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1 Introduction

When asked to motivate the interest in a certain mathematical field, many a mathematician will
bring up the beauty of their subject of study. Though the aesthetic appreciation of mathematics
will always be a subjective thing, mathematical beauty is often said to be found in the elegance of
a brief proof, the generality of a mathematical tool or the simplicity of an identity that is able to
connect multiple mathematical areas. Especially in undergraduate mathematics, mathematical
objects are often considered to be beautiful if they are elegant and simple. Particularly in
analysis, which at surface seems a muddle of ε-δ definitions and lengthy calculations of derivatives
and integrals, students can be relieved to work with smooth, analytical functions, with ‘nice’
properties and an abundance of theorems to apply to. However, focused on the ideal of the
smooth function, it is easy to lose sight of many classes of functions that demonstrate ‘weird’
behaviour: the kind of functions that are presented as a counterexample to show how things
can ‘go wrong’ in calculus. A collection of such wonderful counterexamples can be found in
[GO64]. Though these examples demonstrate the ways our assumptions about continuity and
differentiability are not always right, the maturing mathematician can find beauty in these
counterexamples and excitement in the seemingly ugly functions.

Two of such ‘nice’ properties that continuous functions may possess on an interval of their
domain are differentiability and monotonicity. In this thesis, we zoom in on the extremes within
the space of continuous real-valued functions on [0, 1], equipped with the supremum norm. We
will explore the existence of functions that are nowhere differentiable, of functions that are
everywhere differentiable and nowhere monotone, and the question of whether each nowhere
differentiable function is nowhere monotone as well. Additionally, we will show that every
continuous function can be approximated by a nowhere differentiable function, highlighting the
prevalence of nowhere differentiability.

The key ingredient for proving these statements will be the Baire Category Theorem, which
makes a fundamental topological distinction between two types (or categories) of spaces, stating
whether they are in a sense ‘full’ or ‘large’, or more ‘empty’. The reader may be familiar
with this theorem through the proofs of the Open Mapping Theorem and Banach-Steinhaus
Theorem, both results about linear functions on Banach spaces (see [Fol99, Theorem 5.10 and
Theorem 5.13]).

Though the results in this thesis are not novel, this thesis presents the proofs in a more detailed
and insightful way, explaining all concepts at undergraduate level, so that the theorems are un-
derstandable to a broader audience. Especially the material in Section 3.3 provides a lot more
detail to the proof of the theorem that everywhere differentiable nowhere monotone functions
exist, which was originally proven by Clifford Weil [Wei76]. As we delve into these theorems,
we also highlight and prove other noteworthy results, such as Vitali’s Covering Theorem in Sec-
tion 3.2 and Tao’s Theorem for the uniform convergence of functions whose derivatives converge
uniformly in Section 3.3.

This thesis is now divided into the following components. Section 2 lays the required groundwork
for the rest of this thesis. Section 2.1 to Section 2.4 contain a recap of topological spaces and
measure theory, to ascertain the reader is familiar with the main concepts. Section 2.5 and
Section 2.6 introduce the necessary definitions for the Baire Category Theorem and contain a
proof of the theorem. Section 3.1 centres around proving the fact that nowhere differentiable
functions are dense in the space of real-valued continuous functions on [0, 1]. Section 3.2 focuses
on the relation between differentiability and monotonicity of continuous functions. The main
result of this section is Lebesgue’s Theorem for the Differentiability of Monotone Functions,
which states that a function that is monotone and continuous on an interval is also differentiable
on that interval. We conclude with a proof that there exist continuous functions that are nowhere
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monotone and everywhere differentiable in Section 3.3. With these results in mind, the reader of
this thesis will hopefully have a more nuanced understanding of the counterintuitive behaviour of
continuous functions, and be able to appreciate the beauty of both these supposedly unattractive
examples and the application of the Baire Category Theorem as a general technique in proofs.
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2 Preliminaries

In this thesis, a basic knowledge of topology, measure theory and functional analysis is required.
Though it is assumed that the reader is familiar with these topics, this chapter serves as a
reference point to understand the different steps in the proofs later on. The first two sections are
dedicated to a short summary of properties of different kinds of topological spaces, in particular
metric spaces and normed spaces. Next, we present a few specific results from the field of real
analysis and measure theory. The proofs of these results can be found in standard literature.
The final two sections build up to the Baire Category Theorem, including a proof of the theorem
for complete metric spaces and for locally compact Hausdorff spaces.

2.1 Topological spaces

In this section, the main topological concepts and results that are used in this thesis are pre-
sented. Though most of this thesis is dedicated to normed vector spaces, the topological frame-
work in this section allows us to give a more general proof of the Baire Category Theorem.

We denote a topological space by (S, T ). For a subset A ⊂ S, the set A will be assumed to
have the subspace topology TA := {U ∩ A : U ∈ T } induced by T . To prevent confusion with
varying definitions found in the literature, we mean that a set N ⊂ S is a neighbourhood of a
point x ∈ S or a set A ⊂ S when there exists an open U ⊂ S such that U ⊂ N and x ∈ U or
A ⊂ U respectively. We denote the closure and the interior of a set A ⊂ S by cl A and int A
respectively. In case it could be confusing in which set we consider the closure or interior of
A, we introduce a subscript. Hence, if A ⊂ U for some set U ⊂ S, we can distinguish between
cl UA and cl SA. A set A is dense in S if cl A = S. The following equivalent notions of density
will often reappear in this thesis.

Proposition 2.1.1. Let S be a topological space, and let A ⊂ S. Then the following are
equivalent.

(i) A is dense in S.

(ii) A intersects every non-empty open set U ⊂ S.

(iii) The interior of S \A is empty.

The topological spaces in this thesis have some further structure, which allows us to separate
points and sets by open sets. We examine two kinds of restrictions. The first is called a Hausdorff
space, for which it holds that for x, y ∈ S with x ̸= y, there are open sets A,B ∈ T with x ∈ A,
y ∈ B such that A ∩ B = ∅. The second one is a stronger property. A space S is regular if for
x ∈ S and F ⊂ S closed, x ̸∈ F , there exist open disjoint sets containing x and F respectively.

Another property we will need in this thesis is compactness, the property that every open cover
of the space has a finite subcover. An open cover of a topological space (S, T ) is defined as
a subset U ⊂ T for which S = ∪U∈UU . Similarly, an open cover of a subset A of S is some
U ⊂ T for which A ⊂ ∪U∈UU . We call (S, T ) compact if for every open cover U of S, there
exists a finite subset U ′ ⊂ U such that S = ∪U∈U ′U . A subspace A ⊂ S is compact if for every
open cover U ⊂ T with A ⊂ ∪U∈UU there is a finite subset U ′ ⊂ U such that A ⊂ ∪U∈U ′U .
Alternatively, a topological space is compact if and only if every family F of closed subsets
with the finite intersection property has a non-empty intersection. A family F has the finite
intersection property if every finite subcollection of sets in F has non-empty intersection. This
property follows from the definition of open covers by taking complements.

Between compactness, closed subspaces and Hausdorff spaces a few useful connections exist.
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Proposition 2.1.2. Let (S, T ) be a topological space, and A ⊂ S a subspace.

(i) If S is compact and A is closed, then A is compact.

(ii) If S is Hausdorff and A is compact, then A is closed.

(iii) If S is compact and Hausdorff, then S is regular.

(iv) If S is compact and Hausdorff, x ∈ S and U is a neighbourhood of x, then U contains a
compact neighbourhood of x.

When working with functions from one topological space to another, it is necessary to have a
concept of how much a function preserves the topology of one space to another. A function that
preserves this topological structure is called a homeomorphism, which is a continuous bijection
with continuous inverse. The following identities express to which extent continuous functions
preserve topological properties.

Proposition 2.1.3. Let f be a continuous function mapping (S, TS) to (V, TV ). If K ⊂ S is
compact, then f(K) is compact.

Proposition 2.1.4. Let f : S → V be a continuous bijection. If S is compact and V is Haus-
dorff, then f is a homeomorphism.

A slightly more relaxed property than compactness is that of a locally compact space, which
requires every point to have a compact neighbourhood. We are especially interested in locally
compact Hausdorff spaces, which are often abbreviated as LCH spaces. An example of such a
space is Rn with the topology derived from the Euclidean metric (see next section). A LCH
space has the property that it can be embedded in a compact Hausdorff space.

Definition 2.1.5. Let (S, T ) be a topological space. Let ∞ denote a point outside of S and set
S∞ := S ⊔ {∞}. Topologize S∞ with T∞ := T ⊔ {S∞ \K : K ⊂ S is compact}. The space S∞
along with the inclusion f : S → S∞ is called the Alexandroff extension of S.

If S is a LCH space that is non-compact, then S∞ is the one-point compactification of S satisfying
the following properties. A proof of this construction can be found in [Run05, Theorem 3.3.26].

Theorem 2.1.6 (One-point compactification). Let (S, T ) be a non-compact LCH space. Then
there is a compact Hausdorff space (S∞, T∞) along with a function f : S → S∞ such that the
following two statements hold.

(i) f is a homeomorphism onto its image.

(ii) The set S∞ \ f(X) consists of just one point.

The topological space (S∞, T∞) is unique up to homeomorphism.

2.2 Metric spaces and the space of continuous functions

This section introduces metric spaces and the space of continuous functions on a compact metric
space, the main topic of this thesis. The main property of metric spaces that we are interested
in is completeness, which will also be defined below. In addition, we present a proof that the
space of continuous functions on a compact Hausdorff space is complete, due to its importance
in the rest of this thesis.

Throughout this section, we denote a metric space by (X, d). If the metric is clear from context,
we often just write the metric space as X. The space R equipped with the Euclidean metric
d(x, y) := |x− y| is a metric space. The Euclidean metric is the standard metric on R, so if no
other metric is specified, R is assumed to have this metric. We denote open balls of radius r > 0
around a point x ∈ X by Br(x) := {y ∈ X : d(x, y) < r}.
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In the analysis of metric spaces, the conditions for a sequence to converge are of fundamental
interest. Throughout this thesis, a sequence or enumeration of points {xn}n≥1 in X will be
denoted as {xn}n. The same notation is used for a sequence of sets. Every converging sequence
is a Cauchy sequence, but the converse does not always hold. If every Cauchy sequence converges,
the space is called complete. This property can also be understood as the metric space being ‘big
enough’ to contain all the limits of the Cauchy sequences, or to be without ‘holes’. As such, R
is a complete metric space, but Q is not. The convergence of sequences allows for the following
alternative characterisation of a set being closed in a space. For the proof of this result, see
[Run05, Proposition 2.3.4].

Proposition 2.2.1. Let (X, d) be a metric space, and let A ⊂ X. Then the closure of A is the
set of points in X that are the limit of a sequence in A converging in X.

The next proposition expresses the relation between closed and complete sets. The proof can
be found in [Run05, Proposition 2.4.5].

Proposition 2.2.2. Suppose (X, d) is a metric space, and let A ⊂ X. Then the following
implications hold.

(i) If A is complete, then it is closed.

(ii) If X is complete, then A is complete if and only if it is closed.

We are not only interested in the convergence of sequences of points in X, but also in the
convergence of sequences of functions. Below are two modes of convergence to describe the
behaviour of a sequence of functions in regard to a limit function, if it exists.

For n ≥ 1, let fn : X → Y be a function between two metric spaces. We say fn converges
pointwise to f if for every x ∈ X,

lim
n→∞

fn(x) = f(x).

We say fn converges uniformly to f if

lim
n→∞

sup
x∈X

|fn(x)− f(x)| = 0.

This supremum might not exist, for example, if X ⊂ R is not a bounded set. A classic example of
a sequence of functions {fn}n that converges pointwise but not uniformly is given by fn : [0, 1] →
R, fn(x) := xn, which converges to

f(x) :=

{
0 if 0 ≤ x ≤ 1
1 if x = 1.

An important property of uniform convergence is that if each fn is continuous, the limit function
f is also continuous, while in the case of pointwise convergence, f may fail to be continuous as
above. This proof of this property can be found in [Mun14, Theorem 21.6].

Theorem 2.2.3 (Uniform Limit Theorem). For each n ≥ 1, let fn : X → Y be a continuous
function between a topological space X and a metric space Y . If {fn}n converges uniformly to
f , then f is continuous.

Compactness and completeness are closely related through Proposition 2.1.2 and Proposition 2.2.2.
In Rn, a specific equivalence holds. For the proof of this theorem, see [Run05, Corollary 2.5.12].

Theorem 2.2.4 (Heine-Borel). Let K ⊂ Rn (with the Euclidean metric). Then K is compact
if and only if it is bounded and closed in Rn.

We can now introduce the main object of study in this thesis. Let M be a compact Hausdorff
space. We then write

C(M) := {f : M → R : f is continuous}.
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The uniform metric is defined as

d∞(f, g) := sup
x∈M

|f(x)− g(x)| .

To ensure the metric is well-defined, the existence of the supremum is necessary, which is indeed
the case. The continuity of the function h := f − g implies, together with Proposition 2.1.3,
that h(M) is a compact set in R. By the Heine-Borel Theorem (Theorem 2.2.4), h(M) must be
bounded in R. Based on the standard properties of R, we can conclude that d∞ satisfies all the
necessary requirements of a metric.

Theorem 2.2.5. The space (C(M), d∞) is complete.

Proof. Let {fn}n be a Cauchy sequence for d∞ in the space C(M). For abritrary x ∈ M , the
sequence {fn(x)}n is Cauchy in R with the standard metric, because d∞(fn, fm) is always an
upper bound for |fn(x)− fm(x)| for any n,m ∈ N. Since R is a complete metric space, for each
x ∈ M , the limit limn→∞ fn(x) exists.

Now, define f : M → R by f(x) := limn→∞ fn(x), which is well-defined as each limit exists and
is unique. For arbitrary η > 0, there exists some N ∈ N such that for n,m ≥ N ,

d∞(fn, fm) = sup
z∈M

|fn(z)− fm(z)| < η,

as the sequence is Cauchy. Letting m → ∞, for any x ∈ M we find

|fn(x)− f(x)| ≤ η.

To prove that f is continuous, let x ∈ M and ε > 0 be arbitrary. Because of the property above,
there exists some N ≥ 1 such that supz∈M |fN (z)− f(z)| < 1

3ε. Because fN is continuous, there
exists some open neighbourhood U of x such that for y ∈ U , we have |fN (x) − fN (y)| < 1

3ε.
Hence, for any y ∈ U , with the triangle inequality, we find

|f(x)− f(y)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (y)|+ |fN (y)− f(y)|
≤ 2 sup

z∈M
|f(z)− fN (z)|+ |fN (x)− fN (y)|

< 2 · 1
3
ε+

1

3
ε

= ε,

so f is continuous.

