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1 Introduction

Suppose that R is a ring such that its additive group R+ is isomorphic as a group to Z/nZ
for a positive integer n. Then R is isomorphic as a ring to Z/nZ. For every ring R the map
λ : R → End(R+) given by r 7→ (x 7→ rx) for r ∈ R is an injective ring homomorphism. That
R is isomorphic as a ring to Z/nZ can be proved by noting that λ(R) = End((Z/nZ)+) is
equivalent to the statement that for every f ∈ End((Z/nZ)+) with f(1) = 0, implies f is the
zero map. If f(1) = 0 then f(m) = mf(1) = 0, so indeed we find that R ∼= End((Z/nZ)+) and
Z/nZ ∼= End((Z/nZ)+). Hence we obtain that R ∼= Z/nZ.

This gives rise to the following definition. LetR be a ring and denote its underlying additive group
by R+. We say R is firm if the ring homomorphism λ : R −→ End(R+) given by r 7→ (x 7→ rx)
is a ring isomorphism. Equivalently, we say R is firm if and only if λ(R) = End(R+). The above
proof generalizes in the context of firm rings. In theorem 2.4 we will see that if R is a firm
ring and E is a ring such that R+ = E+, then E itself is firm and there exists a unique ring
isomorphism ψ : R −→ E.

In the section firm number rings, we will state one of the main results, theorem 3.19. This
theorem states the following:

Theorem. Let K be a quadratic field extension of Q, and let R be a subring of K such that
R ̸⊂ Q. Then R is either

(a) firm; and moreover, there exists a prime number p such that dimFp
(R/pR) = 1,

(b) or R is not firm; and moreover, for all prime numbers p we have that dimFp(R/pR) ∈ {0, 2},
and R+ is a free (R ∩Q)-module of rank 2.

Another main result is theorem 2.3 in section firm rings, which states:

Theorem. Let R be a ring. Then R is firm if and only if End(R+) is commutative.

Other results of the section firm rings are: firm rings are commutative and rigid. The term rigid
gives the motivation for the use of the term “firm”. Given a commutative ring R, we find that
if the unique ring homomorphism from Z to R is a ring epimorphism, then R is a firm ring. We
use this to deduce that every subring of the field of rational numbers is firm. Furthermore, we
prove that the ring of p-adic integers Zp is firm.

Let K be a finite field extension of Q and let R be a subring of K. If dimFp
(R/pR) = 1 for

some prime number p then R is firm. This is one of the results of the section firm number
rings. Another result of this section is that if R and R′ are subrings of a number field and
commensurable, then R is firm if and only if R′ is firm. In the context of integral closures, this
gives that if R is a number ring then R is firm if and only if its integral closure is firm. This
particular result might be useful for generalizing theorem 3.19 to arbitrary finite field extensions
of Q.

By convention we assume that a ring R has a multiplicative identity and ring homomorphism send
the multiplicative identity to the multiplicative identity and subrings have the same multiplicative
identity. When R is a ring we denote the group of units by R∗ and the additive group by R+.
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2 Firm rings

2.1 General properties of firm rings

Definition 1 (Firm ring). A ring R is firm if λ : R −→ End(R+) given by r 7→ (x 7→ rx) is a
ring isomorphism.

For every ring R the map λ : R → End(R+) is an injective ring homomorphism. So in fact for
a ring R it is only necessary to verify whether the map λ : R → End(R+) is surjective in order
to determine whether the ring is firm. Therefore, an equivalent definition would be: R is firm if
and only if λ(R) = End(R+).

For example, when we take the ring Z we get a unique ring homomorphism λ : Z → End(Z+).
Since every group endomorphism of Z is completely determined by the image of 1, it follows that
λ is surjective.

Definition 2 (Rigid ring). A ring R is rigid if Aut(R) = {idR}. In other words a ring is rigid
if the identity is the only ring automorphism.

The name “firm” is motivated by the fact that every firm ring is a rigid ring as well. This we
will prove in the following proposition.

