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Abstract

Directed topology is a fairly new field of mathematics with applications in concurrency. It extends
the concept of a topological space by adding a notion of directedness in which directed paths play
a very important role. There are direction preserving maps between directed spaces called directed
maps. A special case of these is a directed path homotopy that transforms one directed path into
another. Using these deformations, directed paths are partitioned into equivalence classes and a special
category, the fundamental category, can be linked to a directed space. In this thesis we will explain
these definitions and present a special theorem: a directed version of the Van Kampen Theorem. This
theorem allows the calculation of fundamental categories by combining local knowledge about paths.
Our main contribution is the formalization of this material using the Lean proof assistant and we show
how we have implemented this.
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1 Introduction
Directed topology, an extension of topology, is a field of mathematics that has been developed in order to
abstractly analyze structures where paths with directions are present. The original motivation, given by
Fajstrup et al. in 1999, stems from its applications in concurrency, a field researching the simultaneous
execution of programs [FRG99]. Given two programs A and B, we can execute those sequentially in two
ways: either first A or first B. That relatively simple case can be seen in the figure below on the left. If
parallel execution is possible, any path from the bottom left to the top right is a valid execution path on the
condition that the path never turns backward. After all, once an instruction has been executed it cannot be
undone. This situation is already substantially more complicated than the sequential version.

A

B

A

B

A

B

A

B

A

B

A

B

Possible execution paths of two programs A and B under three conditions: sequential (left),
simultaneous (middle) and simultaneous with obstacles (right).

In the case of parallel execution, two programs could try to write to the same location at the same time,
which could lead to unintended behavior. In order to prevent this, we disallow such execution paths. We
would obtain a case like the square on the right with the darker rectangle as an obstacle in it. If an execution
path were to pass through that space, both programs would write to the shared location at the same time
and we consider that invalid. There are now two truly different paths: the one through the top left and the
one through the bottom right. Indeed, these two executions write to the shared location in a different order.
Of course, depending on the programs there may be no or many different obstacles. In order to make all of
these intuitions precise, the field of directed topology has been developed.

1.1 Directed Topology
There are multiple ways to define the notion of directedness in a topological space. The original approach
of Fajstrup et al. uses spaces with a partial ordering or a local partial ordering [FRG06]. We use the
somewhat more flexible d-spaces defined by Grandis by letting a directed space be a topological space with
a distinguished set of paths [Gra03]. These paths are called directed paths. Between directed spaces there
are direction preserving maps called directed maps and together they form the category dTop. A directed
version of path homotopies can be used to relate directed paths and obtain equivalence classes. These
classes are respected by concatenation of paths and with that the fundamental category of a directed space
can be defined. It is the directed equivalent of the fundamental groupoid of a topological space [Bro06].
There is also a directed analogue of the fundamental group called the fundamental monoid, but often it
cannot distinguish between different forms of directedness. The main theorem this thesis is concerned
with is a directed version of the Van Kampen Theorem, originally stated and proven by Grandis [Gra03].
It allows the calculation of the fundamental category of a directed space by combining the fundamental
categories of two subspaces. As we will see, the Lebesgue Number Lemma plays an important rule in the
proof.
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1.2 Contributions
Our main contribution has been the formalization of definitions and theorems relating to directed topology,
in particular the Van Kampen Theorem. Formalization is the use of a theorem prover, in our case Lean, in
order to write definitions, theorems and proofs in a rigorous manner. A computer is then able to verify
the correctness of these statements using type theory or another formal method. The major advantage
of formalizing a theorem is that anyone can be fully certain about the correctness of a theorem without
needing to sift through its proof in detail. An additional advantage is that the computer is able to aid
with proofs by automatically filling in steps or suggesting what theorems to apply. That is why some
formalization languages are also called proof assistants. Lastly, the digital nature of formalization lends
itself to an efficient form of cooperation by means of file sharing.
We wrote the formalization using the works already present in MathLib. MathLib is a library containing
the formalization in Lean of a vast amount of mathematical theory and it is the product of many different
collaborators. We have uploaded all of our files in a git repository and it contains a guide on how to get
it to run locally. The version of Lean we used is 3.50.3. Resources to learn and understand Lean can be
found on the Lean community website.

1.3 Thesis overview
In Section 2, we give a brief overview of the mathematical background on topology and category theory
needed to understand the main ideas and concepts of this thesis. Section 3 defines the notion of directed
spaces and directed maps and we give a few examples. In Section 4 the definitions and some properties of
directed homotopies and directed path homotopies are given. We use those to define relations on the set
of directed paths between two points. In Section 5 the equivalence classes of paths under these relations
are used to define the fundamental category and the fundamental monoid. The Van Kampen Theorem is
stated in Section 6 and an application is given. Finally, in Section 7 we reflect on the ideas presented in
this thesis and give some suggestions for further research.
Small excerpts from the Lean formalization can be found throughout the thesis. They can be recognized
by the monospace font used. The surrounding text explains the ideas of the formalization and references
the corresponding file in which the code can be found.

2 Preliminaries
This thesis assumes basic mathematical knowledge. Familiarity with topology and category theory is
useful and this chapter will explain some of the necessary background. For further information about these
topics, see [Wal14] (topology) or [Lei14] (category theory).

2.1 Topology
The field of topology is concerned with the properties of spaces and shapes “up to deformation”. Think of
squares, circles, donuts or spheres. The notion of a topological space is central.

Definition 2.1 (Topological space). A topological space is a pair (X,T ), consisting of a set X together
with a set T ⊆ P(X) such that:

(1) ∅ ∈ T and X ∈ T .
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(2) IfU ⊆ T is a set of elements of T , then
⋃

U∈U U ∈ T .

(3) If A, B ∈ T then A ∩ B ∈ T .

The elements of T are called open sets and T is called the topology on X. If T is clear from context, the
set X is often referred to as the topological space instead of the pair (X,T ).
Informally speaking, if a point x is an element of some open set U ∈ T then all points “close” to x are
also elements of U. A subset V ⊆ X is called closed if its complement X \ V is open.
A continuous map between two topological spaces is then a map that maps points that are close together
to points that are close together:

Definition 2.2 (Continuous map). A continuous map between two topological spaces (X,TX) and (Y,TY)
is a map f : X → Y of sets such that for all V ∈ TY it holds that f −1(V) ∈ TX.

Compositions of continuous maps are again continuous. It is also easy to show that the identity map is
always continuous.
One special topological space is the unit interval [0, 1], a subspace of the real number line R. Continuous
maps γ : [0, 1]→ X with X a topological space are called paths in X. If γ1 and γ2 are two paths in X with
γ1(1) = γ2(0), then you can concatenate those two paths by first following γ1 and then γ2. This new path is
denoted γ1 � γ2 and given by:

(γ1 � γ2)(t) =

γ1(2t), t ≤ 1
2 ,

γ2(2t − 1), 1
2 < t.

These paths turn out to be important invariants of topological spaces and information about them can be
captured in the so called fundamental groupoid [Bro06, chapter 6]. Within this thesis we will take a look
at the directed variant: the fundamental category.

2.2 Category Theory
Category theory is used to capture abstract similarities between seemingly unrelated mathematical fields.
It turns out that many different concepts can be classified as categories:

Definition 2.3 (Category). A category C consists of a collection of objects, Ob(C), together with sets of
morphisms C(A, B) for all A, B ∈ Ob(C), a composition map ◦ : C(B,C) × C(A, B) → C(A,C) and an
identity idA ∈ C(A, A) for all A ∈ Ob(C) such that:

(1) For any A, B ∈ Ob(C) and f ∈ C(A, B) we have f ◦ idA = f = idB ◦ f .

(2) For any A, B,C,D ∈ Ob(C) and f ∈ C(A, B), g ∈ C(B,C), h ∈ C(C,D) we have (h◦g)◦ f = h◦(g◦ f ).

Instead of A ∈ Ob(C), we often write A ∈ C. Another way to write f ∈ C(A, B) is f : A→ B, as morphisms
often behave like maps.

Example 2.4. The category Set has as objects sets and as morphisms between two sets exactly the maps
between those two sets. Composition of morphisms is exactly the composition of those maps. Each set has
an identity map and composition of maps is associative, so properties 1 and 2 are satisfied.
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Example 2.5. Top is the category of topological spaces and continuous maps. They are respectively the
objects and the morphisms. Identities are continuous and composition is associative, so it is indeed a
category.

There are also maps between different categories, called functors.

Definition 2.6 (Functor). LetC andD be two categories. A functor F : C → D consists of a map on objects
and a map on morphisms, where it maps a morphism f : A→ B to a morphism F( f ) : F(A)→ F(B), such
that the following holds:

(1) For any A ∈ C we have F(idA) = idF(A).

(2) For any A, B,C ∈ C, f : A→ B and g : B→ C we have F(g ◦ f ) = F(g) ◦ F( f ).

In other words, a functor needs to respect identities and composition.

When formulating the Van Kampen Theorem in Section 6.1, we use the term pushout square. This is a
specific type of a so-called colimit. There are many ways to define those, but as we only need the pushout
square colimit, we will not bother with the generalization.

Definition 2.7 (Pushout square). Let C be a category, A, B,C,D ∈ C four objects and i : A→ B, j : A→ C,
f : B→ D and g : C → D four morphisms such that f ◦ i = g ◦ j. We can draw them in a commutative
square:

A B

C D

j

g

f

i

We say that that square is a pushout square if for any object X ∈ C and pair of morphisms p : B→ X and
q : C → X with p ◦ i = q ◦ j there is a unique r : D→ X such that p = r ◦ f amd q = r ◦ g.

