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Introduction

Compactifications in mathematics date back to the late 19th and early 20th cen-
turies. Maurice Fréchet and Felix Hausdorff both laid the foundational work on
compact spaces, the concept that every open cover has a finite subcover. The
notion of compactification emerged as an extension of these compact spaces.
The motivation behind compactifications was to find ways to extend a given
space in a topological sense by adding limit points or ’points at infinity’.

The process of compactification in topology entails changing a given topological
space into a compact space, and there exist various methods to achieve this
goal. The idea underlying compactifications is the embedding of the original
topological space into a compact one. Within the scope of this thesis, our fo-
cus lies specifically on metric compactifications, which involve the embedding
of metric spaces into compact spaces. Notably, in the case of the real numbers,
this process entails the addition of the points ∞ and −∞.

In the first chapter, we introduce some fundamental concepts and results that
are necessary for this thesis. Then, we define the compactification of metric
spaces in the second chapter, where we will give an example of the real numbers.
We will also demonstrate how we can extend isometries to homeomorphisms on
metric compactifications. In the final chapter, we consider the metric compact-
ification of the Euclidean d-dimensional space equipped with the p-norm. This
compactification is particularly interesting due to the fact that we can explicitly
compute the ’points at infinity’. To determine these points, we utilize the fact
that the space is metrizable.
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1 Preliminaries

In this chapter we will introduce basic definitions, propositions and theorems
that will appear throughout this thesis. All vector spaces will be taken over R.

1.1 Topological spaces

Definition 1.1 (Subspace Topology). Let (X, T ) be a topological space and
let Y be a subset of X. Define

TY := {Y ∩ U | U ∈ T }.

We call TY the subspace topology on Y .

Definition 1.2 (Neighborhood). Let (X, T ) be a topological space and x ∈ X.
A neighborhood of x is a set N such that there is an open set U ⊂ N with x ∈ U .

Definition 1.3 (Open Cover). Let (X, T ) be a topological space and let Y ⊂ X.
An open cover of Y is a subset S ⊂ T such that Y ⊂

⋃
U∈S U .

Definition 1.4 (Compact). Let (X, T ) be a topological space and let Y ⊂ X.
Then Y is compact if for all open covers S of Y there is a finite subset S′ ⊂ S
such that

⋃
U∈S′ U ∩ Y = Y .

Proposition 1.5 (Closed Subset in a Compact Set is Compact). Let (X, T ) be
a compact space and let Y ⊂ X be closed. Then Y is compact.

Proof. Let {Fi}i∈I be an open cover of Y . Since Y c is open, we know that
{Fi}i∈I ∪ Y c is an open cover of X. Due to compactness of X there is a finite
subset J ⊂ I such that {Fi}i∈J ∪ Y c is an open cover of X. Thus {Fi}i∈J is a
finite open subcover of Y , hence Y is compact.

Definition 1.6 (Continuity). Let (X, TX) and (Y, TY ) be topological spaces and
let f : (X, TX) → (Y, TY ) be a function. Then f is continuous if f−1(A) ∈ TX
for all A ∈ TY .

Definition 1.7 (Homeomorphism). A homeomorphism between two topological
spaces (X, TX) and (Y, TY ) is a continuous bijection f : (X, TX) → (Y, TY ) with
a continuous inverse.

Proposition 1.8. Let (X, TX) and (Y, TY ) be two topological spaces and let
f : (X, TX) → (Y, TY ) be a continuous function. If C ⊂ X is compact then f(C)
is also compact.

Proof. For the proof see [1, Proposition 9.5].

Definition 1.9 (Basis). Let (X, T ) be a topological space. A subset B ⊂ T is
called a basis for T if every set in T can be written as a union of elements of B.

Definition 1.10 (Subbasis). Let (X, T ) be a topological space. We call the
subset S ⊂ T a subbasis if the set of finite intersections of elements in S is a
basis for T .
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Definition 1.11 (Product Topology). Let I be an index set and for every i ∈ I
let (Xi, Ti) be a topological space. The product topology on X :=

∏
i∈I Xi is

the topology T such that the set

B :=

{∏
i∈I

Ui | Ui ∈ Ti, Ui ̸= Xi for finitely many i

}

is a basis for T .

Remark 1.12. An equivalent definition uses projections. For every i ∈ I we
define the projection pi : X → Xi. The product topology of X is the set T such
that

S := {p−1
i (U) | i ∈ I, U ∈ Ti}

is a subbasis for T .

Definition 1.13 (Hausdorff Space). The topological space (X, T ) is a Hausdorff
space if for all distinct x, y ∈ X there are disjoint U, V ∈ T with x ∈ U and
y ∈ V .

Definition 1.14 (Finite Intersection Property). Let X be a set and let Y be a
set of subsets of X. We say that Y has the finite intersection property if for all
finite sets Y ′ ⊂ Y the set

⋂
F∈Y ′ F is nonempty.

Proposition 1.15 (Compactness Equivalence). Let (X, T ) be a topological
space then the following statements are equivalent:

(i) (X, T ) is compact,

(ii) for any set {Yi}i∈I of closed subsets of X with the finite intersection prop-
erty, the intersection

⋂
i∈I Yi is nonempty.

Proof. (i) ⇒ (ii):
Let {Yi}i∈I be a set of closed subsets of X with the finite intersection property.
Assume that

⋂
i∈I Yi = ∅. This means that X = (

⋂
i∈I Yi)

c =
⋃

i∈I Y
c
i , so

{Y c
i }i∈I is an open cover of X. There exists a finite set J ⊂ I such that⋃
j∈J Y c

j = X. Hence, ∅ = (
⋃

j∈J Y c
j )

c =
⋂

j∈J Yj but this implies that {Yi}i∈I

does not have the finite intersection property anymore. By contradiction we
find

⋂
i∈I Yi ̸= ∅.

(i) ⇐ (ii):
Let {Yi}i∈I be an open cover of X. Assume it does not have a finite subcover.
In other words, for any finite J ⊂ I we have

⋃
j∈J Yj ̸= X. This means that

∅ ̸= (
⋃

j∈J Yj)
c =

⋂
j∈J Y c

j , hence, {Y c
i }i∈I has the finite intersection property

and thus ∅ ̸=
⋂

i∈I Y
c
i = (

⋃
i∈I Yi)

c but
⋃

i∈I Yi = X. By contradiction we find
that {Yi}i∈I has a finite subcover and X is compact.
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1.2 Nets and ordered sets

Definition 1.16 (Preorder). A relation ≤ is called a preorder of a set X if it
has the following properties for all x, y, z ∈ X:

(i) x ≤ x (reflexivity),

(ii) if x ≤ y and y ≤ z then x ≤ z (transitivity).

Definition 1.17 (Partially Ordered Set). Let X be a set. Then (X,≤) is called
a partially ordered set if for all x, y, z ∈ X the preorder also satisfies:

if x ≤ y and y ≤ x then x = y (antisymmetry).

Definition 1.18 (Directed Set). A directed set is a nonempty set X with a
preorder ≤ and every pair of elements in X has an upper bound in X. That is,
for all x, y ∈ X there exists z ∈ X with x ≤ z and y ≤ z.

Definition 1.19 (Totally Ordered Set). Let (X,≤) be a partially ordered set.
We call X a totally ordered set if for all x, y ∈ Y we have x ≤ y or y ≤ x.

Definition 1.20 (Maximal Element). Let (X,≤) be a partially ordered set.
We say that m ∈ X is a maximal element if for all x ∈ X with m ≤ x, it holds
that m = x.

Theorem 1.21 (Zorn’s Lemma). Let A be an partially ordered set which has
the property that all totally ordered subsets of A have an upper bound in A.
Then the set A contains at least one maximal element.

Definition 1.22 (Net). Let X be a set and I a directed set. Then we call
{xi}i∈I with xi ∈ X a net in X.

Definition 1.23 (Net Convergence). A net {xi}i∈I in a topological space (X, T )
is said to converge to x ∈ X if for every open neighbourhood U ∈ T of x there
is an i0 ∈ I such that for all i ≥ i0 it holds that xi ∈ U .

In general, continuity is not implied by converging sequences. However, the
more general concept of a net does imply continuity. To illustrate this with
an example, we will look at a function between topological spaces that is not
continuous, but which does preserve converging sequences. For this example we
will need the definition of the cocountable topology.

Definition 1.24 (Cocountable Topology). The cocountable topology of a set
X, denoted by Tcc, consists of the empty set and all the cocountable subsets of
X, which are those sets whose complement in X are countable.