Then f ∈ C(M), so all that is left is to show that fn → f as n → ∞. Since for any arbitrary η,
we have some N ≥ 1 such that d∞(fn, f) ≤ η if n ≥ N , this is indeed the case.

2.2.1 Normed vector spaces

We consider one more specific kind of topological space: the normed vector space. The space of
continuous functions C(M) is also a vector space, and we will equip this space with a norm. In
this section, we shortly examine a few properties of the normed vector space.

We denote a normed vector space over R by (E, ∥ · ∥) with the norm ∥ · ∥ : E → R≥0. The
standard norm on R is the Euclidean norm, given by ∥x∥ := |x| for x ∈ R. The space C(M) is
a normed vector space with the norm ∥ · ∥∞ : C(M) → R defined by

∥f∥∞ := sup
x∈M

|f(x)|.
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This is the standard norm on C(M). We call a vector space E complete if it is complete with
respect to the metric induced by the norm through setting d(x, y) := ∥x − y∥ for all x, y ∈ E.
By Theorem 2.2.5, the normed vector space C(M) is complete.

In addition, the following result holds. Its proof can be found in [RY08, Corollary 2.19].

Proposition 2.2.6. If ∥ · ∥ is any norm on a finite-dimensional space E over R, then E is a
complete metric space.

For infinite-dimensional normed vector spaces, the associated metric space may not be complete.
Normed vector spaces that are complete under the metric associated to the norm are called Ba-
nach spaces. Finite-dimensional normed vector spaces and C(M) (with M a compact Hausdorff
space) are both Banach spaces.

2.3 Theorems from real analysis

The following results will be used throughout this thesis. They apply specifically to functions
on R with the standard norm.

Proposition 2.3.1 (WeierstrassM -test). Let {Mk}k be a sequence of non-negative real numbers
such that

∑
k≥1Mk < ∞. Let {gk}k be a sequence of real-valued functions on an interval I ⊂ R.

If |gk(x)| ≤ Mk for all x ∈ I, then
∑

k≥1 gk converges uniformly on I.

Proof. Let fn(x) :=
∑n

k=1 gk(x) for n ≥ 1. We have to show that this sequence converges
uniformly to f : I → R given by f(x) := limn→∞ fn(x). As the

∑
k≥1Mk converges, we have

lim
n→∞

∑
k≥n+1

Mk = 0.

Then

lim
n→∞

sup
x∈I

|fn(x)− f(x)| = lim
n→∞

sup
x∈I

∣∣∣∣∣∣
∑

k≥n+1

gk(x)

∣∣∣∣∣∣
≤ lim

n→∞
sup
x∈I

∑
k≥n+1

|gk(x)|

≤ lim
n→∞

∑
k≥n+1

Mk

= 0.

This implies that fn converges uniformly to f .

This next result is a specific case of the Stone-Weierstrass Theorem. For the proof, see [HS65,
Corollary 7.31].

Theorem 2.3.2 (Weierstrass Approximation Theorem). Let f be a continuous real-valued func-
tion on the interval [a, b] ⊂ R. For any ε > 0, there exists a polynomial p such that ∥f−p∥∞ < ε.

According to the Intermediate Value Theorem, each continuous function on a closed interval
has the intermediate value property, so if its domain contains the interval [a, b], then f will take
every value between f(a) and f(b). Darboux’s Theorem ensures the derivative of a function also
has the intermediate value property. For the proof, see [Ols04].

Theorem 2.3.3 (Darboux’s Theorem). Let I be a closed interval, and let f : I → R be a
differentiable function. If a, b ∈ I with a < b and if y lies between f ′(a) and f ′(b) then there
exists a number x ∈ [a, b] such that f ′(x) = y.
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The subsequent theorem provides the necessary conditions to draw conclusions about the dif-
ferentiability of the inverse of a differentiable function. The formulation and proof can be found
in [Tao22, Theorem 10.4.2].

Theorem 2.3.4 (Inverse Function Theorem). Let X,Y be subsets of R and let f : X → Y be
an invertible function with inverse f−1 : Y → X. Suppose x0 and y0 are limit points of X and
Y respectively such that f(x0) = y0. If f is differentiable at x0, f

−1 is continuous at y0 and
f ′(x0) ̸= 0, then f−1 is differentiable at y0 and

(f−1)′(y0) =
1

f ′(f−1(y0))
.

2.4 Measure theory

Though most of this thesis makes use of concepts from topology and functional analysis, for the
results in Section 3.2 and Section 3.3 we rely on a basis of measure theory. The key properties
and theorems used in these sections are listed here.

We refer to a measure space as (X,A , µ). The main σ-algebras that we use in this thesis are
P(Z≥1), the power set of Z≥1, and the Borel σ-algebra on R. Every interval in R that will be
relevant in this thesis is a measurable set for the Borel σ-algebra.

We often rely on the following properties of measures. A proof can be found in [Coh13, Propo-
sition 1.2.2 and Proposition 1.2.4].

Proposition 2.4.1. Let (X,A , µ) be a measure space.

(i) If A,B ∈ A such that A ⊂ B, then µ(A) ≤ µ(B).

(ii) If {An}n is a sequence of sets in A , then µ(∪n≥1An) ≤
∑

n≥1 µ(An).

Recall that a measure is finite if µ(X) < ∞ and σ-finite if X can be written as a countable
union of sets {An}n, with each An ∈ A and µ(An) < ∞ for each n.

Let (X,A ) and (Y,B) be two measurable spaces. We say a function f : X → Y is a measurable
function if for any E ∈ B, the set f−1(E) ∈ A . For measurable functions, we denote the
integral of f with respect to µ over a set X as

∫
X f(x) d(µx). A function f is integrable if∫

X |f(x)| d(µx) < ∞.

The two measures that will appear in this thesis are the counting measure and Lebesgue measure
on R. For (X,A ) any measurable space, we can define a function ν : A → [0,∞] by setting
ν(A) := |A|, so ν(A) measures the cardinality of a set. Of course, when A is an infinite set,
ν(A) = ∞. This measure is called the counting measure. Consider (Z≥1,P(Z≥1), ν). Any
function f : Z≥1 → R can be seen as a real-valued sequence with entries an := f(n). Any
sequence {an}n is then a measurable function, and the integral over such a sequence equals the
sum

∑
n≥1 an. If this series is absolutely convergent, the sequence is integrable with respect to

the counting measure.

The Lebesgue measure λ on R is the standard way of assigning a value to intervals in R. This
value measures the length or size of an interval. It has the following properties.

(i) Every countable set in R has λ-measure 0.

(ii) Each interval in R is λ-measurable. If [a, b] ⊂ R with a < b, then λ([a, b]) := b − a. The
open and half-open intervals with endpoints a and b are assigned the same value.

(iii) Every λ-measurable set in R can be approximated from above by open λ-measurable sets
and from below by compact λ-measurable sets.
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The third property means that λ is a regular measure. This property is made more precise in
the following proposition. Its proof can be found in [Coh13, Proposition 1.4.1].

Proposition 2.4.2. Let A ⊂ R be λ-measurable. Then the following two statements hold.

(i) λ(A) = inf{λ(U) : U is open and A ⊂ U}.

(ii) λ(A) = sup{λ(K) : K is compact and K ⊂ A}.

If a property holds for all points in R except for on a set with Lebesgue measure zero, we say
that the property holds almost everywhere. If we need to specify a different general measure µ,
we say the property holds µ-almost everywhere. In Section 3.2, the Lebesgue measure will be
viewed on the set [0, 1], where the same properties as above hold.

Finally, we present four integral theorems that will be used later in this thesis. The first propo-
sition states that integrable functions are almost everywhere finite. For the proof, we refer to
[Coh13, Corollary 2.3.14].

Proposition 2.4.3. Let (X,A , µ) be a measure space, and let f be an integrable function with
values in [−∞,∞]. Then |f(x)| < ∞ holds µ-almost everywhere for x ∈ X.

The theorem below allows us to compute the Lebesgue integral with the Riemann integral. For
the proof, see [Coh13, Theorem 2.5.4].

Theorem 2.4.4 (Equality of the Riemann and Lebesgue integral). Let f : [a, b] → R be a
bounded function. Then the following statements hold.

(i) f is Riemann integrable if and only if it is continuous at almost every point of [a, b].

(ii) If f is Riemann integrable, then f is Lebesgue integrable and the Riemann and Lebesgue
integrals of f coincide.

The next theorem will be used to switch the integral and the limit for a sequence of increasing
functions. For the proof, see [Coh13, Theorem 2.4.1].

Theorem 2.4.5 (Monotone Convergence Theorem). Let (X,A , µ) be a measure space, and let
both the sequence {fn}n and f be [0,∞]-valued measurable functions on X. Then if for µ-almost
every x ∈ X we have that fn(x) ≤ fn+1(x) for all n ≥ 1 and f(x) = limn→∞ fn(x), then∫

X
f(x) d(µx) = lim

n→∞

∫
X
fn(x) d(µx).

The final theorem in this section permits us to change the order of integration when evaluating a
double integral, for the proof see [Coh13, Proposition 5.2.1]. We write A ⊗B for the σ-algebra
on X × Y generated by the collection of measurable rectangles of the form A × B, for A ∈ A
and B ∈ B.

Theorem 2.4.6 (Tonelli’s Theorem). Let (X,A , µ) and (Y,B, ν) be σ-finite measure spaces.
Let f : X × Y → [0,∞] be A ⊗ B-measurable. Then f satisfies∫

X×Y
f d((µ× ν)(x, y)) =

∫
X

(∫
Y
f(x, y) d(νy)

)
d(µx) =

∫
Y

(∫
X
f(x, y) d(µx)

)
d(νy).

2.5 Sets of the first and second category

Finally, a few more basic definitions from topology are needed to state and prove the Baire
Category Theorem. Recall that we call a set A dense in some topological space S if its closure
is the whole space. We have also seen two equivalent characterisations in Proposition 2.1.1.
The standard example of a dense space is Q ⊂ R with the standard metric. The formulation
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of Proposition 2.2.1 (in the context of metric spaces) means that we can think of the closure of
Q as the set containing all the limit points of Q to make R complete. For general topological
spaces, this means that every point in the space S is arbitrarily ‘close’ to a member of A. We
now explore the concept of nowhere dense and meagre sets, whose points, on the other hand,
are not clustered in the space. They are in fact ‘mostly empty’.

Definition 2.5.1 (Nowhere dense). A set E in a topological space S is nowhere dense if its
closure contains no neighbourhoods. In other words, E is nowhere dense if for all non-empty,
open U ⊂ S, there exists a non-empty open set V ⊂ U for which E ∩ V = ∅.

A trivial example of a nowhere dense set is any finite set in R with the standard topology. The
empty set is also clearly nowhere dense. In a discrete space, the empty set is the only nowhere
dense set. Other examples are Z ⊂ R and R viewed as the horizontal axis of the plane in R2,
both with the standard topology.

Note that dense and nowhere dense are not opposite definitions. If E is not dense, it means
that its closure fails to fill some neighbourhood in the space. On the other hand, if E is nowhere
dense, the closure of E contains no neighbourhood at all. There are many different definitions of
being nowhere dense, some more intuitive than others. It is useful to be able to switch between
these for different proofs.

Proposition 2.5.2. The following are all equivalent definitions of E being nowhere dense in a
topological space S.

(i) For all non-empty open U ⊂ S, there exists a non-empty open V ⊂ U with E ∩ V = ∅.

(ii) For every non-empty open U ⊂ S, the interior of U \ E is non-empty.

(iii) The interior of the closure of E is empty.

(iv) The complement of the closure of E is dense.

Proof. We will start by showing the first statement implies the second. Let U ⊂ S be an
arbitrary non-empty open set. By (i), there exists a non-empty open set V ⊂ U such that
E ∩ V = ∅. Then V ⊂ U \ E, so by definition V ⊂ int (U \ E). As V was non-empty, we can
conclude the interior of U \ E is non-empty.

Now assume the second statement is in place. We prove this implies (iii). Assume (iii) does
not hold, so the interior of the closure of E is non-empty. Then there exists some non-empty
open set U ⊂ cl E. By (ii), int (U \ E) is non-empty, so there exists some non-empty open set
V ⊂ U \ E. This implies that V ⊂ cl E \ E. However, E is dense in its closure, so V must
intersect E by Proposition 2.1.1, which poses a contradiction with our assumption that (iii)
does not hold.

Assume now that (iii) holds. Suppose S \ cl E is not dense. By Proposition 2.1.1, there is some
non-empty open U ⊂ S such that U ∩ (S \ cl E) = ∅. Then U ⊂ cl E, but the interior of cl E is
empty, so we arrive at a contradiction once again. Hence, (iii) implies (iv).

Finally, assume S \ cl E is dense. Let U ⊂ S be any non-empty open set. By Proposition 2.1.1,
V := (S \ cl E) ∩ U is a non-empty open set. Because E ∩ (S \ cl E) = ∅, V ∩ E = ∅, so we
satisfy the requirements of (i). These implications all together prove the equivalence of the four
statements.

With this definition, we can make a fundamental distinction between classes of sets.

Definition 2.5.3 (Meagre). We call a set of the first category if it can be written as a countable
union of nowhere dense sets. The term meagre set is more commonly used. Sets that cannot be
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described as such, are called sets of the second category (or non-meagre). If a set E is meagre,
then the set X \ E is called comeagre.

Since the empty set is nowhere dense, a set of the second category cannot be empty. Therefore,
if we want to show a space is non-empty, we can do so by showing it is of the second category.1

This is just one of the useful consequences of Baire’s Theorem.

2.6 The Baire Category Theorem

The Baire Category Theorem, or Baire’s Theorem for short, has a few different versions, two of
which will be considered in this thesis. Both of these give sufficient conditions for a topological
space to be a Baire space, as is defined below. The theorem is named after René-Louis Baire,
who proved the result for Euclidean space Rn in 1899. There are a number of different ways
to introduce Baire’s Theorem, due to the many different definitions of nowhere dense sets. The
main results and proofs in this section are based on [Mun14, Section 48, specifically p. 295-297]
and [Con14, Theorem 1.6.1].

Definition 2.6.1 (Baire space). A topological space S is called a Baire space if, for every
countable collection {An}n, where each An is closed and has empty interior in S, their union
∪n≥1An also has empty interior in S.

In this definition, each set An is nowhere dense. If no countable union of these sets contains
an interior point, it can never be equal to the whole space S. Hence, a Baire space cannot be
meagre. An equivalent definition that will be used in the proof is the following.

Proposition 2.6.2. A topological space S is a Baire space if and only if for any countable
collection of sets {Un}n, each open and dense in S, their intersection ∩n≥1Un is also dense.

