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Introduction

The Multi-Armed Bandit problem serves as a model to study decision-making processes. In this
model an agent must decide between multiple options, each having an unknown probability distri-
bution that determines the reward. The agent’s objective is to maximize the cumulative reward
over a series of time periods where the agent chooses one option per period. This framework can
be applied to various domains, including clinical trials, online advertising and resource allocation.
The challenge of these decision-making processes is the balance between exploiting high rewards
and exploring other options to discover potentially more lucrative decisions.

Simple policies for these types of problems are based on a greedy approach where a parameter,
usually denoted by ε, decides the proportion of trials we dedicate to exploration and exploitation.
These types of policies result in an approximate solution meaning that they will not approach the
true optimal value for all instances of this problem. This is a common issue for greedy algorithms.
The value of ε is set before applying the policy and it is not known beforehand whether this will
be enough to find the true optimal solution.

In 1952 Robbins [1] considered an instance of the multi-armed bandit problem with 2 arms. The
arms had expected values of α, β respectively. If it is known whether α or β is greater then an opti-
mal policy would simply sample from the arm with the greater expected value. The performance of
a policy on this problem was measured by the regret, the difference between the value achieved by
the optimal policy, max(α, β), and the expected value of the policy we follow. Robbins proposed a
policy that in the long run achieved an average reward of max(α, β). He did this by using a special
type of sequence we will discuss later on.

This framework can be extended by adding a cost constraint. Considering the domain of online
advertising, different types of advertisements cost different amounts of money and different websites
charge different amounts. Depending on the cost, the website with the highest reward might not
be the optimal choice. With the cost constraint, each arm now has an asssociated sampling cost
and the agent is given a certain amount of budget he can use to sample. At the beginning of every
period receives the same amount of budget again, adding it to however much budget he has left over
after last period. The last consideration is how the budget is treated. Depending on the context, a
lax constraint where the policy is allowed to exceed the budget for a certain period of time might
be appropriate whilst in another a strict constraint where the policy is never allowed to exceed the
budget models the problem best.

In 2012 Burnetas and Kanavetas [2] proposed a policy for the multi-armed bandit problem with a
lax cost constraint. The agent has k ∈ N arms, each with their own distribution and associated
cost. They proved that their policy converges to the optimal average reward in all cases under the
constraint that the policy is not allowed to exceed the budget in the long run. In this thesis we
will construct a policy for the multi-armed bandit problem with a stricter cost constraint where the
agent is never allowed to exceed the budget.

In Chapter 1 the multi-armed bandit with sampling costs and its solutions will be defined and
characterized. In Chapter 2 we will discuss and analyse the policy proposed by Burnetas and
Kanavetas. In Chapter 3 we will construct the policy for the stricter cost constraint. In Chapter
4 we will prove that this policy is optimal and in Chapter 5 we will analyse its performance and
characteristics under various circumstances.
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1 Multi-Armed Bandit with sampling costs

1.1 Model description

Consider an instance of the multi-armed bandit problem where our agent has k options with k ∈ N.
These are the k arms of our model, which we will refer to as statistical populations from now on to
emphasize their stochastic nature. Each population i is defined by a univariate distribution with
density fi. Each instance of this problem is uniquely determined by f = (f1, . . . , fk). Successive
samples from a population i form a sequence Xi = (Xi,1, Xi,2, . . .) of independent and identically
distributed random variables following fi. Each population i also has an associated sampling cost
ci per sample. In each period the agent must sample from one population and receives a budget
of C0 every period to do so. This means that if the agent spends less than C0 on sampling in one
period, then the next period we will be able to spend C0 plus the leftover budget from the previous
period.

Without loss of generality, we make the following assumptions about the sampling costs {cj}kj=1:

• c1 ≤ c2 ≤ . . . ≤ ck and c1 ̸= ck;

• c1 ≤ C0 < ck.

The first assumption orders the populations according to cost and forces there to be at least two
unique sampling costs. The second assumption ensures that we are considering a valid instance of
the problem. If c1 > C0, then we would not be able to sample from any population in the first
period and thus the problem is infeasible. On the other hand, if ck ≥ C0, then the cost constraint
is redundant because we can sample from any population at every point in time.

The objective of the agent is to maximize the expected average reward per period in the long run
whilst f is unknown. This means that the agent has to learn the means, µ(f) = (µ1(f), . . . , µk(f))
where µi(f) = Efi [Xi], before he is able to find the optimal solution. Every time that we sample
from a population, we add that new observation to our knowledge and adapt our policy. This is
why this problem is also referred to as adaptive sampling and the policies that attempt to solve
this are called adaptive policies.

1.2 Complete information

A sampling policy {xj}kj=1 can be characterized as a probability distribution on the set of popula-
tions {1, . . . , k} which selects a population j with probability xj . To analyse the performance of an
adaptive policy we first need to characterize the optimal solution and the value it achieves. If we
take the position of an agent with complete information about f , then we can compute the optimal
solution via linear programming.

Let µ = (µ1, . . . , µk) be the means of the populations. We want to maximize the expected reward,
in other words

maximize

k∑
j=1

µjxj ,
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whilst keeping the expected costs below C0:

k∑
j=1

cjxj ≤ C0 and

k∑
j=1

xj = 1 and xi ≥ 0,∀i ∈ {1, . . . , k}.

Combining this in a linear program, LP for short, gives us the average reward achieved in the long
run by the optimal solution to:

z∗(µ) = z∗ = max


∑k

j=1 cjxj + y = C0∑k
j=1 µj · xj

∑k
j=1 xj = 1

xj ≥ 0, ∀j ∈ {1, . . . , k}

 . (1)

For every optimal average reward z∗(µ) we have an associated optimal sampling policy x∗. Note
that, given the same sampling costs, this linear program is only dependent on µ and thus z∗(µ) is
the same for all f with the same µ.