Proposition 2.1. Let R be a ring. Then the following statements hold:

(a) R is firm if and only if every f ∈ End(R+) with f(1) = 0 is equal to the zero map.

(b) If R is firm then R is a commutative ring.

(c) If R is firm then R is a rigid ring.

Proof. For (a), suppose that R is firm. Then f is of the form x 7→ rx, so it holds that f(1) = r.
This gives that f(1) = 0 if and only if r = 0, so f is the zero map. Suppose that every
f ∈ End(R+) with f(1) = 0 is equal to the zero map. Then define ev1 : End(R

+) → R by
f 7→ f(1). Then ev1 is a group homomorphism such that ev1◦λ = idR. Suppose that f ∈ ker ev1,
then f(1) = 0, and thus by assumption f is the zero map. This gives that ev1 is injective and
as ev1 is clearly surjective we find that ev1 is a group isomorphism with inverse λ. Now λ is a
group isomorphism and a ring homomorphism and thus a ring isomorphism. Therefore our ring
R is firm.

For (b), let r ∈ R, then x 7→ rx and x 7→ xr are endomorphisms of R+. Suppose that R is firm,
then ev1(x 7→ rx− xr) = 0. Thus rx− xr = 0 by (a) for all x ∈ R. We find that rx = xr for all
x, r ∈ R and thus R is a commutative ring.

For (c), suppose that R is a firm ring, then λ : R → End(R+) given by r 7→ (x 7→ rx) is a
ring isomorphism. Now suppose that ϕ : R → R is a ring automorphism, then ϕ is a group
automorphism as well when we restrict ourselves to addition. So if ϕ is a ring automorphism it
should be of the form x 7→ rx with r ∈ R. A ring automorphism should send the multiplicative
identity to itself, so 1 7→ r · 1 = 1 and therefore r = 1. So every ring automorphism is equal to
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x 7→ x and therefore a firm ring R is rigid. ■

Let n ∈ Z>0 and let f ∈ End(Z/nZ+). Then if f(1) = 0, it follows that f is zero map and thus
Z/nZ is firm with proposition 2.1. Hence for every n ∈ Z>0 the ring Z/nZ is firm. In particular
the field Fp := Z/pZ is firm for every prime p.

Thus every firm ring is a commutative ring and as the ring is firm the map λ : R
∼−→ End(R+)

is a ring isomorphism. It is clear that End(R+) needs to be commutative if R is firm. However,
this condition is not only necessary, it is sufficient as well as we will show in theorem 2.3.

Definition 3 (Centralizer). Let S ⊂ R be a subset of a ring R. Then the centralizer of S in R
is

CR(S) := {r ∈ R : rs = sr for all s ∈ S}.

One can easily verify that the centralizer of S in R is a subring of R for every subset S ⊂ R.

Lemma 2.2. Let R be a ring. Let ρ : R −→ End(R+) be the map given by r 7→ (x 7→ xr) and
λ : R→ End(R+) as usual be given by r 7→ (x 7→ rx). Then the following holds

CEnd(R+)(ρ(R)) = λ(R).

Proof. For the inclusion λ(R) ⊂ CEnd(R+)(ρ(R)), we note that the endomorphisms x 7→ r(xs)
and x 7→ (rx)s are the same, because of the associativity of the multiplication in the ring R.
Now for the inclusion CEnd(R+)(ρ(R)) ⊂ λ(R), suppose that f ∈ CEnd(R+)(ρ(R)) then for every
r ∈ R we have

f ◦ ρ(r) = ρ(r) ◦ f.

When we evaluate the above in 1 we get that

f(ρ(r)(1)) = ρ(r)(f(1))

f(r) = f(1)r.

Thus f = λ(f(1)) which proves our inclusion and therefore we have CEnd(R+)(ρ(R)) = λ(R). ■

Theorem 2.3. Let R be a ring. Then R is firm if and only if End(R+) is commutative.

Proof. Suppose that R is firm so λ(R) = End(R+). Then with proposition 2.1 we have that R
is a commutative ring, and therefore End(R+) is commutative. Now suppose that End(R+) is
commutative. Lemma 2.2 gives that

CEnd(R+)(ρ(R)) = λ(R).