Proof. For the right implication, suppose S is a Baire space and let {Un}n be a countable
collection of dense, open sets in S. Let An := S \ Un for each n. Then An is closed and has
empty interior in S by Proposition 2.1.1. We have that S \ ∩n≥1Un = ∪n≥1(S \ Un) = ∪n≥1An,
which has empty interior because S is Baire, so ∩n≥1Un is dense in S by Proposition 2.1.1 as
well.

It can be checked that the left implication follows in the same way, setting Un := S \ An for a
collection of closed sets An, each with empty interior in S.

We need one more property of Baire spaces before stating Baire’s Theorem.

Proposition 2.6.3. If Y is a Baire space and X ⊂ Y is open, then X is a Baire space.

Proof. We first show that if X ⊂ Y is an open subspace of Y and A ⊂ X is nowhere dense in
X, then A is also nowhere dense in Y . Indeed, arguing by contradiction, assume that A is not
nowhere dense in Y . By Proposition 2.5.2, we have that

U := intY (clY (A)) ̸= ∅.

Because of the definition of the subspace topology, U ∩X is open in X. In addition,
U ∩X ⊂ clY (A) ∩X = clX(A). However, intX(clX(A)) = ∅ because A is nowhere dense in X,
so clX(A) cannot contain an open set. This yields a contradiction, so we must have that A is
nowhere dense in Y .

1The word ‘category’ is somewhat controversial. It was introduced by Baire, but many authors have since
rejected the term for its lack of meaning to what the concept stands for. Since the word still appears in the Baire
Category Theorem, I have used it here. In the remainder of this thesis, the term ‘meagre’ will be used instead.
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Let {An}n be a countable collection of closed sets with empty interior in X. For each n, An

is nowhere dense in X, so by the above, all An are nowhere dense in Y . Because Y is a Baire
space, we have intY (∪n≥1An) = ∅. If intX(∪n≥1An) ̸= ∅, then there exists some open non-empty
U ⊂ ∪n≥1An. Then U is also open in Y , by the property of the subspace topology and the fact
that X is open in Y . However, this contradicts that the interior of ∪n≥1An is empty in Y . It
then must hold that the interior of ∪n≥1An is also empty in X, so X is a Baire space.

We now present a proof of the Baire Category Theorem for two types of topological spaces. The
idea of the proof, both for the metric space and for the compact Hausdorff space (which will
be extended to a locally compact Hausdorff space), is to take a collection of dense and open
sets and an arbitrary non-empty open set A. We then construct a nested sequence in these
dense sets that all intersect A, and show the intersection of all these sets with A is non-empty,
in order to apply Proposition 2.6.2. This particular formulation of the theorem is one of the
most general versions, but the Baire Category Theorem can be further extended to the case of
complete pseudometric spaces.

Theorem 2.6.4 (Baire Category Theorem). Every complete metric space and every locally
compact Hausdorff space is a Baire space.

Proof. For the first part of the theorem, assume (X, d) is a complete metric space. Let {Un}n
be a collection of open and dense sets in X. Let A ⊂ X be any non-empty open set in X. We
show that ∩n≥1Un intersects A.

Because U1 is dense and open, A ∩ U1 is non-empty and open, and there exists an open ball
around a point x1 ∈ A ∩ U1 with radius r1 < 1 such that cl Br1(x1) ⊂ A ∩ U1. For any n ≥ 2,
consider Brn−1(xn−1) ∩ Un. This set is open and non-empty. Then there exists some Brn(xn)
with radius rn < 1

n such that

cl Brn(xn) ⊂ Brn−1(xn−1) ∩ Un ⊂ A,

the latter inclusion following from the fact that Br1(x1) ⊂ A and each subsequent open ball is
chosen as a subset of the previous open ball.

As we now have a nested sequence of open balls, we find that for n > N

cl Brn(xn) ⊂ BrN (xN ) ∩ UN ⊂ A ∩ UN .

For arbitrary ε > 0 and N > 2
ε , for n,m ≥ N it holds that cl Brn(xn) ⊂ BrN (xN ) and

cl Brm(xm) ⊂ BrN (xN ), which implies that d(xn, xm) < 2
N < ε, so {xn}n is Cauchy. Since X is

complete, xn → x for some x ∈ X.

For arbitrary N and n > N ,

x ∈ cl Brn(xn) ⊂ BrN (xN ) ∩ UN ⊂ A ∩ UN .

Since this holds for any N , x ∈ A ∩ (∩N≥1UN ), so ∩N≥1UN is dense. Hence (X, d) is a Baire
space.

Now, let (S, T ) be a compact Hausdorff space (we will later extend this to the situation where S
is LCH). Just as in the metric case, we start with a collection of open and dense sets {Un}n and
show that their intersection has a non-empty intersection with an arbitrary non-empty open set
A ⊂ S.

The intersection A∩U1 is non-empty and open, so there must exist some x1 ∈ A∩U1. Because
S is compact Hausdorff, the space is regular according to Proposition 2.1.2, which allows us to
separate points and closed sets with open neighbourhoods. The set S \ (A ∩ U1) is closed, so
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there exist disjoint open neighbourhoods V1,W1 ⊂ S such that x1 ∈ V1 and S \ (A ∩ U1) ⊂ W1.
The fact that S is compact Hausdorff also means that V1 contains a compact neighbourhood of
x1 by Proposition 2.1.2. As a result, there exists a compact set K1 ⊂ V1 such that x1 ∈ Z1 ⊂ K1

for an open set Z1. We obtain the inclusions x1 ∈ Z1 ⊂ K1 ⊂ V1 ⊂ A ∩ U1, using that V1 and
W1 are disjoint.

Now for n ≥ 2, consider A∩Zn−1∩Un, which is open and non-empty, so it contains at least one
point xn. By regularity of S, we can find disjoint open neighbourhoods Vn,Wn such that xn ∈ Vn,
S \ (A ∩ Vn−1 ∩ Un) ⊂ Wn. Then there also exists a compact neighbourhood Kn containing an
open neighbourhood Zn of xn, so we have that xn ∈ Zn ⊂ Kn ⊂ Vn ⊂ A ∩ Zn−1 ∩ Un. In
particular, Kn ⊂ Zn−1 ⊂ Kn−1 and Kn ⊂ A ∩ Un.

Proceeding inductively, we find a collection of nested closed sets {Kn}n and for every n ≥ 2 we
have that xn ∈ Kn ⊂ Zn−1 ⊂ Kn−1 ⊂ ... ⊂ K1, with Kn ⊂ A ∩ (∩n

k=1Uk). Hence, {Kn}n has
the finite intersection property. Because S is compact and each Kn is closed, the intersection
∩n≥1Kn is non-empty as well. Because ∩n≥1Kn ⊂ A∩ (∩n≥1Un), this intersection is non-empty,
so ∩n≥1Un is dense in S.

Now, assume that (S, T ) is locally compact and Hausdorff, and not compact: otherwise, the
above procedure would suffice. We can then apply Theorem 2.1.6, so S has a one-point com-
pactification (S∞, T∞). The space S∞ is then compact and Hausdorff, so by the above, a Baire
space. It holds that S ∈ T∞, as S ∈ T and T∞ = T ⊔ {S∞ \K : K ⊂ S,K compact}. Hence,
S is an open subspace of S∞, so we can apply Proposition 2.6.3 to conclude that S is a Baire
space.

Remark. Note that the fact that when for every n ≥ 1 we choose a point xn ∈ Brn−1(xn−1)∩Un

in the metric case of Baire’s Theorem, the fact that a choice function exists for the entire
sequence of elements depends on the axiom of countable choice, a weaker version of the axiom
of choice. It turns out that Baire’s Theorem is actually equivalent to the axiom of dependent
choice, which is stronger than the axiom of countable choice and weaker than the axiom of
choice. This goes beyond the scope of this thesis, but the proof of this statement can be found
in [Her06, Theorem 4.106].
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3 The differentiability of continuous functions

In this chapter, we delve into two results that follow from the Baire Category Theorem. We
explore a specific Banach space: the vector space of real-valued continuous functions on [0, 1].
We denote this space by C[0, 1], which was introduced as C(M) for a general compact Hausdorff
space M in Section 2.2. In what follows, the norm ∥ · ∥∞ on C(M) will be denoted as ∥ · ∥, as
it is the only norm considered in the rest of this thesis.

To establish a connection between the main theorems in 3.1 and 3.3, Section 3.2 provides a
bridging result between these sections. In the proofs of Theorem 3.1.4 and Theorem 3.3.8,
Baire’s Theorem is applied in a similar way to show functions exist with a certain property. The
strategy for these proofs will be to find a suitable space within a complete metric space that
does not have the desired property. We will then show that this space is meagre, so it fails to
encompass the whole space, which is a Baire space. This is a common thread to follow through
the proofs that require quite some calculus trickery.

Though Section 2.5 and Section 2.6 laid the groundwork for a broader context, we narrow
our focus to continuous functions on [0, 1] in this thesis. For general metric spaces, different
analytical methods are needed to define a sensible concept of differentiability. Since we need a
compact space, the closed interval [0, 1] serves as a convenient example, though the results in
this chapter are applicable to any closed interval [a, b] with a < b.

Within the proofs, there are multiple times where the differential quotient of a function is
calculated by taking a limit. For the boundary points of [0, 1], we need to take a one-sided limit
instead. While we may omit this remark during the proofs, it is beneficial to keep it in mind.

3.1 Nowhere differentiable continuous functions

The first consequence of Baire’s Theorem for continuous functions that we examine is that there
exist functions that are continuous but nowhere differentiable. Though this is already a non-
intuitive fact, it is even more remarkable that these functions are actually ‘typical’ in the space
of continuous functions, in the sense that the set of nowhere differentiable functions is dense
in the set of continuous functions. In this section, we give a proof of this result. However, we
prove the existence of nowhere differentiable functions instead by the example of the famous
Weierstrass function. This gives more of a sense of what a nowhere differentiable function can
look like.

3.1.1 The Weierstrass function

Generally, the Weierstrass function W̃ : R → R is defined for general a and b with a a positive
odd integer and b ∈ (0, 1) such that ab > 1 + 3

2π, and is given by

W̃ (x) :=
∑
n≥0

bn cos(anxπ).

Here, we present the proof that the Weierstrass function given by W (x) :=
∑

n≥0 5
−n cos(175nx)

is continuous and nowhere differentiable. Working with specific a and b makes the proof more
insightful than for general a and b, which requires a lot of algebraic manipulation. The proof
that W̃ is continuous and nowhere differentiable, first presented by Karl Weierstrass in 1872,
can be found in [Wei95]. Though W does not entirely take the form of W̃ above (the π is missing
in the cos term), by plugging a change of variable given by x 7→ xπ into W , we still obtain the

Weierstrass function W̃ . Indeed, if W (x) is continuous and nowhere differentiable, then W (xπ)
is as well. It is also easily verified that a and b satisfy the necessary conditions.

We first present a lemma to obtain the appropriate goniometric manipulation.
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Lemma 3.1.1. For all x, y, z ∈ R and K ∈ Z≥1, the following statements hold.

(i) We have | cos(x)− cos(y)| ≤ |x− y|.

(ii) There exists some p ∈
(
z − π

K , z + π
K

)
such that | cos(Kz)− cos(Kp)| ≥ 1.

Proof. For the first statement, let x, y ∈ R be given arbitrarily. If x = y, the statement holds.
Without loss of generality, assume x < y. By the Mean Value Theorem, there exists some
z ∈ (x, y) such that

| sin(z)| = | cos(x)− cos(y)|
|x− y|

.

We can rewrite this statement to

| cos(x)− cos(y)| = | sin(z)||x− y| ≤ |x− y|.

For the second statement, let z ∈ R and K ≥ 1 be given. We distinguish between the following
cases.

(i) cos(Kz) = 0,

(ii) 0 < cos(Kz) < 1 and

(iii) cos(Kz) = 1.

The cases that −1 < cos(Kz) < 0 and cos(Kz) = −1 are symmetric respectively to case (ii) and
case (iii).

In case (i), Kz must be of the form (12 + n)π for n ∈ Z. By multiplying
(
z − π

K , z + π
K

)
by K,

we see that we must find some Kp ∈
((
n− 1

2

)
π,
(
n+ 3

2

)
π
)
. Then we can choose Kp = nπ to

find | cos(Kz)− cos(Kp)| = | ± 1| ≥ 1.

In case (ii), we have that Kz ∈ ((−1
2 + 2n)π, (12 + 2n)π) \ {2nπ} for some n ∈ Z. Then if

Kz ∈ ((−1
2 + 2n)π, 2nπ), choose Kp = (2n − 1)π. In case Kz ∈ (2nπ, (12 + 2n)π), then choose

Kp = (2n+ 1)π. In both cases, Kp ∈ (Kz − π,Kz + π), and cos(Kp) = −1. We then find

| cos(Kz)− cos(Kp)| = | cos(Kz) + 1| > 1

as cos(Kz) > 0.

In case (iii), we have that Kz = 2nπ for some n ∈ Z. Choose Kp = (2n+ 1
2)π, then

Kp ∈ (Kz − π,Kz + π) and | cos(Kz)− cos(Kp)| = |1− 0| ≥ 1.

We also require the following inequality.

Proposition 3.1.2. Let a, b, c ∈ R. Then |a+ b+ c| ≥ |a| − |b| − |c|.

Proof. By the triangle inequality, we have that

|a| = |a+ b+ c− b− c| ≤ |a+ b+ c|+ |b|+ |c|

so by substracting |b| and |c|, we find the required inequality.

Theorem 3.1.3. The function W : R → R defined by

W (x) :=
∑
n≥0

5−n cos(175nx)

is continuous and not differentiable for any x ∈ R.
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Proof. The easy part of the proof is the continuity of W . Note that |5−n cos(175nx)| ≤ 5−n for
any n ≥ 0 and value of x. As 1

5 < 1, the sum
∑

n≥0 5
−n is a convergent geometric series, so

W converges uniformly by the Weierstrass M -text (Proposition 2.3.1), and W is continuous by
Theorem 2.2.3.

To prove W is nowhere differentiable, we show that for any x ∈ R and any M > 0, there exists
a sequence {xn}n for which xn → x as n → ∞, so that there exists some N > 0 such that for
n ≥ N we have

|W (xn)−W (x)|
|xn − x|

≥ M.

This implies that the differential quotient of W (x) does not converge, so W ′(x) cannot exist.

