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1 Introduction

Principal component analysis is a technique where the data is changed to a new set of variables, the
principal components. The directions of the principal components are the eigenvectors of the covariance
matrix. Principal component analysis could for example be used for dimension reduction of a data set
or to analyze a high-dimensional data set [1], [2].

Firstly principal component analysis will be explained and then principal component analysis based
on spatial signs will be explained. The reason to look at a different variant of principal component
analysis is that the spatial sign covariance matrix is used, which works well with outliers [3]. Hence we
would also expect principal component analysis based on spatial signs to work well with outliers.

Next, an elliptical distribution is explained. Then some asymptotic properties of the principal compo-
nents, for an elliptical distribution, are given. This is first done for the classical case and then for the
spatial sign case. For the classical case, all asymptotic results were already known and proven in [4].
For the spatial sign case, there is only an asymptotic result for the spatial sign covariance matrix, but
there aren’t any asymptotic properties known about the eigenvalues and eigenvectors of the spatial
sign covariance matrix. So the goal is to find some asymptotic results for this. The next goal is to find
an expression for the MSE of the principal components for both cases. The MSEs are then compared,
to get an idea of which estimator is more precise. For dimension 2 some explicit results are found. For
dimensions 3 and 4 the MSEs are compared numerically.

Lastly, confidence ellipsoids are used to simulate how well the convergence of the eigenvectors works
and an example of how confidence ellipsoids can be used to analyze a data set is given.
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2 Principal component analysis

In this chapter principal component analysis will be explained. The definitions and all the things that
are explained about principal components in this chapter are based on chapters 3 and 9 of [1]. For
more information about principal component analysis see chapter 9 of [1].
From now on we will assume that for a random p-variate vector X, the first and second moments are
finite. So this means that E(X) < ∞ and var(X) < ∞.

Let X = (X1, ..., Xp)
T be a random centered vector, so E(X) = 0. Then for the direction of the first

principal component we want to find a γ1 such that

γ1 = argmax
{γ1:||γ1||=1}

var(γT
1 X).

For i = 2, .., p we want to find a γi such that

γi = argmax
{γi:||γi||=1,γT

1 γi=...=γT
i−1γi=0}

var(γT
i X).

This is equivalent to taking γi as the eigenvector that belongs to the eigenvalue λi of the covariance
matrix Σ = E[(X − E(X))(X − E(X))T ], such that λ1 ≥ · · · ≥ λi ≥ · · · ≥ λp. Now this gives us the
following definition of principal components.

From now on we will assume that all eigenvalues of the covariance matrix are distinct. Otherwise the
following definition will not be unique.

Definition 2.1. Let X = (X1, ..., Xp)
T be a random vector with covariance matrix Σ. Write Σ =

GΛGT as an eigenvalue decomposition, with λ1 > λ2 > · · · > λp ≥ 0 on the diagonal of Λ and
G orthonormal with gii ≥ 0, for i = 1, ..., p. Then the k-th principal component is defined as
yk = gTk (X − E(X)).

The principal components could also be computed for a n× p data matrix.

X = (X1, ..., Xn)
T =


X

(1)
1 · · · X

(p)
1

...
. . .

...

X
(1)
n · · · X

(p)
n

 .

Here n is the number of observations and p is the number of variables. First the expected value and
the covariance matrix need to be estimated, before the principal components can be computed

In [4] it is shown that the maximum likelihood estimator of the mean vector µ of a multivariate normal
distribution Np(µ,Σ) is the sample mean and that it is an unbiased estimator. The sample mean will
be used to estimate the expected value and is defined below.

Definition 2.2. Let X be a n× p data matrix. The sample mean of X is

X̄ = (X̄(1), ..., X̄(p))T =


1
n

∑n
i=1 X

(1)
i

...
1
n

∑n
i=1 X

(p)
i

 .

In [4] it is shown that the maximum likelihood estimator of the covariance matrix Σ of the multivariate
normal distributionNp(µ,Σ) is

1
n

∑n
i=1(Xi−X̄)(Xi−X̄)T . This estimator is biased, but by multiplying

it by n/(n− 1) it is unbiased. This is called the sample covariance matrix and will be used to estimate
the covariance matrix. The sample covariance matrix is defined below.

Definition 2.3. Let X be a n× p data matrix. The sample covariance matrix (SCM) of X is

Σ̂ =
1

n− 1

n∑
i=1

(Xi − X̄)(Xi − X̄)T =

3




1

n−1

∑n
i=1(X

(1)
i − X̄(1))2 · · · 1

n−1

∑n
i=1(X

(1)
i − X̄(1))(X

(p)
i − X̄(p))

...
. . .

...
1

n−1

∑n
i=1(X

(1)
i − X̄(1))(X

(p)
i − X̄(p)) . . . 1

n−1

∑n
i=1(X

(p)
i − X̄(p))2


Using these two estimators, gives us the following definition of principal components for a n× p data
matrix. We will assume that the sample covariance matrix has distinct eigenvalues, otherwise the
following definition is not unique.

Definition 2.4. Let X be a n×p data matrix. Write Σ̂ = ĜΛ̂ĜT as an eigenvalue decomposition of the
sample covariance matrix of X , with λ̂1 > λ̂2 > · · · > λ̂p ≥ 0 on the diagonal of Λ̂ and Ĝ orthonormal
with ĝii ≥ 0, for i = 1, ..., p. Then the k-th principal component is defined as ŷk = (X − 1nX̄

T )ĝk,
where 1n is a column vector of ones, with n entries.
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3 Principal component analysis based on spatial signs

In this chapter principal component analysis based on spatial signs will be explained. The definitions
and results in this chapter are based on [5].
A spatial sign maps a vector to itself divided by its norm, except zero which is mapped to itself. This
is helpful when there are a lot of outliers, because then the effect of the outliers is bounded [3].

Definition 3.1. Let x ∈ Rp. The spatial sign of x is

S(x) =

{
x

||x||2 , if x ̸= 0

0, if x = 0

Here ||.||2 denotes the euclidean norm.

For principal component analysis based on spatial signs another covariance matrix is needed to compute
the principal components. This new covariance matrix is constructed by first centering a vector in a
suitable way, taking the spatial sign and then computing the covariance. A suitable way to center it
is by using the population spatial median, which is defined below [3].

Definition 3.2. Let X = (X1, ..., Xp)
T be a random vector. The population spatial median of X

is
µs = argmin

µ∈Rp

E(||X − µ||2 − ||X||2).

If the first moments exist then the population spatial median can be written as [3]

µs = argmin
µ∈Rp

E||X − µ||2.

Now by first centering the vector with the population spatial median, then taking the spatial sign of
that and then computing the covariance gives the population spatial sign covariance matrix, which is
defined below [3].

Definition 3.3. Let X = (X1, ..., Xp)
T be a random vector. The population spatial sign covari-

ance matrix (population SSCM) of X is

Σs = E[S(X − µs)S(X − µs)
T ],

where µs is the population spatial median.

This could also be done for a n× p data matrix. Then the population spatial sign covariance matrix
and the population spatial median need to be estimated. The population spatial sign covariance matrix
will be estimated in almost the same way as the covariance matrix. The population spatial median
will be estimated with the spatial median, which is defined below [3].

Definition 3.4. Let X be a n× p data matrix. The spatial median of X is

µ̂s = argmin
µ∈Rp

n∑
i=1

||Xi − µ||2.

Now by estimating the population SSCM in a similar way as the covariance matrix is estimated, the
sample spatial sign covariance matrix follows, which is defined below.

Definition 3.5. Let X be a n× p data matrix. Then the sample spatial sign covariance matrix
(sample SSCM) of X is

Σ̂s =
1

n− 1

n∑
i=1

S(Xi − µ̂s)S(Xi − µ̂s)
T ,

where µ̂s is the spatial median.

For the principal components based on spatial signs, the population SSCM and the population spatial
median will be used to compute the principal components. The spatial median and the sample SSCM
are used to compute the principal components based on spatial signs for a data matrix. For example
in [6], [7] principal components based on spatial signs is used and explained.
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4 Asymptotic properties of the principal components

In this chapter some asymptotic properties of the principal components for an elliptical distribution
will be given. This will be done for the classical principal components and the principal components
based on spatial signs.

4.1 Elliptical distribution

For an elliptical distribution there are some nice asymptotic properties for the principal components
and some nice results for the eigenvalues and eigenvectors of the population spatial sign covariance
matrix. Before we look at that, an elliptical distribution will be explained and two examples will be
given. The definitions and examples are based on chapter 2 of [8].

Definition 4.1. Let ϵ be a random p-variate vector. Then ϵ is spherically symmetrical if for all
orthogonal matrices Q it holds that ϵ ∼ Qϵ.

An example of a distribution which is spherically symmetrical is Np(0, Ip).

Definition 4.2. Let X be a p-variate random vector. X has an elliptical distribution if we can
write it as X = µ+Aϵ. Where µ ∈ Rp, A a p× p matrix and ϵ = (ϵ1, ..., ϵp) is spherically symmetric.
If the probability density function exists, it is of the following form:

fX(x) = |Ψ|− 1
2 g(Ψ− 1

2 (x− µ))

where Ψ = AAT is the scatter matrix which is positive definite and g is the density function of ϵ.

Next, two examples of an elliptical distribution will be given. These Examples are based on respectively
example 2.1 and 2.2 of [8].

Example 4.1 (Multivariate normal distribution). Let X be a random vector with a multivariate
normal distribution Np(µ,Σ). In example 2.1 of [8] it is shown that X is elliptical distributed and can
be written as X = µ+Aϵ, with Σ = AAT and ϵ ∼ Np(0, Ip). X has density function

fX(x) =
exp(− 1

2 (x− µ)TΣ−1(x− µ))√
(2π)p|Σ|

.

Example 4.2 (Multivariate t-distribution). Let X be a random vector with a multivariate t-distribution
tp(µ,Ψ, ν). In example 2.2 of [8] it is shown that X is elliptical distributed and can be written as
X = µ+Aϵ, with Ψ = AAT and ϵ ∼ tp(0, Ip, ν). X has density function

fX(x) =
Γ((p+ ν)/2)

Γ(ν/2)
√

(πν)p|Ψ|
[1 +

1

ν
(x− µ)TΨ−1(x− µ)]−(ν+p)/2.

In practice the multivariate t-distribution is for example used in censored data, see [9] and for irregularly
observed longitudinal data, see [10].

In figure 1 and 2 the contour lines are plotted for the multivariate normal distribution and respectively
the multivariate t-distribution. In figure 3 the contour lines of both are plotted in one plot. A few
differences between the contour plots of the multivariate normal distribution and the multivariate t-
distribution are that the multivariate normal distribution has lower values closer to the center (0, 0).
So the contour lines with value 0.11 to 0.02 are further away from the center for the multivariate
normal distribution, then the multivariate t-distribution. But for the last contour at the value 0.01
we see that now the multivariate normal distribution is closer to the center then the multivariate
t-distribution.
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Figure 1: Contour lines of the multivariate normal distribution Np(µ,Σ) with covariance matrix Σ =(
1 0
0 2

)
and µ = (0, 0).
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Figure 2: Contour lines of the multivariate t-distribution tp(µ,Ψ, ν) with scatter matrix Ψ =

(
1 0
0 2

)
,

µ = (0, 0) and ν = 5.
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Figure 3: Contour lines of the multivariate normal distribution Np(µ,Σ) in red and of the multivariate

t-distribution tp(µ,Ψ, ν) in blue. Σ = Ψ =

(
1 0
0 2

)
, µ = (0, 0) and ν = 5.

4.2 Classical principal components

In this subsection there will be some asymptotic results given about the classical principal compo-
nents. Firstly there will be a definition given of the kurtosis, which is based on [4] (sections 2.7.4 and
13.8.1).

Definition 4.3. Let X be a p-variate random vector which is elliptical distributed. Suppose X has
positive definite scatter matrix Ψ and E[R2] < ∞, where R2 = (x−µ)TΨ−1(x−µ). Then the kurtosis
is

κ =
pE[R4]

E[R2]2(p+ 2)
− 1.

The kurtosis is the fourth standarized moment of X. So from now on we will assume that not only the
first and second moments exist, but also the fourth moment. If the first and second moment exist for
the multivariate normal distribution, then also the fourth moment about the mean exists.[4]. If the
first and second moment exist for the multivariat normal distribution, then the fourth moment about
the mean exists if the degrees of freedom ν > 4. This is shown in example 4.4.

In [4] it is given that an estimator of κ is

κ̂ =
1

p(p+ 2)n

n∑
i=1

(
(xi − x̄)T Σ̂−1(xi − x̄)

)2
− 1. (1)

Below the kurtosis for the multivariate normal distribution and the multivariate t-distribution will be
computed.

Example 4.3 (Kurtosis of a multivariate normal distribution). Let a random vector X = µ+ Aϵ be
distributed as Np(µ,Σ). In Example 2.1 of [8] it is given that R2 = (X−µ)TΣ−1(X−µ) is distributed
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as χ2
p, because ||ϵ||22 = R2 and ϵ ∼ Np(0, Ip). From [11] we know the following for a Chi-squared

distribution
E[R2] = p

and
var(R2) = 2p.

This gives us that
E[R4] = var(R2) + E[R2]2 = 2p+ p2 = p(p+ 2).

Hence the kurtosis is

κ =
pE[R4]

E[R2]2(p+ 2)
− 1 =

p2(p+ 2)

p2(p+ 2)
− 1 = 0.

Example 4.4 (Kurtosis of a multivariate t-distribution). Let a random vector X = µ + Aϵ be dis-
tributed as tp(µ,Ψ, ν). In Example 2.2 in [8] it is given that R2/p = ((X − µ)TΨ−1(X − µ))/p is
distributed as F (p, ν), because ||ϵ||22 = R2 and ϵ ∼ tp(0, Ip, ν). From [12] we know the following holds
for a F-distribution

E[R2/p] =
ν

ν − 2
, for ν > 2

and

var(R2/p) =
2ν2(p+ ν − 2)

p(ν − 2)2(ν − 4)
, for ν > 4.

So we have

E[R2] =p
ν

ν − 2
, for ν > 2,

var(R2) =p2
2ν2(p+ ν − 2)

p(ν − 2)2(ν − 4)
, for ν > 4.

From this it follows that

E[R4] = var(R2) + E[R2]2 = p2
2ν2(p+ ν − 2)

p(ν − 2)2(ν − 4)
+ (p

ν

ν − 2
)2, for ν > 4.

Hence the kurtosis is

κ =
pE[R4]

E[R2]2(p+ 2)
− 1 =

2(p+ ν − 2) + p(ν − 4)

(p+ 2)(ν − 4)
− 1 =

ν − 2

ν − 4
− 1, for ν > 4.

The following theorem gives some asymptotic results of the principal components. This theorem is
theorem 13.8.1 from [4]. For the proof of this theorem also see [4]. The idea of this proof will later be
used to proof a similar theorem for the principal components based on spatial signs.

Theorem 4.1 (Anderson [4], Theorem 13.8.1). Let X1, ..., Xn be n observations of a p-variate random
vector X, where X is elliptical distributed. Write the covariance matrix and the sample covariance
matrix as eigenvalue decompositions Σ = GΛGT and Σ̂ = ĜΛ̂ĜT , with λ1 > ... > λp > 0, λ̂1 > ... >

λ̂p > 0 and g1i ≥ 0, ĝ1i ≥ 0, i = 1, ..., p. Define B =
√
n(Ĝ−G) and D =

√
n(Λ̂−Λ). Then the limiting

distribution of D is normal with mean equal to zero and var(di) = (2+ 3κ)λ2
i and cov(di, dj) = κλiλj.

The limiting distribution of B is normal with mean equal to zero and the covariance of bj is

cov(bj) = (1 + κ)

p∑
i=1,i̸=j

λjλi

(λj − λi)2
gig

T
i . (2)

The covariance of bi and bj is

cov(bi, bj) = −(1 + κ)
λiλj

(λi − λj)2
gjg

T
i . (3)

We see that the covariance of the eigenvalues and eigenvectors both depend on the kurtosis and the
real eigenvalues and eigenvectors. The covariance is linear dependent on the kurtosis. A large kurtosis
means a large covariance. The covariance of the eigenvectors is also large, when the real eigenvalues
are close to each other. The covariance of the eigenvalues is large, when the real eigenvalues are
large.
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4.3 Principal components based on spatial sign

In this subsection some results about the principal components based on spatial signs are given. We
would like to proof something similar as in Theorem 4.1, but now for the spatial sign covariance
matrix. To do this we need to know something about the eigenvalues of the population SSCM and the
asymptotic covariance matrix of the sample SSCM.

The following lemma gives a result about the eigenvalues and eigenvectors of the population SSCM.
The only thing needed to know for this is the eigenvalues and eigenvectors of the scatter matrix. The
following lemma is a result from [5]. For more details about the lemma and the proof see [5].

