
Passenger’s Strategic Behavior In a Transportation Station
Ruijters, A.M.I.

Citation
Ruijters, A. M. I. Passenger’s Strategic Behavior In a Transportation Station.
 
Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in the
Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/4171099
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/4171099


A.M.I. Ruijters

Passenger’s Strategic Behavior In a
Transportation Station

Bachelor thesis

19 Juli 2023

Thesis supervisors: dr. D. Logothetis
dr. O. Kanavetas

Leiden University
Mathematical Institute



Contents

1 Introduction 3

2 Model 5
2.1 Transportation system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Strategic customers framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Information Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Utility and Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Two scenarios regarding the homogeneity . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Effect of information in customer strategic behavior 7
3.1 Equilibrium Strategies and Performance Measures . . . . . . . . . . . . . . . . . . . 7

3.1.1 The no-information level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 The information level Age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.3 The information level Residual time . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Theoretical Comparisons of the Information Levels . . . . . . . . . . . . . . . . . . . 9
3.2.1 Comparison of ∅ and A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 Comparison of ∅ and R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.3 Comparison of A and R for specific cases . . . . . . . . . . . . . . . . . . . . 12

3.3 Numerical Comparisons of the Information Levels . . . . . . . . . . . . . . . . . . . . 14
3.3.1 Erlang distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Analysis of the Inhomogeneous scenario 16
4.1 Equilibrium strategies and performance meausures . . . . . . . . . . . . . . . . . . . 16

5 Analytical Comparison of the Homogeneous and Inhomogeneous Scenario 18
5.1 Equilibrium Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Social Welfare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Discussion 20

2



1 Introduction

Indisputably, public transit plays a vital role in transporting passengers worldwide. As urban
populations continue to grow, cities face increasing traffic congestion challenges, and transporta-
tion network efficiency challenges have become more pressing. Therefore, it is vital to prioritize
enhancing managerial and administrative practices, reducing travel times, and improving overall
accessibility and mobility. In response to these demands, modern transportation systems have
incorporated real-time services, providing customers with real-time information such as departure
time and crowd density. With advancements in technology and widespread internet usage, access to
this information has become more convenient than ever before. In this study, we consider a stylized
stochastic model of a transportation system, employing a game theoretical framework to study the
impact of information provision on system performances in the presence of strategic passengers.

The study of queueing systems from a game-theoretic perspective was first conducted by Naor
(1969), who investigated the strategic behavior of customers in M/M/1 queues. In this model,
customers make decisions based on their knowledge of the queue length, deciding whether to join
the line or balk [1]. Building upon Naor’s work, Edelson and Hildebrand (1975) further investigated
the same queue system without providing any information to the customers [2]. Hassin and Haviv’s
(2003) and Stidham’s (2009) books extensively explore the primary methodologies and numerous
findings [3], [4]. Additionally, Hassin’s (2016) book offers detailed summaries of over 600 papers
focusing on rational queueing, providing a comprehensive overview of the research conducted in
this area [5].

Manou, Economou, and Karaesmen (2014) formulated a transportation system model with finite
and strategic customer arrivals following a Poisson Process. In this study, the transportation fa-
cility, with random capacity, visits the station under a renewal process. The research focuses on
examining customers’ equilibrium strategies under two scenarios: the observable case, where cus-
tomers observe the queue length, and the unobservable case, where customers lack such information
[6].

Manou et al. (2017) expanded the research to a transportation model where the facilities have
infinite capacity. The authors considered a pricing problem where an administrator imposes a fee,
and the customers observe their delay information. For three information levels, they explore the
effect of the customers’ reward, the unit waiting cost and the distribution of the arriving facilities
on the customer behavior and the fee imposed [7].

Finally, Logothetis and Economou (2023) studied the effect of information on a transportation
system with finite capacity. To determine the ideal level of provided information, they derive the
customer equilibrium strategies and compare the equilibrium throughput and social welfare under
various combinations of the information offered [8].

This thesis centers on a transportation system with infinite capacity and studies the influence
of information when customers make strategic decisions regarding joining or balking. This research
includes two distinct scenarios regarding the homogeneity of the customer population. The first
scenario assumes customers are homogeneous in their evaluations of reward and waiting costs. In
contrast, the second scenario considers customers as inhomogeneous in evaluating their waiting
costs.