The optimal sampling policy takes two different forms, either the solution consists of two populations
or the solution consists of one population. We are only interested in the populations which have a
nonzero probability of being chosen, these are so-called basic variables in the linear program (Eq.
1). In the first case, we have basic variables xi, xj with ci ≤ C0 ≤ cj , ci < cj and

xi =
cj − C0

cj − ci
, xj =

C0 − ci
cj − ci

and xm = 0 ∀m ̸= i, j (2)

with
z∗(µ) = xiµi + xjµj . (3)

For the second case, we have xi, y as basic variables with ci ≤ C0 and

xi = 1, xm = 0,∀m ̸= i, y = C0 − ci (4)

with
z∗(µ) = µi.

All the basic variables together form a basic feasible solution, BFS for short.

Definition 1 (Basic Feasible Solution) A basic feasible solution is a solution b to a LP such
that b ⊂ {x1, . . . , xk} and

xi ̸= 0,∀xi ∈ b.

As we have discussed above, the solution consists either of one population with ci ≤ C0 or two
populations with ci ≤ C0 ≤ cj . Let

d = max
{
i : ci ≤ C0

}
then for a BFS b let

b =
{
i : xi > 0

}
.

The set of all BFS can be defined by

K = {b : b = {i, j}, i ≤ d ≤ j or b = {i}, i ≤ d},

and finally we can define the set of optimal solutions, for the set of means µ, as follows

s(µ) = {b ∈ K : b corresponds to an optimal BFS}.
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1.3 Adaptive policy

Now that we know how to characterize the optimal solutions when the value of µ is known, we will
consider adaptive policies that are not dependent on knowledge of µ. We will further assume the
following about our statistical populations:

Assumption 1 The distributions of the statistical populations, f = (f1, . . . , fk), are independent
and have finite expected values, µi = Efi [Xi] < ∞, i = 1, . . . , k.

This will be important later when constructing adaptive policies. For now, let F be the set of all
f = (f1, . . . , fk) that satisfy Assumption 1. Class F will serve as the parameter set for the adaptive
policies. Without knowledge of µ, these policies will have to depend on past observations of the
selections and outcomes.

Let At, Xt denote the population selected and the observed outcome at period t, then let

ht = (α1, x1, . . . , αt−1, xt−1),

be the history of observed actions and selections up to period t. Now, an adaptive policy is defined as
a sequence π = (π1, π2, . . .) of history dependent probability distributions on the set of populations
{1, . . . , k}. The probability that a population j is selected in period t, given history ht, is

πt(j, ht) = P(At = j|ht).

To define the desirable properties of an adaptive policy, we need to first define a few other quantities.
Given history hn, let Tn(α) denote the number of times population α has been sampled in the first
n periods

Tn(α) =

n∑
t=1

1
{
At = α

}
.

Let Sπ
n be the total reward up to period n under policy π:

Sπ
n =

n∑
t=1

Xt,

and Cπ
n be the total cost up to period n under policy π:

Cπ
n =

n∑
t=1

cAt .

The main objective of an adaptive policy is to achieve the optimal average reward in the long run,
this property is called consistency.

Definition 2 (Consistency) A policy π is called consistent if it is feasible and

lim
n→∞

Sπ
n

n
= z∗(µ), a.s, ∀f ∈ F.

This property ensures that a policy converges with probability 1 to the optimal expected value
that could be achieved under complete information. The second property is also mentioned here,
feasibility. The definition of feasibility determines how the cost constraint is handled. We will be
discussing feasibility defined by two different types of cost constraint: an asymptotic cost constraint
and a strict cost constraint.
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2 Asymptotic cost constraint

An asymptotic cost constraint allows the agent to exceed the budget at certain periods as long as
the long run expected average sampling cost is below the budget, in other words:

Definition 3 (Asymptotic feasibility) A policy π is called feasible if

lim sup
n→∞

Eπ[Cπ
n ]

n
≤ C0,∀f ∈ F.

It is very easy to show that these type of feasible policies exist because we know all the sampling
costs. Any randomized policy that satisfies the constraints of the complete information LP (Eq.
1) is feasible for any f . The difficult part is constructing a consistent policy. There are two
important parts to a consistent policy, obtaining estimates of the mean rewards of the populations
and sampling from optimal populations. These two objectives clash with each other. To obtain
estimates for all populations, we need to sample from nonoptimal populations. This sampling
from nonoptimal populations lowers the average reward achieved. However, if we do not sample
enough from all populations, then there is a chance that we do not obtain the true optimal solution.
Burnetas and Kanavetas [2] solved these challenges using two techniques we will discuss now.

2.1 Sparse sequences

We will first tackle obtaining the estimates of the mean rewards of the populations. The problem
is that beforehand we do not know how many times we need to sample from each population to get
sufficient estimates to compute the optimal solution. What we need, is a system to decide when we
sample from certain populations for the purpose of getting better estimates and when we sample
from the populations we believe to be part of the optimal solution. The difficult part is that if we
sample too little, then we might miss the true optimal solution, but if we sample too much then
our average reward would be lower due to sampling a lot from nonoptimal solutions. The solution
to achieving balance between these two aspects is using sparse sequences.

Definition 4 (Sparse sequence) A sequence {τn}n∈N is called sparse if

lim
n→∞

∑n
k=1 1

{
τm = k, for some m ∈ N

}
n

= 0

or equivalently

lim
n→∞

τn
n

= ∞.