Lemma 1.25. Let X be an uncountable set equipped with the cocountable topol-
ogy. Then every convergent sequence in X is eventually constant.

Proof. Let (xn)n be a sequence converging to x ∈ X. When we define the set
U := X \ {xn | xn ̸= x} it follows that U c = {xn | xn ̸= x} is countable, so U
is open in X. Since x ∈ U there exists an N such that for all m ≥ N we have
xm ∈ U . This means that xm = x for all m ≥ N .
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Let X be an uncountable set and the denote the discrete topology by Tdis. Con-
sider the identity function id : (X, Tcc) → (X, Tdis). Suppose (xn)n converges to
x for Tcc, then by Lemma 1.25 we know that the sequence is eventually constant,
hence

lim
n→∞

id(xn) = lim
n→∞

xn = lim
n→∞

x = id(x).

So we see that (id(xn))n converges to id(x) ∈ X for Tdis. However when we take
{x} ∈ Tdis we see that id−1({x}) = {x}, but {x} /∈ Tcc so id is not continuous.
The following definition is from [5, p.281].

Definition 1.26 (Pointwise Convergence Topology). Let (X, TX) and (Y, TY )
be topological spaces. Define Y X as the set of all functions from X to Y .
Consider x ∈ X and U ∈ TY and define

U(x, U) := {f ∈ Y X | f(x) ∈ U}.

The sets U(x, U) form a subbasis for the topology on Y X , which is called the
topology of pointwise convergence.

Remark 1.27. Later in this thesis we will be working with metric spaces such
as Y = R. For f ∈ RX , x ∈ R and ϵ > 0 we use the following sets:

U(f, x, ϵ) := {g ∈ RX | |g(x)− f(x)| < ϵ}.

We can rewrite this set as U(x, (f(x)− ϵ, f(x) + ϵ)), since

−ϵ < g(x)− f(x) < ϵ

and

f(x)− ϵ < g(x) < ϵ+ f(x).

Hence, U(f, x, ϵ) is open in RX for all x ∈ X and for all ϵ > 0.
We can also show for a given x ∈ X and f ∈ RX that each element U(x, U)
of the subbasis with f ∈ U(x, U) contains a set U(f, x, ϵ). Let U(x, (a, b)) with
f ∈ U(x, (a, b)). We know that there exists an ϵ > 0 such that

ϵ < min{f(x)− a, b− f(x)}.

For g ∈ U(f, x, ϵ) we have

−ϵ < g(x)− f(x) < ϵ

and also

a < −ϵ+ f(x) < g(x) < ϵ+ f(x) < b.

Hence, g ∈ U(x, (a, b)). This shows that for a net {fi}i∈I to converge to f in
the pointwise convergence topology, fi(x) needs to converge to f(x) for every
x ∈ R. This is formulated in the following lemma.
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Lemma 1.28 (Pointwise Convergence). Let (X, TX) and (Y, TY ) be topological
spaces and consider functions fi : (X, TX) → (Y, TY ) indexed by a directed set
I. The net {fi}i∈I converges pointwise to f if and only if {fi(x)}i∈I converges
to f(x) in Y for all x ∈ X.

Proof. The proof is a reformulation of [5, Lemma 43.3].

Definition 1.29 (Continuity at a point). Let (X, TX) and (Y, TY ) be topological
spaces and f : (X, TX) → (Y, TY ) a function. We call f continuous at a point
x ∈ X if for every neighborhood UY of f(x) there exists a neighborhood UX of
x such that f(UX) ⊂ UY .

Proposition 1.30 (Continuity and Nets). Let (X, TX) and (Y, TY ) be two topo-
logical spaces and f : (X, TX) → (Y, TY ) be a function. Then the following state-
ments are equivalent:

(i) if the net {xi}i in X converges to x ∈ X then the net {f(xi)}i in Y
converges to f(x) ∈ Y ,

(ii) for every O ∈ TY with f(x) ∈ O we know that f−1(O) is a neighborhood
of x.

Proof. (i) ⇒ (ii):
Let O ∈ TY with f(x) ∈ O. Assume that f−1(O) is not a neighborhood of x.
Then for every open neighborhood U ∈ TX of x there in an element xU such that
xU ∈ U \ f−1(O). Define I as the set of all open neighborhood of x ordered by
reverse set inclusion. That is, for all V1, V2 ∈ I with V1 ⊂ V2 we have V1 ≥ V2.
We see that the net {xU}U∈I converges to x but {f(xU )}U∈I does not converge
to f(x).
(i) ⇐ (ii):
Let {xi}i∈I be a net in X that converges to x ∈ X and let U be a neighborhood
of f(x). Then f−1(U) is a neighborhood of x and we know that there is a j0 ∈ I
such that for all j ≥ j0 we have xj ∈ f−1(U). Hence, for all j ≥ j0 we have
f(xj) ∈ U .

Remark 1.31. A function f is continuous if the aforementioned properties hold
for every x ∈ X.

Proposition 1.32. Let (X, TX) and (Y, TY ) be topological spaces. The product
topology and the topology of pointwise convergence coincide on Y X .

Proof. We will assume that {fi}i∈I converges to f in the product topology
and then prove that the net also converges to f for the topology of pointwise
convergence. This means that for any finite set {x1, . . . , xm} ⊂ X and any open
neighborhood Ui ⊂ X of f(xi) for 1 ≤ i ≤ m there exists a i0 such that if j ≥ i0
then fj(xi) ∈ Ui for all 1 ≤ i ≤ m. So, in particular for {x} ⊂ X and each
neighborhood U with f(x) ∈ U there exists an i0 such that for all j ≥ i0 we
have fj(x) ∈ U . This means that {fi}i∈I converges pointwise to f .
Conversely, we assume that the net {fi}i∈I converges pointwise to f and let
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{x1, . . . , xm} ⊂ X. For all 1 ≤ k ≤ m let Uk ⊂ Y be an open neighborhood
such that f(xk) ∈ Uk. We know that for all 1 ≤ k ≤ m there exists an ik such
that for all j ≥ ik we have fj(xk) ∈ Uk. Let i0 be such that i0 ≥ ik for all
1 ≤ k ≤ m. It follows that fj(xk) ∈ Uk for all j ≥ i0. Hence, the net {fi}i∈I

converges in the product topology.

1.3 Metric spaces and norms

Definition 1.33 (Metric space). Let X be a set and define d : X × X → R.
The function d is called a metric on the set X if for all x, y, z ∈ X the following
properties hold:

(i) d(x, y) ≥ 0,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) = 0 ⇔ x = y,

(iv) d(x, z) ≤ d(x, y) + d(y, z).

The pair (X, d) is called a metric space.

Definition 1.34 (Isometry). Let (X, dX) and (Y, dY ) be metric spaces. Then
the function f : (X, dX) → (Y, dY ) is an isometry if for all x, y ∈ X we have
dX(x, y) = dY (f(x), f(y)).

Definition 1.35 (Dense). Let (X, d) be a metric space. A set Y ⊂ X is dense
in X if for all x ∈ X and for all ϵ > 0 there exists an y ∈ Y such that d(x, y) < ϵ.

Definition 1.36 (Separable space). Let (X, d) be a metric space. If there
exists a countable subset Y ⊂ X such that Y is dense in X then (X, d) is called
separable.

Definition 1.37 (Proper metric space). Let (X, d) be a metric space. If for all
r > 0 and x ∈ X the closed ball Br(x) := {y ∈ X | d(x, y) ≤ r} is compact,
then (X, d) is called a proper metric space.

To clarify, given a metric space (X, d), we will be using the notation Br(x) for
closed balls, the notation

Or(x) := {y ∈ X | d(x, y) < r}

for open balls and O for general open sets.

Theorem 1.38 (Bolzano–Weierstrass). Let (xn)n be a bounded sequence in Rd

with the Euclidean topology. Then (xn)n has a convergent subsequence.

Proof. For the proof see [6, Theorem 3.4.8].
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Lemma 1.39. Every convergent sequence in R with the Euclidean topology is
bounded.

Proof. Let (xn)n be a sequence in R that converges to x. Then there is an N
such that for all n ≥ N we get |xn − x| < 1. This means that |xn| ≤ |x|+ 1 for
all n ≥ N . Define M := max{|x1|, . . . , |xN |, |x|+ 1}. This is possible since this
set is finite. We see that |xn| ≤ M for all n, thus (xn)n is bounded.

Proposition 1.40 (Hölder’s Inequality). Let x, y ∈ Rd and let p > 1 and q > 1
be such that 1

p + 1
q = 1. Then

n∑
i=1

|xiyi| ≤

(
n∑

i=1

|xi|p
)1/p( n∑

i=1

|xi|q
)1/q

.