The structure of this thesis is as follows. Section 2 provides a detailed description of the trans-
portation system, encompassing key assumptions and operational characteristics. It also includes
essential definitions and concepts from the existing literature on rational queueing, along with a spe-
cific delineation of the information levels utilized. In Section 3, we analyze the customer equilibrium

3



strategies and examine the corresponding system performances across three different information
levels, drawing comparisons between them. Furthermore, we contrast the performances observed
within the two distinct scenarios. In addition, in Section 4, we describe the equilibrium strate-
gies and system performances for the inhomogeneous scenario. In Section 5, we compare these
performances with those of the homogeneous scenario.
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2 Model

2.1 Transportation system

In this research project, we consider a transportation system where all customers present at the
time of transportation arrival are served simultaneously.
Customers arrive at the platform according to a Poisson process denoted by {P (t)} with rate λ.
The transportation facility visits the station according to a renewal process {M(t)}. The typical
interarrival time for the process {M(t)} is represented by the random variable X, with distribution
F (t) and density f(t). We assume that the platform and the facility have infinite capacity, so every
customer joining the system will receive service.

2.2 Strategic customers framework

The customers, upon arrival at the station, decide whether to join or to balk, with the objective of
maximizing their expected net benefit. We assume that their decisions are strategic, in the sense
that individuals’ beliefs regarding how others will decide, affect their choices. Thus, the whole
situation can be regarded as a game among the customers. The primary objective is to determine
the equilibrium strategy of the customers.

Moreover, we make the following assumptions about the customers:

• Customers are aware of both the operational and economic parameters. They know which spe-
cific distribution the arriving facilities follow, which values the parameters of the distributions
have, and what the reward and cost are.

• Customers are selfish; they only consider personal profit.

• Customers are rational; they can calculate the best decision for them.

We assume the presence of a reward-cost structure in the system, wherein customers are allowed
to decide to either join or balk the system upon their arrival. Each customer incurs a cost (c) per
unit of time (t) while simultaneously assigning a value or reward (r) to the service provided by the
facility.

To describe the equilibrium strategy, we first need to define some concepts. In the resulting
game, since we deal with an infinite number of customers, we assume a common set of strategies
S and payoff function G. In particular, G(s|s′) is the payoff for a tagged customer who selects the
strategy s, when everyone else selects the strategy s′. An equilibrium strategy is a strategy se ∈ S
that

se ∈ args∈SG(s|se).

In other words, an equilibrium strategy se is a strategy chosen by the customers such that no
customer has the incentive to denote from this strategy initially [3]. Moreover, a strategy s1 is
strictly dominated by strategy s2 if G(s1|s) < G(s2|s)∀s ∈ S. Note that if a strategy is a dominant
strategy, then it is also an equilibrium strategy [9].

2.3 Information Levels

In this research project, we mainly focus on the effect of information on customers’ strategic behavior
and the resulting performance of the system. To this end, we investigate the following scenarios
regarding the information conveyed to the customers.
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• The no-information level (∅).The customers are not provided with any additional information.

• The information level ”Age” (A). Customers are informed regarding transportation facility,
which is the time between the last facility left and the customers’ arrival.

• The information level ”Residual time” (R). The exact waiting time is known for all customers.
This is the time between the arrival of a customer and the next arriving facility.

We obtain four combinations of the information levels: AR,A,R, and ∅. In the level AR, a
customer knows the age and the residual time. With the use of age, a customer is informed of the
age and the residual time. With the help of the age, a customer will estimate his waiting time.
However, in this one, a customer also has the residual time information, which is the exact waiting
time. Therefore, in the information level AR, a tagged customer will only use the knowledge of the
precise waiting time and not the age, and thus, we have the following remark.

Remark 1. The information level AR behaves the same as the information level R.

Thus, in this paper, the set of information levels is

I = {A,R, ∅}. (1)

2.4 Utility and Performance

We consider an arbitrarily tagged customer who arrives at the system and observes the information
I. The expected utility for this customer, given that the customer population follows a strategy
q ≡ qi is denoted by GI(i|qi), with I ∈ {∅, A,R}. The facilities have infinite capacity, ensuring
that the probability of a customer receiving service equals 1. To determine the expected utility, we
define

GI(i|qi) = r − cEI(i|qi). (2)

Here, EI(i|qi) represents the conditional expectation of the customers’ waiting time until the next
facility arrives, given that the other customers follow strategy qi and information i is provided
under the information scenario I.