D is then called the pushout of the square.

3 Directed Spaces
In this section, we will look at the basic structure of a directed space. With directed maps as morphisms,
the category of directed spaces dTop is obtained.
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3.1 Directed Spaces
A directed space is a topological space with a distinguished set of paths, whose elements are called directed
paths. This is analogous to the set of open sets in a topological spaces. Similarly, the set of directed paths
must satisfy some properties. Firstly, constant paths must be directed. Secondly, if there are two directed
paths that connect in an end and start point, the concatenation of those two paths should again be directed.
Intuitively, if you can walk from point A to point B and from B to C, then you should be able to walk from
A to C by following those paths consecutively. Lastly, it should be possible to walk a part of a directed
path at a different speed, as long as the path is not walked backward. This can be captured in the property
that monotone subparametrizations of directed paths must also be directed paths.

Definition 3.1 (Directed space). A directed space is a topological space X, together with a set of paths in
X, denoted PX. That set must satisfy the following three properties:

(1) For any point x ∈ X, we have that 0x ∈ PX, where 0x is the constant path in x.

(2) For any two paths γ1, γ2 ∈ PX with γ1(1) = γ2(0), we have that γ1 � γ2 ∈ PX.

(3) For any path γ ∈ PX and any continuous, monotone map ϕ : [0, 1]→ [0, 1] we have that γ ◦ ϕ ∈ PX.

The elements of PX are called directed paths or dipaths .

We will first consider some examples of directed spaces.

Example 3.2 (Directed unit interval). We can equip the unit interval with a rightward direction. This is
done by taking P[0,1] = {ϕ : [0, 1] → [0, 1] | ϕ continuous and monotone}. We will denote this directed
space with I. More generally, every (pre)ordered space can be given a set of directed paths this way.

Example 3.3 (Directed unit circle). One of the ways the unit circle S 1 = {z ∈ C | |z| = 1} can be made into
a directed space is by only allowing paths that go monotonously counterclockwise. Specifically, we take
the set of directed paths PS 1 = {t 7→ exp(iϕ(t)) | ϕ : [0, 1]→ R continuous and monotone}. This directed
space will be denoted with S 1

+.

Example 3.4 (Maximal directed space). Any topological space X can be made into a directed space
by taking PX as the set of all paths in X. We will call this the maximal directedness on X. This is also
sometimes called the indiscrete or natural directedness.

Example 3.5 (Minimal directed space). Any topological space X can be made into a directed space by
taking PX = {0x | x ∈ X}. In other words, only the constant paths are allowed as directed paths. We will
call this the minimal directedness on X. This is also sometimes called the discrete directedness.

Example 3.6 (Product of directed spaces). If (X, PX) and (Y, PY) are two directed spaces, then the space
X × Y with the product topology can be made into a directed space by letting PX×Y = {t 7→ (γ1(t), γ2(t)) |
γ1 ∈ PX and γ2 ∈ PY}. As we will see in Section 3.2, with this set of directed paths both projection maps
will be directed and (X × Y, PX×Y) becomes a product in the category of directed spaces and directed maps.

Example 3.7 (Induced directed space). Let X be a topological space and (Y, PY) a directed space. Let a
continuous map f : X → Y be given. If γ : [0, 1]→ X is a path in X, then f ◦ γ : [0, 1]→ Y is a path in Y .
We can create a direction on X by taking PX = {γ ∈ C([0, 1], X) | f ◦ γ ∈ PY}. It is not hard to verify that
this satisfies all the properties of a directed space. In the special case that X is a subspace of Y and f is the
inclusion map, we find that every subspace of a directed space can be given a natural directedness.
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We formalized the concept of a directed space by extending the topological_space class. In Lean, a
type class is a collection of types and extending a class means adding new types. Other types can be made
into an instance of a class by supplying a term for each type. For example, R, the type of real numbers, is
an instance of topological_space. A useful property of extending classes is that you can get back any
subclasses. In this specific case, we can use to_topological_space to obtain the underlying topological
space of a directed space.
In our formalization, we do not explicitly use a set of paths. Rather, being directed is a property of a
path itself, analogous to how being open is a property of a set in the topological_space class. Paths
in topological spaces have been implemented in Mathlib in the file topology/path connected.lean.
A path has type path x y, where its starting point is x and endpoint is y. This way, concatenation of
paths can be done without additional hypotheses. The definition of a directed space can be found in
directed space.lean.

class directed_space (α : Type u) extends topological_space α :=

(is_dipath : ∀ {x y}, path x y → Prop)

(is_dipath_constant : ∀ (x : α), is_dipath (path.refl x))

(is_dipath_concat : ∀ {x y z} {γ1 : path x y} {γ2 : path y z}, is_dipath γ1 →

is_dipath γ2 → is_dipath (path.trans γ1 γ2))

(is_dipath_reparam : ∀ {x y : α} {γ : path x y} {t0 t1 : I} {f : path t0 t1},

monotone f → is_dipath γ → is_dipath (f.map γ.continuous_to_fun))

The term is_dipath determines whether a path is a directed path or not. The three other terms are exactly
the three properties of a directed space. path.refl x is the constant path in a point x and path.trans
is used for the concatenation of paths. Mathlib only has support for reparametrizations of paths (meaning
that the endpoints must remain the same), but we want to also allow strict subparametrizations. We do this
by interpreting the subparametrization f as a monotone path in [0, 1]. Then the path γ ◦ f can be obtained
using path.map, where we interpret γ as a continuous map.
In constructions.lean, different instances of directed spaces can be found: topological spaces with a
preorder (Example 3.2), products of directed spaces (Example 3.6) and induced directedness (Example 3.7).
For brevity, we introduce a notation for the set of all paths between x and y.

Definition 3.8. If X is a directed space with two points x, y ∈ X, we use the shorthand notation PX(x, y)
for the set {γ ∈ PX | γ(0) = x and γ(1) = y}.

This can also be seen as a type for our formalization. That is exactly how to interpret the structure dipath,
found in dipath.lean:

variables {X : Type u} [directed_space X]

structure dipath (x y : X) extends path x y :=

(dipath_to_path : is_dipath to_path)

It extends the path structure and depends on two points x and y in a directed space X. The term
dipath_to_path is has type is_dipath to_path. That means that the underlying path it extends must
be a directed path. Due to the axioms of a directed space, we can define dipath.refl and dipath.trans
analogous to their path-counterparts. On the other hand, path.symm, the reversal of a path, cannot be
converted to a directed variant as it is not guaranteed that the reversal of a directed path is directed.
We introduce a notation for a special kind of subpath of a directed path.
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Definition 3.9. Let X be a directed space and γ ∈ PX a directed path. If n > 0 and 1 ≤ i ≤ n we will define
γi,n ∈ PX to be the path from γ( i−1

n ) to γ( i
n ) given by γi,n(t) = γ( i+t−1

n ).

We can now say what it means for a directed path to be covered by a cover of a directed space. This
definition will play a big role in proving the Van Kampen Theorem.

Definition 3.10. Let X be a directed space andU a cover of X. Let γ ∈ PX be a directed path and n > 0 an
integer. We say that γ is n-covered (byU) if we have for all 1 ≤ i ≤ n that Im γi,n ⊆ U for some U ∈ U.
In the special case that n = 1, we simply say that γ is covered by U, where Im γ ⊆ U.

In path cover.lean we formalize this definition of n-covered in the special case thatU consists of two
elements X0 and X1:

def covered (γ : dipath x0 x1) (hX : X0 ∪ X1 = univ) : Prop :=

(range γ ⊆ X0) ∨ (range γ ⊆ X1)

def covered_partwise (hX : X0 ∪ X1 = set.univ) : Π {x y : X}, dipath x y → N → Prop

| x y γ 0 := covered γ hX

| x y γ (nat.succ n) :=

covered (split_dipath.first_part_dipath γ

(inv_I_pos (show 0 < (n.succ + 1), by norm_num))) hX ∧

covered_partwise (split_dipath.second_part_dipath γ

(inv_I_lt_one (show 1 < (n.succ + 1), by norm_num))) n

Here covered corresponds with γ being 1-covered: its image is either contained in X0 or in X1. We
use this definition to inductively define covered_partwise. As it is easier to start at zero in Lean,
covered_partwise hX γ n corresponds with γ being (n + 1)-covered. In the case that n = 0, we have
that covered_partwise simply agrees with covered hX γ. Otherwise, we use an induction step to
define that covered_partwise hX γ (nat.succ n) holds if the first part γ1,n+2 is covered and the
remainder of γ is covered_partwise hX γ n. Note the use of n + 2 instead of n + 1 due to the offset
between the definitions. The remainder of path cover.lean contains lemmas about conditions for being
n-covered.

3.2 Directed Maps
As directed spaces are an extension of topological spaces, directed maps will be extensions of continuous
maps. They will need to respect the extra directed structure. If a path in the domain space is given, a path
in the codomain space can be obtained by composing the continuous map with the path. If the former is
directed, so should be the latter.

Definition 3.11 (Directed map). Let X and Y be two directed spaces. A directed map f : X → Y is a
continuous map on the underlying topological spaces that furthermore satisfies: for any γ ∈ PX, we have
that f ◦ γ ∈ PY .

