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1 Introduction

Say you’re an early geometer, and you would like to show that two plane figures P,Q have equal
area. A reasonable way to do this is to show that they may be decomposed into smaller pieces
(where these smaller pieces have disjoint interiors) by way of finitely many cuts, such that the
resulting pieces are pairwise congruent figures. Indeed, this is one of the methods that Euclid
employs to show that given polygons have equal area [Euc]. If this relationship holds we say that
the two figures are scissors congruent, or s.c. for short.

With the benefits of modern measure theory, we can show that a much wider range of figures
have equal area, which we understand as the 2-dimensional Lebesgue measure µ. We can also
use it to show that indeed scissors congruence does preserve area. For two polygons P,Q in the
plane (considered as sets), the property of having disjoint interiors is equivalent to the fact that
their intersection has measure 0. It follows that the area of their union is equal to the sum of
their areas, so µ(P ∪ Q) = µ(P ) + µ(Q). Additionally, the isometries of the plane that induce
the congruence relation between polygons are bimeasurable and measure-preserving, so because
the measure of area is additive w.r.t. interior disjoint unions, it follows that it is invariant under
scissors congruence.

More generally, if instead of considering polygons, we considered a different class of measurable
sets, and instead of the group of all isometries we considered a different group of measure-preserving
transformations, we can still conclude that scissors congruence must preserve the measure. For
example, we could consider the class of polygons whose sides are axis-aligned, i.e. either horizontal
or vertical, and as transformations the group of translations in the plane. We combine this data
into a ‘scissors congruence structure’ (F , G), where F is a class of figures and G is an F-measurable
group of transformations (Definition 2.4.17).

During the early 19’th century it was proved (by several mathematicians independently) that any
two polygons in the plane are s.c. (allowing polygonal subdivisions and all isometric transforma-
tions) if and only if they have the same area; this is the Wallace-Bolyai-Gerwien Theorem. This
left open the question of whether the same could be proved for polyhedra in Euclidean 3-space.
This problem was of particular interest to David Hilbert around the turn of the 20’th century,
as he was interested in the formal axiomatization of Euclidean geometry. He included it as the
third problem in his list presented at the International Congress of Mathematicians in Paris in
1900. Not much later, Hilbert’s third problem was the first to be solved. In [Deh01], Hilbert’s
student Max Dehn showed that, for example, a cube and a regular tetrahedron of the same volume
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are not scissors congruent, solving the problem in the negative. Dehn was not the first to prove
this particular fact, but Hilbert was not aware that it had been proved some years earlier by a
mathematician named Ludwik Antoni Birkenmajer [CC18].

Dehn’s result would later by improved by Jean-Pierre Sydler in [Syd65]. Børge Jessen provides
an excellent account of Dehn’s and Sydler’s results in [Jes68]. Later, Chih-Han Sah published
[Sah79], which contained much of the cutting edge of the subject at the time. For an introduction
to some theories of scissors congruence that have developed since then, including an application
to algebraic K-theory, see [Zak16].

In this work we investigate the structure of the additive monoid of general s.c. structures. In
Section 2 we define all of the necessary machinery to give a powerful and general definition of
scissors congruence (Definition 2.4.12). Along the way we give a somewhat non-standard definition
of ‘polytope’ and other similar figures (Section 2.3). The difficulty comes from the fact that for
two polyhedra, say, to be scissors congruent we cut them up and paste them back together. If
we consider polyhedra to be specific kinds of subsets of R3 then we run into trouble; if you cut
a square in half along some line, which half gets the points that lay on the line? Our definition
avoids this issue.

The additive structure of s.c. classes does not always form a commutative monoid in the traditional
sense. Consider the set of subfigures of a given square. We cannot add the s.c. class of the square
to itself, because there is no room to find two disjoint representatives. Thus the set of s.c. classes
forms a partial commutative monoid (PCM, Definition 3.1.1), which we call SC. We give some
basic properties of these algebraic structures in Section 3.1.

In Section 3.2 we investigate the basic consequences of the definition of addition of s.c. classes. The
ordering of subfigure containment can be extended to SC and this ordering agrees with the natural
ordering of SC as a PCM (Proposition 3.2.9). We place particular emphasis on s.c. structures on
Rn such that F contains all axis-aligned rectangular prisms, every figure of F is Jordan-measurable
(Definition 2.3.9) and bounded, and every transformation of G is an isometry. We call such s.c.
structures ‘regular Euclidean’ (Definition 2.4.20), and they have the property that the Lebesgue
measure (or equivalently, the Jordan content) gives a well-defined PCM homomorphism from SC
to the non-negative real numbers.

Proposition (3.2.15). If (F , G) is a s.c. structure where the figures of F are Lebesgue-measurable,
then the Lebesgue measure µ induces a homomorphism of partial commutative monoids µ : SC →
[0,∞].

Theorem (3.2.17). If (F , G) is a regular Euclidean s.c. structure, then for s.c. classes α, β ∈ SC
we have α < β in the natural ordering of SC if and only if µ(α) < µ(β).

Section 3.3 is all about Zylev’s theorem. It gives mild sufficient conditions for the addition of SC
to be cancellative.

Definition (3.3.2). An s.c. structure is called cancellative if for all figures P,Q, T ∈ F such that
P ⊔ T is s.c. with Q ⊔ T we have that P is s.c. with Q.

Definition (3.3.4). An s.c. structure (F , G) is called positive if no figure P ∈ F is s.c. with a
strict subfigure of P .

Definition (3.3.5). Let P,Q ∈ F be figures. Then P is said to be larger than twice Q if there is
a subfigure Q′ ⊂ P s.c. to Q and whenever Q1 ⊂ P is s.c. to Q then there exists a Q2 ⊂ P s.c. to
Q such that Q1 ∩Q2 = [∅].

Definition (3.3.6). An s.c. structure (F , G) is uniform if for any two non-empty figures P,Q
there is a decomposition Q = Q1 ⊔ · · · ⊔Qn such that P is larger than twice Qi for all I.

Zylev’s theorem (3.3.7). If an s.c. structure (F , G) is positive and uniform, then it is cancella-
tive.

Zylev’s theorem justifies the use of group-theoretic methods to investigate scissors congruence as
is common in the literature. We also show that there is a sense in which there is no ‘algebraic
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proof’ of Zylev’s theorem (Theorem 3.3.9), which shows that the combinatorics of figures cannot
entirely be discarded. Finally we apply Zylev’s theorem to show that regular Euclidean structures
are always cancellative (Theorem 3.3.15).

In the short Section 3.4 we give a final structural theorem about regular Euclidean s.c. structures:
their natural monoids SC may be decomposed into two independent components.

Lateral Group Theorem (3.4.5). If (F , G) is a regular Euclidean s.c. structure, then there is
an abelian group Lat(SC), called the lateral group of SC, such that there is an isomorphism

SC ∼= ((0,∞)× Lat(SC)) ∪ {0},

where (0,∞) is the additive semigroup of positive real numbers.

In Section 3.5 we investigate how all these ideas manifest themselves in the concrete cases of a few
regular Euclidean s.c. structures. We give proofs of the Wallace-Bolyai-Gerwien theorem (3.5.3)
and Dehn’s theorem (3.5.13), which give effective invariants of the scissors congruence of polygons
and polyhedra, respectively.

Finally, Section 4 poses some interesting questions which further research may answer.

2 Scissors congruence of space figures

2.1 Quotient rings of sets

First we will want to define what we mean by a ‘figure’. Taking them to be subsets of Rn is too
narrow, as for instance we do not care whether a triangle includes its boundary line segments.
These get left on the cutting room floor during the dissection process, so to speak. We will a priori
specify such boundary sets as null sets, using the language of rings of sets.

2.1.1 Definition. A ring of sets on a set X is a subcollection R ⊂ P(X) that:

∗ Contains ∅.

∗ Is closed under finite unions, so if A,B ∈ R, then A ∪B ∈ R.

∗ Is closed under set difference (or ‘relative complement’), so if A,B ∈ R, then A \B ∈ R.

An ideal of sets of R is a subcollection N ⊂ R such that:

∗ ∅ ∈ N .

∗ If N,M ∈ N , then N ∪M ∈ N .

∗ If N ∈ N and A ∈ R are such that A ⊂ N , then A ∈ N .

The elements A ∈ R will be called figure representatives and the elements N ∈ N will be called
null sets.

The terminology ring and ideal is somewhat suggestive, and the reader might wonder what they
have to do with the concepts from abstract algebra. The first thing to notice is that a power
set P(X) forms a ring if we take addition to be symmetric difference △, and multiplication to
be intersection ∩. This commutative ring is canonically isomorphic to the ring of all functions
f : X → F2 under pointwise operations, where the codomain is the field of two elements. The
second thing to notice is that we may derive the symmetric difference and intersection from the
operations of union and set difference, and vice versa, as follows:

2.1.2 Lemma. For all sets A and B, we have

A△B = (A \B) ∪ (B \A), A ∩B = (A ∪B)△ (A△B),

A ∪B = (A△B)△ (A ∩B), A \B = A△ (A ∩B).
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This allows us to conclude that R is a ring of sets on X if and only if it is a (non-unital) subring
of P(X). An element A ∈ R is a subset of some N ∈ N precisely if it is of the form A = B ∩N
for a B ∈ R, so the property that an ideal of sets is closed under taking subsets is equivalent to
the defining property of an ideal of a commutative ring that it be stable under multiplication with
elements of the ring.

We think of the elements of N as negligible sets, which we declare as not being relevant to a
decomposition of some figure. In the case of polygons, these will be the finite unions of line
segments and points, as we would like to say that two polygons joined side-to-side are disjoint
enough for our purposes.

2.1.3 Definition. We define the quotient ring F := R/N of R modulo N as the set of equivalence
classes of the relation ∼ defined on R as

A ∼ B ⇐⇒ A△N = B for some N ∈ N .

The elements P ∈ F will be called figures. If A ∈ R is a figure representative, let [A] ∈ F be its
equivalence class w.r.t. ∼, i.e. the figure it represents.

We can show that [A] = [B] if and only if there are null sets N,M ∈ N such that A∪N = B ∪M .
Alternatively, [A] = [B] if and only if A△B ∈ N .

A figure might most accurately be called an ‘almost-set’, by way of analogy with concepts such as
almost-everywhere equality and almost-certain events from measure theory. We will stick to the
‘figure’ terminology, as it aligns with the classes of objects we want to study. Moreover, we will
often call a quotient ring a ‘class of figures’ on X.

2.1.4 Example. If X is any set, then its power set P(X) is a ring of sets on X. The collection
{∅} containing only the empty set is an ideal of P(X). The resulting class of figures we denote by
P(X)/{∅}.

2.1.5 Notation. If F is a class of figures, we let R(F) denote its underlying ring of figure
representatives and we let N (F) denote its ideal of null sets, so F := R(F)/N (F).

2.1.6 Notation. We will use the letters A,B,C, . . . for figure representatives, and P,Q,R, . . .
for figures.

An important fact is that given a family (Ri)i∈I of rings of sets on X, their intersection
⋂

i Ri

will also be a ring of sets. An analogous thing holds for a family of ideals on some ring R. A
consequence is that given any collection of subsets S ⊂ P(X), there is a smallest ring on X
containing them, and given any collection of figure representatives A ⊂ R there is a smallest ideal
of R containing them. We call these the ring and ideal generated by S and A respectively.

Because rings and ideals of sets correspond precisely to specific kinds of algebraic rings, we can
leverage the theory of modular arithmetic to extend the algebraic operations of sets to figures. The
following brief aside formalizes this.

2.1.7 Definition. For a natural number n ∈ N, we define an n-ary slice function to be a function
s : {1, . . . , n} → {0, 1}. An abstract n-ary Boolean combination is a set of n-ary slice functions.
Let Booln be the collection of all n-ary abstract Boolean combinations.

As the name implies, abstract Boolean combinations represent ‘concrete’ combinations of n-tuples
of sets, as follows.

2.1.8 Definition. If s : {1, . . . , n} → {0, 1} is a slice function and A1, . . . , An ⊂ X are subsets,
then their Boolean slice fs(A1, . . . , An) corresponding to s is the unique subset of X such that
x ∈ fs(A1, . . . , An) if and only if x ∈ Ai for every i with s(i) = 1 and x /∈ Aj for every j with
s(j) = 0. This defines a function fs : P(X)n → P(X), given formulaically by

fs(A1, . . . , An) =

 ⋂
i∈s−1(1)

Ai

 \

 ⋃
j∈s−1(0)

Aj

 ,
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where an empty intersection evaluates to X and an empty union evaluates to ∅.

If V ∈ Booln is an abstract Boolean combination, its corresponding (concrete) n-ary Boolean
combination is the function fV : P(X)n → P(X) given by

fV (S1, . . . , Sn) =
⋃
s∈V

fs(S1, . . . , Sn).

All common ‘algebraic’ operations on sets, such as unions, intersections, complements, symmetric
differences, etc. are in fact (concrete) Boolean combinations. For example, as in Figure 1, the
binary union of two sets A ∪B corresponds to V = {s1, s2, s3} ∈ Bool2, where

s1(1) = 1, s2(1) = 1, s3(1) = 0,

s1(2) = 0, s2(2) = 1, s3(2) = 1.

fs1(A,B) fs2(A,B) fs3(A,B)

A B

Figure 1: A Venn diagram showing the union of two disks A and B as a disjoint union of Boolean
slices corresponding to slice functions s1, s2, s3.

Interpreting this, an element x ∈ X is contained in A ∪ B whenever it is either in A and not in
B, in both A and B, or in B and not in A. It is no coincidence that no element of A ∪B satisfies
more than one of these cases.

2.1.9 Lemma. Boolean slices corresponding to distinct slice functions are disjoint.

Proof. Let s1, s2 : {1, . . . , n} → {0, 1} be distinct slice functions and let A1, . . . , An be sets. There
is an i ∈ {1, . . . , n} such that s1(i) ̸= s2(i). Without loss of generality, assume that s1(i) = 1
and s2(i) = 0. If x ∈ fs1(A1, . . . , An) then x ∈ Ai, so x /∈ fs2(A1, . . . , An). Analogously, if
x ∈ fs2(A1, . . . , An) then x /∈ Ai, so x /∈ fs1(A1, . . . , An). We conclude that fs1(A1, . . . , An) ∩
fs2(A1, . . . , An) = ∅. Because figures are disjoint if and only if they have disjoint representatives,
the same holds for P1, . . . , Pn ∈ F .

In fact, it is not unreasonable to define the collection of ‘algebraic set operations’ to be exactly
the Boolean combinations. This definition can be seen as ‘generator-free’ or ‘unbiased’. No special
privilege is given to the binary combinations. The fact that you can build up all of the combinations
out of just the binary ones is a theorem we can prove about the Boolean combinations.

As a sanity check, observe that indeed there are two nullary Boolean combinations on P(X): one
that returns the empty set ∅ and one that returns the universe set X. These correspond to the
empty set of slice functions and the set that contains only the unique slice function ∅ → {0, 1}
respectively.