In addition to evaluating the utility of a specific customer, we can also examine the system’s
performance. The two key performance measures are equilibrium throughput and social welfare.
The equilibrium throughput is defined as the number of customers served per time unit [4]. Since
all customers joining the platform are guaranteed a seat in the facility, the throughput is equivalent
to the number of customers entering the system per time unit.
Social welfare is defined as the total expected net benefit per time unit of the customers in the
transportation system. The social objective aims to maximize the total rewards received minus the
total waiting cost [3].

2.5 Two scenarios regarding the homogeneity

In this paper, we examine two scenarios regarding the homogeneity of the customers: (1) Customers
are homogeneous in their reward and waiting cost, and (2) customers are inhomogeneous in their
waiting cost evaluation. In the second scenario, customers do not have identical perceptions o their
waiting cost. That is, different customers, have varying valuations regarding the cost associated
with waiting. We capture the difference by assuming the cost is a random variable according to the
uniform distribution U(α, β), with α < β.
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3 Effect of information in customer strategic behavior

In this section, we investigate the influence of information on customer strategic behavior. Specifi-
cally, in the subsequent subsections, we derive the customer equilibrium strategies corresponding to
each information level as discussed in subsection 2.3. Additionally, we analyze the resulting system
dynamics under the equilibrium strategy and calculate the key system performance measures. Fur-
thermore, we present several theoretical and numerical findings to compare the distinct information
levels.

3.1 Equilibrium Strategies and Performance Measures

This subsection aims to determine the customer equilibrium strategies and performance measures
for each information level.

3.1.1 The no-information level

In the no-information level, a general customer strategy q, is specified by a single joining probability
q. As described in section 2.4, the net benefit of a tagged customer who decides to join, knowing
the other customers follow a strategy q, is given by

G∅(q) = r − cE∅(q).

The customers arrive according to the Poisson Process, which means we can apply the PASTA
property. This means that a customer who comes at a given time observes the system as an arrival
at a random moment. Therefore, it equals the residual waiting time at an arbitrary instant. Thus,

by applying the renewal theory, we have E∅(q) = E(X2)
2E(X) . Therefore, the net benefit for a tagged

customer in the no-information level is equal to

G∅(q) = r − c · E(X2)

2E(X)
. (3)

The net benefit does not depend on the other customers’ strategy q, so the strategy of a tagged
customer is a dominant strategy.
We can use this argument to determine the equilibrium strategy. A customer joins the system when
G∅(q) ≥ 0 holds, and we assume for the uniqueness that a customer balks for G∅(q) < 0. We have
that

G∅(q) ≥ 0 ⇔ r − c
E(X2)

2E(X)
≥ 0 ⇔ E(X2)

2E(X)
≤ r

c
. (4)

So a customer joins when E(X2)
2E(X) ≤

r
c holds.

In the same way, we find that a customer balks when E(X2)
2E(X) > r

c holds. Therefore, in the

information level ∅, the equilibrium strategy is equal to

qe =

{
1 if E(X2)

2E(X) ≤
r
c ,

0 else.
(5)

Now we can determine the performance measures. These are the equilibrium throughput and
the social welfare. The throughput is the number of customers served per time unit. Everyone
who enters the system will be served, which equals the number of customers joining the platform
per time unit. The equilibrium strategy is dominant, so the throughput is equal to the equilibrium
strategy times the parameter of the Poisson process.
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To calculate the throughput, we use the renewal reward theorem. A renewal cycle in this
case is the time interval between two successive visits of the transportation. In particular, we
set Rk = Nqe(Xk) to be the reward in the k renewal cycle, where Nqe(t) denotes the number of
customers in the system in [0, t]. That is, the customers who are served during a renewal cycle.

Thus the total reward until time t would be R(t) =
∑M(t)

k=1 Rk. Since, (Rk, Xk) is a i.i.d sequence
of random variables, the renewal reward theorem states that

lim
t→∞

R(t)

t
=

E(Nqe(X))

E(X)

It is easy to see that Nqe(t) is Poisson process with rate λqe, and thus, we obtain immediately that

TH∅ = λqe =

{
0 when E(X2)

2E(X) >
r
c ,

λ when E(X2)
2E(X) ≤

r
c .

(6)

The expected social benefit per time unit is expressed by

SW ∅ = λqeG∅(qe) = λqe(r − cE(qe)).

Thus, we have that

SW ∅ =

{
0 when E(X2)

2E(X) >
r
c ,

λ(r − cE(X2)
2E(X) ) when E(X2)

2E(X) ≤
r
c .