The first part of Definition 4 is equivalent to requiring that the fraction of integers that the subse-
quence {τk}nk=1 has in common with the set {1, 2, . . . , n} tends to 0 as n → ∞. If we have a sequence
that satisfies the second part of Definition 4, then it also satisfies the first definition. This follows
from the fact that if a sequence {τk}k∈N grows faster than n as n → ∞, then it grows sufficiently
fast that the fraction of integers in common with {1, 2, . . . , n} tends to 0. These sequences will be
used to balance between sampling too little and too much.
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2.2 Certainty Equivalence Linear Program

Now that we have discussed a system for sampling from all populations to obtain good estimates,
we need a method to determine what is the optimal solution and sample according to that solution.
Here we take inspiration from the previously defined complete information LP (Eq. 1). There we
used µ, but instead of the true value we use estimators, since the true values are unknown.

Definition 5 (Certainty Equivalence Linear Program, CELP) For any n ∈ N, let

µ̂
n
= (µ̂j,Tn(j), j = 1, . . . , k)

be the vector estimates of µ based on the history up to period n. Let ẑn be the solution to the
Certainty Equivalence Linear Program using vector estimates up to period n:

ẑn = max


∑k

j=1 cj x̂j + y = C0∑k
j=1 µ̂j,Tn(j) · x̂j

∑k
j=1 x̂j = 1

x̂j ≥ 0, ∀j ∈ {1, . . . , k}

 (5)

Just like before, every ẑn has an associated sampling policy x̂n and these take the same form as
Eq. 2 and Eq. 4. For every period n, we compute the solutions to the CELP which gives us s(µ̂

n
).

The goal is in the long run s(µ̂
n
) will contain the same optimal solution as s(µ). Earlier we made

Assumption 1 for this reason, since it allows us to define an estimator that can accomplish this.

Definition 6 (Strongly consistent) We call µ̂n a strongly consistent estimator of µ if

lim
n→∞

µ̂n = µ a.s.

Under Assumption 1, the well known sample mean

Xj,n =
1

n

n∑
t=1

Xt · 1
{
population j is selected

}
,

is a strongly consistent estimator for µj , for all j ∈ {1, . . . , k}. Now we have all the elements to
construct a consistent policy.

2.3 Sparse Period Policy

A consistent policy has three goals:

1. Estimate the mean reward of all populations;

2. Sample from nonoptimal populations rarely enough to not affect the average reward achieved;

3. Sample from the optimal populations to approach the average reward achieved under complete
information.

It has to accomplish this whilst staying feasible according to Definition 3. This is not a trivial task.
Let’s first consider k nonoverlapping sparse sequences of positive integers,

τj = {τj,m,m = 1, 2, . . .}, j ∈ {1, . . . , k},
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such that
lim

m→∞

τj,m
m

= ∞ and τj,1 = j for j = 1, . . . , k.

These sequences help us with the first two goals. Whenever a period n coincides with one of the k
sequences, we will sample from that population. This forces us to periodically sample from all the
populations and will allow the estimates to converge to the true mean in the long run whilst also
sampling rarely enough in the long run to not affect the average reward.

The last goal will be accomplished with the CELP (Eq. 5). Every period that does not coincide
with any of the k sequences, we will compute the CELP with the current estimates and perform
the sampling policy obtained. Combining these two techniques gives us the policy πAC which I will
refer to as the “Sparse Period Policy” (SPP): πAC selects populations j with a probability equal to:

πAC(j|hn) =

{
1 if τj,m = n for some m ≥ 1,

x̂n,j otherwise.
(6)

Burnetas and Kanavetas [2] proved that this policy is consistent for the asymptotic cost constraint.

3 Strict cost constraint

At this stage, we want to study a more difficult version of this problem. The asymptotic cost
constraint allows us to freely sample in the beginning as long as we stay under budget in the long
run. This would not be broadly applicable to real world situations. If a budget is given per time
period for a project, it is expected that you obey that budget at every point in time. This inspires
our next feasibility criterion with a stricter cost constraint:

Definition 7 (Strict feasibility) A policy π is called feasible if

∀n ∈ N :
Eπ[Cπ

n ]

n
≤ C0,∀f ∈ F.

For a policy to be feasible under this definition, it will have to never exceed the budget. Consider-
ing the policy πAC (Eq. 6) through this lens, we can see that it would violate this criterion within
the first k steps. From our assumptions, there is at least one population m such that cm > C0.
Therefore when the sparse sequence forces us to sample from this population, we will violate the
feasibility criterion. Due to the forced samplings from the sparse sequences, we will exceed the
budget in some periods.

The sparse sequences solved the important challenge of sampling enough to obtain sufficient es-
timates, so we should look at how we can adapt them to this stricter cost constraint. The main
problem is that some populations are too expensive to sample in one period. However, if we sample
from cheaper populations in a few periods, we expand our budget for the next period and might
now be able to sample from the expensive population. So we can sample from all populations to
obtain estimates if we consider our actions for multiple periods at a time. Therefore, we will look
at policies defined by blocks of periods instead of singular periods.

9



3.1 Blocks of periods

A block is a sequence of periods. Before the start of the block, the length and populations to be
selected are determined based on currently known information. In the previous period-based policy,
we used two important techniques: forced sampling by sparse sequences and linear programming
periods. Burnetas, et al. [3] adapted both of these techniques to block-based policies.

3.1.1 Sampling block

To use cheaper populations to subsidize the expensive populations, we need to know how much extra
budget we gain after sampling from cheap populations and how much we need for the expensive
populations. To this end, we define the difference for population j as

δj = C0 − cj .

Each δj corresponds to the net effect of sampling from population j on the budget, either it repre-
sents a net cost if δj < 0 or a net saving if δj > 0. This gives us an alternative way to determine
whether a sequence of sampling does or does not exceed the budget. Let {mj}kj=1 be a sequence
such that population j is sampled mj times, then if

•
∑k

j=1 mjδj > 0 : this sequence exceeds the budget;

•
∑k

j=1 mjδj ≤ 0 : this sequence does not exceed the budget.