For n ≥ 1, choose xn ∈
(
x− π

175n , x+ π
175n

)
such that | cos(175nx) − cos(175nxn)| ≥ 1 by

applying Lemma 3.1.1. Then xn → x as n → ∞. Let N be such that 35N ≥ M · 17π6 and n ≥ N .
Write Wk(x) := 5−k cos

(
175kx

)
. Then

|W (xn)−W (x)| =

∣∣∣∣∣∣
∑
k≥0

(Wk(xn)−Wk(x))

∣∣∣∣∣∣
≥ |Wn(xn)−Wn(x)| −

∣∣∣∣∣
n−1∑
k=0

(Wk(xn)−Wk(x))

∣∣∣∣∣−
∣∣∣∣∣∣
∑

k≥n+1

(Wk(xn)−Wk(x))

∣∣∣∣∣∣ ,
using Proposition 3.1.2. For brevity, we write

|an| := |Wn(xn)−Wn(x)|

|bn| :=

∣∣∣∣∣
n−1∑
k=0

(Wk(xn)−Wk(x))

∣∣∣∣∣
|cn| :=

∣∣∣∣∣∣
∑

k≥n+1

(Wk(xn)−Wk(x))

∣∣∣∣∣∣
We find estimates for each term |an|, |bn| and |cn| separately.

We observe that
|an| = 5−n| cos(175nxn)− cos(175nx)| ≥ 5−n,

by our choice of xn.
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We also have that

|bn| =

∣∣∣∣∣
n−1∑
k=0

5−k
(
cos
(
175kxn

)
− cos

(
175kx

))∣∣∣∣∣
≤

n−1∑
k=0

5−k
∣∣∣cos(175kxn)− cos

(
175kx

)∣∣∣
≤

n−1∑
k=0

5−k
∣∣∣175kxn − 175kx

∣∣∣
<

n−1∑
k=0

5−k175k
π

175n

=
π

175n

n−1∑
k=0

35k

=
π

175n

(
35n − 1

34

)
<

π

34

(
1

5

)n

<
1

34
5−n+1,

applying in order the triangle inequality, the first part of Lemma 3.1.1, the fact that
xn ∈

(
x− π

175n , x+ π
175n

)
and the formula for geometric series. Finally,

|cn| =

∣∣∣∣∣∣
∑

k≥n+1

5−k
(
cos
(
175kxn

)
− cos

(
175kx

))∣∣∣∣∣∣
≤
∑

k≥n+1

5−k
∣∣∣cos(175kxn)− cos

(
175kx

)∣∣∣
≤
∑

k≥n+1

5−k
(∣∣∣cos(175kxn)∣∣∣+ ∣∣∣cos(175kx)∣∣∣)

≤ 2
∑

k≥n+1

5−k

= 2 · 5−n−1 · 5
4

=
1

2
· 5−n.

Combining all of these estimates, we find

|an| − |bn| − |cn| ≥ 5−n − 5

34
5−n − 1

2
5−n =

6

17
5−n.

Then it holds that

|W (xn)−W (x)|
|xn − x|

≥ 6

17
5−n · 1

|xn − x|

>
6

17
5−n · 175

n

π

=
6

17π
35n

≥ 6

17π
35N

> M.
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We conclude that W is not differentiable anywhere.

In Figure 1, a numerical approximation of the graph of the modified Weierstrass function of
Theorem 3.1.3 is given. By setting the domain as [0, 8], the oscillating behaviour is well visible.

Figure 1: Graph of the modified Weierstrass function for a = 175, b = 1
5 , partial sum size

N = 30 and domain [0, 8].

Zooming in on the image eventually yields a similar view. Figure 2 shows a graph of the same
functions as Figure 1, but on the domain [0, 0.05].

Figure 2: Graph of the modified Weierstrass function for a = 175, b = 1
5 and partial sum size

N = 30 and domain [0, 0.05].
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3.1.2 The density of nowhere differentiable functions

By the example of Theorem 3.1.3, it is clear that nowhere differentiable continuous functions
exist. The Weierstrass function for more general a and b yields an entire class of such functions.
Baire’s Theorem allows us to draw an even stronger conclusion: nowhere differentiable functions
are dense in the space of continuous functions.

In the proof below, we show that the space of functions that are differentiable in at least one
point x0 is a subset of the space of functions f that satisfy the equation |f(x)−f(x0)| ≤ n|x−x0|
for some n ≥ 1 and all x ∈ [0, 1]. We establish this space is meagre in C[0, 1]. We can then
conclude that the complement of this set is dense in C[0, 1]. The proof is based on [Fol99,
Exercise 42 on p. 165] and [Whe22].

Theorem 3.1.4 (Density of nowhere differentiable functions). The space N of nowhere differ-
entiable functions is dense in C[0, 1].

Proof. For n ≥ 1, let En be the set of all f ∈ C[0, 1] for which there exists some x0 (possibly
depending on f) such that for all x ∈ [0, 1],

|f(x)− f(x0)| ≤ n|x− x0|.

Let n ≥ 1 be given. Now we show that En is nowhere dense in C[0, 1]. To this end, we prove
that En is closed in C[0, 1] and has empty interior. By Proposition 2.2.1, we want to show that
every convergent sequence in En converges in En. Let {fk}k be a sequence in En that converges
to some f ∈ C[0, 1]. We must show that f ∈ En.

For arbitrary ε > 0, there exists some K ∈ Z≥1 such that for k ≥ K, ∥fk − f∥ < ε. Because for
each k ≥ K, we have fk ∈ En, there must exist xk ∈ [0, 1] such that |fk(x)−fk(xk)| ≤ n|x−xk|.
We can write this as the sequence {xk}k in [0, 1]. Because [0, 1] is bounded, the sequence is
bounded and must have a convergent subsequence {xkl}kl by the Bolzano-Weierstrass Theorem.
We call the limit of this sequence x0. Take {fkl}kl as the associated subsequence of {fk}k to
{xkl}kl . Finally, for any y ∈ [0, 1], we have that

|fkl(y)− f(y)| ≤ sup
x∈[0,1]

|fkl(x)− f(x)| = ∥fkl − f∥ < ε.

Now, set β := 1
2+2nε. Then choose L1 such that for all kl ≥ L1, we have ∥f − fkl∥ < β. Choose

L2 such that for all kl ≥ L2, |x0−xkl | < β. Set L := max{L1, L2}. Now, let kl ≥ L be arbitrarily
given.

Using these estimates, we find for any x ∈ M that

|f(x)− f(x0)| ≤ |f(x)− fkl(x)|+ |fkl(x)− fkl(x0)|+ |fkl(x0)− f(x0)|
≤ 2∥f − fkl∥+ |fkl(x)− fkl(x0)|
≤ 2∥f − fkl∥+ |fkl(x)− fkl(xkl)|+ |fkl(xkl)− fkl(x0)|
≤ 2∥f − fkl∥+ n|x− xkl |+ n|xkl − x0|
≤ 2∥f − fkl∥+ n|x− x0|+ n|x0 − xkl |+ n|xkl − x0|
< 2β + n|x− x0|+ 2nβ

= (2 + 2n)β + n|x− x0|
= ε+ n|x− x0|.

Since we can find this inequality for arbitrary small ε, it must hold that |f(x)−f(x0)| ≤ n|x−x0|,
so f ∈ En.
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We still need to show that En has empty interior. Let f ∈ En and ε > 0. Consider the open ball
Bε(f) := {h ∈ En : ∥h− f∥ < ε}. By the Weierstrass Approximation Theorem (Theorem 2.3.2),
there exists some polynomial p ∈ C[0, 1] with real coefficients such that ∥f − p∥ < 1

2ε. Set
B := ∥p′∥ and k := ε

2(n+B+1) . Then we define ϕ : [0, 1] → R by

ϕ(x) :=

{
(B + n+ 1)(x− kj) if kj ≤ x < k(j + 1), j ∈ Z even
(B + n+ 1)(k(j + 1)− x) if kj ≤ x < k(j + 1), j ∈ Z odd.

This is a ‘sawtooth’ function, which separates [0, 1] in parts of length 2k. In the intervals where
kj ≤ x < k(j + 1) for j even, ϕ is increasing, else it is decreasing. We have that

∥ϕ∥ = (B + n+ 1)(k(j + 1)− kj) = (B + n+ 1)k =
1

2
ε

and the slope of ϕ is given by its height 1
2ε divided by the length of the interval k, so depending

on whether ϕ is increasing or decreasing, the slope is equal to ± ε
2k = ±(B + n + 1). Now let

g := p+ ϕ. Then ∥f − g∥ ≤ ∥f − p∥+ ∥ϕ∥ < ε, so g ∈ Bε(f). However, by taking the limit of x
to any x0 ∈ [0, 1] for which the limit exists, we find

lim
x→x0

|g(x0)− g(x)|
|x0 − x|

= |g′(x0)| = |p′(x0)± (B + n+ 1)| ≥ n+ 1.

If this limit does not exist because g is not differentiable in x0 (which occurs for a finite number
of points because ϕ is piecewise linear), we can take a one-sided limit and arrive at the same
inequality. Hence, there exists no x0 such that |g(x)− g(x0)| ≤ n|x− x0|, so g ̸∈ En. So En has
empty interior.

Now we show that C[0, 1] \N ⊂ ∪n≥1En, meaning that the functions that are differentiable in
some point x0 are a subset of ∪n≥1En. Let f ∈ C[0, 1] be a function that is differentiable in
some point x0. Then there exist K ∈ N and δ > 0 such that for all x ∈ [0, 1] with |x− x0| < δ,

|f(x0)− f(x)|
|x0 − x|

≤ K,

where δ can depend on K. This can be rewritten as |f(x0) − f(x)| ≤ K|x0 − x|. We show
that there exists some n ≥ 1 such that f ∈ En. For |x0 − x| < δ, taking n = K suffices. If
|x0 − x| ≥ δ, we find the following estimate.

|f(x)− f(x0)| ≤ |f(x)|+ |f(x0)|
≤ 2∥f∥

≤ 2∥f∥|x− x0|
δ

.

Taking n ≥ max
{
K, 2∥f∥δ

}
as a whole number, we find f ∈ En, so f ∈ ∪n≥1En.

By Proposition 2.5.2, the set Fn := C[0, 1] \ En = C[0, 1] \ cl En is dense in C[0, 1]. The set Fn

is open as well as dense. By the Baire Category Theorem (Theorem 2.6.4), C[0, 1] is a Baire
space, so we can apply Proposition 2.6.2 to find ∩n≥1Fn = ∩n≥1C[0, 1] \ En = C[0, 1] \ ∪n≥1En

is also dense in C[0, 1].

As C[0, 1] \N ⊂ ∪n≥1En, it also holds that C[0, 1] \ ∪n≥1En ⊂ N . The left hand side is dense
in C[0, 1], so N must also be dense in C[0, 1].

Figure 3 depicts a sawtooth function ϕ used in the approximation of a function f ∈ En in the
proof of Theorem 3.1.4. The image is accessed from [Whe22].
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Figure 3: Illustration of the function ϕ on an interval [a, b]. Each ‘sawtooth’ has a height of ε
2

and a width of 2k.

3.2 Nowhere monotone functions

The Weierstrass function is a nowhere differentiable function that is constantly oscillating, as we
can see in Figure 1. In fact, there is no point where the function either increases or decreases.
It is useful to have a precise definition of what we mean by not increasing and not decreasing.

Definition 3.2.1. Let f : R → R be a continuous function. We say f is not increasing in a point
x ∈ R if for any neighbourhood N of x, there exists some t ∈ N such that (f(t)−f(x))(t−x) < 0.
Similarly, f is not decreasing in x if for any neighbourhood N , there exists some t ∈ N such that
(f(t)−f(x))(t−x) > 0. We say f is not monotone in x if f is neither increasing nor decreasing,
and f is nowhere monotone if f is not monotone for any x ∈ R.

From Figure 1, it seems likely that the Weierstrass function is nowhere monotone. In this
section, we ascertain that each nowhere differentiable function is in fact nowhere monotone.
This statement is the reverse implication of Lebesgue’s Theorem for the Differentiability of
Monotone Functions. The proof that continuous monotone functions are differentiable almost
everywhere was first published in 1904 by Henri Lebesgue in [Leb04]. This section aims to
present a concise proof of this theorem. The definitions and proofs in this section are drawn
from [HS65, Section 17]. The building blocks of the proof of Lebesgue’s Theorem are the concept
of Dini derivatives and that of the Vitali cover, which we introduce below. This version of the
proof of Lebesgue’s Theorem does not require f to be continuous, so we are working in a more
general context than on C[0, 1].

Definition 3.2.2 (Dini derivatives). Let x ∈ R and δ > 0. If f is a real-valued function defined
on [x, x+ δ), we define

D+f(x) := lim inf
h↓0

f(x+ h)− f(x)

h

and

D+f(x) := lim sup
h↓0

f(x+ h)− f(x)

h
.

If f is a real-valued function on (x− δ, x], define

D−f(x) := lim inf
h↑0

f(x+ h)− f(x)

h

and

D−f(x) := lim sup
h↑0

f(x+ h)− f(x)

h
.

These numbers can take any value on the extended reals and are known as the Dini derivatives
of f at x. More specifically, D+f(x) is the lower right derivative, D+f(x) is the upper right
derivative, D−f(x) is the lower left derivative and D−f(x) is the upper left derivative.

Remark. It obviously holds that
D+f(x) ≤ D+f(x)
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and
D−f(x) ≤ D−f(x)

if the Dini derivatives exist for x ∈ R.

The Dini derivative is a generalisation of the usual concept of differentiation. Not every function
has a derivative, but the Dini derivatives of a function do always exist if f is defined on a half-
open interval at x and if we allow all values on the extended reals.

Definition 3.2.3. Let f : [0, 1] → R and x ∈ [0, 1]. If D+f(x) = D+f(x), then f has a right
derivative at x and we write this value as f ′

+(x). Similarly, we write the left derivative of f at
x as f ′

−(x) if the upper and lower left derivative of f coincide at x. If f ′
+(x) and f ′

−(x) exist
and are equal, then we say f is differentiable at x and we write f ′(x) for the common value
f ′
+(x) = f ′

−(x). This number is called the derivative of f at x. The derivative is allowed to take
the value ∞ or −∞.

For a monotone function to be differentiable in a point in its domain, the Dini derivatives need
to exist and be equal, and the derivative should be finite. In the proof of Lebesgue’s Theorem,
we will show that the Lebesgue measure λ of the sets where the upper and lower right derivatives
are not equal is zero (and the same construction works for the left derivatives). Then we will
show that the set where the derivative is not finite also has Lebesgue measure zero. As the
Lebesgue measure is the only measure used in this section, the word Lebesgue will be omitted.

First, we need two other theorems to support the proof.

Theorem 3.2.4. Let f : [0, 1] → R. Then there exist only countably many points x ∈ (0, 1)
where f ′

−(x) and f ′
+(x) exist and are not equal (they may be infinite).

Proof. We define

A := {x ∈ (0, 1) : f ′
−(x), f

′
+(x) exist and f ′

+(x) < f ′
−(x)}

and
B := {x ∈ (0, 1) : f ′

−(x), f
′
+(x) exist and f ′

+(x) > f ′
−(x)}.