Proof. For the proof see [9, Theorem 1.3.12].

Definition 1.41 (Norm). Let X be a vector space. A norm on X is a function
∥·∥ : X → R such that for all x, y ∈ X and s ∈ R

(i) ∥x∥ ≥ 0 and ∥x∥ = 0 if and only if x = 0,

(ii) ∥sx∥ = |s| ∥x∥,

(iii) ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Definition 1.42 (Norm equivalence). Let X be a vector space. Two norms ∥·∥
and ∥·∥′ are equivalent, denoted by ∥·∥ ∼ ∥·∥′, if there exist A,B ∈ R>0 such
that for all x ∈ X

A ∥x∥′ ≤ ∥x∥ ≤ B ∥x∥′ .

Proposition 1.43. Norm equivalence is an equivalence relation.

Proof. For the proof see [2, Theorem 2.16, Theorem 2.17].

For the proof following proposition we used [2, Theorem 2.16].

Proposition 1.44. Let X be a finite dimensional vector space. Then all norms
on X are equivalent.

Proof. Let {e1, . . . , en} be a basis for X. We note that we can write every x ∈ X
uniquely as x =

∑n
j=1 λjej for some λj ∈ R. Let ∥·∥ be an arbitrary norm on

X and define
∥∥∥∑n

j=1 λjej

∥∥∥′′ := (
∑n

j=1 |λj |2)
1
2 . Then∥∥∥∥∥∥

n∑
j=1

λjej

∥∥∥∥∥∥ ≤
n∑

j=1

∥λjej∥

=

n∑
j=1

|λj | ∥ej∥ .
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Due to Hölder’s Inequality with p = q = 1
2 we get

n∑
j=1

|λj | ∥ej∥ ≤

 n∑
j=1

|λj |2
 1

2
 n∑

j=1

∥ej∥2
 1

2

= A

∥∥∥∥∥∥
n∑

j=1

λjej

∥∥∥∥∥∥
′′

with A := (
∑n

j=1 ∥ej∥
2
)

1
2 . Hence ∥x∥ ≤ A ∥x∥′′ for all x ∈ X.

Define the function f : Rd → R by

f(λ1, . . . , λn) :=

∥∥∥∥∥∥
n∑

j=1

λjej

∥∥∥∥∥∥ .
This function is continuous on Rd with respect to the Euclidean topology. Define

S :=

(λ1, . . . , λn) ∈ Rd

∣∣∣∣∣
n∑

j=1

|λj |2 = 1

 .

It is clear that S is bounded. Since {1} ⊂ R is a closed subset and f is contin-
uous, we know that f−1({1}) = S is also closed. By the Heine-Borel Theorem,
see [7, Corollary 2.5.12], we know that S is compact and thus by the Extreme
Value Theorem [8, 4.5.2] we know that there must be a (µ1, . . . , µn) ∈ S such
that

f(µ1, . . . , µn) ≤ f(λ1, . . . , λn)

for all (λ1, . . . , λn) ∈ S. Define a := f(µ1, . . . , µn). If a = 0 then∥∥∥∥∥∥
n∑

j=1

µjej

∥∥∥∥∥∥ = 0,

which would imply that
∑n

j=1 µjej = 0. Then µ1 = · · · = µn = 0 contradicting
the fact that (µ1, . . . , µn) ∈ S. We conclude that a > 0.

If ∥x∥′′ =
∥∥∥∑n

j=1 λjej

∥∥∥ = 1 then the (λ1, . . . , λn) ∈ S and thus a ≤ ∥x∥. Hence,

if x ∈ X\{0} and
∥∥∥ x
∥x∥′′

∥∥∥′′ = 1 we see that a ≤
∥∥∥ x
∥x∥′′

∥∥∥ and thus a ∥x∥′′ ≤ ∥x∥. If
x = 0 it also holds that a ∥x∥′′ ≤ ∥x∥. We conclude that a ∥x∥′′ ≤ ∥x∥ ≤ A ∥x∥′′
for all x ∈ X and thus the two norms are equivalent.
Any other norm ∥·∥′ on X is then also equivalent to ∥·∥′′. Due to Proposi-
tion 1.43 we conclude that ∥·∥ and ∥·∥′ are also equivalent. Hence, all norms on
X are equivalent.
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Definition 1.45. Let p > 1 be a real number. We define the function

∥·∥p : Rd → R

by

∥x∥p :=

(
n∑

i=1

|xi|p
)1/p

.

Proposition 1.46. The function ∥·∥p : Rd → R is a norm.

Proof. For any x ∈ Rd we see that ∥x∥pp is a sum of nonnegative numbers. Thus
∥x∥p ≥ 0. We can clearly see that if x = 0 then ∥x∥p = 0. If ∥x∥p = 0 then

x = 0 since ∥x∥pp is the sum of all nonnegative numbers. Thus property (i) of
Definition 1.41 holds.
Let x ∈ Rd and s ∈ R. Then we see that

∥sx∥ =

(
n∑

i=1

|sxi|p
)1/p

=

(
n∑

i=1

|s|p|xi|p
)1/p

=

(
|s|p

n∑
i=1

|xi|p
)1/p

= |s|

(
n∑

i=1

|xi|p
)1/p

= |s| ∥x∥ .

Thus property (ii) holds.
Let x, y ∈ Rd be nonzero. Then

|xi + yi|p ≤ (|xi|+ |yi|)p = (|xi|+ |yi|)(|xi|+ |yi|)p−1

= |xi|(|xi|+ |yi|)p−1 + |yi|(|xi|+ |yi|)p−1.

and if we take the sum of both sides, we get

n∑
i=1

|xi + yi|p ≤
n∑

i=1

|xi|(|xi|+ |yi|)p−1 +

n∑
i=1

|yi|(|xi|+ |yi|)p−1.

The first inequality is because we know that |xi + yi|p ≤ |xi|p + |yi|p due to the
fact that f(x) := xp is a strictly increasing function on R≥0. We will now use
Hölder’s Inequality with q such that 1

p + 1
q = 1. Then

n∑
i=1

|xi|(|xi|+ |yi|)p−1 ≤

(
n∑

i=1

|xi|p
)1/p( n∑

i=1

|xi + yi|(p−1)q

)1/q
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and

n∑
i=1

|yi|(|xi|+ |yi|)p−1 ≤

(
n∑

i=1

|yi|p
)1/p( n∑

i=1

|xi + yi|(p−1)q

)1/q

.

Thus we get

n∑
i=1

|xi + yi|p ≤

( n∑
i=1

|xi|p
)1/p

+

(
n∑

i=1

|yi|p
)1/p

( n∑
i=1

|xi + yi|(p−1)q

)1/q

.

Since 1
p + 1

q = 1 we also know that (p− 1)q = p. Hence, we get

n∑
i=1

|xi + yi|p ≤

( n∑
i=1

|xi|p
)1/p

+

(
n∑

i=1

|yi|p
)1/p

( n∑
i=1

|xi + yi|p
)1/q

.

By dividing both sides by the right factor we get(
n∑

i=1

|xi + yi|p
)1− 1

q

≤

(
n∑

i=1

|xi|p
)1/p

+

(
n∑

i=1

|yi|p
)1/p

.

Since 1− 1
q = 1

p we get

(
n∑

i=1

|xi + yi|p
) 1

p

≤

(
n∑

i=1

|xi|p
)1/p

+

(
n∑

i=1

|yi|p
)1/p

.

We conclude that property (iii) holds.

From now on we will refer to ∥·∥p as the p-norm.

Definition 1.47 (Dual Norm). Let ∥.∥ be a norm on Rd. For all x ∈ Rn define

∥x∥∗ := sup{|xT y| : ∥y∥ ≤ 1, y ∈ Rd}.

We call this the dual norm of ∥·∥.

In general, this is a well-defined norm as we can see in [3, Theorem 4.1]. In
particular, we will show below that this defines a dual norm for the p-norm.

Definition 1.48 (Sign Function). Define the function sgn: R → {−1, 0, 1} by

sgn(x) :=


−1 ifx < 0,

0 ifx = 0,

1 ifx > 0.

12



Proposition 1.49 (p-norm and q-norm Duality). Let p > 1. The dual norm of
the p-norm is the q-norm with 1

p + 1
q = 1.