Now, if we find a sequence {m∗
j}kj=1 such that

∑k
j=1 m

∗
jδj ≤ 0, then we can follow this sequence

to obtain estimates for every population. This sequence can be computed by an integer linear
program.

{m∗
j}kj=1 = argmin

{
k∑

j=1

mj :

k∑
j=1

mjδj ≤ 0 & mj ∈ N,∀j ∈ {1, . . . , k}

}
.

This LP is only dependent on constants, namely the costs {cj}kj=1 and the budget C0, so it can be
computed once and the solution can be continually used afterwards. The sampling block is then
defined as:

for j ∈ {1, . . . , k}, sample m∗
j times from population j.

3.1.2 Linear programming block

After obtaining initial estimates for the mean rewards of the populations, we want to compute the
CELP (Eq. 5) and sample according to its optimal solution. In the beginning, we characterized a
sampling policy with randomization that follows a probability distribution {xj}kj=1 on {1, . . . , k}.
Another way to implement a sampling policy is to sample periodically from all populations such
that the proportion of samples from each population j is equal to the randomization probability xj .
These two characterizations are equivalent if the randomization probabilities {xj}kj=1 are rational.

Before we begin a linear programming block, we compute the optimal solution. Let b be the optimal
BFS of the CELP at this period. The LP block is then defined as follows:

10



• if b = {i}, we sample from population i once. The length of the LP block is then equal to
mb

i = 1;

• if b = {i, j}, we sample from the least cost population first and such that the frequencies are
equal to the randomization probabilities

xi =
|δj |

|δi|+ |δj |
, xj =

|δi|
|δi|+ |δj |

.

The length of the LP block is then equal to mb
i +mb

j = |δj |+ |δi|.

When the CELP (Eq. 5) is computed using µ̂n, then at the end of the LP block, the expected
average reward will be equal to ẑn in the first case and equal to (mb

i +mb
j) · ẑn in the second case.

3.2 Sparse Block Policy

An important difference between a block-based policy and period-based policy is that the next step
of the policy will be described in terms of blocks instead of periods. Here we are faced with the
same three challenges as the SPP (Eq. 6) whilst having to conform to the stricter definition of
feasibility. In my block-based policy, which I will refer to as the Sparse Block Policy (SBP) we will
use sampling blocks and linear programming blocks to construct a consistent policy.

Similar to before, a sparse sequence will help us with obtaining estimates for the mean rewards of
the populations whilst not affecting the average reward in the long run. Consider a sparse sequence
of positive integers:

{τm}m∈N,

such that
lim

m→∞

τm
m

= ∞ and τ1 = 1.

This sparse sequence will determine when a sampling block {m∗
j}kj=1 will be performed and when

the current block ℓ does not coincide with {τm}m∈N, a linear programming block is performed. The
Sparse Block Policy, πSC can thus be described as follows

πSC(ℓ) =

{
Sampling block if τm = ℓ for some m ∈ N,

Linear Programming block otherwise.
(7)

This policy is consistent which I will prove in the next chapter.

4 Consistency of SBP

Consistency consists of two parts, proving feasibility (Def. 7) and proving that the policy converges
with probability 1 to the optimal average reward that could be achieved under complete information
(Def. 2).
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4.1 Feasibility

It is trivial to prove that πSC is a feasible policy according to the strict cost constraint. Our policy is
defined as a sequence of blocks, determined by the sparse sequence {τm}m∈N. By the definitions of
the block in general and more specifically of the sampling block and the linear programming block,
we know that at every point in the blocks we will stay under budget and thus remain feasible.
Therefore πSC is feasible, or equivalently

∀n ∈ N :
EπSC

[CπSC

n ]

n
≤ C0,∀f ∈ F.

4.2 Convergence to optimum

If the policy has completed ℓ− 1 blocks, then there are three possibilities: πSC will perform a

• sampling block, or

• LP block using a nonoptimal BFS b, or

• LP block using an optimal BFS b.

Now, let SB(ℓ) be the amount of sampling blocks that have been performed after ℓ blocks, or
equivalently

SB(ℓ) =

ℓ∑
t=1

1
{
τm = t, for some m ∈ N

}
,

and let Lb(ℓ) be the amount of LP blocks using BFS b that have been performed after ℓ blocks, or
equivalently

Lb(ℓ) =

ℓ∑
t=1

1
{
b ∈ s(µ̂

t
), b is used in block t

}
.

Combining both quantities provides us the following equation that captures all the possibilities in
ℓ blocks:

ℓ = SB(ℓ) +
∑

b/∈s(µ)

Lb(ℓ) +
∑

b∈s(µ)

Lb(ℓ).

Dividing both sides by ℓ gives us the total block equation:

1 =
SB(ℓ)

ℓ
+

∑
b/∈s(µ)

Lb(ℓ)

ℓ
+

∑
b∈s(µ)

Lb(ℓ)

ℓ
(8)

4.2.1 Sampling blocks

The first goal is to perform less and less sampling blocks in the long run. Eventually we will have
learned the optimal solution and any sampling block after that point will drag down our average
reward. Equivalently, we want

lim
ℓ→∞

SB(ℓ)

ℓ
= 0.

Proving this limit is quite trivial if we use the definition of SB(ℓ):

lim
ℓ→∞

SB(ℓ)

ℓ
= lim

ℓ→∞

∑ℓ
t=1 1

{
τm = t, for some m ∈ N

}
ℓ

= 0, from (Def. 4).
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4.2.2 Nonoptimal LP blocks

The second goal is to eventually perform as few as possible LP blocks using a nonoptimal BFS b.
Performing these types of LP blocks will drag down our average reward. This goal is equivalent to
the following limit:

lim
ℓ→∞

∑
b/∈s(µ)

Lb(ℓ)

ℓ
= 0.