For each x ∈ A, there then exists some rx ∈ Q such that f ′
+(x) < rx < f ′

−(x). Then we choose
sx, tx ∈ Q such that 0 < sx < x < tx < 1 and

f(y)− f(x)

y − x
> rx if sx < y < x, (1)

while
f(y)− f(x)

y − x
< rx if x < y < tx. (2)

Multiplying (1) and (2) with y − x, we obtain

f(y)− f(x) < rx(y − x), (3)

the inequality in (1) switching as y − x < 0. We define ϕ : A → Q3 by ϕ(x) := (rx, sx, tx).
Since Q3 is countable, if we prove that ϕ is injective, A must also be countable. To this end, let
x, y ∈ A with x ̸= y such that ϕ(x) = ϕ(y) be given. Then (sx, tx) = (sy, ty) and both x and y
fall within this interval. By (3), it holds that

f(y)− f(x) < rx(y − x)

and
f(x)− f(y) < ry(x− y).

Adding both of these inequalities together and using that rx = ry, we obtain 0 < 0. Hence, ϕ
must be injective, so A is countable. Following the same procedure for B, we obtain that there
exist only countably many points where f ′

−(x) and f ′
+(x) exist and are not equal.
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The other theorem needed is known as Vitali’s Covering Theorem. This theorem applies for
general sets in Rd for d ≥ 1, but we only use the result for R. The theorem roughly states that
we can cover any set E in R up to a set of measure zero with a countable family of pairwise
disjoint closed intervals with positive but arbitrarily small lengths. If the size of E is finite, then
only finitely many of such intervals are needed to cover E up to a set with an arbitrarily small
size. Formally, a Vitali cover is defined as follows.

Definition 3.2.5 (Vitali cover). Let E ⊂ R. A family V of closed intervals in R, each with
positive length, is called a Vitali cover of E if for each x ∈ E and ε > 0, there exists an interval
I ∈ V such that x ∈ I and λ(I) < ε.

Theorem 3.2.6 (Vitali’s Covering Theorem). Let E ⊂ R and V any non-empty Vitali cover of
E. Then there exists a pairwise disjoint countable family {In}n ⊂ V such that

λ

E \
⋃
n≥1

In

 = 0.

In addition, if λ(E) < ∞, then for each ε > 0, there exists a pairwise disjoint finite family
{I1, ..., In} ⊂ V such that

λ

(
E \

n⋃
k=1

Ik

)
< ε.

Proof. We first prove the case where λ(E) < ∞. Choose an open set V such that E ⊂ V and
λ(V ) < ∞. Let V0 := {I ∈ V : I ⊂ V }. Let x ∈ E and ε > 0 be arbitrary. Because V is open,
there exists some α > 0 such that x ∈ (x − α, x + α) ⊂ V . As V is a Vitali cover of E, there
exists a closed interval I ∈ V such that x ∈ I and λ(I) < min{α, ε}. Then I ⊂ (x − α, x + α),
so I ⊂ V and I ∈ V0. Hence, V0 is a Vitali cover for E.

Let I1 ∈ V0. If E ⊂ I1, it would hold that λ(E \ I1) = 0 so then the construction would be
complete. If this is not the case, we proceed by induction. Suppose I1, I2, ..., In ∈ V0 have been
selected and are pairwise disjoint. If E ⊂ ∪n

k=1Ik, then the construction is complete. If this does
not hold, we write

An := ∪n
k=1Ik, Un := V \An.

The set An is closed as it is a finite union of closed sets, so Un is open and Un ∩ E ̸= ∅ as
E ̸⊂ An. We then define

δn := sup{λ(I) : I ∈ V0, I ⊂ Un}. (1)

Each λ(I) is bounded by λ(V ) < ∞, so the supremum exists. The supremum has the property
that for any η > 0, there exists some yη ∈ {λ(I) : I ∈ V0, I ⊂ Un} such that yη > δn− η, so if we
set η := 1

2δn, we can find some In+1 ∈ V0 such that In+1 ⊂ Un and yη := λ(In+1) >
1
2δn. If E is

not contained in the union of a finite number of In, we end up with an infinite sequence {In}n
of pairwise disjoint elements of V0 (assuming the axiom of dependent choice). Let A := ∪n≥1In.
We then must show that λ(E \A) = 0.

For n ≥ 1, let Jn be the closed interval with the same midpoint as In and such that

λ(Jn) = 5λ(In).

We then have

λ

⋃
n≥1

Jn

 ≤
∑
n≥1

λ(Jn) = 5
∑
n≥1

λ(In) = 5λ(A) ≤ 5λ(V ) < ∞, (2)

25



using that all In are pairwise disjoint. Because
∑

n≥1 λ(Jn) is a converging series consisting of
non-negative terms, for any ζ > 0 there exists someK ≥ 1 such that for k ≥ K,

∑
n≥k λ(Jn) < ζ.

Hence, limk→∞
∑

n≥k λ(Jn) = 0, so as

0 ≤ λ

⋃
n≥k

Jn

 ≤
∑
n≥k

λ(Jn),

by the Squeeze Theorem, it holds that

lim
k→∞

λ

⋃
n≥k

Jn

 = 0.

If we can prove E \ A ⊂ ∪n≥kJn for all k ≥ 1, we have that λ(E \ A) = 0. Let k ≥ 1 and
x ∈ E \A be given. Then we have x ∈ E \Ak ⊂ Uk, and Uk is open, so we can find some β > 0
such that (x − β, x + β) ⊂ Uk and some I ∈ V0 such that x ∈ I and λ(I) < β. Hence, I ⊂ Uk.
For any n ≥ 1,

0 < δn < 2λ(In+1),

and since we have that λ(In) → 0 as n → ∞ by (2), δn → 0 as n → ∞ as well by the
Squeeze Theorem. So there exists some n ≥ 1 such that δn < λ(I). Let q be the smallest
number for which this occurs. We then have that I ̸⊂ Uq by (1). Furthermore, for any n ≥ 1,
we have δn+1 ≤ δn, since An ⊂ An+1 implies that Un+1 ⊂ Un, which in turn implies that
{λ(I) : I ∈ V0, I ⊂ Un+1} ⊂ {λ(I) : I ∈ V0, I ⊂ Un} and δn+1 and δn are the suprema of these
sets respectively. We have shown that I ⊂ Uk, from which it follows that

δq < λ(I) ≤ δk,

so k < q as {δn}n is a decreasing sequence.

Because I ̸⊂ Uq, it holds that I ∩ ∪q
n=1In ̸= ∅. In addition, I ⊂ Uq−1, because q is the smallest

n for which δn < λ(I). This implies that I ∩ ∪q−1
n=1In = ∅. From this, it follows that

I ∩ Iq ̸= ∅ (3)

and because I ⊂ Uq−1, we also have that

λ(I) ≤ δq−1 < 2λ(Iq). (4)

Since λ(Jq) = 5λ(Iq), (3) and (4) together with the fact that k < q imply that

I ⊂ Jq ⊂ ∪n≥kJn. (5)

We conclude that x ∈ ∪n≥kJn, so E \A ⊂ ∪n≥kJn and we find λ(E \A) = 0.

We still need to show that we can cover E up to a set of arbitrarily small size. For this, let
ε > 0 be given and choose k large enough that∑

n≥k+1

λ(In) < ε.

Then

E \Ak ⊂ (E \A) ∪

 ⋃
n≥k+1

In

 ,
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so

λ

(
E \

k⋃
n=1

In

)
= λ(E \Ak) ≤ 0 + λ

 ⋃
n≥k+1

In

 < ε.

Finally, we show the statement holds for λ(E) = ∞. For each n ∈ Z, let En := E ∩ (n, n + 1),
so E = ∪∞

n=−∞En ⊔ Z. Let Vn := {I ∈ V : I ⊂ (n, n + 1)}. Then Vn is a Vitali cover for En

(through the same argument as at the beginning of the proof) and λ(En) < ∞, so we can find a
countable pairwise disjoint family In ⊂ Vn such that λ(En \ ∪I∈InI) = 0 for each n ∈ Z by the
first part of the proof. Let I := ∪∞

n=−∞In. Then I is a countable pairwise disjoint subcollection
of V and

E \

(⋃
I∈I

I

)
⊂ Z ∪

( ∞⋃
n=−∞

En \

( ⋃
I∈In

I

))
,

since if x ∈ E \ (∪I∈II), then either

x ∈ Z \

(⋃
I∈I

I

)
= Z

because all I ∈ I are disjoint from Z, or

x ∈

( ∞⋃
n=−∞

En

)
\
⋃
I∈I

I =

( ∞⋃
n=−∞

En

)
\

 ∞⋃
k=−∞

⋃
I∈Ik

I

 =
∞⋃

n=−∞
En \

( ⋃
I∈In

I

)
,

because En \ ∪I∈IkI = En if n ̸= k.

Hence,

λ

(
E \

(⋃
I∈I

I

))
≤ λ(Z) +

∞∑
n=−∞

λ (En \ (∪I∈InI)) = 0.

Figure 4 gives a visual example to illustrate the inclusions of Equation (5). For a given interval
I, the blue intervals show the smallest possible size Iq and furthest distance from I, given that
the intersection of I and Iq is non-empty. The orange and green interval then depict the possible
places for the interval Jq, showing that this always includes I.

R IIq IqJq Jq

Figure 4: Illustration of Equation (5).
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Theorem 3.2.7 (Lebesgue’s Theorem for the Differentiability of Monotone Functions). Let
f : [0, 1] → R be a monotone function. Then f is differentiable almost everywhere on [0, 1].

Proof. Suppose f is non-decreasing (otherwise, consider −f). Let

E := {x ∈ [0, 1) : D+f(x) < D+f(x)}.

For every pair u, v ∈ Q>0 with u < v, let

Eu,v := {x ∈ E : D+f(x) < u < v < D+f(x)}.

Then E = ∪u,v∈Q,0<u<vEu,v. Because this union is countable, we can reduce the problem to
showing that λ(Eu,v) = 0 for all 0 < u < v in Q, since

λ(E) = λ

 ⋃
u,v∈Q
0<u<v

Eu,v

 ≤
∑
u,v∈Q
0<u<v

λ(Eu,v).

We assume the contrary: there exist some u, v ∈ Q>0 with u < v such that α := λ(Eu,v) > 0.
Let ε be such that

0 < ε <
α(v − u)

u+ 2v
.

Now, by regularity of λ (Proposition 2.4.2), we can choose an open set U ⊃ Eu,v such that
λ(U) < α + ε. For each x ∈ Eu,v, we show there exist arbitrarily small h > 0 such that
[x, x+ h] ⊂ U ∩ [0, 1] for which

f(x+ h)− f(x) < uh. (1)

Let x ∈ Eu,v be given. Let η > 0 such that D+f(x) + 2η < u. Because

D+f(x) = lim
δ↓0

(
inf

0<h<δ

f(x+ h)− f(x)

h

)
,

there exists some δ0 > 0 such that for all 0 < δ ≤ δ0,

inf
0<h<δ

f(x+ h)− f(x)

h
−D+f(x) ≤

∣∣∣∣ inf
0<h<δ

f(x+ h)− f(x)

h
−D+f(x)

∣∣∣∣ < η.

Furthermore, for a given 0 < δ ≤ δ0, there exists some 0 < h0 < δ such that

f(x+ h0)− f(x)

h0
− inf

0<h<δ

f(x+ h)− f(x)

h
≤
∣∣∣∣f(x+ h0)− f(x)

h0
− inf

0<h<δ

f(x+ h)− f(x)

h

∣∣∣∣ < η.

Combining these estimates together, we find

D+f(x) + η > inf
0<h<δ

f(x+ h)− f(x)

h
>

f(x+ h0)− f(x)

h0
− η.

As u > D+f(x) + 2η, we have

u >
f(x+ h0)− f(x)

h0

so f(x+ h0)− f(x) < uh0. Because we chose 0 < h0 < δ for any 0 < δ ≤ δ0, the number h0 is
arbitrarily small.

Let
V := {[x, x+ h] ⊂ U ∩ [0, 1] : h > 0, f(x+ h)− f(x) < uh}.
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Then V is a Vitali cover of Eu,v. Hence, by the second part of Theorem 3.2.6, there exists a
finite, pairwise disjoint subfamily {[xi, xi + hi]}mi=1 of V such that

λ

(
Eu,v \

m⋃
i=1

[xi, xi + hi]

)
< ε.

Let V := ∪m
i=1(xi, xi + hi). Consequently,

λ(Eu,v \ V ) = λ(Eu,v \ ∪m
i=1[xi, xi + hi]) + λ(∪m

i=1{xi} ∪ {xi + hi})
= λ(Eu,v \ ∪m

i=1[xi, xi + hi])

< ε. (2)

As V ⊂ U , we have
m∑
i=1

hi = λ(V ) ≤ λ(U) < α+ ε,

so with (1) it follows that

m∑
i=1

(f(xi + hi)− f(xi)) < u
m∑
i=1

hi < u(α+ ε). (3)

For all y ∈ Eu,v ∩ V , there exist arbitrarily small k > 0 such that [y, y + k] ⊂ V and

f(y + k)− f(y) > vk, (4)

which follows by applying the the same steps as for (1) to the fact that for all y ∈ Eu,v, it holds
that D+f(y) > v. We can again apply Theorem 3.2.6 to the Vitali cover of all closed intervals
[y, y + k] to find a finite, pairwise disjoint subfamily {[yj , yj + kj ]}nj=1 such that

λ

(Eu,v ∩ V ) \
n⋃

j=1

[yi, yi + ki]

 < ε.

Combining this inequality with (2) yields

α = λ(Eu,v)

= λ(Eu,v \ V ) + λ(Eu,v ∩ V )

< ε+ ε+ λ

(Eu,v ∩ V ) ∩

 n⋃
j=1

[yj , yj + kj ]


≤ 2ε+

n∑
j=1

kj . (5)

Applying (5) and (4) in order, we deduce

v(α− 2ε) < v

n∑
j=1

kj <

n∑
j=1

(f(yj + kj)− f(yj)). (6)

Because ∪n
j=1[yj , yj + kj ] ⊂ V ⊂ ∪m

i=1[xi, xi + hi] and f is non-decreasing,

n∑
j=1

(f(yj + kj)− f(yj)) ≤
m∑
i=1

(f(xi + hi)− f(xi)). (7)
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Finally, by combining (6), (7) and (3) we find that

v(α− 2ε) < u(α+ ε).

However, by our assumption of ε, v(α−2ε) > u(α+ε). So we arrive at a contradiction. Therefore
λ(Eu,v) = 0 and λ(E) = 0. This means that f+(x) exists almost everywhere on [0, 1]. The same
process can be followed to prove that f ′

−(x) exists almost everywhere on [0, 1], by defining a set
E on (0, 1] instead. Applying Theorem 3.2.4 yields that f ′

+ and f ′
− are equal almost everywhere,

so f ′ exists almost everywhere on [0, 1] (the end points 0 and 1 also have measure 0).