It should come as no surprise that the Boolean combinations are closed under composition. That
is, if n, k1, . . . , kn are integers, and V ∈ Booln, Vi ∈ Boolki

are Boolean combinations, then the
function that maps (A1,1, . . . , A1,k1

, . . . , An,1, . . . , An,kn
) onto

fV

(
fV1(A1,1, . . . , A1,k1), . . . , fVn(An,1, . . . , An,kn)

)
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is another Boolean combination. In fact, this operation can be abstracted into a set of ‘composition’
operations on abstract Boolean combinations, with signatures of the form Booln × Boolk1

× · · · ×
Boolkn → Boolk1+···+kn . This composition operation makes the sequence (Booln)n∈N into what’s
called an ‘operad’, but as it is not terribly important for our purposes we will not go into further
detail.

2.1.10 Definition. The zero n-ary slice function is the unique slice function z : {1, . . . , n} → {0, 1}
such that z(i) = 0 for all i ∈ {1, . . . , n}. A slice function is called non-zero if it is not a zero slice
function.

2.1.11 Definition. A combination V ∈ Booln is called bounded if all of the slice functions it
contains are non-zero.

A zero slice function corresponds to the concrete combination that maps A1, . . . , An onto the
complement (in X) of their union. This is an ‘unbounded’ combination, in the sense that it may
map a collection of bounded sets (such as sets that represent polytopes, see Definition 2.3.3) onto
an unbounded set. It is not too hard to see that the bounded Boolean combinations are closed
under composition. We can use this fact to give a more elegant definition of a ring of sets: it is
a subcollection of P(X) that is closed under all bounded Boolean combinations. The following
lemma serves to illustrate that such combinations are automatically well-defined on figures as well.

2.1.12 Venn Diagram Lemma. If F is a quotient ring of sets on X, then for any bounded
V ∈ Booln, the Boolean combination restricts to an operation (R(F))n → R(F), and furthermore
the operation fV : Fn → F defined as fV ([A1], . . . , [An]) = [fV (A1, . . . , An)] is well-defined.

Proof. Let s ∈ V be a slice function. Recall that the function fs : (P(X))n → P(X) is given by

fs(A1, . . . , An) =

 ⋂
i∈s−1(1)

Ai

 \

 ⋃
j∈s−1(0)

Aj

 .

Note that if s is not a zero slice function then the intersection will not be vacuous, so the right
hand side is guaranteed to be a combination of the Ai using operations under which we know R(F)
to be closed. So, if A1, . . . , An ∈ R(F) then fs(A1, . . . , An) ∈ R(F). The set fV (A1, . . . , An) is
simply the union of these sets for all s ∈ V , so it too is an element of R(F).

We know from the theory of rings that the operations [A] △ [B] = [A △ B] and [A] ∩ [B] =
[A ∩ B] are well-defined. Because the union and set difference operators may be derived from
these two (Lemma 2.1.2), it follows that fV ([A1], . . . , [An]) = [fV (A1, . . . , An)] is well-defined for
all [A1], . . . , [An] ∈ F .

The Venn Diagram Lemma serves mostly as an aid for intuition. It shows that we can apply
whatever operations we would normally use for sets to figures without worry.

Take note that if P is a figure, it does not in general make sense to ask whether some x ∈ X is
contained in P , as this might not be independent of the representative of P . However, we can still
define an inclusion relation among figures.

2.1.13 Definition. If P,Q ∈ F are figures we say that P is contained in Q, written P ⊂ Q, if
P ∩Q = P . In this case we say that P is a subfigure of Q.

It is readily verified that P ⊂ Q if and only if there are representatives A,B of P and Q respectively
such that A ⊂ B as subsets. This ordering defines a lattice (without greatest element) on F , which
is to say that it defines a partial ordering such that any two elements have both a least upper
bound and a greatest lower bound, given by the union and intersection respectively. The empty
figure [∅], whose representatives are precisely the null sets, is the smallest element of this lattice.

2.1.14 Definition. We say that figures P and Q are disjoint if P ∩Q = [∅]. If P is any figure,
and P1, . . . , Pn are figures such that P = P1 ∪ · · · ∪ Pn and Pi and Pj are disjoint whenever i ̸= j,
then we say that the Pi form a decomposition of P . If this is the case, we write P = P1 ⊔ · · · ⊔Pn.
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In the literature figures that are disjoint are also called ‘interior-disjoint’ or ‘non-overlapping’.
Decompositions of figures are the bread and butter of any theory of scissors congruence, and we
will see them a lot. The collection of decompositions of a figure P can be partially ordered as
follows.

2.1.15 Definition. Let P ∈ F be a figure and let P = Q1 ⊔ · · · ⊔ Qn and P = R1 ⊔ · · · ⊔ Rk be
decompositions of P . We say that the decomposition consisting of the Qi refines the other if for
all 1 ≤ i ≤ n there is some 1 ≤ j ≤ k with Qi ⊂ Rj.

The following is easy to verify.

2.1.16 Proposition. Refinement is a reflexive transitive antisymmetric relation on the set of
decompositions of P .

In fact, we can show that the set of decompositions is downward-directed w.r.t. refinement.

2.1.17 Refinement Lemma. Any two decompositions of some figure P have a common re-
finement. Explicitly, if P = Q1 ⊔ · · · ⊔ Qn = R1 ⊔ · · · ⊔ Rk, then there is some decomposition
P = S1 ⊔ · · · ⊔ St such that each Qi and Ri may be decomposed into finitely many Si.

Proof. Let t = n · k, and let us write the S-figures as indexed by pairs (i, j), where 1 ≤ i ≤ n and
1 ≤ j ≤ k. Let Si,j = Qi ∩Rj . These figures will form the required decomposition.

This statement can be made stronger. The set of decompositions is a lattice (without a minimal
element) under refinement; any non-empty finite set of decompositions has a greatest lower bound
and a least upper bound w.r.t. refinement. We will not need this stronger result but it is also not
hard to prove.

The proof of the Refinement Lemma is rather simple in our formalism, but we state the result as a
proper lemma nonetheless, as it is quite fundamental to any theory of general scissors congruence.
Indeed, the different formalisms of abstract scissors congruence given in [Sah79] and [Zak17] satisfy
similar properties.

2.2 Generating figures, bases, and convexity

We would like some easy ways of defining classes of figures.

2.2.1 Definition. If F1 and F2 are classes of figures on the same set X, we say that F1 is a
subclass of F2 if R(F1) ⊂ R(F2) and N (F1) = R(F1) ∩N (F2). We write F1 ≤ F2.

Morally speaking, F1 and F2 have ‘the same null sets’. This relation partially orders the collection
of all classes of figures on X.

2.2.2 Proposition. If F is a class of figures and F ′ ≤ F is a subclass, then there is an injective
function i : F ′ → F such that if V ∈ Booln is any bounded Boolean combination and P1, . . . , Pn ∈
F ′ then i(fV (P1, . . . , Pn)) = fV (i(P1), . . . , i(Pn)).

Proof. Consider the inclusion map R(F ′) → R(F). Postcomposing it with the quotient map
R(F) → F we get a function R(F ′) → F . It is constant on the ∼-equivalence classes of R(F ′)
because it preserves unions (in fact, it preserves all bounded Boolean combinations) and N (F ′) ⊂
N (F). Let i be the induced function F ′ → F . All we have left to show is that i is injective. Let
A,B ∈ R(F ′) be such that i([A]) = i([B]). Then by definition there is some N ∈ N (F) such that
A△B = N , so N ∈ R(F ′), so [A] = [B] in F ′ as required.

In other words, we can identify a subclass of F with a subset of F without worry.

2.2.3 Definition. A subset H ⊂ F is called a generating set for F if for every P ∈ F there are
H1, . . . ,Hn ∈ H and a (bounded) Boolean combination V ∈ Booln with fV (H1, . . . ,Hn) = P . We
call H a basis for F if every figure P ∈ F may be written as a finite disjoint union of elements of
H. Equivalently, if every P decomposes into elements of H.

Note that if H is a basis for F , then any collection of figures that contains H is also a basis.
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2.2.4 Proposition. Given some class of figures F and a subset S ⊂ R(F), there is a unique
smallest subclass FS ≤ F such that S ⊂ R(FS), which we call the class generated by S relative to
F . The classes [S] of representatives S ∈ S will form a generating set for FS .

This proposition allows us to define one ‘large’ class of figures first, by fully specifying its ring of
representatives and its ideal of null sets, and after that we only need to give a generating collection
of representing sets for any smaller class. In section 2.3 we will apply this to defining various
classes of n-polytopes. First, some more results on generating sets of figures.

With the help of the Venn Diagram Lemma (Lemma 2.1.12) we can turn any generating set into
a basis.

2.2.5 Proposition. If H ⊂ F is a generating set of figures, then the collection

S(H) =
⋃
n∈N

Sn(H),

where

Sn(H) =
{
fs(H1, . . . ,Hn) : s is a non-zero n-ary slice function and H1, . . . ,Hn ∈ H

}
,

is a basis for F .

Proof. Recall from Lemma 2.1.9 that Boolean slices corresponding to distinct slice functions are
disjoint. Consider some element P ∈ F . Because F is generated by H, there will be some n ∈ N,
a V ∈ Booln, and H1, . . . ,Hn ∈ H such that P = fV (H1, . . . ,Hn). By definition we have

fV (H1, . . . ,Hn) =
⋃
s∈V

fs(H1, . . . ,Hn),

so because this is a disjoint union and no s ∈ V is the zero function, it follows that S(H) is a basis
for F .

In general Boolean slices might be very complicated figures (they capture a lot of the complexity
of F , after all). In some cases we can make a slightly friendlier basis as follows.

2.2.6 Definition. We say that a generating set H ⊂ F has local complements if for any two
P,Q ∈ H there is a Q′ ∈ H such that P \Q = P ∩Q′.

2.2.7 Proposition. Let C(H) ⊂ F denote the collection of all non-empty finite intersections of
elements of H. If H has local complements, then C(H) will be a basis for F .

Proof. We show that if H has local complements, then C(H) = S(H), so C(H) is a basis for F .
Clearly C(H) ⊂ S(H).

Let H1, . . . ,Hn ∈ H be a collection of figures and let s : {1, . . . , n} → {0, 1} be a non-zero slice
function. We know that

fs(H1, . . . ,Hn) =

 ⋂
i∈s−1(1)

Hi

 \

 ⋃
j∈s−1(0)

Hj

 .

The intersection of Hi’s on the left is an element of C(H) by definition. Subtracting the finite
union of figures on the right is equivalent to repeated subtraction of single figures, so we may write

fs(H1, . . . ,Hn) = ((G \Hj1) \ . . . ) \Hjk ,

where G ∈ C(H). To show that fs(H1, . . . ,Hn) ∈ C(H) it therefore suffices to show that G \H ∈
C(H) whenever G ∈ C(H) and H ∈ H, and the result will follow inductively. Note that G is an
intersection of elements of H, so there is some G′ ∈ H such that G = G∩G′. Because H has local
complements there is an H ′ ∈ H such that G′ \H = G′ ∩H ′, so

G \H = (G ∩G′) \H = G ∩ (G′ \H) = G ∩G′ ∩H ′ ∈ C(H),

which is all we need to conclude that S(H) ⊂ C(H), and we are done.
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2.2.8 Definition. If F is a class of figures in Rn, we say that a P ∈ F is convex if it may
be represented by an A ∈ R(F) that is a convex set, i.e. for all x, y ∈ A and t ∈ [0, 1] we have
tx+ (1− t)y ∈ A.

2.2.9 Corollary. If F has a generating set H of convex figures that has local complements, then
the collection of convex elements of F is a basis.

Proof. Note that intersections of convex sets are convex, so intersections of convex figures will also
be convex. It follows that the basis C(H) consists of convex figures, so the collection of all convex
figures will also be a basis.

Now we give a final way of constructing subclasses of figures from a larger class, after which we
will be ready to define polytopes and various other sorts of figures.

2.2.10 Definition. Let F be some class of figures on Rn. Then P ∈ F is said to be bounded if it
has some representative A such that A is bounded, i.e. there is some real number r > 0 such that
for all points x ∈ A the distance from x to the origin is less than r.

2.2.11 Proposition. If F is a class of figures on Rn, then the set Bounded(F) of bounded elements
of F is a subclass of F .

Proof. Clearly the class of figures generated by the bounded figure representatives of R(F) is a
subclass of F . From the fact that unions and differences of bounded sets are bounded it follows
that this subclass consists of exactly the bounded figures of F .

2.3 Polytopes and other examples

We now define our notion of polytopes, and some other classes of figures along the way, in the
manner that most naturally fits into our theory. For this section let n ≥ 1 be some positive integer
parameter.

2.3.1 Definition. We define the class of figures Algn as follows. Let its ring of figure representa-
tives be the smallest ring of set on Rn that contains the solution sets of all polynomial inequalities.
That is, let R(Algn) be generated by sets of the form

{(x1, . . . , xn) ∈ Rn : p(x1, . . . , xn) ≤ 0}

for some multivariable real polynomial p. Such a set is called a semi-algebraic set. Let its ideal of
null sets N (Algn) be generated by the solution sets of non-trivial polynomial equations, i.e. sets of
the form

{(x1, . . . , xn) ∈ Rn : p(x1, . . . , xn) = 0} ,

where p is a non-zero polynomial. Such sets are also called algebraic hypersurfaces. We will call
Algn the class of semi-algebraic figures of Rn.

2.3.2 Definition. Let UPoln be the subclass of Algn generated by the solution sets of all linear
inequalities. That is, sets of the form

{(x1, . . . , xn) ∈ Rn : a1x1 + · · ·+ anxn ≤ b}

for real numbers a1, . . . , an, b. Such a set is called a closed half-space. Recall that by the definition
of a subclass we have N (UPoln) = N (Algn) ∩ R(UPoln). We call UPoln the class of unbounded
n-polytopes.

2.3.3 Definition. Let Poln = Bounded(UPoln) ≤ UPoln. This is the class of n-polytopes.

We will call the elements of Pol1 ‘line segments’, those of Pol2 ‘polygons’, and those of Pol3
‘polyhedra’. We will also refer to n-polytopes as simply ‘polytopes’ if our statement does not
depend on the dimension. There are some other related classes of figures in Rn that we can define
in much the same way.
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2.3.4 Definition. Let Circ be the subclass of Alg2 generated by R(Pol2) and sets of the form{
(x, y) ∈ R2 : (x− a)2 + (y − b)2 ≤ r

}
.

That is, the circular disks. Its ideal of null sets will be generated by the null polygons and the
circles. This gives us the class of circle figures.

2.3.5 Definition. Let Orthn be the subclass of n-polytopes whose boundaries are axis-aligned.
Explicitly, Orthn is the class of bounded elements of the subclass of UPoln generated by sets of the
form

{(x1, . . . , xn) ∈ Rn : xi ≤ b} , {(x1, . . . , xn) ∈ Rn : xi ≥ b}

for some index 1 ≤ i ≤ n and b ∈ R. This is the class of ortholinear n-figures.

We have Orthn < Poln < UPoln < Algn for every n ≥ 2.

2.3.6 Proposition. Any figure in UPoln, Poln, or Orthn may be decomposed into convex figures
of the same class.

Proof. Note that each of the classes is generated by a collection of convex figures that has local
complements, so the result follows from Corollary 2.2.9.

To conclude, let us give a pair of large classes.

2.3.7 Definition. Let R(Boreln) be the σ-algebra of Lebesgue measurable subsets of Rn, and let
N (Boreln) be the collection of sets that have n-dimensional Lebesgue measure 0. Then Boreln is
the class of Borel n-figures.