As every two elements in End(R+) commute we get CEnd(R+)(ρ(R)) = End(R+). Hence we find
that λ(R) = End(R+) and therefore R is firm. ■
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Given a non-trivial field extension K of a prime field k, there exists a 2-dimensional subspace of
K over k. Let us denote this subspace as U , then there exists a subspace V of K over k such that
K = U ⊕ V . Then there exists a natural inclusion of End(U+)×End(V +) into End(K+) which
is a ring homomorphism. Given a basis for U there exists an inclusion of M(2, k) into End(U+),
where M(2, k) is the 2 × 2 matrix ring with coefficients in k. As M(2, k) is a non-commutative
ring, so is End(U+). This gives us that End(K+) is a non-commutative ring and therefore we
find that K cannot be firm.

Thus it follows that if K is a field and firm, then it should be a prime field. We have seen that
Fp is firm for every prime p and in theorem 2.8 we will see that Q is firm (or one directly verifies
that Q is firm). Therefore, we obtain that a field is firm if and only if it is a prime field.

Theorem 2.4. Let R be a firm ring and let E be a ring such that R+ = E+. Then E is firm and
there exists a unique ring isomorphism ψ : R −→ E. Furthermore, if · denotes the multiplication
on R then the multiplication on E denoted by ·u is given by r ·u s := r ·u · s for a certain u ∈ R∗.
Conversely, if · denotes the multiplication on R then for every u ∈ R∗ the multiplication ·u given
by r ·u s := r · u · s defines a ring with multiplicative identity u−1.

Proof. Suppose that R is a firm ring then End(R+) is commutative by theorem 2.3. As R+ = E+,
we find that End(E+) is commutative and thus is E a firm ring. Furthermore, as R+ = E+, we
have that End(R+) = End(E+). This gives that R is isomorphic to E as a ring, because they are
both isomorphic as ring to End(R+). Now let ψ : R → E and ϕ : E → R be ring isomorphisms.
Then we have by proposition 2.1 that ψ ◦ ϕ = idE . Therefore, we have that ψ = ϕ−1 and this
gives that ψ and ϕ are unique.

Let (R,+, ·) be a fixed firm ring and E a ring such that R+ = E+. Then there exists a
ring isomorphism ψ : R → E. Thus ψ is a group automorphism of R+. Now as it holds that
R∗ ∼=λ|R∗

Aut(R+) we have that ψ = λ(u−1) for a u−1 ∈ R∗. Now ψ ◦ ψ−1 : E → E is a group
automorphism. Let s, r ∈ R. Then we have

ψ(ψ−1(s)ψ−1(r)) = ψ(usur) = u−1(usur) = sur.

As ψ is a ring isomorphism we have that ψ(1) = u−1 and therefore we have that u−1 is the
multiplicative identity for the ring E. Therefore we find that r ·u s is the multiplication on E
with r ·u s = r · u · s where · is the multiplication on R and u ∈ R∗.

Let · denote the multiplication onR then ·u defined by r·us := r·u·s defines another multiplication
on R for u ∈ R∗. With respect to the multiplication · is R a ring. Hence · is distributive and
associative and therefore we have that ·u is distributive and associative. Furthermore, we have
that r ·u u−1 = r · 1 = r and u−1 ·u r = 1 · r = r. Thus u−1 is indeed the multiplicative identity.
Now we get that (R,+, ·u) defines a ring with multiplication given by r ·u s for s, r ∈ R. ■

2.2 Firm subrings of Q
We have seen that the ring Z is firm and that for every n ∈ Z>0 the ring Z/nZ is firm. In this
section we will show that every subring of Q is firm. We will do this by uniquely identifying each
subring of the field of rational numbers with a set of primes. Then we will use this identification
to show that every subring is firm.
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Lemma 2.5. Let P denote the set of prime numbers. Suppose x ∈ Q, then denote the smallest
positive integer c such that cx ∈ Z by den(x). Then for every set B ⊂ P we have that Z[ 1p : p ∈ B]

is equal to the set of x ∈ Q with the property that every prime number dividing den(x) belongs
to B.

