1

2
) of F (N1, σi− 1

2
) resp. F (N1, σi+ 1

2
).

8.2 Fibre power of Tate curve

For every integer k ≥ 1 we let Gk be the k-th fibre power of the morphism of
C-varieties G ! G0, i.e. the fibre product of k copies of G over G0
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Gk := G ×G0 G ×G0 · · · ×G0 G. (8.8)

The aim of this section is to show that Gk is the toric variety attached to a suit-
able fan. Our motivation is twofold. First, we would like to define a multiplication
map m : Gsm ×G G1 ! G, whose domain is an open subset of G2. Secondly, a toric
desingularization of Gk will be involved in the construction of Kuga-Sato varieties
in Chapter 10.

Recall the toric morphism f = F (π) : G1 := F (N1,Σ1) ! G0 := F (N0,Σ0) at-
tached to the morphism of RPP decompositions π : (N1,Σ1) ! (N0,Σ) we de-
fined in Lemma 8.1.2. From Theorem 7.3.2 and Lemma 8.1.2 we see that Gk is
the toric variety attached to the k-th fibre power (Nk,Σk) of the weakly semi-
stable morphism of RPP decompositions π : (N1,Σ1) ! (N0,Σ0). It is natural
to view the k-th fibre power Nk = N1 ×N0 N1 ×N0 · · · ×N0 N1 as the free Z-
module Nk = Z{0,1,...,k} of rank k + 1, such that the projection onto the m-th factor
(m ∈ {1, 2, . . . , k}) is πm : Nk ! N1, (a0, a1, . . . , ak) 7! (a0, am) and the projection
onto N0 is π : Nk ! N0, (a0, a1, . . . , ak) 7! a0. We will describe the cones in the fan
Σk in Nk

R = R{0,1,...,k} based on an alternative description of those in Σ1, using that
these cones are determined by their intersection with π−1(1), where 1 ∈ R = N0

R is
the generator for the monoid N0 ∩ τ 0 = Z≥0.

For k ∈ Z≥1, let H
k = {1} × Rk ⊂ Nk

R be the preimage of 1 ∈ R = N0
R under π.

Let us also write Hk
Z = Hk∩Nk = {1}×Zk ⊂ Nk

R. Note that the fibre H
k above 1 in

the k-th fibre power Nk
R is given by the usual k-th power H1 of the fibre above 1 in

N1
R. Via the isomorphism Rk ∼= {1}×Rk we consider Rk to be embedded in Nk

R as the
affine subspace Hk. It will be practical not to reflect this embedding in our notation,
so whenever we write (x1, x2, . . . , xk) ∈ Rk the point (1, x1, . . . , xk) ∈ Hk is to be
understood. Let Bk = [0, 1]k be the unit k-dimensional hypercube, or unit k-cube
for short, situated in Rk = Hk. Let τ k = R≥0 ·Bk be the cone over Bk ⊂ Hk. In this
notation, each maximal cone in Σ1 is a Z-translate of the cone τ 1 = R≥0 · B1 over
the unit interval B1 ⊂ H1. Consequently, the maximal cones in Σk are Zk-translates
of the cone τ k = R≥0 ·Bk over the unit k-cube Bk ⊂ Hk. Let us set

Zk = F (Nk, τ k) ⊂ F (Nk,Σk).

Thus the affine toric varieties attached to the maximal cones in Σk form an affine
open cover {a(n)(Zk) : n ∈ Zk} of F (Nk,Σk), on which Zk acts simply transitively.
Since the study of singularities is a local affair, we will focus on the study and
resolution of the singularities of Zk first. The desingularization of Zk furnishes one
for each of its Zk-translates as well, and these automatically patch together to give
the desired desingularization of the whole F (Nk,Σk) =

⋃
n∈Zk(a(n)(Zk)).

Lemma 8.2.1. The toric variety Gk is nonsingular if and only if k = 1.

Proof. Since Gk is covered by the Zk-translates of F (Nk, τ k), smoothness of Gk is
equivalent to that of Zk = F (Nk, τ k), for which Theorem 7.1.10(2) gives a necessary
and sufficient criterion.

The set of fundamental generators of τ k consists of the 2k vectors (1, b1, b2, . . . , bk)
with bm ∈ {0, 1}:
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τ k =
∑

(bm)km=1∈{0,1}k
R≥0 · (1, b1, . . . , bk). (8.9)

If k = 1 then each maximal cone R≥0 · [i, i + 1] = R≥0 · {(1, i), (1, i + 1)} is
nonsingular since {(1, i), (1, i+ 1)} is a Z-basis of N1 = Z{0,1}.

If k ≥ 2 then 2k > k + 1, whence the number of extremal rays of τ k exceeds the
dimension of τ k and the cone τ k is singular.

8.3 The multiplication m : Gsm ×G0 G ! G
In this section we construct using toric machinery a toric morphism Gsm ×G0 G ! G
which restricts to a structure of G0-group scheme on the smooth locus Gsm and de-
fines an action of Gsm on G over G0.

Let D(q) = SpecC[q, q−1] = F (N0, {0}) ⊂ F (N0,Σ0) = G0 be the complement
of the origin. Since the only σ ∈ Σ1 such that π(σ) = {0} ⊂ N0 is σ = {0}, we
have F (π)−1(F (N0, {0})) = F (N1, {0}). It follows that there is an isomorphism of
D(q)-schemes

G ×G0 D(q) ∼= SpecC[q, q−1, x0, x
−1
0 ] ∼= Gm,D(q), (8.10)

where Gm,D(q) is the multiplicative group scheme over D(q). Via this isomorphism
we transport the group law on Gm,D(q) to G ×G0 D(q), and the resulting morphism
of D(q)-schemes is denoted

m : (G ×G0 D(q))×D(q) (G ×G0 D(q))! G ×G0 D(q). (8.11)

Lemma 8.3.1. We have that m = F (µ), where µ : (N2, {0}) ! (N1, {0}) is the
morphism of RPP decompositions given by the homomorphism

µ : N2 ! N1,

(a0, a1, a2) 7! (a0, a1 + a2).
(8.12)

Proof. First note that π ◦ µ = π, so F (µ) is a morphism over D(q). Let us write
µ∗ : M1 = Z{0,1} ! M2 = Z{0,1,2} for the homomorphism dual to µ. We have that
µ∗(χ(0,1)) = χ(0,1,1) = χ(0,1,0)χ(0,0,1), so µ pulls back the ‘fibre coordinate’ χ(0,1) on G1

to the product of the ‘fibre coordinates’ χ(0,1,0) and χ(0,0,1) on G2, as desired.

Corollary 8.3.2. The multiplication map m in (8.11) extends to a multiplication
map

m : Gsm ×G0 G ! G. (8.13)

Proof. In Lemma 8.1.3 we have shown that G1,sm = F (N1,Σ1
≤1), which implies that

G1,sm×G0G = F (N2,Σ1
≤1⊗Σ0 Σ1). In the above lemma we showed that m is the toric

morphism attached to the homomorphism µ : N2 ! N1, (a0, a1, a2) 7! (a0, a1+ a2).
Thus our task is to show that µ sends each cone in the fan Σ1

≤1 ⊗Σ0 Σ1 into a cone
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of the fan Σ1. It suffices to check this for maximal cones, which have the shape
li ×τ0 σj for certain i ∈ Z and j ∈ 1

2
+ Z. Recalling that li = R≥0 · (1, i) and

σj = R≥0 · {(1, j − 1
2
), (1, j + 1

2
)}, we indeed have that

µ(li ×τ0 σj) = µ(R≥0 · {(1, i, j −
1

2
), (1, i, j +

1

2
)})

= R≥0 · {(1, i+ j − 1

2
), (1, i+ j +

1

2
)} = σi+j.

8.4 The action of Z on G
In this section, we define an action of Z on G via toric automorphisms. In the next
section we will construct Tate curves as quotients for this action. We note in pass-
ing that this action extends to one of Γ1 := Z ⋊ µ2 on G, and in general, that
Γk = Zk⋊µk2 ⋊Sk is the group of toric automorphism of Gk, as we will see in (10.6).

Let m ∈ Z. The Z-automorphism of N1 given by the shear map

α(m) : N1 ! N1,

(a0, a1) 7! (a0,ma0 + a1),
(8.14)

induces an R-automorphism of N1
R = R{0,1} that maps the cone σj onto the cone

σj+m. Therefore α(m) is an automorphism of the RPP decomposition (N1,Σ1).
Visibly α(m) ◦α(m′) = α(m+m′) for all m,m′ ∈ Z, so that α : Z! Aut((N1,Σ1))
is a homomorphism. Thus we have defined an action of Z on the RPP decomposition
(N1,Σ1), which via the equivalence of categories F corresponds to an action of Z
on the toric variety G = F (N1,Σ1),

a : Z
! Aut(G),

m
7! F (α(m)).

We will encode the homomorphism a in a morphism of C-schemes

a : Z × G ! G. (8.15)

The toric automorphism a(m) of F (N1,Σ1) restricts to isomorphisms

a(m) : F (N1, σj)
∼
−! F (N1, σj+m),

which are in coordinates given by

xi+m = χ(i+m,−1) 7! χ(i,−1) = xi,

yi+m = χ(−i−m,1) 7! χ(−i,1) = yi.

Further, a(m) stabilizes the open subset Gsm = F (N1,Σ1
≤1) on which f : G ! G0 is

smooth.
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Lemma 8.4.1. The action of Z on G = F (N1,Σ1) is compatible with the multipli-
cation map m : Gsm ×G0 G ! G and the projection f : G ! G0, i.e. the following
diagrams in the category of C-schemes commute:

Z × G G Z × Z × G ×G0 G G ×G0 G

G0, Z × G G.

a

f◦pr2 f

a×a

m×m m

a

Proof. The action of Z onN1 = Z{0,1} is compatible with π : N1 ! N0, (a0, a1) 7! a1,
so the action of Z on G is compatible with f = F (π) : G ! G0.

For m1,m2 ∈ Z it holds that α(m1 +m2) ◦ µ = µ ◦ (α(m1)× α(m2)); in fact for
any (a0, a1, a2) ∈ N2 one calculates that

α(m1 +m2)(µ(a0, a1, a2)) = α(m1 +m2)(a0, a1 + a2) = (a0, (m1 +m2)a0 + a1 + a2)

= µ((a0,m1a0 + a1), (a0,m2a0 + a2)) = µ(α(m1)(a0, a1), α(m2)(a0, a2)).

This shows that a(m1 +m2) ◦ µ = µ ◦ (α(m1)× α(m2)), as desired.

8.5 The generalized elliptic curve Tateh = (hZ)\G|∆
We now pass from the algebraic to the analytic category. The main result of this
section is the construction, for every positive integer h, of a generalized elliptic
curve Tateh over the open unit disk ∆ whose single singular fibre is a Néron h-gon
at the origin. The h-sided Tate curve Tateh will serve in Chapter 9 to compactify
the universal elliptic curve at a cusp of width h.

Theorem 8.5.1. Let h ∈ Z>0. Then there exists a generalized elliptic curve over
the open unit disk fh : Tateh ! ∆ with a level-h structure, such that

(1) the fibre of Tateh over q ∈ ∆∗ is the elliptic curve f−1
h (q) ∼= C×/qhZ with level-h

structure (q, ζN);

(2) the fibre of Tateh over 0 ∈ ∆ is the Néron h-gon f−1
h (0) ∼= Ch with the standard

level-h structure ((0, 1), (ζN , 0)) defined in Lemma 6.2.2.

Recall that in Section 2.6 we defined an analytification functor (·)an from the cat-
egory of reduced separated schemes locally of finite type over C to the category of
(reduced Hausdorff) complex-analytic spaces.

The morphism f : G ! G0 of nonsingular toric varieties induces a holomorphic
map of complex manifolds

f an : Gan ! G0,an.