As a final step, we have to show that the set F := {x ∈ (0, 1) : f ′(x) = ∞} has measure zero.
To this end, let β > 0 be given. For each x ∈ F , there exist arbitrarily small h > 0 such that
[x, x+ h] ⊂ (0, 1) and

f(x+ h)− f(x) > βh. (8)

These intervals form a Vitali cover, so by the the first part of Theorem 3.2.6, there exists a
countable pairwise disjoint subfamily {[xn, xn + hn]}n of these intervals such that

λ(F \ ∪n≥1[xn, xn + hn]) = 0.

We then have that

λ(F ) = λ(F \ ∪n≥1[xn, xn + hn]) + λ(F ∩ (∪n≥1[xn, xn + hn]))

≤ 0 + λ(∪n≥1[xn, xn + hn])

=
∑
n≥1

hn. (9)

Equations (8) and (9) together with the fact that the intervals [xn, xn+hn] are pairwise disjoint
imply that

βλ(F ) ≤ β
∑
n≥1

hn <
∑
n≥1

(f(xn + hn)− f(xn)) ≤ f(1)− f(0).

Since this inequality holds for all β > 0, it follows that λ(F ) = 0. So f has a finite derivative
almost everywhere.

3.3 Everywhere differentiable and nowhere monotone functions

In the previous section, we derived from Lebesgue’s Theorem that a nowhere differentiable
function is nowhere monotone. A natural question to ask is whether the converse holds: is a
nowhere monotone function also nowhere differentiable? The answer is no, as there actually
do exist functions that are nowhere monotone and everywhere differentiable. It is even harder
to intuitively think of such functions than it is to think of examples of nowhere differentiable
functions, as these properties seem contradictory. The property of being nowhere monotone
means a function is very “rough”, while the property of being everywhere differentiable is mostly
thought of as “smooth”. Instinctively, if a function f is differentiable in a point x, we would
say if f ′(x) > 0, f is increasing and if f ′(x) < 0, f is decreasing. It seems that if f is neither
decreasing nor increasing in x, we have f ′(x) = 0. How can a differentiable function then be
nowhere monotone without being a constant function (which is again monotone)?

A challenge to this naive assumption is that a function being increasing or decreasing is a prop-
erty of its neighbourhood, not of one point. Functions that are everywhere differentiable but
nowhere monotone are tellingly referred to as differentiable monsters in [Che21]. Lemma 3.3.1
and Corollary 3.3.2 are retrieved from this article. These differentiable monsters have the prop-
erty that their derivative vanishes on a dense set, as we will see below. Here, we use the
abbreviation [g > 0] := {x ∈ [0, 1] : g(x) > 0}. The sets [g < 0] and [g = 0] are defined similarly.
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Lemma 3.3.1. Let f : [0, 1] → R be a differentiable function on [0, 1]. Then f is nowhere
monotone on [0, 1] if and only if both [f ′ > 0] and [f ′ < 0] are dense.

Proof. First, assume f is nowhere monotone. Suppose [f ′ > 0] or [f ′ < 0] is not dense. We
assume [f ′ > 0] is not dense. Then there exists a non-empty, open set U such that [f ′ > 0] ∩ U
is empty. Then there exist x ∈ U and r > 0 such that (x− r, x+ r) ⊂ U . Let t ∈ (x− r, x) be
given. By the Mean Value Theorem, there exists some ζ ∈ (t, x) such that

0 ≥ f ′(ζ) =
f(x)− f(t)

x− t
,

so as t < x, f(x) ≤ f(t). Hence, we have found a neighbourhood for which f is decreasing,
which contradicts the assumption that f is nowhere monotone. The case that [f ′ < 0] is not
dense follows similarly, where instead we find a neighbourhood V where f is increasing.

For the converse, assume [f ′ > 0] and [f ′ < 0] are both dense and f is not nowhere monotone.
Without loss of generality, assume f is increasing on some interval (a, b) ⊂ [0, 1]. Let
x ∈ [f ′ < 0]∩ (a, b) be given and let N be any neighbourhood of x. Then N contains some open
set U ∩ (a, b) which contains x. Then as

0 > f ′(x) = lim
h→0

f(x+ h)− f(x)

h

we can find h sufficiently small and nonzero so that x+ h ∈ U ∩ (a, b) and

f(x+ h)− f(x)

h
< 0.

Hence, we found an interval in (a, b) where f is not increasing, a contradiction.

We can apply this lemma to show f ′ vanishes on a dense set.

Corollary 3.3.2. Let f : [0, 1] → R be a differentiable function on [0, 1]. If f is nowhere
monotone on [0, 1], then [f ′ = 0] is dense.

Proof. We assume f is nowhere monotone on [0, 1]. Let U ⊂ [0, 1] be a non-empty open interval.
By Lemma 3.3.1 both [f ′ > 0] and [f ′ < 0] are dense, so there exist x ∈ U ∩ [f ′ > 0] and
y ∈ U ∩ [f ′ < 0]. Without loss of generality, assume x < y. Then [x, y] ⊂ U and f ′(x) > 0 and
f ′(y) < 0. The value 0 lies between f ′(x) and f ′(y), so by Darboux’s Theorem (Theorem 2.3.3),
there exists a z ∈ [x, y] such that f ′(z) = 0. Then z ∈ U ∩ [f ′ = 0], so [f ′ = 0] is dense.

This characterisation gives us some intuition for the kind of functions we are looking for. The
study of these functions goes back over a century, with the first example of such a differentiable
monster given by Alfred Köpcke in 1887 in [Köp87]. Köpcke’s construction is very complicated,
as were some other attempts at examples that followed. For an overview of the study of these
functions, see [Bru83, Section 2]. Instead of constructing differentiable monsters explicitly, their
existence can actually be proven with the Baire Category Theorem, as shown by Clifford Weil
in [Wei76] in 1976. Weil’s proof is very concise, though he leaves out a number of non-trivial
steps. This section is dedicated to presenting Weil’s proof including those details, so that the
proof is understandable to students of an undergraduate level.
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3.3.1 Pompeiu derivatives

In order to prove that differentiable monsters exist, Weil focuses on the space of derivatives of
these functions. As the above discussion demonstrates, we will look for a set of derivates that
vanish on a dense set and are non-zero elsewhere. Finding such a function in the first place is not
a trivial matter. One type of function that satisfies this property is called a Pompeiu derivative,
named after Dimitrie Pompeiu who constructed them in 1905. His work is published in [Pom07].
The class of Pompeiu derivatives challenges the assumption that derivatives of continuous func-
tions are continuous. We first discuss the construction of these Pompeiu derivatives and discuss
some of their properties as they were proved by Pompeiu, which we will later need in Weil’s
proof. We start by constructing a bijective function F , whose tangent line will be vertical on
a dense set of points in its domain. By taking the inverse of F , we construct a function whose
derivative is zero on a dense set of points, but non-zero on the other points in its domain.

Lemma 3.3.3. Let {an}n be a sequence of strictly positive real numbers with
∑

n≥0 an < ∞.
Let {qn}n be some ordering of the rationals in [0, 1]. For n ≥ 1, define Fn : [0, 1] → R as

Fn(x) := an
3
√
x− qn

and define F : [0, 1] → R as

F (x) := a0 +
∑
n≥1

Fn(x).

Then the function F is a homeomorphism onto [0, 1] up to rescaling and translating F with a
constant.

Proof. As each an is positive and the cube root is a strictly increasing function, F is strictly
increasing as well. To show F is a homeomorphism, we first prove that F is continuous and
bijective if we modify F by rescaling.

To show the continuity of F , note that for any n ≥ 1 and any x ∈ [0, 1]

|Fn(x)| = an| 3
√
x− qn| ≤ an,

as |x− qn| ≤ 1. Since the series
∑

n≥1 an converges by construction, by the Weierstrass M -test
(Proposition 2.3.1) we can conclude that {

∑n
k=1 Fk(x)}n converges absolutely and uniformly on

[0, 1] to F − a0. Adding a0, Theorem 2.2.3 yields that F is continuous through the continuity
of each of the functions Fn (since the cube root is a continuous function on [0, 1]).

The proof that F is injective is immediate by it being strictly increasing. We have

F (0) = a0 −
∑
n≥1

an 3
√
qn,

so setting a0 :=
∑

n≥1 an
3
√
qn, we obtain F (0) = 0. Then F (x) > 0 for any x ∈ (0, 1]. Multiply

F by the factor 1
F (1) . We still denote the rescaled function as F . Now F (1) = 1. Since F is

continuous, by the Intermediate Value Theorem, F maps [0, 1] to [0, 1], which yields that F is
bijective.

As [0, 1] is compact and R is Hausdorff with respect to the standard norm and F is bijective
and continuous, by Proposition 2.1.4, F is a homeomorphism.

In the following results of this section, F is to be understood as the homeomorphism defined in
Lemma 3.3.3. We first establish that the series defined below is absolutely convergent. Then we
examine if and on which sets this series is the derivative of F .
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Lemma 3.3.4. The series

f(x) :=
1

3

∑
n≥1

an

(x− qn)
2
3

,

converges almost everywhere.

Proof. Define f(n, x) : Z≥1 × [0, 1] → [0,∞] as

(n, x) 7→ an

(x− qn)
2
3

.

Consider the power set σ-algebra on Z≥1 and the Borel σ-algebra on [0,∞]. We verify that the
inverse images of f under {∞} and an open interval (a, b) ⊂ [0, 1] with a < b, are elements of
the product σ-algebra generated by P(Z≥1) and B[0, 1]. We write

f−1({∞}) = {(n, x) ∈ Z≥1 × [0, 1] : f(n, x) = ∞}
= {(n, qn) : n ∈ Z≥1}
= ∪n≥1{(n, qn)}.

Then it holds that {(n, qn)} ∈ P(Z≥1) × B[0, 1] for each n ≥ 1, since singleton sets are subsets
of both P(Z≥1) and B[0, 1], so this set is also included in the product of these σ-algebras.
Furthermore, countable unions of elements of a σ-algebra are again elements of the σ-algebra,
so f−1({∞}) is a measurable set.

Set

αn :=
(an
a

) 3
2

and βn :=
(an

b

) 3
2
.

We then have that

f−1((a, b)) = {(n, x) ∈ Z≥1 × [0, 1] : f(n, x) ∈ (a, b)}

=

{
(n, x) ∈ Z≥1 × [0, 1] : a <

an

(x− qn)
2
3

< b

}

=

{
(n, x) ∈ Z≥1 × [0, 1] :

(
a

an

)3

<
1

(x− qn)2
<

(
b

an

)3
}

= {(n, x) ∈ Z≥1 × [0, 1] : βn < |x− qn| < αn}
= ∪n≥1 ({n} × (Bαn(qn) \ cl Bβn(qn)) ∩ [0, 1]) .

Each {n} is measurable in the powerset of Z≥1. The open ball around qn of radius αn and the
closure of the ball around qn with radius βn are both measurable (in B[0, 1]), so their difference
is as well. It describes precisely those x ∈ [0, 1] with a distance of at least βn to qn and less
than αn. Finally, we need to intersect this set with [0, 1] to ensure the interval is still a subset
of [0, 1], and the intersection with a measurable set is again measurable. The product of these
sets is then measurable for the product σ-algebra, and the countable union over these sets is
then measurable as well.

Since we can write
(a,∞) =

⋃
n≥1
n>a

(a, n),

the preimage of f of each measurable set of B[0,∞] can be described with unions, intersections
and complements of the previous sets (of course f−1({0}) = ∅), so we find f is measurable.
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Let

g(x) :=
∑
n≥1

f(n, x) = lim
n→∞

n∑
k=1

f(k, x).

By Proposition 2.4.3, it holds that if
∫
[0,1] g(x) d(λx) < ∞, then g(x) < ∞ for almost all

x ∈ [0, 1], where λ is the Lebesgue measure on [0, 1]. The absolute value sign is omitted as g
is a non-negative function. As both (Z≥1,P(Z≥1), ν) and ([0, 1],B[0, 1], λ) are σ-finite measure
spaces and f is a non-negative function, we apply Tonelli’s Theorem (Theorem 2.4.6) to obtain∫

[0,1]
g(x) d(λx) =

∫
[0,1]

∑
n≥1

f(n, x) d(λx) =
∑
n≥1

∫
[0,1]

f(n, x) d(λx), (1)

where we use that
∫
[1,∞) f(n, x) d(νn) =

∑
n≥1 f(n, x), with ν the counting measure. Now, for

sufficiently large k and n, define

gk,n(x) :=


f(n, x) · 1[0,1]\(qn− 1

k
,qn+

1
k )

if qn ̸= 0, 1

f(n, x) · 1[ 1k ,1] if qn = 0

f(n, x) · 1[0,1− 1
k ]

if qn = 1,

then {gk,n}k is an increasing sequence with

lim
k→∞

gk,n(x) = f(n, x) · 1[0,1]\{qn}

for any x ∈ [0, 1]. In addition, for each sufficiently large k and n, we have that gk,n is a bounded,
continuous function on the set [0, qn − 1

k ] ∪ [qn + 1
k , 1]. By Theorem 2.4.4, this implies that the

Riemann and Lebesgue integrals of gk,n coincide. First, suppose qn = 0. With the Monotone
Convergence Theorem (Theorem 2.4.5) we find∫

(0,1]
f(n, x) d(λx) =

∫
(0,1]

lim
k→∞

gk,n(x) d(λx)

= lim
k→∞

∫
(0,1]

gk,n(x) d(λx)

= lim
k→∞

∫
[ 1k ,1]

f(n, x) d(λx)

= lim
k→∞

∫ 1

1
k

f(n, x) dx

= lim
k→∞

3an − 3an

(
1

k

) 1
3

= 3an.

Following the same steps, for qn = 1 we have∫
[0,1)

f(n, x) d(λx) = lim
k→∞

∫ 1− 1
k

0
f(n, x) dx

= lim
k→∞

3an

(
−1

k

) 1
3

+ 3an

= 3an.
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Finally, suppose qn ̸= 0, 1. Similarly, we then find∫
[0,1]\{qn}

f(n, x) d(λx) =

∫
[0,1]\{qn}

lim
k→∞

gk,n(x) d(λx)

= lim
k→∞

∫
[0,1]\{qn}

gk,n(x) d(λx)

= lim
k→∞

∫
[0,1]\(qn− 1

k
,qn+

1
k )

f(n, x) d(λx)

= lim
k→∞

∫ qn− 1
k

0
f(n, x) dx+

∫ 1

qn+
1
k

f(n, x) dx

= lim
k→∞

−6an

(
1

k

) 1
3

+ 3an

(
(1− qn)

1
3 + q

1
3
n

)
= 3an

(
(1− qn)

1
3 + q

1
3
n

)
.