Example 3.12. The map f : I → S 1
+ given by t 7→ eit is a directed map. Firstly, it is continuous on the

underlying topological spaces. Secondly, if γ ∈ PI is a directed path, that is, continuous and monotone,
then f ◦ γ is given by t 7→ exp(iγ(t)) and that path is by definition of PS 1

+
directed.
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Any continuous map (on the underlying topological spaces) from a minimally directed space to a directed
space is directed. Similarly, any continuous map to a maximally directed space is directed. By construction
of the product of directed spaces the continuous projection maps on both coordinates are directed: a
directed path in the product space is a pair of directed paths and a projection returns the original directed
path. Similarly, if a continuous map f : X → Y is used to induce a direction on X as in Example 3.7, then
f becomes a directed map from X to Y , where X has the induced directedness.
In order to formalize the definition of a directed map in Lean, we first define directed_map.directed,
which contains exactly the property that a continuous map between two directed spaces maps directed
paths to directed paths:

def directed {α β : Type*} [directed_space α] [directed_space β] (f : C(α, β)) : Prop

:=

∀ {|x y : α|} (γ : path x y), is_dipath γ → is_dipath (γ.map f.continuous_to_fun)

A directed map is then an extension of the continuous_map structure with a proof for being directed.

structure directed_map (α β : Type*) [directed_space α] [directed_space β] extends

continuous_map α β :=

(directed_to_fun : directed_map.directed to_continuous_map)

We use the notation D(α, β) for the type of directed maps between α and β. Directed paths are also
instances of directed maps, because it maps a directed path in I to a monotone subparametrization of
itself and we know that that is also directed path. dipath.lean contains definitions on how to convert the
dipath type to the directed_map type and the other way around. These are called to_directed_map
and of_directed_map respectively.
Directed spaces and directed maps form a category, which we will denote with dTop. There are two functors
Min,Max : Top→ dTop, where Min equips a topological space with the minimal directedness and Max
equips a topological space with the maximal directedness. If U : dTop→ Top is the forgetful functor that
sends a directed space to its underlying topological space, we obtain two adjunctions Min a U a Max
[Gra03]. An adjunction is a special relationship between two functors, see [Lei14, chapter 2]. Within
dTop we find an instance of pushouts as the following lemma shows.

Lemma 3.13. Let X ∈ dTop be a directed space and X1 and X2 two open subspaces such that X = X1∪X2.
Take X0 = X1 ∩ X2 as the intersection of X1 and X2. Let ik : X0 → Xk and jk : Xk → X, with k ∈ {1, 2} be
the inclusion maps. We then get a pushout square in dTop:

X0 X1

X2 X

i1

i2 j1

j2

Proof. Let Y ∈ dTop be another directed space and f1 : X1 → Y and f2 : X2 → Y two directed maps such
that f1 ◦ i1 = f2 ◦ i2. We will now construct an unique directed map f : X → Y such that f ◦ j1 = f1 and
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f ◦ j2 = f2. Note that f ◦ jk as a map is simply the restriction of f to Xk. As X is covered by X1 and X2, it
follows that f needs to be defined by

f (x) =

 f1(x), x ∈ X1,

f2(x), x ∈ X2.

This already gives us uniqueness. If U ⊆ Y is open, then f −1(U) = f −1
1 (U) ∪ f −1

2 (U) is open as a union of
open subsets and thus f is continuous. Here we use the fact that f1 and f2 are continuous and that an open
subset of an open subset is open in the entire space. In order to see that f is directed, we need to use the
Lebesgue Number Lemma [Mun75, p. 179-180]. We will use it to cut up a path into pieces and then apply
the two maps f1 and f2 independently and concatenate the results together.
Let γ ∈ PX be any directed path. We have that [0, 1] = γ−1(X) = γ−1(X1)∪ γ−1(X2), so γ−1(X1) and γ−1(X2)
form an open cover of [0, 1]. By applying the Lebesgue Number Lemma we can find an integer n > 0
such that for all 1 ≤ i ≤ n we have that [ i

n ,
i+1
n ] ⊆ γ−1(Xki) with ki either 1 or 2, i.e. γ is n-covered. With a

suitable bijective and monotone reparametrization ϕ : [0, 1]→ [0, 1], we have that

γ ◦ ϕ = γ1,n � (γ2,n � . . . (γn−1,n � γn,n)).

Note that each of the paths γi,n is directed as they are monotone subparametrizations of γ. We obtain:

( f ◦ γ) ◦ ϕ = f ◦ (γ ◦ ϕ) = f ◦
(
γ1,n � (γ2,n � . . . (γn−1,n � γn,n))

)
=

( fk1 ◦ γ1,n) � (( fk2 ◦ γ2,n) � . . . (( fkn−1 ◦ γn−1,n) � ( fkn ◦ γn,n)))

The directedness of the maps f1 and f2 tells us that each of the paths fki ◦ γi,n is directed. By the property
of concatenation of directed paths we find that ( f ◦ γ) ◦ ϕ is directed. As ϕ is a bijective monotone
reparametrization, so is its inverse. This give us that f ◦ γ = ( f ◦ γ) ◦ ϕ ◦ ϕ−1 is directed, so f is a directed
map. From this, it follows that the above square is indeed a pushout square. �

From proof of the lemma, it follows that within the category Top a topological space X and a covering of
it with two open subsets X1 and X2 also form a pushout square. When X1 and X2 are both closed, they still
form a pushout in Top but that is not guaranteed in dTop. The latter is shown by the following example.

Example 3.14. Take X = [0, 1] (maximally directed), X1 = {0} ∪
(⋃∞

i=0

[
1

2i+2 ,
1

2i+1

])
and X2 = {0} ∪(⋃∞

i=1

[
1

2i+1 ,
1
2i

])
. We have that X1 ∩ X2 = {1n | n ∈ Z>1}. Let Y = [0, 1] with directed paths given by

PY = {00} ∪ {γ : [0, 1]→ (0, 1] | γ continuous}. The directed paths in Y are thus paths contained in (0, 1]
and the constant path in 0. Note that this collection does indeed satisfy the three properties of a directed
space.
The point 0 in X1 is not connected by any paths to any other points, so we claim that there is a directed map
f1 : X1 → Y given by f1(x) = x: we have that for any γ ∈ PX1 that γ = 00 or γ is contained in

[
1

2i+1 ,
1

2i+2

]
for some i ≥ 0 and thus in (0, 1]. In both cases, f1 ◦ γ is directed in Y , making f1 a directed map. Similarly
we have a directed map f2 : X2 → Y given by f2(x) = x.
If i1 : X1 ∩ X2 → X1 and i2 : X1 ∩ X2 → X2 are the inclusion maps, then ( f1 ◦ i1)(x) = x = ( f2 ◦ i2)(x) for
all x ∈ X1 ∩ X2, so f1 ◦ i1 = f2 ◦ i2 holds. If X were the pushout of X1 and X2, there would have to be a
unique directed map f : X → Y such that f ◦ j1 = f1 and f ◦ j2 = f2. Clearly f must be defined as in the
proof of Lemma 3.13:

f (x) =

 f1(x), x ∈ X1,

f2(x), x ∈ X2,
=

x, x ∈ X1,

x, x ∈ X2,
= x.
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If γ ∈ PX is the directed path given by t 7→ t, we would require that f ◦ γ ∈ PY . As f ◦ γ is neither the
constant path 00 nor a path in (0, 1], we find a contradiction to the directedness of f . X is therefore not the
pushout of X1 and X2, even though X1 and X2 are both closed.

From this example, it also follows that Max does not preserve colimits, as a pushout is an instance of a
colimit.

4 Directed Homotopies
In this section, we will look at directed homotopies and directed path homotopies. Those two realize the
idea of deformation, while respecting the directedness of a directed space.

4.1 Homotopies
A directed homotopy is the deformation of one directed map into another.

Definition 4.1 (Directed homotopy). Let X and Y be two directed spaces. A homotopy between two
directed maps f , g : X → Y is a directed map H : I × X → Y such that for all x ∈ X we have that
H(0, x) = f (x) and H(1, x) = g(x).

Note that I × X has the product directedness. We say that H is a directed homotopy from f to g. This
order matters, as unlike in the topological case a directed homotopy cannot generally be reversed. In
our formalization, we adhere to the method used in defining homotopies between continuous maps in
Mathlib, found in topology/homotopy/basic.lean. In an analogous manner, the structure extends the
directed_map (I × X) Y structure and has two extra properties.

structure dihomotopy (f0 f1 : directed_map X Y) extends D((I × X), Y) :=

(map_zero_left’ : ∀ x, to_fun (0, x) = f0.to_fun x)

(map_one_left’ : ∀ x, to_fun (1, x) = f1.to_fun x)

As a directed map is always a continuous map on the underlying topological spaces, we can define how to
convert a dihomotopy to a homotopy. Conversely, if we are given a homotopy and we know that it is
directed, we can obtain a dihomotopy.
If f : X → Y is a directed map, there is an identity homotopy H from f to f , given by H(t, x) = f (x).
Also, if G is a directed homotopy from f to g and H a directed homotopy from g to h, we obtain a directed
homotopy G ⊗ H from f to h given by

(G ⊗ H)(t, x) =

G(2t, x), t ≤ 1
2 ,

H(2t − 1, x), 1
2 < t.

These two constructions are called refl and trans in directed homotopy.lean. In both cases the
coercion of a homotopy into a dihomotopy is used, by supplying the proof that both homotopies are
directed. Here we use the fact that Mathlib already contains proofs that the constructed maps are indeed
homotopies, i.e. continuous and satisfying the two mapping properties.
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4.2 Path Homotopies
Definition 4.2 (Directed path homotopy). Let X be a directed space and x, y ∈ X two points. A directed
path homotopy between two directed paths γ1, γ2 ∈ PX(x, y) is a directed homotopy H : I × I → X from
γ1 to γ2 such that additionally for all t ∈ [0, 1] we have that H(t, 0) = x and H(t, 1) = y.