Lemma 4.1 (Dürre, Tyler and Vogel [5]). Let X be a p-variate random vector, which has an elliptical

distribution. Then we can write X = Aϵ + µ. Define Ψ0 = AAT

tr(AAT )
. Write Ψ0 = OΛOT as an

eigenvalue decomposition, with λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 the eigenvalues of Ψ0 on the diagonal of Λ.
Then Σs = O∆OT , with δ1 ≥ δ2 ≥ ...δp ≥ 0 on the diagonal of ∆, where

δi = E

λiϵ
2
i

 p∑
j=1

λjϵ
2
j

−1
 (4)

=
λi

2

∫ ∞

0

1

(1 + λix)

p∏
k=1

(1 + λkx)
1/2

dx, (5)

for 1 ≤ i ≤ p.

From this lemma it follows that for the population spatial sign covariance matrix and the covariance
matrix the eigenvectors are the same and the eigenvalues have the same ordering. This will give the
same directions of the classical principal components and the principal components based on spatial
signs.

The following lemma gives a result about the asymptotic covariance matrix of the sample SSCM. This
lemma is a result from [5]. For more details about the lemma also see [5]

Lemma 4.2 (Dürre, Tyler and Vogel [5]). Let X1, ..., Xn be n observations of a p-variate random

vector X, where X is elliptical distributed. Then we can write X = Aϵ + µ. Define Ψ0 = AAT

tr(AAT )
.

Write Ψ0 = OΛOT as an eigenvalue decomposition, with λ1 > λ2 > · · · > λp > 0 the eigenvalues of
Ψ0 on the diagonal of Λ. Write the population spatial sign covariance matrix and the sample spatial
sign covariance matrix as eigenvalue decompositions Σs = O∆OT and Σ̂s = ÔLÔT , with δ1 > ... > δp,

l1 > ... > lp and oi1 ≥ 0, ôi1 ≥ 0, i = 1, ..., p. The limiting distribution of
√
n(Σ̂s − Σs) is normally

distributed with mean zero and covariance matrix

Ws = (O ⊗O){Γ− vec∆(vec∆)T }(O ⊗O)T ,

where

Γ = E

(
vec

(
Λ1/2ϵϵTΛ1/2

ϵTΛϵ

)
vec

(
Λ1/2ϵϵTΛ1/2

ϵTΛϵ

)T
)
. (6)

For 1 ≤ i, j ≤ p, define

ηij = E

λiϵ
2
iλjϵ

2
j

(
p∑

k=1

λkϵ
2
k

)−2
 . (7)
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This can be written as the following integrals

ηij =
λiλj

4

∫ ∞

0

x

(1 + λix)(1 + λjx)

p∏
k=1

(1 + λkx)
1/2

dx, for i ̸= j, (8)

ηii =
3λ2

i

4

∫ ∞

0

x

(1 + λix)
2

p∏
k=1

(1 + λkx)
1/2

dx. (9)

ηij appears in Γ at the positions {(i−1)p+j, (i−1)p+j}, {(i−1)p+i, (j−1)p+j}, {(i−1)p+j, (j−1)p+i}
and ηji appears at the positions {(j−1)p+i, (j−1)p+i}, {(j−1)p+j, (i−1)p+i}, {(j−1)p+i, (i−1)p+j},
for 1 ≤ i < j ≤ p. ηii appears in Γ at the position {(i − 1)p + i, (i − 1)p + i}, for 1 ≤ i ≤ p. All the
other entries of Γ are zero.

The following two definitions is some explanation of the notation that is used in the previous theorem.
These definitions are based on definition A.4.1 and respectively definition A.4.2 of [4].

Definition 4.4. Let A be an n×m matrix, then

vec(A) = (a11, ..., an1, a12, ..., an2, ...., a1m, ...anm)T .

Definition 4.5. Let A be an n× p matrix and B and m× q matrix. The kronecker product of A and
B is

A⊗B =


a11B a12B · · · a1pB
a21B a22B · · · a2pB
...

...
. . .

...
an1B an2B · · · anpB

 .

Below some properties of the vec operator and the kronecker product [4], which we will need later.

vec(ABC) = (CT ⊗A)vec(B) (10)

(O ⊗O)T = OT ⊗OT (11)

For dimensions higher then 2 the integrals (5), (8) and (9) cannot be solved explicitly, but then these
integrals can be solved numerically, for example in R. For dimension 2 these integrals can be solved
explicitly. In the following 2 propositions and corollary the solutions of these integrals are given [3].
Proposition 4.1 and 4.2 are a part of respectively proposition 1 and 2 of [3].

Proposition 4.1 (Dürre, Vogel and Fried [3], Proposition 1 (3)). If the dimension is p = 2, then

δi =
√
λi√

λ1+
√
λ2
, for i = 1, 2.

Proposition 4.2 (Dürre, Vogel and Fried [3], Proposition 2 (3)). If the dimension is p = 2 and
λ1 ̸= λ2, then

Ws =
−λ1λ2 +

1
2

√
λ1λ2(λ1 + λ2)

(λ1 − λ2)2
(O ⊗O)W0(O ⊗O)T ,

with

W0 =


1 0 0 −1
0 1 1 0
0 1 1 0
−1 0 0 1

 .

Corollary 4.1. If p = 2 and λ1 ̸= λ2, then

• η12 = η21 =
−λ1λ2+

1
2

√
λ1λ2(λ1+λ2)

(λ1−λ2)2

11



• ηii = η12 + δ2i , i = 1, 2

Proof. From Lemma 4.2 it follows that

Ws =(O ⊗O){Γ− vec∆(vec∆)T }(O ⊗O)T

=(O ⊗O)


η11 − δ21 0 0 η12 − δ1δ2

0 η12 η12 0
0 η21 η21 0

η21 − δ1δ2 0 0 η22 − δ22

 (O ⊗O)T

From Proposition 4.2 it then follows that

η12 = η21 =
−λ1λ2 +

1
2

√
λ1λ2(λ1 + λ2)

(λ1 − λ2)2

and
ηii = η12 + δ2i for, i = 1, 2

The following theorem gives some asymptotic results of the principal components based on spatial
signs. It is similar to theorem 4.1, but now Σs and Σ̂s are used instead of Σ and Σ̂.

Theorem 4.2. Let X1, ..., Xn be n observations of a p-variate random vector X, where X is elliptical
distributed. Write the population spatial sign covariance matrix and the sample spatial sign covariance
matrix as eigenvalue decompositions Σs = O∆OT and Σ̂s = ÔLÔT , with δ1 > ... > δp, l1 > ... > lp
and o1i ≥ 0, ô1i ≥ 0, i = 1, ..., p. Define G =

√
n(Ô − O) and D =

√
n(L − ∆). Then the limiting

distribution of D is normal with mean equal to zero and var(di) = ηii − δ2i and cov(di, dj) = ηij − δiδj.
The limiting distribution of G is normal with mean equal to zero and the covariance of gj is

cov(gj) =

p∑
i=1,i̸=j

ηij
(δj − δi)2

oio
T
i . (12)

The covariance of gi and gj is

cov(gi, gj) = − ηij
(δi − δj)2

ojo
T
i . (13)

Here δi is defined as in Lemma 4.1 and ηij is defined as in Lemma 4.2.

The covariance of the eigenvalues and eigenvectors depends on the real eigenvalues and eigenvectors
of the covariance matrix. If we compare these covariances with the covariances of Theorem 4.1. Then
we see that now the covariances do not depend on the kurtosis, which it did in Theorem 4.1. So even
if we have a really large kurtosis, then the covariances don’t have to be large. The covariance of the
eigenvectors is large, when the real eigenvalues of the spatial sign covariance matrix are really close to
each other.

We will need to use the following Theorem to proof Theorem 4.2. This Theorem is Theorem 4.2.3 of
[4]. This theorem tells us, when the transformation of a random variable, which has an asymptotic
normal distribution, is also asymptotic multivariate normally distributed. And it also tells us which
asymptotic covariance it has.

Theorem 4.3 (Anderson [4], Theorem 4.2.3). Let {Xn} be a sequence of p-variate random vectors
and θ. Let θ be a p-variate vector such that as n → ∞, then the limiting distribution of

√
n(Xn − θ)

is N(0,Σ). Let f : Rp → Rm be a vector-valued function of x such that ∇fj(x) is non-zero at x = θ,
for 1 ≤ j ≤ m and let ∇f(θ) = (∇f1(θ),∇f2(θ), ...,∇fm(θ)). Then

√
n(f(xn)− f(θ)) has the limiting

distirbution N(0,∇f(θ)TΣ∇f(θ)).

We will use the idea of the proof of Theorem 13.5.1 in [4], to proof theorem 4.2.
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Proof of Theorem 4.2. Define D =
√
n(L−∆), G =

√
n(Ô −O) and T = OT Σ̂sO. Let

T = Y LY T , (14)

where Y is orthogonal. We need Yii ≥ 0, for i = 1, ...p, so that (14) determines Y uniquely. Here
Y = OT Ô.

Let
√
n(T −∆) = U and

√
n(Y − I) = W . Write U =

√
n(T −∆) as T = U/

√
n+∆, W =

√
n(Y − I)

as Y = W/
√
n+ I and D =

√
n(L−∆) as L = ∆+D/

√
n. Then (14) can be written as

U√
n
+∆ =

(
I +

W√
n

)(
∆+

D√
n

)(
I +

W√
n

)T

⇐⇒ U√
n
+∆ =

(
∆+

D√
n
+

W∆√
n

+
WD

n

)(
I +

W√
n

)T

⇐⇒ U√
n
+∆ = ∆+

D√
n
+

W∆√
n

+
WD

n
+

∆WT

√
n

+
DWT

n
+

W∆WT

n
+

WDWT

n
√
n

⇐⇒ U = D +W∆+∆WT +
WD√

n
+

DWT

√
n

+
W∆WT

√
n

+
WDWT

n
. (15)

And we have that

I = Y Y T

(
W√
n
+ I

)(
W√
n
+ I

)T

⇐⇒ I =
WWT

n
+

W√
n
+

WT

√
n

+ I

⇐⇒ 0 =
WWT

n
+

W√
n
+

WT

√
n

⇐⇒ 0 = W +WT +
WWT

√
n

(16)

The limiting distribution of
√
n(Σ̂s −Σs) is multivariate normal. From Theorem 4.2.3 of [4] it follows

that the limiting distribution of
√
nOT (Σ̂s − Σs)O =

√
n(T − ∆) is multivariate normal. Define

the function g(Y,L) = Y LY T . This function is clearly continuous and differentiable, because it is a
polynomial of the matrix elements. Now we can use Theorem 4.3, see the proof of Theorem 13.5.1 of
[4] why it satisfies all the conditions of Theorem 4.3. This gives us that the limiting distributions of
W =

√
n(Y − I) and D =

√
n(L−∆) are multivariate normal.

Now by applying the continuous mapping theorem and using the fact that the limiting distribution of

W is multivariate normal we get that WWT
√
n

d−→ 0 and W∆WT
√
n

d−→ 0 as n → ∞.

With the same arguments as before, there also exist a continuous one-to-one map between T, Y to
L. So there exist a continuous function from Y to L, so also from W to D. By using the continuous
mapping theorem and the fact that the limiting distribution of W is multivariate normal we get that
WD√

n

d−→ 0, DWT
√
n

d−→ 0, WDWT

n

d−→ 0, as n → ∞.

Now (15) and (16) become

U = W∆+D +∆WT +Op(1). (17)

and
0 = W +WT +Op(1) (18)

Here Op(1) is an error term, which goes to zero as n → 0. From (18) we get W = −WT + Op(1).
Substituting this in (17) we get

U = W∆+D −∆W +Op(1)

⇐⇒ D = U −W∆+∆+Op(1)

13



From this we get
dii = uii − wiiδi − δiwii +Op(1) = uii +Op(1), i = 1, ..., p

And if i ̸= j, i, j = 1, ..., p we get

uij = wijδj − δiwij +Op(1)

⇐⇒ wij =
uij

δj − δi
+Op(1)

Hence as n → ∞,

wij
d−→ uij

δj − δi

From W = −WT +Op(1) it follows that wii = −wii +Op(1) ⇒ wii = Op(1).

From this it follows that dii = uii +Op(1), hence as n → ∞,

dii
d−→ uii (19)

Define W̃ij = (w1,i, .., wi−1,i, wi+1,i, .., wp,i, w1,j , .., wj−1,j , wj+1,j , .., wp,j)
T , for 1 ≤ i < j ≤ p. Then

we have that

W̃ij
d−→ (

u1,i

δi − δ1
, ..,

ui−1,i

δi − δi−1
,

ui+1,i

δi − δi+1
, ..,

up,i

δi − δp
,

u1,j

δj − δ1
, ..,

uj−1,j

δj − δj−1
,

uj+1,j

δj − δj+1
, ..,

up,j

δj − δp
)T (20)

In Lemma 4.2 it is given that
√
nvec(Σ̂s − Σs) has asymptotic covariance matrix:

(O ⊗O){Γ− vec∆(vec∆)T }(O ⊗O)T (21)

where Γ is defined as (6).

By using (10) and (11) we get

(O ⊗O)T
√
nvec(Σ̂s − Σs) = (OT ⊗OT )

√
nvec(Σ̂s − Σs)

=
√
nvec(OT (Σ̂s − Σs)O)

=
√
nvec(T −∆)

Now by Theorem 4.2.3 of [4], we get that the asymptotic covariance matrix of
√
nvec(T −∆) is

(O ⊗O)T (O ⊗O){Γ− vec∆(vec∆)T }(O ⊗O)T (O ⊗O) = {Γ− vec∆(vec∆)T }

DefineA = {Γ−vec∆(vec∆)T }. Define Ũij = (u1,i, .., ui−1,i, ui+1,i, .., up,i, u1,j , .., uj−1,j , uj+1,j , .., up,j)
T .

The asymptotic covariance matrix of Ũij is the submatrix of A consisting of the following columns and
rows: (i− 1)p+ 1, ...(i− 1)p+ i− 1, (i− 1)p+ i+ 1, ..., (i− 1)p+ p, (j − 1)p+ 1, ..., (j − 1)p+ j − 1,
(j − 1)p+ j + 1, ..., (j − 1)p+ p. Call this submatrix Aij .

For l, k ∈ {1, ..., p}, vec∆(vec∆)T is δkδl at the position {(k − 1) + k, (l − 1) + l}. At all the other
positions of vec∆(vec∆)T the entries are zero.

By lemma 4.2 the following holds for Γ, for l, k ∈ {1, ..., p}, l ̸= k. Γ is ηlk on the positions {(l −
1)p+k, (l − 1)p + k}, {(l − 1)p + l, (k − 1)p + k}, {(l − 1)p + k, (k − 1)p + l} and ηkk at the position
{(k − 1)p+ k, (k − 1)p+ k}. Hence the following holds(

ukk

ull

)
d−→ N

(
0,

(
ηkk − δ2k ηkl − δkδl
ηlk − δlδk ηll − δ2l

))
.

Now from (19) we get (
dk
dl

)
d−→ N

(
0,

(
ηkk − δ2k ηkl − δkδl
ηlk − δlδk ηll − δ2l

))
.
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Hence the limiting distribution of D is normal with mean zero and

var(dk) = ηkk − δ2k

and
cov(dk, dl) = ηkl − δkδl.

We have Aij =

ηi1 0 · · · · · · · · · 0 · · · · · · · · · · · · 0 · · · · · · · · · · · · 0

0
. . .

...
...

...
... ηi(i−1)

...
...

...
... ηi(i+1)

...
...

...
...

. . . 0 0
...

0 · · · · · · · · · 0 ηij 0 · · · · · · 0 ηij 0 · · · · · · · · · 0
... 0

. . . 0
...

...
... ηip

...
...

...
... ηj1

...
...

... 0
. . . 0

...
0 · · · · · · · · · 0 ηji 0 · · · · · · 0 ηji 0 · · · · · · · · · 0
... 0 0

. . .
...

...
...

... ηj(j−1)

...
...

...
... ηj(j+1)

...
...

...
...

. . . 0
0 · · · · · · · · · · · · 0 · · · · · · · · · · · · 0 · · · · · · · · · 0 ηjp


Define the function

f (ij)(Ũij) =

(
u1,i

δi − δ1
, ..,

ui−1,i

δi − δi−1
,

ui+1,i

δi − δi+1
, ..,

up,i

δi − δp
,

u1,j

δj − δ1
, ..,

uj−1,j

δj − δj−1
,

uj+1,j

δj − δj+1
, ..,

up,j

δj − δp

)T

By theorem 4.2.3 of [4] we get

f (ij)(Ũij)
d−→ N(0, (∇f (ij))TAij∇f (ij))

where

∇f (ij) = diag

(
1

δi − δ1
, ...,

1

δi − δi−1
,

1

δi − δi+1
, ...,

1

δi − δp
,

1

δj − δ1
, ...,

1

δj − δj−1
,

1

δj − δj+1
, ...,

1

δj − δp

)
.