Proof. Let p > 1 and x, y ∈ Rd be given such that ∥y∥p ≤ 1. With Hölder’s
Inequality we get

∣∣xT y
∣∣ = ∣∣∣∣∣

n∑
i=1

xiyi

∣∣∣∣∣ ≤
n∑

i=1

|xiyi| ≤ ∥x∥p ∥y∥q ≤ ∥x∥q .

Now that we know ∥x∥∗ is at most ∥x∥q, it is sufficient to show that there exists

a y ∈ Rd such that ∥y∥p ≤ 1 and the sum is equal to the q-norm of x. Assume

x ̸= 0, since for x = 0 it is trivial that ∥0∥∗ = ∥0∥q holds. Define

z := (sgn(x1)|x1|q−1, . . . , sgn(xn)|xn|q−1)

and y := z
∥z∥p

. Note that ∥y∥p = 1. Then

|xT y| =
∑n

i=1 |xi|q(∑n
i=1 |xi|(q−1)p

)1/p =
(∥x∥q)q

(∥x∥q)q/p
= ∥x∥q ,

which follows from the fact that (q − 1)p = q and q − q
p = 1. We conclude that

∥x∥∗ = ∥x∥q for all x ∈ Rd.

Remark 1.50. In general, for a linear function ϕ : Rn → R we know that there
exist y1, . . . , yn such that the following holds

ϕ(x) ≤ |ϕ(x)| (a)=

∣∣∣∣∣
n∑

k=1

ykxk

∣∣∣∣∣ ≤
n∑

k=1

|ykxk|
(b)

≤

(
n∑

k=1

|yk|q
) 1

q
(

n∑
k=1

|xk|p
) 1

p

.

Equality (a) holds due to the fact that ϕ is a linear function and every lin-
ear function whose codomain is one dimensional can be written in this way.
Inequality (b) is due to Hölder’s Inequality.
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2 Metric Compactification

In this chapter we will be introducing the notion of a metric compactification.
The idea is that any given metric space can be embedded into a compact topo-
logical space. The closure of this embedded space is compact and will be called
the metric compactification. The extra elements that are added can be thought
of as ’points at infinity’.

2.1 Defining the metric compactification

Consider an arbitrarily given metric space (X, d). Equip RX with the topology
of pointwise convergence denoted by Tpw. Fix some x0 ∈ X and define the
function Ψ: (X, d) → (RX , Tpw) by

Ψ(x)(y) := d(y, x)− d(x0, x). (1)

Proposition 2.1. The function Ψ: (X, d) → (RX , Tpw) is injective and contin-
uous.

Proof. For injectivity, let x1, x2 ∈ X and assume that Ψ(x1)(y) = Ψ(x2)(y) for
all y ∈ X. We get the following equations

0 = Ψ(x1)(x1)−Ψ(x2)(x1) = d(x1, x1)− d(x0, x1)− d(x1, x2) + d(x0, x2)

= −d(x0, x1)− d(x1, x2) + d(x0, x2),

and

0 = Ψ(x2)(x2)−Ψ(x1)(x2) = d(x2, x2)− d(x0, x2)− d(x1, x2) + d(x0, x1)

= −d(x0, x2)− d(x1, x2) + d(x0, x1).

When we add them together we get

0 = −d(x0, x1)− d(x1, x2) + d(x0, x2)− d(x0, x2)− d(x1, x2) + d(x0, x1)

= −2d(x1, x2).

This leads to d(x1, x2) = 0 and x1 = x2. Thus, Ψ is injective.
To prove continuity, we first remark that for all z ∈ X we have

|Ψ(y)(z)−Ψ(x)(z)| = |d(z, y)− d(x0, y)− (d(z, x)− d(x0, x))|
≤ |d(z, y)− d(z, x)|+ |d(x0, x)− d(x0, y)|
≤ 2d(x, y).

When we have a net {xi}i∈I in X which converges to x, we see that for all
y ∈ X we have

lim
i∈I

|Ψ(x)(y)−Ψ(xi)(y)| = 0.

So, Ψ(xi) converges pointwise to Ψ(x) and thus Ψ is continuous.
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The closure of the image will become the compactification of the metric space.
To prove that the closure of the image is compact, we need Tychonoff’s Theorem.
For the proof of Tychonoff’s Theorem we will follow the proof in [4, Theorem
5D].

Theorem 2.2 (Tychonoff). The product of compact spaces is compact for the
product topology.

Proof. Let Xi be a compact space for all i ∈ I and equip X :=
∏

i∈I Xi with
the product topology. Let Y be a set of closed sets of X which has the finite
intersection property. If

⋂
A∈Y A is a nonempty set, then X is compact due to

Proposition 1.15.
Define the set

Y ′ := {A ⊂ P(X) | Y ⊂ A,A has the finite intersection property}.

Then Y ′ is a partially ordered set by set inclusion. We will show that Y ′ has a
maximal element with the use of Zorn’s Lemma. We will first prove that every
totally ordered subset in (Y ′,⊂) has an upper bound. Let W ⊂ Y ′ be some
totally ordered subset. Consider

⋃
A∈W A. To prove that this element has the

finite intersection property, we will take elements b1, . . . , bn ∈
⋃

A∈W A. Then
there exists an B ∈ W with b1, . . . , bn ∈ A and since S has the finite intersection
property we also know that the intersection of all the bi is nonempty. This
means that

⋃
A∈W A has the finite intersection property and that

⋃
A∈W A ∈ Y ′.

Hence,
⋃

A∈W A is an upper bound for W . Now that we have proved that every
totally ordered subset of Y ′ has an upper bound, by Zorn’s Lemma it follows
that Y ′ has a maximal element, which we shall denote by YM .
For each projection pi : YM → Xi we denote the image as Y i

M . To show that
the Y i

M also have the finite intersection property, let yi1, . . . , y
i
n ∈ Y i

M . We know
that for all 1 ≤ j ≤ n we have yij = pi(yj) for some yj ∈ YM . Since YM has the

finite intersection property, we know that there exists some x ∈
⋂n

j=1 yj and

thus pi(x) ∈
⋂n

j=1 y
i
j . Define the set Ci

M := {A | A ∈ Y i
M}. Since Y i

M has the

finite intersection property, we know that Ci
M also has the finite intersection

property. Since Xi is compact there exists xi ∈
⋂

A∈Ci
M
A by Proposition 1.15.

Define x := (xi)i∈I and CM := {A | A ∈ YM}. We will prove that x ∈
⋂

A∈CM
A

and therefore, also x ∈
⋂

A∈Y A.
Consider the projection pi : X → Xi. Let O ⊂ X be an open set such that
x ∈ O. We know that there exists an element B of the basis of the product
topology with x ∈ B such that B ⊂ O. This element B can be written as a
finite intersection of elements of the subbasis of the product topology. So we
know that there are a finite number of Oi1 , . . . ,Oin with Oij ⊂ Xij such that

B =
⋂n

j=1 p
−1
ij

(Oij ) and x ∈
⋂n

j=1 p
−1
ij

(Oij ) ⊂ O.

This means that xij ∈ Oij . Thus the intersection of Oij with every set of Y
ij
M

is nonempty, since A ∈ Y
ij
M is dense in A ∈ C

ij
M . This also means that the

intersection of p−1
ij

(Oij ) with every set of YM is nonempty, since for A ∈ YM

and Aij ∈ Y
ij
M we have Aij ∩ Oij = pij (p

−1
ij

(Oij ) ∩ A). If p−1
ij

(Oij ) is empty,
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then Aij ∩ Oij will also be empty. Since the intersection of finite elements

of YM is also an element in YM we know that p−1
ij

(Oij ) also intersects these

elements. Hence, YM ∪ {p−1
ij

(Oij )} has the finite intersection property. Thus,

p−1
ij

(Oij ) ∈ YM because if p−1
ij

(Oij ) /∈ YM then YM ⊊ YM ∪ {p−1
ij

(Oij )} and
then YM would not be a maximal element. For the same reason we know that⋂n

j=1 p
−1
ij

(Oij ) ∈ YM and also O ∈ YM . This means that the intersection of O
with every set of YM is nonempty. Since x ∈ O and O was arbitrarily chosen
open set it follows that x ∈ CM . We know that Y ⊂ YM and Y ⊂ CM hold
since all sets in Y are closed. It follows that x is also in the intersection of every
set in Y . Thus Y has the finite intersection property and thus X is compact by
Proposition 1.15.

Proposition 2.3. The closure of the image of Ψ is compact in (RX , Tpw)

Proof. For all x, y ∈ X we have

|Ψ(x)(y)| = |d(y, x)− d(x0, x)|
≤ d(x0, y).

