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Abstract

In tonal languages such as Mandarin Chinese, the meaning of a word depends on the pitch variation
of the tone. Since tones are often not pronounced in isolation, but rather concatenated, neighboring
tones effect each other. This gives rise to tonal coarticulation. In this thesis, we will explore if, given
two concatenated tones of the Mandarin word “ma”, it is possible to predict the following tone on the
basis of the coarticulation effect present in the first tone, and vice versa. The phonetic data used for
this exploration hold a certain intrinsic smoothness that points naturally towards the functional data
analysis domain as a tool to study them. Therefore, we will be using multiple functional data analysis
techniques. We will start with k-means clustering on the raw data with the Euclidean distance and
the Manhattan distance. Afterwards, we will study the effect on tone duration, for which we will be
using duration analysis. Furthermore, previous research indicates that the coarticulation effect lies at
the level of covariances. Hence, we will also be clustering functional covariances. In the last section,
indications of the results will be discussed and suggestions will be made for further research. Lastly,
plots obtained from the analyses are shown in the appendix.
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1 Introduction

In many languages, pitch variation plays a significant role. In European languages, its importance arises
at sentence level. For example, the sentence ‘Can you imagine life without ice cream?’ can either be a
question or a rhetorical question, depending on the way the sentence is pronounced as a whole. In tonal
languages, pitch variation plays an even more important role. This is because the modulation of the
sound conveys a different meaning for the same word. In Mandarin Chinese for example, the word “ma”
can have four different meanings, depending on the way it is pronounced: “mother” (flat tone), “hemp”
(increasing tone), “scold” (decreasing tone) and “horse” (downward-upward tone). Since words (and
tones) are not pronounced in isolation in everyday speech, but are rather concatenated to one another,
each tone is affected by the neighbouring tones. This gives rise to tonal coarticulation.

The department of experimental phonetics at the Leiden University Centre for Linguistics studies the
coarticulation in Mandarin. A big part of phonetic analysis is based on speech recording and focusses
on modelling fundamental frequency curves, also known as FO curves. These curves are a graphical
representation of the fundamental frequency of a sound wave over time and are usually measured in
hertz. Their intrinsic smoothness points naturally at the functional data analysis domain as a tool to
study them.

The aim of this thesis is to get a better understanding of the coarticulation effect in Mandarin Chinese.
Recent literature [I] claims that the covariance structure between pitch intensities at different frequencies
can be considered “a summary of what a language sounds like”. Therefore, the technique that we will
employ will involve clustering of functional covariances to explore the presence of tonal clusters in a
phonetic dataset.

The research questions that we are trying to answer in this thesis, are:
e Can we infer the following tone from the coarticulation effect present in the first tone?

e Can we infer the previous tone from the coarticulation effect present in the second tone?

In section [2] we will start with explaining what functional data is and how it can be represented, as well
as give some examples of functional data analysis. Furthermore, we will see how functional data can be
explored through covariances. In section [3] we will present the data that we have used for the analyses
throughout the project, followed by an introduction to k-means clustering in section[d] We will elaborate
on the results obtained from k-means clustering in sections [5] as well as[6] In section [7] we will present
a different way to analyze the data, namely with duration analysis. The results for this can be found in
section 8] In section [0 we will dive into the analysis of covariances and the results obtained from this. In
section [I0] we will discuss the results and propose our ideas for further research.



2 Functional data analysis

In this section we will start with an introduction to what functional data are. Afterwards, we will give
examples of the type of data on which a functional data analysis can be performed. Also, we will show
how functional data can be presented. Lastly, we will see that it is possible to explore this type of data
through their covariances. The content is mostly taken from [2], unless stated otherwise.

2.1 What are functional data?

Functional data are data that consist of smooth shapes, often curves, over a continuum of time or space.
From each curve we observe discrete measured values. As mentioned in [3], the simplest form in which
the data can be supplied in functional data analysis is:

Tn(tjim) ER tjp € [T, To),n=1,2,...N,j=1,....,J,

where each x,, will correspond to a curve for which we will be able to compute the value for any given
t;jn. In order to obtain the intermediate values, we will need to perform interpolation. This can be done
by using a basis function system, which we will elaborate on in In addition, if the discrete measured
values at t;, contain a certain amount of observational error, one will also need to perform smoothing
of the obtained curves.

In the following subsection, we will give a few examples of the type of data on which we can perform
functional data analysis.

2.2 Examples of functional data analysis

A popular example of functional data is found in the Berkeley Growth Study [4]. This is a study on
the height growth of boys and girls (original sample 31 boys and 30 girls). The following figure can be
found in [2], which contains the heights of 10 girls measured at 31 ages during this study (Tuddenham
and Snyder, 1954).

60 1 1 1 1 1
2 4 6 8 10 12 14 16 18

Age (years)

Figure 1: The heights of 10 girls measured at 31 ages. The circles indicate the unequally spaced ages of
measurement.



It is even possible to use functional data analysis to analyze non-functional data. An example of this
can be found in psychometrics. Many of the studies conducted in this field are based on tests that give a
binary outcome. Think about tests that tell us if the participant managed to answer a particular question
correctly or not. If the researchers would like to get a better understanding of the probability of success,
they have to use a model that contains item response functions. The figure below, given in [2], shows
three item response functions corresponding to a mathematics test taken.
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Figure 2: Each panel shows an item response function relating an examinee’s position 6 on a latent ability
continuum to the probability of getting a test item in a mathematics test correct.

2.3 Representation of functional data

As mentioned in we are able to perform interpolation by using a basis function system. The idea
is that we take linear combinations of known mutually independent functions ¢y, which are called basis
functions. This results in a linear expansion:

2(t;) = crdr(t;)
k=1

with ¢ a coefficient corresponding to the k-th basis function and K the number of functions. If we take
K = n and define each ¢y, in the following way [5]:

oalts) = {1, ifj=k

0, else

it is possible to choose each ¢ in such a way that this leads to z(t;) = y; for every j, where y; is the
discrete measured value at ;.