2.3.8 Proposition. Each of the previously given classes of figures are subclasses of the various
Boreln.

Proof. This follows from the fact that the semi-algebraic subsets of Rn (i.e. subsets defined by
polynomial inequalities) that have Lebesgue measure 0 are precisely those that are contained in
some finite union of algebraic hypersurfaces of Rn (and are therefore precisely the null sets of the
various classes of figures). This may be shown using the fact that any semi-algebraic set can be
decomposed into a finite number of algebraic sets homeomorphic with open hypercubes, which then
necessarily have lower dimension than the ambient space if they are contained in a finite union of
algebraic hypersurfaces. Such in-depth discussions on semi-algebraic sets are beyond our scope,
and may be found in [BCR98] (in particular, Theorem 2.3.6 on the decomposition of semi-algebraic
sets).

Note that we call the elements of Boreln ‘Borel figures’, as opposed to ‘Lebesgue figures’. This is
because of the measure theoretic fact that any Lebesgue measurable subset of Rn is the symmetric
difference of a Borel set and a subset of Rn with Lebesgue measure 0, which is then necessarily
Lebesgue measurable. Hence, any Borel figure may be represented by an actual Borel set.

2.3.9 Definition. Let A ⊂ Rn be a set. We define the inner Jordan content of A to be the greatest
lower bound of the n-volume of all finite interior-disjoint unions of closed n-cubes contained in A,
and its outer Jordan content to be the least upper bound of the n-dimensional volume of all finite
interior-disjoint unions of closed n-cubes containing A.

2.3.10 Definition. We say that A is Jordan measurable if its inner and outer Jordan contents
are equal, in which case we call it simply the Jordan content of A.

2.3.11 Definition. Let Jordann be the class of figures on Rn whose figure representatives are the
Jordan measurable sets, and whose ideal of null sets is the collection of sets with Jordan content 0.

2.3.12 Proposition. We have Algn ≤ Jordann ≤ Boreln for all n.
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Proof. We will only sketch the idea of the proof. Citations are supplied where the reader might be
interested in further detail. For A ⊂ Rn it holds that A is Jordan measurable if and only if it is
Lebesgue measurable and its (topological) boundary has Lebesgue measure 0. Another fact is that
if A is Jordan measurable, then its Lebesgue measure and Jordan content agree. In particular,
sets with Jordan content 0 have Lebesgue measure 0, so Jordann ≤ Boreln (see [Enc]). Because
semi-algebraic sets have boundaries with Lebesgue measure 0 (as in the proof of Proposition 2.3.8,
this follows from [BCR98] Theorem 2.3.6) it follows also that Algn ≤ Jordann.

2.4 Subfigure correspondences and scissors congruence

In order to define scissors congruence as a relation between figures, we need to be sure that the
transformations we allow send figures to figures.

2.4.1 Definition. Let G be a subgroup of the group of all bijections g : X → X. If F is a class of
figures on X, we say that G is measurable with respect to F if for all g ∈ G we have g(A) ∈ R(F)
and g(N) ∈ N (F) for all A ∈ R(F ) and N ∈ N (F).

Because G is a group we know that it must also hold that g−1(A) ∈ R(F ) for all A ∈ R(F ) (and
analogously for null sets). In words, G is F-measurable if all of its transformations g ∈ G both
preserve and reflect figure representatives and null sets.

2.4.2 Proposition. If G is an F-measurable group of transformations, then the action of G on
figures [A] ∈ F defined as g([A]) = [g(A)] is well-defined.

Proof. Let A,B ∈ R(F) represent the same figure. We have A△ B ∈ N (F), so g(A)△ g(B) =
g(A△B) ∈ N (F).

2.4.3 Proposition. If a figure P decomposes as P = P1 ⊔ · · · ⊔ Pn and g ∈ G is some transfor-
mation, then g(P ) decomposes as g(P ) = g(P1) ⊔ · · · ⊔ g(Pn).

Proof. Let A,A1, . . . , An ∈ F be figure representatives of P, P1, . . . , Pn such that A = A1∪· · ·∪An.
Such a union always exists, but note that the Ai are not necessarily properly disjoint. Rather,
Ai ∩Aj is a null set whenever i ̸= j. We have

g(P ) = [g(A)] = [g(A1 ∪ · · · ∪An)] = [g(A1) ∪ · · · ∪ g(An)]

= [g(A1)] ∪ · · · ∪ [g(An)] = g(P1) ∪ · · · ∪ g(Pn).

Moreover, if i ̸= j then

g([Ai]) ∩ g([Aj ]) = [g(Ai) ∩ g(Aj)] = [g(Ai ∩Aj)] = [∅].

The second-to-last equality holds because g is injective, and the last one holds because Ai ∩Aj is
a null set, and this is preserved by g.

This property of transformations is important; any transformation carries subfigures to subfigures,
and their configurations relative to each other are preserved as well. We take this property as a
primitive notion of morphism between figures. First, we need a bit of algebraic machinery.

2.4.4 Definition. Let X be a set. A small category C on X consists of the following data:

∗ For all x, y ∈ X, a set Hom(x, y) of morphisms from x to y,

∗ For all x ∈ X, a distinguished element 1x ∈ Hom(x, x),

∗ For all x, y, z ∈ X, an operation ◦ : Hom(y, z)×Hom(x, y) → Hom(x, z), called composition,

which are required to satisfy

∗ Each morphism ϕ belongs to a unique Hom(x, y),

∗ For all ϕ ∈ Hom(x, y), 1y ◦ ϕ = ϕ ◦ 1x = ϕ,
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∗ For all x, y, z, w ∈ X and ϕ ∈ Hom(x, y), ψ ∈ Hom(y, z), and χ ∈ Hom(z, w), (χ ◦ ψ) ◦ ϕ =
χ ◦ (ψ ◦ ϕ).

A groupoid G is a small category that also satisfies the following:

∗ For all x, y ∈ X and ϕ ∈ Hom(x, y) there exists a ψ ∈ Hom(y, x) such that ψ ◦ ϕ = 1x and
ϕ ◦ ψ = 1y. It follows that this ψ is unique and we denote it by ϕ−1.

2.4.5 Definition. If G is a groupoid, we will write ϕ ∈ G to mean that ϕ is some morphism of
G , so there are x, y ∈ X such that ϕ ∈ Hom(x, y). Because Hom-sets are mutually disjoint, these
x and y will be unique, and we will call them the ‘domain’ and ‘codomain’ of ϕ respectively. So, if
ϕ, ψ ∈ G , then ψ ◦ ϕ is ‘defined’ if and only if the domain of ψ equals the codomain of ϕ.

If it is unclear from the context what category a given Hom-set belongs to, we will write HomC (x, y)
and HomD(x, y), etc. to distinguish them.

2.4.6 Definition. A subgroupoid of a groupoid G on a set X consists of a subset Y ⊂ X and a
groupoid H on Y such that HomH (x, y) ⊂ HomG (x, y) for all x, y ∈ Y . A subgroupoid is called
wide if Y = X, and it is called full if HomH (x, y) = HomG (x, y) for all x, y ∈ Y .

Note that a full subgroupoid is uniquely determined by its subset of elements Y ⊂ X. Now we can
define the ‘data type’ of our geometric transformations.

2.4.7 Definition. Let P be a figure. We let S(P ) be the set of all subfigures of P . A subfigure
correspondence between figures P and Q is a bijection ϕ : S(P ) → S(Q) that preserves finite disjoint
unions, so

∗ ϕ([∅]) = [∅], and

∗ ϕ(P1 ⊔ · · · ⊔ Pn) = ϕ(P1) ⊔ · · · ⊔ ϕ(Pn) for all disjoint P1, . . . , Pn ∈ S(P ).

2.4.8 Definition. If we define for any two figures P,Q the set Hom(P,Q) to consist of all subfigure
correspondences between P and Q, and we compose correspondences as functions, then this will
give us a groupoid. This is the groupoid of all subfigure correspondences, which we denote A (F),
or simply A if the class of figures is clear from context.

Proof. We need to show that the composition of two subfigure correspondences is again a subfigure
correspondence, and the same for a subfigure correspondence’s inverse function. The former is
trivially verified simply by writing out the definition. For the latter, let ϕ : S(P ) → S(Q) be a
subfigure correspondence, and let ϕ−1 : S(Q) → S(P ) be its inverse function. Then

ϕ−1([∅]) = ϕ−1(ϕ([∅])) = [∅],

and if Q1, . . . , Qn ∈ S(Q) are disjoint, then

ϕ−1(Q1 ⊔ · · · ⊔Qn) = ϕ−1
(
ϕ(ϕ−1(Q1)) ⊔ · · · ⊔ ϕ(ϕ−1(Qn))

)
= ϕ−1

(
ϕ
(
ϕ−1(Q1) ⊔ · · · ⊔ ϕ−1(Qn)

))
= ϕ−1(Q1) ⊔ · · · ⊔ ϕ−1(Qn),

which is all that needed to be shown.

Note that if ϕ : S(P ) → S(Q) is a subfigure correspondence, then by surjectivity there is some
P ′ ⊂ P with ϕ(P ′) = Q, so ϕ(P ) = ϕ(P ′)⊔ ϕ(P \P ′) = Q⊔ ϕ(P \P ′), so because Q is the largest
element of S(Q) it must be that ϕ(P ) = Q. Proofs of the following propositions are immediate.

2.4.9 Proposition. Any transformation g ∈ G induces a subfigure correspondence between P and
g(P ) given by R 7→ g(R).

2.4.10 Proposition. If R ⊂ P is a subfigure and ϕ is a subfigure correspondence between P and
Q, then the restriction of ϕ to S(R) is a subfigure correspondence between R and ϕ(R), which we
write ϕ|R.
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2.4.11 Definition. A G-congruence between P and Q is a subfigure correspondence ϕ : S(P ) →
S(Q) such that there is a transformation g ∈ G with ϕ(R) = g(R) for all R ⊂ P . If such a
congruence exists, then P and Q are said to be G-congruent.

The congruences form a wide subgroupoid of A . We could have just as well defined a ‘congruence’
between P and Q to be a transformation g ∈ G such that g(P ) = Q, but in light of the following
definition we prefer to speak in terms of subfigure correspondences.

2.4.12 Definition. A G-scissors congruence between P and Q is a subfigure correspondence
ϕ : S(P ) → S(Q) such that there is some decomposition P = P1 ⊔ · · · ⊔Pn such that ϕ|Pi : S(Pi) →
S(ϕ(Pi)) is a G-congruence for every i. If such a correspondence exists we say that P and Q are
G-scissors congruent (or G-s.c. for short), which we will also denote as P ≃G Q.

Commonly in the literature the relation of scissors congruence will be defined slightly differently,
but it is no great difficulty to see that they are equivalent.

2.4.13 Proposition. Two figures P,Q are s.c. if and only if there are decompositions P = P1 ⊔
· · · ⊔ Pn and Q = Q1 ⊔ · · · ⊔Qn such that for all 1 ≤ i ≤ n there is a gi ∈ G with gi(Pi) = Qi.

If the group of transformations G is clear from context, we will often speak of simply ‘scissors
congruence’ or ‘s.c.’, and write P ≃ Q. A decomposition P = P1 ⊔ · · · ⊔ Pn such that ϕ|Pi is a
G-congruence for every i is said to ‘witness’ the scissors congruence ϕ.

2.4.14 Proposition. The G-scissors congruences form a wide subgroupoid of A (F). We denote
this groupoid by SG(F), or simply by S if the other data is clear from context.

Proof. All we need to show is that compositions and inverses of scissors congruences are themselves
scissors congruences. First we treat the inverses. Let ϕ ∈ S be a scissors congruence from P to
Q. Let P = P1 ⊔ · · · ⊔ Pn be a decomposition witnessing ϕ. We claim that the decomposition
Q = ϕ(P1) ⊔ · · · ⊔ ϕ(Pn) witnesses ϕ−1 as a scissors congruence. Let i be an arbitrary index.
By definition there is some g ∈ G such that ϕ|Pi

: S(Pi) → S(ϕ(Pi)) is given by R 7→ g(R). Let
g−1 : X → X be the inverse transformation of g. It is easily verified that ϕ−1|ϕ(Pi) : S(ϕ(Pi)) →
S(Pi) may be given by R′ 7→ g−1(R′). It follows immediately that the inverse function of a scissors
congruence is another scissors congruence; we simply invert the mapping piecewise.

Now let ϕ, ψ ∈ S scissors congruences from P to Q and from Q to R respectively. Let P =
P1 ⊔ · · · ⊔ Pn and Q = Q1 ⊔ · · · ⊔ Qk witness ϕ and ψ respectively. Then P = ϕ−1(Q1) ⊔ · · · ⊔
ϕ−1(Qk) will be another decomposition of P . By the Refinement Lemma (Lemma 2.1.17), these
two decompositions of P have a common refinement P = S1 ⊔ · · · ⊔ Sℓ. Let S∗ be an arbitrary
figure in this decomposition. There are indices i, j such that S∗ ⊂ Pi ∩ ϕ−1(Qj) (and if S∗ is not
empty these indices are unique). Let g, h ∈ G be such that ϕ|Pi

and ψ|Qj
are given by T 7→ g(T )

and T ′ 7→ h(T ′) respectively. It follows that (ψ ◦ ϕ)|S∗ may be given by T 7→ (h ◦ g)(T ). Thus
P = S1 ⊔ · · · ⊔ Sℓ witnesses ψ ◦ ϕ and we are done.

2.4.15 Corollary. Scissors congruence is an equivalence relation.

It’s worth emphasizing in words how scissors congruences are composed; we reflect the decompo-
sition of the intermediate figure along the first scissors congruence and then we take its common
refinement with the decomposition of the first figure, after which the relevant congruences on the
resulting pieces will be given by the compositions of the congruences that correspond to the original
pieces.

2.4.16 Remark. We define the ‘data’ of a scissors congruence to be its action on the subfigures
of its domain. This is one of the ways of having scissors congruences retain their function-like
characteristics in spite of the quotient abstraction that we use to define figures. Another option
is to have a scissors congruence between P and Q be an ‘almost-function’, an equivalence class of
partial functions P → Q that are defined and equal everywhere except on a null set. Because we
mostly care about the structure of figures somewhat independent of their ambient space, we opt for
the former.
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To define a notion of scissors congruence we need a set X, a class of figures F on X, and an F-
measurable group of transformations G of X. In all of the following examples we will take X = Rn

to be some finite-dimensional Euclidean coordinate space. The dimension of the ambient space
will be clear from the name of the class of figures, so in light of this, the following definition.

2.4.17 Definition. A scissors congruence structure (or ‘s.c. structure’) on a set X is a pair
(F , G), where F is a class of figures on X and G is an F-measurable group of transformations of
X.

2.4.18 Definition. An s.c. structure (F , G) is said to be finer than another s.c. structure (F ′, G′)
if F ≤ F ′ and G ⊂ G′. This relation partially orders the s.c. structures on a given set.

As is common, if (F , G) is finer than (F ′, G′), then (F ′, G′) is said to be coarser than (F , G). Recall
that if F ≤ F ′ then we can identify the figures of F with a subset of F ′ as in Proposition 2.2.2.
Let (F , G) be finer than (F ′, G′) and let P,Q ∈ F . Then P and Q being (F , G)-scissors congruent
implies that their images under the identification of F with a subset of F ′ are (F ′, G′)-scissors
congruent. In other words, the former structure’s s.c. relation ≃ is ‘finer’ (i.e. more discerning)
than the latter’s.