Now by (20) We get

W̃ij
d−→ N(0, (∇f (ij))TAij∇f (ij))
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We have that (∇f (ij))TAij∇f (ij) =

ηi1

(δi−δ1)2
0 · · · 0 · · · · · · · · · · · · 0 · · · · · · 0

0
. . .

...
...

...
...

. . . 0 0

0 · · · 0
ηij

(δi−δj)2
0 · · · · · · 0

−ηij

(δi−δj)2
0 · · · 0

... 0
. . . 0

...
...

...
ηip

(δi−δp)2

...
...

...
...

ηj1

(δj−δ1)2

...
...

... 0
. . . 0

...

0 · · · 0
−ηji

(δj−δi)2
0 · · · · · · 0

ηji

(δj−δi)2
0 · · · 0

... 0 0
. . .

...
...

...
. . . 0

0 · · · · · · 0 · · · · · · · · · · · · 0 · · · 0
ηjp

(δj−δp)2


Define Bij as the matrix (∇f (ij))TAij∇f (ij) where we add 2 rows and 2 columns of all zeros, such that
they are i-th, p+ j-th column and row. The covariance of wii and wjj with something else is always

zero because wii = wjj = 0. Hence the covariance matrix of

(
wi

wj

)
is Bij . (Here W = (w1, ..., wp).)

We also know that W is asymptotic normally distributed, hence we have that(
wi

wj

)
d−→ N(0, Bij)

We have that Y = OT Ô, so G =
√
n(Ô −O) has the limiting distribution of

G =
√
n(Ô −O) =

√
n(Oy −O) = O

√
n(Y − I) = OW.

Define the function f̃

((
wi

wj

))
=

(
Owi

Owj

)
= vec (O(wi, wj)). Then by theorem 4.2.3 of [4] we get

vec (O(wi, wj))
d−→ N(0,∇f̃TBij∇f̃),

where

∇f̃ =

(
OT 0
0 OT

)
.

We have that

∇f̃TBij∇f̃ =


p∑

k=1,k ̸=i

ηki
(δi − δk)2

oko
T
k − ηij

(δi − δj)2
ojo

T
i

− ηji
(δj − δi)2

oio
T
j

p∑
k=1,k ̸=j

ηkj
(δj − δk)2

oko
T
k

 .

Now from this it follows that the asymptotic covariance matrix of gj is

cov(gj) =

p∑
i=1,i̸=j

ηij
(δj − δi)2

oio
T
i .

and the asymptotic covariance matrix of gi and gj is

cov(gi, gj) = − ηij
(δi − δj)2

ojo
T
i
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5 Asymptotic MSE

The MSE is a measure for the accuracy of an estimator and we would like the MSE to be as small
as possible [11]. It could be helpful to look at the MSE of the classical principal components and
the principal components based on spatial signs, to see which has a smaller MSE. In other words to
see which estimator is more accurate. Theorem 4.1 is used to find the MSE of the classical principal
components.

Theorem 5.1. Let X1, ..., Xn be n observations of a p-variate random vector X, where X is elliptical
distributed. Write the covariance matrix and the sample covariance matrix as eigenvalue decomposi-
tions Σ = ΓΛΓT and Σ̂ = GLGT , with λ1 > ... > λp, l1 > ... > lp and γi1 ≥ 0, gi1 ≥ 0, i = 1, ..., p. As
n → ∞,

MSEc = E
(
||vec(G)− vec(Γ)||22

) p−→ 1

n
(1 + κ)

p∑
j=1

p∑
i=1,i̸=j

λjλi

(λj − λi)2

Proof. If we write Σ = ΓΛΓT and Σ̂ = GLGT as eigenvalue decompositions. Define Ŷ = vec(G) and
Y = vec(Γ). Then we have that the MSE is

MSEc =E
(
||Ŷ − Y ||22

)
=E[(g11 − γ11)

2] + ...+ E[(gp1 − γp1)
2] + ...+ E[(g1p − γ1p)

2] + ...+ E[(gpp − γpp)
2]

=

p∑
i=1

p∑
j=1

E[(gij − γij)
2]

=

p∑
i=1

p∑
j=1

(
var(gij − γij) + E[gij − γij ]

2
)

Now by Theorem 4.1 as n → ∞,

p∑
i=1

p∑
j=1

(
var(gij − γij) + E[gij − γij ]

2
)
→ 1

n

p∑
j=1

tr(cov(bj))

=
1

n

p∑
j=1

tr

(
(1 + κ)

p∑
i=1,i̸=j

λjλi

(λj − λi)2
γiγ

T
i

)

=
1

n

p∑
j=1

(
(1 + κ)

p∑
i=1,i̸=j

λjλi

(λj − λi)2

)

Hence as n → ∞,

MSEc →
1

n

p∑
j=1

(
(1 + κ)

p∑
i=1,i̸=j

λjλi

(λj − λi)2

)

Note that it always holds that κ ≥ −1 , because E[R4] and [R2] in definition 4.3 are always positive.
This means that MSEc is never negative, hence it is well-defined.

The MSE is depended on the kurtosis and the real eigenvalues of the covariance matrix. The MSE is
linearly dependent on the kurtosis. The MSE is large, when the kurtosis is large. If the eigenvalues
are close to each other, then the MSE is also large. It converges towards 0 with rate 1

n .

Theorem 4.2 is used to find the MSE of the principal components based on spatial signs.

Theorem 5.2. Let X1, ..., Xn be n observations of a p-variate random vector X, where X is elliptical
distributed. Write the population spatial sign covariance matrix and the sample spatial sign covariance
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matrix as eigenvalue decompositions Σs = O∆OT and Σ̂s = ÔLÔT , with δ1 > ... > δp, l1 > ... > lp
and oi1 ≥ 0, ôi1 ≥ 0, i = 1, ..., p. Then as n → ∞,

MSEss = E
(
||vec(Ô)− vec(O)||22

)
→ 1

n

p∑
j=1

p∑
i=1,i̸=j

ηij
(δj − δi)2

.

Here δi is defined as in Lemma 4.1 and ηij is defined as in Lemma 4.2.

Now the MSE is depended on the real eigenvalues of the covariance matrix and the spatial sign
covariance matrix. This also converges towards 0 with rate 1

n . One of the differences between this
MSE and the MSE for the classical case is that now the MSE is not depended on the kurtosis.

Proof. The same as the proof of Theorem 5.1, but now using Theorem 4.2 instead of Theorem 4.1

In table 1 the MSE is simulated and compared with the asymptotic MSE from Theorem 5.1 and The-
orem 5.2. For the classical principal components the simulation is done by computing the eigenvectors
of the sample covariance matrix and repeating this 10000 times. Then the MSE is computed. For the
spatial sign case the same is done but then the sample SSCM is used. It is done for a multivariate
normal distribution and a multivariate t-distribution. These seem to converge towards each other as n
increases, so the convergence seems to work well. In table 2 the same is done, but now for dimension
3 and dimension 12. This is only done for a multivariate normal distribution. For dimension 3 it
takes longer to converge then for dimension 2. For dimension 12 it takes even longer to converge. At
n = 1000 it still doesn’t seem to converge. Hence as the dimension increases the convergence rate
seems to decrease.
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Multivariate normal distribution Multivariate t-distribution with ν = 5

Classic
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Spatial signs
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Table 1: The scatter matrix is Ψ =

(
1 0
0 2

)
. The red line is the simulated MSE and the green line is the

MSE approximated by using Theorem 5.1 for the classical case and Theorem 5.2 for the spatial sign case.
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Scatter matrix is Ψ =

1 0 0
0 2 0
0 0 3


Scatter matrix is Ψ =


1 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 12



classic
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Table 2: This is for a multivariate normal distribution. The red line is the simulated MSE and the green
line is the MSE approximated by using Theorem 5.1 for the classical case and Theorem 5.2 for the spatial
sign case.

It would be nice two know which estimator is more precise. This is why in this chapter the asymptotic
MSEs that are found in Theorem 5.1 and Theorem 5.2 will be compared. This will be done for
dimension 2, 3 and 4. If the dimension gets higher, then the number of eigenvalues that need to be
chosen also grows. Hence it’s gets more and more difficult to compare it, when the dimension grows.
This is the reason why there will only be looked at dimension 2, 3 and 4.

One thing that is immediately clear if we compare MSEc and MSEss, is that MSEc and the kurtosis
are linearly dependent with each other and MSEss is independent of the kurtosis. This means that
at some point if the kurtosis is large enough, then MSEss < MSEc. So principal component analysis
based on spatial signs works equally well for a really large kurtosis as for a small kurtosis. For classical
principal component analysis this is not the case.
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5.1 Dimension 2

For dimension 2 it is possible to find an explicit expression for κ such that MSEc <MSEss, because then
the integrals (5) and (8) can be solved explicitly. All the results in this subsection are for dimension
2.

Proposition 5.1. Let X = Aϵ + µ be elliptical distributed. Define Ψ0 = AAT

tr(AAT )
. Let λ1, λ2 be the

eigenvalues of Ψ0. If λ1, λ2 > 0 and λ1 ̸= λ2, then

MSEc < MSEss ⇐⇒ κ <
1

2
√

λ1(1− λ1)

and

MSEc > MSEss ⇐⇒ κ >
1

2
√

λ1(1− λ1)

Proof. Let λ1, λ2 > 0 such that λ1 + λ2 = 1 and λ1 ̸= λ2 be arbitrary given. By Theorem 4.1 and
Theorem 4.2

MSEc < MSEss ⇐⇒

(κ+ 1)
2

n

λ1λ2

(λ1 − λ2)2
<

2

n

η12
(δ1 − δ2)2

⇐⇒

(κ+ 1)
λ1λ2

(λ1 − λ2)2
<

η12
(δ1 − δ2)2

Then by proposition 4.1 and corollary 4.1 we get

(κ+ 1)
λ1λ2

(λ1 − λ2)2
<

η12
(δ1 − δ2)2

⇐⇒

(κ+ 1)
λ1λ2

(λ1 − λ2)2
<

−λ1λ2+
1
2

√
λ1λ2(λ1+λ2)

(λ1−λ2)2( √
λ1√

λ1+
√
λ2

−
√
λ2√

λ1+
√
λ2

)2 ⇐⇒

(κ+ 1)
λ1λ2

(λ1 − λ2)2
<

√
λ1λ2(

√
λ1 +

√
λ2)

2

2(λ1 − λ2)2
⇐⇒

2
√
λ1λ2(κ+ 1) < (

√
λ1 +

√
λ2)

2 ⇐⇒

2κ
√
λ1λ2 < λ1 + λ2 = 1 ⇐⇒

κ <
1

2
√
λ1λ2

=
1

2
√

λ1(1− λ1)

The expression

MSEc > MSEss ⇐⇒ κ >
1

2
√
λ1(1− λ1)

can be proved by replacing < with > everywhere.

Proposition 5.2. Let X = Aϵ + µ be elliptical distributed. Define Ψ0 = AAT

tr(AAT )
. Let λ1, λ2 be the

eigenvalues of Ψ0. If λ1, λ2 > 0, λ1 ̸= λ2 and κ < 1, then MSEc < MSEss.

Proof. It is easy to check that the minimum of κ = 1

2
√

λ1(1−λ1)
is κ = 1. From Proposition 5.1 it then

follows that if κ < 1, then MSEc < MSEss.

The kurtosis of the multivariate normal distribution is always 0, hence for a multivariate normal
distribution of dimension 2 it always holds that MSEc < MSEss
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Proposition 5.3. Suppose X = Aϵ + µ has a multivariate t-distribution. Define Ψ0 = AAT

tr(AAT )
. Let

λ1, λ2 be the eigenvalues of Ψ0. If λ1, λ2 > 0 and λ1 ̸= λ2, then

MSEc < MSEss ⇐⇒ 4
√

λ1(1− λ1) + 4 < ν

and
MSEc > MSEss ⇐⇒ 4

√
λ1(1− λ1) + 4 > ν

Proof. Let λ1, λ2 > 0 such that λ1 + λ2 = 1 and λ1 ̸= λ2 be arbitrary given. For a multivariate
t-distribution and p = 2 we have that

κ =
ν − 2

ν − 4
− 1

Now by Proposition 5.1 we get

MSEc < MSEss ⇐⇒
ν − 2

ν − 4
− 1 <

1

2
√

λ1(1− λ1)
⇐⇒

2

ν − 4
<

1

2
√

λ1(1− λ1)
⇐⇒

4
√
λ1(1− λ1) + 4 < ν

The expression
MSEc > MSEss ⇐⇒ 4

√
λ1(1− λ1) + 4 > ν

can be proved by replacing < with > everywhere.

5.2 Dimension 3

For dimension 3 it is a bit harder to compare MSEc and MSEss, because there is one more eigenvalue
that can be chosen freely and there is not an explicit expression for δi and ηij , i, j = 1, 2, 3, i ̸= j.
However the integrals (5) and (8) could be solved numerically, hence it is possible to compare MSEc

and MSEss numerically.

In all the figures below for everything above the function it holds that MSEss < MSEc and below
the function it holds that MSEss > MSEc. In figure 9 a 3D plot is made of the κ for which MSEc =
MSEss. It seems like when λ2 or λ3 gets closer to zero or one κ seems to increase. When λ2 and λ3

get further away from zero and one κ seems to decrease.

To get a better idea of what happens, also some 2D plots are made. In figures 4, 5, 6, 7 and 8 2D
plots are made for a fixed λ1, respectively λ1 is 1

6 ,
1
3 ,

1
2 ,

2
3 and 5

6 . In figure 5 it is a parabola. In all
these figures as λ1 gets closer to zero or 1− λ1 (then λ3 gets closer to zero), then κ increases. Except
in figure 8, there it first increases as it gets closer to zero or 1 − λ1 and at some point it decreases.
This could also be an error in the numerical computation. The minimal points in the figures seem
to be approximately in the middle of λ2 and 1 − λ1. So when λ2 = λ3. Note that it is not possible
to calculate the asymptotic MSEs for λ2 = λ3, because we then have to divide by zero. The largest
point in the figures is approximately κ = 1.4 in figure 4 and 8. The smallest point in the figures is
approximately κ = 0.65 in figure 5.
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Figure 4: The dimension is 3. The first eigen-
value λ1 = 1

6 is fixed. On the x-axis is the
second eigenvalue λ2 and on the y-axis is the
κ for which it holds that MSEc = MSEss.
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Figure 5: The dimension is 3. The first eigen-
value λ1 = 1

3 is fixed. On the x-axis is the
second eigenvalue λ2 and on the y-axis is the
κ for which it holds that MSEc = MSEss.
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Figure 6: The dimension is 3. The first eigen-
value λ1 = 1

2 is fixed. On the x-axis is the
second eigenvalue λ2 and on the y-axis is the
κ for which it holds that MSEc = MSEss.
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Figure 7: The dimension is 3. The first eigen-
value λ1 = 2

3 is fixed. On the x-axis is the
second eigenvalue λ2 and on the y-axis is the
κ for which it holds that MSEc = MSEss.
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Figure 8: The dimension is 3. The first eigen-
value λ1 = 5

6 is fixed. On the x-axis is the
second eigenvalue λ2 and on the y-axis is the
κ for which it holds that MSEc = MSEss.
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Figure 9: The dimension is 3. On the x-axis and the y-axis there is the eigenvalues, λ1 and respectively
λ2. On the z-axis there is the κ for which it holds that MSEc = MSEss. Note here that the third
eigenvalue can be computed from the fact that λ1 + λ2 + λ3 = 1
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5.3 Dimension 4

In all the figures below again for everything above the function it holds that MSEss < MSEc and below
the function it holds that MSEss > MSEc. In figures 10, 11, 12, 13 and 14 a 3D plot is made of the κ
for which MSEc = MSEss and a fixed λ1, respectively λ1 is 1

6 ,
1
3 ,

1
2 ,

2
3 and 5

6 . Again it seems like when
λ2 or λ3 gets closer to zero or one, κ seems to increase. When λ2 and λ3 get further away from zero
and one, κ seems to decrease. The global minimum seems to be at approximately κ = 0.5 in all five
figures. So it seems that for most eigenvalues we have that if κ < 0.5, then MSEc < MSEss.