In other words, a path homotopy is a homotopy between two paths that keeps both endpoints fixed. Again
we say that H is a directed path homotopy from γ1 to γ2. Between two paths γ1 and γ2 in I with the same
endpoints exists a path homotopy under the condition that γ1(t) ≤ γ2(t) for all t ∈ I as the following
example shows.

Example 4.3. Let t0, t1 ∈ I be two points and γ1, γ2 ∈ PI(t0, t1). If γ1(t) ≤ γ2(t) for all t ∈ I, there is a
directed path homotopy H from γ1 to γ2 given by H(t, s) = (1 − t) · γ1(s) + t · γ2(s). It is continuous by
continuity of paths, multiplication and addition. It is easy to show that H(a0, b0) ≤ H(a1, b1) if a0 ≤ a1

and b0 ≤ b1. From this, it follows that H is directed, because a directed path in I × I is exactly a pair of
monotone maps I → I by definition.
Note that H interpolates two paths γ1 and γ2. The formalized proof of it being a directed map can be found
in the file interpolate.lean.

Let x, y, z ∈ X be three points and β1, γ1 ∈ PX(x, y) and β2, γ2 ∈ PX(y, z). If there are two directed path
homotopies G from β1 to γ1 and H from β2 to γ2, we can construct a directed path homotopy G � H from
β1 � β2 to γ1 � γ2 given by

(G � H)(t, s) =

G(t, 2s), s ≤ 1
2 ,

H(t, 2s − 1), 1
2 < s.

Let X be a directed space and x, y ∈ X two points. If γ1, γ2 ∈ PX(x, y) are two directed paths with a path
homotopy from γ1 to γ2, we will write γ1  γ2. This defines a relation on the set PX(x, y), but that relation
is not guaranteed to be an equivalence relation, as it is generally not symmetric. This is due to the fact that
the reversal of a directed path may not be directed. The following lemma, which we haven’t formalized in
Lean, shows this.

Lemma 4.4. Let X be a directed space and x, y ∈ X. The relation on PX(x, y) is reflexive and transitive,
but it is not always symmetric.

Proof. The fact that the relation is reflexive and transitive can be obtained from Section 4.1. If γ ∈ PX(x, y),
then the directed homotopy given by H(t, s) = γ(s) satisfies the additional conditions of a path homotopy,
so γ γ. Similarly if γ1, γ2, γ3 ∈ PX(x, y) with G a directed path homotopy from γ1 to γ2 and H a directed
path homotopy from γ2 to γ3, then G ⊗ H is a directed homotopy from γ1 to γ3. It additionally holds that

(G ⊗ H)(t, 0) =

G(2t, 0), t ≤ 1
2 ,

H(2t − 1, 0), 1
2 < t.

=

x, t ≤ 1
2 ,

x, 1
2 < t

= x,

and analogously that (G ⊗ H)(t, 1) = y, so it is also a directed path homotopy and we find γ1  γ3. A
counterexample to symmetry is as follows: let γ1, γ2 : I → I be the paths given by

γ1(t) =

0, t ≤ 1
2 ,

2t − 1, 1
2 < t.

and γ2(t) =

2t, t ≤ 1
2 ,

1, 1
2 < t.
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We have that γ1  γ2, because of Example 4.3. On the other hand, if H were a directed path homotopy
from γ2 to γ1 we would require that H(0, 1

2) = γ2(1
2) = 1 and H(1, 1

2) = γ1(1
2) = 0, contradicting with

directedness. �

In order get an equivalence relation on the set of directed paths between two points, we will take the
symmetric transitive closure of this relation.

Definition 4.5. Let X be a directed space and x, y ∈ X two points. We say that two dipaths γ1, γ2 ∈ PX(x, y)
are equivalent, or γ1 ' γ2, if there is an integer n ≥ 0 together with dipaths βi ∈ PX(x, y), for each 1 ≤ i ≤ n,
such that

γ1  β1 f . . . βn f γ2.

This alternating sequence of arrows is also called a zigzag. As γ2 f γ2 holds for any path γ2 by reflexivity,
we can always assume that there is an odd number of paths in a zigzag between two paths γ1 and γ2. By
taking n = 0, it follows that γ1 ' γ2 holds if γ1  γ2. More precisely, ' is the smallest equivalence
relation on PX(x, y) such that that property holds [Lei14, p. 129]. As ' is an equivalence relation, we can
talk about the equivalence classes of paths, denoted by [γ]. An important property of these equivalence
classes is that they are invariant under maps and path reparametrization.

Lemma 4.6. Let X,Y be directed spaces and x, y ∈ X. Let γ1, γ2 ∈ PX(x, y) and f : X → Y directed. If
γ1 ' γ2, then f ◦ γ1 ' f ◦ γ2.

Proof. Let n > 0 odd and βi ∈ PX(x, y) for 1 ≤ i ≤ n such that γ1  β1 f β2  . . .  βn f γ2. If
H : I × I → X is a directed path homotopy from γ1 to β1, then f ◦ H is a directed path homotopy from
f ◦ γ1 to f ◦ β1. We find that f ◦ γ1  f ◦ β1. Repeating this for all other arrows in the zigzag gives us
f ◦ γ1  f ◦ β1 f f ◦ β2  . . . f ◦ βn f f ◦ γ2, so f ◦ γ1 ' f ◦ γ2. �

Lemma 4.7. Let X be a directed space and x, y ∈ X. Let γ ∈ PX(x, y) and ϕ, ϕ′ : I → I continuous and
monotone with ϕ(0) = ϕ′(0) = 0 and ϕ(1) = ϕ′(1) = 1. Then γ ◦ ϕ ' γ ◦ ϕ′.

Proof. As γ is a directed map from I to X, it is enough by Lemma 4.6 to show that ϕ ' ϕ′. Let β1 = ϕ� 01

and β2 = 00 � ϕ
′. Then, by applying Example 4.3 three times, we obtain the zigzag

ϕ β1 f β2  ϕ′.

This shows that ϕ ' ϕ′, completing the proof. �

In the next section, we will construct the fundamental category of a directed space. For that we need the
following four additional equalities.

Lemma 4.8. Let X,Y be directed spaces and x, y, z,w ∈ X. Let β1, γ1 ∈ PX(x, y), β2, γ2 ∈ PX(y, z) and
γ3 ∈ PX(z,w) such that β1 ' γ1 and β2 ' γ2. Then the following holds:

(1) β1 � β2 ' γ1 � γ2

(2) 0x � γ1 ' γ1

(3) γ1 � 0y ' γ1

(4) (γ1 � γ2) � γ3 ' γ1 � (γ2 � γ3)
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Proof. Statements 2, 3 and 4 are direct applications of Lemma 4.7 as they are all reparametrizations. We
will now show statement 1. Let n,m > 0 odd and pi, q j ∈ PX(x, y) for 1 ≤ i ≤ n and 1 ≤ j ≤ m such that

β1  p1 f p2  . . . pn f γ1,

β2  q1 f q2  . . . qm f γ2.

Let G be a directed path homotopy from β1 to p1 and H be the identity homotopy from β2 to β2. Then
G � H is a directed path homotopy from β1 � β2 to p1 � β2. We obtain a zigzag

β1 � β2  p1 � β2 f p2 � β2  . . . pn � β2 f γ1 � β2,

so β1 � β2 ' γ1 � β2. Analogously we obtain a zigzag

γ1 � β2  γ1 � q1 f γ1 � q2  . . . γ1 � qm f γ1 � γ2.

This results in γ1 � β2 ' γ1 � γ2 and combining both equivalences gives us β1 � β2 ' γ1 � γ2. �

The definition of a directed path homotopy and the three lemmas above have all been been formalized
in directed path homotopy.lean. For the path homotopies, we followed the more general approach
from MathLib, where we first defined directed homotopies that satisfy some property P. Thereafter we
defined dihomotopy_rel as directed homotopies that are fixed on a select subset of points. This is all
defined in directed homotopy.lean. A path homotopy is a homotopy that is fixed on both endpoints,
that is, on {0, 1} ⊆ I, so we can define a directed path homotopy as

abbreviation dihomotopy (p0 p1 : dipath x0 x1) :=

directed_map.dihomotopy_rel p0.to_directed_map p1.to_directed_map {0, 1}

As a directed homotopy is defined between two directed maps, we need to convert both paths p0 and p1 to
directed maps. The construction � is called hcomp and ⊗ is called trans. If f , g ∈ D(I, I) are two directed
maps with f (t) ≤ g(t) for all t ∈ I, the definition dihomotopy.reparam constructs a homotopy from
γ ◦ f to γ ◦ g . This is done by composing γ and the homotopy obtained from Example 4.3. If H is an
homotopy from p to q with p, q ∈ PX(x, y), and f : X → Y is a directed map, then the homotopy from
f ◦ p to f ◦ q given by f ◦ H is exactly what dihomotopy.map entails.
Now we can define the relations  and '. These are called pre_dihomotopic and dihomotopic
respectively.

def pre_dihomotopic : Prop := nonempty (dihomotopy p0 p1)

def dihomotopic : Prop := eqv_gen pre_dihomotopic p0 p1

The term nonempty means exactly that there exists some dihomotopy, which corresponds with our
definition of . eqv_gen gives the smallest equivalence relation generated by a relation, which is exactly
what we want. The lemmas map, reparam and hcomp in the dihomotopic-namespace now correspond
with Lemma 4.6, Lemma 4.7 and the first point of Lemma 4.8 respectively.
This gives us enough tools to construct the so called fundamental category.