2.4.19 Definition. Let En (the ‘Euclidean group’ of dimension n) be the smallest group of trans-
formations of Rn that contains all translations and all linear orthogonal transformations (equiva-
lently, the group of all isometries). Let Tn be the group of all translations of Rn.

2.4.20 Definition. An s.c. structure (F , G) on Rn is said to be Euclidean if (F , G) ≤ (Boreln, En).
It is called regular Euclidean if (Orthn, Tn) ≤ (F , G) ≤ (Bounded(Jordann), En).

2.4.21 Definition. We list the following notable s.c. structures.

∗ (Poln, En), the scissors congruence of polytopes.

∗ (Circ, E2), the scissors congruence of circle figures.

∗ (Orthn, Tn), the scissors congruence of ortholinear figures.

∗ (Algn, En), the scissors congruence of semi-algebraic figures.

Of these, only the last is not regular Euclidean (because semi-algebraic figures may be unbounded).
The scissors congruence of polytopes will be our primary motivating example.

3 The ordered additive monoid of scissors congruence classes

3.1 Some facts about partial commutative monoids

In the next section we will define an addition operation on scissors congruence classes of figures.
To this end, we will first lay out the basics of partial commutative monoids and their relation to
partially ordered groups.

3.1.1 Definition. A partial commutative monoid (PCM) is a set M together with a constant
0 ∈M , a subset D ⊂M ×M , and a binary operation +: D →M , called addition. The statement
that (a, b) ∈ D we state by saying that ‘a+b is defined’. For all a, b, c ∈M we require the following:

∗ (associativity) (a+ b)+ c is defined if and only if a+(b+ c) is defined, and these expressions
are equal if they are.

∗ (unity) a+ 0 and 0 + a are defined and equal to a.

∗ (commutativity) if a+ b is defined then so is b+ a and they are equal.

If a+ b is defined for all a, b ∈M , then M is called a (total) commutative monoid.

In context we will not always specify assumptions like ‘a+b is defined’. For example, an assumption
such as ‘assume that a+ b = c’ should formally be read as ‘assume that a+ b is defined and that
a+ b = c’.
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To keep things relatively short, we will assume familiarity with basic abstract-algebraic facts and
terminology. For example, an abelian group is a commutative monoid in which every element has
an additive inverse. Additionally, several upcoming propositions are listed without proof as their
results are either well-known or easy to derive.

3.1.2 Definition. In the following definitions, M is an arbitrary PCM.

∗ M is sharp if a+ b = 0 implies a = b = 0 for all a, b ∈M .

∗ M is positive if a+ b = a implies b = 0 for all a, b ∈M .

∗ M is cancellative if a+ c = b+ c implies a = b for all a, b, c ∈M .

3.1.3 Definition. Any PCM may be equipped with its natural ordering ≤, which is the relation
on M defined as a ≤ b if and only if there exists c ∈M such that a+ c = b.

The natural ordering of a PCM is in general reflexive and transitive but not always antisymmetric,
even if M is sharp.

3.1.4 Definition. A PCM homomorphism is a function f : M → N between PCMs M,N such
that f(0M ) = 0N and f(a+M b) = f(a) +N f(b) for all a, b ∈M such that a+M b is defined..

3.1.5 Definition. A monotone map is a function f : X → Y between (pre)ordered sets (X,≤X),
(Y,≤Y ) such that x ≤X y implies f(x) ≤Y f(y) for all x, y ∈ X.

3.1.6 Proposition. Any PCM homomorphism f : M → N is monotone w.r.t. the natural order-
ings of M and N .

3.1.7 Definition. Let M be a PCM. A congruence on M is an equivalence relation ∼ such that
if a ∼ b and c ∼ d, then a+ c ∼ b+ d.

3.1.8 Proposition. Given any relation ∼ on a PCM M , there is a unique smallest congruence
∼∗ on M such that a ∼ b implies a ∼∗ b. This is called the congruence generated by ∼.

3.1.9 Proposition. A relation ∼ on a PCM M is a congruence if and only if there is a com-
mutative monoid N and a PCM homomorphism f : M → N such that a ∼ b if and only if
f(a) = f(b).

In fact, we can make a stronger statement; the first of the universal properties we need.

3.1.10 Proposition. If ∼ is a congruence on a PCM M , then there is a PCM M/∼, unique up
to isomorphism, and a homomorphism q : M → M/∼ with the following universal property. If N
is a PCM and f : M → N is a homomorphism such that a ∼ b implies f(a) = f(b), then there is
a unique homomorphism f̄ : M/∼ → N such that f = f̄ ◦ q.

The PCM M/∼ is called the quotient PCM of M by ∼ and the homomorphism q is the quotient
map. We can state this proposition in another way: there is a natural bijection between the set of
PCM homomorphisms M → N that are constant on the ∼-congruence classes and the set of PCM
homomorphisms M/∼ → N . This is a good perspective on universal properties to keep in mind.

3.1.11 Proposition. If M is a PCM, then there is a total commutative monoid M , called the
enveloping monoid of M , together with an injective PCM homomorphism i : M → M such that if
N is any total commutative monoid and f : M → N is a PCM homomorphism, then there is a
unique PCM homomorphism f̄ : M → N such that f = f̄ ◦ i.

Proof. See [Weh17], Section 2.1.

The universal property necessitates that M is generated as a monoid by the image of M under i.
More precisely, every element a ∈M is of the form a =

∑
j i(aj) with aj ∈M for all j. We think

of M as the commutative monoid of formal sums of elements of M , where we identify formal sums
with the result of that sum in M whenever this is defined.

3.1.12 Proposition. For all a, b ∈M we have a ≤ b if and only if i(a) ≤ i(b).

16



Proof. By Proposition 3.1.6 we have that a ≤ b implies i(a) ≤ i(b). For the other direction, define
the total commutative monoid M⊔∞ as the set M ∪{∞} (where ∞ /∈M) with addition ⊕ defined
as a⊕b = a+b whenever a, b ∈M are such that a+b is defined, and a⊕b = ∞ if not. Additionally,
e ⊕ ∞ = ∞ for all e ∈ M⊔∞. This operation is clearly associative and 0 ∈ M serves as its unit
element.

The inclusion function f : M →M⊔∞ is a PCM homomorphism. By the universal property of M ,
there is a homomorphism f̄ : M →M⊔∞ such that f = f̄ ◦ i. Assume that a, b ∈M are such that
a ≰ b. There is no c ∈M such that a+c = b, hence there is no e ∈M⊔∞ such that f(a)⊕e = f(b).
It follows that i(a) ≰ i(b) in M , because otherwise we can again use Proposition 3.1.6 to derive
f(a) ≤ f(b) in M⊔∞.

This shows that in fact the homomorphism i : M → M is an order embedding. We can now
shamelessly identify the entire structure of M with its image in M under i.

3.1.13 Proposition. If M is sharp, positive, or cancellative, then so is M .

3.1.14 Proposition. If M is a PCM, then there is a group Mgr, unique up to isomorphism,
called the Grothendieck group of M , and a PCM homomorphism gr : M → Mgr such that if G
is any abelian group and f : M → G is a PCM homomorphism, then there is a unique group
homomorphism f̄ : Mgr → G such that f = f̄ ◦ gr. If M is cancellative, then gr is injective.

Proof. For total commutative monoids this result is well-known, and we will not prove it. We can
extend the idea of the Grothendieck group to PCMs rather easily; simply take the Grothendieck
group of the enveloping monoid ofM . If G is an abelian group, then the enveloping monoid gives us
a natural bijection between the PCM homomorphisms M → G and the homomorphisms M → G.
Taking the Grothendieck group in turn gives us a bijection to the homomorphisms M

gr → G, so
if we compose these bijections we get the desired universal property.

We will use the notation ‘gr’ to refer to both canonical PCM homomorphisms gr : M → Mgr and
gr : M →Mgr.

In general Mgr will be generated by the elements of M , in the sense that every element x ∈ Mgr

is of the form x = gr(a)− gr(b) for a, b ∈ M . If M is cancellative (so M is too), however, we can
identify M with the subset of Mgr consisting of the images of elements of M under gr. In this case
we say that every element of Mgr is of the form a− b with a, b ∈M .

3.1.15 Definition. A partially ordered abelian group or pogroup is an abelian group G with a
partial order ⪯ defined on it such that for all x, y, z ∈ G we have that x ⪯ y implies x+ z ⪯ y + z
(this property is called translation invariance).

3.1.16 Definition. Let G be a pogroup. Its positive cone is the set G⪰0 := {x ∈ G : 0 ⪯ x}.

3.1.17 Proposition. In a pogroup G, we have x ≤ y if and only if y − x ∈ G⪰0.

The positive cone of a pogroup is closed under addition. In fact, the set G⪰0 forms a commutative
monoid.

3.1.18 Proposition. If G is an abelian group and P ⊂ G is a sharp submonoid, then there is a
unique ordering ⪯ on G that makes G into a pogroup such that P = G⪰0.

Proof. For x, y ∈ G we define x ⪯ y to mean that y − x ∈ P . Reflexivity follows from the fact
that 0 ∈ P . For transitivity, assume that x ≤ y and y ≤ z. Then z − x = (y − x) + (z − y) ∈ P ,
so x ≤ z. For antisymmetry, assume that x ≤ y and y ≤ x. Then x − y ∈ P and y − x ∈ P , so
0 = (x− y) + (y − x) ∈ P . Because P is sharp it follows that x− y = 0, so x = y. For translation
invariance let x, y, z ∈ G with x ⪯ y. Then (y + z)− (x+ z) = y − x ∈ P , so x+ z ⪯ y + z. The
fact that ⪯ is the unique such ordering follows from Proposition 3.1.17.

3.1.19 Definition. If M is a sharp cancellative PCM, then we define ≤ on Mgr to be the unique
partial ordering on Mgr such that Mgr

≥0 =M . We will also call this the natural ordering of Mgr.
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3.1.20 Proposition. The ordering ≤ on Mgr extends the ordering ≤ on M . That is, for a, b ∈M
we have that a ≤ b ∈M if and only if a ≤ b in Mgr.

Proof. Recall that we identified M with its image in Mgr under the universal homomorphism
gr: M → Mgr. The statement that ‘b − a ∈ M ’ should technically be read as ‘there is a c ∈ M
such that gr(b)− gr(a) = gr(c)’. Equivalently, gr(a) + gr(c) = gr(b). Because M is a total monoid
it follows that gr(a + c) = gr(b). Because M is cancellative we have that gr is injective, hence
a+ c = b and we are done.

This shows that we are free to use the symbol ‘≤’ for both the natural ordering on M and M as
well as for this ordering on Mgr without risking any ambiguity.

3.2 Addition of s.c. classes

Recall from Corollary 2.4.15 that scissors congruence is an equivalence relation. We will study the
set of all equivalence classes under scissors congruence.

3.2.1 Definition. Let SC(F , G) or simply by SC in context denote the set of ≃-equivalence classes
of (F , G). Its elements are called s.c. classes and we will denote them by the letters α, β, γ, etc.
If P ∈ F is a figure, we will denote its s.c. class as Scis(P ) ∈ SC.

A natural observation to make is that disjoint unions of scissors congruent figures are scissors
congruent, so P1 ⊔ Q1 ≃ P2 ⊔ Q2 if P1 ≃ P2 and Q1 ≃ Q2. Recall that in these expressions the
symbol ⊔ implicitly states that P1 ∩Q1 = P2 ∩Q2 = [∅].

3.2.2 Definition. Let α, β ∈ SC be s.c. classes. If there are figures P ∈ α and Q ∈ β such that
P ∩Q = [∅], then we define the sum of s.c. classes as α+ β := Scis(P ⊔Q).

Note that the sum of two s.c. classes is not always defined. As a simple example, consider the
Euclidean s.c. structure on R where R(F) = {R, ∅} and G = {idR}. We cannot find two disjoint
representatives of Scis([R]), because [R] is its only representing figure.

3.2.3 Proposition. Let (F , G) be an s.c. structure. Then SC is a sharp PCM with + as addition
and 0 = Scis([∅]). We call SC the natural monoid of (F , G).

3.2.4 Definition. An s.c. structure (F , G) is called accommodating if for any α, β ∈ SC the sum
α+ β is defined.

We will mostly restrict ourselves to studying accommodating s.c. structures, but this is no great
loss. First of all, any s.c. structure on Rn such that all of its figures are bounded and such that
its group of transformations contains all translations will be accommodating, as two figures can
always be translated far enough away from each other so as to be disjoint.

3.2.5 Proposition. If (F , G) is an s.c. structure on Rn such that Tn ⊂ G and every figure in F
is bounded, then (F , G) is accommodating.

Proof. What we need to show is that if P,Q ∈ F , then there are figures P ′ ≃ P and Q′ ≃ Q such
that P ′∩Q′ = [∅]. Because P and Q are bounded, there is a real number r > 0 such that P and Q
both have representatives that are contained in an n-sphere with radius r centered at the origin.
Let P ′ be the figure attained by translating P in some direction by a distance of r and let Q′ be
the figure attained by translating Q in the opposite direction by the same distance. Then P ′ and
Q′ are disjoint figures s.c. to P and Q respectively.

3.2.6 Corollary. Regular Euclidean s.c. structures are accommodating.

Secondly, we can perform a simple construction to freely extend any s.c. structure to an accom-
modating one in a way that loses little information about the original space, as in the following
proposition.
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3.2.7 Definition. Let X be a set, and let (F , G) be an s.c. structure on X. We define the
accomodating extension of (F , G) to be the s.c. structure (F , G) on the set X := X×N as follows.

We let R(F) be generated by sets of the form A×{n} with A ∈ R(F) and n ∈ N, and analogously
for N (F). We let G be the direct product of G and the symmetric group on N. More precisely,
the transformations g ∈ G are of the form g(x, n) = (h(x), f(n)), where h ∈ G and f : N → N is
a bijection. In particular we can take h to be the identity transformation, so the functions that
simply permute the copies of X in X are transformations.

3.2.8 Proposition. If (F , G) is an s.c. structure on X and (F , G) is its accomodating extension,
then (F , G) is an accomodating s.c. structure and SC(F , G) is canonically isomorphic to SC(F , G),
the enveloping monoid of SC(F , G).

Proof. Note that if A ∈ R(F) is some figure representative, then there will be a finite subset S ⊂ N
such that all of the n-coordinates of the points of A lie in S. It follows that if A,B ∈ R(F) are
disjoint figure representatives, then we can find some B′ congruent to B that lives on a different
finite subset of n-coordinates from A, so A and B′ are disjoint. This shows that indeed (F , G) is
accommodating.

We can identify F with a subclass of F by identifying X with the set X × {0}. This gives us a
PCM homomorphism f : SC(F , G) → SC(F , G). Let i : SC(F , G) → SC(F , G) be the canonical
embedding. By the universal property of the enveloping monoid we get a homomorphism from
f̄ : SC(F , G) → SC(F , G) such that f = f̄ ◦ i. It is not too hard to see that SC(F , G) is generated
as a monoid by the image of SC(F , G) under f , so f̄ is surjective.