We will see that the data covered in this thesis are non-periodic. Splines are the most frequently used
approximation system for non-periodic functional data. The B-spline basis system from de Boor (2001)
is commonly used. For more information on this system, we refer to [2] and [6].

The interval over which we would like to approximate the function in question gets divided into L
subintervals by means of breakpoints 7; with { € {1,2,...,L — 1}. Over each of these subintervals we
would like to construct a polynomial of a specified order m. These polynomials together form a spline
function. Such a function meets the following requirements:

e the order is one more than the degree
e adjacent segments of the spline hold the same function values at their junction
e derivatives up to order m — 2 of adjacent segments have the same function values at their junction

Furthermore, the number of parameters needed to estimate the model, also known as the degrees of
freedom, can be calculated via the following formula:

df =m—+L—-1



2.4 Exploring functional data with covariances

As mentioned in the introduction[l} earlier research has indicated that the covariance structure of phonetic
data holds significant features. In this subsection we will see how to get more insight into functional data
via their covariances.

In multivariate analysis, the covariance between two random variables X and Y for which E(X) and
E(Y) exist, is a measure of dependence of X on Y and vice versa. It is given by [7]

cov(X,Y) = E([X - E(X)][Y - E(Y)])
and can be rewritten in the following way
cov(X,Y) =E(XY) —E(X)E(Y)

In functional data analysis, a similar type of object exists, namely the covariance operator. Since this
object is defined on a real and separable Hilbert space, we will first explain what such a space is.

In [2] the following is stated: “A Hilbert space is a collection of objects x for which there exists:
e linear combinations axq + bxo
e an inner product (1, x2) for any pair z; and zo

e a property called completeness, namely that convergent sequences of elements converge to elements
within the space.”

A Hilbert space that has a countable Hilbert space basis is called a separable Hilbert space [§].

We are now able to give the definition of the theoretical covariance operator as defined in [9]. Let
H be a real and separable Hilbert space. Denote by (-,-) : H x H — R the inner product and by
[|-]] : H — [0,00) the induced norm. Let {Xl,j}?;l, s {XN,j}?gl be N independent samples of i.i.d.
random elements in H, such that each of the mean functions p; = E{X; ;} is well-defined. Then, the
covariance operators are given by

B = B{(Xij — ) ® (Xij — i)}
with ® the outer product on H.

In practice, we use the empirical covariance operator (also known as the covariance function) to estimate
the theoretical covariance operator. Given functional observations x;(t) with ¢ € {1,2,..., N} and their
mean function Z(t), the empirical covariance operator of a pair of (time) points (¢1,¢2) is defined as
follows [2]:

N
covx(ti,ta) = (N = 1)) {ai(t) — 2(t1) Hai(tz) — 2(t2)}

i=1

One might also come across the definition with the term (N —1)~! replaced by N~!. These definitions are
equivalent, since the difference in outcome will be very small and therefore neglegible. As we will see in[9]
we can construct a covariance matrix for each tonal combination by evaluating the covariance function at
each pair of time points (¢1,%2). Such a matrix is the finite-dimensional analog of the covariance operator
[10] and will be useful in determining the existence of differences between the curves.



3 The data

The data that we consider in this project come from Prof. dr. Y. Chen, from the Leiden University Centre

for Linguistics. Her webpage can be found at https://www.universiteitleiden.nl/en/staffmembers/
yiya-chen#tab-1. The dataset contains bi syllabic speech recordings containing two sequentially concatenated
‘ma’ sounds from 12 native Mandarin Chinese speakers. Since there exist four lexical tones in Mandarin

[11], there are 16 different tonal combinations in total. We denote the four different tones as follows: T'1
corresponds to the flat tone (‘mother’), T2 to the increasing tone (‘hemp’), T'3 to the downward-upward
tone (‘horse’) and T4 to the decreasing tone (‘scold’). The figure below shows the shape of the four
lexical tones. The research question that we try to answer in this project, is whether we can predict the
following tone on the basis of hearing the first tone.

T1
5
T2
4
3
T3 2

T4

Figure 3: The four tones of Mandarin Chinese. Source: [L1].

The curves are sampled and normalized over 20 points in time. The time points 1, ..., 10 correspond to
syllable 1 (the first syllable) and the time points 11, ...,20 correspond to syllable 2 (the second syllable).
Furthermore, the experiment has been repeated 4 times. However, for some of the speakers, not all of
the repetitions are present in the data.

In the study for which the data was originally gathered, the researchers investigated the influence of
a cognitive load on the curves by assigning a mnemonic task to each speaker. Therefore, a distinction
is made between the curves with cognitive load (denoted by CL6) and without cognitive load (denoted
by CLO0). In this project we are not interested in the cognitive load, so we mostly work with the curves
without cognitive load, unless stated otherwise. In the figure below we have plotted the FO curves against
time for all speakers during the first repetition.

Subject
S1
S2
s3

5101520 5101520 5101520 5 101520 5 101520 5 101520 5 101520 5 101520 5101520 5101520 5101520 5 101520 5 101520 5 101520 5 101520 5 101520
time

Figure 4: The frequency profiles for all speakers during the first repetition against time.
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Focussing on the curves in the CLO row, we see quite some variation between the speakers. Although
this is to be expected, we have to keep this in mind while analyzing the data. Other things that could
cause noise is the recording equipment and the (small) amount of data. For the frequency profiles during
the other repetitions, and per speaker, we refer to [A] Due to the smooth nature of the curves, the data
naturally fit into the FDA context.

4 K-means clustering

Our first attempt to analyze the data is seeing if it is possible to classify similar data together, in the
hope that all first syllables followed by the same second syllable will be grouped together. The technique
that we are going to employ for this is clustering, and more specifically, k-means clustering, which we
will introduce in this section. The content is mostly taken from [2] and [12], unless stated otherwise.