5 Fundamental Structures
In this section, we define two structures that contain information about directed paths up to deformation in
a directed space: the fundamental category and the fundamental monoid.
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5.1 The Fundamental Category
Using the properties found in Section 4.2, we can define a category that captures the information of all
paths up to directed deformation in a directed space.

Definition 5.1 (Fundamental Category). Let X be a directed space. The fundamental category of X,
denoted by ~Π(X), is a category that consists of:

• Objects: points x ∈ X.

• Morphisms: ~Π(X)(x, y) = PX(x, y)/ '.

• Composition: [γ2] ◦ [γ1] = [γ1 � γ2].

• Identity: idx = [0x].

Remark. The fact that this category is well defined follows from Lemma 4.8. Due to property 1, composition
is well defined. Due to properties 2 and 3, the constant path behaves as an identity and property 4 gives us
associativity.
Note that ~Π maps objects in dTop to objects in Cat. It turns out that it can also be defined on morphisms.

Definition 5.2. Let f : X → Y be a directed map. We define ~Π( f ) : ~Π(X)→ ~Π(Y) as the functor:

• On objects: ~Π( f )(x) = f (x).

• On morphisms: ~Π( f )([γ]) = [ f ◦ γ].

It is well behaved on morphisms, because of Lemma 4.6. It is easy to verify that ~Π( f ) respects composition
and identity and it is thus a functor.
In our formalization, we follow the construction of the fundamental groupoid in MathLib found in
algebraic topology/fundamental groupoid/basic.lean closely. The implementation is found
in the file fundamental category.lean. The MathLib version has some auxiliary definitions for a
reparametrization that show that the two paths (γ1 � γ2) � γ3 and γ1 � (γ2 � γ3) are equal with relation to
' for compatible paths γ1, γ2 and γ3. In order to use these in our directed world, we just need to show that
this reparametrization is monotone. This is enough to then define the fundamental category.

def fundamental_category (X : Type u) := X

. . .

instance : category_theory.category (fundamental_category X) :=

{

hom := λ x y, dipath.dihomotopic.quotient x y,

id := λ x, ~ dipath.refl x �,

comp := λ x y z, dipath.dihomotopic.quotient.comp,

id_comp’ := λ x y f, quotient.induction_on f

(λ a, show ~ (dipath.refl x).trans a � = ~ a �,

from quotient.sound (eqv_gen.rel _ _ 〈dipath.dihomotopy.refl_trans a〉)),

comp_id’ := /- Proof omitted -/,

assoc’ := /- Proof omitted -/,

}
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The first definition makes sure that objects of the fundamental category are terms of type X. We then
show that fundamental_category is an instance of a category by defining the morphisms (hom),
identities (id) and composition (comp). The morphisms between two objects x and y are given by
dipath.dihomotopic.quotient x y. This is the quotient of dipath x y under the dihomotopic
relation and its definition can be found in directed path homotopy.lean. The identity on x is then the
equivalence class (denoted by ~ �) of the constant path in x. The composition of the equivalence classes of
two compatible paths is defined in dipath.dihomotopic.quotient.comp as the equivalence class of
the concatenation of the two paths.
Proof that the fundamental category is indeed a category are given by id_comp’, comp_id’ and assoc’.
The first one, id_comp’, requires us to show that (dipath.refl x).trans a and a are two dihomo-
topic paths. For this, we use dipath.dihomotopy.refl_trans a, which is an explicit directed path
homotopy from the path (dipath.refl x).trans a to a. Its existence shows that the two paths are
pre_dihomotopic and they are thus in the same equivalence class.
The file also contains the definition of the ~Π-functor from dTop to category_theory.Cat. Analogous
to the undirected MathLib implementation, we use the notation dπ for this functor.

5.2 The Fundamental Monoid
Definition 5.3 (Monoid). A monoid is triple (M, ·, e) consisting of a set M, an associative binary operation
· : M × M → M and an element e ∈ M such that for all g ∈ M it holds that e · g = g · e = g.

Example 5.4. The triples (N,+, 0) and (N, ·, 1) are both monoids. As they both do not have an inverse for
each element, they are not groups.

Example 5.5. If C is a locally small category and x ∈ C and object, then the triplet (C(x, x), ◦, idx) is
a monoid. This follows directly from the definition of a category. The elements in C(x, x) are called
endomorphisms of x.

This last example can be used to define the fundamental monoid of a point in a directed space.

Definition 5.6 (Fundamental monoid). Let X be a directed space and x ∈ X a point. Then the fundamental
monoid of X in x, denoted by ~π(X, x) is given by (C(x, x), ◦, idx).

Example 5.7. Let x ∈ I be a point. Let γ ∈ PI(x, x). Then γ is monotone and γ(0) = γ(1) = x. It follows
that γ(t) = x for all t ∈ I, so γ = 0x. From this, we can conclude that the only morphism in C(x, x) is the
identity, so ~π(I, x) is the trivial monoid.

Example 5.8. We have that ~π(S 1
+, 1) � (N,+, 0). In Section 6.3 we will support this claim by calculating a

fundamental monoid in a finite version of the directed unit circle.

Whether we give the unit interval the minimal directedness, the rightward directedness or maximal
directedness, the fundamental monoid at any point is the trivial monoid. Their fundamental categories, on
the other hand, are able to distinguish the differences in directedness. There are respectively zero, one and
two morphisms between two different objects. We see that the fundamental monoid loses information that
is contained in the fundamental category.
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6 The Van Kampen Theorem
In this section, we will state and prove the Van Kampen Theorem. We follow the proof of Grandis and
work out some of the details that were omitted. In Section 6.2 we show how we have formalized this proof
by comparing the proof to the Lean code. We conclude with an application of the Van Kampen Theorem
in Section 6.3 .

6.1 The Van Kampen Theorem
Before we state and prove the theorem, we will define the notion of being covered for directed homotopies.

Definition 6.1. Let X be a directed space andU a cover of X. Let H : I × I → X be a directed homotopy
and n,m > 0 two integers. We say that H is (n,m)-covered (byU) if for all 1 ≤ i ≤ n and 1 ≤ j ≤ m the
image of

[
i−1
n ,

i
n

]
×

[
j−1
m , j

m

]
under H is contained in some U ∈ U.

Once again, by the Lebesgue Number Lemma, for any homotopy H and open cover U of X, there are
n,m > 0 such that H is (n,m)-covered byU.

Theorem 6.2 (Van Kampen Theorem). Let X be a directed space and X1 and X2 two open subspaces such
that X = X1 ∪ X2 and let X0 = X1 ∩ X2. Let ik : X0 → Xi and jk : Xk → X be the inclusion maps, k ∈ {1, 2}.
Then we obtain a pushout square in Cat:

~Π(X0) ~Π(X1)

~Π(X2) ~Π(X)

~Π(i1)

~Π(i2) ~Π( j1)

~Π( j2)

Proof. As j1 ◦ i1 = j2 ◦ i2 and ~Π is a functor, the square is commutative. It remains to show it satisfies
the property of a pushout square. Let C be any category and F1 : ~Π(X1)→ C and F2 : ~Π(X2)→ C be two
functors such that F1 ◦ ~Π(i1) = F2 ◦ ~Π(i2). We will explicitly construct a functor F such that F ◦ ~Π( j1) = F1

and F ◦ ~Π( j2) = F2. The construction will show that this functor is necessarily unique with this property.
Step 1) The objects of ~Π(X) are exactly the points of X. If an object x ∈ ~Π(X) is also contained in ~Π(X1),
it holds that F(x) = F( j1(x)) = (F ◦ ~Π( j1))(x). The desired condition F ◦ ~Π( j1) = F1 then requires us to
define F(x) = F1(x). A similar argument gives us that if x ∈ ~Π(X2) then F(x) = F2(x). As X1 and X2 cover
X, we have that for all x ∈ ~Π(X)

F(x) =

F1(x), x ∈ X1,

F2(x), x ∈ X2.

By the property that F1 ◦ ~Π(i1) = F2 ◦ ~Π(i2) this is well defined, so we know how F must behave on
objects.

16



Step 2) Let [γ] : x→ y be a morphism in ~Π(X). Then there is a n > 0 such that γ is n-covered by the open
cover {X1, X2}, with γi,n covered by Xki , ki ∈ {1, 2}. One important thing to note is that γi,n can be both seen
as a path in X and as a path in Xki by restricting its codomain. This matters when we talk about [γi,n], as it
could be a morphism in ~Π(X) and in ~Π(Xki). Within this proof will always consider it as a morphism in
~Π(Xki) and use [ jkn ◦γi,n] for the morphism in ~Π(X). Note that we have that [γ] = [ jkn ◦γn,n]◦ . . .◦ [ jk1 ◦γ1,n]
in ~Π(X), as γ is equal to γ1,n � (γ2,n � . . . (γn−1,n � γn,n)) up to reparametrization. From context, it should
always be clear which one we reference. Because we want F to be a functor and thus to respect composition,
we find that necessarily

F[γ] = F([ jkn ◦ γn,n] ◦ . . . ◦ [ jk1 ◦ γ1,n])
= F[ jkn ◦ γn,n] ◦ . . . ◦ F[ jk1 ◦ γ1,n]

= F
(
~Π( jkn)[γn,n]

)
◦ . . . ◦ F

(
~Π( jk1)[γ1,n]

)
= (F ◦ ~Π( jkn))[γn,n] ◦ . . . ◦ (F ◦ ~Π( jk1))[γ1,n]
= Fkn[γn,n] ◦ . . . ◦ Fk1[γ1,n].