Using the definition of Lb(ℓ), we can note the following inequality:

Lb(ℓ) =

ℓ∑
t=1

1
{
b ∈ s(µ̂

t
), b is used in block t

}
≤

ℓ∑
t=1

1
{
b ∈ s(µ̂

t
)
}
.

This follows from the fact that the solution set of the CELP (Eq. 5) can contain multiple optimal
BFS b. In these cases, there are different b1, . . . , bk ∈ s(µ̂

t
) that achieve the same average reward ẑt.

If there are multiple optimal BFS, then one will be chosen from the set s(µ̂
t
) where each bi ∈ s(µ̂

t
)

has equal probability of being chosen. This means that if a BFS b is in s(µ̂
t
), it will not necessarily

be used in block t. In this limit we are only considering nonoptimal LP blocks, so for a period t ∈ N
we know that for BFS b, b ∈ s(µ̂

t
) and b /∈ s(µ). The fact that b is not the true optimal BFS means

that at least one estimate of the mean rewards of the populations is different enough from the true
value that we get a different optimal BFS in period t than the true optimal BFS. Formalizing this
gives us the following lemma, by Burnetas and Kanavetas [2].

Lemma 1 For any µ, there exists ε > 0 such that for any t = 1, 2, . . . if b ∈ s(µ̂
t
) and b /∈ s(µ) for

some b ∈ K, then
||µ− µ̂

t
|| ≥ ε

Note that || · || is the supremum norm here.

From this lemma it follows that

ℓ∑
t=1

1
{
b ∈ s(µ̂

t
)
}
≤

ℓ∑
t=1

1
{
||µ− µ̂

t
|| ≥ ε

}
.

Earlier, we required µ̂
t
to be a strongly consistent estimator, meaning µ̂

t
→ µ a.s. We will converge

to µ, so

lim
ℓ→∞

1

ℓ

ℓ∑
t=1

1
{
||µ− µ̂

t
|| ≥ ε

}
= 0, a.s.

and thus

lim
ℓ→∞

Lb(ℓ)

ℓ
≤ lim

ℓ→∞

1

ℓ

ℓ∑
t=1

1
{
||µ− µ̂

t
|| ≥ ε

}
= 0, a.s.

meaning that we will eventually never perform a nonoptimal LP block.
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4.2.3 Optimal LP blocks

Combining both of these results with Eq. 8, we can see that

1 =
SB(ℓ)

ℓ
+

∑
b/∈s(µ)

Lb(ℓ)

ℓ
+

∑
b∈s(µ)

Lb(ℓ)

ℓ
⇒

∑
b∈s(µ)

Lb(ℓ)

ℓ
= 1− SB(ℓ)

ℓ
−

∑
b/∈s(µ)

Lb(ℓ)

ℓ

∑
b∈s(µ)

Lb(ℓ)

ℓ
= 1, ℓ → ∞, a.s,

we will only perform optimal LP blocks in the long run. The last step is to prove that the average
reward achieved by performing optimal LP blocks converges to the optimal reward under complete
information. Let Wℓ be the sum of outcomes from blocks where the optimal BFS b is used, then
we want to prove that

lim
ℓ→∞

Wℓ

ℓ
= z∗(µ) a.s.

First we need some notation to define this limit. Let sπ(ℓ) be the total length of the first ℓ blocks,
then let Yl be the reward gained from block ℓ

Yℓ =

sπ(ℓ)∑
t=sπ(ℓ−1)

Xt,

and then let Yj,ℓ be the reward gained from population j in block ℓ

Yj,ℓ =

sπ(ℓ)∑
t=sπ(ℓ−1)

Xt · 1
{
j is sampled from, in period t

}
.

Now we can formulate Wℓ as

Wℓ =
∑

b∈s(µ)

ℓ∑
t=1

Yt · 1
{
b is used in block t

}
∑

j∈b m
b
j

.

To prove this limit we will rewrite Wℓ in terms of quantities that have known properties,

Wℓ

ℓ
=

1

ℓ

∑
b∈s(µ)

ℓ∑
t=1

Yt · 1
{
b is used in block t

}
∑

j∈b m
b
j

=
1

ℓ

∑
b∈s(µ)

1∑
j∈b m

b
j

∑
j∈b

ℓ∑
t=1

Yj,t · 1
{
b is used in block t and j is sampled from

}
.

Here we have split up the reward achieved per block into the populations that make up the optimal
LP block. Recall that Lb(ℓ) denotes the amount of LP blocks under BFS b in the first ℓ blocks and
mb

j denotes how many times population j has been sampled under BFS b in the first ℓ blocks, then
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let Lb
j(ℓ) be the amount of times that population j has been sampled under BFS b in the first ℓ

blocks
Lb
j(ℓ) = mb

j · Lb(ℓ).

Now, let Y b
j,l be the sample mean of population j under BFS b after block ℓ

Y b
j,l =

1

Lb
j(ℓ)

ℓ∑
t=1

Yj,t · 1
{
b is used in block t

}
.

Multiplying Y b
j,l by Lb

j(ℓ) allows us to replace Yj,t:

Wℓ

ℓ
=

1

ℓ

∑
b∈s(µ)

1∑
j∈b m

b
j

∑
j∈b

ℓ∑
t=1

Yj,t · 1
{
b is used in block t and j is sampled from

}
=

1

ℓ

∑
b∈s(µ)

1∑
j∈b m

b
j

∑
j∈b

Lb
j(ℓ) · Y b

j,l .