The following argument for the injectivity of f̄ is essentially a special case of the proof of Proposition
2.2.4 of [Weh17]. Note that figures [A × {0}] and [B × {0}] are G-congruent if and only if A and
B are G-congruent, so the same holds for scissors congruence. It follows that f is injective. Let
α, β ∈ SC(F , G) be such that f̄(α) = f̄(β), and let (αj)j∈J , (βk)k∈K be finite sequences such that
α =

∑
j i(αj), β =

∑
k i(βk), and αj , βk ∈ SC(F , G) for all j, k.

We have that f̄(α) =
∑

j f(αj) =
∑

k f(βk) = f̄(β). Let P ∈ F be such that Scis(P ) = f̄(α).

There are finite sequences (Qj)j∈J and (Rk)k∈K of figures of F such that Scis(Qj) = f(αj) for all
j ∈ J , Scis(Rk) = f(βk) for all k ∈ K, and P =

⊔
j Qj =

⊔
k Rk. By the Refinement Lemma, there

are Sj,k ∈ F such that Qj =
⊔

k Sj,k and Rk =
⊔

j Sj,k for all j, k. Each Scis(Qj) and Scis(Rk) is
in the image of f , so the Scis(Sj,k) must also be in the image of f , because they are subfigures of
the Qj and Rk. So there are disjoint figures S′

j,k ∈ F such that f(Scis(S′
j,k)) = Scis(Sj,k). We get

that
f
(
Scis

(⊔
k

S′
j,k

))
= f

(∑
k

Scis(S′
j,k)

)
=

∑
k

f(Scis(S′
j,k)) = Scis(Qj) = f(αj),

f
(
Scis

(⊔
j

S′
j,k

))
= f

(∑
j

Scis(S′
j,k)

)
=

∑
j

f(Scis(S′
j,k)) = Scis(Rk) = f(βk),

for all j, k. By injectivity of f we have Scis
(⊔

k S
′
j,k

)
= αj and Scis

(⊔
j S

′
j,k

)
= βk, so

α =
∑
j

i(αj) =
∑
j,k

i(Scis(S′
j,k)) =

∑
k

i(βk) = β,

so f̄ is an isomorphism.

In other words, the enveloping monoid of the natural monoid of an s.c. structure is again the
natural monoid of an s.c. structure. Note that if (F , G) was already accomodating then its natural
monoid is canonically isomorphic to the natural monoid of its accomodating extension; no new
information is gained.

3.2.9 Proposition. Consider the natural ordering of SC. We have α ≤ β if and only if there are
figures P,Q ∈ F such that Scis(P ) = α, Scis(Q) = β, and P ⊂ Q.
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Proof. Assume that there are such figures P and Q. Defining γ := Scis(Q \ P ), we get α + γ =
Scis(P ) + Scis(Q \ P ) = β, so α ≤ β. Now assume that there is a γ ∈ SC such that α + γ = β.
Let P,Q,R be such that Scis(P ) = α, Scis(Q) = β, Scis(R) = γ, and P ∩R = [∅]. By assumption
there is a scissors congruence ϕ from P ⊔R to Q. Then ϕ(P ) ⊂ Q, which is all we need.

3.2.10 Definition. Let IntRay be the subclass of UPol1 generated by the rays (n,∞) for n ∈ Z. If
Te is the infinite cyclic group of transformations consisting of translations by even integers, then
(IntRay, Te) is a Euclidean s.c. structure on R.

3.2.11 Proposition. The natural ordering of SC(IntRay, Te) is not antisymmetric.

Proof. In this scissors congruence we have [(2n,∞)] ≃ [(2k,∞)] for any n, k ∈ Z. However,
[(0,∞)] ̸≃ [(1,∞)]. Letting α = Scis([(0,∞)]), β = Scis([(1,∞)]), γ = Scis([(1, 2)]), and δ =
Scis([(0, 1)]), we get α + γ = β and β + δ = α, so α ≤ β and β ≤ α. Because α ̸= β we conclude
that ≤ is not antisymmetric.

3.2.12 Definition. If α, β are s.c. classes such that α ≤ β and β ≤ α we say that they are
order equivalent. Conversely, we interpret α < β to mean that α ≤ β and β ̸≤ α (only if ≤ is
antisymmetric is this equivalent to α ≤ β and α ̸= β).

3.2.13 Examples. The following examples of s.c. structures and their natural monoids are rela-
tively simple to characterize; we leave the verification to the reader.

∗ If F contains only the empty figure, then SC is the trivial monoid.

∗ Let IntSeg be the subclass of Pol1 generated by the integer intervals [n, n+ 1] for n ∈ Z. Let
Tint be the group of integer translations of R. The figures of IntSeg may be classified up to
scissors congruence by how many intervals of length 1 they contain. The natural monoid SC
is isomorphic to the additive monoid of natural numbers N with its usual ordering.

∗ Consider (Pol1, E1), the scissors congruence of line segments. Any line segment P ∈ Pol1
is s.c. to a figure represented by an interval [0, ℓ] ⊂ R, where ℓ ∈ R≥0 is the total length of
the intervals that make up P . It follows that SC is isomorphic to the additive monoid of
non-negative real numbers [0,∞) with its usual ordering.

If our s.c. structures satisfy the regularity properties of being affine or Euclidean, we can relate the
natural monoid of s.c. classes to the real numbers under addition via the usual Lebesgue measure.

3.2.14 Definition. Let Rn be an arbitrary Euclidean space and let µ denote the Lebesgue measure
on Rn. If (F , G) is an s.c. structure on Rn with F ≤ Boreln, then we may define the Lebesgue
measure on figures of F by setting µ([A]) := µ(A). Moreover, if (F , G) is Euclidean, then we can
define µ even on s.c. classes of SC by setting µ(Scis(P )) := µ(P ).

3.2.15 Proposition. The measure functions given in the previous definition are well-defined given
the respective assumptions on (F , G). Additionally, if P,Q ∈ F are disjoint then µ(P ⊔ Q) =
µ(P ) + µ(Q), and if α, β ∈ SC are such that α+ β is defined then µ(α+ β) = µ(α) + µ(β).

Proof. Assume that (F , G) is such that F ≤ Boreln. Every figure representative A ∈ R(F) is
Lebesgue-measurable, and N (F) consists of exactly the figure representatives N ∈ R(F) such that
µ(N) = 0. From this it follows that µ([A]) := µ(A) is well-defined. Recall that figures P and Q
are disjoint if and only if they have representatives A and B such that A and B are disjoint as
sets. It follows from the additivity of the Lebesgue measure that

µ(P ⊔Q) = µ(A ∪B) = µ(A) + µ(B) = µ(P ) + µ(Q).

If (F , G) is additionally Euclidean then G is contained in the Euclidean group; every g ∈ G is an
isometry. Isometries preserve Lebesgue measure. Recall that P and Q are scissors congruent (so
Scis(P ) = Scis(Q)) if and only if there are decompositions P = P1⊔· · ·⊔Pn and Q = Q1⊔· · ·⊔Qn

and transformations g1, . . . , gn ∈ G such that gi(Pi) = Qi for all i. If this is the case then

µ(P ) = µ(P1 ⊔ · · · ⊔ Pn) = µ(P1) + · · ·+ µ(Pn) = µ(Q1) + · · ·+ µ(Qn) = µ(Q),
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so µ(Scis(P )) := µ(P ) is well-defined.

Lastly, if α, β ∈ SC are such that α+β is defined, then by definition there are disjoint figures P,Q
with Scis(P ) = α and Scis(Q) = β, so

µ(α+ β) = µ(P ⊔Q) = µ(P ) + µ(Q) = µ(α) + µ(β). □

In other words, if (F , G) is Euclidean then µ will be a PCM homomorphism from SC to the
additive monoid [0,∞] of extended non-negative real numbers.

3.2.16 Proposition. If (F , G) is Euclidean, then for α, β ∈ SC it holds that if α < β, then
µ(α) ≤ µ(β). This inequality is strict if µ(β) <∞.

Proof. Let α, β be s.c. classes such that α < β. By definition there is a γ > 0 such that α+ γ = β,
so µ(α) + µ(γ) = µ(β). It follows that µ(α) ≤ µ(β). If µ(β) <∞, then µ(α), µ(γ) <∞ as well, so
it follows that µ(γ) > 0, hence µ(α) < µ(β).

Moreover, if (F , G) is regular Euclidean we get a much stronger result.

3.2.17 Theorem. If (F , G) is regular Euclidean, then α, β ∈ SC it holds that α < β if and only
if µ(α) < µ(β).

Proof. Assume that µ(α) < µ(β). Let A,B ∈ R(F) be bounded figure representatives such that
Scis([A]) = α and Scis([B]) = β. For p ∈ N, we will say that an 2−p-cubelet is a figure representative
in R(Orthn) of the form[

a1 · 2−p, (a1 + 1) · 2−p
]
× · · · ×

[
an · 2−p, (an + 1) · 2−p

]
for (a1, . . . , an) ∈ Zn. That is, the 2−p-cubelets are exactly the closed 2−p × · · · × 2−p cubes
whose vertex coordinates are integer multiples of 2−p. Note that any two distinct 2−p-cubelets
represent disjoint figures, and because G contains all translations, any two (figures represented
by) 2−p-cubelets are congruent. For an arbitrary figure representative D ∈ R(F), let C in

p (D)
denote the union of all 2−p-cubelets that are contained in D, and let Cout

p (D) denote the union

of all 2−p-cubelets that intersect D. Note that for all p ≥ 0 we have C in
p (D) ⊂ D ⊂ Cout

p (D).

Moreover, if p1 ≤ p2, then C in
p1
(D) ⊂ C in

p2
(D) and Cout

p1
(D) ⊃ Cout

p2
(D), because a 2−p-cubelet is

the interior-disjoint union of exactly 2n-many 2−(p+1)-cubelets. If D is bounded, so are C in
p (D)

and Cout
p (D).

If D ⊂ Rn is Jordan measurable and bounded, then

lim
p→∞

µ
(
C in

p (D)
)
= µ(D) = lim

p→∞
µ
(
Cout

p (D)
)
<∞,

so because F ≤ Bounded(Jordann) this applies to our case. Let ε > 0 be a positive real number
such that ε < (µ(B)−µ(A))/2. It follows from the above equation that there are pA, pB such that
µ(Cout

pA
(A)) ≤ µ(A) + ε and µ(C in

pB
(B)) ≥ µ(B)− ε. Let p := max(pA, pB). We find that

µ
(
Cout

p (A)
)
≤ µ

(
Cout

pA
(A)

)
≤ µ(A) + ε < µ(B)− ε ≤ µ

(
C in

pB
(B)

)
≤ µ

(
C in

p (B)
)
.

However, we know that Cout
p (A) and C in

p (B) are simply interior-disjoint unions of uniformly sized

cubelets, each of measure 2−pn, so the above inequality shows that C in
p (B) must simply be made

out of strictly more cubelets. Because G contains all translations it follows that there is a scissors
congruence between [Cout

p (A)] and a strict subfigure of [C in
p (B)], so

α ≤ Scis
(
[Cout

p (A)]
)
< Scis

(
[C in

p (B)]
)
≤ β. □
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Figure 2: A simple scissors congruence.

3.3 Regularity properties and Zylev’s theorem

Let us think again about the early geometer. They have shown that a square is scissors congruent
to an isosceles right triangle whose perpendicular sides are the same length as the square’s diagonal,
from which they conclude that the two figures have the same area content (see Figure 2).

They conceive of another method to show that two figures are equal in area. If we have two figures
P,Q and we can find a third figure T disjoint from both such that P ⊔ T ≃ Q ⊔ T then we can
also conclude that P and Q have equal area. Indeed, Euclid uses this method to show that two
parallelograms of equal height on equal bases have the same area ([Euc], Book 1, Proposition 35).
We can also use this technique to prove the Pythagorean theorem, as in Figure 3. Thinking of the
area content of a figure as a real number value, this argument makes an appeal to the cancellative
property of the additive monoid of non-negative real numbers. When does this same property hold
for the natural monoid SC of scissors congruence classes? As it turns out, if we impose some fairly
weak conditions on our scissors congruence relation we can give a constructive method for turning
such a proof of area equality into a scissors congruence.

3.3.1 Definition. Two figures P and Q are said to be directly equicomplementable if there are
s.c. figures T1 ≃ T2 such that P ⊔ T1 ≃ Q ⊔ T2. They are equicomplementable if there is a finite
sequence of figures R1, . . . , Rn such that R1 = P , Rn = Q, and Rk is directly equicomplementable
with Rk+1 for all 1 ≤ k < n. In short, equicomplementability is the transitive closure of direct
equicomplementability.

Note that scissors congruent figures are directly equicomplementable (where T1 = T2 = [∅]), so
equicomplementability is a priori a coarser relation.

A

B

C

Figure 3: A “visual proof” of the Pythagorean theorem. It shows that the sum of the squares of
the right sides of a right triangle A ⊔B is directly equicomplementable with the square of the
hypotenuse C. Note that A ⊔B and C are directly equicomplementable even if G = T2, the

group of translations of the plane.

3.3.2 Definition. An s.c. structure (F , G) is called cancellative if for all figures P,Q it holds that
P and Q are equicomplementable if and only if they are scissors congruent.

We will want to abstract cancellativity and the following related properties to the level of the
natural monoid. We do this now explicitly for cancellativity but we will state the other equivalences
without retracing a very similar proof.

3.3.3 Lemma. An s.c. structure (F , G) is cancellative if and only if for all α, β, γ ∈ SC we have
that if α + γ = β + γ, then α = β. In other words, (F , G) is cancellative if and only if SC is
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cancellative as a PCM.

Proof. Assume that (F , G) is cancellative and let α, β, γ ∈ SC be such that α + γ = β + γ.
Let S ∈ α + γ be arbitrary. By definition there are P ∈ α, Q ∈ β, and R1, R2 ∈ γ with
S ≃ P ⊔R1 ≃ Q⊔R2. Again by definition we find that P and Q are (directly) equicomplementable,
so by cancellativity they are scissors congruent. Hence, α = β.

Now assume that for all α, β, γ ∈ SC we have that if α + γ = β + γ, then α = β. Let P,Q be
equicomplementable figures. Let R1, . . . , Rn be such that P = R1, Q = Rn, and Rk and Rk+1

are directly equicomplementable for all k. Let k be arbitrary and let T1, T2 be scissors congruent
figures such that Rk ⊔ T1 ≃ Rk+1 ⊔ T2. Let γ = Scis(T1) = Scis(T2). We have

Scis(Rk) + γ = Scis(Rk ⊔ T1) = Scis(Rk+1 ⊔ T2) = Scis(Rk+1) + γ,

so by assumption we have Scis(Rk) = Scis(Rk+1), so Rk ≃ Rk+1. It follows inductively that P
and Q are scissors congruent, so (F , G) is cancellative.

We define the following auxiliary properties.

3.3.4 Definition. An s.c. structure (F , G) is positive if for all P,Q ∈ F we have that if Q ⊂ P
and Q ≃ P , then Q = P . In other words, no figure is s.c. with a strict subfigure.

Indeed (F , G) being positive coincides with SC(F , G) being positive in the sense of Definition
3.1.2.

3.3.5 Definition. For figures P and Q, we say that P is larger than twice Q if there is a subfigure
Q′ ⊂ P s.c. to Q and whenever Q1 ⊂ P is s.c. to Q then there exists a Q2 ⊂ P s.c. to Q such that
Q1 ∩Q2 = [∅].