Clustering is a widely used unsupervised learning method in which a dataset is partitioned into groups,
such that similar data points are contained within the same group and dissimilar ones are separated. A
successful clustering analysis involves choosing a suitable clustering approach. In this thesis, we will be
focussing on k-means clustering, which is one of the most popular approaches out there.

K-means clustering is a clustering method for which the user is able to specify the number of clusters,
denoted by k. Each of these clusters corresponds to a specific centroid and is made out of objects such
as points, vectors, matrices (which is the case in this project, as we will see later) or curves that were
assigned to this centroid as the closest one. There are several ways to implement this method. As stated
n [I3], Lloyd’s algorithm is one of the most popular heuristics for this.

At the start, k& centroids are selected from the dataset. Afterwards, the other vectors get assigned
to the centroid for which the distance is the smallest. Lloyd’s algorithm uses the squared Euclidean
distance as the dissimilarity measure. Let x; and x;; be two vectors from a Euclidean p—space. The
squared Euclidean distance between these two vectors is defined as follows [12]:

p
xmxi Z L5 — Ty j = ||5U1 - xi/||2
j=1

The clusters should be constructed in such a way that the distance between a vector and the centroid
in its cluster is minimal. This gives rise to minimizing the following criterion, which is known as the
within-point scatter:

W (C)

*Z >, D dlaiw)

k=1 C(i)=k C(i")=k

Y Y Y el

k=1C(i)=k C(i')=k

where C(7) is the cluster of the i—th observation.

Minimizing the within-point scatter ensures that the clusters are obtained in such a way that the
between-cluster point scatter B(C') is being maximized, since these two functions are related through
the following constant:

T = W(C) + B(C)

which is known as the total point scatter. After assignment of the points, a new centroid gets computed
for each cluster as the mean of the data points in that particular cluster. Since it is the mean, it is not a
point that is actually contained in the dataset. This is one of the differences between k-means clustering
and k-medoids clustering. For the reader that is interested to read more about the latter, we refer to [12].
The assignment of points to its closest centroid and the computation of new centroids continues until all
the centroids remain the same or if none of the points get assigned to a different cluster in the following
iteration.



Another way to implement the k-means method is with the Hartigan and Wong (1979) algorithm. The
kmeans() function from the stats package uses this algorithm by default. Therefore, we will be using the
function with this method. For who is interested to read how this algorithm works in detail, we refer to
[14] for an extensive description of the algorithm.

5 Results from k-means clustering on the effect of syllable 2 on
syllable 1

In order to see if the effect of syllable 2 on syllable 1, if it even exists, is captured in the raw data, we
have performed k-means clustering for:

e all speakers with the Euclidean distance
e one speaker with the Euclidean distance

e all speakers with the Manhattan distance

All of these analyses have been done for all tonal combinations and all repetitions, unless stated otherwise.
In this section we will elaborate on the above analyses. Besides that, we will examine the results on the
basis of the plot for T1Txz, where x € {1,2,3,4}. One may assume that the plots for the other tonal
combinations contain similar results as the one for 71Tz, unless stated otherwise. In the latter case, we
will discuss these plots in detail too. For the other tonal combinations, we refer to [A]

5.1 K-means clustering for all speakers with the Euclidean distance

The first analysis entails k-means clustering for all speakers based on their FO curves. Since the first
syllable is fixed and the second syllable varies, it is only necessary to consider the curves evaluated at
the first 10 time points. For the clustering we have used the kmeans() function from the stats package
from [I5]. This function partitions the points from a given data matrix into k clusters, where the
number k is given by the user. Since the partitioning is done by minimizing the sum of squares between
the points and the mean of the cluster, this means that the distance measure used is the Euclidean
distance. As mentioned in[4] one of the ways in which k-means clustering can be implemented is with the
Hartigan-Wong algorithm. Since the kmeans() function uses this algorithm by default, we have used this
particular algorithm during our analysis. To plot the clusters, we have used the function fviz_cluster()
from [16]. As stated in the rdocumentation, this function uses principal component analysis to create
two principal components if the number of variables is greater than two. As stated in [I7], “Principal
component analysis (PCA) is the problem of fitting a low-dimensional affine subspace to a set of data
points in a high-dimensional space.” The first component needs to have the largest possible variance [18§].
The data are then plotted conforming to these components.

As there are four different tones, one would initially expect k = 4 to be a suitable number of clusters to
choose in order to see some effect. Therefore, we began the analysis with k = 4. The plot containing the
clusters for the tonal combinations T'1Tx, where x € {1,2, 3,4}, can be found in the figure below. Each
data point is labeled by its tonal combination, followed by its speaker and repetition.



Cluster plot T1Tx with k = 4
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Figure 5: Clusters for T1Tz with the Euclidean distance using the kmeans() function with ¥ = 4 and
where all speakers are considered.

From the figure we see that the tonal combinations are distributed in such a way that each cluster
contains all of the combinations in a large amount. Therefore, there is not one cluster that corresponds
to a specific tonal combination. Since the same holds for the plots of the other tonal combinations, the
effect of coarticulation seems to play no role in this classification.

To see if there might be an effect if we decrease the number of clusters, we have performed the same
analysis for £ = 3. If we compare the plot of T'1Tx for this analysis to the one for k = 4, we see that
two of the clusters have been merged in order to get the imposed number of clusters. The other two
clusters remain the same. Similar results hold for the other tonal combinations. Therefore, the results

are non-significant for £ = 3 as well.

Cluster plot T1Tx with k = 3
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Figure 6: Clusters for T1Tz with the Euclidean distance using the kmeans() function with & = 3 and
where all speakers are considered.



In order to see if the lack of effect might be caused by a suboptimal number of clusters chosen, we have
used the function fviz_nbclust() from [16] to determine and visualize the optimum number of clusters to
select. We haven chosen the within cluster sums of squares method for this, which is the default method
for this function. The below figure shows the result for T17x.

Optimal number of clusters
for T1Tx

7500000

5000000

Total Within Sum of Square

2500000

Number of clusters k

Figure 7: Optimal number of clusters for the tonal combination T17Tx.