The last step of rewriting will be to multiply by Lb(ℓ)
Lb(ℓ)

, which gives us

Wℓ

ℓ
=

1

ℓ
· L

b(ℓ)

Lb(ℓ)

∑
b∈s(µ)

1∑
j∈b m

b
j

∑
j∈b

Lb
j(ℓ) · Y b

j,l

=
∑

b∈s(µ)

Lb(ℓ)

ℓ

∑
j∈b

Lb
j(ℓ)

Lb(ℓ) ·
∑

j∈b m
b
j

· Y b
j,l .

Therefore, we get an expression that is similar to Eq. 3:

Lb
j(ℓ)

Lb(ℓ) ·
∑

j∈b m
b
j

∼ xj and Y b
j,l ∼ µj , ℓ → ∞ a.s.

The denominator of the fraction is how many times population j is sampled while the numerator is
the total amount of times both populations in BFS b are sampled and thus together they perform
like the sampling frequency xj . Now, let

zbℓ =
∑
j∈b

Lb
j(ℓ)

Lb(ℓ) ·
∑

j∈b m
b
j

· Y b
j,l ,

then we get the following expression

Wℓ

ℓ
− z∗ =

∑
b∈s(µ)

Lb(ℓ)

ℓ

∑
j∈b

Lb
j(ℓ)

Lb(ℓ) ·
∑

j∈b m
b
j

· Y b
j,l − z∗

=
∑

b∈s(µ)

Lb(ℓ)

ℓ
zbℓ − z∗.
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Now, let L(ℓ) be the amount of LP blocks that use an optimal BFS b in the first ℓ blocks,

L(ℓ) =
∑

b∈s(µ)

Lb(ℓ),

then we can rewrite the expression in order to get

Wℓ

ℓ
− z∗ =

∑
b∈s(µ)

Lb(ℓ)

ℓ
zbℓ − z∗

=
∑

b∈s(µ)

Lb(ℓ)

ℓ
zbℓ − z∗ +

L(ℓ)

ℓ
z∗ − L(ℓ)

ℓ
z∗

=
∑

b∈s(µ)

Lb(ℓ)

ℓ
(zbℓ − z∗)− (1− L(ℓ)

ℓ
)z∗.

Earlier we proved that in the long run we only perform optimal LP blocks so

lim
ℓ→∞

L(ℓ)

ℓ
= 1 and thus lim

ℓ→∞
(1− L(ℓ)

ℓ
)z∗ = 0 a.s.

To complete the proof we need so show that

∑
b∈s(µ)

Lb(ℓ)

ℓ
(zbℓ − z∗) → 0 a.s ∀b ∈ s(µ)

Lb(ℓ) is a random variable that is increasing in ℓ and 0 ≤ Lb(ℓ) ≤ ℓ because in ℓ blocks we can
perform at most ℓ LP blocks. Due to this, either Lb(ℓ) → ∞ or Lb(ℓ) → M for some M < ∞. Now
let D and Dc represent these two events respectively,

D =
{
Lb(ℓ) → ∞

}
and Dc =

{
Lb(ℓ) → M

}
,

and let P(D) = p and P(Dc) = 1− p with p ∈ R>0.

Also let

A =
{

lim
ℓ→∞

Lb(ℓ)

ℓ
(zbℓ − z∗) = 0

}
,

then
P(A) = p · P(A|D) + (1− p) · P(A|Dc),

by the law of total probability. Now, we know that Lb(ℓ)
ℓ ≤ 1 for all ℓ ∈ N, so

P(A|D) = P

(
lim
ℓ→∞

Lb(ℓ)

ℓ
(zbℓ − z∗) = 0 | lim

ℓ→∞
Lb(ℓ) = ∞

)
≥ P

(
lim
ℓ→∞

(zbℓ − z∗) = 0 | lim
ℓ→∞

Lb(ℓ) = ∞
)
.
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Given that Lb(ℓ) → ∞ as ℓ → ∞, we know that we will keep performing these optimal LP blocks
and we can thus apply the strong law of large numbers,

P(A|D) ≥ P

(
lim
ℓ→∞

(zbℓ − z∗) = 0 | lim
ℓ→∞

Lb(ℓ) = ∞
)

= 1.

In the second event Dc, the difference zbℓ − z∗ is bounded for any ℓ ∈ N, so

P(A|Dc) = P

(
lim
ℓ→∞

Lb(ℓ)

ℓ
(zbℓ − z∗) = 0 | lim

ℓ→∞
Lb(ℓ) = M

)
= 1.

Therefore P(A) = 1 and thus with

lim
ℓ→∞

Lb(ℓ)

ℓ
(zbℓ − z∗) = 0 a.s, ∀b ∈ s(µ),

the proof is complete. When performing optimal LP blocks, the Sparse Block Policy will converge
to the average reward achieved under complete information, or equivalently

lim
ℓ→∞

Wℓ

ℓ
= z∗(µ),

and thus the Sparse Block Policy is consistent.

5 Simulations

Now that we have proven that SBP (Eq. 7) possesses the theoretical properties we desire, we
can study its behaviour in practice via simulations. Whilst convergence in the long run is a great
property, other considerations like rate of convergence compared to other solutions, growth of regret
and performance in different mean configurations are also important.

5.1 Optimal sparse sequence

There is a lot of freedom in the choice of sparse sequence. Any sequence that conforms to Definition
4 can be used in an implementation of SBP. This does not mean however that every sparse sequence
performs the same when used in the SBP. We will be looking at sparse sequences of a power function
form:

{τ bm = mb,m = 1, 2, . . .}.