3.3.6 Definition. An s.c. structure (F , G) is uniform if for all non-empty figures P,Q there is a
decomposition Q = Q1 ⊔ · · · ⊔Qn such that P is larger than twice Qi for all I.

The algebraic equivalent of uniformity is that for all non-zero α, β ∈ SC there are β1, . . . , βn ∈ SC
with β = β1 + · · ·+ βn such that for all i we have α ≥ βi and if γi is such that βi + γi = α, then
βi ≤ γi.

Remark. Algebraically it might seem sensible to say that α is larger than twice β if α ≥ β + β.
This is a strictly weaker property than the one we have defined. Consider the additive monoid of
cardinal numbers no greater than ℵ0. In the weaker definition we have that ℵ0 is larger than twice
itself, because ℵ0 + ℵ0 = ℵ0. In the stronger definition it is not, because we have ℵ0 + 0 = ℵ0, yet
ℵ0 ≰ 0.

The following theorem originated in [Zyl65].

3.3.7 Zylev’s Theorem. If an s.c. structure is positive and uniform then it is cancellative.

We will adapt the proof of Zylev’s Theorem from [Sah79]. This proof rests upon the following
somewhat technical lemma, which holds without any assumptions on the s.c. structure.

3.3.8 Lemma. If P and Q are figures that are directly equicomplementable in such a way that
there are figures R1, . . . , Rt, S1, . . . , St such that P ⊔R1 ⊔ · · · ⊔Rt ≃ Q⊔S1 ⊔ · · · ⊔St, and Ri ≃ Si

for all i, and such that P is larger than twice each Ri, then P and Q are scissors congruent.

Proof. Let P† and Q† be figures. We will call a tuple P,Q,R1, . . . , Rt, S1, . . . , St such that P† ≃ P ,
Q† ≃ Q, P ⊔R1⊔· · ·⊔Rt ≃ Q⊔S1⊔· · ·⊔St, and P is larger than twice each Ri a complementation
of length t for P† and Q†. The figures P ⊔ R1 ⊔ · · · ⊔ Rt and Q ⊔ S1 ⊔ · · · ⊔ St we will call the
dominant figures for this complementation. A complementation of length 0 is just a pair P,Q such
that P† ≃ P ≃ Q ≃ Q†, so it guarantees a scissors congruence between P† and Q†. The statement
of the lemma is exactly that if P† and Q† have some complementation of length t, then they are
scissors congruent. We will show that if P† and Q† have a complementation of length t > 0, then
there is also a complementation of length t − 1, so by induction it will follow that P† and Q† are
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P†

R

Q†

S

Figure 4: We will demonstrate the algorithm of Lemma 3.3.8 using this example, Proposition 35
from Book 1 of Euclid’s Elements [Euc]. The parallellograms P† and Q† are on equal bases and of

equal heights. The congruent triangles R and S are added to them, resulting in scissors
congruent figures P† ⊔R and Q† ⊔ S. This is a complementation of length 1, because P and Q
are larger than twice R and S. The dashed line indicates where to cut the figures to make a

decomposition that witnesses the scissors congruence.

scissors congruent. The following algorithm has 3 steps. The process is illustrated by the Figures
4 through 8.

Step 1 : We want to have that P ⊔R1⊔· · ·⊔Rt = Q⊔S1⊔· · ·⊔St (i.e. we want the dominant figures
to be equal, rather than merely scissors congruent). By assumption, there is a scissors congruence
ϕ from P ⊔R1 ⊔ · · · ⊔Rt to Q⊔ S1 ⊔ · · · ⊔ St, so by the definition of subfigure correspondences we
get

ϕ(P ) ⊔ ϕ(R1) ⊔ · · · ⊔ ϕ(Rt) = Q ⊔ S1 ⊔ · · · ⊔ St.

If we simply replace P with ϕ(P ) and each Ri with ϕ(Ri) then we get a complementation of length
t such that the dominant figures are equal. Let W be the dominant figure.

P

R1

Q

S1

Figure 5: After Step 1 of Lemma 3.3.8, we have a new complementation of length 1 for P† and
Q†, where the dominant figures are equal. We have P = ϕ(P†) and Q = Q†. The dashed lines
show that the figures R1 = ϕ(R) and S1 = S are not disjoint, so we need to apply Step 2.

Step 2 : If R1 and S1 are disjoint (or if another pair Ri and Si are disjoint, rename them to R1

and S1), then go to Step 3. If not, let R = R1 ⊔ · · · ⊔ Rt. By assumption P is larger than twice
S1, so there is a figure T ⊂ P \ S1 that is scissors congruent to S1, so also to R1. Let ψ be a fixed
scissors congruence between S1 and T . Let U = S1 ∩ R. The figure U is the ‘overlap’ that we
need to eliminate in order to reduce the length of the complementation. We have a decomposition
U = U1 ⊔ · · · ⊔ Ut where Ui = S1 ∩Ri for all i. Define U ′

i = ψ(Ui) for each i. Additionally, define
U ′ = ψ(U) = U ′

1 ⊔ · · · ⊔ U ′
t .

So, we have a new decomposition of the dominant figure W = P ′ ⊔ R′
1 ⊔ · · · ⊔ R′

t where P ′ =
(P \ U ′) ⊔ U and R′

i = (Ri \ Ui) ⊔ U ′
i . In other words, to make P ′ from P we subtract a subfigure

s.c. to U = S1 ∩R = S1 \ P and attach it to the Ri, after which we remove U from R and attach
it to P . Crucially, we now have that S1 and R′

1 are disjoint, because S1 ⊂ P ′. We now rename P ′

to P and the R′
i to Ri, as they will form the parts of our new complementation.

Step 3 : We know that R1 and S1 are disjoint. We also know that they are scissors congruent, so

W \R1 = S1 ⊔ (W \ (R1 ⊔ S1)) ≃ R1 ⊔ (W \ (R1 ⊔ S1)) =W \ S1.
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P ′

R′
1

U

U ′

Q

S1

Figure 6: After Step 2 of Lemma 3.3.8, we have a complementation of length 1 for P† and Q†
where the added figures R′

1 and S1 are disjoint. We can now apply Step 3.

In other words, P,Q,R2, . . . , Rt, S2, . . . , St is a complementation of length t − 1 for P† and Q†.
This is all that needed to be shown.

Figure 7: After Step 3 of Lemma 3.3.8, we have a scissors congruence from a figure that is
scissors congruent with P† to Q†.

Figure 8: Reflecting back the scissors congruence of Figure 7 to P†, we get a pair of
decompositions that witnesses the fact that P† ≃ Q†. Note that, in the constructed scissors

congruence, the small triangle in the central hexagon does not get exchanged with the
corresponding small triangle in the other parallellogram. Rather, the central triangle gets

swapped with the one in the corner. This is not necessary to make a scissors congruence; it is an
artifact of the construction.

Proof. (Zylev’s Theorem) Assume (F , G) is positive and uniform. By transitivity, it is enough to
show that if P and Q are directly equicomplementable figures, then they are scissors congruent.

Let P,Q,R, S be figures such that R ≃ S and P ⊔ R ≃ Q ⊔ S. If P is empty then R is s.c.
with both S and Q ⊔ S, so by positivity it must be that Q is empty, so P and Q are scissors
congruent. Assume P is nonempty. By uniformity (and taking the common refinement of the
decomposition guaranteed by uniformity with a decomposition witnessing the scissors congruence)
there are decompositions R = R1 ⊔ · · · ⊔Rt and S = S1 ⊔ · · · ⊔ St with Ri congruent to Si for all
i, and P larger than twice each Ri. These are precisely the hypotheses for Lemma 3.3.8, so we
conclude that P and Q are scissors congruent.
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Note that the proof of Lemma 3.3.8 is rather geometric, in the sense that we manipulate individual
figures in such a way as to make them disjoint. This seems to suggest that there ‘is no algebraic
proof’ of Zylev’s theorem. This may be formalized in the following theorem, which states that a
similar algebraic result is simply not true.

3.3.9 Theorem. There is a sharp commutative monoid M equipped with its natural ordering such
that

∗ for all α, β ∈M , if α+ β = α, then β = 0.

∗ if α, β ∈M are non-zero, then there are β1, . . . , βn ∈M such that β = β1 + · · ·+ βn and for
all i we have α ≥ βi and if γi is such that βi + γi = α, then βi ≤ γi.

∗ there are α, β, γ ∈M such that α+ γ = β + γ, but α ̸= β.

Proof. Let M :=
(
(0,∞)× (0, 1]

)
∪ {0}, with addition defined on nonzero elements as

(x, y) + (z, w) := (x+ z,min(1, y + w)).

Then M is a sharp commutative monoid.

For positivity, let α, β ∈M be such that α+β = α. If β = 0 then we have shown what we need to,
and if α = 0 then it follows immediately that β = 0, so we can assume for the sake of contradiction
that both α and β are nonzero. Because they are non-zero they are of the form α = (x, y) and
β = (z, w). We have

(x, y) = (x, y) + (z, w) = (x+ z,min(1, y + w)),

so x = x+ z, which contradicts that z > 0. We conclude that α+ β = α implies β = 0.

For uniformity, let α, β ∈M be non-zero. Again, let α = (x, y) and β = (z, w). Letm1 := 2·⌈ z
x+1⌉

and m2 := 2 · ⌈w
y + 1⌉, where ⌈·⌉ denotes the ceiling function that maps a real number r onto the

smallest integer that is not smaller than r. Let n := max(m1,m2) and define

γ :=
( z
n
,
w

n

)
.

We have β = γ + · · ·+ γ, where this is a sum of n terms. Moreover,

γ + γ =

(
2z

n
,min

(
1,

2w

n

))
.

It follows that
2z

n
=

2z

max(2 · ⌈ z
x + 1⌉, 2 · ⌈w

y + 1⌉)
≤ z

⌈ z
x + 1⌉

<
z
z
x

= x,

and likewise

min

(
1,

2w

n

)
≤ 2w

n
< y.

Let δ :=
(
x− z

n , y −
w
n

)
. Note that both coordinates are positive and the second is no greater

than 1. We have γ + δ = α, hence γ ≤ α. Now let δ′ ∈ M be an arbitrary element such that
γ + δ′ = α. All we need to show is that γ ≤ δ′. We know for a fact that δ′ is non-zero, so let
δ′ = (v, u). Necessarily we have v = x− z

n . If u < y − w
n , then γ + δ′ < α, so u ∈

[
y − w

n , 1
]
. We

have w
n ≤ y − w

n , so certainly w
n ≤ u. We conclude that γ ≤ δ′, hence α is larger than twice γ as

required.

Finally, we have (1, 1)+(1, 1) = (2, 1) = (1, 12 )+(1, 1), but (1, 1) ̸= (1, 12 ), so M is not cancellative.

3.3.10 Corollary. There are sharp commutative monoids that are not the natural monoid of some
scissors congruence structure.

26



As an aside, this is far from the easiest way to prove Corollary 3.3.10. Any natural monoid of an
s.c. structure is what’s known as a refinement monoid (see [Weh17]); such commutative monoids
satisfy the property that if x1+ · · ·+xn = y1+ · · ·+yk, then there exist zi,j such that xi =

∑
j zi,j

and yj =
∑

i zi,j for all 1 ≤ i ≤ n and 1 ≤ j ≤ k.

Clearly (F , G) being positive is necessary for the Zylev Property to hold, as any witness to the
failure of positivity also witnesses the failure of cancellativity. Uniformity is not strictly necessary,
as one of the example s.c. structures in 3.2.13 (the scissors congruence of integer intervals) is
not uniform but its natural monoid is isomorphic to the monoid of natural numbers N, which is
cancellative. In fact, we have the following alternative conditions for cancellativity to hold.

3.3.11 Lemma. If (F , G) is positive and α, β ∈ SC are distinct s.c. classes such that there exists
a γ ∈ SC with α+ γ = β + γ, then α and β are necessarily incomparable.

Proof. We can prove this algebraically. Assume that α, β, γ be such that α and β are comparable
and α + γ = β + γ. We may assume without loss of generality that β = α + δ. We then have
α + γ = α + δ + γ, so α + γ absorbs δ. By positivity it follows that δ = 0, so α = β. It follows
that if α and β distinct, then they must be incomparable.

3.3.12 Corollary. If (F , G) is positive and SC is linearly ordered by the natural ordering, then
it is cancellative.

3.3.13 Proposition. If (F , G) is positive, then ≤ is antisymmetric, but the converse does not
always hold.

Proof. If α, β are such that α ≤ β and β ≤ α, then there are γ, δ such that α+γ = β and β+δ = α.
It follows that α+ γ + δ = α, so γ + δ = 0, and by sharpness it follows that γ = δ = 0, so α = β.

For an example where the converse does not hold, let R(F) be the smallest σ-algebra on R that
contains the integer intervals [n, n + 1] with n ∈ Z. Let N (F) be the set of all subsets of Z. Let
SZ denote the symmetric group on Z, i.e. the group of all bijections Z → Z. We let G be the
group of transformations on R defined as follows. For x ∈ R, let ⌊x⌋ denote its integer part and
dx its fractional part, so x = ⌊x⌋ + dx, where ⌊x⌋ ∈ Z and dx ∈ [0, 1). We let G consist of all
transformations g of the form g(x) = σ(⌊x⌋) + dx, where σ ∈ SZ is some permutation. In short,
the elements of G simply permute the half-open integer intervals that make up R.

Much like the natural numbers example from 3.2.13, the figures of F may be characterized by the
cardinality of the set of integer intervals of length 1 they contain. In this case SC is isomorphic
to the monoid of all cardinal numbers smaller than or equal to ℵ0 under addition. Cardinals are
partially ordered, but ℵ0 + ℵ0 = ℵ0, so (F , G) is not positive.

3.3.14 Proposition. If (F , G) is accommodating, positive, and SC has a maximal element, then
SC = {0}.

Proof. If some class α is a maximal element of SC, then α+α ≤ α, so by positivity we must have
that α = 0. However, because every element is comparable to 0, it must be that β ≤ 0 holds for
every β ∈ SC, so SC = {0}.

One reason that Zylev’s theorem is so useful is that it shows that a lot of scissors congruence
structures on familiar classes of figures are cancellative.

3.3.15 Theorem. If (F , G) is a regular Euclidean s.c. structure on Rn, then it is positive and
uniform, hence cancellative.

Proof. Recall that µ denotes the Lebesgue measure on Rn, and that if (F , G) is Euclidean then it
is well-defined on s.c. classes (Proposition 3.2.15). For positivity, note that µ(α) = 0 if and only if
α = 0, so we can ‘pull back’ the positivity of the real numbers to SC. Explicitly, let α, β ∈ SC be
such that α+ β = α. Then

µ(α) = µ(α+ β) = µ(α) + µ(β),
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so µ(β) = 0, hence β = 0 as required.

For uniformity, let P,Q ∈ F be non-empty. Because (F , G) is regular Euclidean, we know that Q
is contained in a finite union of cubes of arbitrarily small size (recall the proof of Theorem 3.2.17).
Taking the measure of these cubes to be smaller than µ(P )/2, we find that we can decompose Q
into figures Q1, . . . , Qn such that µ(Qi) < µ(P )/2 for all i. By Theorem 3.2.17 it follows that in
fact if Ri is such that Scis(Qi) + Scis(Ri) = Scis(P ), then µ(Qi) < µ(Ri), so Scis(Qi) < Scis(Ri)
as required.