Since G0 = SpecC[q], we have that G0,an = C, with coordinate called q. Define the
open punctured unit disk resp. open unit disk by

∆∗ = {q ∈ C : 0 < |q| < 1}, ∆ = {q ∈ C : |q| < 1}. (8.16)
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Let us further write

G|∆∗ = Gan ×C ∆∗, G|∆ = Gan ×C ∆. (8.17)

as well as G|{q} = Gan ×C {q} for every q ∈ ∆. Since by Lemma 2.6.4(6) a morphism
of smooth C-varieties g : X ! Y is smooth if and only if gan : Xan ! Y an is a
holomorphic submersion we have (Gsm)an = (Gan)sm, where Gsm is the open subset
where f : G ! G0 is smooth, and (Gan)sm is the open subset where f an : Gan ! G0,an

is submersive. By functoriality the algebraic multiplication map m : Gsm ×G0 G ! G
and action map a : Z × G ! G induce analytic maps

man : G|sm∆ ×∆ G|∆ ! G|∆, aan : Z × G|∆ ! G|∆. (8.18)

Proposition 8.5.2. There exists an isomorphism of ∆∗-groups

G|∆∗ ∼= C∗ ×∆∗. (8.19)

Via this isomorphism we have for all m ∈ Z and (x0, q) ∈ C∗ ×∆∗,

a(m)(x0, q) = (qmx0, q). (8.20)

Proof. The construction of m in Section 8.3 established that G ×G0 D(q) ∼= Gm,D(q)

as group schemes over D(q). The action of Z on G ×G0 D(q) = SpecC[x0, x
−1
0 , q, q−1]

is given in these coordinates by a(m) : (x0, q) 7! (x−m, q) = (qmx0, q). We conclude
the proof by applying (·)an and restricting to ∆∗ ⊂ D(q)an = C∗.

In Section 6.1 we defined the complex-analytic space

C∞ = (P1 × Z)/((0, i) ∼ (∞, i+ 1)) (8.21)

together with a multiplication map (6.3) and a Z-action (6.4):

m : Creg
∞ × C∞ ! C∞, a : Z × C∞ ! C∞. (8.22)

Proposition 8.5.3. There is an isomorphism

G|{0} ∼= C∞ (8.23)

via which man and aan in (8.3) correspond to m resp. a in (8.4).

Proof. In Lemma 8.1.4 we saw that G ×G0,f V (q) =
⋃
i∈Z V (li) where V (li) ∼= P1

C

is the closure of the orbit O(li) = C[xi, x
−1
i ]. Thus we have a biholomorphism

xi : O(li)
an ∼
! C∗ extending to an isomorphism CP1 × {i} ! V (li)

an by sending
0 7! V (σi+ 1

2
) and ∞ 7! V (σi− 1

2
). They combine to give a surjection CP1×Z! G|{0}

whose fibre above O(σj) is {(0, j − 1
2
), (∞, j + 1

2
)}. It descends to an isomorphism

C∞ ! G|{0}, since V (lj− 1
2
) and V (lj+ 1

2
) intersect transversally in the point O(σj).

The verifications that the algebraically and analytically defined multiplication
and action maps agree is clear from the descriptions we have provided of them.

Lemma 8.5.4. Let h ∈ Z≥1.
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(1) The action of hZ on G|∆ is free and proper.

(2) The quotient map ch := G|∆ ! Tateh := (hZ)\G|∆ is an hZ-covering space and
a local analytic isomorphism to a complex manifold.

(3) The morphism fan : G|∆ ! ∆ is (hZ)-invariant and descends to an analytic map
fh : Tateh ! ∆.

(4) The morphism of C-analytic spaces fh is flat.

(5) The continuous map fh is proper.

(6) The multiplication man : Gsm|∆ ×∆ G|∆ ! G|∆ descends to an analytic map
mh : Tate

sm
h ×∆ Tateh ! Tateh.

(7) The map m restricts to a commutative ∆-group structure on Tatesmh and defines
an action of Tatesmh on Tateh over ∆.

(8) The fibre of fh above a point q ∈ ∆∗ is f−1
h (q) ∼= C×/qhZ, while the fibre above

0 ∈ ∆ is f−1
h (0) ∼= Ch.

(9) The pair (fh : Tateh ! ∆,mh) is a generalized elliptic curve over ∆.

Proof. (1) It suffices to show that Z acts freely and properly on G|∆. We define
a continuous Z-equivariant map t : G|∆ ! R, with Z acting on R by translation.
For each i ∈ Z, consider the closed subset of G|∆ given by the following half-open
polydisk in F (N1, σi+ 1

2
)an ∩ G|∆ coordinatised by (xi, yi+1) :

Fi = {(xi, yi+1) ∈ C2 : |xi| ≤ 1, |yi+1| ≤ 1, |xiyi+1| < 1} ⊂ G|∆. (8.24)

On the interior of Fi let t be given by

t := i+
2

π
arctan(

1− |xi|
1− |yi+1|

) if |xi|, |yi+1| < 1, (8.25)

while setting t ≡ i on Fi ∩ {xi = 1} and t ≡ i + 1 on Fi+1 ∩ {yi+1 = 1}. Since
limu#0

2
π
arctan(u) = 0 and limu!∞

2
π
arctan(u) = 1, one sees that the restriction of t

to each Fi with i ∈ Z is continuous. Since {Fi : i ∈ Z} is a locally finite cover of G|∆
by closed subsets, with Fi−1 ∩ Fi = Fi−1 ∩ {yi = 1} = Fi ∩ {xi = 1} for i ∈ Z being
the only nonempty intersections, it follows that t : G|∆ ! R is continuous. Note
that by construction Fi = t−1([i, i + 1]). Using (8.2) we see that t is Z-equivariant.
Since the Z-action on R is free and proper, by Lemma 2.3.3 the Z-action on G|∆ is
free and proper.

(2) In part (1) we demonstrated that the group hZ acts freely and properly on
the complex manifold G|∆ via biholomorphisms. By Theorem 2.3.5 there exists a
categorical quotient Tateh := (hZ)\G|∆ in the category of complex manifolds, and
the the quotient map ch : G|∆ ! Tateh is an (hZ)-covering space and a local analytic
isomorphism.

(3) Since the map f : G ! G0 is (hZ)-invariant by Lemma 8.4.1 the same is true
for f an : G|∆ ! ∆. The universal property of the quotient map ch : G|∆ ! Tateh
yields a holomorphic map fh : Tateh ! ∆.

(4) Since f : G ! G0 is a flat morphism of C-varieties, and the analytification
functor (·)an preserves flatness by Lemma 2.6.4(4), we find that f : G|∆ ! ∆ is flat.
Since ch : G|∆ ! Tateh is a local analytic isomorphism and f = fh ◦ ch, it follows
that fh : Tateh ! ∆ is flat as well.
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(5) Let K ⊂ ∆ be a compact subset. It is to be shown that f−1
h (K) ⊂ Tateh is

also compact. Consider the closure Fi of Fi in Gan, which is

Fi = {(xi, yi+1) ∈ C2 : |xi| ≤ 1, |yi+1| ≤ 1} ⊂ F (N1, σi+ 1
2
)an. (8.26)

Since F̄i is a bounded closed subset of C2, it is compact. Thus the restriction
f an|Fi

: Fi ! ∆̄ = {q ∈ C : |q| ≤ 1} is proper. Further, we have (f an)−1(∆)∩ F̄j = Fi
inside Gan.

We deduce that (f an)−1(K) ∩ Fi = (f an)−1(K) ∩ Fi is compact for every i ∈ Z.
For every m ∈ Z, the map a(m)an is an isomorphism of Fi = t−1([i, i + 1]) onto

Fi+m = t−1([i +m, i +m + 1]). Therefore we have that ch(
⋃h−1
i=0 Fi) = Tateh. Since

fh ◦ ch = f an, we find that

f−1
h (K) = f−1

h (K)∩ ch(
h−1⋃
i=0

Fi) = ch((f
an)−1(K)∩

h−1⋃
i=0

Fi) = ch(
h−1⋃
i=0

((f an)−1(K)∩Fi))

(8.27)
is the image of a finite union of compact sets under the continuous map ch. We
conclude that f−1

h (K) is compact, as desired.
(6) The product of the hZ-covering space G|∆ ! Tateh with itself is an (hZ×hZ)-

covering space G|∆ ×G|∆ ! Tateh×Tateh, as asserted in Lemma 2.3.4(i). Restrict-
ing it to the subspace Tatesmh ×∆ Tateh of Tateh × Tateh shows the natural map
G|sm∆ ×∆G|∆ ! Tatesmh ×∆Tateh is an (hZ×hZ)-covering map (cf. Lemma 2.3.4(ii)).
Since the map man : G|sm∆ ×∆ G|∆ ! G|∆ is equivariant with respect to the homo-
morphism + : (hZ)× (hZ)! (hZ), it follows that there is an induced analytic map
mh : Tate

sm
h ×∆ Tateh ! Tateh.

(7) Note first that Gsm|∆ ! ∆ Denote e : G0 ! Gsm the identity section and
i : Gsm ! Gsm the inversion map of the G0-group scheme Gsm. Applying (·)an and
restricting to ∆ gives holomorphic map ean : ∆! G|∆ and ian : G|sm∆ ! G|sm∆ . Then
eh = ch ◦ean : ∆! Tateh is a holomorphic section of fh, while i

an descends as before
to a biholomorphism ih : Tateh ! Tateh over ∆. The identity, inverse, commuta-
tivity and associativity axioms that (Tatesmh ,mh, eh, ih) be a commutative ∆-group
follow by functoriality from the corresponding axioms that (G,m, e, i) be a group
scheme over G0. In a similar way the axioms that mh : Tate

sm
h ×∆ Tateh ! Tateh be

an action over ∆ follow from the axioms that m : Gsm ×G0 G ! G be an action over
G0.

(8) By Remark 2.3.6 we see for every q ∈ ∆ that (hZ)\(f an)−1(q) ∼= f−1
h (q). If

q ∈ ∆∗ then by Proposition 8.5.2 we have (f an)−1(q) ∼= C∗ with m ∈ hZ acting
through multiplication by qm. It follows that f−1

h (q) = C∗/qhZ. If q = 0 then by
Proposition 8.5.3 we have that (f an)−1(0) = C∞ with hZ acting via the action (6.4).
By Lemma 6.1.2 we find that f−1

h (0) = (hZ)\C∞ = Ch.
(9) By parts (2) we have that Tateh is a complex manifold. By parts (4) and (5)

the map fh : G|∆ ! ∆ is proper and flat. Part (7) gives the required group law on
G|sm∆ and the action of G|sm∆ on G|∆. Finally, by part (8) for every q ∈ ∆ the fibre
f−1
h (q) is either an elliptic curve or a Néron polygon Cn for some n ∈ Z≥1.

Proof of Theorem 8.5.1. To finish the proof of Theorem 8.5.1, we are left to con-
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struct a level-h structure

Φh : (Z/hZ)2 ×∆
∼
−! Tatesmh [h] (8.28)

on the generalized elliptic curve fh : Tateh ! ∆. Consider the injective homomor-
phism of group complex manifolds over ∆

Φ̃h : Z × Z/hZ ×∆! G|∆, (8.29)

sending (m,n, q) to the point of F (N1, σm+ 1
2
)an) = {(xm, ym+1) ∈ C2} with coordi-

nates (xm, ym+1) = (ζnh , qζ
−n
h ).

For the action of Z on Z × (Z/hZ) × ∆ via the first coordinate, the injective
homomorphism Φ̃h is equivariant, and therefore it descends to an injective homo-
morphism

Φh : (Z/hZ)2 ×∆! Tateh
sm
h . (8.30)

A cardinality argument on the fibres shows that Φh is an isomorphism onto Tatesmh [h],
which is a local system of rank-2 free Z/hZ-modules over ∆.

Finally we delineate what the map Φh looks like on the fibre above a point q ∈ ∆,
that is, describe the level-h structure (Φh)q : (Z/hZ)2 ! Tatesmh ×∆ {q}.

First let q ∈ ∆∗. Then we have f−1
h (q)[h] ∼= C∗/qhZ[h] = µhq

Z/qhZ. Since we have
xm = q−mx0 by (8.2), the map (Φh)q : (Z/hZ)2 ! C/qhZ is given by (m,n) 7! qmζnh .

Now suppose that q = 0 ∈ ∆. We have that Creg
h [h] = µh × (Z/hZ) and

(Φh)0 : (Z/hZ)2 ! µh × (Z/hZ) is given by (m,n) 7! (ζnh ,m). This is the standard
level-h structure on Ch defined in Lemma 6.2.2. We conclude that Φh is a level-h
structure on fh : Tateh ! ∆, which is given on the fibres as in Theorem 8.5.1. This
concludes the proof.