To determine the optimum from this figure, we have used the so-called elbow method. As used in
[19], the optimum is there where the graph makes an “elbow bend”. The figure above indicates that this
is at k = 2 or k = 3. The same holds for the other tonal combinations, as one can find in[A] So, the
optimum does not differ drastically from the initial number of clusters that we have chosen. Therefore, it
is less likely that the lack of effect is caused by the number of clusters chosen and could rather be found
in the noise / pattern of the data.

5.2 K-means clustering for one speaker with the Euclidean distance

One of the reasons why we might not detect an effect is due to noise that is overwhelming the differences
in coarticulation. This noise can be caused by the recording equipment, differences between repetitions
or differences between speakers. We can reduce the amount of noise by focussing on only one speaker for
the k-means cluster analysis with the Euclidean distance.

The analysis that we will be discussing in this subsection is similar to the one that we have seen in
the previous one [5.1] except now we only consider speaker 1. Apart from the fact that there is no missing
data for this speaker (all curves for all four repetitions are available), there is no other particular reason
why we have chosen this speaker. Although results are likely to vary between speakers, we do not expect
this to happen in such a great amount that we detect a difference in (in)significance of the results. Below
is the plot of the analysis.
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K-means for T1Tx for speaker 1 with k = 4
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Figure 8: Clusters for T1Tx for speaker 1 with the Eulidean distance using the kmeans() function with
k=4

Here, the tonal combination 7171 seems to represent the rightmost cluster. This indicates that there
might be an effect of the second syllable on the first syllable if both syllables are tone T'1. We expect
this effect to be stronger if the data would have been less noisy.

We have also plotted the clusters for 73Tz below, since it appears to differ from the plots for the
other tonal combinations.

K-means for T3Tx for speaker 1 with k = 4

cluster
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Figure 9: Clusters for 73Tz for speaker 1 with the Eulidean distance using the kmeans() function with
k=4

As we can see, most of the T'3T'3 combinations are contained within the leftmost cluster. This indicates
that there might be an effect of the second syllable on the first syllable if both syllables are tone T'3.
Again, we expect this effect to be stronger if the data would have been less noisy. This potential effect is
interesting, since this particular tone appears to capture more variation in the data than the other tones.
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Therefore, one would initially not expect this tone to be (more or less) isolated from the other tones.

5.3 K-means clustering for all speakers with the Manhattan distance

Up till now we have only seen k-means clustering for the Euclidean distance. We are curious to see if
the results differ if we take a different distance for the clustering. Since the kmeans() function from the
stats package does not allow other distances than the Euclidean distance, we have used the KMeans()
function from [20] for this. To exclude whether a drastic difference in results is caused by a difference in
implementation between these two functions for the k-means algorithm rather than a different choice for
the distance, we have first compared the results of the two functions with the Euclidean distance.

Cluster plot T1Tx with k = 4
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Figure 10: Clusters for 71Tz for speaker 1 with the Euclidean distance using the KMeans() function
with k = 4.

As we can see, the KMeans() function from [20] produces similar clusters for all tonal combinations
as we have seen for the kmeans() function from the stats package Therefore, we continue with this
new function with a different distance than the Euclidean distance, namely the Manhattan distance.
The reason for this choice is that it is one of the predefined distances for this function. The Manhattan

distance between two points (z1,y1) and (22,y2) is defined as in [21]:
di = |xo — 1| + y2 — y1|

The plot for T1Tx is given below.
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K-means for T1Tx with k = 4 and the Manhattan distance
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Figure 11: Clusters for T1Tx with the Manhattan distance using the KMeans() function and where all
speakers are considered.

K-means for T3Tx with k = 4 and the Manhattan distance
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Figure 12: Clusters for T3Tx with the Manhattan distance using the KMeans() function and where all
speakers are considered.

The difference between this plot and the one obtained for the Euclidean distance (with the KMeans()
function) lies in the formation of the three rightmost clusters. The two clusters in the middle of the first
plot have emerged into one cluster in the second plots. Also, the rightmost cluster of the first plot has
been disintegrated into two clusters in the second plot. However, this different formation of the clusters
still does not give us enough insight to make a statement about the effect we are investigating.

As for the plot of T3Tx, we see an overlap between the two leftmost clusters. Looking at the individual

curves might shed light on what commonality causes the overlapping. However, since this is not relevant
to our research question, we will not continue to analyze this.
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Furthermore, time constraint for the thesis and the lack of promising results from clustering have brought
us to move towards different analysis methods. However, it is worth keeping in mind that clustering is
metric dependent. Thus, for future work, different metrics that are more refined and less linear could be
more insightful than the metrics that we have used here.

6 Results from k-means clustering on the effect of syllable 1 on
syllable 2

6.1 K-means clustering for all speakers with the Euclidean distance

Since we are also interested in the (existence) of the opposite effect, we have also performed k-means
clustering where the second syllable is fixed and the first syllable varies. This time, we only need to
consider the last 10 time points. The rest of the analysis is analogue to the one where the first syllable
is fixed and the second syllable varies. Below is the plot that we have obtained for 71Tz with k = 4.

Cluster plot TxT1 with k = 4
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Figure 13: Clusters for ToT'1 with the Euclidean distance using the kmeans() function with k¥ = 4 and
where all speakers are considered.

Again, we see that the tonal combinations are more or less evenly distributed over all the clusters.
Therefore, none of the clusters represents a specific tonal combination. Since these results are similar to
the ones obtained for the reversed order, we do not expect to see much of a difference if we perform the
other analyses on this order as well. Therefore, we have omitted these analyses here.
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7 Duration analysis

One of the ways that we can measure the effect of one syllable on the other is by studying their durations.
This gives rise to the following two questions:

e What is the effect of syllable 2 on the duration of syllable 17
e What is the effect of syllable 1 on the duration of syllable 27

We can try to answer these questions with duration analysis. Although duration analysis is better known
as survival analysis, the former term is more suitable in the context of this thesis. As stated in [22],
“Survival analysis is the study of survival times and of the factors that influence them.” Therefore, the
outcome variable of such an analysis is the time until a specified event occurs. An example of such an
event is the death of a patient in a clinical study.