(7)

3.1.2 The information level Age

In this subsection, we assume that the arriving customers are informed about the elapsed time a
from the last transportation visit. Then, a joining strategy is a function q = {q(a), a ≥ 0}, where
q(a) is the joining probability for a customer that arrives at the station a time units after the last
visit of the transportation facility. In this case, the expected net benefit for a tagged customer that
arrives and is informed that the age of the process M(t) is a and the rest of the customers use a
general strategy q, is given by

GA(a|q) = r − c · EA(a|q). (8)

The conditional mean forward recurrence time at the arrival instant of the tagged customer,
given that he finds age A = a is the mean residual life function m(a) = E(X − a|X > a). Thus, we
have that

Remark 2. The mean residual life function is

m(a) =

∫ ∞

a

1− F (u)

1− F (a)
du. (9)

The net benefit is independent of q, so a dominant equilibrium strategy exists. Consider that a
customer joins when GA(a|q) ≥ 0. Then we have

qe(a) =

{
1 if m(a) ≤ r

c ,

0 else.
(10)

We analyze the performance measures. As described in section 3.1.1, the throughput can be calcu-
lated by the equilibrium strategy times the parameter λ. However, information is added this time,
so we have to integrate over the age. Therefore, for the information level age, the throughput is
equal to

THA = λ

∫ ∞

0

qe(a)
1− F (a)

E(X)
da. (11)

Again, by integrating over a, we calculate the net benefit per time unit. The social welfare is then
specified as

SWA = λ

∫ ∞

0

qe(a)(r − c ·m(a))
1− F (a)

E(X)
da. (12)
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3.1.3 The information level Residual time

We assume in this subsection that the customers are provided with information regarding the
exact arrival time of the next transportation facility. That, is, each customer knows his exact
waiting time. Similarly to the previous subsection, a general customer strategy is a function q =
{q(w), w ≥ 0}, where q(w) denotes the joining probability when the waiting time is exactly w times
units. Therefore, the expected time a customer has to wait equals w. Thus, the net benefit of a
tagged customer is specified as

GR(w|q) = r − c · w. (13)

The net benefit is independent of q; therefore, a unique dominant joining strategy exists. Using the
argument that a customer joins when GR(w|q) holds, the equilibrium strategy is specified as

qe(w) =

{
1 if w ≤ r

c ,

0 else.
(14)

We integrate over w, and the equilibrium strategy equals 1 when w ≤ r
c . Therefore, in the informa-

tion level R, the throughput and social welfare are specified, respectively, as

THR = λ

∫ ∞

0

qe(w)
1− F (w)

E(X)
dw. (15)

THR = λ

∫ r
c

0

1− F (w)

E(X)
dw. (16)

SWR = λ

∫ ∞

0

qe(w)(r − c · w)1− F (w)

E(X)
dw. (17)

SWR = λ

∫ r
c

0

(r − c · w)1− F (w)

E(X)
dw. (18)

3.2 Theoretical Comparisons of the Information Levels

In this section, we compare the various information cases using the derived formulas from the
equilibrium throughput and social welfare.

3.2.1 Comparison of ∅ and A

First, we compare the throughput of the no-information level and the information level of the age
as functions of the arrival rate λ. To this end, we have the following result.

Theorem 1 (Comparison of TH∅ and THA). It holds that{
THA ≥ TH∅ for E(X2)

2E(X) >
r
c ,

THA ≤ TH∅ for E(X2)
2E(X) ≤

r
c .

(19)

Proof. Let E(X2)
2E(X) >

r
c . We have

TH∅ = λ1{E(X2)

2E(X)
≤ r

c
} = 0.

Clearly, we have THA ≥ 0. So we have THA ≥ TH∅.

Now, let E(X2)
2E(X) ≤

r
c . We have

TH∅ = λ1{E(X2)

2E(X)
≤ r

c
} = λ.
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Let J = {a : m(a) ≤ r
c}. We have

THA = λ

∫ ∞

0

1{m(a) ≤ r

c
}dFA(a)

= λ

∫
J

dFA(a)

≤ λ

∫ ∞

0

dFA(a)

= λ = TH∅.

So for E(X2)
2E(X) ≤

r
c we have THA ≤ TH∅.

According to Theorem 1, the information level A yields better results regarding the throughput

when E(X2)
2E(X) >

r
c .

The following results states that the information level A is always preferable regarding the social
welfare.

Theorem 2 (Comparison of SW ∅ and SWA). It holds that

SWA ≥ SW ∅. (20)

Proof. Let E(X2)
2E(X) >

r
c . We have

SW ∅ = λ1{E(X2)

2E(X)
≤ r

c
}(r − c

E(X2)

2E(X)
) = 0.