Remark 8.5.5. The 1-sided Tate curve Tate1 ! ∆ can also be defined as a complex
submanifold of the projective plane CP2 ×∆. In terms of homogeneous coordinates
(X : Y : Z) on the fibres, Tate1 is given by the Weierstrass equation

Tate1 : Y
2Z +XY Z = X3 + a4(q)XZ

2 + a6(q)Z
3 (8.31)

where a4, a6 : ∆! C are given by the following power series around 0 with integer
coefficients

a4(q) = −
∞∑
n=1

5n3 qn

1− qn
= −

∞∑
k=1

5σ3(k)q
k,

a6(q) = −
∞∑
n=1

5n3 + 7n5

12
· qn

1− qn
= −

∞∑
k=1

5σ3(k) + 7σ5(k)

12
qk,

and for positive integers m and n we set

σm(n) =
∑

d|n,d>0

dm

to be the sum of the m-th powers of the positive divisors of n. (We note that
(5n3+7n5)/12 is an integer for every n ∈ Z, because 223 | (n−1)n2(n+1) = n4−n2,
implies 5n3 +7n5 ≡ −5n(n4 − n2) ≡ 0 mod 12.) A derivation of these formulae may
be found in [DR73][Section 8] or [Kat73][Section A1.2].
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8.6 Morphisms between Tate curves

In order to show in Chapter 9 that the construction of the Shioda modular surface
DΓ is functorial in the congruence subgroup Γ of SL2(Z), we will define a holomor-

phic map wh,h̃ : Tateh̃ ! Tateh covering ph̃/h : ∆ ! ∆, z 7! zh̃/h for every pair of

positive integers h and h̃ with h dividing h̃. It restricts on the fibres over 0 to the
contraction map uh,h̃ : Tateh̃ ! Tateh from Lemma 6.3.2, as we show in Proposi-
tion 8.6.2.

Suppose that Γ̃ and Γ are congruence subgroups of SL2(Z) with Γ̃ ⊂ Γ. We saw
in Theorem 3.5.1(2) there is a natural holomorphic map pΓ̃,Γ : X(Γ̃) ! X(Γ1). If

s̃ ∈ Cusps(Γ̃) has width, say, h̃, and its image s ∈ Cusps(Γ) has width h, then h
divides h̃ and in suitable charts (3.12) the map pΓ̃,Γ is given by pe(z) = ze, where

e = h̃/h, as we showed in Theorem 3.5.6.
So let h and e be positive integers, and set h̃ = he. Let qh̃ ∈ ∆∗ and set qh = pe(qh̃).

Then qh̃
h̃
= qhh, so there is a natural isomorphism of elliptic curves

Tateh̃ |{qh̃} ∼= C∗/qh̃
h̃Z

= C∗/qhZ
h = Tateh |{qh}. (8.32)

Furthermore, we have defined a contraction map in Lemma 6.3.2

Tateh̃ |{0} = Ch̃
uh,h̃
−−! Ch = Tateh |{0}. (8.33)

We are going to show that these maps are the fibres of a holomorphic map

wh̃,h : Tateh̃ ! Tateh covering pe : ∆! ∆. (8.34)

Proposition 8.6.1. There exists a holomorphic map wh,h̃ : Tateh̃ ! Tateh fitting
into a commutative diagram

Tateh̃ Tateh w−1

h,h̃
(Tatesmh )×∆ Tateh̃ Tateh̃

∆ ∆, Tatesmh ×∆ Tateh Tateh.

wh,h̃ m

wh,h̃×wh,h̃
wh,h̃

ph̃/h m

Proof. Let e be a positive integer. The endomorphism of the RPP decomposi-
tion (N0,Σ0) given by [e] : N0 ! N0, a0 7! ea0 induces on the open unit disk
∆ ⊂ C = F (N0,Σ0)an the e-th powering map pe : ∆! ∆, z 7! ze. This is a surjec-
tive holomorphic map whose ramification index at 0 is e, and which is unramified
outside of 0.

The endomorphism of the RPP decomposition (N1,Σ1) given by

ρe : N
1 = Z{0,1} ! N1 = Z{0,1},

(a0, a1) 7! (ea0, a1),
(8.35)

has the following properties:

• ρe is a lift of [e] along the projection π : N1 ! N0, (a0, a1) 7! a0, i.e. π◦ρe = [e]◦π;
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• ρe is equivariant with respect to the group homomorphism [1/e] : eZ ! Z, that
is we have ρe(α(ke)(n))α(k)(ρe(n)) for all n ∈ N1 and k ∈ Z;

• ρe is compatible with µ : N1 ×N0 N
1 ! N1, i.e. for every (n1, n2) ∈ N1 ×N0 N1

we have ρe(µ(n1, n2)) = µ(ρe(n1), ρe(n2)).

Therefore the toric endomorphism re = F (ρe) of G associated with ρe has the fol-
lowing properties:

(1) re is a lift of pe along the projection f = F (π) : G ! G0, i.e. f ◦ re = pe ◦ f ;
(2) re is equivariant with respect to the homomorphism [1/e] : eZ! Z;
(3) there exists a commutative diagram

r−1
e (Gsm)×G0 G G

Gsm ×G0 G G,

m

re×re re

m

Recall that the h-sided Tate curve Tateh = hZ\(G|∆) is the quotient of G|∆ by the
free and proper action of hZ. By property (2) the toric morphism re descends to a
holomorphic map wh,h̃ : Tateh̃ ! Tateh. Property (1) resp. (3) yield commutativity
of the left resp. right diagram in Proposition 8.6.1.

Proposition 8.6.2. The morphism of analytic spaces over ∆ corresponding to the
left diagram in Proposition 8.6.1

(wh,h̃, f) : Tateh̃ ! Tateh×∆,pe∆ (8.36)

is a desingularization. The induced map on fibres over 0 ∈ ∆ is the contraction map
uh,h̃ : Ch̃ ! Ch from Section 6.3, provided we identify Tateh ×∆ {0} = Ch as in
Theorem 8.5.1.

Proof. Since the morphism π : (N1,Σ1)! (N0,Σ0) of RPP decompositions is weakly
semistable, the fibre product G ×G0,re G0 is the toric variety attached to the fibre
product of the corresponding RPP decomposition. We identify its lattice as

N1 ∼
−! N1 ×π,N0,[e] N

0,

(a0, a1) 7! ((ea0, a1), a0),
(8.37)

and note that the corresponding fan in N1
R is

Σ1,e = {0} ∪ {lei : i ∈ Z} ∪ {σj,e : j ∈
1

2
+ Z}, (8.38)

where lei = R≥0 · (1, ei) and σi+ 1
2
,e is the closed region bounded by lei and le(i+1) for

every i ∈ Z. The homomorphism (ρe, π) : N
1 ! N1 ×π,N0,[e] N

0 then becomes the
identity on N1. Thus the toric morphism

ψ : F (N1,Σ1) = G ! G ×G0,re G0 ∼= F (Σ1,e) (8.39)

is given by the morphism of RPP decompositions id : (N1,Σ1)! (N1,Σ1,e). It is the
refinement obtained by forming for m = 1, 2, . . . , e−1 subsequent star-subdividision
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at the sets Vm = {(1,m+ ei) : i ∈ Z}.
If e = 1, then Σ1,1 = Σ1 is a nonsingular fan and ψ is an isomorphism, as a

desingularization of a nonsingular complex space should be. If e > 1, then all 2-
dimensional cones σj,e in Σ1,e are singular, so the singular locus of F (N1,Σ1,e) is
the set F (N1,Σ1,e)sing =

⋃
j∈ 1

2
+Z O(σj,e). Because a refinement never alters cones of

dimension ≤ 1, it follows that F (N1,Σ1)! F (N1,Σ1,e) restricts to an isomorphism
over F (N1,Σ1,e

≤1) = F (N1,Σ1,e)reg, hence ψ is a desingularization.
For every integer k we have that ψ intertwines the action of ke ∈ eZ on G with

the pullback of the action of e ∈ Z on G ×G0,F ([e]) G0, so ψ|∆ : G|∆ ! G|∆ ×∆,pe ∆
descends to the desingularization

(wh,h̃, f) : Tateh̃ = (h̃Z)\G ! (hZ)\(G ×G0,F ([e]) G0)|∆ = Tateh ×∆,pe ∆. (8.40)

Here we used that taking quotients by proper and free actions commutes with pull-
back.

Remark 8.6.3. One calculates that

M1
σj,e

= Z≥0 · {χ(e( 1
2
−j),1), χ(e(j+ 1

2
),−1), χ(1,0)}, (8.41)

so that

F (N1, σj,e) = SpecC[xe(j− 1
2
), ye(j+ 1

2
), q]/(xe(j− 1

2
)ye(j+ 1

2
) − qe). (8.42)

Therefore the pullback Tateh ×∆,pe ∆ of the h-sided Tate curve along z 7! ze has
h surface singularities of type Ae−1, located at the h singular points of its fibre Ch
above 0.
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Chapter 9

Shioda modular surfaces

For torsion-free Γ satisfying a regularity condition at the cusps, we show that the
universal elliptic curve with a Γ-structure (EΓ, α)! Y (Γ) from Section 5.3 admits a
compactification in Theorem 9.1.1. The resulting object DΓ ! X(Γ) is what Deligne
and Rapoport coined a generalized elliptic curve, see Section 6.5.

For N ≥ 3 and ζ ∈ µ×
N we show that the level-N structure (Pζ , Qζ) with Weil

pairing ζ on EΓ(N)/Y (N) from Theorem 5.6.7 has a unique extension to a level-N
structure on DΓ(N)/X(N). We show that each isomorphism class of level-N struc-
tures on CN with Weil pairing ζ occurs in this extension at precisely one cusp of
X(N). For N ≥ 5 the analogous statement concerning Γ1(N) and points of exact
order N holds as well.

In Section 9.4 we show that an inclusion Γ̃ ⊂ Γ of congruence subgroups satis-
fying the hypothesis of Theorem 9.1.1 induces a holomorphic map p̃Γ,Γ̃ : DΓ̃ ! DΓ

covering pΓ,Γ̃ : X(Γ̃) ! X(Γ). Finally in Theorem 9.5.2 we show that the com-
pact 2-dimensional complex manifolds DΓ are projective-algebraic in the sense of
Definition 2.7.1.

9.1 The compactification DΓ ! X(Γ) of EΓ ! Y (Γ)

In this section we carry out the construction of the Shioda modular surfaces DΓ.

Theorem 9.1.1. Let Γ ⊂ SL2(Z) be a torsion-free congruence subgroup such that
all cusps of Γ are regular. Then there exists a generalized elliptic curve DΓ ! X(Γ)
extending EΓ ! Y (Γ) whose fibre over a cusp t ∈ Cusps(Γ) is a Néron ht-gon, where
ht is the width of t.

Recall from Equation (3.11) that there is a biholomorphism

eh : P
+
h \H! ∆∗

τ 7! exp(2πiτ/h).

If we let τ ∈ H and set qh = eh(τ), there is an isomorphism of elliptic curves

e : Eτ = C/(Zτ + Z)! C∗/qhZ
h = (Tateh)qh

z 7! exp(2πiz).
(9.1)
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Via this isomorphism, the level-h structures (Ψh)τ = (τ/h, 1/h) on Eτ and (Φh)qh
on (Tateh)qh = (qh, ζh) correspond to one other, since e(τ/h) = eh(τ) = qh and
e(1/h) = eh(1) = ζh.

In fact, these isomorphism glue to an isomorphism ẽh of relative elliptic curves
that lifts eh.

Lemma 9.1.2. There exists an isomorphism of elliptic curves with a level-h struc-
ture

P+
h \(E ,Ψh) (Tateh,Φh)|∆∗

P+
h \H ∆∗.

ẽh

eh

Proof. The characters x = x0 and q of the algebraic torus TN1 give rise to an isomor-
phism G|∆∗ = {(x, q) : x ∈ C∗, q ∈ ∆∗} ∼= C∗ × ∆∗. As in Proposition 4.2.4(2), we
constructed E = (C×H)/L as the categorical quotient for the fibral equivalence rela-
tion defined by the lattice L in (5.1). The homomorphism (e, eh) : C×H! C∗×∆∗

therefore descends to a cartesian homomorphism of elliptic curves

E = (C × H)/L! (hZ)\G|∆∗ = Tateh|∆∗

covering eh : H! ∆∗. On fibres it induces the isomorphism (9.1), whence it respects
the level-h structures Ψh and Φh. Using Lemma 5.3.2 this homomorphism is seen to
be P+

h -invariant, so it descends to the desired isomorphism ẽh : P+
h \E ! Tateh|∆∗ .