When we consider every Ψ(x) ∈ RX as an element of
∏

y∈X R in the sense that
a function couples an element of X to an element of R. We see that

Ψ(X) ⊂
∏
y∈X

[−d(x0, y), d(x0, y)].

Every closed and bounded subset of R is compact, thus every [−d(x0, y), d(x0, y)]
is also compact. By Tychonoff’s Theorem we know that the product of compact
sets is also compact, thus

∏
y∈X [−d(x0, y), d(x0, y)] is a compact and closed

set with regard to the product topology. With Proposition 1.32 we see that∏
y∈X [−d(x0, y), d(x0, y)] is also a compact and closed set with regard to the

pointwise convergence topology. Since Ψ(X) is now a closed subset of a compact
set it follows by Proposition 1.5 that Ψ(X) is also compact.

Now that we know that the closure of the image of Ψ is compact, the following
definition will be well-defined.

Definition 2.4 (Metric Compactification). Let (X, d) be a metric space, let
x0 ∈ X and Tpw the topology of pointwise convergence on RX . Define the

function Ψ: (X, d) → (RX , Tpw) as in (1). Then Ψ(X) is called the metric
compactification of X.

One can wonder what happens to the metric compactification of a compact
metric space. The following proposition will show that no new elements are
added to the metric compactification of an already compact metric space.

Proposition 2.5. Let (X, d) be a compact metric space. Then Ψ(X) is compact.

Proof. Since Ψ is continuous due to Proposition 2.1 and X is compact we know
that Ψ(X) must also be compact due to Proposition 1.8.
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The choice of x0 ∈ X in Definition 2.4 is irrelevant. We will denote the com-
pactification with basis point z ∈ X as Ψz(X) and prove that the metric com-
pactification is unique up to a homeomorphism.

Proposition 2.6. Let x0, x1 ∈ X. Then there is a homeomorphism between
(Ψx0

(X), Tpw) and (Ψx1
(X), T )pw.

Proof. Let {Ψx0(yi)}i∈I be a net of functions in Ψx0(X) that converges to the
element hx0

∈ Ψx0
(X). For all x ∈ X we have

Ψx1(yi)(x) = d(x, yi)− d(x1, yi) = d(x, yi)− d(x0, yi) + d(x0, yi)− d(x1, yi)

= d(x, yi)− d(x0, yi)− (d(x1, yi)− d(x0, yi))

= Ψx0(yi)(x)−Ψx0(yi)(x1).

Hence

lim
i∈I

Ψx1
(yi)(x) = hx0

(x)− hx0
(x1). (2)

Define H : Ψx0
(X) → Ψx1

(X) by h 7→ h− h(x1). Due to (2) we know that H is
well-defined.
To prove thatH is continuous, let (hi)i∈I be a net in Ψx0(X) converges pointwise
to h ∈ Ψx0

(X). For all x ∈ X we have

lim
i∈I

|H(hi)(x)−H(h)(x)| = lim
n→∞

|hi(x)− hi(x0)− (h(x)− h(x0))|

= |h(x)− h(x0)− (h(x)− h(x0))|
= 0.

Hence, H(hi) converges pointwise to H(h) and thus H is continuous.
To prove that H is a bijection we define G : Ψx1

(X) → Ψx0
(X) with

h 7→ h+ h(x1).

We note that for all h ∈ Ψx0
(X) we get

G ◦H(h) = G(H(h)) = G(h− h(x1)) = h− h(x1) + h(x1) = h

and

H ◦G(h) = H(G(h)) = H(h+ h(x1)) = h+ h(x1)− h(x1) = h

so G is the inverse of H.
Since H is a continuous bijection from a compact space to a Hausdorff space,
we know by [1, Corollary 9.7] that H is a homeomorphism.
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2.2 The metric compactification of R
Let us consider the case X = R with the Euclidean metric. The metric com-
pactification of R will have two additional points, denoted by +∞ and −∞. In
R it is sufficient to work with sequences instead of with nets (we will prove this
in Proposition 3.6).
Let x0 := 0 and consider a monotone sequence (xn)n such that xn → ∞. Then

lim
n→∞

Ψ(xn)(x) = lim
n→∞

(d(x, xn)− d(0, xn))

= lim
n→∞

(|x− xn| − |0− xn|)

= lim
n→∞

(−x+ xn − xn) = −x, (3)

because for large enough n, we have xn > x and xn > 0. Hence, Ψ(∞) = −id.
Likewise for the sequence (−xn)n in R with −xn → −∞. For all x ∈ R we have

lim
n→∞

Ψ(−xn)(x) = lim
n→∞

(d(x,−xn)− d(0,−xn))

= lim
n→∞

(|x+ xn| − |0 + xn|)

= lim
n→∞

(x+ xn − xn) = x, . (4)

because for large enough n, we have x+xn > 0 and xn > 0. Hence, Ψ(−∞) = id.
To see that there are only two elements in the boundary Ψ(R) \ Ψ(R), let
h ∈ Ψ(R) \ Ψ(R). Then we know there exists a sequence (yn)n in R such that
limn→∞ Ψ(yn)(x) = h(x) for all x ∈ R. Then there are two possibilities: (yn)n is
bounded in R or (yn)n is not bounded in R. In the first case, due to the Bolzano-
Weierstrass Theorem 1.38, there is a subsequence (ynk

) which converges to some
z ∈ R. We will show that Ψ(ynk

) and Ψ(yn)n converge to the same limit. Let
ϵ > 0 be given. Then

|h(x)−Ψ(z)(x)| ≤ |h(x)−Ψ(ynk
)(x)|+ |Ψ(ynk

)(x)−Ψ(z)(x)|.

Due to the fact that (ynk
)k is a subsequence of (yn)n and because (ynk

)k con-
verges to z, we know that we can choose nk big enough such that

|h(x)−Ψ(ynk
)(x)| < 1

2
ϵ

and

|Ψ(ynk
)(x)−Ψ(z)(x)| < 1

2
ϵ.

Thus,

|h(x)−Ψ(z)(x)| ≤ |h(y)−Ψ(ynk
)(x)|+ |Ψ(ynk

)(x)−Ψ(z)(x)| < ϵ (5)

and limk→∞ Ψ(ynk
)(x) = h(x).

For the second case, since the sequence (yn)n is not bounded it cannot converge
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in R. We know that the sequence cannot converge to both∞ and−∞, since if we
could find a subsequence (ynk

)k that converges to ∞ and another subsequence
(ynl

)l that converges to −∞. For (ynk
)k we can use the same method in (5) and

with the result of (3) we find that (yn)n converges to −id. In the same way we
can use (ynl

)l and the result of (4) and the method of (5) to show that (yn)n
converges to id. Since −id ̸= id we know that (yn)n cannot converge to both
∞ and −∞. Hence, (yn)n converges to −id or id.
To show that id and −id are in the boundary of Ψ(R) we need to show that we
cannot write them as functions of the form

Ψ(y)(x) = |x− y| − |y|.

Since id and −id are linear functions and there is no y for which Ψ(y)(x) is
linear, we know that id and −id must be in the boundary of Ψ(R). Hence, we
have proved that the boundary contains only two elements ∞ and −∞.

2.3 Extending isometries to homeomorphisms

This paragraph is dedicated to the following theorem in which we extend sur-
jective isometries on the metric space to homeomorphisms on the metric com-
pactification.

Theorem 2.7. Let ϕ : (X, d) → (X, d) be a surjective isometry and define the
function Φ: (Ψ(X), Tpw) → (Ψ(X), Tpw) for h ∈ Ψ(X) and x ∈ X by

Φ(h)(x) := h(ϕ−1(x))− h(ϕ−1(x0)).

Then Φ is a homeomorphism.

Proof. We first have to prove that Φ is well-defined, then we will prove that it
is continuous.
Let h ∈ Ψ(X), then we know that there is a converging net {yi}i∈I in X such
that limi∈I Ψ(yi)(x) = h(x). Then

Φ(h)(x) = lim
i∈I

(Ψ(yi)(ϕ
−1(x))−Ψ(yi)(ϕ

−1(x0)))

= lim
i∈I

(d(ϕ−1(x), yi)− d(yi, x0)− (d(ϕ−1(x0), yi)− d(yi, x0)))

= lim
i∈I

(d(ϕ−1(x), yi)− d(ϕ−1(x0), yi))

= lim
i∈I

(d(ϕ(ϕ−1(x)), ϕ(yi))− d(ϕ(ϕ−1(x0)), ϕ(yi)))

= lim
i∈I

(d(x, ϕ(yi))− d(x0, ϕ(yi)))

= lim
i∈I

(Ψ(ϕ(yi))(x)).