Consider the following construction, which is used in [Jes68] and [Zak16] to analyze scissors con-
gruence by algebraic means.

3.3.16 Definition. Let P be the free abelian group generated by all figures P ∈ F . Let E be the
subgroup of P generated by [∅], elements of the form (P ⊔ Q) − P − Q for P,Q ∈ F such that
P ∩ Q = [∅], and elements of the form P − Q if P is congruent to Q. For P ∈ F let [P ] denote
its congruence class in P/E (where technically this is the congruence class of the generator of P
corresponding to P ).

3.3.17 Proposition. Let (F , G) be an s.c. structure. Then there is an isomorphism from P/E to
SCgr that sends [P ] to gr(Scis(P )) for all P ∈ F .

Proof. Let f1 : F → P/E be given by f1(P ) = [P ], and let g1 : F → SCgr be given by g1(P ) =
gr(Scis(P )). First we will show that if P ≃ Q, then f1(P ) = f1(Q).

First we show that if P = P1 ⊔ · · · ⊔ Pn in F , then [P ] = [P1] + · · ·+ [Pn]. By induction it suffices
to show this for the case P = P1 ⊔ P2. Note that

[P ]− [P1]− [P2] = [(P1 ⊔ P2)− P1 − P2] = 0,

so [P ] = [P1] + [P2] as required.

Now we show that if P ≃ Q, then f1(P ) = [P ] = [Q] = f1(Q). Let the decompositions P =
P1 ⊔ · · · ⊔ Pn and Q = Q1 ⊔ · · · ⊔Qn be such that Pi is congruent to Qi for all i. Then [Pi] = [Qi]
for all i by definition, so

[P ] = [P1] + · · ·+ [Pn] = [Q1] + · · ·+ [Qn] = [Q].

So if P ≃ Q, then f1(P ) = f1(Q). It follows that this defines a function f2 : SC → P/E such that
f2(Scis(P )) = [P ].

If P,Q ∈ F are disjoint, then

f2(Scis(P ) + Scis(Q)) = f(Scis(P ⊔Q)) = [P ⊔Q] = [P ] + [Q] = f2(Scis(P )) + f2(Scis(Q)),

so together with the fact that f2(0) = 0 we find that f2 is a PCM homomorphism SC → P/E .
Because P/E is a group, this in turn defines a homomorphism f3 : SC

gr → P/E such that
f3(gr(Scis(P ))) = [P ]. This will be our isomorphism.

Now we show that g1 defines its inverse. The group P is the free abelian group generated by
the elements of F , so its universal property gives us a homomorphism g2 : P → SCgr such that
g2(P ) = gr(Scis(P )). Now we show that if E ∈ E , then g2(E) = 0. If E = [∅], then g2(E) =
gr(Scis([∅])) = 0 so we are done. If there are disjoint P,Q ∈ F such that E = (P ∪ Q) − P − Q,
then

g2(E) = gr(Scis(P ⊔Q))−
(
gr(Scis(P )) + gr(Scis(Q))

)
= 0.

We find that g2 maps the generators of E to 0, hence E is contained in the kernel of g2. It follows
that g2 defines a homomorphism g3 : P/E → SCgr such that g3([P ]) = gr(Scis(P )).

For all P ∈ F we have g3(f3(gr(Scis(P )))) = gr(Scis(P )) and f3(g3([P ])) = [P ], so because SCgr

and P/E are generated as groups by the gr(Scis(P )) and [P ] respectively it follows that f3 and g3
are inverse isomorphisms.
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3.3.18 Corollary. If (F , G) is cancellative, then for all P,Q ∈ F we have P ≃ Q if and only if
[P ] = [Q] in P/E.

Proof. Recall from Proposition 3.1.14 that SC embeds into SCgr if SC is cancellative. By the
isomorphism between P/E and SCgr the corollary follows.

3.4 Linear volume components and lateral groups

Recall Theorem 3.2.17; for s.c. classes α, β ∈ SC in a regular Euclidean s.c. structure we have
α < β if and only if µ(α) < µ(β), where µ is the Lebesgue measure. This means that the natural
ordering of SC is ‘almost linear’ in the following sense.

3.4.1 Proposition. If (F , G) is regular Euclidean, then for all α, β ∈ SC the following are
equivalent:

∗ µ(α) = µ(β).

∗ α and β are equal or incomparable.

∗ for all γ ∈ SC we have γ < α if and only if γ < β.

∗ for all γ ∈ SC we have α < γ if and only if β < γ.

We call this equivalence the laterality property of regular Euclidean s.c. structures.

Proof. Assume that (F , G) is regular Euclidean. We will only show the equivalence of the first
three items. The fourth will follow by turning all of the <-signs in the proof around. Because
α < β if and only if µ(α) < µ(β), clearly the first two items are equivalent.

Let α, β, γ ∈ SC be such that µ(α) = µ(β) and γ < α It follows that µ(γ) < µ(α) = µ(β), so
γ < β as required.

Now assume that α, β ∈ SC are such that for all γ ∈ SC we have γ < α if and only if γ < β. If
either α < β or β < α holds, then by assumption it follows that either α < α or β < β, which is a
contradiction. It follows that we must have µ(α) = µ(β).

In this rest of this section, (F , G) will denote an arbitrary regular Euclidean s.c. structure (and as
usual SC will denote its natural monoid).

3.4.2 Definition. If X is an ordered set, let ̸≶ denote the relation on X such that x ̸≶ y if and
only if neither x < y nor y < x holds.

Clearly for α, β ∈ SC we have α ̸≶ β if and only if µ(α) = µ(β).

3.4.3 Proposition. The relation ̸≶ is a congruence of commutative monoids on SC. Moreover,
µ gives an isomorphism between SC/̸≶ and the additive monoid [0,∞).

Proof. Recall from Proposition 3.2.15 that µ : SC → [0,∞) is a monoid homomorphism (because
every P ∈ F is bounded we know that no figure has infinite measure). By Proposition 3.1.9 it
follows that ̸≶ is a congruence. It also follows by the First Isomorphism Theorem that SC/̸≶ is
isomorphic under µ to the image in [0,∞) of SC under µ. However, this image must equal [0,∞)
as F contains all rectilinear figures.

Laterality allows us to prove a structure theorem about SC. Note that, by the universal property of
the Grothendieck group, we can extend µ : SC → [0,∞) to a group homomorphism µ : SCgr → R.
This gives us the following short exact sequence of abelian groups,

0 −→ ker(µ) −→ SCgr µ−→ R −→ 0,

where ker(µ) is the kernel of the group homomorphism µ, i.e. the subgroup {x ∈ SCgr : x ̸≶ 0} ⊂
SCgr. We can in fact guarantee that this short exact sequence splits for all regular Euclidean s.c.
structures.
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3.4.4 Proposition. There is a subgroup J ⊂ SCgr such that µ|J : J → R is an isomorphism.

Proof. Let J be the subgroup of SCgr generated by the s.c. classes of the form

βr := Scis
([
[0, r]× [0, 1]n−1

])
where r ∈ R≥0 is a non-negative real number. Because Orthn ≤ F , these are indeed elements of
SC. All we need to show is that if r1, r2 ≥ 0, then βr1 +βr2 = βr1+r2 , but this follows immediately
from the fact that G contains all translations. We have µ(βr) = r, so µ gives an isomorphism
between J and R.

3.4.5 Lateral Group Theorem. If (F , G) is regular Euclidean, then there is an abelian group
Lat(SC), called the lateral group of SC, such that there is an isomorphism

SC ∼= ((0,∞)× Lat(SC)) ∪ {0}.

This is called the lateral decomposition of SC.

Proof. This group can of course be given as Lat(SC) := ker(µ) ⊂ SCgr. From the previous
proposition it follows that SCgr is isomorphic to R × ker(µ), namely as the internal direct sum
SCgr = J ⊕ ker(µ). We can write any x ∈ SCgr uniquely as x = vx + ℓx, where vx ∈ J and
ℓx ∈ ker(µ) (the ‘v’ stands for ‘volume’). It follows for x, y ∈ SCgr that x < y if and only if
vx < vy. By definition for x ∈ SCgr we have x ∈ SC if and only if 0 ≤ x, so this is equivalent to
x = 0 or 0 < vx. In other words, SC ⊂ SCgr consists exactly of 0 and the elements of the form
v+ℓ ∈ SCgr with v ∈ J>0 and ℓ ∈ ker(µ) arbitrary. We conclude that SC ∼= ((0,∞)×ker(µ))∪{0}
as claimed.

The s.c. structures (Poln, En), (Orthn, Tn), and (Circ, E2) are all regular Euclidean, so their natural
monoids each have a lateral decomposition.

3.5 The monoids of the scissors congruence of polygons, ortholinear
polygons, circle figures, and polyhedra

Let us now calculate a few facts about the various s.c. structures that we care about. In some
cases this amounts to classifying scissors congruence, in the sense that we give effective necessary
or sufficient conditions. The proofs of this section will not be quite as formal as the ones in the rest
of this work, as it would simply take up too much space and would also not make the results any
clearer. We make several appeals to ‘well-known’ properties of polytopes and we make no attempt
to rigorously calculate our geometric manipulations. As an example, we do not prove the following
result.

3.5.1 Definition. An n-simplex is an n-polytope represented by the convex hull of n+ 1 affinely
independent points.

3.5.2 Proposition. The n-simplices form a basis for Poln.

For the formal details of the theory of polytopes, [Grü03] is an excellent resource.

Euclid showed in Book 1 of the Elements [Euc] (Proposition 45, specifically) that any polygon in
the plane has the same area as a rectangle where one of the sides has length 1. Euclid’s notion of
‘equal area’ is a priori coarser than (Poln, En)-scissors congruence. He also uses the idea that if
P ⊔ T has the same area as Q ⊔ T , then so do P and Q. By Zylev’s theorem this is no stronger
than scissors congruence. Finally, he uses that if P ⊔ P ′ has the same area as Q ⊔ Q′, where P
is congruent to P ′ and Q is congruent to Q′, then P and Q have equal area. In other words,
halves of equal areas are equal. For polyhedra it turns out that this being-halves-of-equal-figures
condition also implies that P ≃ Q (this follows indirectly from Dehn and Sydler’s theorems, 3.5.13
and 3.5.15; see also the discussion on the vector space structure of Lat(SC(Pol3, E3)) in Section
4), but it is not clear whether this follows from some more general principle like Zylev’s theorem
does.
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In any case, for polygons there is a constructive proof that any polygon is s.c. to a rectangle where
one of the sides has length 1.

3.5.3 Wallace-Bolyai-Gerwien Theorem. The area function µ gives an isomorphism between
SC(Pol2, E2) and [0,∞).

Proof. Let P ∈ Pol2 be an arbitrary polygon. We will show that P is s.c. to a rectangle of the form
[0, r] × [0, 1], from which it follows that the lateral group of SC is trivial, i.e. area is a complete
invariant of scissors congruence.

First we apply Proposition 3.5.2 to decompose P into triangles.

Figure 9: Triangulating a polygon.

We treat every triangle separately. An arbitrary triangle is s.c. to a rectangle as shown by the
following figure.

Figure 10: Turning triangles into rectangles.

Note that only rotations by 180◦ are necessary. We now turn the rectangle into one such that
one of the sides lengths is in [1, 2). We can do this by cutting the rectangle in half and stacking
one half on top of the other. This halves one of the side lengths and doubles the other using only
translations.

Figure 11: Getting rectangles to the right format.

Finally, we can turn a rectangle where one of the sides has length ℓ ∈ [1, 2) into one with a side
length of 1 as in the following figure.

Now we are left with several rectangles, one for each of the triangles we decomposed P into. Using
E2-transformations we can place all of these rectangles next to each other and ‘paste’ them together
to form a rectangle of the form [0, r] × [0, 1]. The real number r must necessarily equal the area
µ(P ), which proves the theorem.

It seems that the only time in the previous proof where we need the full transformation group E2 is
at the end where we reorient the rectangles to paste them all together. However, even here it turns
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1

Figure 12: Normalizing the side lengths of a rectangle.

out not to be necessary. It is a cute geometry exercise to show that any two rectangles of the same
area are (Pol2, T2)-scissors congruent, no matter their relative orientations. It follows that if G is
the subgroup of E2 generated by the translations and a rotation by 180◦, then Lat(SC(Pol2, G))
is trivial.

The nervous reader might see the Wallace-Bolyai-Gerwien theorem and fear that SC(Poln, En) is
isomorphic to [0,∞) for all n ≥ 1. This would mean that all of our work for Zylev’s theorem and
lateral groups was for nothing (at least as far as polytopes are concerned). Let me reassure this
reader; it already fails for n = 3 (Corollary 3.5.14). Before tackling this result let us first consider
two other cases: the scissors congruence of (Circ, E2) and that of (Orthn, Tn).

For the proofs of the coming propositions we use the following helpful concept from [Sch09].

3.5.4 Definition. If P is a figure of one of the classes Poln, Orthn, or Circ, we say that P =
P1 ⊔ · · · ⊔ Pn is a clean decomposition of P if for all distinct i, j ∈ {1, . . . , n} we have that Pi and
Pj either don’t share a boundary or they share exactly one lower-dimensional face (where in the
case of Circ this may be a circular arc).

3.5.5 Proposition. Any decomposition of P may be refined by a clean decomposition of P .

Proof. Let F ∈ {Poln,Orthn,Circ : n ≥ 1}. We define a set of figures H. If F = Poln, let H be the
set of half-spaces in UPoln. If F = Orthn, let H be the set of axis-aligned half-spaces. If F = Circ,
let H be the set of half-planes together with the set of disks. These sets H are not technically
generating sets in our definition of the term, because their elements are not themselves figures of
F (because they are not bounded). Nevertheless, they do generate F in the sense that for every
P ∈ F there are H1, . . . ,Hn ∈ H and a V ∈ Booln such that P = fV (H1, . . . ,Hn).

Let P ∈ F and consider an arbitrary decomposition P = P1⊔· · ·⊔Pn. Let H1, . . . ,Hk ∈ H be such
that there are V1, . . . , Vn ∈ Boolk such that Pi = fVi

(H1, . . . ,Hk) for all i. That is, H1, . . . ,Hk

together may be combined to define all of Pi. Let V = V1∪· · ·∪Vn. This is another abstract k-ary
Boolean combination, and moreover we have fV (H1, . . . ,Hk) = P . Then P may be decomposed
into the set {fs(H1, . . . ,Hk) : s ∈ V } of Boolean slices. This decomposition refines P1, . . . , Pn and
this is always a clean decomposition.

Figure 13: The left decomposition is not a clean decomposition of the polygon, but the
construction of Proposition 3.5.5 allows us to refine it into a clean decomposition simply by

‘extending’ all of the lines used to define the figures of the first decomposition.

3.5.6 Definition. For a circle figure P ∈ Circ, define its curvature invariant to be the following
function. Let R[R] denote the free real vector space on R. That is, for every real number x ∈ R
we have a linearly independent basis element [x] ∈ R[R]. Let C denote the quotient of this space by
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the subspace generated by vectors of the form [x]− [−x] for x ∈ R. Define the curvature invariant
γ : Circ → C as

γ(P ) =
∑

edges e

ℓe · [κe],

where ℓe ∈ R denotes the length of the edge e and κe ∈ R denotes its signed curvature. That is,
if the interior of P is on the concave side of e then κe is the reciprocal of the radius of the circle
that e is an arc of (and κe = 0 if e is a straight line segment), and if the interior of P is on the
convex side, then κe is the negative of this value instead.