The social welfare can not be less than zero, so we have SWA ≥ SW ∅.

Now, let E(X2)
2E(X) ≤

r
c . We have

SW ∅ = λ1{E(X2)

2E(X)
≤ r

c
}(r − c

E(X2)

2E(X)
) = λ(r − c

E(X2)

2E(X)
).

We have

SWA = λ

∫ ∞

0

{m(a) ≤ r

c
}(r − c ·m(a))dFA(a)

= λ

∫
J

(r − cm(a))dFA(a),

where J = {a : m(a) ≤ r
c}. Now, since∫ ∞

0

m(a)dFA(a) =

∫ ∞

0

∫ ∞

a

1− F (x)

1− F (a)
dxdFA(a)

=

∫ ∞

0

∫ x

0

1− F (x)

1− F (a)
dFA(a)dx

=

∫ ∞

0

(1− F (x))

∫ x

0

fA(a)

1− F (a)
dadx

=

∫ ∞

0

1− F (x)

E(X)
da

∫ x

0

dx

=

∫ ∞

0

x
1− F (x)

E(X)
dx = E(A) =

E(X2)

2E(X)
,
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we get that

SW ∅ = λ

∫ ∞

0

(r − c ·m(a))dFA(a)

= λ

∫
J′
(r − c ·m(a))dFA(a) + λ

∫
J

(r − c ·m(a))dFA(a)

≤ λ

∫
J

(r − c ·m(a))dFA(a) = SWA.

The last inequality holds since in J ′ we have that r − cm(a) < 0.

3.2.2 Comparison of ∅ and R

We now compare the information level R with the no-information level. We have the following
general result.

Theorem 3 (Comparison of TH∅ and THR.). It holds that{
THR ≥ TH∅ for E(X2)

2E(X) >
r
c ,

THR ≤ TH∅ for E(X2)
2E(X) ≤

r
c .

(21)

Proof. Let E(X2)
2E(X) >

r
c . We have

TH∅ = λ1{E(X2)

2E(X)
≤ r

c
} = 0.

Clearly, we have THR ≥ 0. So we have THR ≥ TH∅.

Now, let E(X2)
2E(X) ≤

r
c . We have

TH∅ = λ1{E(X2)

2E(X)
≤ r

c
} = λ.

Let J = {w : w ≤ r
c}. We have

THR = λ

∫ r
c

0

1− F (a)

E(X)
dw

= λ

∫ r
c

0

dFR(w)

= λ

∫
J

dFR(w)

≤ λ

∫ ∞

0

dFR(w)

= λ = TH∅.

So for E(X2)
2E(X) ≤

r
c we have THR ≤ TH∅.

We now compare the social welfare of the no-information level and the information level of the
residual time. With the following result, we establish that the information level R is always better
than the no-information level regarding the social welfare.

Theorem 4 (Comparison of SW ∅ and SWR). It holds that

SWR ≥ SW ∅ (22)
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Proof. Let E(X2)
2E(X) >

r
c . We have

SW ∅ = λ1{E(X2)

2E(X)
≤ r

c
}(r − c

E(X2)

2E(X)
) = 0.

Since the social welfare can not be negative, we have SWR ≥ SW ∅.

Now, let E(X2)
2E(X) ≤

r
c . We have

SW ∅ = λ1{E(X2)

2E(X)
≤ r

c
}(r − c

E(X2)

2E(X)
) = λ(r − c

E(X2)

2E(X)
).

Note that

SWR = λ

∫ ∞

0

{w ≤ r

c
}(r − c · w)dFR(w)

= λ

∫
J

(r − cw)dFR(w)

≥
∫
(r − c · w)dFR(w) = SW ∅.

So, SWR ≤ SW ∅ holds for E(X2)
2E(X) .

3.2.3 Comparison of A and R for specific cases

In this last subsection, we compare the age and residual time information levels for some special
cases regarding the intervisit distribution. Our initial focus is on the case of constant intervisit
times. This case constitutes the most natural case for real-life applications, assuming a reliable
transportation facility that visits the station regularly. In this case, the facilities visit the station
every X time units, which implies that the residual time is equal to

r = X − a. (23)

So, for this scenario, the information level A provides all customers with their residual times.
Therefore, the throughput and social welfare are the same for the age and residual time when the
facilities arrive at constant intervals.