Since Ψ(ϕ(yi)) ∈ Ψ(X) and the net converges pointwise we also know that
limi∈I(Ψ(ϕ(yi)) ∈ Ψ(X). Thus Φ is well-defined.
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Let {hi}i∈I be a net in Ψ(X) that converges pointwise to h. For all x ∈ X we
have

lim
i∈I

(Φ(hi)(x)) = lim
i∈I

(hi(ϕ
−1(x))− hi(ϕ

−1(x0)))

= h(ϕ−1(x))− g(ϕ−1(x0))

= Φ(h)(x).

Since Φ(hi)(x) converges pointwise to Φ(h)(x), we know that Φ is continuous.
To prove that Φ is a bijection, we define Θ: (Ψ(X), Tpw) → (Ψ(X), Tpw) by
Θ(h)(x) := h(ϕ(x))−h(ϕ(x0)). We will prove that it is well-defined, continuous,
and also that it is the inverse of Φ. We know that there is a converging net
{yi}i∈I in X such that

lim
i∈I

Ψ(yi)(x) = lim
i∈I

d(yi, x)− d(yi, x0) = h(x).

Then the following holds

Θ(h)(x) = lim
i∈I

(Ψ(yi)(ϕ(x))−Ψ(yi)(ϕ(x0)))

= lim
i∈I

(d(ϕ(x), yi)− d(yi, x0)− (d(ϕ(x0), yi)− d(yi, x0)))

= lim
i∈I

(d(ϕ(x), yi)− d(ϕ(x0), yi))

= lim
i∈I

(d(x, ϕ−1(yi))− d(x0, ϕ
−1(yi)))

= lim
i∈I

(Ψ(ϕ−1(yi))(x)).

Since Ψ(ϕ−1(yi)) ∈ Ψ(X) holds and the net converges, it is also clear that
limi∈I(Ψ(ϕ−1(yi)) ∈ Ψ(X) is true. Thus Θ is well-defined.
Let h ∈ Ψ(X). Then

Θ ◦ Φ(h)(x) = Θ(h)(ϕ−1(x))−Θ(h)(ϕ−1(x0))

= h(ϕ(ϕ−1(x)))− h(ϕ(ϕ−1(x0)))− (h(ϕ(ϕ−1(x0)))− h(ϕ(ϕ−1(x0))))

= h(x)− h(x0).

We know that there is a net {Ψ(yi)}i∈I such that Ψ(yi)(x) converges to h(x)
for every x ∈ X. Hence, it also holds for x0 ∈ X. Then

Ψ(yi)(x0) = d(x0, yi)− d(x0, yi) = 0,

Thus, we know h(x0) = 0 and we conclude Θ ◦ Φ(h)(x) = h(x). In the same
way, we can prove Ψ ◦Θ = id. This means that Θ is the inverse of Φ.
Since Φ is a continuous bijection from a compact space to a Hausdorff space,
we know by [1, Corollary 9.7] that Φ is a homeomorphism.
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3 The p-norm on Rd

In this chapter we will be looking at the metric compactification of Rd with
p-norm. We can explicitly express this compactification. To determine this, we
will first prove that Ψ(Rd, ∥·∥p) is metrizable. It is then sufficient to work with
sequences instead of nets.

3.1 Ψ(Rd, ∥·∥p) is metrizable

We will be using the fact that (Rd, ∥·∥p) is a proper metric space.

Proposition 3.1. Every compact metric space is separable.

Proof. Let (X, d) be a compact metric space. Let Or(x) be the open ball around
x with radius r. For all n ∈ N we define Cn := {O 1

n
(x) | x ∈ X}. Since for

every n, this is an open cover of X, and X is compact, there is a finite open
subcover Fn ⊂ Cn. Define Y :=

⋃
n∈N Fn. We only want the center of each set

so we define

Z := {x | O 1
n
(x) ∈ Y }.

Since Y is a countable union of countable sets, Y itself is countable and thus
Z is also countable. Let x ∈ X and ϵ > 0. Then there exists an m such that
1
m < ϵ. Since Fm is a finite open cover of X we know that there exists a y ∈ Z
such that x ∈ O 1

m
(y). Thus d(x, y) < 1

m < ϵ and we conclude that Z is dense

in X. Thus (X, d) is separable.

Proposition 3.2. Let p > 1 in R. Then the unit ball in (Rd, ∥·∥p) is compact.

Proof. We can see that the unit ball

B2
1 := {x ∈ Rd | ∥x∥2 ≤ 1}

is bounded with respect to the Euclidean norm. Consider the identity function
f : (Rn, ∥·∥2) → R by x 7→ ∥x∥2. Since f is continuous and the set [0, 1] is closed
we know that f−1([0, 1]) = B2

1 is also closed. With the Heine–Borel Theorem
we conclude that B2

1 is compact with respect to the Euclidean norm.
Let p > 1 be a real number. Consider the function id : (Rd, ∥·∥p) → (Rd, ∥·∥2).
We will prove that this is a homeomorphism. Let (xn)n be a sequence that
converges to x with respect to ∥·∥p and let (yn)n be a sequence that converges
to y with respect to ∥·∥2. Due to Proposition 1.44 we know that there exist
A and B such that A ∥x∥p ≤ ∥x∥2 ≤ B ∥x∥p for all x ∈ Rd. It follows that
(xn)n converges to x with respect to ∥·∥p if and only if (yn)n converges to y
with respect to ∥·∥2. From this we conclude that id is a homeomorphism.
For all x ∈ Rd with ∥x∥p ≤ 1 we have

∥x∥2 ≤ B ∥x∥p ≤ B.
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We know that Bp
1 ⊂ B2

B and Bp
1 is closed for ∥·∥2, so Bp

1 is compact for ∥·∥2
by Heine-Borel. Since id is a homeomorphism, Bp

1 is compact for ∥·∥p. Since

we have chosen p randomly, we conclude that the unit ball Bp
1 is compact in

(Rd, ∥·∥p) for every real p > 1.

Proposition 3.3. Every proper metric space is separable.

Proof. Let (X, d) be a proper metric space and let x ∈ X. Since for every n the
ball Bn(x) is compact and by Proposition 3.1 the set is also separable, we can
define Dn(x) as the countable dense subset of Bn(x). Then the set

∞⋃
n=1

Dn(x)

is a countable set, because it is a countable union of countable sets and it lays
dense in X. Hence, X is separable.

With these results we can introduce the notion of metrizability.

Definition 3.4 (Metrizable). Let (X, T ) be a topological space. If there exists
a metric d on X such that the topology induced by d is the same as T then
(X, T ) is called metrizable.

The following lemma is used in the proof that Ψ(X) is metrizable.

Lemma 3.5. Let h ∈ Ψ(X). Then for all y, z ∈ X we have

|h(y)− h(z)| ≤ d(y, z).

Proof. Let {xi}i∈I be a net in X such that limi∈I Ψ(xi)(y) = h(y) for all y ∈ X.
Then

|h(y)− h(z)| = lim
i∈I

|h(xi)(y)− h(xi)(z)|

= lim
i∈I

|d(xi, y)− d(x0, xi)− (d(xi, z)− d(x0, xi))|

= lim
i∈I

|d(xi, y)− d(xi, z)| ≤ d(y, z).

Proposition 3.6. Let (X, d) be a proper metric space. Then Ψ(X) is metriz-
able.

Proof. By Proposition 3.3 we know that (X, d) is separable so we know that
there is a countable set Y := {x1, x2, . . .} ⊂ X that is dense in X. For all
elements g, h ∈ Ψ(X) we define the metric

ρ(g, h) :=

∞∑
k=1

2−k min{1, |g(xk)− h(xk)|}
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with xk ∈ Y . We first note that this function is well-defined because

∞∑
k=1

2−k min{1, |g(xk)− h(xk)|} ≤
∞∑
k=1

2−k = 1.

To prove that ρ is a metric we note that

2−k min{1, |g(xk)− h(xk)|} ≥ 0

and

ρ(g, h) ≥ 0.

Thus property (i) from Definition 1.33 holds.
To prove property (ii) we note

ρ(g, h) =

∞∑
k=1

2−k min{1, |g(xk)− h(xk)|}

=

∞∑
k=1

2−k min{1, |h(xk)− g(xk)|}

= ρ(h, g).