We also have that ∫
[0,1]\{qn}

f(n, x) d(λx) =

∫
[0,1]

f(n, x) d(λx),

because the Lebesgue integral over a set of measure 0 equals 0. Combining these calculations
together with (1), we find ∫

[0,1]
g d(λx) =

∑
n≥1

3an

(
(1− qn)

1
3 + q

1
3
n

)
≤ 6

∑
n≥1

an,

if qn ̸= 0, 1, and ∫
[0,1]

g d(λx) =
∑
n≥1

3an

≤ 6
∑
n≥1

an,

in case qn = 0, 1. In all cases, the integral is finite as the series
∑

n≥1 an converges. We find
that

∫
[0,1] g(x) d(λx) is finite, so as a result, the set {x ∈ [0, 1] : g(x) = ∞} has measure zero.

We have that f = 1
3g, so we conclude that f converges almost everywhere.

In the remainder of Section 3.3.1, f refers to the series defined in Lemma 3.3.4.

Lemma 3.3.5. Define the set A := {x ∈ [0, 1] : f(x) converges on R}. Then for x ∈ A, it
follows that F ′ exists and coincides with f . On this set, f(x) > 0. For x ∈ [0, 1] \ A, the
function F has a vertical tangent line at x, or

F (x+ h)− F (x)

h
→ ∞

as h → 0.

Proof. Due to Lemma 3.3.4, A is non-empty. For x ∈ A, it is clear that f(x) > 0 as each of the
terms is positive (for x ̸= qn). We now show that for x ∈ A, F ′ exists and coincides with f on
A.
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We can write out the differential quotient of F in the point x for h ̸= 0 as

F (x+ h)− F (x)

h
=
∑
n≥1

an
3
√
x+ h− qn − 3

√
x− qn

h
.

Substituting Pn := x+ h− qn and Qn := x− qn, we find

P
1
3
n −Q

1
3
n

h
=

P
1
3
n −Q

1
3
n

Pn −Qn

=
P

1
3
n −Q

1
3
n

(P
1
3
n −Q

1
3
n )(P

2
3
n + P

1
3
n Q

1
3
n +Q

2
3
n )

=
1

P
2
3
n + P

1
3
n Q

1
3
n +Q

2
3
n

,

so
F (x+ h)− F (x)

h
=
∑
n≥1

an

P
2
3
n + P

1
3
n Q

1
3
n +Q

2
3
n

=: ϕ∞(h). (1)

We want to prove that ϕ∞(h) converges for h small enough (x is fixed), so that the function is
well-defined, and then we take the limit of h to zero.

Write

αn := 3

√
Pn

Qn
,

and
ϕn(h) :=

an

(1 + αn + α2
n)Q

2
3
n

,

then

ϕ∞(h) =
∑
n≥1

ϕn(h).

The polynomial 1 + αn + α2
n has a minimum for αn = −1

2 with value 3
4 , so

1

1 + αn + α2
n

≤ 4

3

for all values of h. Define

Mn :=
4an

3Q
2
3
n

≥ 0.

Given that f converges, ∑
n≥1

Mn = 4f(x)

must converge as well. Because for each n ≥ 1 and all values of h,

|ϕn(h)| ≤ Mn,

the Weierstrass M -test (Proposition 2.3.1) yields that
∑

n≥1 ϕn(h) converges uniformly on R.
By Theorem 2.2.3, we then have that ϕ∞(h) =

∑
n≥1 ϕn(h) is continuous.
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Now taking h → 0, Pn → Qn so

1

P
2
3
n + P

1
3
n Q

1
3
n +Q

2
3
n

→ 1

3Q
2
3
n

.

Since ϕ∞(h) is continuous, we can conclude that

lim
h→0

F (x+ h)− F (x)

h
= lim

h→0
ϕ∞(h) = ϕ∞(0) = f(x),

so for x ∈ A, F ′(x) exists and equals f(x).

Having described the behaviour of the derivative of F on A, we will turn to its behaviour outside
of A. We show that if x ∈ [0, 1] \A, the graph of F has a vertical tangent line at x, or

F (x+ h)− F (x)

h
→ ∞

as h → 0.

Keeping (1) in mind, we now define for a given x ∈ [0, 1] \A with x ̸= qn

Φm(h) :=

m∑
n=1

an

P
2
3
n + P

1
3
n Q

1
3
n +Q

2
3
n

,

so ϕ∞(h) = limm→∞Φm(h). Note that all the terms in the partial sums Φm(h) of ϕ∞(h) are
positive. If we can show that for every M > 0, we can find some m ≥ 1 and ε > 0 such that for
|h| < ε, Φm(h) > M , then it holds that

lim
h→0

F (x+ h)− F (x)

h
= lim

h→0
lim

m→∞
Φm(h) = ∞.

On [0, 1] \ A, the series f(x) diverges by definition. Hence, if x ̸= qn, for any M we can find
some m such that

fm(x) :=
1

3

m∑
n=1

an

(x− qn)
2
3

> M.

As we have seen before, Φm(0) = fm(x). Since Φm is a finite sum of continuous functions in
h = 0, Φm is also continuous in h = 0. Because of this continuity, we can find an interval (−ε, ε)
where Φm(h) > M as well. Hence, we find that Φm(h) → ∞ as m → ∞ and h → 0.

Now, we consider the case that x = qn for n ≥ 1. Then

F (qn + h)− F (qn)

h
=

1

h

∑
n≥1

an
3
√
h

= h−
2
3

∑
n≥1

an,

which diverges to ∞ as h → 0.

Combining all of the previous results, we are able to state the theorem that describes Pompeiu’s
derivative.

Theorem 3.3.6 (Pompeiu’s derivative). The function F has a continuous inverse F−1 with
bounded derivative everywhere. On F ([0, 1] \ A), F−1 has a horizontal tangent line. In other
words, there exists a function in C[0, 1] with a bounded derivative which vanishes on a dense set
but is nonzero on its domain.
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Proof. Because F is a homeomorphism, it has a continuous inverse F−1 : [0, 1] → [0, 1]. With
the knowledge of the behaviour of the derivative of F , we are able to describe the behaviour of
the derivative of F−1.

Since F is differentiable on A, F−1 is continuous and F ′(x) = f(x) > 0 for x ∈ A, we can apply
the Inverse Function Theorem (Theorem 2.3.4) for x ∈ A to find

(F−1)′(x) =
1

F ′(F−1(x))
= 3

∑
n≥1

an

(F−1(x)− qn)
2
3

−1

.

We now prove that on F ([0, 1] \ A), the derivative of F−1 exists and equals zero, or that the
graph of F−1 has a horizontal tangent line. Let x ∈ [0, 1] \A. For some sufficiently small h, we
can write

F (x) + h = F (x+ k(h)) (1)

for some unique function k depending on h, since F is invertible. This can be rewritten as
k(h) = F−1(F (x) + h)− x. With this identity, we can write the differential quotient of F−1 in
F (x) as

F−1(F (x) + h)− F−1(F (x))

h
=

F−1(F (x+ k(h)))− x

h
=

k(h)

h
.

By continuity of F−1, we have

lim
h→0

k(h) = lim
h→0

F−1(F (x) + h)− x = 0,

so using (1), we find

lim
h→0

h

k(h)
= lim

h→0

F (x+ k(h))− F (x)

k(h)
= lim

k(h)→0

F (x+ k(h))− F (x)

k(h)
= ∞,

as the graph of F has a vertical tangent line for x ∈ [0, 1] \A. This means that k(h) must have
the same sign as h eventually. So we can conclude that

lim
h→0

k(h)

h
= 0,

and (F−1)′(x) = 0 on F ([0, 1] \A).

It is easy to see that {qn : n ≥ 1} ⊂ [0, 1] \ A, since (x − qn)
2 = 0 if x = qn, so f(x) is not

well-defined and does not converge. Since the rationals in [0, 1] are dense, the set [0, 1] \ A is
also dense. Because F is a homeomorphism, F ([0, 1] \A) is also dense, so we find (F−1)′ is zero
on a dense subset of [0, 1].

Finally, we show the derivative of F−1 is bounded on [0, 1]. We saw that (F−1)′ vanishes
on F ([0, 1] \ A), so we only consider the set F (A). For x ∈ F (A) and any n ≥ 1, we have
1 ≥ 3

√
F−1(x)− qn > 0, so

an

(F−1(x)− qn)
2
3

≥ an

which implies that ∑
n≥1

an

(F−1(x)− qn)
2
3

≥
∑
n≥1

an

and we find

(F−1)′(x) = 3

∑
n≥1

an

(F−1(x)− qn)
2
3

−1

≤ 3

∑
n≥1

an

−1

.

The final estimate is a finite positive number, so (F−1)′ is bounded.
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Remark. Note that F−1 itself is not an example of a function that is everywhere differentiable
and nowhere monotone, because it is the inverse of the function F , which is strictly increasing.
It is easy to see that the inverse of a strictly increasing function is strictly increasing itself.
Indeed, for x, y ∈ [0, 1], we have x < y if and only if F (x) < F (y). Setting a := F (x) and
b := F (y), we find F−1(a) = x < y = F−1(b) if and only if a < b.

The Pompeiu derivative is a non-negative function, but by multiplying with a negative scalar,
one can find non-positive functions that are zero on a dense set and non-zero outside of that set.

An example of a Pompeiu derivative is shown in Figure 5, retrieved from [Mir21]. Here, the role
of F in Lemma 3.3.3 is played by

FN (x) :=
∑

1≤m<N
gcd(m,N)=1

(1.8)2−N 3

√
x− m

N
,

and setting F (x) := limN→∞ FN (x). In this example, F is not rescaled to be a bijection, but
for a picture with a finite sum this does not mater. This notation for FN allows the rational
numbers in the set QN := {m

N : 1 ≤ m < N, gcd(m,N) = 1} to be distributed evenly throughout
the interval [0, 1], so that for any N ≥ 2, the set QN−1 ⊂ QN . The geometric series test shows∑

n≥1(1.8)
2−n converges.

Figure 5: Graph of a Pompeiu function for an := (1.8)2−n and partial sum size N = 50.

3.3.2 The existence of everywhere differentiable and nowhere monotone functions

Before we can dive into Weil’s Theorem, we need one important analysis result. This theorem
is based on [Tao23, Theorem 3.7.1].

Theorem 3.3.7 (Uniform limit of a derivative). For n ≥ 1, define Fn : [0, 1] → R to be dif-
ferentiable functions with derivatives fn : [0, 1] → R. Suppose that the derivatives fn converge
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uniformly to f . In addition, suppose there exists a point x0 ∈ [0, 1] such that limn→∞ Fn(x0)
exists. Then the functions Fn converge uniformly to a differentiable function F such that F ′ = f .

Proof. This proof consists of three steps.

Step 1. We first prove a useful fact. Suppose that for any η > 0 and n,m ≥ 1, ∥fn − fm∥ ≤ η.
Then for all x ∈ [0, 1],

|(Fn(x)− Fm(x))− (Fn(x0)− Fm(x0))| ≤ η|x− x0|. (1)

In order to prove this fact, we apply the Mean Value Theorem on some x ̸= x0 and the function
Fn − Fm. By this theorem, there exists some ζ ∈ (min(x0, x),max(x0, x)) such that

|(Fn − Fm)(x)− (Fn − Fm)(x0)|
|x− x0|

=

∣∣∣∣(Fn − Fm)(x)− (Fn − Fm)(x0)

x− x0

∣∣∣∣
= |(Fn − Fm)′(ζ)|
= |(fn − fm)(ζ)|,

using the linearity of the differential operator. Assuming ∥fn − fm∥ ≤ η for some η > 0 and
sufficiently large n,m, this yields

|(Fn(x)− Fm(x))− (Fn(x0)− Fm(x0))|
|x− x0|

≤ ∥fn − fm∥

≤ η.

By multiplying both sides by |x− x0|, (1) is proven for x ̸= x0. If x = x0, both sides of (1) are
equal to 0, so in this case the statement holds as well.

Step 2. We show that Fn converges uniformly to a function that we call F . Let ε > 0 be given.
The sequence {fn}n converges uniformly, so it is also a Cauchy sequence. Then for η := 1

2ε we
can find some N1 ≥ 1 such that for n,m ≥ N1, ∥fn − fm∥ < η. In addition, because {Fn(x0)}n
is Cauchy, there also exists some N2 such that for n,m ≥ N2, we have |Fn(x0) − Fm(x0)| < η.
Set N as the maximum of N1 and N2, and let n,m ≥ N be given. We apply (1) for arbitrary
x ∈ [0, 1]. If x = x0, |Fn(x)− Fm(x)| < η < ε, so assume x ̸= x0. Then

|Fn(x)− Fm(x)| ≤ |(Fn(x)− Fm(x))− (Fn(x0)− Fm(x0))|+ |Fn(x0)− Fm(x0)|
< η|x− x0|+ η

≤ ε,

since x, x0 ∈ [0, 1]. We find that {Fn}n is a Cauchy sequence for the supremum norm. By
Theorem 2.2.5, (C[0, 1], ∥ · ∥) is complete, so Fn → F as n → ∞ for some function F in the
supremum norm.

Step 3. Finally, we need to show that F ′ exists and equals f . Let ε > 0 and x ∈ [0, 1] be given.
In the same way as we proved (1), we can apply the Mean Value Theorem to Fn − Fm for n,m
large enough that ∥fn − fm∥ < 1

3ε and y ̸= x, which gives∣∣∣∣Fn(y)− Fn(x)

y − x
− Fm(y)− Fm(x)

y − x

∣∣∣∣ < 1

3
ε.

Letting m → ∞, this yields ∣∣∣∣Fn(y)− Fn(x)

y − x
− F (y)− F (x)

y − x

∣∣∣∣ ≤ 1

3
ε.
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Defining

ξn(y) :=
Fn(y)− Fn(x)

y − x
− F (y)− F (x)

y − x

and

ξ(y) :=
F (y)− F (x)

y − x
,

note that this implies that ξn(y) → ξ(y) as n → ∞ uniformly on [0, 1] \ {x}. Because fn → f ,
we can also estimate |fn(x)− f(x)| ≤ ∥fn − f∥ < 1

3ε for large enough n.

Taking n large enough for the above two estimates, there exists some δ > 0 such that if |y−x| < δ,∣∣∣∣Fn(y)− Fn(x)

y − x
− fn(x)

∣∣∣∣ < 1

3
ε

since F ′
n = fn on [0, 1]. Hence, for 0 < |y − x| < δ,∣∣∣∣F (y)− F (x)

y − x
− f(x)

∣∣∣∣ ≤ ∣∣∣∣F (y)− F (x)

y − x
− fn(x)

∣∣∣∣+ |fn(x)− f(x)|

<

∣∣∣∣F (y)− F (x)

y − x
− fn(x)

∣∣∣∣+ 1

3
ε

≤ 1

3
ε+

∣∣∣∣F (y)− F (x)

y − x
− Fn(y)− Fn(x)

y − x

∣∣∣∣+ ∣∣∣∣Fn(y)− Fn(x)

y − x
− fn(x)

∣∣∣∣
<

1

3
ε+

1

3
ε+

1

3
ε

= ε

We conclude that F is differentiable and F ′ = f .