Next, we consider the system where facilities arrive according to the exponential distribution
with parameter µ > 0. The mean residual life function is equal to its mean, i.e., m(a) = 1

µ [10].
First, we compare the throughput of information level age and that of the residual time. The

following proposition summarizes the result:

Theorem 5. Let F (t) be the exponential distribution with rate µ. We have that{
THA ≤ THR for 1

µ > r
c ,

THA > THR for 1
µ ≤ r

c .
(24)

Proof. Let 1
µ > r

c and F the exponential distribution with rate µ. The mean residual life function

of the exponential distribution is equal to 1
µ. Therefore, we have

THA = λ

∫ ∞

0

1{ 1
µ

≤ r

c
} (1− F (a))

E(X)
da = 0 ≤ THR.

12



Let 1
µ ≤ r

c and F the exponential distribution. We have

THA = λ

∫ ∞

0

1{ 1
µ

≤ r

c
} (1− F (a))

E(X)
da

= λ

∫ ∞

0

ke−kada

= λk
1

k
= λ.

For the residual time, we have

THR = λ

∫ ∞

0

1{w ≤ r

c
} (1− F (w))

E(X)
dw

= λ

∫ r
c

0

µe−µwdw

= λµ
0!

µ
(1− e−

µr
c

0∑
i=0

(µr)i

i!
)

= λ(1− e−
µr
c ).

Then we have

THA − THR = λ− λ(1− e−
µr
c )

= λe−
µr
c

> 0.

So, for 1
µ ≤ r

c , we have THA > THR.

Additionally, we can compare the social welfare between the age and the residual time infor-
mation levels in the exponential distribution scenario. The following Theorem summarizes the
result:

Proposition 1. Let F (t) be the exponential distribution with rate µ. We have{
SWA ≤ SWR for 1

µ > r
c ,

SWA > SWR for 1
µ ≤ r

c .
(25)

Proof. Let 1
µ > r

c . Then we have SWA = 0 ≤ SWR.

Let 1
µ ≤ r

c . Then we have

SWA = λ

∫ ∞

0

(r − c
1

µ
))
1− F (a)

E(X)
da.

The distribution F is the exponential distribution, so we have

SWA = λ

∫ ∞

0

(r − c
1

µ
)µe−µada

= λ(r

∫ ∞

0

µe−µada− c

∫ ∞

0

e−µada)

= λ(r − c

µ
).
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For the residual time, we get SWR = λ
∫ r

c

0
(r − cw)µe−µwdw. We have

SWR = λ

∫ r
c

0

(r − cw)µe−µwdw

= λ(rµ

∫ r
c

0

e−µwdw − cµ

∫ r
c

0

we−µwdw)

= λ(r − c

µ
+

c

µ
e

−µr
c ).

Combining the formulas of SWA and SWR we get

SWA − SWR = λ(r − c

µ
)− λ(r − c

µ
+

c

µ
e

−µr
c )

= λ
c

µ
e

−µr
c

We have λ > 0 and µ, c, r > 0. Therefore we have the inequality SWA − SWR = λ( c
µe

−µr
c ) > 0

which implies that SWA > SWR holds for 1
µ ≤ r

c .

3.3 Numerical Comparisons of the Information Levels

3.3.1 Erlang distribution

We consider the Erlang distribution with parameters k ∈ N≥1 and µ ∈ (0,∞). It is the distribution
of a sum of k independent exponential variables, all with mean 1

µ. Moreover, it is the distribution
of time until the kth arrival of the Poisson Process with rate µ. Therefore, when the facilities arrive
according to an Erlang distribution, we could see the situation as facilities that arrive according to
a Poisson process where the customers can only enter the kth facility.
We will show the behavior of the performance measures with three different graphs. We have
analytically compared information levels A and R. However, we did not find general proof for
all distribution functions. Therefore, we will perform some numerical experiments to plot the
equilibrium throughput and social welfare behavior for the two information levels and compare
them.
The mean residual life of the Erlang distribution F (x) = 1−

∑k−1
n=0

1
n!e

−µx(µx)n is given by

m(a) =
µk−1ake−ka

(k − 1)!(1− F (a))
+

k

µ
− a, (26)

with k ∈ {1, 2, 3, ...} and µ ∈ (0,∞), see for example [10].
We did some numerical experiments for different values of k.
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Figure 1: Equilibrium throughput with respect to λ for r = 5, c = 1, µ = 1 and k = {3, 10}. The
facilities arrive according to the Erlang Distribution.

Note that the equilibrium throughput of the age is greater than that of the residual time for
k = 3. Plotting the social welfare for k = 10, we see that this time the throughput of the residual
time is greater than that of the age.