For b ∈ (1,∞), {τ bm}m∈N is a sparse sequence. Let b1, b2 ∈ (1,∞) such that b1 < b2. If we perform
the SBP with both {τ b1m } and {τ b2m } then we would see that we perform more sampling blocks with
the first sequence. This could be both advantageous and disadvantageous. If we perform many
sampling blocks, then the mean estimates would become accurate very soon and thus we find the
optimal solution sooner. However, performing many sampling blocks also means sampling a lot
from nonoptimal populations and this can mean that the average reward will deviate longer from
the average reward achieved under complete information. The sparser sequence {τ b2m } can have
the inverse of this problem. If we quickly find the optimal solution, then performing few sampling
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blocks is great and allows us to converge faster to the optimal reward. Conversely, if we do not
have accurate mean estimates, then we could be sampling from a nonoptimal solution for many
blocks. Burnetas and Kanavetas [2] found that for the SPP (Eq. 6) b = 2 was optimal out of
(1.2, 1.5, 2, 3, 5).

In a sampling block we sample from all populations at least once. In the SPP, whenever the period
coincides with a sparse sequence one population is sampled once. This means that in the SBP
if the block count coincides with the sparse sequence, we learn more about the populations then
when the same happens in the SPP. Therefore, we expect that a larger b will be optimal for the
SBP. To study this, we will simulate an instance of the multi-armed bandit problem with k = 4
arms. The outcomes of arm i follow a binomial distribution with the parameters (N, pi) where
N = 5 and p1 = 0.3, p2 = 0.5, p3 = 0.9, p4 = 0.8. Therefore the mean reward vector is equal to
µ = (1.5, 2.5, 4.5, 4). The cost vector is c = (3, 4, 8, 10) and our budget is equal to C0 = 5. Given

this set of parameters, the optimal policy is x = (0, 3
4 ,

1
4 , 0) and the optimal average reward is

z∗(µ) = 3. We will compare the performance of the SBP using a sparse sequence of power function
form with b ∈ {1.2, 2, 3, 5, 7}.

Figure 1: Performance when optimal solution is found early on

In Figure 1 we observe a case where each instance of SBP found the optimal solution quite fast.
The sequences with b ∈ {2, 3, 5, 7} are close together and deviate very little from the optimal value.
The sequence with b = 1.2 however deviates a lot more despite having found the optimal solution
too. As discussed above, the relatively large amount of sampling blocks drags down the average
reward achieved by this instance of the SBP.
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The cases where the solution is not immediately found are more interesting. Sequences where
b = 5 and b = 7 are a lot more volatile in these circumstances. They are very sparse, so if they do
not find the optimal solution then they will perform a lot of LP blocks with a nonoptimal solution.
In Figure 2 we observe instances of the SBP with b = 5 and b = 7 performing a lot worse, similar to
the instance with b = 1.2. In rare cases, instances of SBP with b ∈ {2, 3} can also perform like the
sequences with b ∈ {5, 7} in Figure 2 but this is quite rare due to their higher number of sampling
blocks.

Figure 2: Large deviation for sequences with b ∈ {5, 7}

An important thing to note is the structure of the sampling block. In this configuration the sampling
block {m∗

j}4j=1 = {4, 1, 1, 1}. The first population is sampled 4 times and the others only once. The
first population is not part of the optimal solution. Whenever an instance of the SBP does not
find the optimal solution x∗ = (0, 3

4 ,
1
4 , 0), it finds x = ( 35 , 0, 0,

2
5 ). This could be due to sampling

4 times from the first population. To test this, we will change the cost vector to c = (8, 3, 6, 10).
As a consequence, the sampling block becomes {m∗

j}4j=1 = {1, 5, 1, 1} and the optimal sampling

policy becomes x = (0, 1
3 ,

2
3 , 0). Therefore the new optimal average reward achieved under complete

information is z∗(µ) = 3.83. In Figure 3 we see a similar picture to Figure 1. Here again all
the sequences found the optimal solution early on. The sequence with b = 1.2 still has the largest
deviation compared to the rest. However, whilst not as large as the instance with b = 1.2, when using
the sequence with b = 2 there is also quite a deviation from the optimal average reward compared to
sequences with b ∈ {3, 5, 7}. It could be that the average reward gained from the sampling block is
now lower compared to the optimal average reward and therefore when performing more sampling
blocks, the average reward will deviate more.
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Figure 3: General performance in the modified configuration

Taking both of these configurations into account, for the SBP a sparse sequence of the power
function form with b = 3 performs the best compared to {1.2, 2, 5, 7}. The SBP with b = 1.2
performs the worst due to the large number of sampling blocks causing it to deviate a large amount
from the optimal average reward achieved under complete information. Instances with b ∈ {5, 7} can
perform well but their relatively low amount of sampling blocks makes their performance dependent
on whether they find the optimal solution early on. If they do, the performance is great. If they
do not, then they have a large deviation for a long time because they will perform a large amount
of nonoptimal LP blocks before the next sampling blocks. The SBP with b = 2 performs well for
one type of sampling block, but not for another type. Due to the fact that an instance of SBP with
b = 3 performs well in both scenarios, we consider it the best, for this type of sparse sequence.

5.2 Comparison of Greedy, SPP and SBP

In the process of constructing the SBP, we took inspiration from the SPP. They are very similar in
their approach to solving the multi-armed bandit problem with the only difference being in the way
they obtain estimates for all populations without violating their cost constraints. This difference
could lead to a difference in performance. To investigate this, we will simulate the same multi-armed
bandit problem instance we used at the start of this chapter. For the SBP, we will use a sparse
sequence of power function form with b = 3 whilst the SPP will use sparse sequences of the form:

{τ bj,m = ℓj +mb,m = 1, 2, . . .}, j = 1, . . . , k,
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where ℓj are defined constants per population such that the sequences are nonoverlapping. Burnetas
and Kanavetas [2] found that for the SPP these sparse sequences with the parameter b = 2 are
optimal. We will also add in a greedy policy to highlight the importance of the sparse sequences.
The greedy policy will perform one sampling block at the start and afterwards only perform LP
blocks.