In the following subsections we will be covering the type of data encountered in duration analysis, the
key characteristics of duration analysis and the Cox proportional hazards model. The content is mostly
taken from [23], unless stated otherwise.

7.1 Censored data

The data that we consider in a duration analysis are often censored. This type of data can be described
as in [23]: “In essence, censoring occurs when we have some information about individual survival time,
but we don’t know the survival time exactly.” In the case of a clinical trial, where the subjects of interest
are the participants of the trial, the most common reasons for censoring are:

e The study ends before the event of interest occurs for a specific subject.
e Lost to follow-up of a subject.

e Withdrawal from the study by a subject.

Censoring can appear in the following ways:

e Left censoring: occurs when the true survival time is less than or equal to the observed survival
time.

e Interval censoring: occurs when the true survival time lies within a known interval, which has been
specified.

e Right censoring: occurs when the true survival time is equal to or greater than the observed survival
time.

Most of the data that is considered in duration analysis is right-censored data. This type of censoring
generally occurs if one of the three reasons that were earlier described happens.

7.2 Key quantities in duration analysis

One of the quantities that is considered in duration analysis is the survival function (also known as the
survivor function). This is the probability that the subject of interest lasts (survives) longer than a
particular time ¢. Therefore, the definition is as follows:

S(t) = P(T > t)

where the random variable T > 0 denotes the survival time of the subject. The survival function holds
the following theoretical properties: it is non-increasing, S(0) = 1 and S(c0) = 0.

Another quantity that we consider is the hazard function:

Pt<T<t+At|T>t)
A0 At
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This function is mathematically difficult to interpret. The following conceptual interpretation is given in
[23]: “The hazard function h(t) gives the instantaneous potential per unit time for the event to occur,
given that the individual has survived up to time ¢.” Loosely put, the hazard function gives an indication
of the failure rate for a particular subject, given that it has survived up to time t.

The relationship between the survival function and the hazard function can be captured in the following
two formulae:

S(t) — e~ fOf h(u)du’

[as()/d()
h(““[ S(0) ]

7.3 Cox proportional hazards model

The questions stated at the beginning of this section are of the form ‘How does a particular independent
variable influence a particular dependent variable?” These type of questions can be studied through
regression analysis. One popular survival regression model is the Cox regression model, also known as
the Cox proportional hazards model. For this model, the hazard function at time ¢ is expressed as the
following product:

h(t, X) = ho(t)ezle BiXi

where t is the time, ho(t) is the baseline hazard function, X = (Xi, Xo, ..., X,,) are the p covariates (also
known as the explanatory variables) and §; the corresponding regression coefficients. The term h(t) is
called the baseline hazard function for the following reason. If all the X;’s are equal to zero, we get:

h(t, X) = ho(t)eXi=1 % = py(1)e® = ho(t)

In the following subsections we will see how the hazards can be used.

7.3.1 Nice properties of the Cox PH model

The Cox PH model has some nice properties that often makes it preferred over other duration analysis
models. Some of them include:

e It is a semiparametric model. This means that the baseline hazard is unspecified, while the model
is still capable of producing results that approximate the results of the correct parametric model
well.

e The outcome of the estimated hazards are always non-negative due to the exponential expression.
This non-negativity is important, since the following should hold for every hazard function:
0<h(t,X) < oco.

e [t uses survival times and censoring, which is not the case for every model. Therefore, it uses more
information than for example the logistic model, which ignores survival times and censoring.

Another nice property of this model is that it holds the proportional hazards assumption. To understand
what this assumption entails, we will first need to cover the concept of a hazard ratio.

7.3.2 Hazard ratio and its interpretation

The hazards of two subjects can be compared through their hazard ratio, which in the case of the Cox
PH model can be estimated as follows:

A 2 * . Zf:léixi*

h(t, X)) ho(t)eXiafiXs
with X = (Xi, Xp,..., X;,) the covariates of one subject and X* = (X7, XJ,..., X,;) the covariates of
the other subject. This formula can be rewritten in such a way that the effect of the covariates can be
measured without knowing the baseline hazard:
~ Pgx* Pgox*
R - hAo(t)eZi:ﬁsz _ ezz,zﬁsz _ BZleﬁAi(X,;**Xi)
ho(t)ezﬁ;lﬁixi eE?=1BiXi
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This equation is directly related to the proportional hazards assumption, which, as stated in [23], holds
the following: “The PH assumption requires that the H R is constant over time, or equivalently, that the
hazard for one individual is proportional to the hazard for any other individual, where the proportionality
constant is independent of time.” This assumption can be achieved by only accepting covariates that are
time-independent. In the case that the covariates are time-dependent, one needs to use the extended
Cox model. We recommend reading chapter 6 of [23] if one is interested in this extension as well. The
covariates that we consider in this thesis do not change over time, so the non-extended version suffices.

The outcome of this hazard ratio can be loosely interpreted as follows:

e HR > 1 indicates that the failure rate for the sub ject with X™* as the covariates is greater than for
the subject with X as the covariates, given that both subjects have survived up to time t.

e HR < 1 indicates that the failure rate for the sub ject with X* as the covariates is greater than for
the subject with X as the covariates, given that both subjects have survived up to time t.

We are also able to compare the hazard of a subject with X as the covariates to the baseline hazard. For
this, we need to rewrite the first equation as:

The loose interpretation of the outcome of this ratio is similar to the one that we have seen before:

e HR > 1 indicates that the failure rate for subject 1 is greater than for the control subject, given
that they have both survived up to time t.

e HR < 1 indicates that the failure rate for subject 1 is smaller than for the control subject, given
that they have both survived up to time t.