Proof. Let us denote the set of x ∈ Q with the property that every prime number dividing
den(x) belongs to B by ΩB . As den(1) = 1 and no prime number divides 1 we get that 1 ∈ ΩB .
Furthermore, we have that if x, y ∈ Q then den(x±y)|den(x) ·den(y) and den(xy)|den(x) ·den(y).
Hence it follows that ΩB is a subring of Q. Let p ∈ B be a prime number. Then den( 1p ) = p and

this gives us that 1
p ∈ ΩB . Now we obtain that Z[ 1p : p ∈ B] ⊂ ΩB . Suppose that x ∈ ΩB , then

x = a
b for a, b ∈ Z such that gcd(a, b) = 1 and for all q ∈ P \B we have that q ∤ b. Hence b is a

product of primes p ∈ B. Thus x ∈ Z[ 1p : p ∈ B]. ■

Theorem 2.6. Let P denote the set of prime numbers and denote with P(P) the power set of
the set of prime numbers. Then there exists a bijection

{subrings of Q} −→ P(P)

given by R 7→ {p ∈ P : 1
p ∈ R} with inverse B 7→ Z[ 1p : p ∈ B].

Proof. Denote with S(Q) the set {subrings of Q}. Define ψ : S(Q) → P(P) by R 7→ {p ∈ P :
1
p ∈ R} and define ϕ : P(P) → S(Q) by B 7→ Z[ 1p : p ∈ B]. We will show that ψ ◦ ϕ = idP(P)

and that ϕ ◦ ψ = idS(Q).

Let B ∈ P(P) then

(ψ ◦ ϕ)(B) = ψ(ϕ(B))

= ψ(Z[ 1p : p ∈ B])

= {q ∈ P : 1
q ∈ Z[ 1p : p ∈ B]}.

It is immediately clear that B ⊂ {q ∈ P : 1
q ∈ Z[ 1p : p ∈ B]}. Let 1

q ∈ Z[ 1p : p ∈ B]. Suppose

that q ̸∈ B then q = den( 1q ) ̸∈ B. Hence with lemma 2.5 it follows that 1
q ̸∈ Z[ 1p : p ∈ B]. So

1
q ∈ Z[ 1p : p ∈ B] if and only if q = p for some p ∈ B. Hence we find that {q ∈ P : 1

q ∈ Z[ 1p : p ∈
B]} ⊂ B and thus (ψ ◦ ϕ)(B) = B. Let R ∈ S(Q) then

(ϕ ◦ ψ)(R) = ϕ(ψ(R))

= ϕ({p ∈ P : 1
p ∈ R})

= Z[ 1q : q ∈ {p ∈ P : 1
p ∈ R}]

= Z[ 1q : 1
q ∈ R].

Clearly, we have that Z[ 1q : 1
q ∈ R] ⊂ R. Let x ∈ R. Then there exists an a ∈ Z such that x =

a
den(x) and gcd(a,den(x)) = 1. Furthermore, there exists a c ∈ Z such that ca ≡ 1 mod den(x).

So cx ∈ R and x = 1
den(x) +m, where m ∈ Z. This gives us that 1

den(x) ∈ R. Now if p|den(x)
then 1

p ∈ R. Hence x ∈ Z[ 1q : 1
q ∈ R]. This proves that ϕ ◦ ψ = idS(Q). ■

7



Definition 4 (Ring epimorphism). Suppose that R and E are rings and let ψ : R −→ E be a
ring homomorphism. Then ψ is a ring epimorphism if for all rings M and ring homomorphisms
ϕ, φ : E −→M we have that ϕ ◦ ψ = φ ◦ ψ implies that ϕ = φ.