Proof of Theorem 9.1.1. LetR be a set of representatives for Γ\SL2(Z)/P . We define
DΓ ! X(Γ) to be the pushout of the following diagram, to be explained below, in
the category of generalized elliptic curves in which we set s = [γ](∞) and let h = hΓs
be the width of the cusp Γs ∈ Cusps(Γ)⊔

γ∈R Tateh|V ∗
h

⊔
γ∈R P

+
h \E|U∞

⊔
γ∈R Γs\E|Us EΓ

⊔
γ∈R V

∗
h

⊔
γ∈R P

+
h \ U∞

⊔
γ∈R Γs\Us Y (Γ).

⊔ẽh ⊔[γ]E

⊔eh ⊔[γ]

The left square is obtained from the isomorphism defined in Lemma 9.1.2 and
the inclusion Vh ⊂ V ∗

h . The middle square is the disjoint union over γ ∈ R of the
isomorphism [γ]E : E|U∞ ! E|Us covering [γ] : U∞ ! Us which is equivariant for
the isomorphism P+

h ! Γs, δ 7! γδγ−1. The right square arises from our viewing
of Γs\Us as an open subset of Y (Γ). We see that all squares are cartesian homo-
morphisms of generalized elliptic curves, which renders possible the formation of the
pushout DΓ ! X(Γ) .

Remark 9.1.3. In the proof of Theorem 9.1.1 we made a choice of a set R of double
coset representatives for Γ\ SL2(Z)/P . However, the resulting generalized elliptic
curve DΓ ! X(Γ) does not depend on this choice of R. Let us briefly explain why
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this is the case.
Let R̃ be different choice of double coset representatives for Γ\ SL2(Z)/P . The-

orem 3.5.6 provides an isomorphism between the bottom rows of the diagram (9.1)
for R and for R̃. It suffices to show that it lifts to an isomorphism of the top rows as
well. This has been done in Lemma 5.3.2 for all but the left most column. Thus it
remains to show that for each δ ∈ P and h ∈ Z≥1 there is a lift of the automorphism
[δ]h of ∆ defined in Equation (3.14), to an automorphism [δ]Tateh of Tateh. Since

P = {±1}×P+
1 , it suffices to consider the case a) that δ =

(
−1 0
0 −1

)
and b) that

δ =

(
1 1
0 1

)
.

In case a) we have that [δ]h = id∆∗ , though [δ]E : E ! E is given by inversion.
Therefore we let [δ]Tateh be given by the inversion i : Tateh ! Tateh induced by the
involution ι : N1 ! N1, (a0, a1) 7! (a0,−a1).

In case b) we have that [δ]h(z) = ζhz, which stems from the toric operation of
ζh ∈ C∗ = (TN0)an on ∆ ⊂ C = G0,an. There is a homomorphic section s : TN0 ! TN1

of the homomorphism f : TN1 ! TN0 , induced by the section σ : N0 ! N1,
a0 7! (a0, 0) of π : N1 ! N0. This implies that the operation of s(ζh) ∈ (TN1)an on
Tateh lifts the action of ζnh ∈ (TN0)an on ∆, as desired.

9.2 The level-N structure ΨN on DΓ(N)

Let N ≥ 3 be an integer and set ζN = exp(2πi/N) ∈ C \ R. By Theorem 5.6.7
there exists a universal elliptic curve (EΓ(N), (PζN , QζN )) ! Y (N) with a level-N
structure having Weil pairing ζN . It provides a bijection between |Y (N)| and the
set of isomorphism classes of complex elliptic curves with a level-N structure with
Weil pairing ζN .

We now show that this level-N structure ΨN : (Z/NZ)2×Y (N)! EΓ(N) extends
to an ample level-N structure ΨN : (Z/NZ)2 × X(N) ! DΓ(N), such that the
generalized elliptic curve (DΓ(N),ΨN) ! X(N) with an ample level-N structure
provides a bijection between |X(N)| and the set of isomorphism classes of complex
generalized elliptic curves with an ample level-N structure.

Proposition 9.2.1. Let N ≥ 3. Then there exists an ample level-N structure ΨN

on the generalized elliptic curve DΓ(N) ! X(N) with Weil pairing ζN such that the
following map is bijective:

|X(N)| ∼
−!

{
complex generalized elliptic curves with an ample level-N

structure having Weil pairing ζN

}
/ ∼=,

m 7! (DΓ(N),ΨN)m.
(9.2)

Proof. The congruence subgroup Γ(N) satisfies the hypotheses of Theorem 9.1.1
by Proposition 3.2.2 and Proposition 3.4.8. The theorem constructs the generalized
elliptic curve DΓ(N) ! X(N) as the pushout of the diagram (9.1). Since all cusps of
Γ(N) have width N , the singular fibres of DΓ(N) are Néron N -gons. To construct a
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level-N structure ΨN on DΓ(N), we enhance this diagram to the following diagram
of generalized elliptic curves with a level-N structure:

⊔
γ(TateN ,ΦN ◦ γt)|V ∗

h

⊔
γ P

+
N \(E ,ΨN ◦ γt)|U∞

⊔
γ Γ(N)s\(E ,ΨN)|Us (EΓ,ΨN)

⊔
γ V

∗
h

⊔
γ P

+
h \ U∞

⊔
γ Γ(N)s\Us Y (N).

By Lemma 9.1.2 and (5.5) the left resp. middle squares respect the level-N struc-
tures. This constructs a level-N structure ΨN on DΓ(N)/X(N), which is an extension
of the level-N structure ΨN on EΓ(N)/Y (N). Therefore the map (9.2) is given on
Y (N) by Theorem 3.6.2(1).

Since the level-N structure on the fibre over the cusp Γ(N)s with s = [γ](∞) is
ΦN ◦γt, with ΦN the standard level−N structure on CN from Example 6.4.2(1), the
map (9.2) is given on Cusps(N) by equation (6.18).

Now since we have X(N) = Y (N) ⊔ Cusps(N), and a complex generalized ellip-
tic curve with an ample level-N structure is either a smooth elliptic curve or else a
Néron N -gon, it follows that (9.2) is a bijection.

9.3 The point QN of exact order N on DΓ1(N)

For an integer N ≥ 5, Proposition 3.2.2 (2) asserts that the universal elliptic curve
(EΓ1(N), QN) ! Y1(N) with a point of exact order N provides a bijection between
|Y1(N)| and isomorphism classes of complex elliptic curves with a point of exact
order N . We show that the point QN : Y (N)! EΓ1(N) of exact order N extends to
an ample point X(N) ! DΓ(N) of exact order N , such that the generalized elliptic
curve (DΓ(N), QN) ! X(N) with a point of exact order N provides a bijection
between |X1(N)| and isomorphism classes of complex generalized elliptic curves
with an ample point of exact order N .

Lemma 9.3.1. Let N ≥ 5. Let γ =

(
a b
c d

)
∈ SL2(Z), let s = [γ](∞) ∈ P1(Q), and

let t = Γs ∈ Cusps(Γ). Let Q = Φ(γt(0, 1)) = (ζdN , c) be the point of exact order N
corresponding to t via Lemma 6.4.8. Then the following integers are equal:

(1) N/ gcd(c,N);

(2) the order of Q in π0(C
reg
N );

(3) the width ht = hγ,Γ of the cusp t.

Proof. The first two integers are equal since the order of c + NZ in Z/NZ is
N/ gcd(c,N). Denote their common value by h.

Write γ = πN(γ) ∈ SL2(Z/NZ) for the reduction of γ modulo N . Consider
α ∈ Aut(CN), corresponding under eq. (6.9) to δ = πN(δ) for some δ ∈ P . Then
Lemma 6.2.3 gives that

α(Q) = Q⇐⇒ Γ1(N)γ = Γ1(N)γδ ⇐⇒ δ ∈ γ−1Γ1(N)γ ⇐⇒ δ ∈ γ−1Γ1(N)γ.
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Thus we find that

#{α ∈ Aut(CN) : α(Q) = Q} = (P ∩ γ−1Γ1(N)γ : Γ(N)) = hΓ(N)s/hΓ1(N)s = N/ht.

On the other hand, for ζ ∈ µN , viewed as automorphism α ∈ Aut(CN) we have
that

α(Q) = Q ⇐⇒ (ζcζdN , c) = (ζdN , c) ⇐⇒ c ∈ µgcd(c,N).

We conclude that

gcd(c,N) = #{α ∈ Aut(CN) : α(Q) = Q} = N/ht.

This shows that ht = N/ gcd(c,N) as desired.

Proposition 9.3.2. Let N ≥ 5. Then there exists an ample point QN of exact order
N on the generalized elliptic curve DΓ1(N) ! X1(N) such that the following map is
bijective:

|X1(N)| ∼
−!

{
complex generalized elliptic curves with

an ample point of order N

}
/ ∼=,

m 7! (DΓ(N), QN)m.

(9.3)

Proof. The proof of this proposition is analogous to Proposition 9.2.1, taking account
of Lemma 9.4.1.

9.4 Morphisms between Shioda modular surfaces

We show in Proposition 9.4.2 that there is a natural map DΓ̃ ! DΓ between the Sh-
ioda modular surface constructed in Theorem 9.1.1 attached to an inclusion Γ̃ ⊂ Γ.

Consider congruence subroups Γ̃ and Γ of SL2(Z) such that Γ̃ ⊂ Γ. In Theorem 3.5.6
we have shown there is a natural holomorphic map

pΓ̃,Γ : X(Γ̃) := Γ̃\H∗ ! Γ\H∗ =: X(Γ).

If Γ is torsion-free, then Γ̃ is torsion-free as well. There is a natural cartesian homo-
morphism of elliptic curves

p̃Γ,Γ̃ : EΓ̃ := Γ̃\E ! Γ\E =: EΓ covering pΓ̃,Γ : Y (Γ̃)! Y (Γ). (9.4)

Furthermore, if all cusps of Γ are regular, the same holds true for Γ̃, as the following
lemma shows.

Lemma 9.4.1. Let Γ̃ ⊂ Γ be congruence subgroups of SL2(Z). Let t̃ ∈ Cusps(Γ̃),
and set t = pΓ,Γ̃(t̃) ∈ Cusps(Γ). If t is regular and −1 ̸∈ Γ, then t̃ is regular.

Proof. Choose γ ∈ SL2(Z) such that t̃ = Γ̃[γ](∞); then we find that t = Γ[γ](∞).
We have seen in Theorem 3.5.6 that Pt̃ := Pγ,Γ̃ ⊂ Pγ,Γ =: Pt. If t is regular

and −1 ̸∈ Γ, then Pt = P+
h := {( 1 nh

0 1
) : n ∈ Z}, where h is the width of t. If
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e = (Pt : Pt̃) ∈ Z≥1 is the index of Pt̃ in Pt, then since P+
h is infinite cyclic we have

Pt̃ = P+
eh = {( 1 neh

0 1
) : n ∈ Z}. We conclude that t̃ is a regular cusp of Γ̃ of width

eh. We note also that −1 ̸∈ Γ implies −1 ̸∈ Γ̃.

Proposition 9.4.2. Let Γ̃ ⊂ Γ ⊂ SL2(Z) be congruence subgroups. Assume that Γ is
torsion-free and has only regular cusps. Then the map (9.4) extends to a holomorphic
map

p̃Γ̃,Γ : DΓ̃ ! DΓ covering pΓ̃,Γ : X(Γ̃)! X(Γ)

Proof. We adopt the notation of Theorem 3.5.6, choosing sets R̃ resp. R of double
coset representatives for Γ̃\ SL2(Z)/P resp. Γ\ SL2(Z)/P in such a way that R̃ ⊂ ΓR,
i.e. so that δ(β) = 1 for all β ∈ R̃. We contend that the following diagram covering
(3.17) commutes, in which s = [γ](∞), h = hΓs, s̃ = [β](∞) and h̃ = hΓ̃s̃.⊔

β∈R̃ Tateh̃|Vh̃
⊔
β∈R̃ P

+

h̃
\E|U∞

⊔
β∈R̃ Γ̃s̃\E|Us̃

EΓ̃

⊔
γ∈R Tateh|Vh

⊔
γ∈R P

+
h \E|U∞

⊔
γ∈R Γs\E|Us EΓ.

⊔
wh,h̃

⊔
[β]E

[1]E
⊔
[α(β)]E p̃Γ,Γ̃⊔

[γ]E

The middle square commutes since α(β)β = γ(β) implies that [α(β)]E◦[β]E = [γ(β)]E .
The right square commutes because α(β) ∈ Γ and the quotient map pΓ : E ! EΓ is
Γ-invariant. It remains to show the left square is commutative. We first recall how
the horizontal isomorphisms are defined.