3.5.7 Proposition. The map γ defines a homomorphism SC(Circ, E2) → C.

Proof. It suffices to show that γ([∅]) = 0, that γ is preserved by congruence, and that if P =
P1 ⊔ · · · ⊔ Pn then γ(P ) = γ(P1) + · · ·+ γ(Pn). The first two are obvious.

By Proposition 3.5.5 it is only necessary to show that γ is additive w.r.t. clean decompositions.
Let P ∈ Circ and assume that P = P1 ⊔ · · · ⊔ Pn is a clean decomposition. Let a flag be a pair
(e, Pi) where e is an edge of Pi. Note that for flags (e1, Pi) and (e2, Pj) we have by the definition
of a clean decomposition that either e1 = e2 or that e1 and e2 do not overlap on a curve of positive
length. Then

γ(P1) + · · ·+ γ(Pn) =
∑

flags (e, Pi)

ℓe · [κe].

Call this quantity S. A flag (e, Pi) lies either in the interior of P or it is contained in some edge of
P . In the first case, there will be exactly one other j ∈ {1, . . . , n} such that (e, Pj) is a flag. The
curvatures of e as an edge of Pi and an edge of Pj will be additive inverses, so the contribution
of (e, Pi) and S will be 0. In the second case, for some edge e† of P consider the set of all flags
(e, Pi) such that e is contained in e†. None of the edges of these flags overlap (because otherwise
they would be in the interior of P ), so it must be the case that together they link together to form
e†. It follows that their curvatures are all the same and their lengths sum to the length of e†, so
we find that γ(P ) = γ(P1) + · · ·+ γ(Pn) as desired.

3.5.8 Corollary. The lateral group Lat(SC(Circ, E2)) is non-trivial.

Proof. An example of a scissors congruence problem we can formulate in Circ is the problem of
the lune of Hippocrates.

Figure 14: The lune of Hippocrates.

The curves in Figure 14 consist of either straight line segments or circular arcs, so the regions that
they delineate represent figures of Circ. It can be shown that if the straight sides of the above
triangle are orthogonal radii of the inner circular arc and the hypotenuse is the diameter of the
outer arc, then the interiors of the triangle and the lune between the arcs have equal area. However,
because the arcs have different radii, the two figures clearly have distinct curvature invariants, so we
conclude that area is not the only component of SC(Circ, E2); its lateral group is non-trivial.

The following scissors congruent invariant is explored in detail in [Spa04].
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3.5.9 Definition. For an axis-aligned rectangular prism R ∈ Orthn (that is, a figure represented by
a set of the form [x1, z1]×· · ·×[xn, zn]), let its aspect invariant be the value a(R) := w1

R⊗· · ·⊗wn
R ∈

R⊗Z n. . .⊗ZR, where wi
R is width of the prism R in the i’th coordinate. For an arbitrary ortholinear

figure P ∈ Orthn, we let a(P ) be the sum of the values a(Ri), where P = R1 ⊔ · · · ⊔ Rn is a
decomposition into axis-aligned rectangular prisms.

3.5.10 Proposition. The aspect invariant gives a well-defined homomorphism from SC(Orthn, Tn)
to R⊗Z n. . .⊗Z R.

Proof. For ease of notation we restrict ourselves to proving the case n = 2. The proof is exactly
analogous for all other dimensions.

First we give an argument for why a(R) is well-defined when R ∈ Orth2 is an axis-aligned rectangle.
Consider any decomposition R = R1 ⊔ · · · ⊔Rm where the Ri are also axis-aligned rectangles. We
apply Proposition 3.5.5 to refine this into a clean decomposition R = R′

1 ⊔ · · · ⊔R′
t. As illustrated

by Figure 15, such decompositions have a particularly nice form; they can be constructed by
first decomposing R horizontally into rectangles of the same height, and then decomposing those
rectangles vertically into smaller rectangles of the same width. If a rectangle S is decomposed
horizontally into k rectangles S1, . . . , Sk of the same height, as[

[x1, x2]× [y1, y2]
]
=

[
[x1, c1]× [y1, y2]

]
⊔ · · · ⊔

[
[ck−1, x2]× [y1, y2]

]
,

then by definition of the tensor product we have a(S) = a(S1) + · · · + a(Sk). The same holds
if it is decomposed vertically. It follows that a(R) = a(R′

1) + · · · + a(R′
t), and because each of

the original Ri is also cleanly decomposed into the R′
j it follows that a is also additive for these

decompositions, so a(R) = a(R1) + · · ·+ a(Rm) as required.

Figure 15: For an axis-aligned rectangle R in Orth2, any clean decomposition is such that it can
be viewed as first dividing R vertically into rectangles and then dividing those horizontally into

smaller rectangles, or vice versa.

Well-definedness for arbtirary P ∈ Orth2 follows from the fact that any two decompositions of P
into rectangles (into (Ri)i and (Sj)j , say) have a clean decomposition P = T1⊔· · ·⊔Tt as a common
refinement. Restricting this decomposition to the Ri and Sj also gives a clean decomposition of
those figures, so ∑

i

a(Ri) =
∑
k

a(Tk) =
∑
j

a(Sj),

from which we can see that aspect invariant of Definition 3.5.10 is well-defined for ortholinear
polygons P ∈ Orth2.

The value a(P ) is clearly invariant under translations and it maps the empty figure onto 0. We also
already showed that it is additive w.r.t. clean decompositions, so it gives a monoid homomorphism
a : SC(Orth2, T2) → R⊗Z R.

3.5.11 Corollary. The lateral group Lat(SC(Orthn, Tn)) is non-trivial for n ≥ 2.

Now let us give an invariant for (Pol3, E3)-scissors congruence.
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3.5.12 Definition. For a polyhedron P ∈ Pol3, let its Dehn invariant be the value ∆(P ) ∈
R⊗Z R/πZ given by

∆(P ) =
∑

edges e

ℓe ⊗ αe,

where ℓe is the length of the edge e and αe is its dihedral angle.

3.5.13 Dehn’s Theorem. The Dehn invariant defines a homomorphism SC(Pol3, E3) → R ⊗Z
R/πZ.

Proof. We make a final appeal to the fact that we only need to show that ∆ is additive w.r.t. clean
decompositions of some figure P .

Let P = P1⊔ · · ·⊔Pn be a clean decomposition. Consider the set of flags (e, Pi) where e is an edge
of Pi. Now define

S = ∆(P1) + · · ·+∆(Pn) =
∑

flags (e, Pi)

ℓe ⊗ αe.

We can divide the flags (e, Pi) into three disjoint types:

∗ Type 1: e lies in the interior of P .

∗ Type 2: e lies on the boundary of P but not within an edge of P .

∗ Type 3: e is contained in an edge of P .

Then S = S1+S2+S3 where Si is the sum of the values ℓe⊗αe taken over the flags of type i. Let
(e, Pi) be a flag of type 1 and consider the set of all flags (e′, Pj) such that e′ = e. Because e lies
in the interior of P it must be the case that the dihedral angles of the e′ sum to exactly 2π (and
their lengths must equal ℓe). It follows that S1 = 0. By the same argument we find that if (e, Pi)
is of type 2 then the dihedral angles of the flags whose edges agree with e must sum to exactly π,
hence S2 = 0.

It remains to show that S3 = ∆(P ). Consider a single edge e† of P and define E to be the set of
all flags (e, Pi) such that e is contained in e†. Let Se† be the sum over E of the values ℓe ⊗ αe.
Note that S3 is the sum of the Se† over all edges of P . By the nature of a clean decomposition
we know that for (e1, Pi), (e2, Pj) ∈ E we have that either e1 = e2 or that they do not overlap
on a segment of positive length. We can partition E into equivalence classes under the relation ∼
defined as (e1, Pi) ∼ (e2, Pj) whenever e1 = e2. Then Se† = T1 + · · · + Tk where k is the number
of ∼-equivalence classes of E. In a ∼-equivalence class we know that all flags must have the same
length, and their dihedral angles must sum to αe† . It follows that every Ti is of the form ℓei ⊗αe† ,
where ei is any element of the i’th equivalence class. It follows that

Se† = ℓe1 ⊗ αe† + · · ·+ ℓek ⊗ αe† = ℓe† ⊗ αe† .

We conclude that the sum of all Se† must equal ∆(P ), hence ∆(P1) + · · · + ∆(Pn) = ∆(P ) as
required.

3.5.14 Corollary. The lateral group Lat(SC(Pol3, E3)) is non-trivial. In other words, volume is
not a complete s.c. invariant for polyhedra.

Proof. Consider a cube C and a regular tetrahedron T of equal (positive) volume. Let ℓ be the
length of the edges of T . We have ∆(C) = 0 and ∆(T ) = 6ℓ⊗ arccos(1/3). It suffices to show that
the value arccos(1/3) is Q-linearly independent of π. Assume for the sake of contradiction that the
angle arccos(1/3) is a rational multiple of π. Consider the complex number z = 1

3 + i 23
√
2. There

is some smallest n ∈ Z>0 such that zn = 1 (i.e. z is a root of unity). The field extension Q(z) is
quadratic, so ϕ(n) = 2, where ϕ(n) is the totient function that counts the number of integers in
the range from 1 to n that are coprime with n. The only n for which ϕ(n) = 2 are 3, 4, and 6.
None of the values z3, z4, and z6 are equal to 1, so we have found our contradiction. We conclude
that arccos(1/3) is not a rational multiple of π, so ∆(T ) ̸= 0.
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It turns out that volume and the Dehn invariant are a complete set of invariants for (Pol3, E3)-
scissors congruence. The following was shown by Sydler in [Syd65].

3.5.15 Sydler’s Theorem. Volume and the Dehn invariant are the only two (Pol3, E3)-scissors
congruence invariants. That is, Lat(SC(Pol3, E3)) is isomorphic under ∆ to its image in R ⊗Z
R/πZ.

The proof is fairly technical, and it would be distracting to recount it here. For an English account
of the theorem, see [Jes68]. There is more to be said about the Dehn invariant. Unlike the aspect
and curvature invariants, it is not surjective onto the given codomain. The interested reader can
find a clear and detailed exposition of such facts in [Dup01].

4 Further research

We have given a taste of the various relationships between the properties of an abstract scissors
congruence relation, and how these properties (such as cancellativity and the idea of a lateral
group) manifest themselves in the concrete examples of Section 3.5. There are many more things
to be said about the subject.

Something I couldn’t quite make work in the generality that I would have liked is the idea of a
lateral vector space. One can notice that the images of the curvature, aspect, and Dehn invariants
are real vector spaces in a natural way. Because any dilation of Rn is Boreln-measurable, it is
also the case that any class of figures F ≤ Boreln admits a real scalar multiplication; λ · [A] is the
figure represented by A dilated by a value of λ. This multiplication cannot make SCgr into a real
vector space, however. Consider a cube Q in Pol3. We have Scis(2 ·Q) = 8 Scis(Q). But this is not
the end of the world! As it turns out, in (Pol3, E3) this scalar multiplication naturally restricts
to a scalar multiplication on Lat(SC) which does in fact make the lateral group into a real vector
space. The following argument is from [Jes68]. Figure 16 illustrates the idea.

λ

µ

Figure 16: A decomposition of a dilated tetrahedron into two dilated tetrahedra and two
triangular prisms. This witnesses the identity (λ+ µ)x = λx+ µx for the scalar multiplication

structure on the lateral group Lat(SC(Pol3, E3))

An arbitrary tetrahedron dilated by a value of λ + µ may be decomposed into two tetrahedra,
dilated by λ and µ respectively, and two triangular prisms. Because the tetrahedra form a basis
for Pol3 it follows that any polyhedron dilated by λ+µ decomposes into similar polyhedra dilated
by λ and µ and some number of prisms. It is not difficult to show using the Wallace-Bolyai-Gerwien
theorem that the s.c. classes of prisms are all contained in the subgroup J of Proposition 3.4.4. So
‘modulo prisms’ this scalar multiplication does make a vector space out of SC(Pol3, E3)/J. The
theorems of Dehn and Sydler together show that J is exactly the kernel of the Dehn invariant, so
this shows that a priori we could have expected the image of the Dehn invariant to be a real vector
space under the natural scalar multiplication. For what other Euclidean s.c. structures can this
argument be adapted?

Another question concerns topology. We have an ordered commutative monoid SC, and if the s.c.
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structure in question is uniform (or even a weaker variant of the property) then for all α, β ∈ SC>0

there is some γ with γ < α and γ < β. This directedness property reminds of the basis of open
balls of a metric space. For P ∈ F and α ∈ SC>0, define

Bα(P ) =
{
Q ∈ F : Scis(P △Q) < α

}
.

If R ∈ Bα(P )∩Bβ(Q), then there is a γ ∈ SC>0 such that Bγ(R) ⊂ Bα(P )∩Bβ(Q), so these ‘open
balls’ do in fact form a basis for a topology on F . If F is regular Euclidean, then this topology
evidently agrees with the one induced by the metric on F given by d(P,Q) = µ(P △ Q), where
µ is the Lebesgue measure, but an advantage is that this ‘scissors congruence topology’ may be
defined in much greater generality. If we fix a particular kind of figure, like a triangle, then we can
parametrize the space of all triangles using real numbers. This makes the set of triangles into a
quotient space of R6. Do such topologies agree with the subspace topology of the s.c. topology on
Pol2? Under what circumstances does the function (P,Q) 7→ Scis(P △Q) make F into a complete
‘metric’ space?

As a final question, consider the idea of morphisms. A ‘scissors congruence space’ in our formalism
consists of three pieces of data: a carrier set X, a class of figures F on X, and an F-measurable
group of transformations of X. When should two such spaces be considered isomorphic? More
generally, is there a good notion of structure-preserving map between such spaces? In this work we
have spotlighted the ‘s.c. structure’ (F , G) over the underlying set X, which we think of as mostly
a bookkeeping device for defining F and G. The internal structure of F really only consists of its
ordering. On the other hand, we only need G for its action of creating subfigure correspondences
between the elements of F . Both of these things can be wrapped up into one neat package by
having an s.c. structure be a small category with some extra structure. The objects of this category
would be the elements of F , and a morphism P → Q would consist of a congruence between P
and a subfigure of Q. What other assumptions do we need to make a theory of scissors congruence
of such categories? Functors seem like a natural candidate for morphisms of s.c. structures, but
what other properties do they need to satisfy?
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[Deh01] Max Dehn. Über den Rauminhalt. Mathematische Annalen, 55:465–478, 1901. doi:

10.1007/BF01448001.

[Dup01] Johan L. Dupont. Scissors congruences, group homology and characteristic classes, vol-
ume 1 of Nankai Tracts in Mathematics. World Scientific, 2001. doi:10.1142/4598.

[Enc] Jordan measure, Encyclopedia of Mathematics. Accessed 2023-08-01. URL: http://
encyclopediaofmath.org/index.php?title=Jordan_measure&oldid=47470.

[Euc] Euclid. Euclid’s elements of geometry, ed. Johan Ludvig Heiberg, trans. Richard Fitz-
patrick. Self-published, 2008.
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