In table 3 the κ for which MSEc = MSEss is computed for fixed λ1 and λ2. The λ3 is on the x-axis
and κ on the y-axis. For λ1 = 1

6 , λ2 = 2
6 and λ1 = 1

6 , λ2 = 3
6 it seems to behave the same as for

dimension 2. For λ1 = 1
6 , λ2 = 4

6 and λ2 = 2
6 , λ2 = 3

6 there are two minimums with a maximum in the
middle.
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Figure 10: The dimension is 4. The first eigen-
value λ1 = 1

6 is fixed. On the x-axis is the sec-
ond eigenvalue λ2, on the y-axis is the third
eigenvalue λ3 and on the z-axis is the κ for
which it holds that MSEc = MSEss.
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Figure 11: The dimension is 4. The first eigen-
value λ1 = 1

3 is fixed. On the x-axis is the sec-
ond eigenvalue λ2, on the y-axis is the third
eigenvalue λ3 and on the z-axis is the κ for
which it holds that MSEc = MSEss.
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Figure 12: The dimension is 4. The first eigen-
value λ1 = 1

2 is fixed. On the x-axis is the sec-
ond eigenvalue λ2, on the y-axis is the third
eigenvalue λ3 and on the z-axis is the κ for
which it holds that MSEc = MSEss.
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Figure 13: The dimension is 4. The first eigen-
value λ1 = 2

3 is fixed. On the x-axis is the sec-
ond eigenvalue λ2, on the y-axis is the third
eigenvalue λ3 and on the z-axis is the κ for
which it holds that MSEc = MSEss.
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Figure 14: The dimension is 4. The first eigen-
value λ1 = 5

6 is fixed. On the x-axis is the sec-
ond eigenvalue λ2, on the y-axis is the third
eigenvalue λ3 and on the z-axis is the κ for
which it holds that MSEc = MSEss.
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Table 3: The dimension is 4. The first and second eigenvalues are fixed. On the x-axis is the third eigenvalue
λ3 and on the y-axis is the κ for which it holds that MSEc = MSEss.
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6 Confidence ellipsoids

Theorem 4.1 and Theorem 4.2 could also be used for other things then finding the MSE. It could
for example be used to find confidence ellipsoids. In [13] it is given that the formula of a confidence
ellipsoid of a p-variate normal distribution is

(x− µ)TΣ−1(x− µ) ≤ χ2
p(k) (22)

Here µ is the mean vector, Σ the covariance matrix and χ2
p(k) is the quantile function of a chi-squared

distribution with degrees of freedom p and probability k. Here the degrees of freedom p is the dimension
of the multivariate normal distribution. When using a confidence ellipsoid in practice, Σ needs to be
estimated.

6.1 Example: Confidence ellipses of loading vectors

Everything explained about biplots and loading vectors is based on [2]. Figures 15 and 16 are biplots of
the first and the second principal component for the marks data set, which can be found in the bnlearn
package in R (https://search.r-project.org/CRAN/refmans/bnlearn/html/marks.html). This
data is of 88 students and their mark for the following topics: mechanics, vectors, algebra, analysis
and statistics. So the dimension is 5 and the sample size is 88. In figure 15 it is done for the classical
principal components and in figure 16 it is done for the principal components based on spatial signs.
These biplots are plots of the first and second principal components, where in the same plot the
loadings for the first and second principal components are plotted. We plot these loadings as a vector
for every variable. These vectors, which we will call the loading vectors, are computed in the following
way for the classical case. Write Σ̂ as an eigenvalue decomposition Σ̂ = ĜΛ̂ĜT , with λ̂1 ≥ ... ≥ λ̂p ≥ 0.

Then the loading vector is wi = (ĝi1, ĝi2)
T , for variable i. For the spatial sign case Σ̂s is used instead

of Σ̂ to compute the loading vectors in figure 16. In these biplots the 0.95-confidence ellipses of the
loading vectors are also included. These confidence ellipses are calculated by using formula (22). The
covariance matrix Σ in (22) is estimated by using the covariances (2) and (3) for the classical case and
the covariances (12) and (13) for the spatial sign case. Also including the 0.95-confidence ellipses in
these biplots could for example be helpful in analyzing the data. In these plots this could be analyzed
in the following way. The first principal component tells us if a student is good in general or not,
because all the confidence ellipses are on the right side. The second principal component tells us that,
a student is good at the topics for which the confidence ellipses are at the upper side of the plane or is
good in the topics for which the confidence ellipses are at the lower side of the plane. So in figure 15, a
student is better at mechanics and vectors or they are better at analysis and statistics. One difference
we see between the two figures is that for the spatial sign case the confidence ellipses are larger then for
the classical case. Which then also gives us another analysis for figure 16, because now the confidence
ellipsoid of vectors and analysis is not completely at the upper or lower side of the plane. So now we
would conclude that the second principal components measures if a student is good in mechanics or
statistics.
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Figure 15: Biplot for the marks data set. The red arrows are the loading vectors of the variables. The
blue ellipses are the 0.95-confidence ellipses of the loading vectors.
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Figure 16: Biplot for the marks data set. Here the principal components are the principal components
based on spatial signs. The red arrows are the loading vectors of the variables. The blue ellipses are
the 0.95-confidence ellipses of the loading vectors.
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6.2 Simulation for dimension 2

The 0.95-confidence ellipsoid for the eigenvectors could also be calculated. This could then for example
be used to simulate how often the real eigenvector is in this 0.95-confidence ellipsoid. This could be
used to see how well the convergence of the results of Theorem 4.1 and Theorem 4.2 work.

If formula (22) is used to calculate the 0.95-confidence ellipsoid. Then the covariance matrix is not
invertible. The reason for this is that the norm of the eigenvectors is always one, hence the last
coordinate of the eigenvector is determined, up to the sign, by the other coordinates. This problem
can be solved by using polar coordinates. Now the delta-method is needed to then calculate the new
asymptotic covariance matrix.

In [14] it is given that the following relation holds between Cartesian coordinates (x, y) and polar
coordinates (r, ϕ)

x = r cosϕ

y = r sinϕ

r2 = x2 + y2

y

x
= tanϕ

If we let the second coordinate of the eigenvector be positive and let the norm of the eigenvector
be 1. Then the eigenvector is unique. Then the following function gives us the eigenvector in polar
coordinates (r, ϕ).

f(v1, v2) = (r, ϕ) = (1, arccos(v1))

Now we only need to know the last coordinate, because the radius is always 1. Define the func-
tion

h(v1, v2) = arccos(v1)

Then ∇h(v1, v2) = (−1/
√

1− v21 , 0)
T

Write Σ = OΛOT , Σ̂ = GLGT , Σs = O∆OT and Σ̂s = ÔDÔT as eigenvalue decompositions, with
λ1 > λ2 > 0, δ1 > δ2 > 0, l1 > l2 > 0, d1 > d2 > 0 and oi1 ≥ 0, gi1 ≥ 0, ôi1 ≥ 0, i = 1, 2. Define
Bi as the asymptotic covariance matrix of

√
n(gi − oi) and B̃i as the asymptotic covariance matrix of√

n(ôi − oi), i = 1, 2. By Theorem 4.1 respectively Theorem 4.2

Bi = (1 + κ)

2∑
j=1,j ̸=i

λjλi

(λj − λi)2
ojo

T
j

B̃i =

2∑
j=1,j ̸=i

ηji
(δj − δi)2

ojo
T
j

Now by using Theorem 4.2.3 of [4] we get that asymptotic covariance of
√
n(oi − gi), i = 1, 2 in polar

coordinates is
(∇h(oi))

TBi∇h(oi)

This asymptotic covariance can be estimated by estimating oi with gi and λi with li. If the distribution
is not known, then κ can be estimated with κ̂, see equation (1) The asymptotic covariance of

√
n(oi−ôi)

in polar coordinates is
(∇h(oi))

T B̃i∇h(oi)

This asymptotic covariance can be estimated by estimating oi with ôi and δi and η12 = η21 with using
the formulas of Proposition 4.1 and Corollary 4.1 and estimate λi with li. Note here that Lemma 4.1
and lemma 4.2 also holds without the normalisation of Ψ0 [5], hence Σ could be used in the lemma’s
instead of Ψ0.

Simulating how often the real eigenvector is in the 0.95-confidence interval is done in the following
way. Take a sample from an elliptical distribution, then calculate the confidence interval and check if
the real eigenvector (in polar coordinates) is in it. This is then repeated 10000 times.
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In the tabel below this is done for a multivariate normal distribution, with covariance matrix

Σ =

(
1/3 0
0 2/3

)
.

It is done for the covariance matrix (classical case) and the spatial sign covariance matrix (spatial sign
case).

spatial signs classic and classic and
assuming that κ = 0 estimating κ

Real eigenvector (0, 1)T (1, 0)T (0, 1)T (1, 0)T (0, 1)T (1, 0)T

n = 50 91.62% 91.01% 91.39% 91.29% 90.00% 89.00%
n = 100 93.13% 93.05% 92.90% 92.86% 92.44% 92.40%
n = 500 94.98% 94.98% 94.58% 94.58% 94.61% 94.61%
n = 1000 94.71% 94.71% 95.05% 95.05% 95.05% 95.05%

Table 4: Percentage that the real eigenvector is in the confidence interval of the eigenvector for

p = 2 and a multivariate normal distribution, with covariance matrix Σ =

(
1/3 0
0 2/3

)
.

It seems like it convergences in all cases to 95%, hence the convergence of the eigenvector seems to
work well. It seems that for the classical case it converges faster towards 95% then for the spatial sign
case.

In the tabel below it is done for a multivariate t-distribution with scatter matrix

Ψ =

(
1/3 0
0 2/3

)
.

spatial signs classic and classic and
assuming that κ = 2 estimating κ

Real eigenvector (0, 1)T (1, 0)T (0, 1)T (1, 0)T (0, 1)T (1, 0)T

n = 50 87.33% 86.76% 94.18% 93.52% 84.26% 83.74%
n = 100 90.33% 90.29% 95.39% 95.28% 89.09% 89.00%
n = 500 94.01% 94.01% 96.42% 96.24% 93.73% 93.73%
n = 1000 94.51% 94.51% 95.94% 95.94% 94.11% 94.11%

Table 5: Percentage that the real eigenvector is in the confidence interval of the eigenvector for
p = 2 and a multivariate t-distribution, where the degrees of freedom is 5 and the scatter matrix is

Ψ =

(
1/3 0
0 2/3

)
.

Here it also seems to converge towards 95%, exept if it is assumed that κ = 2, then it doesn’t seem to
converge. Here it seems like it converges faster towards 95% for the spatial sign case, then the classical
case where κ is estimated.

6.3 Simulation for dimension 3

The same can be done for dimension 3, but now using spherical coordinates. In [14] it is given
that the following relation holds between Cartesian coordinates (x, y, z) and spherical coordinates
(R, θ, ϕ)

R = x2 + y2 + z2

x = R sin θ cosϕ

y = R sin θ sinϕ

z = R cos θ
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And note that Rsinθ =
√
x2 + y2. Again the eigenvectors have norm 1 and we take the second coor-

dinate positive. Then the eigenvectors are unique. The following function then gives the eigenvector
in spherical coordinates (R, θ, ϕ).

f̃(v1, v2, v3) = (R, θ, ϕ) =

(
1, arccos(v3), arccos

(
v1/
√

v21 + v22

))
Now only the last two coordinates are needed, because the radius is always 1. Define the following
function

h̃(v1, v2, v3) =

(
arccos(v3), arccos

(
v1/
√
v21 + v22

))
Then

∇h̃ =

 0 −v2
v2
1+v2

2

0 v1
v2
1+v2

2−1√
1−v2

3

0


Write Σ = OΛOT , Σ̂ = GLGT , Σs = O∆OT and Σ̂s = ÔDÔT as eigenvalue decompositions, with
λ1 > λ2 > λ3 > 0, δ1 > δ2 > δ3 > 0, l1 > l2 > l3 > 0, d1 > d2 > d3 > 0 and oi1 ≥ 0, gi1 ≥ 0, ôi1 ≥
0, i = 1, 2, 3. Define Ei as the asymptotic covariance matrix of

√
n(gi − oi) and Ẽi as the asymptotic

covariance matrix of
√
n(ôi − oi), i = 1, 2, 3. By Theorem 4.1 respectively Theorem 4.2

Ei = (1 + κ)

3∑
j=1,j ̸=i

λjλi

(λj − λi)2
ojo

T
j

Ẽi =

3∑
j=1,j ̸=i

ηji
(δj − δi)2

ojo
T
j

Now by using Theorem 4.2.3 of [4] we get that asymptotic covariance matrix of
√
n(oi − gi), i = 1, 2, 3

in spherical coordinates is
(∇ĥ(oi))

TEi∇ĥ(oi)

This asymptotic covariance matrix can be estimated the same way as for dimension 2. The asymptotic
covariance matrix of

√
n(oi − ôi) in spherical coordinates is

(∇ĥ(oi))
T Ẽi∇ĥ(oi)

This asymptotic covariance can be estimated in the same way as for dimension 2, but now the integrals
(5) and (8) are used to estimate δi and ηij , instead of using Proposition 4.1 and Corollary 4.1. These
integrals need to be solved numerically.

In the table below the simulation is done for a multivariate normal distribution, with covariance
matrix

Σ =

1/6 0 0
0 1/3 0
0 0 1/2

 .

Note here that the spherical coordinates for the vector (0, 0, 1)T is not defined, so we can not calculate
the confidence interval/ellipse for this by using spherical coordinates.

spatial signs classic and classic and
assuming that κ = 0 estimating κ

Real eigenvector (0, 1, 0)T (1, 0, 0)T (0, 1, 0)T (1, 0, 0)T (0, 1, 0)T (1, 0, 0)T

n = 50 69.00% 76.38% 74.66% 80.97% 72.82% 79.14%
n = 100 79.00% 85.74% 83.84% 88.34% 83.04% 87.31%
n = 500 92.94% 94.25% 93.29% 94.17% 93.10% 93.96%
n = 1000 94.15% 94.77% 94.70% 95.05% 94.69% 94.92%

Table 6: Percentage that the real eigenvector is in the confidence ellipse of the eigenvector for

p = 3 and a multivariate normal distribution, where the covariance matrix is Σ =

1/6 0 0
0 1/3 0
0 0 1/2

 .
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It seems like it convergences in all cases to 95%, hence the convergence of the eigenvector seems to
work well. It seems that for the classical case it converges faster towards 95% then for the spatial sign
case, which was also the case for dimension 2.

In the table below it is done for a multivariate t-distribution with scatter matrix

Ψ =

1/6 0 0
0 1/3 0
0 0 1/2

 .

spatial signs classic and classic and
assuming that κ = 2 estimating κ

Real eigenvector (0, 1, 0)T (1, 0, 0)T (0, 1, 0)T (1, 0, 0)T (0, 1, 0)T (1, 0, 0)T

n = 50 64.91% 72.39% 74.36% 82.28% 60.10% 66.54%
n = 100 76.36% 82.91% 82.52% 89.35% 72.18% 78.88%
n = 500 90.97% 92.88% 93.67% 95.45% 89.23% 91.75%
n = 1000 92.90% 93.81% 95.21% 95.86% 92.36% 93.23%

Table 7: Percentage that the real eigenvector is in the confidence ellipse of the eigenvector for
p = 3 and a multivariate t-distribution, where the degrees of freedom is 5 and the scatter matrix is

Ψ =

1/6 0 0
0 1/3 0
0 0 1/2

 .

Here it also seems to converge towards 95%, except if it is assumed that κ = 2, then it doesn’t seem
to converge towards 95%. Which was also the case for dimension 2. Here it seems like it converges
faster towards 95% for the spatial sign case, then the classical case where κ is estimated.

It seems that for dimension 3 it takes a bit longer to converge towards 95% then for dimension 2.
Which makes sense, because for dimension 3 there are more things that need to be estimated, hence
more errors that are made.
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7 Discussion

When a distribution has a large kurtosis it seems like it would be better to use principal components
analysis based on spatial signs instead of using classical principal component analysis. Because as the
kurtosis increases, then the MSE will also increase for the classical case, but the MSE for the spatial
sign case is independent of the kurtosis. However when one eigenvector is really close to zero, we saw
that the κ, for which the two MSEs are the same, increases. Hence when the kurtosis is really large
and one of the eigenvalues is really close to zero, it is not always clear which MSE is smaller.

The MSE was simulated and then we saw that the asymptotic MSE we found indeed seems to converge
towards the simulated MSE. There we saw that for dimensions 2 and 3 this seems to work well and
seems to converge. However for dimension 12 the same was done, but then we saw that even at n = 1000
it doesn’t seem to converge yet. So for a large dimension it may take really long to converge.

The asymptotic result that were found for the eigenvectors could be used to find a confidence ellipsoid
for the eigenvectors. Using this showed us that the real eigenvector seems to converge to almost being
in the 0.95-confidence ellipsoids, 95% of the time. For the multivariate normal distribution this seemed
to converge faster by using the covariance matrix, then using the spatial sign covariance matrix. For
the multivariate t-distribution, with degrees of freedom 5, this seemed to converge faster by using the
spatial sign covariance matrix. This simulation was only done for dimensions 2 and 3. It seemed like
it converges faster to 95% for dimension 2, then dimension 3. So it might be a good idea to also check
this for higher dimension. This is however not so easy to do, because you first need to use another
coordinate system and then go to one dimension lower by using the fact that the norm is 1. For
dimensions 2 and 3 this could be done by using polar and spherical coordinates. For higher dimension
we first need to find a coordinate system that works for this. We also saw that the vector (0, 0, 1) isn’t
defined in spherical coordinates, hence we couldn’t do the simulation for this eigenvector.
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8 Conclusion

Firstly principal component analysis and principal component analysis based on spatial signs were
explained. Then we looked at some asymptotic results of the principal components that were already
known. Then similar asymptotic results of the eigenvectors and eigenvalues of the sample spatial sign
covariance matrix were proven. The asymptotic result of the eigenvectors could then be used to find
the asymptotic MSE. Then the MSEs for the two cases were compared for dimensions 2, 3 and 4. For
dimension two we even found an explicit formula for this. One of the differences between the MSEs we
have seen is that the MSE for the classical case is linearly dependent on the kurtosis and the MSE of
the spatial sign case is independent of the kurtosis. As the kurtosis increases the MSE for the classical
case also increases and the MSE for the spatial sign case doesn’t change. So for a large kurtosis
we would expect principal component analysis based on spatial signs to work better, then classical
principal component analysis. Even for a really large kurtosis principal component analysis based
on spatial signs works equally well as for a small kurtosis. Lastly we looked at confidence ellipsoids.
Where we gave an example how this could be used to find the confidence ellipses of loading vectors.
Which could then be used in analyzing a data set. We also used confidence ellipsoids to check how
well the asymptotic result of the eigenvectors work for dimensions 2 and 3. The percentage of the real
eigenvectors that is in the 95%-confidence interval or ellipse seems to converge towards 95%, hence it
seems to work well for dimensions 2 and 3.
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A R Code

R-code for the plost in figure 1 and 2.