As multiple choices were made, we need to make sure that F is well defined this way. We do this by
defining a map F′ : PX → C by

F′(γ) = Fkn[γn,n] ◦ . . . ◦ Fk1[γ1,n],

where γ is n-covered with γi,n covered by Xki . Firstly, we will show that this map is well defined. Secondly,
we show that F′ respects equivalence classes. From this it follows that F is well defined, as it is simply F′

descended on equivalence classes.
Step 3) We first need to make sure that F′ does not depend on any choices of ki. In the case that γi,n is
covered by both X1 and X2, the value of ki can be either 1 or 2. The condition that F1 ◦ ~Π(i1) = F2 ◦ ~Π(i2)
assures us that both options give us the same value.
Step 4) The second choice we made is that of n. It is possible that γ is also m-covered for another integer
m > 0, with γ j,m being contained in Xp j . We want to show that

Fkn[γn,n] ◦ . . . ◦ Fk1[γ1,n] = Fpm[γm,m] ◦ . . . ◦ Fp1[γ1,m].

If we refine the partition of γ in n pieces into a partition of mn pieces, that partition will surely also be
partwise covered. Let li ∈ {1, 2} for all 1 ≤ i ≤ mn such that γi,mn is covered by Xli . We now claim that for
all 1 ≤ i ≤ n it holds that Fki[γi,n] = Flmi[γmi,mn] ◦ . . . ◦ Flm(i−1)+1[γm(i−1)+1,mn]. As γm(i−1)+k,mn with 1 ≤ k ≤ n
is a part of γi,n, we may assume that lm(i−1)+1 = ki. This is because F1 and F2 agree on X1 ∩ X2. As Fki

is a functor, the claim now follows because functors respect composition and because γi,n is exactly the
concatenation of all the smaller paths up to reparametrization. By a similar claim for Fp j[γ j,m] we find:

Fkn[γn,n] ◦ . . . ◦ Fk1[γ1,n] = (Flmn[γmn,mn] ◦ . . . ◦ Flm(n−1)+1[γm(n−1)+1,mn]) ◦ . . . ◦ (Flm[γm,mn] ◦ . . . ◦ Fl1[γ1,mn])
= Flmn[γmn,mn] ◦ . . . ◦ Fl1[γ1,mn]
= (Flmn[γmn,mn] ◦ . . . ◦ Fl(m−1)n+1[γ(m−1)n+1,mn]) ◦ . . . ◦ (Fln[γn,mn] ◦ . . . ◦ Fl1[γ1,mn])
= Fpm[γm,m] ◦ . . . ◦ Fp1[γ1,m]

We conclude that the definition is independent of the value of n. This makes F′ well defined.
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Step 5) Before we verify that F′ is independent of the choice of representative γ, we will first show that
F′ satisfies two properties:

∀x ∈ ~Π(X) : F′(0x) = idF(x). (1)
∀γ ∈ PX(x, y), δ ∈ PX(y, z) : F′(γ � δ) = F′(δ) ◦ F′(γ). (2)

Let x ∈ ~Π(X) be given. If x ∈ X1, then 0x is already contained in X1 and so by definition of F′ we find
F′(0x) = F1[0x] = idF1(x) = idF(x). Otherwise it holds that x ∈ X2, so F′(0x) = F2[0x] = idF2(x) = idF(x).
This proves Eq. (1).
Let γ ∈ PX(x, y), δ ∈ PX(y, z) be two paths in ~Π(X). We can then find a n such that both γ and δ are
n-covered, with γi,n contained in Xki and δi,n contained in Xpi . It is then true that γ � δ is 2n-covered as it
holds that

(γ � δ)i,2n =

γi,n, i ≤ n,
δi−n,n, i > n.

We find:

F′(δ � γ) = Fpn[(δ � γ)2n,2n] ◦ . . . ◦ Fp1[(δ � γ)n+1,2n] ◦ Fkn[(δ � γ)n,2n] ◦ . . . ◦ Fk1[(δ � γ)1,2n] =

(Fpn[δn,n] ◦ . . . ◦ Fp1[δ1,n]) ◦ (Fkn[γn,n] ◦ . . . ◦ Fk1[γ1,n]) = F′(δ) ◦ F′(γ).

This shows that Eq. (2) holds.
Step 6) We will now show that F′ respects equivalence classes. Then it can descend to the quotient and it
follows that F is well defined. If [γ] = [δ] in ~Π(X) with δ another path from x to y, we want that

F′(γ) = F′(δ). (3)

Because of the way the equivalence class is defined, it is enough to show this for γ and δ such that γ δ.
Let in that case a directed path homotopy H from γ to δ be given. We take n,m > 0 such that H is
(n,m)-covered by {X1, X2}. Firstly assume that n > 1. Restricting H to the rectangle

[
0, 1

n

]
× [0, 1] gives us

a directed path homotopy H1 from γ to the directed path η given by η(t) = H
(

1
n , t

)
. By restricting H to the

rectangle
[

1
n , 1

]
× [0, 1] we get a directed path homotopy H2 from η to δ. It is clear that H1 is (1,m)-covered

and that H2 is (n − 1,m)-covered. By applying induction, we can conclude that it is enough to show that
Eq. (3) holds for (1,m)-covered directed path homotopies, as we would obtain that F′(γ) = F′(η) = F′(δ).
Here the second equality follows from induction and the first equality from the base case.
Step 7) We will prove the case where H is (1,m)-covered by showing a more general statement:
Let H be any directed homotopy – not necessarily a path homotopy – from one path γ ∈ PX(x, y) to another
path δ ∈ PX(x′, y′) that is (1,m)-covered, m > 0. Let η0 be the path given by η0(t) = H(t, 0) and η1 be given
by η1(t) = H(t, 1). Then F′(η0 � δ) = F′(γ � η1). We do this by induction on m.
In the case that m = 1, we have a homotopy contained in X1 or X2. Without loss of generality, we can
assume it is contained in X1. Let Γ1 be the directed homotopy given by Γ1(t, s) = η0(min(t, s)) from 0x to
η0. Let Γ2 be the directed homotopy given by Γ2(t, s) = η1(max(t, s)) from η1 to 0y′ . We then can construct
a directed path homotopy from (0x � γ) � η1 to (η0 � δ) � 0y′ given by (Γ1 � H) � Γ2:
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0x γ η1

η0 δ 0y′

0x η0 η1 0y′

x x y y′

x x′ y′ y′

Γ1 H Γ2

It is a directed path homotopy because Γ1(t, 0) = η0(min(t, 0)) = η0(0) = x and Γ2(t, 1) = η1(max(t, 1)) =

η1(1) = y′ for all t ∈ I. As η0, η1 and H are all contained in X1, so is this directed path homotopy. We find
that [γ � η1] = [η0 � δ] in ~Π(X1). This gives us that F′(γ � η1) = F1[γ � η1] = F1[η0 � δ] = F′(η0 � δ).
Let now m > 1 and assume the statement holds for (1,m − 1)-covered homotopies. We can restrict H to
[0, 1] ×

[
0, m−1

m

]
to obtain a (1,m − 1)-covered homotopy H1 and we can restrict H to [0, 1] ×

[
m−1

m , 1
]

to
obtain a (1, 1)-covered homotopy H2:

γ1 γ2

δ1 δ2

η0 η′ η1

x γ(m−1
m ) y

x′ δ(m−1
m ) y′

H1 H2

Note that F′(γ) = F′(γ2) ◦ F′(γ1), because γ1 is (m − 1)-covered, γ2 is 1-covered and γ is m-covered.
Similarly it holds that F′(δ) = F′(δ2) ◦ F′(δ1). We find:

F′(γ � η1) = F′(η1) ◦ F′(γ)
= F′(η1) ◦ (F′(γ2) ◦ F′(γ1))
= (F′(η1) ◦ F′(γ2)) ◦ F′(γ1)
= (F′(δ2) ◦ F′(η′)) ◦ F′(γ1) (Case m = 1)
= F′(δ2) ◦ (F′(η′) ◦ F′(γ1))
= F′(δ2) ◦ (F′(δ1) ◦ F′(η0)) (Induction Hypothesis)
= (F′(δ2) ◦ F′(δ1)) ◦ F′(η0)
= F′(δ) ◦ F′(η0)
= F′(η0 � δ).

This proves the statement. From the statement we find that Eq. (3) holds:

F′(δ) = F′(δ) ◦ idx = F′(δ) ◦ F′(0x) = F′(0x � δ) = F′(γ � 0y) = F′(0y) ◦ F′(γ) = idx ◦ F′(γ) = F′(γ).
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Here the fourth equality follows from the statement. We conclude that F is well defined.
Step 8) As we have that F[γ] = F′(γ), it is immediate that F is a functor by Eq. (1) and Eq. (2). The
equalities F ◦ ~Π( j1) = F1 and F ◦ ~Π( j2) = F2 are by construction true: if γ is covered by X1, then γ1,1 is as
well, so (F ◦ ~Π( j1))[γ] = F[γ] = F′(γ) = F1[γ1,1] = F1[γ]. Here the second [γ] is a morphism in ~Π(X)
and the others are in ~Π(X1). We conclude that the commutative square is indeed a pushout. �

We see that a space X being covered by two open subspaces X1 and X2 is a sufficient condition for the
conclusion of this theorem to hold. The essence of the proof is that any directed path homotopy can be
covered by a grid of rectangles such that it maps each rectangle into either X1 or X2. This directly holds as
a consequence of the Lebesgue Number Lemma if X1 and X2 are open. Without much effort, that covering
property can be shown to be also true if X = X◦1 ∪ X◦2 , where S ◦ is the topological interior of a subset
S ⊆ X. Therefore, the condition can be relaxed to the case where X1 and X2 are not necessarily open and
X = X◦1 ∪ X◦2 , where X◦1 is the topological interior of X1. That is how the theorem is stated in the original
work of Grandis [Gra03, p. 306].
It is however not necessary that every directed path homotopy can be covered. The fundamental category
of I is a pushout of the fundamental categories [0, 1

2 ] and [ 1
2 , 1], but there are directed path homotopies that

are not covered by rectangles. Take, for example, the interpolation homotopy (see Example 4.3) between
00 � γ and γ � 01, with γ the identity map of I. The key is that it is still possible to find some homotopy
between these two paths that is (n,m)-covered.
The original Van Kampen Theorem, stated by Egbert van Kampen, was concerned with the fundamental
group of a space [VK33]. The fundamental group is the undirected version of the fundamental monoid.
The version of the theorem for fundamental groups only requires the additional condition that each of X,
X1, X2 and X1 ∩ X2 is path connected. The fundamental monoid of a directed space in a point, however, is
not guaranteed to form a pushout under the same conditions as the following example shows.