In this project, the hazard ratio can be used to compare the duration of two syllables and the interpretation
in this context is as follows:

e HR > 1 indicates that the duration of the second syllable is longer than the duration of the first
syllable.

e HR < 1 indicates that the duration of the second syllable is shorter than the duration of the first
syllable.
7.3.3 Confidence intervals for the hazard ratio

In the previous subsection we have seen how to estimate the hazard ratio. A 95% confidence interval (so
a = 0.05) for such a hazard ratio and for which the model does not contain any interaction effects, is
given as in [23]:

exp {B +1.96 VArB}

The value 1.96 is obtained by reading of the z—table for the Normal distribution at z = 1 — % = 0.9750.
Consequently, if we choose the significance level to be a = 0.10 instead, we are able to construct a 90%
confidence interval for this type of model by reading of the z—table at z = 0.9495 (since this value is
nearest to and smaller than 1 — %1% = 0.95). From the table we obtain P(Z < 0.9495) = 1.64, so the
90% confidence interval is:

exp {B +1.64 V.:;Lrﬁ}
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8 Results from duration analysis

To get a better understanding of the effect of syllable 1 on the duration of syllable 2 and vice versa, we
have performed duration analyses. The data that we consider contain the duration for syllable 1 as well
as for syllable 2 in milliseconds for each possible tonal combination, each speaker and each repetition. We
have used the coxph() function from [24] for this analysis, which is based on the Cox Proportional-Hazards
model described in [7.3] The reference tone for both analyses is T'1. In the following subsections we will
present the results on both duration analyses.

8.1 Effect of syllable 2 on duration syllable 1
The table below contains the results on the effect of syllable 2 on the duration of syllable 1.

coef exp(coef) se(coef) zZ Pr(=lzl|)
durationf$syllable2s27T2 -0.001915 0.998087 0.074189 -0.026 0.979
durationfsyllable2s2T3 -0.122258 0.884920 0.074342 -1.645 0.100
duration$syllable2s2T4 0.034389 1.034987 0.074352 0.463 0.644

exp(coef) exp(-coef) Tower .95 upper .95

duration$syllable2s52T2 0.9981 1.0019 0.8630 1.154
duration$syllable2s2T3 0.8849 1.1300 0.7649 1.024
durationfsyllable252T4 1.0350 0.9662 0.8946 1.197

Figure 14: Results from the duration analysis with the Cox Proportional-Hazards model on the effect of
syllable 2 on the duration of syllable 1.

From the table we obtain the following estimates for exp(3):

e If syllable 2 is T2, it holds that exp(8) < 1.

e If syllable 2 is T'3, it holds that exp(8) < 1.

e If syllable 2 is T4, it holds that exp(3) > 1.

This means that HR < 1 if syllable 2 is T2 or T'3. This indicates that in these two cases, the duration of
syllable 2 is shorter than the duration of syllablle 1 (which is T'1), given that both syllables have lasted
at least until time ¢. Furthermore, if syllable 2 is T4, we have that HR > 1. In this case, it is indicated
that the duration of syllable 2 is longer than the duration of syllable 1 (which again is T'1).

The table also shows the 95% confidence intervals for the exp(8) values. If syllable 2 is T'3, this interval is
equal to [0.7649,1.024]. Note that the larger part of this interval is below 1, since w = 0.89445.

For this tone we also have that exp(8) = 0.8849 < 1. From the table it follows that the p-value for this
tone is p = 0.100. This means that we do not reject the null hypothesis if & = 0.05. However, we have
to keep in mind that the noise and small amount of data have an effect on the significance of the results.
Therefore, we think that a = 0.10 would be a more suitable significance level. For the same tone, the
90% confidence level then is equal to [0.7833,0.9997] and this way it lies completely below 1. This means
that we are 90% sure that the real hazard ratio is below 1 in this case. This might indicate the existence
of an effect. Since the p-value is now equal to the significance level, we interpret this result as slightly
significant. If the data were larger and less noisy, we would expect a stronger effect for this tone.
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8.2 Effect of syllable 1 on duration syllable 2
The table below contains the results on the effect of syllable 1 on the duration of syllable 2.

coef exp(coef) se(coef) zZ Pr(=|z|)
durationfsyllablelslT2 0.037820 1.038544 0.074262 0.509 0.611
duration$syllablels1T3 0.027741 1.028130 0.074373 0.373 0.709
duration$syllablelsS1T4 0.003397 1.003403 0.073694 0.046 0.963

exp(coef) exp(-coef) lower .95 upper .95

duration$syllablelS1T2 1.039 0.9629 0.8979 1.201
duration$syllablelsiT3 1.028 0.9726 0.8887 1.189
duration$syllablelS1T4 1.003 0.9966 0. 8685 1.159

Figure 15: Results from the duration analysis with the Cox Proportional-Hazards model on the effect of
syllable 1 on the duration of syllable 2.

If syllable 1 is tone 72,73 or T4, it follows from the table that exp(B) > 1. This indicates that in
each of these cases, the duration of syllable 1 is longer than the duration of syllable 2 (which is tone T'1).

Since a greater part of the values of each of the 95% confidence intervals lies above 1 and exp(f) > 1 and
p >> 0.05 for all the tones, there is most likely no effect for this analysis.

9 Results from analysis of covariances (ANOVA)

If there exist differences between the curves, they can be studied by computing and clustering their
covariances. As we have seen in[2.4] the covariance matrix is a finite dimensional analog of the covariance
operator. Each entry in such a matrix is the covariance function evaluated at a particular pair of time
points. For the analysis on the effect on syllable 2 on syllable 1, we only need to consider the first 10

time points. Hence, the covariance matrices computed for this analysis are 10 x 10 matrices and can be
found in [Al

The covariances need to differ enough in order to gain insight from clustering. In the following subsection
we will give a N-sample permutation test that can be used to test whether there exist differences between
the covariances at all and if so, how big these differences are. Also, we are now trying to employ some
specific FDA techniques in an attempt to analyze the curves in their entirety.