Let k ∈ Z≥1. We have a biholomorphism ek : P+
k \H ! ∆∗, τ 7! exp(2πiτ/k)

which maps U∞ = {τ ∈ C : ℑτ > 0} onto Vk = {q ∈ C : 0 < |q| < exp(−2π/k)}.
Recall that E = V/L has been constructed as the quotient of the holomorphic line
bundle V = C × H by the lattice L = {(mτ + n, τ) : τ ∈ H, (m,n) ∈ Z2}, while
Tatek|∆∗ has been constructed as the quotient of G|∆∗ = ∆∗ × C∗ by the action
of kZ. Now we have a diagram with horizontal isomorphisms and vertical analytic
covering maps

P+
k \V/(Z × H) ∆∗ × C∗

P+
k \H Tatek|∆.

(ek,e1)

ck

ẽk

It thus suffices to show the following diagram commutes,

P+

h̃
\V/(Z × H) ∆∗ × C∗

Ph\V/(Z × H) ∆∗ × C∗,

(eh̃,e1)

ph̃/h×[1]

(eh,e1)

which is clear because (ph̃/h ◦ eh̃) = eh by (3.16) with δ = 1.
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9.5 The Shioda modular surface DΓ is projective-

algebraic

We prove that the Shioda modular surfaces DΓ constructed in Theorem 9.1.1 are
projective-algebraic. The essential point is that the fibration f : DΓ ! X(Γ) onto
the projective-algebraic curve X(Γ) admits a section.

Theorem 9.5.1. Let X be a connected compact complex manifold of dimension 2.
Suppose there exists a surjective holomorphic map f : X ! Y to a Riemann surface
Y which admits a holomorphic section s : Y ! X. Then X is a projective-algebraic
complex surface.

Proof. By [BHPVdV04][Theorem 6.2] it suffices to exhibit a divisor D on X with
positive self intersection number D2 > 0. Let C = s(Y ) be the image of the section s,
and let G be a general fibre of Y . Since G2 = 0 and C ·G > 0, for all n > −C2/(C ·G)
we have

(C + nG)2 = C2 + n(C ·G) + n2G2 = C2 + n(C ·G) > 0.

Thus for n sufficiently large, D = C + nG is the desired divisor with D2 > 0.

Theorem 9.5.2. Let Γ be a torsion-free congruence subgroup of Γ such that all cusps
of Γ are regular. Then the Shioda modular surface DΓ attached to Γ is projective-
algebraic.

Proof. We need only show the hypotheses in Theorem 9.5.1 are met. We denote the
identity section of the generalized elliptic curve f : DΓ ! X(Γ) by e : X(Γ)! DΓ.
Since f is proper and X(Γ) is compact, we have that DΓ is compact. Each fibre
f−1(m) ⊂ DΓ is connected, being a smooth elliptic curve or a Néron polygon, and
meets the image e(X(Γ)) ⊂ DΓ of the identity section, which is connected since
X(Γ) is connected. This implies that DΓ is connected. Finally it is clear that DΓ is
a 2-dimensional complex manifold. Thus we conclude by Theorem 9.5.1.
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Chapter 10

Kuga-Sato varieties

Let Γ ⊂ SL2(Z) be a torsion-free congruence subgroup such that all cusps of Γ
are regular. In Chapter 9 we constructed a generalized elliptic curve DΓ ! X(Γ)
which is a smooth compactification of the universal elliptic curve with a Γ-structure
(EΓ ! Y (Γ),ΓΨ) such that the fibre over t ∈ Cusps(Γ) is a Néron ht-gon, where ht
is the width of the cusps t.

Since EΓ ! Y (Γ) is a holomorphic submersion, by Lemma 2.2.11 the k-th fibre
power EkΓ := EΓ ×Y (Γ) EΓ ×Y (Γ) · · · ×Y (Γ) EΓ of E over Y (Γ) exists as a holomorphic
manifold, and the structure of elliptic curve over Y (Γ) on EΓ defines on EkΓ a structure
of complex torus of relative dimension k over Y (Γ) by Example 4.1.5.

One might hope to construct a smooth compactification of EkΓ ! Y (Γ) by taking
the k-th fibre power of DΓ ! X(Γ). However, for k ≥ 2 this will not be a complex
manifold, but a complex-analytic space that is not a manifold precisely at the points
(x1, . . . , xk) ∈ Dk

Γ where xj ∈ Dnsm
Γ for at least two indices j, see Lemma 8.2.1. To

remedy the situation, we will go through the same steps as in the construction of
DΓ.

(1) Construct a projective desingularisation of Gk = (G/Spec C[q])
k as a sequence of

blowups
Gk⟨k − 1⟩! Gk⟨k − 2⟩! . . .! Gk⟨1⟩! Gk⟨0⟩ = Gk

centered at nonsingular closed subvarieties of Gk⟨l⟩nsm .
(2) Construct an action of Zk on Gk⟨l⟩ over Spec C[q], such that for all 0 ≤ l < k−1

the blowdown morphism Gk⟨l + 1⟩! Gk⟨l⟩ is Zk-equivariant.

(3) Show that the resulting action of Zk on the (k + 1)-dimensional holomorphic
manifold Gk⟨k − 1⟩|∆ = (Gk⟨k − 1⟩)an ×C ∆ is free and proper, and construct
the quotient

KSkh = (hZ)k\Gk⟨k − 1⟩|∆.

(4) At each cusp of X(Γ), say of width h, we glue in a copy of KSkh to EkΓ. The result
of this procedure is a flat, proper, connected holomorphic map KSkΓ ! X(Γ)
whose restriction to the open modular curve is EkΓ ! Y (Γ).

Furthermore, we will show in Lemma 10.2.4 that the group law EkΓ ×Y (Γ) EkΓ ! EkΓ
extends to a mapKSk,smΓ ×X(Γ)KSkΓ ! KSkΓ with the same properties as the extension

Dsm
Γ ×X(Γ)DΓ ! DΓ of the group law EΓ×Y (Γ)EΓ ! EΓ. Moreover, if Γ̃ is a congruence
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subgroup of SL2(Z) with Γ̃ ⊂ Γ, we will show in Section Section 10.3 that there is
a map KSk

Γ̃
! KSkΓ extending the k-th power pk

Γ,Γ̃
: Ek

Γ̃
! EkΓ of the natural map

pΓ,Γ̃ : EΓ̃ ! EΓ. We conclude this thesis by showing that the (k + 1)-dimensional

complex manifold KSkΓ is projective-algebraic in Section 10.4.

10.1 A projective desingularisation of Gk

The aim of this section is to construct a projective desingularization

g : Gk⟨k − 1⟩! Gk, (10.1)

of Gk, which we defined in Section 8.2 as the product of k copies of G over G0. There
are several equivalent ways of defining g.

Originally Deligne constructed g as a single blowup centered at a cleverly chosen
nonreduced closed subscheme of Gk in his famous paper [Del71][Lemme 5.5]. In this
paper he shows that Ramanujan-Petersson’s conjecture on the size of the Fourier
coefficients of certain modular forms is implied by the Weil conjectures, which he
would later also prove.

Scholl in his notes [Sch97][Ch. 7] provides an alternative description of g as a se-
quence of blowups whose centers are nonsingular subvarieties. He first desingularizes
members of an affine open cover of Gk, each isomorphic to say Zk, and then patches
these desingularizations together. Then he goes on to explain that the blowup of Zk

can be rooted in toric geometry, where it corresponds to a decomposition of a (cone
over a) cube. Based on this latter toric perspective we will give a full combinato-
rial proof of the existence of a projective desingularization of Gk, without having to
resort to explicit calculation with affine charts. Rather it is intrinsically global and
does not require patching. However, we refer to [Sch97][Section 7.1] for the proof
that this desingularization is a sequence of blowups centered at nonsingular subva-
rieties.

Let us recall the description of Gk furnished in Section 8.2 as the toric variety
F (Nk,Σk) attached to a certain RPP decomposition (Nk,Σk). We define the lat-
tice Nk = Z{0,1,...,k} in Nk

R = R{0,1,...,k}. Let π : Nk
R ! N0

R, (a0, a1, . . . , ak) 7! a0
be the projection onto the zeroth coordinate, and consider the affine hyperplane
Hk = π−1(1) ⊂ Nk

R. Via the isomorphism Rk ∼= {1} × Rk = Hk we view Rk as
embedded in Nk

R. The maximal cones in the fan Σk are cones σi = R≥0 · Bi over
k-dimensional unit-volume hypercubes in Rk with integral endpoints

Bi = [i1, i1+1]× [i2, i2+1]×· · ·× [ik, ik+1] ⊂ Rk, i = (i1, i2, . . . , ik) ∈ Zk. (10.2)

Just as in Section 8.4, there is an action α : Zk ! Aut(Nk,Σk) of Zk on the RPP
decomposition (Nk,Σk) given for m = (m1,m2, . . . ,mk) ∈ Zk by

α(m) : Nk ! Nk,

(a0, a1, . . . , ak) 7! (a0,m1a0 + a1,m2a0 + a2, . . . ,mka0 + ak).
(10.3)
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Via the equivalence of categories F this corresponds to an action a : Zk ! Aut(Gk)
of Zk on Gk via toric automorphism over G0. Since a(m)(σi) = σm+i for m, i ∈ Zk,
we see that Zk acts simply transitively on the set of maximal cones in Σk

Σk(k + 1) = {σi : i ∈ Zk}.

Consequently, Zk acts simply transitively on the members of the affine open cover
{F (Nk, σi) : i ∈ Zk} of Gk. To introduce the idea behind the projective desingu-
larization of Gk, let us first construct a projective desingularization for the member
F (Nk, σ0) of the affine open cover.

To ease notation, write Bk = Bk
0 = [0, 1]k for the unit k-cube. Let us denote

υk = σ0 = R≥0 ·Bk the cone in Nk
R spanned by {1}× [0, 1]k. Write Υk for the subfan

of Σk consisting of those cones contained in υk, i.e. for the set of faces of υk. Finally,
we put

Zk := F
(
Nk,Υk

)
= σ0.

The set of vertices of Bk is {0, 1}k ⊂ [0, 1]k. Let 0 ≤ l ≤ k. A codimension-l face
of Bk is the preimage of one of the 2l vertices of Bl under one of the

(
k
l

)
coordinate

projections Rk ! Rl; thus Bk has 2l
(
k
l

)
faces of codimension l. A facet is a face of

codimension 1.
More generally, each face θ of Bk spans a cone

σθ = R≥0 · θ

and this sets up a bijection between the faces of Bk and the nonzero faces of υk:

Υk = {0} ∪
{
σθ : θ is a face of Bk

}
.

Since υk is the unique (k+1)-dimensional cone in Υk, we have that O
(
υk
)
is the

unique 0-dimensional TNk-orbit in Zk. Thus the point Ok such that O(υk) = {Ok}
is the unique point of Zk that is fixed under the torus action of TNk .

We denote the barycenter of a positive-dimensional face θ of Bk by z(θ). Because
θ is not a vertex, 2z(θ) is a primitive vector in Nk. For 0 ≤ l ≤ k − 2 we define the
following set of primitive vectors contained in N ∩ |Υk|:

V k
l =

{
2z(θ) : θ is a codimension-l face of Bk

}
.

Now form a sequence of star-subdivisions

Υk⟨0⟩ = Υk and Υk⟨l + 1⟩ = Υk⟨l⟩∗
(
V k
l

)
for 0 ≤ j < k − 1

and the corresponding sequence of toric morphisms

Zk⟨k − 1⟩! Zk⟨k − 2⟩! . . .! Zk⟨1⟩! Zk⟨0⟩ = Zk. (10.4)

Description of the fan Υk⟨l⟩. An l-flag of faces of Bk is defined to be a descending
sequence of faces of Bk

θ≤l =
(
Bk = θ0 ⊃ θ1 ⊃ . . . ⊃ θl

)
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where θm has codimension m in Bk. The maximal, i.e. (k+1)-dimensional, cones of
the fan Υk⟨l⟩ correspond bijectively to the l-flags of faces of Bk, by attaching to the
l-flag θ≤l the cone

σθ≤l
:= R≥0 · {z (θ0) , z (θ1) , . . . , z (θl−1)}+ R≥0 · θl.