Example 6.3. We take X to be the directed unit circle, together with the horizontal diameter directed
leftward. Take X1 to be the top semicircle together with the diameter and X2 to be the bottom semicircle
together with the diameter. Expand them both a little bit to make sure that they are open subspaces.

x

x

x

The three spaces X, X1 and X2, from left to right.

In X1, and therefore also in X1 ∩ X2, the only path from x to x is the constant path, so it follows that
~π(X1, x) � 0 and ~π(X1 ∩ X2, x) � 0. Endomorphisms of x in X2 behave like endomorphisms of 1 in S 1

+, so
~π(X2, x) � (N,+, 0). If ~π(X, x) were the pushout, we would find that ~π(X, x) � (N,+, 0). This is false, as
~π(X, x) � (N,+, 0) ∗ (N,+, 0) — the free product of N with itself. We will support this claim in Section 6.3.

With the right conditions, a Van Kampen type theorem for the fundamental monoid holds. One such
condition can be extracted from the work of Bubenik [Bub09]. Let X1 and X2 be two open subspaces
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covering the directed space X with base point x, both containing x. It is now sufficient that for any
endomorphism [γ] : x→ x we can split it as [γ] = [γn] ◦ . . . ◦ [γ1] with [γi] : x→ x and γi contained in
either X1 or X2.
In Example 6.3 this condition is not fulfilled as one counterclockwise loop along the circle is first contained
in X2 and then in X1. There is no way to factor that loop into endomorphisms of x in such a way that each
morphism is contained in ~Π(X1) or ~Π(X2).

6.2 Formalization
In the formalization of Theorem 6.2 we follow the constructive nature of its proof. It can be found in
directed van kampen.lean. We have the following global variables, corresponding with the assump-
tions of the Van Kampen Theorem:

variables {X : dTop.{u}} {X1 X2 : set X}

variables (hX : X1 ∪ X2 = set.univ)

variables (X1_open : is_open X1) (X2_open : is_open X2)

The statement hX is exactly that X1 and X2 cover X. We do not write it as X1 ∪ X2 = X, as that would not
be type correct: the left side has type set X and the right side has type dTop.{u}. The term set.univ
does have type set X and is defined to be the set containing all elements of X.
Like in the proof, we introduce a category C and two functors F1 : ~Π(X1) → C and F2 : ~Π(X2) → C.
Using these we are going to explicitly construct a functor from ~Π(X) to C and show that it is unique. We
will use that to prove that we indeed have a pushout square.

variables {C : category_theory.Cat.{u u}} (F1 : (dπx (dTop.of X1) −→ C))

(F2 : (dπx (dTop.of X2) −→ C)) (h_comm : (dπm i1) ≫ F1 = ((dπm i2) ≫ F2))

Here i1 and i2 are the inclusion maps as in the statement of the Van Kampen Theorem. They are obtained
by dTop.directed_subset_hom, defined in dTop.lean. This defines the inclusion morphism X0 → X1

in dTop in the case that X0 ⊆ X1 ⊆ X. Here X0 = X1 ∩ X2. We first define the functor on objects (Step 1).

def functor_obj (x : dπx X) : C :=

or.by_cases ((set.mem_union x X1 X2).mp (filter.mem_top.mpr hX x)) (λ hx,

F1.obj 〈x, hx〉) (λ hx, F2.obj 〈x, hx〉)

Here we take an object x from the fundamental category of X and return an object from the codomain
C. We use filter.mem_top.mpr hX x to show that x ∈ X1 ∪ X2. From this, we use set.mem_union
to obtain x ∈ X1 or x ∈ X2 and we can split by those cases to apply either F1 or F2. We abbreviate
functor_obj hX F1 F2 to F_obj in our formalization to maintain clarity. After this definition, there are
two lemmas that prove that if x ∈ Xk, then Fk(x) = F(x) for k ∈ {1, 2}.
In the proof of Theorem 6.2, F′ is first defined and it is then shown to be a valid definition. Within our Lean
formalization, we have to do these two parts in the reverse order. Once we have shown the construction is
well-defined, we can define F′ in our formalization. That is why Step 2 will be completed later.
We use the definitions of covered and covered_partwise, shown in Section 3, to define the mapping
of morphisms inductively (Step 3):
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def functor_map_of_covered {γ : dipath x y} (hγ : covered γ hX) :

F_obj x −→ F_obj y :=

or.by_cases hγ

(λ hγ, functor_map_aux_part_one hX h_comm hγ)

(λ hγ, functor_map_aux_part_two hX h_comm hγ)

def functor_map_of_covered_partwise {n : N} : Π {x y : X} {γ : dipath x y} (hγ :

covered_partwise hX γ n), F_obj x −→ F_obj y :=

nat.rec_on n

(λ x y γ hγ, F0 hγ)

(λ n ih x y γ hγ, (F0 hγ.1) � (ih hγ.2))

In functor_map_of_covered we define what to do with a path γ that is 1-covered, i.e. map it to F1([γ])
or F2([γ]) depending on whether γ is covered by X1 or X2. functor_map_aux_part_one specifies what
F1([γ]) should be. Again, we use a shorter notation F0 for functor_map_of_covered hX h_comm.
We can then define functor_map__of_covered_partwise for a n-covered path inductively. If n = 1,
we can apply F0 by definition. Otherwise, we are able apply F0 to the first part of the path, which is
1-covered, and then functor_map_of_covered_partwise to the second part, which is (n − 1)-covered.
We abbreviate functor_map_of_covered_partwise hX h_comm to Fn.
Note that n is still an input for the definition, so we need to show that this definition is independent of the
choice for n. This is captured in the lemma functor_map_of_covered_partwise_unique (Step 4).

lemma functor_map_of_covered_partwise_unique {n m : N} {γ : dipath x y}

(hγ_n : covered_partwise hX γ n) (hγ_m : covered_partwise hX γ m) :

Fn hγ_n = Fn hγ_m :=

/- Proof omitted -/

This lemma makes use of the following lemma that shows that the image remains the same if we refine the
partition of γ, so when we use a nk-covering instead of a n-covering.

lemma functor_map_aux_of_covered_partwise_refine {n : N} (k : N) :

Π {x y : X} {γ : dipath x y} (hγ_n : covered_partwise hX γ n),

Fn hγ_n = Fn (covered_partwise_refine hX n k hγ_n) :=

/- Proof omitted -/

Now we know that the image is independent of n, and because a n > 0 exists such that γ is n-covered
(shown in has_subpaths), we can choose one such n and we obtain the following formalization of F′,
completing Step 2.

def functor_map_aux (γ : dipath x y) : F_obj x −→ F_obj y :=

Fn (classical.some_spec (has_subpaths hX X1_open X2_open γ))

We have now formalized the F′ from the proof of the Van Kampen Theorem and we first show that Eq. (1)
and Eq. (2) from Theorem 6.2 hold (Step 5).

lemma functor_map_aux_refl {x : X} :
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F_map_aux (dipath.refl x) = 1 (F_obj x) :=
/- Proof omitted -/

lemma functor_map_aux_trans {x y z : X} (γ1 : dipath x y) (γ2 : dipath y z) :

F_map_aux (γ1.trans γ2) = F_map_aux γ1 � F_map_aux γ2 :=

/- Proof omitted -/

We arrive at Step 6 and want to show it is invariant under the dihomotopic relation. To do this we need
to show the claim from the proof: if we have a directed homotopy H from f to g that is (1,m)-covered,
then F′[H( , 1)] ◦ F′[ f ] = F′[g] ◦ F′[H( , 0)] (Step 7).

lemma functor_map_aux_of_homotopic_dimaps {m : N} :

Π {f g : D(I, X)} {H : directed_map.dihomotopy f g}

(hcov : directed_map.dihomotopy.covered_partwise H hX 0 m),

F_map_aux (dipath.of_directed_map f) � F_map_aux (H.eval_at_right 1) =

F_map_aux (H.eval_at_right 0) � F_map_aux (dipath.of_directed_map g) :=

/- Proof omitted -/

By using induction once again, we end up with the lemma showing us that the choice of representative
does not matter.

lemma functor_map_aux_of_dihomotopic (γ γ’ : dipath x y) (h : γ.dihomotopic γ’) :

F_map_aux γ = F_map_aux γ’ :=

/- Proof omitted -/

We can now finally define the behavior on morphisms to obtain a functor by using the universal mapping
property of quotients.