9.1 2-sample permutation test

In order to see if it is useful to analyze the computed covariance operators any further, testing the equality
of these covariances is essential. In this subsection, we will focus on the test that we have used for this.
Since we want to perform the test without any parametric assumption on the sample, we compute the
p-value via a N—sample permutation test, where N is the number of independent groups for which we
want to test their covariances against one another. Here, the test statistic is inspired by optimal transport
and is given by some suitable sum of optimal transport maps. For more details on this we refer to [25].

We have chosen N = 2 for our analysis, because this is faster and easier compared to N > 2. This
gives rise to the following three null hypotheses and their alternative hypotheses:

HO : {21 = EQ}, Hl : {21 7é 22}
HO : {21 = 23}, H1 : {Zl 7é 23}

HO : {21 = 24}, H1 . {21 7é 24}

where ¥; denotes the covariance operator of the tonal combination T'1T7, for j € {1,2,3,4}.

For general N, the procedure for the permutation test is as follows.
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- Reassign the (Zjvzl nj) curves {X;;, i=1,...,n;, j=1,...,N} into N groups, respecting the
sizes of the initial groups. Call these new “data” X7 ,. Note that n;, which denotes the number of
curves for the j—th independent group, is at most 12 x 4 = 48 (12 speakers, 4 repetitions and some
missing data).

- Construct the empirical covariance f)j for the jth group {Xi*,j 2217 j=1,...,N.
- Compute the empirical (weighted) Fréchet mean ¥* of {33%,..., 3% }.
- Construct

£ = (57) 12 (5028 (E0) ) VA2

and compute

N
T = ZnJ”tg* - quq”%
j=1

Iterating this procedure for all possible re-assignments of the indexes gives the distribution of the permuted
statistics 7.¥, which in turn can be used to generate a p-value for 7} under the null hypothesis. Under Hy,
all possible permutations of the operators labels have equal probability p = 1/N!. Obtaining an exact
test would thus require N! permutations of the labels, making it computationally prohibitive for large
N. Therefore, for general N, rather than computing an exact p-value, one could resort to a Monte Carlo
sample of permutations. Since in our case N is small (N = 2), the Monte Carlo sampling method is not
needed. However, because we want to perform three different tests simultaneously on the same data, we
will need to use a multiple-comparison correction in order to maintain the original significance level of
the entire set, which is « = 0.05. We will be using a Bonferroni correction for this, which entails dividing
the original a by the number of comparisons that are made [26]. In our case, the Bonferroni correction
gives us the following significance level for each comparison: % = 0.0167.

When we run the 2-sample permutation test in R, we obtain the same p—value for all three comparisons,
namely p = 0.0099, so p < 0.0167 for each comparison. Therefore, we reject the null hypothesis and
accept the alternative hypothesis of each test. We conclude that the covariance operators probably differ
enough from each other to attempt to analyze them via clustering. In the following subsection we will
present the results obtained from this.

9.2 Results from clustering of functional covariances

The figure below shows the PCA plot that we have obtained from the cluster analysis and by applying
multidimensional scaling techniques. ¥c;r; corresponds to the computed covariance operator of the
tonal combination T17% and repetition j and ¢y corresponds to the barycenter of the i-th obtained
cluster, with 4,5 € {1,2,3,4}. Initially we expected that by splitting the curves per tonal combination
per repetition, we would see that the difference between different tonal combinations would be greater
than the difference between different repetitions of the same tonal combination. However, the clusters
are hard to see in the plot. Some of the ¥ ¢;r; are quite close to a certain barycenter, but not enough to
have a clear image of the cluster that they belong to. We expect that this as well is caused by noise that
is overpowering the results.
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Figure 16: PCA plot containing the covariance operators and the barycenters of the clusters.

10 Discussion and further research

In this section we will discuss the results that we have obtained throughout the project and offer
suggestions for further research. This thesis is born from real research questions on a real dataset
provided by Prof. dr. Y. Chen. The specific dataset used eventually did not seem suitable for a precise
analysis, as it is very noisy. However, we could get some indications from the results. It seems to be that
the duration of a tone is different if this tone is followed by tone T'3, but this difference is likely to be
nested at the covariance level. All of this makes the methods employed promising to apply in a further
research, in which a larger and cleaner dataset should be used. It could also be insightful to do the
k-means clustering analyses that we have done in sections [f] and [6] for metrics that are more refined and
less linear. Furthermore, we suggest to use different clustering methods, specifically for the covariance
operators. Lastly, if the differences were more clear, further analysis of the differences between speakers
and between repetitions could also be interesting.
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Figure 20: Frequency profile speaker 1.
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Figure 21:

Figure 22: Frequency profile speaker 3.
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Figure 24: Frequency profile speaker 5.
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Figure 26: Frequency profile speaker 7.
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Figure 28: Frequency profile speaker 9.
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Figure 30: Frequency profile speaker 11.
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Figure 31: Frequency profile speaker 12.
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Figure 32: Clusters for 72T« using kmeans() from the stats package with k = 4 and where all speakers