Figure 2: Social welfare with respect to λ for r = 5, c = 1, µ = 1 and k = {3, 10}. The facilities
arrive according to the Erlang Distribution.

For social welfare, both graphs have higher social welfare when the customers know the residual
time of the system. By performing many numerical experiments, we have seen that the social
welfare for the information level R is always greater than that of information level A.
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4 Analysis of the Inhomogeneous scenario

In this section, we use the inhomogeneous scenario. Here, different customers do not have identical
perceptions of their waiting costs, which we capture by considering the cost c as a random variable
according to a uniform distribution U(α, β) with α < β. For the rest of the section, we only consider
the no-information scenario and drop any notation associated with information levels.

4.1 Equilibrium strategies and performance meausures

In this subsection, we formulate the equilibrium strategies and performance measures. The cus-
tomers’ strategy can be described as a joining probability q.
As discussed in section 3.1.1, the net benefit can be expressed by:

G(q) = r − c
E(X2)

2E(X)
. (27)

A tagged customer will join the system if his expected net benefit is positive. Solving for c, we get
that

G(q) ≥ 0 ⇔ r − c
E(X2)

2E(X)
≥ 0 ⇔ c ≤ 2r

E(X)

E(X2)
. (28)

Condition (28) can also be interpreted as the joining threshold regarding the waiting cost, which
we denote by c̃. We have

c̃ = 2r
E(X)

E(X2)
. (29)

That said, any customer who has c > 2r E(X)
E(X2) will balk. Therefore, the percentag of joining

customers would be P(c ≤ c̃) = Fc(c̃), where Fc is the uniform distribution. This is equal to the
joining probability q. We then have that

qe =


0 when 2r E(X)

E(X2) < α

1 when 2r E(X)
E(X2) > β

2r
E(X)

E(X2)
−α

β−α when α ≤ 2r E(X)
E(X2) ≤ β.

(30)

As in the homogeneous scenario, the throughput is calculated by

TH = λqeE(q). (31)

Therefore, the throughput is equal to

TH =


0 for 2r E(X)

E(X2) < α,

λ for 2r E(X)
E(X2) > β,

λ
2r

E(X)

E(X2)
−α

β−α for α ≤ 2r E(X)
E(X2) ≤ β.

(32)

Moreover, the social welfare is equal to

SW = λqeG(qe) = λq(r − cE(qe)).

However, we must integrate over all possible c ∼ U(α, β). We have

SW =


0 for r 2E(X)

E(X2) < α,∫ β

α
λ(r − cE(X2)

2E(X) )f(c)dc for r 2E(X)
E(X2) > β,∫ β

α
λ

r
2E(X)

E(X2)
−α

β−α (r − cE(X2)
2E(X) )f(c)dc for α ≤ 2r E(X)

E(X2) ≤ β.

(33)
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Moreover, for qe < 1, the expected net benefit of a customer equals zero. Therefore, in this situation,
social welfare is also equal to zero. We can rewrite equation (33) as

SW =

{
0 for r 2E(X)

E(X2) ≤ β,∫ β

α
λ(r − cE(X2)

2E(X) )f(c)dc for r 2E(X)
E(X2) > β.

(34)
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5 Analytical Comparison of the Homogeneous and Inhomo-
geneous Scenario

In this section, we will compare the performance measures of the homogeneous and inhomogeneous
scenarios. We will denote the throughput and social welfare of the homogeneous scenario by THHom

and SWHom respectively, and the systems’ performances of the inhomogeneous scenario by THInh

and SWInh. For the rest of the section, we only consider the no-information level scenario and
therefore drop any notation associated with information levels.

5.1 Equilibrium Throughput

We compare the equilibrium throughput of the homogeneous and inhomogeneous scenarios. This
results in the following theorem.

Theorem 6 (Comparison of THHom and THInh). It holds that
THHom = THInh for E(X2)

2E(X) <
r
β < r

c ,

THHom < THInh for r
β < E(X2)

2E(X) ≤
r
c ,

THHom ≤ THInh for r
β < r

c < E(X2)
2E(X) .

(35)

Proof. Case 1: Let E(X)2

2E(X) < r
β < r

c . Then, the equilibrium joining strategies are qeHom = 1 = qeInh.

Then the equilibrium throughputs are

THHom = λ = THInh.

Case 2: Let r
β < E(X)2

2E(X) ≤
r
c . Then we have qeHom = 1 and qeInh = [0, 1). We have

THHom = λ, THInh = λ
2r E(X)

E(X2) − α

β − α
.