#contour p l o t s f o r the mu l t i v a r i a t e normal d i s t r i b u t i o n
#and the mu l t i v a r i a t e t−d i s t r i b u t i o n .

l ibrary (mvtnorm)

#mu l i va r i a t e normal d i s t r i b u t i o n
pdf ( ” contour normal . pdf ” , width=6, he ight=6)
x <− seq ( −3 .5 ,3 .5 , length . out=200)
y <− x
z <− matrix (0 ,nrow=200 ,ncol=200)
mu <− c ( 0 , 0 ) #mean mu
sigma <− matrix (c ( 1 , 0 , 0 , 2 ) ,nrow=2) #covar iance sigma
for ( i in 1 : 200 ) {

for ( j in 1 : 200 ) {
z [ i , j ] <− dmvnorm(c ( x [ i ] , y [ j ] ) ,

mean=mu, sigma=sigma , log = FALSE) #dens i t y
}

}
contour (x , y , z , levels=seq ( from=0.01 , to =0.11 ,by=0.01)) #contour p l o t
dev . of f ( )

#mu l t i v a r i a t e t−d i s t r i b u t i o n
pdf ( ” contour t . pdf ” , width=6, he ight=6)
x <− seq ( −3 .5 ,3 .5 , length . out=200)
y <− x
z <− matrix (0 ,nrow=200 ,ncol=200)
mu <− c ( 0 , 0 ) #mean mu
sigma <− matrix (c ( 1 , 0 , 0 , 2 ) ,nrow=2) #covar iance sigma
for ( i in 1 : 200 ) {

for ( j in 1 : 200 ) {
z [ i , j ] <− dmvt(c ( x [ i ] , y [ j ] ) ,

d e l t a=mu, sigma=sigma , df = 5 , log = FALSE) #dens i t y
}

}
contour (x , y , z , levels=seq ( from=0.01 , to =0.11 ,by=0.01)) #contour p l o t
dev . of f ( )

#both in one p l o t
pdf ( ” contour t and normal . pdf ” , width=6, he ight=6)
x1 <− seq ( −3 .5 ,3 .5 , length . out=200)
y1 <− x
z1 <− matrix (0 ,nrow=200 ,ncol=200)
mu <− c ( 0 , 0 ) #mean mu
sigma <− matrix (c ( 1 , 0 , 0 , 2 ) ,nrow=2) #covar iance sigma
for ( i in 1 : 200 ) {

for ( j in 1 : 200 ) {
z1 [ i , j ] <− dmvnorm(c ( x1 [ i ] , y1 [ j ] ) ,

mean=mu, sigma=sigma , log = FALSE) #dens i t y
}

}
x2 <− seq ( −3 .5 ,3 .5 , length . out=200)
y2 <− x
z2 <− matrix (0 ,nrow=200 ,ncol=200)
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mu <− c ( 0 , 0 ) #mean mu
sigma <− matrix (c ( 1 , 0 , 0 , 2 ) ,nrow=2) #covar iance sigma
for ( i in 1 : 200 ) {

for ( j in 1 : 200 ) {
z2 [ i , j ] <− dmvt(c ( x2 [ i ] , y2 [ j ] ) ,

d e l t a=mu, sigma=sigma , df = 5 , log = FALSE) #dens i t y
}

}
contour ( x1 , y1 , z1 , levels=seq ( from=0.01 , to =0.11 ,by=0.01) , col = ’ red ’ ) #contour p l o t
contour ( x2 , y2 , z2 , add=TRUE, levels=seq ( from=0.01 , to =0.11 ,by=0.01) , col = ”blue ” ) #contour p l o t
dev . of f ( )

R-code for the plots in table 1 and 2

#Making p l o t wi th s imu la ted and asymptot ic MSE

l ibrary (mvtnorm)
l ibrary ( s s c o r )
l ibrary (ICSNP)
d <− 2 #dimension
m<− 10000 #repea t m times
mu <− c ( 0 , 0 ) #mean
df <− 5 #degrees o f freedom
#the n (number o f samples ) we want to p l o t
n vector <− c ( 20 : 200 )

#covar iance matrix : ( t h i s cou ld be changed to something e l s e )
sigma <− matrix (c ( 1 , 0 , 0 , 2 ) , ncol=d)

sum <− c ( rep (0 ,m) )
sum s s <− c ( rep (0 ,m) )
MSE <− c ( rep ( 0 , 200 ) )
MSE ss <− c ( rep ( 0 , 200 ) )

E Y <− eigen ( sigma )$vec to r s #e i g en v e c t o r s o f sigma

for (n in n vector ) {
set . seed (1 )
sum <− c ( rep (0 ,m) )
sum s s <− c ( rep (0 ,m) )
for ( k in 1 :m) {
#tak ing samples from the mu l t i v a r i a t e normal d i s t r i b u t i o n
x <− rmvnorm(n , mean=mu, sigma=sigma )
#tak ing samples from the mu l t i v a r i a t e t d i s t r i b u t i o n
#( the l i n e be low cou ld be uncommented , i f we want to use the mult t−d i s t r i b u t i o n )
#x <− rmvt (n=n , sigma = sigma , d f = 5 , d e l t a = mu)
mean <− colMeans (x ) #colum means o f x
x s tandar i z ed <− x−rep (mean, each = nrow( x ) ) #x s tandar i z ed w. r . t l o c a t i o n

emp cov <−cov ( x s tandar i z ed ) #empi r i ca l/sample covar iance matrix
V0 <− emp cov/sum(diag (emp cov ) ) #emp cov matrix s ca l e d such t ha t the t race i s 1
Y <− eigen (V0)$vec to r s #e i g en v e c t o r s o f V0 ( es t imated e i g en v e c t o r s )

#normˆ2 o f d i f f e r e n c e between t h e o r e t i c a l e i g en v e c t o r s and es t imated e i g en v e c t o r s
for ( i in 1 : d ) {

sum [ k ] <− sum [ k ] + min(norm ( (Y[ , i ]−E Y[ , i ] ) ) , norm ( (Y[ , i ]+E Y[ , i ] ) ) ) ˆ 2
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}

#s p a t i a l s i gn o f x s t andar i z ed wi th s p a t i a l median
x s s <− s p a t i a l . sign (x , c en t e r = TRUE, shape = FALSE)

#covar iance matrix o f x s s ( S p a t i a l s i gn covar iance matrix )
SSCM <− cov ( x s s )
SSCM <− SSCM/sum(diag (SSCM)) #sca l i n g SSCM such t ha t the t race i s 1
#e i g en v e c t o r s o f SSCM ( es t imated e i g en v e c t o r s based on s p a t i a l s i gn s )
Y ss <− eigen (SSCM)$vec to r s

#normˆ2 o f d i f f e r e n c e between t h e o r e t i c a l e i g en v e c t o r s
#and es t imated e i g en v e c t o r s o f SSCM
for ( i in 1 : d ) {

sum s s [ k ] <− sum s s [ k ] +
min(norm ( (Y s s [ , i ]−E Y[ , i ] ) ) , norm ( (Y s s [ , i ]+E Y[ , i ] ) ) ) ˆ 2

}

}
MSE[ n ] <− 1/m ∗ sum(sum) #MSE
MSE ss [ n ] <− 1/m ∗ sum(sum s s ) #MSE based on s p a t i a l s i gn s

}

lambda <− eigen ( sigma )$va lue s #e i g enva l u e s o f sigma the covar iance matrix
V <− 0
#computing the asymptot ic MSE ( from theorem 5.3) mu l t i p l i e d by n
for ( j in 1 : d ) {

for ( k in 1 : d) {
i f ( k != j ){
V <− V + ( lambda [ j ] ∗lambda [ k ] ) / ( lambda [ k]− lambda [ j ] ) ˆ 2

}
}

}

#p l o t o f MSE s imu la t i on and approximation o f the MSE by us ing theorem 5.1
x = MSE[ n vector ]
pdf ( f i l e = ”MSE. pdf ” )
plot (n vector , x , col =’ red ’ , type =’ l ’ ,

x lab=”n” , ylab=”MSE” )
l ines (n vector , V/ (n vector−1) , col = ’ green ’ )
legend ( ” top r i gh t ” , # Pos i t i on

i n s e t = 0 .05 , # Distance from the margin as a f r a c t i o n o f the p l o t reg ion
legend = c ( ”MSE s imu la t i on ” , ”MSE approximation ” ) ,
l t y = c (1 , 1 ) ,
col = c (2 , 3 ) ,
lwd = 2)

dev . of f ( )

#ca l c u l a t i n g e ta
n i j <− function (x , i , j ) {z <− 1 ; for ( k in 1 : d) {

z <− z∗(1+lambda [ k ] ∗x )ˆ0 . 5

} ; ( lambda [ i ] ∗lambda [ j ] ∗0 .25∗x )/((1+lambda [ i ] ∗x )∗(1+lambda [ j ] ∗x )∗z )}
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i n t e g r a t e ( n i j , 0 , In f , i =1, j =2)

#ca l c u l a t i n g d e l t a
d e l t a i <− function (x , i ) {

z <− 1 ; for ( k in 1 : d) {
z <− z∗(1+lambda [ k ] ∗x )ˆ0 . 5

} ; ( lambda [ i ] ∗ 0 . 5 )/((1+lambda [ i ] ∗x )∗z )
}

i n t e g r a t e ( d e l t a i , 0 , In f , i =1)

#computing the asymptot ic MSE ( from theorem 5.2) mu l t i p l i e d by n
V ss <−0
for ( a in 1 : d) {

for (b in 1 : d) {
i f (b != a ){
V ss <− V ss +( i n t e g r a t e ( n i j , 0 , In f , i =a , j=b)$value/

( i n t e g r a t e ( d e l t a i , 0 , In f , i =a )$value−
i n t e g r a t e ( d e l t a i , 0 , In f , i =b)$value )ˆ2)

}
}

}

#p l o t o f MSE s imu la t i on and approximating MSE with the asymptot ic MSE ( o f the theorem )
#fo r the s p a t i a l s i gn case
y = MSE ss [ n vector ]
pdf ( f i l e = ”MSE ss . pdf ” )
plot (n vector , y , col =’ red ’ , type =’ l ’ ,

x lab=”n” , ylab=”MSE” , lwd=2.0 , cex . axis = 1 , cex . lab = 1)
l ines (n vector , V s s/ (n vector−1) , col = ’ green ’ , lwd=3.0)
legend ( ” top r i gh t ” , # Pos i t i on

i n s e t = 0 .05 , # Distance from the margin as a f r a c t i o n o f the p l o t reg ion
legend = c ( ” c l a s s i c a l ” , ” s p a t i a l s i g n s ” ) ,
l t y = c (1 , 1 ) ,
col = c (2 , 3 ) ,
lwd = 2 ,
cex=1)

dev . of f ( )

R-code for the plots in figures 4, 5, 6, 7 and 8.

#p l o t MSE c = MSE ss f o r dimension 3
#f i x e d lambda 1

kappa <− c ( rep ( 0 , 100 ) )
MSE approx c <− c ( rep ( 0 , 100 ) )
MSE approx s s<−c ( rep ( 0 , 100 ) )
#the va lue 1/6 can be changed to something e l s e to g e t
#a p l o t wi th another f i x e d lambda 1
lambda1 <− 1/6 #f i x e d lambda 1 ( f i r s t e i g enva l u e )
n <− seq ( 0 . 001 , 1−lambda1−0.001 , length=100)
for ( i in 1 : 100 ) {

lambda <− c ( lambda1 , n [ i ] , 1−lambda1−n [ i ] ) #lambda 2 the second e i g enva l u e
lambda
#computing asymptot ic MSE ( from theorem 5 .1) mu l t i p l i e d by n
for ( j in 1 : 3 ) {

for ( k in 1 : 3 ) {
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i f ( k != j ){
MSE approx c [ i ] <− MSE approx c [ i ] + ( lambda [ j ] ∗lambda [ k ] ) /

( lambda [ k]− lambda [ j ] ) ˆ 2
}

}
}
#computing e ta
n i j <− function (x , i , j ) {z <− 1 ; for ( k in 1 : 3 ) {

z <− z∗(1+lambda [ k ] ∗x )ˆ0 . 5
} ; ( lambda [ i ] ∗lambda [ j ] ∗0 .25∗x )/((1+lambda [ i ] ∗x )∗(1+lambda [ j ] ∗x )∗z )}

#computing d e l t a
d e l t a i <− function (x , i ) {

z <− 1 ; for ( k in 1 : 3 ) {
z <− z∗(1+lambda [ k ] ∗x )ˆ0 . 5

} ; ( lambda [ i ] ∗ 0 . 5 )/((1+lambda [ i ] ∗x )∗z )
}

#computing asymptot ic MSE ( from theorem 5 .2) mu l t i p l i e d by n
#s p a t i a l s i gn case
for ( a in 1 : 3 ) {

for (b in 1 : 3 ) {
i f (b != a ){
MSE approx s s [ i ] <− MSE approx s s [ i ] +

( i n t e g r a t e ( n i j , 0 , In f , i =a , j=b)$value/ ( i n t e g r a t e ( d e l t a i , 0 , In f , i =a )$value
− i n t e g r a t e ( d e l t a i , 0 , In f , i=b)$value )ˆ2)

}
}

}
#computing kappa such t ha t MSE c = MSE ss
kappa [ i ] <− MSE approx s s [ i ] /MSE approx c [ i ] −1

}

MSE approx c
MSE approx s s
kappa

#p l o t MSE c = MSE ss
pdf ( ”1 6 p=3. pdf ” , width=6, he ight=6)
plot (n [ 1 : 1 0 0 ] , kappa [ 1 : 1 0 0 ] , x lab = ”lambda 2” , ylab = ”kappa” )
dev . of f ( )

R-code for the plot in figure 9.