Theorem 3.3.8 (Weil). There exist functions in C[0, 1] that are both everywhere differentiable
and nowhere monotone.

Proof. Define
D := {f ∈ B[0, 1] : f = F ′ for some F ∈ C[0, 1]}

to be the set of bounded derivatives of functions F ∈ C[0, 1]. Just as with C[0, 1], we equip D
with the supremum norm (this is well-defined because each f ∈ D is bounded). We first show
that D is a complete metric space.

Let {fn}n be a Cauchy sequence in D. For each fn ∈ D, there exists some Fn ∈ C[0, 1] such
that fn = F ′

n. Just as in Theorem 3.3.7, we use the pointwise convergence of fn to define a limit
function f , which exactly as before is shown to converge uniformly to f . Now, we still need to
show f is the bounded derivative of some function F . For each n, define Gn(x) := Fn(x)−Fn(0).
Each Gn is a function from [0, 1] to R with the property that Gn(0) = 0, so {Gn(0)}n converges
to 0. In addition, G′

n(x) = F ′
n(x) = fn(x). Taking x0 = 0, we can apply Theorem 3.3.7 for fn

and Gn to find that the functions Gn converge uniformly to G with the property that G′ = f .
To show f is bounded, take any ε > 0. Because fn → f , there exists some N ≥ 1 such that
∥fN − f∥ < ε. Because each fn ∈ D, fN is bounded by some value B, so

∥f∥ ≤ ∥f − fN∥+ ∥fN∥ ≤ ε+B,

so f is bounded. Hence f ∈ D, so each Cauchy sequence in D converges in D as well, showing
that D is a complete metric space.

For each f ∈ D, we now define the set Z(f) := {x ∈ [0, 1] : f(x) = 0} and the space

D0 := {f ∈ D : Z(f) is dense in [0, 1]}.
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We will show D0 is complete with respect to the supremum norm as well. In order to do so, we
first prove that for g ∈ D0, Z(g) is a countable intersection of open sets.

Define, for each n ≥ 1,

gn(x) :=
G(x+ 1

n)−G(x)
1
n

,

where G′ = g. Then for any x, limn→∞ gn(x) = G′(x) = g(x), which implies
limn→∞ |gn(x)| = |g(x)|. If x ∈ Z(g), then by definition |g(x)| = 0. Because g is the limit of
gn, we can rewrite this as 0 = lim infn→∞ |gn(x)| = limn→∞(infm≥n |gm(x)|). We prove this is
equivalent to the statement

for all k > 0 and n ≥ 1, there exists m ≥ n such that |gm(x)| < 1

k
. (1)

For the right implication, assume the converse holds, so there exist k, n such that for all m ≥ n,
|gm(x)| ≥ 1

k . This implies that infm≥n |gm(x)| ≥ 1
k . Using our assumption, we find

0 = lim inf
n→∞

|gn(x)| = sup
n≥1

(
inf
m≥n

|gm(x)|
)

≥ 1

k
,

which is a contradiction.

For the left implication, we assume (1) and suppose lim infn→∞ |gn(x)| =: b > 0. By definition
of the infimum, for some 0 < ε < b, there exists some N ≥ 1 such that for all n ≥ N ,
|gn(x)| > b− ε. Let k > 1

b−ε a whole number and n ≥ N . By (1) there exists some m ≥ n such

that |gm(x)| < 1
k < b−ε, but this contradicts the assumption that for all m ≥ n, |gm(x)| > b−ε.

Hence, lim infn→∞ |gn(x)| = 0 is equivalent to (1).

In conclusion, x ∈ Z(g) is equivalent to lim infn→∞ |gn(x)| = 0, which in set-theoretic terms can
be expressed as

x ∈
⋂
k≥1

⋂
n≥1

⋃
m≥n

{
y : |gm(y)| < 1

k

}
.

Hence,

Z(g) =
⋂
k≥1

⋂
n≥1

⋃
m≥n

{
y : |gm(y)| < 1

k

}
.

Each set {y : |gm(y)| < 1
k} is open in [0, 1], so Z(g) is a countable intersection of open sets.

Now let {fn}n be a Cauchy sequence in D0. This converges to some f ∈ D. We then need to
prove that Z(f) is dense in [0, 1]. Write Z := ∩n≥1Z(fn). Because each Z(fn) is dense and a
countable intersection of open sets, Z is again a countable intersection of dense open sets. As
[0, 1] is a Baire space, with the Baire Category Theorem we find Z is dense in [0, 1]. If x ∈ Z,
then for all n ≥ 1, x ∈ Z(fn), so equivalently 0 = limn→∞ |fn(x)| = |f(x)|, so x ∈ Z(f). We
find Z ⊂ Z(f), so Z(f) must also be dense in [0, 1]. We conclude f ∈ D0.

Before we get to the essential part of the proof, we have two things left to prove: we show that
D0 is closed under addition, and that D0 contains more than just the zero function.

The first part is fairly straightforward. Let f, g ∈ D0 be given. Because f+g is bounded (taking
the sum of the bounds of f and g) and taking the derivative is linear, f + g ∈ D. In addition,
Z(f) and Z(g) are dense in [0, 1]. Because Z(f) and Z(g) are countable intersections of open,
dense sets in [0, 1] and [0, 1] is Baire, Z(f)∩Z(g) is again a countable intersection of open, dense
sets. As a result, Z(f) ∩ Z(g) must be dense in [0, 1] as well. Now, if x ∈ Z(f) ∩ Z(g), we have
f(x) = 0 = g(x). Then f(x)+ g(x) = 0, so x ∈ Z(f + g). We have that Z(f)∩Z(g) ⊂ Z(f + g),
and because the former is dense, the latter must be as well. Hence, f + g ∈ D0.
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By Theorem 3.3.6, there exists a non-zero function f : [0, 1] → R such that F ′ = f on its domain,
f is bounded and Z(f) is dense in [0, 1], so f ∈ D0. Hence, D0 contains a Pompeiu derivative.

As we have seen in the proof that nowhere differentiable functions exist (Theorem 3.1.4), the idea
of the proof is to define a subset E with the property that functions are somewhere monotone
and show this particular set is meagre in D0. All the work we have done so far is to apply the
Baire Category Theorem on D0, which is a Baire space, so E cannot equal the whole space. Its
complement is dense in D0 (just as in the proof of Theorem 3.1.4). A suitable definition is

E := {f ∈ D0 : there is an interval where f does not switch sign}.

Let {In}n be some ordering of all the closed intervals with rational endpoints contained in [0, 1].
Because of the density of the rationals in the reals, it suffices to show that f does not switch
sign on any interval In in this collection (here, we assume In is not a singleton set). Write

En := {f ∈ D0 : f(x) ≥ 0 for x ∈ In}

and
Fn := {f ∈ D0 : f(x) ≤ 0 for x ∈ In},

then
E =

⋃
n≥1

(En ∪ Fn).

We show that, for some n ≥ 1, En is nowhere dense by showing it is closed and its interior is
empty. The proof for Fn follows in the same way.

Let {fn}n be a sequence in En converging uniformly to some f ∈ D0. Suppose f ̸∈ En. Then
there exists some x0 ∈ In for which f(x0) < 0. As fn → f , we can choose ε := −f(x0), then
there exists some N for which if n ≥ N , |fn(x0)− f(x0)| ≤ ∥fn − f∥ < ε. Since f(x0) < 0, this
implies fn(x0) < 0, which contradicts fn ∈ En. So En is closed.

To show En has empty interior, let f ∈ En and ε > 0. Since f vanishes on a dense set in
[0, 1] and In contains an open set, there exists some x0 ∈ In such that f(x0) = 0 and x0 > 0.
By Theorem 3.3.6, there exists a Pompeiu derivative h ∈ D0 such that h(y0) ̸= 0 for some
y0 ∈ (0, 1). Furthermore, h is bounded, non-negative, and there exists some H ∈ C[0, 1] such
that H ′ = h. For fixed s > 0 and t ≤ 1, we take a > 0 large enough such that

xa :=
y0

2x0a
< t

and

ya :=
y20

4x20a
< s.

Now, define v : [0, xa] → [0, ya] by

v(x) := −ax2 +
y0
x0

x,

then clearly we have that v(0) = 0 and v(xa) = ya < s. Furthermore, the function v is strictly
increasing with v′(0) = y0

x0
and v′(xa) = 0. We also define w : [xa, t] → [ya, s] by

w(x) :=
s− ya

(t− xa)2
(x− xa)

2 + ya.

We then have that w(xa) = ya, w(t) = s and w′(xa) = 0. The function w is also strictly
increasing. From this, it follows that

q(x) :=

{
v(x) if 0 ≤ x ≤ xa
w(x) if xa < x ≤ t
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is a differentiable, increasing function. In addition, q is a bijection from [0, t] onto [0, s] so that
q′(0) = y0

x0
. Finally, we set s := 1− y0 and t := 1− x0 and define

g(x) :=

{ y0
x0
x if 0 ≤ x ≤ x0

q(x− x0) + y0 if x0 < x ≤ 1.

Then g is an increasing bijection from [0, 1] onto [0, 1] such that g(x0) = y0. Furthermore, g is
differentiable and g′ is bounded, being constant on [0, x0] and equal to q′ on (x0, 1].

Then we find that (Hg)′(x) = h(g(x))g′(x). It holds that this function is zero whenever h(x) = 0,
as g(0) = 0 but g(x) ̸= 0 for x nonzero, and g′(x) > 0 for all x ∈ [0, 1] \ {xa}. In particular,
(Hg)′(x0) = h(y0)g

′(x0) ̸= 0. Hence, (Hg)′ ∈ D0.

Because (Hg)′ is a bounded and non-negative function, there exists some B > 0 such that
∥(Hg)′∥ < B. Define h̃ := − ε

B (Hg)′, then h̃(x0) < 0 and

∥h̃∥ = εB−1∥(Hg)′∥ < ε.

Now define p := f + h̃, then ∥f − p∥ < ε but p ̸∈ En, as p(x0) = f(x0) + h̃(x0) < 0. So Bε(f) is
not a subset of En, so En is nowhere dense.

Proceeding similarly for Fn, we find that E is a countable of union of nowhere dense sets.
Hence, E is a meagre set. Since D0 is a complete metric space, by the Baire Category Theorem
(Theorem 2.6.4), E cannot be the entire space. Its residual D0 \ E must therefore be non-
empty. Then there exists some f ∈ D0 \ E and some F ∈ C[0, 1] such that F ′ = f . If F would
be monotone on some interval, its derivative f would not switch sign, which cannot occur as
f ∈ D0 \ E. Therefore, F must be a function that is everywhere differentiable and nowhere
monotone.

Corollary 3.3.2 motivates the construction of the space D0. The following lemma demonstrates
that this prevents the derivatives f from being continuous.

Lemma 3.3.9. Let I ⊂ [0, 1] be a dense set and f ∈ C[0, 1] be such that f(x) = 0 for all x ∈ I.
Then f ≡ 0.

Proof. Assume there is some y ∈ [0, 1]\I such that f(y) ̸= 0. By continuity of f , for ε = 1
2 |f(y)|

there exists some δ > 0 such that for x ∈ (y − δ, y + δ), we have |f(x) − f(y)| < ε. Since I is
dense, there exists some x ∈ I ∩ (y − δ, y + δ) such that

|f(x)− f(y)| = |f(y)| < ε =
1

2
|f(y)|,

a contradiction.

We also need to require f ∈ D to be bounded to define the supremum norm on D, because there
are functions F ∈ C[0, 1] whose derivatives fail to be bounded on some interval.

Example 3.3.10. Consider the function F : R → R defined by

F (x) :=

{
x2 sin

(
1
x2

)
if x ̸= 0

0 if x = 0

taken from [GO64, Example 6 on p. 37]. Its derivative is

f(x) =

{
2x sin

(
1
x2

)
− 2

x cos
(

1
x2

)
if x ̸= 0

0 if x = 0.
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Let M ∈ Z≥1 arbitrary. Choose a whole number N ≥ 1 such that N > M2

16 and x :=
√

1
4Nπ .

Then

|f(x)| =

∣∣∣∣∣2
√

1

4Nπ
sin(4Nπ)−

√
16Nπ cos(4Nπ)

∣∣∣∣∣
=
∣∣∣−√

16Nπ
∣∣∣

= 4
√
Nπ

> 4

√
1

16
M2

= M,

so f is not bounded.
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4 Concluding remarks

In this thesis, our aim was to illustrate the power of the Baire Category Theorem by showing
two remarkable facts about the space of continuous functions. Firstly, we demonstrated that
any continuous function can be approximated by a nowhere differentiable function. We then
demonstrated that every nowhere differentiable function is nowhere monotone. Finally, we
established that there exist functions that are everywhere differentiable and nowhere monotone.
In summary, we arrived at the following inclusions.

{f ∈ C[0, 1] : f is nowhere differentiable} ⊂ {f ∈ C[0, 1] : f is nowhere monotone}
dense
⊂ C[0, 1].

The existence of functions with these properties serves as a challenge to our intuition of con-
tinuous functions. It seems especially strange that not only functions exist that are nowhere
monotone and differentiable in a specific point or on a countable set, but actually are everywhere
differentiable. This only shows that as mathematicians, we should not expect everything to be
beautifully simple, but rather see the beauty in the unappealing.
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A Python code

Weierstrass function

1 """

2 Weierstrass function

3 """

4

5 # required modules

6 import numpy as np

7 import matplotlib.pyplot as plt

8

9 # stepsize: the higher the more points are calculated

10 Step = 10000

11

12 # xpoints for range x axis

13 startx=0

14 stopx=8

15 xpoints = np.linspace(startx,stopx,Step)

16

17 # Weierstrassfunction without pi in cos term, Npar is up to N partial sum

18 c = 175

19 d = 1/5

20 def weierstrass(x,Npar):

21 we=0

22 for n in range(0,Npar):

23 z=np.float64(c**n*x)

24 we=we+np.cos(z)*d**n

25 return we

26

27 # using different values for NPar, a and b can cause overflow

28 # plots

29 f = plt.figure()

30 f.set_dpi(150)

31 plt.plot(xpoints,weierstrass(xpoints, 30), linewidth=0.1, color="black")

32 plt.xlim(startx,stopx)

33 plt.grid(color='grey', which='major', linestyle='-', linewidth=0.5)

34 plt.grid(color='grey', which='minor', linestyle='-', linewidth=0.1)

35 plt.minorticks_on()

36 plt.show()
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