def functor_map {x y : dπx X} (γ : x −→ y) : F_obj x −→ F_obj y :=

quotient.lift_on γ F_map_aux

(functor_map_aux_of_dihomotopic hX X1_open X2_open h_comm)

. . . /- Lemmas about identities and compositions -/

def functor : (dπx X) −→ C := {

obj := F_obj,

map := λ x y, F_map,

map_id’ := λ x, functor_map_id hX X1_open X2_open h_comm x,

map_comp’ := λ x y z γ1 γ2, functor_map_comp hX X1_open X2_open h_comm γ1 γ2
}

Here F_map is an abbreviation for functor_map hX X1_open X2_open h_comm and Functor is analo-
gously abbreviated to simply F. Finally, we get to Step 8. The remaining lemmas show that F ◦ ~Π( jk) = Fk

for k = 1 and k = 2, and that F is the unique functor with this property.

lemma functor_comp_left : (dπm j1) ≫ F = F1 := /- Proof omitted -/

lemma functor_comp_right : (dπm j2) ≫ F = F2 := /- Proof omitted -/
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lemma functor_uniq (F’ : (dπx X) −→ C) (h1 : (dπm j1) � F’ = F1)

(h2 : (dπm j2) � F’ = F2) :

F’ = F := /- Proof omitted -/

The Van Kampen Theorem is stated as

theorem directed_van_kampen {hX1 : is_open X1} {hX2 : is_open X2}

{hX : X1 ∪ X2 = set.univ} :

is_pushout (dπm i1) (dπm i2) (dπm j1) (dπm j2) :=

/- Proof omitted -/

The type is_pushout is defined in Lean in terms of colimits and cocones. Those two category theoretical
terms are used in the generalization of the definition of a pushout. In pushout alternative.lean we
show that our definition of a pushout, as stated in Definition 2.7, implies is_pushout. The theorem
directed_van_kampen now follows easily from the lemmas we proved.

6.3 Applications
Topological spaces often have uncountably many points and so their fundamental categories have uncount-
ably many objects making them hard to reason about. It is possible to reduce a fundamental category to a
subset of objects that captures the essence of the directedness. This makes the fundamental category easier
to work with and with the right selection of points, a Van Kampen Theorem still holds. This requires some
more theory [Bub09].
Another way to keep it simple is by looking at spaces with finitely many points. The first space X we will
look at is the so called discrete or finite unit circle.

Example 6.4. The discrete unit circle is a finite version of S 1 and consists of four points X = {N, E, S ,W}.
E and W are the right and left point of the unit circle and N and S represent the upper and lower arc of the
circle. The topology is given by

TX = {∅, {N}, {S }, {N, S }, {N, S , E}, {N, S ,W}, {N, E, S ,W}}

Let now four paths be given by

γ1(t) =

E, t = 0,
N, 0 < t.

, γ2(t) =

N, t < 1,
W, t = 1.

, γ3(t) =

W, t = 0,
S , 0 < t.

, γ4(t) =

S , t < 1,
E, t = 1.

,

Schematically we can represent the space and these paths as:

γ1γ2

γ3 γ4

W E

N

S
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We now make X directed by setting PX equal to the set containing any monotone subparametrization of
any concatenation of the four paths. Note that any path in X is now considered directed if and only if it
visits points in X in a counterclockwise order. This way we mimic the directedness of S 1

+, as each directed
path in that space also runs counterclockwise.
We can split X into two open subspaces X1 = {N, S , E} and X2 = {N, S ,W}. The only directed paths up
to monotone reparametrization in X1 are γ2, γ3, γ2 � γ3 and the constant paths. Its fundamental category
has thus three objects with their three identities and three additional morphisms : [γ2], [γ3] and [γ3] ◦ [γ2].
By symmetry, the fundamental category X2 has also three objects and three non-trivial morphisms. The
intersection of X1 and X2 is {N, S }. Any path from N to S must go through W and any path from S to N
must go through E, so the only possible paths in X1 ∩ X2 are the constant (trivial) paths.
As X1 and X2 are open, the condition of Theorem 6.2 is satisfied. It follows that X is a pushout of X1 and X2.
We now take the category C containing four points {n, e, s,w} and whose morphisms are freely generated
by the four morphisms p1 : e→ n, p2 : n→ w, p3 : w→ s and p4 : s→ e. Freely generated means that
morphisms in C are exactly compositions of these four morphisms (or identities) and two morphisms are
the same if and only if their sequences of these base morphisms are the same up to identities. We claim
that ~Π(X) is isomorphic to this category C. We do this by showing that C is also the pushout of ~Π(X1) and
~Π(X2). As a pushout is unique up to isomorphism [Lei14], the claim will follows.
We take two maps j1 : ~Π(X1) → C and j2 : ~Π(X2) → C. j1 is given on the objects by j1(N) = n,
j1(S ) = s and j1(E) = e. The non-trivial morphisms are mapped as j1([γ1]) = p1, j1([γ4]) = p4 and
j1([γ4 � γ1]) = p1 ◦ p4. Similarly j2 is defined. If it clear that j1 and j2 agree on ~Π(X1 ∩ X2), so we have a
commutative square.
Let D be another category and F1 : ~Π(X1) → D and F2 : ~Π(X2) → D two functors that agree on
~Π(X1 ∩ X2). We then define F : C → D as F(n) = F1(N), F(e) = F1(E), F(s) = F1(S ) and F(w) = F2(W).
On morphisms, we have that necessarily F(p1) = F1([γ1]), F(p2) = F2([γ2]), F(p3) = F2([γ3]) and
F(p4) = F1([γ4]). As the morphisms in C are freely generated by p1, p2, p3 and p4 this defines F uniquely
and it holds that F ◦ jk = Fk for k ∈ {1, 2}, so C is indeed a pushout of ~Π(X1) and ~Π(X2). From this it
follows that the morphisms in ~Π(X) are also freely generated by the four morphisms [γ1], [γ2], [γ3] and
[γ4].
We can now ask the question: what do endomorphisms of E in ~Π(X) look like? They are of the form
([γ4] ◦ [γ3] ◦ [γ2] ◦ [γ1])n with n ≥ 0 and each one is different. We now obtain an explicit isomorphism
from ~π(X, E) to (N,+, 0) given by ([γ4] ◦ [γ3] ◦ [γ2] ◦ [γ1])n 7→ n. This supports Example 5.8, where we
claimed that ~π(S 1

+, 1) � (N,+, 0).

Example 6.5. We will now look at a finite version of the space considered in Example 6.3. This space will
be similar to the discrete unit circle we just considered. We take Y = {N, E, S ,W,M} with the topology
given by

TY = {∅, {N}, {M}, {S }, {N,M}, {N, S }, {M, S }, {N,M, S }, {N,M, S , E}, {N,M, S ,W},Y}.

In this case N, M and S all represent open intervals. Note that the discrete unit circle is a subspace of Y
in a natural way. We take the four paths γ1, ..., γ4 equal to those in the previous example and take two
additional paths

γ5(t) =

E, t = 0,
M, 0 < t.

, γ6(t) =

M, t < 1,
W, t = 1.

,

We can represent this space and these paths as:
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γ3 γ4
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We take the open subspaces Y1 = {N,M, S , E} and Y2 = {N,M, S ,W}. The non-trivial morphisms in ~Π(Y1)
are [γ1], [γ4], [γ5], [γ5] ◦ [γ4] and [γ1] ◦ [γ5]. In ~Π(Y2) they are [γ2], [γ3], [γ6], [γ3] ◦ [γ2] and [γ3] ◦ [γ6].
~Π(Y1 ∩ Y2) only consists of three points N,M and S together with their identities. Just like in the previous
example, Theorem 6.2 tells us that the morphisms in ~Π(Y) are freely generated by the six morphisms [γi],
1 ≤ i ≤ 6.
This time we are interested in the non-trivial endomorphisms of W. If we start in point W, first the
morphism [γ4] ◦ [γ3] must be followed to reach point E. From there we have a choice to return to W: either
[γ2]◦[γ1] or [γ6]◦[γ5]. We find that endomorphisms of W are sequences of two loops [γ2]◦[γ1]◦[γ4]◦[γ3]
and [γ6] ◦ [γ5] ◦ [γ4] ◦ [γ3]. This structure is isomorphic to N ∗ N, agreeing with Example 6.3.

7 Conclusion and Further Research
In this thesis, we presented important concepts from directed topology. These allowed us to state and
prove a directed version of the Van Kampen Theorem. If its simple conditions are satisfied, we calculate
the fundamental category of a directed space using the fundamental categories of subspaces. Within this
thesis, we showcased how we formalized that theorem and the theory leading up to it using the Lean proof
assistant.

Our formalization can be extended to other concepts and theorems from directed topology. For example,
Bubenik’s approach of restricting the fundamental category to a (finite) full subcategory is a clear extension
of the theory we have formalized in Lean.
At the moment, MathLib does not have a version of the Van Kampen Theorem for groupoids, originally
proven by Brown in 1968 [Bro68, Bro06]. As Grandis based his proof of the directed version on Brown’s
version, our formalization can conversely be adapted to suit the undirected case. The undirected version
could also be shown to be a corollary of the directed version. This is because the fundamental category of
a topological space equipped with the maximal directedness coincides with the fundamental groupoid of
the topological space.
It might also prove interesting to further investigate sufficient and necessary preconditions for the Van
Kampen Theorem, as stated in Section 6.1. As the proof of the Van Kampen Theorem suggests, we want
to be able to cover both paths and homotopies, but whether that is truly necessary is something that future
research will have to tell.
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