are considered.
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Cluster plot T3Tx with k = 4
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Figure 33: Clusters for 73T« using kmeans() from the stats package with k = 4 and where all speakers
are considered.
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Figure 34: Clusters for 74Tz using kmeans() from the stats package with k = 4 and where all speakers
are considered.
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Cluster plot T2Tx with k =3
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Figure 35: Clusters for T1Tx using kmeans() from the stats package with k = 3 and where all speakers
are considered.
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Figure 36: Clusters for T1Tx using kmeans() from the stats package with k = 3 and where all speakers
are considered.
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Cluster plot T4Tx with k = 3
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Figure 37: Clusters for T1Tx using kmeans() from the stats package with k = 3 and where all speakers
are considered.
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Figure 38: Clusters for TxT2 using kmeans() from the stats package with k = 4 and where all speakers
are considered.
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Cluster plot TxT3 with k = 4
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Figure 39: Clusters for TxT3 using kmeans() from the stats package with k = 4 and where all speakers
are considered.
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Figure 40: Clusters for TxT4 using kmeans() from the stats package with k = 4 and where all speakers
are considered.
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Figure 41: Optimal number of clusters for the tonal combination 727 z.
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Figure 42: Optimal number of clusters for the tonal combination 73T z.
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Figure 43: Optimal number of clusters for the tonal combination 747 z.
K-means for T2Tx for speaker 1 with k = 4
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Figure 44: Clusters for T2Tx for speaker 1 with the Euclidean distance using the kmeans() function with
k= 4.
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K-means for T3Tx for speaker 1 with k = 4
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Figure 45: Clusters for T'3Tx for speaker 1 with the Euclidean distance using the kmeans() function with
kE=4.
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Figure 46: Clusters for T4T«x for speaker 1 with the Euclidean distance using the kmeans() function with
k=4
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Cluster plot T2Tx with k = 4
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Figure 47: Clusters for T2Tz for speaker 1 with the Euclidean distance using the KMeans() function
with k = 4.
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Figure 48: Clusters for 73Tz for speaker 1 with the Euclidean distance using the KMeans() function
with k = 4.
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Cluster plot T4Tx with k = 4
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Figure 49: Clusters for T4Tx for speaker 1 with the Euclidean distance using the KMeans() function
with k = 4.

K-means for T2Tx with k = 4 and the Manhattan distance
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Figure 50: Clusters for 72Tz with the Manhattan distance with the KMeans() function with k£ = 4 and
where all speakers are considered.
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K-means for T4Tx with k = 4 and the Manhattan distance
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Figure 51: Clusters for 74Tz with the Manhattan distance with the KMeans() function with k£ = 4 and

where all speakers are considered.
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Figure 52: Covariance matrix for T171. The rows as well as the columns correspond with the time points

t=1,2,..,10.
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Vi V2 V3 V4 V5 Ve V7 Ve Vo V10
1 4636.289 4640.023 4660390 4673493 4718915 4759.296 4803414 4848727  4881.762 4908.940
2 4540.023 4653.917 4672.613 4698.062 4738375 4778.504 4821915 4866125 4898.717 4925.604

w

4660.390 4678.613 ATQ7.577 4730357 4772503 4812731 4855.707 4899.54T7 4931.972 4958.685
4578.493 4698.062 4730357 4759.897 4807569 4849.594 4893496 4937749 4989.918 4996.284
4718915 4738375 4772503  4807.56%9 4861135 4900.003 4951.821 459.883 5028.727 5054.8593
4759.296 4778.504 4812731 4849594 4906.003 4954.027 5002.103 5047917 5079.522 5105.738
4503.414 4821.915 4855707 4893496 4951.821 5002.103 5052.693 50939.566 5130.961 5157.240

4345.727 480b6.129 4899.547 4537.745 4996883 5047917 5098566 5148188 5180676 5207.710

w W ~ & N

4881.762 4898.717 4931.972 49%59.918 5028727 5079.522 5130961 5180676 5215.011 5243.433
10 4908940 4925604 4958.685 4596.284 5054893 5105738 5157.240 5207710 5243433 5273.982

Figure 53: Covariance matrix for T172. The rows as well as the columns correspond to the time points
t=1,2,...,10.

Vi vz V3 V4 V5 Ve V7 ve Vo V10
1 4135412 4156.895 4190.190 4220242 4238797 4286.949 4301.755 4336571 4377.316 4419.599
2 4156.895 4180.288 4230.111 4283135 4282694 43711505 4346635 4380515 4420610 4462.501

w

4190190 4230.111  4278.529 4313.281 4334419 4364436 4400042 4433623 4473767 4516.045
4220242 4263.135 4313281 4354185 4377779 4400945 4446502 4480321 4520591 4563.158
4238797 4282.684 4334419 A377.779 4404024 4438.543 4476.393 4510539 4551.488 4594.077
4266.949 4311.505 4304436 4409945 4438543 4470115 4515917 4551510 4592655 4635.519
4301.755 4346.639 4400.042 4448502 4476393 4515917 4557.630 4594367 4536.203 4679.406

4336.571 4380.515 4435623 4480321 4510.939 4551.510 4594367 4632647 4675763 4719.626

L= - B T L B

4377.316 4420610 4475767 4520591 4551.485 4592.653 4636.203 4675763 4721.162 4766.5640
10 4419599 44p2.501 4516.048 4563.158 4584077 45835519 4675400 4719.626 4700.040 4814.579

Figure 54: Covariance matrix for T173. The rows as well as the columns correspond to the time points
t=1,2,...,10.
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Vi V2 V3 v4 V5 Ve V7 Ve Vo V10
1 4707.5998 4712376 4657.729 4487.055 44851352 4453127 4515661 4562136 4612218 4628337
2 4712376 4729.943 4696.128 4529328 4535295 4537.629 4504460 4606598 4657.272 4574.013

w

4667.729 4696.128 4680.799 4559.766 4567.698 4570.733 4598.060 4B39.812 4690.507 4707.5585
4457.055 4529328 4555.760  4591.251 4600658 4803460 4631.144 456733371 4724.508 4742.627
4491.352 4535295 4567.698 4600658 4612956 4817.715 4646172 4638312 4739.017 4756.983
4493127 45537.629 4570.733 4803.480 4617.715 4624.345 4653.554 4p95.835 4746.203 4764.040
4519.6671 4564.460 4598060 4631.144 4646172 4853.554 4b83.852 4727.000 4777.64p 4785742

4562.136 4606.598 4639.812 4673.331 4688312 4695.335 4727.000 4771926 4823.763 4842.443

w W o~ A n R

4612.218 4657.272  4690.507 4724508 4739.017 4746.203 4777646 4823763 4877817 48598.068
10 45285337 4674.013 4707.595 4742827 47505983 4764.040 4795742 4842443 4593.068 4920.359

Figure 55: Covariance matrix for T'174. The rows as well as the columns correspond to the time points
t=1,2,...,10.
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