Geometrically, Υk⟨1⟩ is the refinement of Υk obtained by decomposing Bk into
cones with apex z(Bk) and base one of the 2k facets θ1 of Bk. To obtain Υk⟨2⟩
from Υk⟨1⟩, we further subdivide each facet θ1 of Bk, which is a (k − 1)-cube, into
2(k − 1) pieces corresponding to a facet of θ2. Then iteratively we subdivide the
codimension-j faces of Bk, to obtain the refinement Υk⟨j + 1⟩! Υk⟨j⟩.

Since the number of facets of an m-dimensional cube is 2m, the number of l-flags
of faces of Bk is

∏k
m=k−l+1(2m) = 2lk!/(k− l)!. We conclude that Zk⟨l⟩ is the union

of the 2lk!/(k − l)! affine toric varieties F
(
Nk, σθ≤l

)
for each l-flag of faces θ≤l.

Scholl in [Sch97] gives a proof of the following theorem using explicit calculations
with affine patches of blowups .

Theorem 10.1.1. For every 0 ≤ l < k − 1, the morphism Z⟨l + 1⟩ ! Zk⟨l⟩ in
(10.4) is the blowup of Zk⟨l⟩ at a nonsingular TNk-stable closed subvariety F k⟨l⟩ of
Zk⟨l⟩sing. There exists a TNk-equivariant isomorphism of pairs(

F
(
Nk, σθ≤l

)
, F

(
Nk, σθ≤l

)
∩ F k⟨l⟩

) ∼= (
AlC × Zk−l,AlC ×

{
Ok−l})

where Om is the unique fixed point of Zm under the torus action.
In particular, the composite Zk⟨k − 1⟩! Zk in (10.1) is a TNk-equivariant pro-

jective desingularization of Zk.

Proof. See [Sch97][Thm. 7.1.2.2]

Remark 10.1.2. In accordance with Remark 7.2.2 we have the following descriptions.
For each l ∈ {0, 1, 2, . . . , k − 2} we have

F k⟨l⟩ =
⋃{

V (σθl) : θl is a codimension-l face of Bk
}
,

Zk⟨l⟩sing =
⋃{

V
(
σθk−2

)
: θk−2 is a 2-dimensional face of Bk

}
,

while Zk⟨k − 1⟩sing = ∅. Note that indeed F k⟨l⟩ ⊂ Zk⟨l⟩sing since l ≤ k − 2.

Remark 10.1.3. For each 0 ≤ l ≤ k − 1, denote gl : Z
k⟨k − 1⟩ ! Zk⟨l⟩ the toric

morphism induced by the refinement (Nk,Υk⟨k−1)! (Nk,Υk⟨l⟩). Then the inverse
image of the singular locus of Zk⟨l⟩ under gl is the divisor

g−1
l

(
Zk⟨l⟩sing

)
=

k−2⋃
m=l

⋃{
V (R≥0 · z (θm)) : θm is a codimension-m face of Bk

}
.

We now give an alternative proof that Zk⟨k − 1⟩ ! Zk is a projective desingular-
ization based on the combinatorial geometry of the fans involved.

Lemma 10.1.4. The toric variety Zk⟨k − 1⟩ is smooth.
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Proof. Our proof is based on a volume calculation with the Haar measure on the
euclidean space Nk

R = R{0,1,...,k} normalized so that vol
(
[0, 1]{0,1,...,k

)
= 1.

A (k + 1)-tuple (vm)
k
m=1 of vectors in Nk is a Z-basis for Nk if and only if it has

determinant |det (v0, v1, . . . , vk)| = 1. Consider the (k+1)-simplex spanned by these
vectors

⟨v0, v1, . . . , vk⟩ :=

{
k∑

m=0

tmvi : 0 ≤ tm,

k∑
m=0

tm ≤ 1

}
,

which has volume

vol ⟨v0, v1, . . . , vk⟩ =
1

(k + 1)!
· |det (v0, v1, . . . , vk)| .

Let R =
{
tv : t ∈ [0, 1], v ∈ Bk

}
be the closed convex body in Nk

R that is the cone
with apex 0 and base Bk. The refinement Υk⟨k − 1⟩ ! Υk divides R into 2k−1k!
equal-volume (k + 1)-simplices

R ∩ σθ≤k−1
= ⟨z (θ0) , z (θ1) , . . . , z (θk−2) , vk−1, vk⟩ ,

one for each (k − 1)-flag θ≤k−1 of faces of Bk, where vk−1 and vk are the end points

of the line segment θk−1. Since one has vol(R) =
∫ 1

0
tkdt = (k + 1)−1, we find that

vol
(
R ∩ σθ≤k−1

)
=

(
2k̄−1(k + 1)!

)−1

.

Now consider an arbitrary (k − 1)-flag θ≤k−1 of faces of Bk. Write vi = 2z(θi)
for 0 ≤ i < k − 1 and {vk−1, vk} = ∂θk−1, so that {v0, v1, . . . , vk} is the set of
fundamental generators for the cone σθ≤k−1

. We now find that

|det (v0, v1, . . . , vk−2, vk−1, vk)| =
|det (2z(θ0), 2z(θ1), . . . , 2z(θk−2), vk−1, vk)| =

2k−1 |det (z(θ0), z(θ1), . . . , z(θk−2), vk−1, vk)| =
2k−1(k + 1)! vol ⟨z(θ0), z(θ1), . . . , z(θk−2), vk−1, vk⟩ = 1.

This shows that each maximal cone in Υk⟨k− 1⟩ is nonsingular. We conclude using
Theorem 7.1.10(3) that Zk⟨k−1⟩ = F

(
Nk,Υk⟨k − 1⟩

)
is a smooth toric variety.

Proposition 10.1.5. The morphism Zk⟨k− 1⟩! Zk is a projective desingulariza-
tion of Zk.

Proof. In view of Lemma 7.5.3(2) that toric morphisms induced by star-subdivisions
are projective, and the fact that compositions of projective morphisms are projec-
tive, the morphism Zk⟨k − 1⟩ ! Zk is projective. By Lemma 10.1.4 we have that
Zk⟨k−1⟩ is a nonsingular C-variety. It remains to be shown that g : Zk⟨k−1⟩! Zk

restricts to an isomorphism g−1(Zk,sm)! Zk,sm.
Similar to Lemma 8.2.1 we see that Zk,sm = F (Nk,Υk

≤2). Our star-subdivisions
are centered at primitive vectors that lie in the relative interior of a cone of dimension
greater than 2, so do not alter cones of dimension at most 2. Hence we see by induc-
tion on 0 ≤ l ≤ k − 1 that {σ ∈ Σk⟨l⟩ : σ ⊂ |Σk

≤2|} = Σk
≤2. Since by the Orbit-Cone

correspondence we have g−1(F (Nk,Σk
≤2)) = F (Nk, {σ ∈ Σk⟨k − 1⟩ : σ ⊂ |Σk

≤2|}),
we conclude that there is an isomorphism g−1(Zk,sm)! Zk,sm.
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Having resolved the singularities of Gk locally on the affine open F (Nk, σ0), we
are now in a position to construct a global desingularization of Gk. The action of
Zk on Gk gives for each i ∈ Zk an isomorphism a(i) : Zk := F (Nk, σ0)! F (Nk, σi),
hence a desingularization Zk

i ! F (Nk, σi). Scholl shows in [Sch97][§7.2.5] that the
desingularizations Zk

i of the σi patch together to give one for Gk =
⋃
i∈Zk σi. However,

there is a more intrinsic way of seeing this. We simply repeat the procedure via which
we constructed the nonsingular refinement Υk⟨k− 1⟩! Υk, but now consider faces
of all k-dimensional cubes Bi, rather than just of B0. Thus, we set

W k
l =

{
2z(θ) : θ is a codimension-l face of some Bk

i

}
,

form the sequence of star-subdivisions

Σk⟨0⟩ = Σk and Σk⟨j + 1⟩ = Σk⟨j⟩∗
(
V k
k−j

)
for 0 ≤ j < k − 1

and the corresponding sequence of toric morphisms

Gk⟨k − 1⟩! Gk⟨k − 2⟩! . . .! Gk⟨1⟩! Gk⟨0⟩ = Gk. (10.5)

Since the action of Zk on Nk preserves the fan Σk⟨l⟩ for every 0 ≤ l ≤ k − 1, we
see there is an action of Zk on Gk⟨l⟩ such that the morphism Gk⟨l⟩ ! Gk⟨l′⟩ is
Zk-invariant for all 0 ≤ l′ ≤ l ≤ k − 1.

Scholium 10.1.6. Let 0 ≤ l ≤ k − 1. One can describe the full group of toric auto-
morphisms of Gk⟨l⟩ over G0 as follows. We define the group

Γk = Zk ⋊ µk2 ⋊ Sk,

where µk2 acts on Zk via multiplication, and Sk acts on Zk and µk2 via permutation.
There is a natural action of Γk on Hk

Z := Hk ∩Nk ∼= Zk via integral affine transfor-
mations, which restricts to the action of Zk by translation, of µk2 by multiplication
and of Sk by permutation. This action corresponds to an injective homomorphism
α : Γk ! Aff

(
Hk

Z

)
= Aut

(
Nk/N0

)
. Since µk2 ⋊ Sk is the group of isometries of the

k-cube [−1, 1]k, any integral affine transformation ϕ ∈ Aff
(
Hk

Z

)
which induces a per-

mutation of the set of cubes {Bi : i ∈ Zk} belongs to the image of α. By considering
primitive vectors in rays of the fan Σk⟨l⟩, one can show there is an isomorphism

α : Γk
∼
! Aut

((
Nk,Σk⟨l⟩

))
. (10.6)

Corollary 10.1.7. We have that g : Gk⟨k−1⟩! Gk is a projective desingularization
of Gk.
Proof. In Proposition 10.1.5 we have proved that Zk⟨k − 1⟩ is a nonsingular C-
variety and that g : g−1(Zk,sm) ! Zk,sm is an isomorphism. Because Gk is covered
by Zk-translates of Zk = F (Nk, σ0) and g : Gk⟨k − 1⟩ ! Gk is Zk-equivariant, it
follows that Gk⟨k− 1⟩ is smooth and that g : g−1(Gk,sm)! Gk,sm is an isomorphism.

The same argument involving star-subdivisions as in Proposition 10.1.5 shows
that g : Gk⟨l⟩ ! Gk⟨l′⟩ is a projective morphism for all integers 0 ≤ l′ ≤ l ≤ k − 1.
Thus the composition g : Gk⟨k − 1⟩ ! Gk of the sequence of projective morphisms
starring in (10.5) is projective as well.

In Section 10.4 we will give an independent proof of the projectivity of the morphism
g : Gk⟨k− 1⟩! Gk by constructing an explicit g-very ample line bundle on Gk. This
line bundle will be used to show that the Kuga-Sato manifolds constructed in the
next section are projective-algebraic.
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10.2 The compactification KSk
Γ of EkΓ

Consider a universal elliptic curve EΓ ! Y (Γ) constructed in Theorem 5.5.4. For
each integer k ≥ 2, the k-th fibre power EkΓ = EΓ ×Y (Γ) EΓ ×Y (Γ) · · · ×Y (Γ) EΓ is a
complex torus of relative dimension k over Y (Γ). The following theorem shows it
has a smooth compactification KSkΓ ! X(Γ), which we will call the k-th Kuga-Sato
variety attached to Γ.

Theorem 10.2.1. Let Γ ⊂ SL2(Z) be a torsion-free congruence subgroup such that
all cusps of Γ are regular. Let k ≥ 1 be an integer. Then there exists a quadruple
(f : KSkΓ ! X(Γ),m, e, i) consisting of

• a compact complex manifold KSkΓ,
• a proper holomorphic map f : KSkΓ ! X(Γ),

• a multiplication m : KSk,smΓ ×X(Γ) KSkΓ ! KSkΓ,
• an identity section e : X(Γ)! KSkΓ,
• an inversion map i : KSkΓ ! KSkΓ,

having the following four properties:

(1) the restriction of this quintuple to the open modular curve Y (Γ) ⊂ X(Γ) is the
Y (Γ)-complex torus (f : EkΓ ! Y (Γ),m, i, e) of relative dimension k;

(2) the triple (m, i, e) defines a structure of commutative X(Γ)-group on KSk,smΓ ;

(3) the map m defines an action of KSk,smΓ on KSkΓ over X(Γ);

(4) the maps m and i are compatible in the sense that the following diagram com-
mutes:

KSk,smΓ ×X(Γ) KSkΓ KSkΓ

KSk,smΓ ×X(Γ) KSkΓ KSkΓ.

m

i×i i

m

We form the ∆-complex manifold Gk⟨k − 1⟩|∆ := Gk⟨k − 1⟩an ×G0,an ∆ by applying
the analytification functor (·)an and restricting to ∆ ⊂ C = G0,an. From the action
a : Zk ! Aut(Gk) of Zk on Gk over G0 defined in (10.3), we obtain an action of Zk

on Gk⟨k − 1⟩|∆. One deduces from Lemma 8.5.4(i) that the action of Zk on Gk|∆ is
free and proper, hence that on Gk⟨k − 1⟩|∆ is as well by Lemma 2.3.3.