For every ring R there exists a unique ring homomorphism e : Z → R. Suppose that this ring
homomorphism is an epimorphism. Then we find that for every ring M there exists at most one
ring homomorphism ψ : R→M . This is due to the fact that the condition ϕ◦ e = φ◦ e is always
satisfied for ring homomorphisms φ, ϕ : R→M , as ϕ ◦ e, φ ◦ e : Z →M is unique.

The idea of the following lemma is that under the condition that e : Z → R is an epimorphism
the ring R is firm comes from Martin Brandenburg; see [1].

Lemma 2.7. Suppose that R is a commutative ring. If e : Z −→ R is a ring epimorphism, then
R is a firm ring.

Proof. Suppose that e : Z −→ R is a ring epimorphism. Let f ∈ End(R+). If we want to showR is
firm it is sufficient to show that f(1)r = f(r) for all r ∈ R. Given R⊗ZR, defining multiplication
on its generators as (x⊗y)(z⊗w) = (xz)⊗(yw) makes R⊗ZR a ring with multiplicative identity
1⊗ 1. As e : Z → R is a ring epimorphism we find that the ring homomorphisms x 7→ x⊗ 1 and
x 7→ 1⊗ x are equal. Thus for every x ∈ R we have that x⊗ 1 = 1⊗ x.

We note that as f is an endomorphism, the map R×R→ R given by (x, y) 7→ f(x)y is Z-bilinear.
Thus there exists a unique group homomorphism φ : R ⊗Z R → R such that for all x, y ∈ R we
have that φ(x⊗ y) = f(x)y. Now as x⊗ 1 = 1⊗ x for all x ∈ R, we have that

f(x) = φ(x⊗ 1) = φ(1⊗ x) = f(1)x.

Thus we find that f(x) = f(1)x. So for every f ∈ End(R+) we get that f = λ(f(1)). Therefore,
we have that R is firm. ■

Theorem 2.8. Every subring R ⊂ Q is firm. In fact every e : Z −→ R is a ring epimorphism.

Proof. There exists a unique ring homomorphism e : Z −→ R. Let M be a ring and ψ, ϕ : R −→
M be ring homomorphisms. Obviously, we have that for all x ∈ Z the following holds ψ(x) =
ϕ(x). Theorem 2.6 tells us that R = Z[ 1p : p ∈ B] for a B ⊂ P with theorem 2.6. Let p ∈ B.

Then we have that ψ( 1p ) = ϕ( 1p ), as ϕ and ψ coincide on p, they coincide on 1
p , due to the

uniqueness of inverses. Now we have that ϕ and ψ are the same for all x ∈ Z and all 1
p with

p ∈ B, and since those elements generate Z[ 1p : p ∈ B], we find that ψ = ϕ.

So every two ring homomorphisms from R toM are the same and therefore the defining property
in definition 4 is satisfied. As e : Z −→ R is a ring epimorphism we find using lemma 2.7 that R
is a firm ring. So every subring R ⊂ Q is a firm ring. ■

2.3 Firmness of the ring of p-adic integers

Lemma 2.9. Let R be a commutative ring. Let p be a prime number such that

#(R/pR) ≤ p.
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Then for all n ∈ Z≥0 we have that R = (Z · 1R) + pnR.

Although p is not necessarily an element of R, we can always view p as element of R by its image
under the unique ring homomorphism from Z to R.

Proof. Let R be a commutative ring and p a prime such that #(R/pR) ≤ p. We have that R/pR
is a vector space over Fp. Thus the condition #(R/pR) ≤ p is equivalent with dimFp

(R/pR) ≤ 1.
Let us first assume that dimFp

(R/pR) = 0. Then R = pR and we find for every n ∈ Z≥0 that
R = pnR. Clearly, we obtain that R = (Z · 1R) + pnR.

Let us now assume that dimFp
(R/pR) = 1. Thus we have R/pR ∼= Fp and therefore we have

that R = (Z · 1R) + pR.

Assume it is true for n, then we will prove that it is true for n+1. We have that R = (Z ·1)+pR
and R = (Z·1)+pnR, so we can write R = (Z·1)+p ((Z · 1) + pnR). Every element of (Z·1)+pnR
is of the form (ki + pnri) for k ∈ Z and r ∈ R, so then we get that

p(k + pnr) = (pk + pn+1r).