Therefore, we have THHom < THInh.

Case 3: Let r
β < r

c < E(X)2

2E(X) . In this case we have qeHom = 0. However, we have qeInh = [0, 1).

Therefore, we have
THHom ≤ THInh.

5.2 Social Welfare

We rewrite equation (34) to compare the social welfare of the inhomogeneous and homogeneous
scenarios. We have

SWInh =

{
0 for E(X2)

2E(X) >
r
β ,∫ β

α
λ(r − cE(X2)

2E(X) )f(c)dc for E(X2)
2E(X) <

r
β .

For E(X2)
2E(X) <

r
β , we have

SWInh =

∫ β

α

λrf(c)dc−
∫ β

α

λc
E(X2)

2E(X)
f(c)dc

= λr − cE(c)
E(X2)

2E(X)

= λ(r − c
α+ β

2

E(X2)

2E(X)
).
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Analysing the social welfare, we obtain the following result.

Theorem 7 (Comparison of SWHom and SWInh). It holds that
SWHom > SWInh ⇔ E(c) > c for E(X2)

2E(X) <
r
β < r

c ,

SWHom > SWInh for r
β < E(X2)

2E(X) ≤
r
c ,

SWHom = SWInh = 0 for r
β < r

c < E(X2)
2E(X) .

(36)

Proof. Case 1: Let E(X)2

2E(X) < r
β < r

c . Then, the equilibrium joining strategies are qeHom = 1 = qeInh.

We have

SWHom − SWInh = λ(r − c
E(X2)

2E(X)
)− λ(r − α+ β

2

E(X2)

2E(X)

= λr − λr − cλ
E(X2)

2E(X)
+

α+ β

2
λ
E(X2)

2E(X)

= λ
E(X2)

2E(X)
(
α+ β

2
− c)

≥ 0 ⇔ α+ β

2
> c ⇔ E(c) > c

So, we have
SWHom > SWInh ⇔ E(c) > c.

Case 2: Let r
β < E(X)2

2E(X) ≤
r
c . Then qeHom = 1 and qeInh = [0, 1) holds. We have

SWHom = λ(r − c
E(X2)

2E(X)
), SWInh = 0.

It is clear that SWHom > SWInh holds.

Case 3: Let r
β < r

c < E(X)2

2E(X) . In this case we have qeHom and qeInh = [0, 1). Therefore it holds that

SWHom = 0 = SWInh.
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6 Discussion

In this research project, our main focus is to investigate the influence of information on passenger
strategic behavior within a transportation station. The transportation facility arrives according
to a renewal process and has infinite capacity. We compare three distinct levels of information by
defining the equilibrium strategies for each information level and analyzing the system’s perfor-
mance under equilibrium.

In particular, we focused on comparing the performance measure of the no-information level with
those of the residual time and age. Our analysis revealed that a greater throughput depends on
E(X2)
2E(X) and the ratio between the reward and cost. The social welfare of the age and residual time is

always better than that of the no-information level. That means that the total reward of the cus-
tomers is higher when they have additional information. However, for comparing the information
levels A and R, we could only establish proof for the exponential distribution F (t).

In addition, we conducted numerical experiments to compare the age and residual time perfor-
mance when a facility arrives according to the Erlang distribution. It turns out that social welfare
is always higher when customers know their residual time compared to when they have the knowl-
edge of the system’s age.

Furthermore, we analyzed customers who capture their costs differently. The equilibrium through-
put of the inhomogeneous scenario turns out to be equal to or greater than in the homogeneous
scenario. For the social welfare, this is not always true.

Of course, the study needs to be complemented by further considerations. We could consider
the information level where customers notice the number of people waiting on the platform, which
indicates their waiting time. Arriving customers will see this, which is a logical step to investigate
further. Moreover, we could implement the chance of a delay of the next facility.

Additionally, exploring alternative probability distributions that accurately capture the cost as-
sociated with waiting is crucial. Although this research project’s random selection of cost values
is a preliminary approach, practical scenarios often demand a more tailored and realistic represen-
tation. Identifying a distribution that accurately reflects individuals’ strong preference for shorter
waiting times poses a challenging yet essential task for future investigations in this field.

In summary, our model emphasizes the significance of providing some form of information to en-
hance the overall social welfare of the system. The equilibrium throughput depends on the average
waiting time and how customers perceive the value of rewards and costs, which information level
proves most advantageous.
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