Definition 10.2.2. Let k, h ∈ Z≥1. We define KSkh = (hZ)k\Gk⟨k − 1⟩|∆ to be the
quotient of Gk⟨k − 1⟩|∆ by the free and proper action of (hZ)k.

Lemma 10.2.3. For all integers k, h ≥ 1, there exists a biholomorphism ẽh covering
eh as in the diagram below:

P+
h \Ek KSkh|∆∗

P+
h \H ∆∗.

ẽh

eh

(10.7)
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Proof. Since the desingularization Gk⟨k− 1⟩! Gk restricts to an isomorphism over
D(q) ⊂ G0, we have that

KSkh|∆∗ ∼= (Tateh |∆∗)k.

Now in the case that k = 1 the isomorphism has been constructed in Lemma 9.1.2.
The cases that k ≥ 2 follow by taking fibre powers of this isomorphism.

Lemma 10.2.4. Let k, h ∈ Z≥1. There exists a triple (mh, eh, ih) consisting of

• a multiplication map mh : KSk,smh ×∆ KSkh ! KSkh over ∆;

• an identity section eh : ∆! KSk,smh to f : KSkh ! ∆;

• an inversion map ih : KSkh ! KSkh over ∆,

such that

(1) the restriction of this triple to the puncture unit disk ∆∗ makes (10.7) an iso-
morphism of complex tori of relative dimension k;

(2) the triple (m, i, e) defines a structure of commutative ∆-group on KSkh;

(3) the map m defines an action of KSk,smh on KSkh over ∆;

(4) the maps m and i are compatible in the sense that the following diagram com-
mutes:

KSk,smh ×∆ KSkh KSkh

KSk,smh ×∆ KSkh KSkh.

m

i×i i

m

Proof. We only sketch this proof, since we have treated the case k = 1 in full
detail in Section 8.3 and Section 8.5 and the general case k > 1 is very similar.
Again we denote g : Gk⟨k− 1⟩! Gk the projective desingularization constructed in
Corollary 10.1.7.

First we observe that Gk⟨k − 1⟩sm = g−1(Gk,sm) ∼= Gk,sm = F (Nk,Σk
≤1). The

maximal cones in the fan

Σk
≤1 = {0} ∪ {R≥0 · (1, i) : i ∈ Zk}

are the rays spanned by the elements in the set Hk
Z := Hk ∩ Nk = {1} × Zk.

Generalizing Lemma 8.3.1 we define the Z-linear map

µ : Nk ×N0 Nk ! Nk,

(a0, a1, a2, . . . , ak, a
′
1, a

′
2, . . . , a

′
k) 7! (a0, a1 + a′1, a2 + a′2, . . . , ak + a′k),

which is equivariant for + : Zk × Zk ! Zk. It defines a morphism of RPP decom-
positions µ : (Nk ×N0 Nk,Σk

≤1 ⊗Σ0 Σk⟨k − 1⟩) ! (Nk,Σk⟨k − 1⟩) hence a toric
morphism

m : Gk⟨k − 1⟩sm ×G0 Gk⟨k − 1⟩! Gk⟨k − 1⟩. (10.8)

Similarly there is a morphism of RPP decompositions ϵ : (N0,Σ0) ! (Nk,Σk
≤1)

given by the following section of π:

ϵ : N0 ! Nk,

a0 7! (a0, 0, . . . , 0),
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which defines a section to f : Gk ! G0:

e : G0 ! Gk⟨k − 1⟩sm. (10.9)

In the same vein there exists an automorphism ι of order 2 of the RPP decomposition
(Nk,Σk⟨k − 1⟩) given by

ι : Nk ! Nk,

(a0, a1, a2, . . . , ak) 7! (a0,−a1,−a2, . . . ,−ak),

which defines a Zk-equivariant involutive automorphism i of Gk over G0.
It follows now that man, ian and ean on Gk⟨k− 1⟩|∆ descends to maps mh, ih and

eh on KSkh as desired. We omit the verification that they verify properties (1)-(4),
to avoid repeating the arguments given in Lemma 8.5.4.

Proof of Theorem 10.2.1. Let R be a set of representatives for Γ\SL2(Z)/P . We con-
struct the triple

(
f : KSkΓ ! X(Γ),m, e, i

)
as the pushout of the following diagram

to be explained below, in which we set s = [γ](∞) and h = hΓs,⊔
γ KSkh|Vh

⊔
γ P

+
h \Ek|U∞

⊔
γ Γs\Ek|Us EkΓ

⊔
γ Vh

⊔
γ P

+
h \ U∞

⊔
γ Γs\Us Y (Γ).

The left square is obtained from the isomorphism Proposition 10.3.2 and the inclu-
sion Vh ⊂ V ∗

h . The middle square is the disjoint union over γ ∈ R of the isomorphism

([γ]E)k :
(
E|U∞

)k
!

(
E|Us

)k
covering [γ] : U∞ ! Us which is equivariant for the

isomorphism P+
h ! Γs, δ 7! γδγ−1. The right square arises from our viewing of

Γs\Us as an open subset of Y (Γ). We see that all squares are cartesian, which ren-
ders possible the formation of the pushout

(
f : KSkΓ ! X(Γ),m, e, i

)
.

The verification that the triple (f,m, e, i) has the stated properties is local on
the base X(Γ), and follows from Lemma 10.2.4. By construction, the restriction of
(f,m, e) to Y (Γ) is the k-th fibre power EkΓ ! Y (Γ) of the universal elliptic curve
EΓ ! Y (Γ).

Remark 10.2.5. The morphism KSkΓ ! Dk
Γ of C-analytic spaces over X(Γ) induces

an isomorphism between the open subsets where their structure morphism to X(Γ)
is submersive:

KSk,smΓ
∼= (Dsm

Γ )k .

In particular, for every positive integer N we have that

KSk,smΓ [N ] = (Dsm
Γ [N ])k

is a local system of rank- 2k free (Z/NZ)-modules.
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Examples 10.2.6. (1) Let N ≥ 3. Then the congruence subgroup Γ(N) satisfies
the hypotheses of Theorem 10.2.1, which constructs the Kuga-Sato variety KSkΓ(N).
It inherits a level- N structure from the the level- N structure Ψ on DΓ(N) con-

structed in Section 9.2 In fact, the isomorphism Ψ : (Z/NZ)2 ×X(N)
∼
−! Dsm

Γ(N)[N ],

(a1, a2,m) 7! Ψm (a1, a2), induces an isomorphism

Ψk : (Z/NZ)2k ×X(N)!
(
Dsm

Γ(N)[N ]
)k ∼= KSk,smΓ(N)[N ],

(a1, a2, . . . , a2k−1, a2k,m) 7! (Ψm (a1, a2) ,Ψm (a3, a4) , . . . ,Ψm (a2k−1, a2k)) .

Thus KSk, smΓ(N) [N ] is a globally trivial local system of rank- 2k free (Z/NZ)-modules.

(2) Let N ≥ 5. Then the congruence subgroup Γ1(N) satisfies the hypotheses of
Theorem 10.2.1, which constructs the Kuga-Sato variety KSkΓ1(N). Recall from Sec-

tion 9.3 that there is an ample point Q : X1(N)! Dsm
Γ1(N) of exact order N . That is,

Q is a section of f : Dsm
Γ1(N)[N ] ! X1(N) that induces an injective homomorphism

of group holomorphic manifolds over X1(N)

(Z/NZ)×X1(N)! Dsm
Γ1(N)[N ],

(i,m) 7! [i] (Pm) ,

whose image meets every connected component of every fibre of f : Dsm
Γ1(N) ! X1(N).

Consequently, f : KSk,smΓ1(N)[N ]! X1(N) has a section

(Q,Q, . . . , Q) : X1(N)!
(
Dsm

Γ1(N)[N ]
)k ∼= KSk,smΓ1(N)[N ],

that induces an injective homomorphism of group holomorphic manifolds overX1(N)

(Z/NZ)k ×X1(N)!
(
Dsm

Γ1(N)[N ]
)k ∼= KSk,smΓ1(N)[N ],

(i1, i2, . . . , ik,m) 7! ([i1] (Pm) , [i2] (Pm) , . . . , [ik] (Pm)) ,

whose image meets each connected component of each fibre of f : KSk,smΓ1(N) ! X1(N).

10.3 Morphisms between Kuga–Sato varieties

We constructed in Section 9.4 a holomorphic map DΓ̃ ! DΓ of the Shioda modular
surfaces attached to an inclusion Γ̃ ⊂ Γ of congruence subgroups of SL2(Z). In
this section we prove as Theorem 10.3.4 that for every k ∈ Z≥2 there exists a
holomorphic map KSk

Γ̃
! KSkΓ of the Kuga–Sato varieties as well. This will be clear

from an alternative description of the maximal cones in the fan Σk⟨k − 1⟩, which
will also be used in Section 10.4, which we now provide.

Notation 10.3.1. Let x0 ∈ R≥0, and let x ∈ R. Define dist(x, x0Z) = mini∈Z |x−x0i|.
This is a piecewise affine function on R. The maximal intervals on which dist(·, x0Z)
is linear have the shape x0[j− 1

4
, j+ 1

4
] for some j ∈ 1

4
+ 1

2
Z, and on such an interval

we have

dist(x, x0Z) = sgn(⌈j⌋ − j)(x− jx0), x ∈ [j − 1

4
, j +

1

4
].
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Here for j ∈ Z\1
2
Z we denote ⌈j⌋ the unique integer i ∈ Z such that |j−i| = dist(j,Z).

If j ∈ R \ {0} we let sgn(j) = 1 if j > 0 and sgn(j) = −1 if j < 0.

We let Sk be the group of permutations of {1, 2, . . . , k}. We consider pairs (τ, j)

where τ : {1, 2, . . . , l}! {1, 2, . . . , k} is an injection and j ∈ (1
4
+ 1

2
Z)l × (1

2
+ Z)k−l

is a k-tuple with ji ∈ 1
4
+ 1

2
Z for all 1 ≤ i ≤ l and ji ∈ 1

2
+Z for all l < i ≤ k. To the

pair (τ, j) we associate the subset of (k + 1)-tuples (x0, x1, . . . , xk) ∈ Nk
R such that

the distances dist(xi, x0) : 1 ≤ i ≤ k for i ∈ {1, 2, . . . , k} are ordered according to

dist(xτ(1), x0Z) ≤ dist(xτ(2), x0Z) ≤ dist(xτ(2), x0Z) ≤ · · · ≤ dist(xτ(l−1), x0Z)
≤ dist(xτ(l), x0Z) ≤ min{dist(xi, x0Z) : i ̸∈ image(τ)}

(10.10)

(in case l = 0 this condition is to be interpreted as being void) and the individual
coordinates are subject to the following system of inequalities

x0 ≥ 0,

xτ(i) ∈ x0[ji − 1
4
, ji +

1
4
] for all 1 ≤ i ≤ l,

xτ(i) ∈ x0[ji − 1
2
, ji +

1
2
] for all l < i ≤ k.

(10.11)

Proposition 10.3.2. The full-dimensional cones in Σk⟨l⟩ are given by στ,j for a
uniquely determined pair (τ, j).

Proof. One may show this by induction on l using the definition of star-subdivisions.

Corollary 10.3.3. Let k ∈ Z≥2. Then the union of the k-dimensional cones in
Σk⟨k − 1⟩ is the union of the affine hyperplanes {xi = mx0}, {xi + xj = mx0} and
{xi − xj = mx0} for all m ∈ Z and 1 ≤ i < j ≤ k, i.e.⋃

Σk(k) =
⋃
m∈Z

⋃
1≤i<j≤k

{xi = mx0} ∪ {xi + xj = mx0} ∪ {xi − xj = mx0}. (10.12)

Having established a new description of the fan Σk⟨k − 1⟩ through the boundaries
of the maximal cones, we will now explain how to construct a holomorphic map
KSk

Γ̃
! KSkΓ. The procedure of doing so is entirely similar to what we did in Sec-

tion 8.6 and Section 9.4, so in order to avoid repeating ourselves we only point out
the differences.