Now it follows that p ((Z · 1) + pnR) = p(Z·1)+pn+1R. This gives thatR = (Z·1)+p(Z·1)+pn+1R
and as p(Z · 1) is a subgroup of (Z · 1) we get that R = (Z · 1) + pn+1R. ■

Theorem 2.10. Let R be a commutative ring. If there exists a prime p such that

#(R/pR) ≤ p,

∞⋂
n=1

pnR = (0),

then R is firm.

Proof. Suppose that f ∈ End(R+), with f(1) = 0. Then using lemma 2.9 gives that

f(R) = f(Z · 1 + pnR) = Z · f(1) + f(pn ·R) = pnf(R) ⊂ pnR

holds for every n ∈ Z≥0. This gives that

f(R) ⊂
∞⋂

n=1

pnR = (0),

and so we get that f(x) = 0 for all x ∈ R. Therefore we find using proposition 2.1 that R is a
firm ring. ■

Definition 5 (The ring of p-adic integers). Let p be a prime. Then the ring of p-adic integers
is defined as Zp := {x ∈ Qp : |x|p ≤ 1}, where Qp is the field of p-adic numbers, which is the
completion of Q with respect to the p-norm.

In [2] we find the definition as above and the statement that Zp is a ring. Moreover, we find
that Qp is the completion of Q with respect to the p-norm. Furthermore, we find that Zp is
commutative and in corollary 3.3.6 of the same book that for n ≥ 1 the following holds

Zp/p
nZp

∼= Z/pnZ. (1)

9



Theorem 2.11. Let p be a prime. Then the ring Zp of p-adic integers is firm.

Proof. Let p be a prime and Zp the ring of p-adic integers. Then we apply theorem 2.10 to p.
We obtain using (1) that

Zp/pZp
∼= Z/pZ.

This gives that #(Zp/pZp) = p, so the first condition is satisfied. We have that |pn|p = p−n

and therefore we get pnZp = {x ∈ Qp : |x|p ≤ p−n}. Thus for all x ∈
⋂∞

n=1 p
nZp we get that

|x|p ≤ p−n for all n ∈ Z>0. Hence we get that |x|p = 0 and thus x = 0. Then theorem 2.10
implies that Zp is a firm ring. ■
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3 Firm number rings

3.1 Linear Algebra

Lemma 3.1. Suppose n ∈ Z≥0 and H ⊂ Qn is an additive subgroup. Then for every k,m ∈ Z>0

it holds that

#(H/kmH) = #(H/kH) ·#(H/mH).

Proof. Suppose n ∈ Z≥0 and H ⊂ Qn is an additive subgroup. Let k,m ∈ Z>0. Then

#(H/kmH) = #(H/kH) ·#(kH/kmH).

Let φ : H/mH → kH/kmH be given by h + mH 7→ kh + kmH. Then if h ∈ kerφ it follows
that kh ∈ kmH. However, if kh ∈ kmH, then h ∈ mH as multiplication with k ̸= 0 is an
automorphism of Qn and therefore sends the subgroup mH ⊂ Qn injectively to kmH ⊂ Qn.
Thus we conclude that φ is injective. Furthermore, φ is clearly a surjection. Hence it is a group
isomorphism. This gives that #(H/mH) = #(kH/kmH) and hence we obtain

#(H/kmH) = #(H/kH) ·#(H/mH).

■

Corollary 3.1.1. Let K be a finite field extension of Q, and R ⊂ K a subring. Let k, l ∈ Z>0.
Then

#(R/klR) = (#(R/kR))l.

Proof. This follows by induction on l from lemma 3.1. ■

Proposition 3.2. Suppose n ∈ Z≥0 and H ⊂ Qn is an additive subgroup. Then for all m ∈ Z>0

the following holds:

#(H/mH)|mn.