#p l o t MSE c = MSE ss f o r dimension 3
#3D p l o t

x<−0
y<−0
z<−0
kappa <− 0
MSE approx c <− 0
MSE approx s s<−0
n <− seq (0 , 1 , length=200)
for ( i in 2 : 199 ) {

for ( l in 2 : 199 ) {
lambda 3 <− n [ i ] + n [ l ] #lambda 3 ( t h i r d e i g enva l u e )
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#n [ i ] i s the f i r s t e i g enva l u e and n [ l ] i s the second e i g enva l u e
i f (n [ i ]+n [ l ] <1 & i != l & n [ i ] != 1− n [ i ] − n [ l ] & n [ l ] != 1− n [ i ] −n [ l ] ) {

kappa <− 0
MSE approx c <− 0
MSE approx s s<−0
lambda <− c (n [ i ] , n [ l ] , 1−n [ l ]−n [ i ] ) #lambda = ( lambda 1 , lambda 2 , lambda 3)
#computing asymptot ic MSE ( from theorem 5 .1) mu l t i p l i e d by n
for ( j in 1 : 3 ) {

for ( k in 1 : 3 ) {
i f ( k != j ){
MSE approx c <− MSE approx c + ( lambda [ j ] ∗lambda [ k ] ) /

( lambda [ k]− lambda [ j ] ) ˆ 2
}

}
}
#computing e ta
n i j <− function (x , i , j ) {z <− 1 ; for ( k in 1 : 3 ) {

z <− z∗(1+lambda [ k ] ∗x )ˆ0 . 5
} ; ( lambda [ i ] ∗lambda [ j ] ∗0 .25∗x )/((1+lambda [ i ] ∗x )∗(1+lambda [ j ] ∗x )∗z )}

#computing d e l t a
d e l t a i <− function (x , i ) {

z <− 1 ; for ( k in 1 : 3 ) {
z <− z∗(1+lambda [ k ] ∗x )ˆ0 . 5

} ; ( lambda [ i ] ∗ 0 . 5 )/((1+lambda [ i ] ∗x )∗z )
}

#computing asymptot ic MSE ( from theorem 5 .2) mu l t i p l i e d by n
for ( a in 1 : 3 ) {

for (b in 1 : 3 ) {
i f (b != a ){
MSE approx s s <− MSE approx s s +
( i n t e g r a t e ( n i j , 0 , In f , i =a , j=b)$value/ ( i n t e g r a t e ( d e l t a i , 0 , In f , i =a )$value
− i n t e g r a t e ( d e l t a i , 0 , In f , i=b)$value )ˆ2)

}
}

}
i f ( i s . i n f i n i t e (MSE approx s s/MSE approx c −1) ==

FALSE & is .nan(MSE approx s s/MSE approx c −1) == FALSE){
x <− c (x , n [ i ] ) #lambda 1 on x−ax i s
y <− c (y , n [ l ] ) #lambda 2 on y−ax i s
z <− c ( z , MSE approx s s/MSE approx c −1) #kappa on z−ax i s

}

}
}

}
#p l o t MSE c = MSE ss
pdf ( f i l e = ”p=3. pdf ” )
source ( ’ http : //www. sthda . com/sthda/RDoc/ f un c t i on s/addgr ids3d . r ’ )
s c a t t e r p l o t 3d (x [ 2 : length ( x ) ] , y [ 2 : length ( y ) ] , z [ 2 : length ( z ) ] ,

x lab = ”lambda 1” , ylab = ”lambda 2” , z lab = ”kappa” )
addgr ids3d (x [ 2 : length ( x ) ] , y [ 2 : length ( y ) ] , z [ 2 : length ( z ) ] ,

grid = c ( ”xy” , ”xz” , ”yz” ) )
dev . of f ( )

R-code for the plots in table 3.
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#p l o t MSE c = MSE ss f o r dimension 4
#f i x e d lambda 1 and lamda 2

kappa <− c ( rep ( 0 , 100 ) )
MSE approx c <− c ( rep ( 0 , 100 ) )
MSE approx s s<−c ( rep ( 0 , 100 ) )
#the va l u e s 1/6 and 2/6 can be changed to something e l s e to g e t a p l o t wi th
#another f i x e d lambda 1 and lambda 2
lambda1 <− 1/6 #f i x e d lambda 1
lambda2 <− 2/6 #f i x e d lambda 2
n <− seq ( 0 . 001 , 1−lambda1 − lambda2−0.001 , length=100)
for ( i in 1 : 100 ) {
#lambda = ( lambda 1 , lambda 2 , lambda 3 , lambda 4)
lambda <− c ( lambda1 , lambda2 , n [ i ] , 1−lambda1−lambda2−n [ i ] )
lambda
#computing asymptot ic MSE ( from theorem 5 .1) mu l t i p l i e d by n
for ( j in 1 : 4 ) {

for ( k in 1 : 4 ) {
i f ( k != j ){
MSE approx c [ i ] <− MSE approx c [ i ] +

( lambda [ j ] ∗lambda [ k ] ) / ( lambda [ k]− lambda [ j ] ) ˆ 2
}

}
}
#computing e ta
n i j <− function (x , i , j ) {z <− 1 ; for ( k in 1 : 4 ) {

z <− z∗(1+lambda [ k ] ∗x )ˆ0 . 5
} ; ( lambda [ i ] ∗lambda [ j ] ∗0 .25∗x )/((1+lambda [ i ] ∗x )∗(1+lambda [ j ] ∗x )∗z )}

#computing d e l t a
d e l t a i <− function (x , i ) {

z <− 1 ; for ( k in 1 : 4 ) {
z <− z∗(1+lambda [ k ] ∗x )ˆ0 . 5

} ; ( lambda [ i ] ∗ 0 . 5 )/((1+lambda [ i ] ∗x )∗z )
}

#computing asymptot ic MSE ( from theorem 5 .2) mu l t i p l i e d by n
for ( a in 1 : 4 ) {

for (b in 1 : 4 ) {
i f (b != a ){
MSE approx s s [ i ] <− MSE approx s s [ i ] +

( i n t e g r a t e ( n i j , 0 , In f , i =a , j=b)$value/
( i n t e g r a t e ( d e l t a i , 0 , In f , i =a )$value−

i n t e g r a t e ( d e l t a i , 0 , In f , i=b)$value )ˆ2)
}

}
}
#computing kappa such t ha t MSE c = MSE ss
kappa [ i ] <− MSE approx s s [ i ] /MSE approx c [ i ] −1

}

MSE approx c
MSE approx s s
kappa

#p l o t MSE c = MSE ss
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pdf ( ”2 3 p=4. pdf ” , width=6, he ight=6)
plot (n [ 1 : 1 0 0 ] , kappa [ 1 : 1 0 0 ] , x lab = ”lambda 3” , ylab = ”kappa” )
dev . of f ( )

R-code for the plots in figures 10, 11, 12, 13 and 14.

#3D p l o t MSE c = MSE ss f o r dimension 4
#f i x e d lambda 1

x<−0
y<−0
z<−0
kappa <− 0
MSE approx c <− 0
MSE approx s s<−0
#the va l u e s 1/6 can be changed to something e l s e to g e t
#a p l o t wi th another f i x e d lambda 1
lambda 1 <− 1/6 #f i x e d lambda 1
n <− seq (0 , 1 , length=200)
for ( i in 2 : 199 ) {

for ( l in 2 : 199 ) {
lambda 3 <− n [ i ] + n [ l ]
i f (n [ i ]+n [ l ] + lambda 1 <1 & i != l & n [ i ] != 1− n [ i ] − n [ l ]

− lambda 1 & n [ l ] != 1− n [ i ] −n [ l ] − lambda 1){
kappa <− 0
MSE approx c <− 0
MSE approx s s<−0
#lambda = ( lambda 1 , lambda 2 , lambda 3 , lambda 4)
lambda <− c ( lambda 1 , n [ i ] , n [ l ] , 1−n [ l ]−n [ i ]− lambda 1)
#computing asymptot ic MSE ( from theorem 5 .1) mu l t i p l i e d by n
for ( j in 1 : 4 ) {

for ( k in 1 : 4 ) {
i f ( k != j ){
MSE approx c <− MSE approx c +

( lambda [ j ] ∗lambda [ k ] ) / ( lambda [ k]− lambda [ j ] ) ˆ 2
}

}
}
#computing e ta
n i j <− function (x , i , j ) {z <− 1 ; for ( k in 1 : 4 ) {

z <− z∗(1+lambda [ k ] ∗x )ˆ0 . 5
} ; ( lambda [ i ] ∗lambda [ j ] ∗0 .25∗x )/((1+lambda [ i ] ∗x )∗(1+lambda [ j ] ∗x )∗z )}

#computing d e l t a
d e l t a i <− function (x , i ) {

z <− 1 ; for ( k in 1 : 4 ) {
z <− z∗(1+lambda [ k ] ∗x )ˆ0 . 5

} ; ( lambda [ i ] ∗ 0 . 5 )/((1+lambda [ i ] ∗x )∗z )
}

#computing asymptot ic MSE ( from theorem 5 .2) mu l t i p l i e d by n
for ( a in 1 : 4 ) {

for (b in 1 : 4 ) {
i f (b != a ){
MSE approx s s <− MSE approx s s +

( i n t e g r a t e ( n i j , 0 , In f , i =a , j=b)$value/
( i n t e g r a t e ( d e l t a i , 0 , In f , i =a )$value
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− i n t e g r a t e ( d e l t a i , 0 , In f , i=b)$value )ˆ2)
}

}
}
i f ( i s . i n f i n i t e (MSE approx s s/MSE approx c −1) ==

FALSE & is .nan(MSE approx s s/MSE approx c −1) == FALSE){
x <− c (x , n [ i ] ) #lambda 1 on x−ax i s
y <− c (y , n [ l ] ) #lambda 2 on y−ax i s
z <− c ( z , MSE approx s s/MSE approx c −1) #kappa on z−ax i s

}

}
}

}
#p l o t o f MSE c = MSE ss
pdf ( ”1 p=4. pdf ” , width=6, he ight=6)
source ( ’ http : //www. sthda . com/sthda/RDoc/ f un c t i on s/addgr ids3d . r ’ )
s c a t t e r p l o t 3d (x [ 2 : length ( x ) ] , y [ 2 : length ( y ) ] , z [ 2 : length ( z ) ] ,

x lab = ”lambda 2” , ylab = ”lambda 3” , z lab = ”kappa” )
addgr ids3d (x [ 2 : length ( x ) ] , y [ 2 : length ( y ) ] , z [ 2 : length ( z ) ] ,

grid = c ( ”xy” , ”xz” , ”yz” ) )
dev . of f ( )

R-code for figure 15.

#data example us ing con f idence e l l i p s o i d s

l ibrary ( bnlearn )
data (marks )
n <− length (marks [ , 1 ] )

# ca l c u l a t i o n o f e i g en va l u e s
eigenm <− eigen (cov (marks ) )

mean <− colMeans (marks ) #mean
kappa <− 0
marksmatrix <− as .matrix (marks )
#es t ima t ing kappa ( you cou ld a l s o take an kappa and then
#uncomment the f o l l ow i n g 6 l i n e s )
for ( i in 1 : 88 ) {

kappa <−kappa +
( t ( marksmatrix [ i , ]− mean)%∗%inv (cov (marks ) )%∗%( marksmatrix [ i , ]−mean) )ˆ2

}
kappa
kappa <− 1/(5∗(5+2)∗88)∗kappa −1
kappa <− kappa [ 1 , 1 ]

# look s n i ce r i f we make l oad in g s o f f i r s t p r i n c i p a l component p o s i t i v e
eigenm$vector [ , 1 ] <− eigenm$vector [ , 1 ] ∗(−1)

# p l o t t i n g p r i n c i p a l components
pdf ( ” bip lotkappa . pdf ” , width=6, he ight=6)
par (mar=c ( 4 , 4 , 2 . 5 , 2 . 5 ) )

plot (c (−100 ,100) ,c (−100 ,100) , type=”n” , xlab=” 1 . p r i n c i p a l component” ,
ylab=” 2 . p r i n c i p a l component” )

Xval <− ( as .matrix (marks )
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−matrix (apply (marks , 2 ,mean) , ncol=5,nrow=n , byrow=TRUE))%∗%eigenm$vector [ , 1 ]
Yval <− ( as .matrix (marks )

−matrix (apply (marks , 2 ,mean) , ncol=5,nrow=n , byrow=TRUE))%∗%eigenm$vector [ , 2 ]
points (Xval , Yval )

# now we add the d i r e c t i o n o f the p r i n c i p a l components
#( mu l t i p l y e v e r y t h in g wi th 100 to make i t l ook n i ce r )
for ( i in 1 : 5 ) {

arrows ( x0=0,x1=eigenm$vector [ i , 1 ] ∗100 , y0=0,
y1=eigenm$vector [ i , 2 ] ∗100 , lwd=2,col=”red” )

text ( eigenm$vector [ i , 1 ] ∗100 , eigenm$vector [ i , 2 ] ∗100 ,
labels=colnames (marks ) [ i ] , pos=1,col=”red” , cex=1)

}

# ca l c u l a t i o n o f the asymptot ic covar iances
Cov1 <− Cov2 <− Cov12 <− matrix (0 , ncol=5,nrow=5)

# covar iance o f l o ad in g s o f f i r s t p r i n c i p a l component
for ( i in 2 : 5 ) Cov1 <− Cov1+(eigenm$va lue s [ i ] ∗eigenm$va lue s [ 1 ] /

( eigenm$va lue s [ i ]−eigenm$va lue s [ 1 ] ) ˆ 2
∗eigenm$vector [ , i ]%∗%t ( eigenm$vector [ , i ] ) )

Cov1 <− Cov1∗(1+kappa)
# covar iance o f l o ad in g s o f second p r i n c i p a l component
for ( i in c ( 1 , 3 , 4 , 5 ) ) Cov2 <− Cov2+(eigenm$va lue s [ i ] ∗eigenm$va lue s [ 2 ] /

( eigenm$va lue s [ i ]−eigenm$va lue s [ 2 ] ) ˆ 2
∗eigenm$vector [ , i ]%∗%t ( eigenm$vector [ , i ] ) )

Cov2 <− Cov2∗(1+kappa)
# covar iance between l oad in g s o f f i r s t and second r i n c i p a l component
Cov12 <− −(eigenm$va lue s [ 1 ] ∗eigenm$va lue s [ 2 ] /

( eigenm$va lue s [1]− eigenm$va lue s [ 2 ] ) ˆ 2
∗eigenm$vector [ , 1 ]%∗%t ( eigenm$vector [ , 2 ] ) )

Cov12 <− Cov12∗(1+kappa)
# draw e l l i p s e s
l ibrary ( car )
for ( i in 1 : 5 ) {
# one has to g i v e the cen ter and the covar iance matrix
#and the rad ius which i s the squareroo t o f the q u an t i l e
e l l i p s e ( c en t e r=c ( eigenm$vector [ i , 1 : 2 ] ) ∗100 ,

shape=matrix (c (Cov1 [ i , i ] , Cov12 [ i , i ] , Cov12 [ i , i ] , Cov2 [ i , i ] ) , ncol=2)/
n∗100ˆ2 , rad iu s=sqrt (qchisq ( 0 . 9 5 , 2 ) ) )

}
axis ( s i d e =3,col=”red” , at=seq ( from=−100, to=100 ,by=50) , labels=seq ( from=−1,to=1,b=0.5))
axis ( s i d e =4,col=”red” , at=seq ( from=−100, to=100 ,by=50) , labels=seq ( from=−1,to=1,b=0.5))

dev . of f ( )

R-code for figure 16.

l ibrary ( bnlearn )
l ibrary (ICSNP)
data (marks )
n <− length (marks [ , 1 ] )

# ca l c u l a t i o n o f e i g en va l u e s (now of s p a t i a l s i gn covar iance matrix )
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eigenm <− eigen (cov ( s p a t i a l . sign (marks , c en t e r = TRUE, shape = FALSE) ) )

#a l s o need e i g enva l u e s o f covar iance matrix
lambda <− eigen (cov (marks ) )$va lue s

# look s n i ce r i f we make l oad in g s o f f i r s t p r i n c i p a l component p o s i t i v e
eigenm$vector [ , 1 ] <− eigenm$vector [ , 1 ] ∗(−1)

# p l o t t i n g p r i n c i p a l components
pdf ( ” b i p l o t s s 2 . pdf ” , width=6, he ight=6)
par (mar=c ( 4 , 4 , 2 . 5 , 2 . 5 ) )

#Here we now have use the data s t andar i z ed wi th s p a t i a l median
sm <− s p a t i a l .median(marks )
plot (c (−100 ,100) ,c (−100 ,100) , type=”n” , xlab=” 1 . p r i n c i p a l component” ,

ylab=” 2 . p r i n c i p a l component” )
Xval <− ( as .matrix (marks)−rep (sm , each = nrow(marks ) ) )%∗%eigenm$vector [ , 1 ]
Yval <− ( as .matrix (marks)−rep (sm , each = nrow(marks ) ) )%∗%eigenm$vector [ , 2 ]
points (Xval , Yval )

# now we add the d i r e c t i o n o f the p r i n c i p a l components
#( mu l t i p l y e v e r y t h in g wi th 100 to make i t l ook n i ce r )
for ( i in 1 : 5 ) {

arrows ( x0=0,x1=eigenm$vector [ i , 1 ] ∗100 , y0=0,y1=eigenm$vector [ i , 2 ] ∗100 , lwd=2,col=”red” )
text ( eigenm$vector [ i , 1 ] ∗100 , eigenm$vector [ i , 2 ] ∗100 ,

labels=colnames (marks ) [ i ] , pos=1,col=”red” , cex=1)
}

# ca l c u l a t i o n o f the asymptot ic covar iances
Cov1 <− Cov2 <− Cov12 <− matrix (0 , ncol=5,nrow=5)

#ca l c u l a t i n g d e l t a and e ta
d = 5
#eta
n i j <− function (x , i , j ) {z <− 1 ; for ( k in 1 : d) {

z <− z∗(1+lambda [ k ] ∗x )ˆ0 . 5

} ; ( lambda [ i ] ∗lambda [ j ] ∗0 .25∗x )/((1+lambda [ i ] ∗x )∗(1+lambda [ j ] ∗x )∗z )}
eta1 <− eta2 <− c ( 0 , 0 , 0 , 0 , 0 )
for ( k in 2 : 5 ) {

eta1 [ k ] <− i n t e g r a t e ( n i j , 0 , In f , i =1, j=k )$value
}
for ( k in c ( 1 , 3 , 4 , 5 ) ) {

eta2 [ k ] <− i n t e g r a t e ( n i j , 0 , In f , i =2, j=k )$value
}
#de l t a
de l t a <− c ( 0 , 0 , 0 , 0 , 0 )
d e l t a i <− function (x , i ) {

z <− 1 ; for ( k in 1 : d) {
z <− z∗(1+lambda [ k ] ∗x )ˆ0 . 5

} ; ( lambda [ i ] ∗ 0 . 5 )/((1+lambda [ i ] ∗x )∗z )
}
for ( k in 1 : 5 ) {

de l t a [ k ] <− i n t e g r a t e ( d e l t a i , 0 , In f , i =k )$value
}
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# covar iance o f l o ad in g s o f f i r s t p r i n c i p a l component
for ( i in 2 : 5 ) Cov1 <− Cov1+eta1 [ i ] /