For property (iii), assume that ρ(g, h) = 0. Then min{1, |g(xk) − h(xk)|} = 0
holds and thus |g(xk) − h(xk)| = 0 which means that g(xk) = h(xk) for every
xk ∈ Y . Let x ∈ X and ϵ > 0. There exists an xk such that |g(x)− g(xk)| < 1

2ϵ
and |h(x)− h(xk)| < 1

2ϵ by Lemma 3.5. Then we know that

|g(x)− h(x)| ≤ |g(x)− g(xk)|+ |g(xk)− h(xk)|+ |h(xk)− h(x)|

≤ 1

2
ϵ+ 0 +

1

2
ϵ = ϵ

We conclude that g(x) = h(x) for all x ∈ X.
Assume g = h. Then min{1, |g(xk)− h(xk)|} = 0 holds and thus

ρ(g, h) =

∞∑
k=1

2−k min{1, |g(xk)− h(xk)|}

=

∞∑
k=1

2−k · 0 = 0

We conclude that ρ(g, h) = 0 if and only if g = h.

23



For property (iv), let g, h, j ∈ Ψ(X). Then

ρ(g, h) =

∞∑
k=1

2−k min{1, |g(xk)− h(xk)|}

=

∞∑
k=1

2−k min{1, |g(xk)− j(xk) + j(xk)− h(xk)|}

≤
∞∑
k=1

2−k min{1, |g(xk)− j(xk)|+ |j(xk)− h(xk)|}

≤
∞∑
k=1

2−k(min{1, |g(xk)− j(xk)|}+min{1, |j(xk)− h(xk)|})

=

∞∑
k=1

2−k min{1, |g(xk)− j(xk)|}+
∞∑
k=1

2−k min{1, |j(xk)− h(xk)|}

= ρ(g, j) + ρ(j, h).

We conclude that ρ is a metric.
Let f ∈ U(x, U). Due to Remark 1.27 we know that there exists and ϵ > 0 such
that U(f, x, ϵ) ⊂ U(x, U). Then there exists an xm ∈ Y such that d(x, xm) < 1

3ϵ.
Define

O 2−m

3 ϵ
(f) := {g ∈ Ψ(X) | ρ(f, g) < 2−m

3
ϵ}

and let g ∈ O 2−m

3 ϵ
(f). Without loss of generality we can assume that 0 < ϵ < 3.

Then

ρ(f, g) =

∞∑
k=1

2−k min{1, |f(xk)− g(xk)|} ≥ 2−m min{1, |f(xk)− g(xk)|}.

Hence, we get

2−m min{1, |f(xm)− g(xm)|} <
2−m

3
ϵ

min{1, |f(xm)− g(xm)|} <
1

3
ϵ.

Since 1
3ϵ < 1 we know that |f(xm)− g(xm)| < 1

3ϵ. Then

|f(x)− g(x)| ≤ |f(x)− f(xm)|+ |f(xm)− g(xm)|+ |g(xm)− g(x)|

< 2d(x, xm) +
1

3
ϵ < ϵ

due to Lemma 3.5 and because d(x, xm) < 1
3 . It follows that g ∈ U(f, x, ϵ) and

thus O 2−m

3 ϵ
(f) ⊂ U(f, x, ϵ). We conclude Tpw ⊂ Tρ.

Conversely, let Oϵ(f) for f ∈ Ψ(X) and ϵ > 0. There exists an m ∈ N such that
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∑∞
k=m 2−k < 1

2ϵ. For all n ≤ m we define U :=
⋂m

n=1 U(f, xn,
1
2ϵ). We note

that this is a finite intersection and that U is open with respect to the pointwise
topology. Let g ∈ U , then the following holds

∞∑
k=1

2−k min{1, |f(xk)− g(xk)|} =

∞∑
k=m

2−k min{1, |f(xk)− g(xk)|}

+

m−1∑
k=1

2−k min{1, |f(xk)− g(xk)|}

<
1

2
ϵ+

m−1∑
k=1

2−k min{1, |f(xk)− g(xk)|}

<
1

2
ϵ+

m−1∑
k=1

2−k · 1
2
ϵ < ϵ

We conclude that h ∈ Oϵ(g) and U ⊂ Oϵ(g). Thus Tρ ⊂ Tpw. Hence, Tpw = Tρ
and Ψ(X) is metrizable.

The only thing that remains for us to do, in order to show that the metric
compactification of (Rd, ∥·∥p) is metrizable, is to demonstrate that (Rd, ∥·∥p) is
a proper metric space.

Proposition 3.7. Let d and p be positive integers. Then (Rd, ∥·∥p) is a proper
metric space.

Proof. Let r > 0 be a real number and x ∈ Rd. Define the translation

Tx : (Rd, ∥·∥p) → (Rd, ∥·∥p)

with Tx(y) = y + x for all y ∈ Rd and the translation

Tr : (Rd, ∥·∥p) → (Rd, ∥·∥p)

with Tr(y) = ry for all y ∈ Rd. It is clear that both Tx and Tr are homeomor-
phisms. We know that the unit ball Bp

1 is compact with regard to the p-norm
for every real p > 1 by Proposition 3.2. Since Tx and Tr are homeomorphisms
and Tr ◦Tx is also a homeomorphism, we know that Tr(Tx(Bp

1)) is compact with
respect to the p-norm. We conclude that (Rd, ∥·∥p) is a proper metric space.

Proposition 3.8. Let p > 1 be a real number then Ψ(Rd, ∥·∥p) is metrizable.

Proof. Due to Proposition 3.7, (Rd, ∥·∥p) is a proper metric space and due to

Proposition 3.6 we conclude that Ψ(Rd, ∥·∥p) is metrizable.

25



3.2 Computing the boundary Ψ(Rd, ∥·∥p) \Ψ(Rd, ∥·∥p)

We have proved that the metric compactification of (Rd, ∥·∥p) is metrizable,
so from now on we can use sequences instead of nets. Before we move on to
compute the boundary we need the following notion and result.

Definition 3.9 (Norming Functional). Let ∥·∥ be a norm on Rd and let

ϕ : Rd → R

be a function. If ϕ(x) = ∥x∥ for some x ∈ Rd, then we call ϕ a norming
functional of x.

We need the following notation. For p ∈ R define the set

Sp := {x ∈ (Rd, ∥·∥p) | ∥x∥p = 1}.

Proposition 3.10. Let p, q > 1 be real numbers such that 1
p + 1

q = 1. Define
the function

J : Sp → Sq

by

n∑
k=1

xkek 7→
n∑

k=1

sng(xk)|xk|p−1ek.

Then J is an isometric isomorphism with the property that every element gets
mapped to a norming functional of itself.

Proof. The first thing we need to prove is that the function is well-defined. Let
x ∈ Sp then the following holds∥∥∥∥∥

n∑
k=1

sgn(xk)|xk|p−1ek

∥∥∥∥∥
q

=

(
n∑

k=1

|sgn(xk)|xk|p−1|q
) 1

q

=

(
n∑

k=1

|xk|p
) 1

q

= 1.

Hence, J is well-defined.
For xk ̸= 0 we have sgn(xk) = xk

|xk| . Hence, it is not difficult to verify that

J (x) =
∑n

k=1 xk|xk|p−2ek also holds for xk = 0. For a sequence (xn)n in R
which converges to x we have limn→∞ xn|xn|p−2 = x|x|p−2. Thus, xk|xk|p−2ek
is continuous and J (x) =

∑n
k=1 xk|xk|p−2ek is also continuous.

To prove that J is an isometric isomorphism we will give an inverse function.
Define J ′ : Sq → Sp by

n∑
k=1

xkek 7→
n∑

k=1

sgn(xk)|xk|q−1ek.

26



We will first prove that this function is well-defined. Let x ∈ Sq then the
following holds∥∥∥∥∥

n∑
k=1

sgn(xk)|xk|q−1ek

∥∥∥∥∥
p

=

(
n∑

k=1

|sgn(xk)|xk|q−1|p
) 1

q

=

(
n∑

k=1

|xk|q
) 1

q

= 1.

Let x ∈ Sq then the following holds

(J ′ ◦ J )(x) = J ′(J (x))

= J ′(

n∑
k=1

sgn(xk)|xk|q−1ek)

=

n∑
k=1

sgn(sgn(xk)|xk|q−1)|sgn(xk)|xk|q−1|p−1ek

=

n∑
k=1

sgn(xk)|xk|(q−1)(p−1)ek

=

n∑
k=1

sgn(xk)|xk|ek

=

n∑
k=1

xkek = x

since 1 = (q − 1)(p− 1). In the same manner, we can show that (J ′ ◦ J ) = id.
Hence, J ′ is the inverse of J .
We will now prove that J sends every element to its own norming functional.
Due to Remark 1.50, it suffices to show the following

J (x)(x) =

n∑
k=1

xksgn(xk)|xk|p−1

=
n∑

k=1

|xk||xk|p−1

=

n∑
k=1

|xk|p = 1 = ∥x∥p .