Theorem 10.3.4. Let k ∈ Z≥2 and let Γ̃ ⊂ Γ ⊂ SL2(Z) be congruence subgroups.
Assume that Γ is torsion-free and has only regular cusps. Then there exists a holo-
morphic map

p̃Γ̃,Γ : KSk
Γ̃
! KSkΓ covering pΓ̃,Γ : X(Γ̃)! X(Γ).

Proof. Let h and e be positive integers and set h̃ = h. The proof of Proposition 9.4.2
may be repeated line by line except for the construction of a holomorphic map
KSk

h̃
! KSkh covering pe : ∆ ! ∆. As in Proposition 8.6.2 it suffices to construct a
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morphism Gk⟨k − 1⟩ ! Gk⟨k − 1⟩ ×G0,re G0, where re = F ([e]) with [e] : N0 ! N0,
a0 7! ea0.

Since π : Nk ! N0 is a weakly semistable morphism of RPP decompositions,
the latter fibre products is also toric variety, whose lattice admits an isomorphism
(ρe, π) : Nk ! Nk ×N0,[e] N

0, where ρe : Nk = Z{0,1,...,k} ! Nk = Z{0,1,...,k},
(a0, a1, . . . , ak) 7! (ea0, a1, . . . , ak). Its fan is given by Σk,e⟨k − 1⟩, where for every
0 ≤ l ≤ k − 1 we let Σk,e⟨l⟩ = {ρ−1

e (σ) : σ ∈ Σk⟨l⟩}. In terms of their intersections
with Hk = {1} × Rk ∼= Rk, one obtains Σk,e from Σk by performing scalar multipli-
cation with a factor e. We have that the maximal cones in the fan Σk,e = Σk,e⟨0⟩
are cones over (eZ)k-translate of the cube [0, e]k ⊂ Hk:

σi,e = R≥0 · ([ei1, e(i1 + 1)]× [ei2, e(i2 + 1)]× · · · × [eik, e(ik + 1)]) i ∈ Zk, (10.13)

and Σk,e⟨l⟩ is obtained from Σk,e by performing star-subdivisions similar to how
Σk⟨l⟩ was obtained from Σk (but working with cubes that are e times larger). The
existence of a toric morphism is now reduced to the following lemma.

Lemma 10.3.5. For all e ∈ Z≥1 and k ∈ Z≥2 we have that Σ
k,e⟨k−1⟩ is a refinement

of Σk⟨k − 1⟩.

Proof. Let σ ∈ Σk⟨k−1⟩(k+1) be a maximal cone in Σk⟨k−1⟩. We need only show
that σ is contained in a maximal cone of Σk,e⟨k− 1⟩. If this were not the case, then
σ would ‘stick out’ of a cone in Σk,e⟨k−1⟩(k+1), more precisely, the boundary of σ
would not be contained in Σk,e⟨k − 1⟩(k), the union of the boundaries of the cones
in Σk,e⟨k − 1⟩(k + 1). However it follows from Corollary 10.3.3 that⋃

Σk,e⟨k − 1⟩(k) ⊂
⋃

Σk⟨k − 1⟩(k),

since
⋃

Σk,e⟨k − 1⟩(k) is (10.12) but the first union taking place only over m ∈ eZ.
The boundary of the cone σ is the union of the k-dimensional faces of σ, hence
contained in Σk⟨k − 1⟩(k). Thus we obtain a contradiction.

10.4 Projectivity

Let 0 ≤ l ≤ k − 1 be integers. Let 0 ≤ m < l and let θm be a codimension-m
face of some Zk-translate of Bk. Then we write Dθm for the prime divisor on Gk⟨l⟩
corresponding to the ray R≥0 · z(θm). Although it is important to keep track of the
fact that Dθm is a prime divisor on Gk⟨l⟩, we have chosen not include the l in the
notation. This is justified by the observation that if l ≤ l′ ≤ k − 1, then the prime
divisor Dθm on Gk⟨l′⟩ is the strict transform of the prime divisor Dθm on Gk⟨l⟩, and
conversely the prime divisor Dθm on Gk⟨l⟩ is the image of the prime divisor Dθm on
Gk⟨l′⟩.

Lemma 10.4.1. Let k ≥ 2 and let 0 ≤ l ≤ k − 1. Denote gk⟨l⟩ : Gk⟨l⟩ ! Gk the
proper toric morphism induced by the refinement (Nk,Σk⟨l⟩)! (Nk,Σk). Consider
the function ϕD : |Σk⟨l⟩|! R given by

ϕD(x) := 2min
τ

l∑
i=1

(l − i+ 1) dist(xτ(i), x0Z),
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where τ ranges over all injective maps {1, 2, . . . , l}! {1, 2, . . . , k}. Then ϕD is the
support function of a torus-invariant Zk-invariant gk⟨l⟩-ample Cartier divisor D.
We have D =

∑l−1
m=0

∑
θm

(
l−m+1

2

)
Dθm on Gk⟨l⟩, where θm ranges over codimension-

m faces of some Zk-translate of Bk.

Proof. Recall Notation 10.3.1, in particular the description of the maximal cones
στ,j given in Proposition 10.3.2. Consider the linear function

ϕτ,j(x) = 2
l∑

i=1

(l − i+ 1) sgn(⌈ji⌋ − ji)(xτ(i) − x0⌈ji⌋), x ∈ στ,j.

We claim that ϕD(x) = ϕτ,j(x) if x ∈ στ,j. Indeed, in view of (10.3.1) the second
inequality of (10.11) gives that dist(xτ(i), x0Z) = sgn(⌈ji⌋ − ji)(xτ(i) − x0⌈ji⌋) for
1 ≤ i ≤ l. In view of the rearrangement inequality, (10.10) shows that τ attains the
minimum in (10.4.1).

We will now prove that ϕD is convex on each maximal cone σ of Σk. We have
that σ = R≥0 · ([h1, h1 + 1], . . . [hk, hk + 1]) for some (hi)

k
i=1 ∈ Zk. On each interval

[hi, hi+1] the function t 7! dist(t, x0Z) is convex. As a consequence, we have that
dist(xi, x0Z) = min(xi − hix0, (hi + 1)x0 − xi). It follows that

ϕD(x) = min
στ,j⊂σ

ϕτ,j(x),

where (τ, j) ranges over all pairs as above such that στ,j ⊂ σ. Since any linear
function is convex, and the minimum of a finite set of convex functions is convex,
we conclude that ϕD is convex on σ.

To prove that ϕD is strictly convex on σ, it is necessary and sufficient that ϕD
is given on distinct cones στ,j refining σ by distinct linear functions ϕτ,j. Let (τ, j)
and (τ ′, j′) be two pairs as above. If ϕτ,j = ϕτ ′,j′ , then comparing the coefficients at

xi in (10.4) shows that τ = τ ′ and j − j′ ∈ Zk. If in addition στ,j ∪ στ ′,j′ ⊂ σ, then

j, j′ ∈
∏k

i=1{hi +
1
4
, hi +

3
4
}. We conclude that (τ, j) = (τ ′, j′) as desired.

Theorem 10.4.2. The Kuga–Sato variety EkΓ is a projective algebraic (k + 1)-
dimensional complex manifold.

Proof. It follows from Lemma 10.4.1 that L := O(kD) is a Zk-invariant torus-
invariant divisor which is very ample relative to g : Gk⟨k−1⟩! Gk. Since the support
of kD does not meet TNk , the restriction of L to TNk is trivial. By Lemma 2.7.9 we
see that Lan is a very ample divisor relative to gan : Gk⟨k − 1⟩an ! Gk,an, trivialized
over ∆∗. Since it is invariant with respect to the Zk-action on Gk⟨k− 1⟩an, for every
h ∈ Z≥1 it descends to a very ample divisor Lh on KSkh ! Tatekh, again with a
trivialization over ∆∗.

By construction KSkΓ ! Dk
Γ is the pushout of the diagram⊔

γ KSkh|Vh
⊔
γ P

+
h \Ek|U∞

⊔
γ Γs\Ek|Us EkΓ

⊔
γ Tate

k
h|Vh

⊔
γ P

+
h \ Ek|U∞

⊔
γ Γs\Ek|Us EkΓ.

112



Trivially, the trivial line bundle O on EkΓ is very ample relative to the identity
morphism. For every cusps s of Γ, say of width h, we use the trivialization of Lh
over ∆∗ to glue it to the trivial bundle on EkΓ, yielding a line bundle L0 on KSkΓ.
Since very amplitude of a line bundle relative to a morphism is local on the target
of the morphism, it follows that L0 is very ample relative to g : KSkΓ ! Dk

Γ.
We proved in Theorem 9.5.2 that the Shioda modular surface DΓ is projective-

algebraic. Using Lemma 2.7.4 we deduce that Dk
Γ = DΓ ×X(Γ) · · · ×X(Γ) DΓ is a

projective-algebraic manifold. Since L0 is very ample relative to g : KSkΓ ! Dk
Γ by

Corollary 2.7.8, we conclude that KSkΓ is also projective-algebraic.

113



Bibliography

[AMRT10] Avner Ash, David Mumford, Michael Rapoport, and Yung-sheng Tai.
Smooth compactifications of locally symmetric varieties. Cambridge
Mathematical Library. Cambridge University Press, Cambridge, 2nd
edition, 2010.

[BHPVdV04] Wolf Barth, Klaus Hulek, Chris Peters, and Antonius Van de Ven.
Compact complex surfaces. Ergebnisse der Mathematik und ihrer
Grenzgebiete; 3. Folge, vol. 4. Springer, Berlin, 2004.
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sesquilinéaires et formes quadratiques. Hermann, 1959.

[CLS11] David A. Cox, John B. Little, and Henry K. Schenck. Toric varieties.
Graduate studies in mathematics; v. 124. American Mathematical
Society, Providence, RI, 2011.

[Cona] Brian Conrad. Math 248b. Classical analytic modular curves.

[Conb] Brian Conrad. Math 248b. GL2(Z)-action and modular forms. [On-
line; accessed 14 February 2024 at http://virtualmath1.stanford.edu/
∼conrad/248BPage/handouts/gl2z.pdf].

[Conc] Brian Conrad. Math 248b. Modular curves. [Online; accessed
14 February 2024 at http://virtualmath1.stanford.edu/∼conrad/
248BPage/handouts/modularcurves.pdf].

[Cond] Brian Conrad. Math 248b. Vector bundles modulo relative lattices.
[Online; accessed 14 February 2024 at http://virtualmath1.stanford.
edu/∼conrad/248BPage/handouts/relativeqt.pdf].

[Del71] Pierre Deligne. Formes modulaires et représentations ℓ-adiques. Sém.
Bourbaki 1968/69, No. 355, Lect. Notes Math. 179, 139-172, 1971.

[Dem] Jean-Pierre Demailly. Complex analytic and differential geometry.
[Online; accessed 1 July 2024 at https://www-fourier.ujf-grenoble.fr/
∼%20demailly/manuscripts/agbook.pdf].

[Dia06] Fred Diamond. A First Course in Modular Forms, volume 228 of
Graduate texts in mathematics. Springer Nature, Netherlands, 1 edi-
tion, 2006.

114

http://virtualmath1.stanford.edu/~conrad/248BPage/handouts/gl2z.pdf
http://virtualmath1.stanford.edu/~conrad/248BPage/handouts/gl2z.pdf
http://virtualmath1.stanford.edu/~conrad/248BPage/handouts/modularcurves.pdf
http://virtualmath1.stanford.edu/~conrad/248BPage/handouts/modularcurves.pdf
http://virtualmath1.stanford.edu/~conrad/248BPage/handouts/relativeqt.pdf
http://virtualmath1.stanford.edu/~conrad/248BPage/handouts/relativeqt.pdf
https://www-fourier.ujf-grenoble.fr/~%20demailly/manuscripts/agbook.pdf
https://www-fourier.ujf-grenoble.fr/~%20demailly/manuscripts/agbook.pdf


[dJm] Johan de Jong (maintainer). The Stacks project. [Online; accessed
14 February 2024 at https://stacks.math.columbia.edu/].

[DR73] Pierre Deligne and M. Rapoport. Moduli schemes of elliptic curves
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