( d e l t a [ i ]− de l t a [ 1 ] ) ˆ 2 ∗eigenm$vector [ , i ]%∗%t ( eigenm$vector [ , i ] )

# covar iance o f l o ad in g s o f second p r i n c i p a l component
for ( i in c ( 1 , 3 , 4 , 5 ) ) Cov2 <− Cov2+eta2 [ i ] /

( d e l t a [ i ]− de l t a [ 2 ] ) ˆ 2 ∗eigenm$vector [ , i ]%∗%t ( eigenm$vector [ , i ] )

# covar iance between l oad in g s o f f i r s t and second r i n c i p a l component
Cov12 <− −eta1 [ 2 ] / ( d e l t a [1]− de l t a [ 2 ] ) ˆ 2 ∗eigenm$vector [ , 1 ]%∗%t ( eigenm$vector [ , 2 ] )

# draw e l l i p s e s
l ibrary ( car )
for ( i in 1 : 5 ) {
# one has to g i v e the cen ter and the covar iance matrix
#and the rad ius which i s the squareroo t o f the q u an t i l e
e l l i p s e ( c en t e r=c ( eigenm$vector [ i , 1 : 2 ] ) ∗100 ,

shape=matrix (c (Cov1 [ i , i ] , Cov12 [ i , i ] , Cov12 [ i , i ] , Cov2 [ i , i ] ) , ncol=2)/
n∗100ˆ2 , rad iu s=sqrt (qchisq ( 0 . 9 5 , 2 ) ) )

}
axis ( s i d e =3,col=”red” , at=seq ( from=−100, to=100 ,by=50) , labels=seq ( from=−1,to=1,b=0.5))
axis ( s i d e =4,col=”red” , at=seq ( from=−100, to=100 ,by=50) , labels=seq ( from=−1,to=1,b=0.5))

dev . of f ( )

R-code for the spatial signs of tables 4, 5, 6 and 7

#simu la t ing how o f t en the r e a l e i g env e c t o r i s in the 95% conf idence i n t e r v a l
#s p a t i a l s i gn case

set . seed (3 )

l ibrary ( bnlearn )
l ibrary (ICSNP)
l ibrary ( matl ib )
#for dimension 2
d <− 2 #dimension
n <− 50 #n number o f samples
t e l 1 <− 0
t e l 2 <− 0
mu <−c ( 0 , 0 ) #mu
sigma <−sigma <− matrix (diag (c (1/3 ,2/ 3 ) ) , ncol =d) #sigma ( s c a t t e r matrix )

for (m in 1 :10000) {

vector <− eigen ( sigma )$vec to r s #e i g en v e c t o r s o f sigma

#tak ing samples from the mu l t i v a r i a t e normal d i s t r i b u t i o n
x <− rmvnorm(n , mean=mu, sigma=sigma )
#tak ing samples from the mu l t i v a r i a t e t d i s t r i b u t i o n
#i f we want to do i t f o r the mu l t i v a r i a t e t d i s t r i b u t i o n the f o l l ow i n g l i n e
#cou ld be uncommented
#x <− rmvt (n=n , sigma = sigma , d f = 5 , d e l t a = mu)
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# ca l c u l a t i o n o f e i g en va l u e s (now of s p a t i a l s i gn covar iance matrix )
eigenm <− eigen (cov ( s p a t i a l . sign (x , c en t e r = TRUE, shape = FALSE) ) )

#a l s o need e i g enva l u e s o f covar iance matrix
mean <− colMeans (x ) #colum means o f x
lambda <− eigen (cov (x−rep (mean, each = nrow( x ) ) ) ) $va lue s #e i g enva l u e s

# ca l c u l a t i o n o f the asymptot ic covar iances
Cov1 <− Cov2 <− Cov12 <− matrix (0 , ncol=2,nrow=2)

#ca l c u l a t i n g d e l t a and e ta
#eta
n i j <− function (x , i , j ) {z <− 1 ; for ( k in 1 : d) {

z <− z∗(1+lambda [ k ] ∗x )ˆ0 . 5

} ; ( lambda [ i ] ∗lambda [ j ] ∗0 .25∗x )/((1+lambda [ i ] ∗x )∗(1+lambda [ j ] ∗x )∗z )}
eta1 <− eta2 <− c ( 0 , 0 , 0 , 0 , 0 )
for ( k in 2 : d) {

eta1 [ k ] <− i n t e g r a t e ( n i j , 0 , In f , i =1, j=k )$value
}
for ( k in c ( 1 ) ) {

eta2 [ k ] <− i n t e g r a t e ( n i j , 0 , In f , i =2, j=k )$value
}
#de l t a
de l t a <− c ( 0 , 0 , 0 , 0 , 0 )
d e l t a i <− function (x , i ) {

z <− 1 ; for ( k in 1 : d) {
z <− z∗(1+lambda [ k ] ∗x )ˆ0 . 5

} ; ( lambda [ i ] ∗ 0 . 5 )/((1+lambda [ i ] ∗x )∗z )
}
for ( k in 1 : d) {

de l t a [ k ] <− i n t e g r a t e ( d e l t a i , 0 , In f , i =k )$value
}

# covar iance o f l o ad in g s o f f i r s t p r i n c i p a l component
for ( i in 2 : d ) Cov1 <− Cov1+eta1 [ i ] /

( d e l t a [ i ]− de l t a [ 1 ] ) ˆ 2 ∗eigenm$vector [ , i ]%∗%t ( eigenm$vector [ , i ] )

# covar iance o f l o ad in g s o f second p r i n c i p a l component
for ( i in c ( 1 ) ) Cov2 <− Cov2+eta2 [ i ] /

( d e l t a [ i ]− de l t a [ 2 ] ) ˆ 2 ∗eigenm$vector [ , i ]%∗%t ( eigenm$vector [ , i ] )

# covar iance between l oad in g s o f f i r s t and second r i n c i p a l component
Cov12 <− −eta1 [ 2 ] / ( d e l t a [1]− de l t a [ 2 ] ) ˆ 2 ∗eigenm$vector [ , 1 ]%∗%t ( eigenm$vector [ , 2 ] )

#making the second coord ina te o f the e i g en v e c t o r s p o s i t i v e
i f ( eigenm$vec to r s [2 ,1 ]<0){

eigenm$vec to r s [ , 1 ] ∗−1
}
i f ( eigenm$vec to r s [2 ,2 ]<0){

eigenm$vec to r s [ , 2 ] ∗−1
}

#ca l c u l a t i n g po la r coord ina ted o f e i g en v e c t o r s
eigen po la r <− c ( 0 , 0 )
for ( i in c ( 1 , 2 ) ){
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eigen po la r [ i ] <− acos ( eigenm$vec to r s [ 1 , i ] )
}

#making the second coord ina te o f the r e a l e i g en v e c t o r s p o s i t i v e
i f (vector [ 2 ,1 ] <0){

vector [ , 1 ] ∗−1
}
i f (vector [ 2 ,2 ] <0){

vector [ , 2 ] ∗−1
}

#ca l c u l a t i n g g rad i en t o f h
h1 <− c(−1/ ( sqrt(1−eigenm$vec to r s [ 1 , 1 ] ˆ 2 ) ) , 0)
h2 <− c(−1/ ( sqrt(1−eigenm$vec to r s [ 1 , 2 ] ˆ 2 ) ) , 0)

Cov1 <− Cov1/n
Cov2 <− Cov2/n

NewCov1 <− t ( h1 )%∗%Cov1%∗%h1
NewCov2 <− t ( h2 )%∗%Cov2%∗%h2

#ca l c u l a t i n g po la r coord ina t e s o f r e a l e i g en v e c t o r s
vector po la r <− c ( 0 , 0 )
for ( i in c ( 1 , 2 ) ){

vector po la r [ i ] <− atan2 (vector [ 2 , i ] , vector [ 1 , i ] )
}

#check ing i f the r e a l e i g env e c t o r i s in the con f idence i n t e r v a l
i f ( eigen po la r [1]− 1 .96∗ sqrt (NewCov1 [ 1 , 1 ] ) <= vector po la r [ 1 ] & vector po la r [ 1 ]

<= eigen po la r [1 ]+ 1 .96 ∗ sqrt (NewCov1 [ 1 , 1 ] ) ){
t e l 1 <− t e l 1 + 1

}
i f ( eigen po la r [2]− 1 .96∗ sqrt (NewCov2 [ 1 , 1 ] ) <= vector po la r [ 2 ] & vector po la r [ 2 ]

<= eigen po la r [2 ]+ 1 .96∗ sqrt ( NewCov2 [ 1 , 1 ] ) ){
t e l 2 <− t e l 2 + 1

}
}
#number o f t imes the r e a l e i g en v e c t o r s are in the con f idence i n t e r v a l
t e l 1
t e l 2

#for dimension 3
set . seed (3 )
#p=3
l ibrary ( bnlearn )
l ibrary (ICSNP)
l ibrary ( matl ib )
l ibrary ( matr ixca l c )
d <− 3 #dimension
n <− 50 #n number o f samples
t e l 1 <− 0
t e l 2 <− 0
t e l 3 <−0
mu <−c ( 0 , 0 , 0 ) #mu
sigma <−sigma <− matrix (diag (c (1/6 ,2/6 ,3/ 6 ) ) , ncol =d) #sigma ( s c a t t e r matrix )
m<− 0
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while (m < 10001) {
vector <− eigen ( sigma )$vec to r s #rea l e i g en v e c t o r s

#tak ing samples from the mu l t i v a r i a t e normal d i s t r i b u t i o n
x <− rmvnorm(n , mean=mu, sigma=sigma )
#i f we want to do i t f o r the mu l t i v a r i a t e t d i s t r i b u t i o n
#the fo l ow ing l i n e cou ld be uncommented
#tak ing samples from the mu l t i v a r i a t e t d i s t r i b u t i o n
#x <− rmvt (n=n , sigma = sigma , d f = 5 , d e l t a = mu)

# ca l c u l a t i o n o f e i g en va l u e s (now of s p a t i a l s i gn covar iance matrix )
eigenm <− eigen (cov ( s p a t i a l . sign (x , c en t e r = TRUE, shape = FALSE) ) )

#a l s o need e i g enva l u e s o f covar iance matrix
mean <− colMeans (x ) #colum means o f x
lambda <− eigen (cov (x−rep (mean, each = nrow( x ) ) ) ) $va lue s

# ca l c u l a t i o n o f the asymptot ic covar iances
Cov1 <− Cov2 <− Cov12 <− Cov3 <− matrix (0 , ncol=d ,nrow=d)

#ca l c u l a t i n g d e l t a and e ta
#eta
n i j <− function (x , i , j ) {z <− 1 ; for ( k in 1 : d) {

z <− z∗(1+lambda [ k ] ∗x )ˆ0 . 5

} ; ( lambda [ i ] ∗lambda [ j ] ∗0 .25∗x )/((1+lambda [ i ] ∗x )∗(1+lambda [ j ] ∗x )∗z )}
eta1 <− eta2 <− eta3 <− c ( 0 , 0 , 0 )
for ( k in 2 : d) {

eta1 [ k ] <− i n t e g r a t e ( n i j , 0 , In f , i =1, j=k )$value
}
for ( k in c ( 1 , 3 ) ) {

eta2 [ k ] <− i n t e g r a t e ( n i j , 0 , In f , i =2, j=k )$value
}
for ( k in c ( 1 , 2 ) ) {

eta3 [ k ] <− i n t e g r a t e ( n i j , 0 , In f , i =3, j=k )$value
}
#de l t a
de l t a <− c ( 0 , 0 , 0 )
d e l t a i <− function (x , i ) {

z <− 1 ; for ( k in 1 : d) {
z <− z∗(1+lambda [ k ] ∗x )ˆ0 . 5

} ; ( lambda [ i ] ∗ 0 . 5 )/((1+lambda [ i ] ∗x )∗z )
}
for ( k in 1 : d) {

de l t a [ k ] <− i n t e g r a t e ( d e l t a i , 0 , In f , i =k )$value
}

# covar iance o f l o ad in g s o f f i r s t p r i n c i p a l component
for ( i in 2 : d ) Cov1 <− Cov1+eta1 [ i ] /

( d e l t a [ i ]− de l t a [ 1 ] ) ˆ 2 ∗eigenm$vector [ , i ]%∗%t ( eigenm$vector [ , i ] )

# covar iance o f l o ad in g s o f second p r i n c i p a l component
for ( i in c ( 1 , 3 ) ) Cov2 <− Cov2+eta2 [ i ] /

( d e l t a [ i ]− de l t a [ 2 ] ) ˆ 2 ∗eigenm$vector [ , i ]%∗%t ( eigenm$vector [ , i ] )

for ( i in c ( 1 , 2 ) ) Cov3 <− Cov3+eta3 [ i ] /
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( d e l t a [ i ]− de l t a [ 3 ] ) ˆ 2 ∗eigenm$vector [ , i ]%∗%t ( eigenm$vector [ , i ] )

#making the second coord ina te o f the e i g en v e c t o r s p o s i t i v e
i f ( eigenm$vec to r s [2 ,1 ]<0){

eigenm$vec to r s [ , 1 ] ∗−1
}
i f ( eigenm$vec to r s [2 ,2 ]<0){

eigenm$vec to r s [ , 2 ] ∗−1
}
i f ( eigenm$vec to r s [2 ,3 ]<0){

eigenm$vec to r s [ , 3 ] ∗−1
}

#ca l c u a l t i n g po la r coord ina t e s o f e i g en v e c t o r s
eigen po la r <− matrix (0 , ncol=2,nrow=d)
for ( i in c ( 1 , 2 , 3 ) ){

eigen po la r [ i , 1 ] <− acos ( eigenm$vec to r s [ 3 , i ] )
eigen po la r [ i , 2 ] <− acos ( eigenm$vec to r s [ 1 , i ] /

sqrt ( eigenm$vec to r s [ 1 , i ] ˆ2 + eigenm$vec to r s [ 2 , i ] ˆ 2 ) )
}

#making the second coord ina te o f the r e a l e i g en v e c t o r s p o s i t i v e
i f (vector [ 2 ,1 ] <0){

vector [ , 1 ] ∗−1
}
i f (vector [ 2 ,2 ] <0){

vector [ , 2 ] ∗−1
}
i f (vector [ 2 ,3 ] <0){

vector [ , 3 ] ∗−1
}

#ca l c u l a t i n g the g rad i en t o f h t i l d e
h1 <− matrix (c (0 ,0 ,−1/ ( sqrt(1−eigenm$vec to r s [ 1 , 3 ] ˆ 2 ) ) ,

−eigenm$vec to r s [ 1 , 2 ] /sqrt ( eigenm$vec to r s [ 1 , 1 ] ˆ 2 + eigenm$vec to r s [ 1 , 2 ] ˆ 2 ) ,
eigenm$vec to r s [ 1 , 1 ] /sqrt ( eigenm$vec to r s [ 1 , 1 ] ˆ 2 + eigenm$vec to r s [ 1 , 2 ] ˆ 2 ) , 0 ) ,

ncol = 2 , nrow = 3)
h2 <− matrix (c (0 ,0 ,−1/ ( sqrt(1−eigenm$vec to r s [ 2 , 3 ] ˆ 2 ) ) ,

−eigenm$vec to r s [ 2 , 2 ] /sqrt ( eigenm$vec to r s [ 2 , 1 ] ˆ 2 + eigenm$vec to r s [ 2 , 2 ] ˆ 2 ) ,
eigenm$vec to r s [ 2 , 1 ] /sqrt ( eigenm$vec to r s [ 2 , 1 ] ˆ 2 + eigenm$vec to r s [ 2 , 2 ] ˆ 2 ) , 0 ) ,

ncol = 2 , nrow = 3)
h3 <− matrix (c (0 ,0 ,−1/ ( sqrt(1−eigenm$vec to r s [ 3 , 3 ] ˆ 2 ) ) ,

−eigenm$vec to r s [ 3 , 2 ] /sqrt ( eigenm$vec to r s [ 3 , 1 ] ˆ 2 + eigenm$vec to r s [ 3 , 2 ] ˆ 2 ) ,
eigenm$vec to r s [ 3 , 1 ] /sqrt ( eigenm$vec to r s [ 3 , 1 ] ˆ 2 + eigenm$vec to r s [ 3 , 2 ] ˆ 2 ) , 0 ) ,

ncol = 2 , nrow = 3)

Cov1 <− Cov1/n
Cov2 <− Cov2/n
Cov3 <− Cov3/n

NewCov1 <− t ( h1 )%∗%Cov1%∗%h1
NewCov2 <− t ( h2 )%∗%Cov2%∗%h2
NewCov3 <− t ( h3 )%∗%Cov3%∗%h3