We need the following proposition before we can compute the boundary of
Ψ(Rd, ∥·∥p).
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Proposition 3.11. Let (X, ∥·∥) be a normed space. Let x ∈ X and λ > 0. Then
ϕ ∈ X∗ is a norming functional of the vector x if and only if ϕ is a norming
functional of the vector λx.

Proof. Assume that ϕ(x) = ∥x∥. Then the following holds

ϕ(λx) = λϕ(x) = λ ∥x∥ = ∥λx∥ .

Hence, ϕ also norms λx.
Assume that ϕ(λx) = ∥λx∥. Then the following holds

λϕ(x) = ϕ(λx) = ∥λx∥ = λ ∥x∥ .

Thus we know that

λϕ(x) = λ ∥x∥
ϕ(x) = ∥x∥ .

Hence, ϕ also norms x.

We will now state the main result of this section, wherein we explicitly determine
both the elements on the boundary of Ψ(Rd, ∥·∥p) and the internal functions.

Theorem 3.12. Every element in Ψ(Rd, ∥·∥p)\Ψ(Rd, ∥·∥p) is of the form J (x)

for an x ∈ Rd.

Proof. Let p > 1 be a real number and define x0 := 0. Let h ∈ Ψ(Rd, ∥·∥p).
Then there exists a sequence (xn)n such that Ψ(xn) → h as n → ∞ point-
wise. There are two possibilities: the sequence is bounded or the sequence is
unbounded. In the first case we know by the Bolzano–Weierstrass theorem that
there exists a convergent subsequence (xnk

)k such that xnk
→ x as k → ∞ for

some x ∈ Rd. Let ϵ > 0. Then the following holds for y ∈ Rd

|h(y)−Ψ(xn)(y)| ≤ |h(y)−Ψ(xnk
)(y) + Ψ(xnk

)(y)−Ψ(xn)(y)|
≤ |h(y)−Ψ(xnk

)(y)|+ |Ψ(xnk
)(y)−Ψ(xn)(y)|.

Since Ψ(xn) converges pointwise to h we also know that for all ϵ > 0 there exists
an N such that for all k ≥ N we have

|h(y)−Ψ(xnk
)(y)| < ϵ.

Thus, Ψ(xn) converges to h and we know that Ψ(x) = h with h ∈ Ψ(Rd, ∥·∥p).
In the second case, if (xn)n is unbounded then there is a subsequence (xnk

)k
such that ∥xnk

∥p → ∞ for k → ∞. Define yk := xnk
. Since Sp is compact, we

know that yk

∥yk∥p
has a convergent subsequence

yki

∥yki∥p

that converges to some
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y ∈ Sp. Let z ∈ Rd then the followings holds∥∥∥∥∥ yki
− z

∥yki − z∥p
− yki

∥yki∥p

∥∥∥∥∥
p

=

∥∥∥∥∥∥yki∥p (yki − z)− ∥yki − z∥p yki

∥yki − z∥p ∥yki∥p

∥∥∥∥∥
p

=

∥∥∥∥∥∥yki
∥p yki

− ∥yki
∥p z − ∥yki

− z∥p yki

∥yki
− z∥p ∥yki

∥p

∥∥∥∥∥
p

=

∥∥∥∥∥ (∥yki
∥p − ∥yki

− z∥p)yki
− ∥yki

∥p z
∥yki

− z∥p ∥yki
∥p

∥∥∥∥∥
p

≤
(∥yki

∥p − ∥yki
− z∥p) ∥yki

∥p + ∥yki
∥ ∥z∥p

∥yki
− z∥p ∥yki

∥p

≤
∥yki

− yki
− z∥p ∥yki

∥p + ∥yki
∥p ∥z∥p

∥yki
− z∥p ∥yki

∥p

=
2 ∥z∥p ∥yki

∥p
∥yki

− z∥p ∥yki
∥p

=
2 ∥z∥p

∥yki − z∥p
.

Note that

∥yki − z∥p ≥ ∥yki∥p − ∥z∥p

and thus

2 ∥z∥p
∥yki − z∥p

≤
2 ∥z∥p

∥yki∥p − ∥z∥p
.

Since ∥yki
∥p − ∥z∥p → ∞ for i → ∞, it follows that

lim
i→∞

2 ∥z∥p
∥yki

− z∥p
≤ lim

i→∞

2 ∥z∥p
∥yki

∥p − ∥z∥p
= 0.

Hence,

lim
i→∞

2 ∥z∥p
∥yki

− z∥p
= 0

and thus

lim
i→∞

∥∥∥∥∥ yki − z

∥yki
− z∥p

− yki

∥yki
∥p

∥∥∥∥∥
p

= 0.
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Let ϵ > 0. Then we know that∥∥∥∥∥ yki − z

∥yki
− z∥p

− y

∥∥∥∥∥
p

=

∥∥∥∥∥ yki − z

∥yki
− z∥p

− yki

∥yki
∥p

+
yki

∥yki
∥p

− y

∥∥∥∥∥
p

≤

∥∥∥∥∥ yki
− z

∥yki − z∥p
− yki

∥yki∥p

∥∥∥∥∥
p

+

∥∥∥∥∥ yki

∥yki∥p
− y

∥∥∥∥∥
p

.

There exists an N such that for all j ≥ N we have∥∥∥∥∥ yki
− z

∥yki − z∥p
− yki

∥yki∥p

∥∥∥∥∥
p

+

∥∥∥∥∥ yki

∥yki∥p
− y

∥∥∥∥∥
p

< ϵ

Hence,
yki

−z

∥yki
−z∥

p

converges to y just like
yki

∥yki∥p

as i → ∞.

Due to Proposition 3.10 and since
yki

−z

∥yki
−z∥

p

,
yki

∥yki∥p

∈ Sp we know that J norms

these elements.
With Proposition 3.11 we get the following result

J

(
yki

− z

∥yki − z∥p

)
(yki − z) = ∥yki − z∥p .

Due to Remark 1.50, we know that for w1, w2 ∈ Sp we have

J (w1)(w2) ≤ |J (w1)(w2)| ≤ ∥J (w1)∥q ∥w2∥p .

Since ∥J (w1)∥q = 1 we conclude

J (w1)(w2) ≤ ∥w2∥p . (6)

Thus we have the following inequality

∥yki − z∥p − ∥yki∥p ≤ J

(
yki − z

∥yki
− z∥p

)
(yki − z)− J

(
yki − z

∥yki
− z∥p

)
(yki).

Due to linearity of J
(

yki
−z

∥yki
−z∥

p

)
we know that

J

(
yki

− z

∥yki
− z∥p

)
(yki

− z)− J

(
yki

− z

∥yki
− z∥p

)
(yki

) = J

(
yki

− z

∥yki
− z∥p

)
(−z)

= −J

(
yki − z

∥yki
− z∥p

)
(z).

Again, due to Proposition 3.11 the function J
(

yki

∥yki∥p

)
norms yki

. Thus the

following holds

J

(
yki

∥yki∥p

)
(yki) = ∥yki∥p .
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Once more, with (6) we deduce

J

(
yki

∥yki∥p

)
(yki

− z)− J

(
yki

∥yki∥p

)
(yki

) ≤ ∥yki
− z∥p − ∥yki

∥p .

Due to linearity of J
(

yki

∥yki∥p

)
we know that

J

(
yki

∥yki
∥p

)
(yki

− z)− J

(
yki

∥yki
∥p

)
(yki

) = J

(
yki

∥yki
∥p

)
(−z)

= −J

(
yki

∥yki
∥p

)
(z).

Since both
yki

−z

∥yki
−z∥

p

and
yki

∥yki∥p

converge to y for i → ∞, we conclude

−J (y)(z) ≤ lim
i→∞

∥yki − z∥p − ∥yki∥p ≤ −J (y)(z).

With the Squeeze Theorem [8, Theorem 2.2.26.8] we see that h(z) = −J (y)(z).
We know that −J (y) is a linear function and every function h ∈ Ψ(Rd, ∥·∥p)
is of the form h(x) = Ψ(y)(x) = ∥x− y∥p − ∥y∥p for some y. Since there is no

y ∈ Rd for which ∥x− y∥p − ∥y∥p is a linear fuction, we conclude that every

element in the boundary of Ψ(Rd, ∥·∥p) is of the form −J (y).
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