Figure 4: Similar performance a cross all three policies

In Figure 4 we can see that all the policies can perform well. The greedy policy performs well here
because after its sampling block it found the optimal solution. However in Figure 5 we see that the
greedy policy can also perform quite badly. It did not find the optimal solution after its sampling
block and thus only performed nonoptimal LP blocks. The difference between the greedy policy and
the adaptive policies SBP, SPP is that the greedy policy is not guaranteed to achieve the optimal
average reward. The SBP and SPP do not necessarily find the optimal solution in the beginning
but we have proven that in the long run they will find the optimal solution and achieve the optimal
average reward. The greedy policy can get stuck in a local optimum which is what has happened
in Figure 5. The performance between the SBP and SPP is largely similar but there is a difference.
In Figure 5 the SPP line has a spike above the optimal average reward in the beginning. This is
due to the forced samplings of the SPP. In the first 4 periods each population is sampled and due to
their stochastic nature, we can receive very high rewards from these samplings, causing the spike.
This happens less with the SBP because we sample more from the inexpensive population with a
lower mean reward and afterwards once from the others. The average reward is less sensitive to a
spike in the beginning due to the extra samplings in the sampling block.
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Figure 5: Large deviation by the greedy policy

5.3 Growth of regret

Another important aspect to consider is the growth of the cumulative regret. To analyse this, we
will be looking at the expected difference between the expected average reward and the optimal
average reward.

Definition 8 (Expected regret) The expected difference between the average reward and the op-
timal average reward under a consistent policy π is given by:

Rπ
n(µ) = Eπ

(
Wn

n

)
− z∗(µ).

We know that SBP is a consistent policy and thus Wn

n converges almost surely to z∗(µ). However
this does not imply the same for convergence in expectation without further assumptions on the
population distributions. To investigate to growth of the cumulative growth, we will consider the
summation of Rπ

n from n = 1 to the current period. In Figure 6a and 6b we can see a clear
logarithmic growth curve in both figures. The difference can be found in the scale of the y-axis. In
Figure 6b the optimal solution was not found early on and that is why the cumulative regret is for
larger here than in Figure 6a.
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(a) Low cumulative regret

(b) High cumulative regret
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5.4 Influence of means and variances

5.4.1 Small differences between means

An important consideration in the construction of our consistent policy is the strongly consistent
estimator. For the SBP, the sample mean was chosen under Assumption 1. The adaptive policy
relies on the samples to accurately distinguish each mean. Depending on the distributions, accu-
rately estimating the mean rewards can be more or less difficult. If we consider an instance of the
multi-armed bandit problem with k = 4 arms, but change the parameters of the binomial distri-
bution to N = 5 and p1 = 0.6, p2 = 0.65, p3 = 0.63, p4 = 0.62 then we get the new mean vector
µ = (3.0, 3.25, 3.15, 3.1). The cost vector stays the same, c = (3, 4, 8, 6). The optimal sampling pol-
icy now becomes simply x = (0, 1, 0, 0). In Figure 7 we can see that the SBP can find the optimal
solution quickly despite the close means. However, this fast convergence to the optimal solution is
less likely then in the earlier configuration with greater differences between the means. In Figure 8a
we can see that in 1000 blocks the optimal solution was not found and this can even continue whilst
performing 5000 blocks. The SBP has found a certain solution that seems optimal and due to the
small differences between the means, it takes more time to find the actual optimal solution. At the
same time, due to these small differences between the means the difference between the optimal
average reward and the average reward obtained by a nonoptimal solution is also small.

Figure 7: Success in accurately distinguishing close means
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(a) Failure in accurately distinguishing close means

(b) Failure in 5000 blocks
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5.4.2 High and low variance

Another aspect of the distributions that can influence the accuracy of the estimators is the variance.
Two populations with different means can be difficult to distinguish if their variance causes their
samples to overlap. To study this, we will consider an instance of the multi-armed bandit problem
with k = 4 arms. These populations will be distributed following a normal distribution to allow
us to directly control the variances. The distribution of arm i is given by µi and σ2 where µ1 =
7, µ2 = 5, µ3 = 10, µ4 = 8. We will perform the SBP four times, each time with a different variance,
where σ2 ∈ {1, 2, 5, 7}. In Figure 9 we can see that most of the impact of the higher variance is in
the beginning. In the long run the influence of higher variance is dampened by the high amount of
samples taken. Sometimes a higher variance takes longer than the others to converge to the optimal
average reward but eventually it will become stable and achieve the optimal average reward.

Figure 9: Variance has most impact in the beginning
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6 Conclusion

After taking inspiration from the work of Burnetas and Kanavetas [2], we have constructed a
consistent policy for the multi-armed bandit problem with a strict cost constraint. We proved
that it converges to the optimal average reward achieved under complete information in all cases.
Afterwards, we performed some simulations that demonstrate the important qualities of this policy.
First, we determined the optimal sparse sequence of power function form. After, we saw that it can
outperform the greedy policy by avoiding getting stuck in local optima and it performs similarly
to the SPP (Eq. 6) without ever exceeding the budget. We have also shown that the growth of
the regret is logarithmic. Lastly, the SBP can perform well in challenging scenarios with small
differences between means or high variance. Usually, it is able to find the optimal solution quickly
and even it is stuck with a nonoptimal solution, eventually it will find the optimal solution and
achieve the optimal average reward by our proof in Chapter 4.
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