#ca l c u l a t i n g the po la r coord ina t e s o f the r e a l e i g en v e c t o r s
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vector po la r <− matrix (0 , ncol=2,nrow=d)
for ( i in c ( 1 , 2 , 3 ) ){

vector po la r [ i , 1 ] <− acos (vector [ 3 , i ] )
vector po la r [ i , 2 ] <− acos (vector [ 1 , i ] /sqrt (vector [ 1 , i ] ˆ2 + vector [ 2 , i ] ˆ 2 ) )

}

#check i f the r e a l e i g env e c t o r i s in the con f idence e l l i p s o i d
i f ( i s .matrix ( try ( inv (NewCov3 ) ) ) == TRUE & is .matrix ( try ( inv (NewCov2 ) ) ) == TRUE){
i n e qua l i t y <− i f e l s e ( t ( eigen po la r [ 2 , ] − vector po la r [ 2 , ] ) %∗%

inv (NewCov2)%∗%( eigen po la r [ 2 , ] − vector po la r [ 2 , ] )
<= qchisq ( 0 . 9 5 , 2 ) , 1 , 0)

i f ( i n e qua l i t y [ 1 , 1 ] == 1){
t e l 2 <− t e l 2 + 1

}
i n e qua l i t y <− i f e l s e ( t ( eigen po la r [ 3 , ] − vector po la r [ 3 , ] ) %∗%

inv (NewCov3)%∗%( eigen po la r [ 3 , ] − vector po la r [ 3 , ] )
<= qchisq ( 0 . 9 5 , 2 ) , 1 , 0)

i f ( i n e qua l i t y [ 1 , 1 ] == 1){
t e l 3 <− t e l 3 + 1

}
m<− m + 1
}

}
#number o f t imes the r e a l e i g env e c t o r i s in the con f idence e l l i p s o i d
t e l 2
t e l 3

t e l 1

R-code for the classical case of tables 4, 5, 6 and 7

#simu la t ing how o f t en the r e a l e i g env e c t o r i s in the 95% conf idence i n t e r v a l
#c l a s s i c a l case

#fo r dimension 2
#p=2
set . seed (3 )
l ibrary ( bnlearn )
l ibrary (ICSNP)
l ibrary ( matl ib )
d <− 2 #dimension 2
n <− 50 #number o f samples
t e l 1 <− 0
t e l 2 <− 0
mu <−c ( 0 , 0 ) #mu
sigma <−sigma <− matrix (diag (c (1/3 ,2/ 3 ) ) , ncol =d) #sigma ( s c a t t e r matrix )

for (m in 1 :100000) {
vector <− eigen ( sigma )$vec to r s #e i g en v e c t o r s

#tak ing samples from the mu l t i v a r i a t e normal d i s t r i b u t i o n
x <− rmvnorm(n , mean=mu, sigma=sigma )
#tak ing samples from the mu l t i v a r i a t e t d i s t r i b u t i o n
#i f we want to do i t f o r the mu l t i v a r i a t e t d i s t r i b u t i o n the f o l l ow i n g l i n e
#cou ld be uncommented
#x <− rmvt (n=n , sigma = sigma , d f = 5 , d e l t a = mu)
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#e i g enva l u e s and v e c t o r s o f covar iance matrix
mean <− colMeans (x ) #colum means o f x
lambda <− eigen (cov (x−rep (mean, each = nrow( x ) ) ) ) $va lue s
eigenm <− eigen (cov (x−rep (mean, each = nrow( x ) ) ) )

#es t ima t ing kappa
kappa <− 0
for ( i in 1 : n ) {

kappa <−kappa + ( t ( x [ i , ]− mean)%∗%
inv (cov (x−rep (mean, each = nrow( x ) ) ) )%∗%( x [ i , ]−mean) )ˆ2

}
kappa
kappa <− 1/(8∗n)∗kappa −1
kappa <− kappa [ 1 , 1 ]
#the f o l l ow i n g l i n e cou ld be uncommented to take a f i x e d kappa ( which can be changed )
#kappa <− 0

# ca l c u l a t i o n o f the asymptot ic covar iances
Cov1 <− Cov2 <− Cov12 <− matrix (0 , ncol=2,nrow=2)

# covar iance o f l o ad in g s o f f i r s t p r i n c i p a l component
for ( i in 2 : d ) Cov1 <− Cov1+(1+kappa)∗lambda [ 1 ] ∗lambda [ 2 ] /

( lambda [1]− lambda [ 2 ] ) ˆ 2 ∗eigenm$vector [ , i ]%∗%t ( eigenm$vector [ , i ] )

# covar iance o f l o ad in g s o f second p r i n c i p a l component
for ( i in c ( 1 ) ) Cov2 <− Cov2+(1+kappa)∗lambda [ 1 ] ∗lambda [ 2 ] /

( lambda [1]− lambda [ 2 ] ) ˆ 2 ∗eigenm$vector [ , i ]%∗%t ( eigenm$vector [ , i ] )

#making the second coord ina te p o s i t i v e
i f ( eigenm$vec to r s [2 ,1 ]<0){

eigenm$vec to r s [ , 1 ] ∗−1
}
i f ( eigenm$vec to r s [2 ,2 ]<0){

eigenm$vec to r s [ , 2 ] ∗−1
}

#ca l c u l a t i n g the po la r coord ina t e s o f the e i g en v e c t o r s
eigen po la r <− c ( 0 , 0 )
for ( i in c ( 1 , 2 ) ){

eigen po la r [ i ] <− acos ( eigenm$vec to r s [ 1 , i ] )
}

i f (vector [ 2 ,1 ] <0){
vector [ , 1 ] ∗−1

}
i f (vector [ 2 ,2 ] <0){

vector [ , 2 ] ∗−1
}

#ca l c u l a t i n g the g rad i en t o f h
h1 <− c(−1/ ( sqrt(1−eigenm$vec to r s [ 1 , 1 ] ˆ 2 ) ) , 0)
h2 <− c(−1/ ( sqrt(1−eigenm$vec to r s [ 1 , 2 ] ˆ 2 ) ) , 0)

Cov1 <− Cov1/n
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Cov2 <− Cov2/n

NewCov1 <− t ( h1 )%∗%Cov1%∗%h1
NewCov2 <− t ( h2 )%∗%Cov2%∗%h2

#ca l c u l a t i n g po la r coord ina t e s o f r e a l e i g en v e c t o r s
vector po la r <− c ( 0 , 0 )
for ( i in c ( 1 , 2 ) ){

vector po la r [ i ] <− atan2 (vector [ 2 , i ] , vector [ 1 , i ] )
}

#check i f the r e a l e i g env e c t o r i s in the con f idence i n t e r v a l
i f ( eigen po la r [1]− 1 .96∗ sqrt (NewCov1 [ 1 , 1 ] ) <= vector po la r [ 1 ] & vector po la r [ 1 ]

<= eigen po la r [1 ]+ 1 .96 ∗ sqrt (NewCov1 [ 1 , 1 ] ) ){
t e l 1 <− t e l 1 + 1

}
i f ( eigen po la r [2]− 1 .96∗ sqrt (NewCov2 [ 1 , 1 ] ) <= vector po la r [ 2 ] & vector po la r [ 2 ]

<= eigen po la r [2 ]+ 1 .96∗ sqrt ( NewCov2 [ 1 , 1 ] ) ){
t e l 2 <− t e l 2 + 1

}
}
#number o f t imes the r e a l e i g env e c t o r i s in the con f idence i n t e r v a l
t e l 1
t e l 2

#for dimension 3
#p=3
set . seed (3 )
l ibrary ( bnlearn )
l ibrary (ICSNP)
l ibrary ( matl ib )
d <− 3
n <− 50 #number o f samples
t e l 1 <− 0
t e l 2 <− 0
t e l 3 <−0
mu <−c ( 0 , 0 , 0 ) #mu
sigma <−sigma <− matrix (diag (c (1/6 ,2/6 ,3/ 6 ) ) , ncol =d) #sigma ( s c a t t e r matrix )
m<− 0
while (m < 10001) {

vector <− eigen ( sigma )$vec to r s #e i g en v e c t o r s o f sigma

#tak ing samples from the mu l t i v a r i a t e normal d i s t r i b u t i o n
x <− rmvnorm(n , mean=mu, sigma=sigma )
#tak ing samples from the mu l t i v a r i a t e t d i s t r i b u t i o n
#i f we want to do i t f o r the mu l t i v a r i a t e t d i s t r i b u t i o n the f o l l ow i n g l i n e
#cou ld be uncommented
#x <− rmvt (n=n , sigma = sigma , d f = 5 , d e l t a = mu)

#e i g enva l u e s and e i g en v e c t o r s o f covar iance matrix
mean <− colMeans (x ) #colum means o f x
lambda <− eigen (cov (x−rep (mean, each = nrow( x ) ) ) ) $va lue s
eigenm <− eigen (cov (x−rep (mean, each = nrow( x ) ) ) )

kappa <− 0
for ( i in 1 : n ) {
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kappa <−kappa + ( t ( x [ i , ]− mean)%∗%inv (cov (x−rep (mean, each = nrow( x ) ) ) )
%∗%( x [ i , ]−mean) )ˆ2

}
kappa <− 1/(15∗n)∗kappa −1
kappa <− kappa [ 1 , 1 ]
#the f o l l ow i n g l i n e cou ld be uncommented to take a f i x e d kappa
#kappa <− 2

# ca l c u l a t i o n o f the asymptot ic covar iances
Cov1 <− Cov2 <− Cov12 <− Cov3 <− matrix (0 , ncol=d ,nrow=d)

# covar iance o f l o ad in g s o f f i r s t p r i n c i p a l component
for ( i in 2 : d ) Cov1 <− Cov1+(1+kappa)∗lambda [ 1 ] ∗lambda [ i ] /

( lambda [ i ]− lambda [ 1 ] ) ˆ 2 ∗eigenm$vector [ , i ]%∗%t ( eigenm$vector [ , i ] )

# covar iance o f l o ad in g s o f second p r i n c i p a l component
for ( i in c ( 1 , 3 ) ) Cov2 <− Cov2+(1+kappa)∗lambda [ i ] ∗lambda [ 2 ] /

( lambda [ i ]− lambda [ 2 ] ) ˆ 2 ∗eigenm$vector [ , i ]%∗%t ( eigenm$vector [ , i ] )

for ( i in c ( 1 , 2 ) ) Cov3 <− Cov3+(1+kappa)∗lambda [ i ] ∗lambda [ 3 ] /
( lambda [ i ]− lambda [ 3 ] ) ˆ 2 ∗eigenm$vector [ , i ]%∗%t ( eigenm$vector [ , i ] )

# covar iance between l oad in g s o f f i r s t and second r i n c i p a l component
#Cov12 <− −eta1 [ 2 ] /( d e l t a [1]− d e l t a [ 2 ] ) ˆ 2∗eigenm$ vec t o r [ , 1 ]%∗%t ( eigenm$ vec t o r [ , 2 ] )

#making the second coord ina te o f the e i g en v e c t o r s p o s i t i v e
i f ( eigenm$vec to r s [2 ,1 ]<0){

eigenm$vec to r s [ , 1 ] ∗−1
}
i f ( eigenm$vec to r s [2 ,2 ]<0){

eigenm$vec to r s [ , 2 ] ∗−1
}
i f ( eigenm$vec to r s [2 ,3 ]<0){

eigenm$vec to r s [ , 3 ] ∗−1
}

#ca l c u l a t i n g po la r coord ina t e s o f the e i g en v e c t o r s
eigen po la r <− matrix (0 , ncol=2,nrow=d)
for ( i in c ( 1 , 2 , 3 ) ){

eigen po la r [ i , 1 ] <− acos ( eigenm$vec to r s [ 3 , i ] )
eigen po la r [ i , 2 ] <− acos ( eigenm$vec to r s [ 1 , i ] /

sqrt ( eigenm$vec to r s [ 1 , i ] ˆ2 + eigenm$vec to r s [ 2 , i ] ˆ 2 ) )
}

#making the second coord ina te o f the r e a l e i g en v e c t o r s p o s i t i v e
i f (vector [ 2 ,1 ] <0){

vector [ , 1 ] ∗−1
}
i f (vector [ 2 ,2 ] <0){

vector [ , 2 ] ∗−1
}
i f (vector [ 2 ,3 ] <0){

vector [ , 3 ] ∗−1
}

#ca l c u l a t i n g the g rad i en t o f h t i l d e
h1 <− matrix (c (0 ,0 ,−1/ ( sqrt(1−eigenm$vec to r s [ 1 , 3 ] ˆ 2 ) ) ,
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−eigenm$vec to r s [ 1 , 2 ] /sqrt ( eigenm$vec to r s [ 1 , 1 ] ˆ 2
+ eigenm$vec to r s [ 1 , 2 ] ˆ 2 ) ,

eigenm$vec to r s [ 1 , 1 ] /sqrt ( eigenm$vec to r s [ 1 , 1 ] ˆ 2
+ eigenm$vec to r s [ 1 , 2 ] ˆ 2 ) , 0 ) ,

ncol = 2 , nrow = 3)
h2 <− matrix (c (0 ,0 ,−1/ ( sqrt(1−eigenm$vec to r s [ 2 , 3 ] ˆ 2 ) ) ,

−eigenm$vec to r s [ 2 , 2 ] /sqrt ( eigenm$vec to r s [ 2 , 1 ] ˆ 2
+ eigenm$vec to r s [ 2 , 2 ] ˆ 2 ) ,

eigenm$vec to r s [ 2 , 1 ] /sqrt ( eigenm$vec to r s [ 2 , 1 ] ˆ 2
+ eigenm$vec to r s [ 2 , 2 ] ˆ 2 ) , 0 ) ,

ncol = 2 , nrow = 3)
h3 <− matrix (c (0 ,0 ,−1/ ( sqrt(1−eigenm$vec to r s [ 3 , 3 ] ˆ 2 ) ) ,

−eigenm$vec to r s [ 3 , 2 ] /sqrt ( eigenm$vec to r s [ 3 , 1 ] ˆ 2
+ eigenm$vec to r s [ 3 , 2 ] ˆ 2 ) ,

eigenm$vec to r s [ 3 , 1 ] /sqrt ( eigenm$vec to r s [ 3 , 1 ] ˆ 2
+ eigenm$vec to r s [ 3 , 2 ] ˆ 2 ) , 0 ) ,

ncol = 2 , nrow = 3)

Cov1 <− Cov1/n
Cov2 <− Cov2/n
Cov3 <− Cov3/n

NewCov1 <− t ( h1 )%∗%Cov1%∗%h1
NewCov2 <− t ( h2 )%∗%Cov2%∗%h2
NewCov3 <− t ( h3 )%∗%Cov3%∗%h3

#ca l c u l a t i n g po la r coord ina t e s o f the r e a l e i g en v e c t o r s
vector po la r <− matrix (0 , ncol=2,nrow=d)
for ( i in c ( 1 , 2 , 3 ) ){

vector po la r [ i , 1 ] <− acos (vector [ 3 , i ] )
vector po la r [ i , 2 ] <− acos (vector [ 1 , i ] /sqrt (vector [ 1 , i ] ˆ2 + vector [ 2 , i ] ˆ 2 ) )

}

#check ing i f the r e a l e i g env e c t o r i s in the con f idence e l l i p s e
i f ( i s .matrix ( try ( inv (NewCov3 ) ) ) == TRUE & is .matrix ( try ( inv (NewCov2 ) ) ) == TRUE){
i n e qua l i t y <− i f e l s e ( t ( eigen po la r [ 2 , ] − vector po la r [ 2 , ] ) %∗%

inv (NewCov2)%∗%( eigen po la r [ 2 , ] − vector po la r [ 2 , ] )
<= qchisq ( 0 . 9 5 , 2 ) , 1 , 0)

i f ( i n e qua l i t y [ 1 , 1 ] == 1){
t e l 2 <− t e l 2 + 1

}
i n e qua l i t y <− i f e l s e ( t ( eigen po la r [ 3 , ] − vector po la r [ 3 , ] ) %∗%

inv (NewCov3)%∗%( eigen po la r [ 3 , ] − vector po la r [ 3 , ] )
<= qchisq ( 0 . 9 5 , 2 ) , 1 , 0)

i f ( i n e qua l i t y [ 1 , 1 ] == 1){
t e l 3 <− t e l 3 + 1

}
m<− m+1
}

}
#number o f t imes the r e a l e i g env e c t o r i s in the con f idence e l l i p s e
t e l 2
t e l 3

57


	Introduction
	Principal component analysis
	Principal component analysis based on spatial signs
	Asymptotic properties of the principal components
	Elliptical distribution
	Classical principal components
	Principal components based on spatial sign

	Asymptotic MSE
	Dimension 2
	Dimension 3
	Dimension 4

	Confidence ellipsoids
	Example: Confidence ellipses of loading vectors
	Simulation for dimension 2
	Simulation for dimension 3

	Discussion
	Conclusion
	R Code