Proof. With lemma 3.1 it is sufficient to show that #(H/pH)|pn for every prime p. Let p be a
prime. Then H/pH is an Fp-vector space. Now let V be a k-dimensional subspace of H/pH and
let (h1 + pH, h2 + pH, . . . , hk + pH) be a basis for V .

Suppose that k > n. Let π : H → H/pH be the quotient map which sends hi to hi + pH. Then
the hi ∈ H are not linearly independent over Q. Therefore, there exist ai ∈ Q not all equal to
zero such that

∑k
i=1 aihi = 0. Without loss of generality, we can choose the ai ∈ Z as we can

multiply with the product of the denominators. Moreover, we can choose our ai ∈ Z such that
there exists an aj with p ∤ aj , because otherwise all ai are divisible by p. Hence we can divide
by p until there exists an aj with p ∤ aj . We obtain that

k∑
i=1

π(aihi) =

k∑
i=1

(ai mod p)(hi + pH) = 0.

11



Since there exists an aj with p ∤ aj we get that (aj mod p) ̸= 0. Hence we find that (h1 +
pH, h2 + pH, . . . , hk + pH) cannot be a basis for V . Thus we can conclude that H/pH does not
have any k-dimensional subspaces when k > n. Hence we obtain that H/pH itself cannot have
a dimension bigger than n. Therefore, we obtain that #(H/pH)|pn. ■

3.2 Commensurability and integral closures

Definition 6 (Commensurable). Let G be a group. Subgroups H,J ⊂ G are commensurable if
both the index (H : H ∩ J) and (J : H ∩ J) are finite.

Proposition 3.3. Let G be an abelian group. Then commensurablility defines an equivalence
relation on the set of subgroups of G.

Proof. Let G be a group. Then for every subgroup H ⊂ G we have that H is commensurable
with H as (H : H ∩H) = (H : H) = 1. Thus commensurability is reflexive and it is symmetric
as both (H : H ∩ J) and (J : H ∩ J) need to be finite if H is commensurable to J .

For the transitivity, assume that H and J are commensurable and that J and K are commen-
surable. Furthermore we have that

(H : H ∩ J ∩K) = (H : H ∩ J) · (H ∩ J : H ∩ J ∩K)

= (H : H ∩ J) · ((H ∩ J)K : K)

≤ (H : H ∩ J) · (J : J ∩K).

Now as (H : H ∩ J) and (J : J ∩K) are both finite we find that (H : H ∩ J ∩K) is finite. Hence
(H : H ∩K) is finite. Interchanging the role of H and K gives that (K : H ∩K) is finite as well.
Thus we obtain that H and K are commensurable. ■

Lemma 3.4. Let H and J be commensurable subgroups of a finite dimensional Q-vector space.
Then for all m ∈ Z>0 we have #(H/mH) = #(J/mJ).

Proof. We can assume that J ⊂ H, because if H and J are commensurable then so are H ∩ J
and H commensurable, and similarly H ∩ J and J are commensurable. Let φ : H/J → mH/mJ
be given by h+ J 7→ mh+mJ then if h ∈ kerφ it follows that mh ∈ mJ . However, if mh ∈ mJ
then h ∈ J and therefore we obtain that kerφ = 0. Thus φ is injective. Moreover, φ is clearly
a surjection and hence φ is a group isomorphism. Thus we have that (H : J) = (mH : mJ).
Furthermore, we have that (H : mH)·(mH : mJ) = (H : mJ) and (H : J)·(J : mJ) = (H : mJ).
Hence it follows that (H : mH) = (J : mJ), and this gives that #(H/mH) = #(J/mJ). ■

Definition 7 (Number ring). A number ring is a subring of a number field K where a number
field is a finite field extension of Q. A firm number ring is a number ring which is also a firm
ring.

Definition 8 (Integral). Let A,B and C be commutative rings such that A ⊂ C and B ⊂ C are
subrings of C. Then an element b ∈ B is integral (over A) when there exists a monic polynomial
f ∈ A[X] with f(b) = 0. When every element b ∈ B is integral over A, we say that B is integral
over A.
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Lemma 3.5. Let R be a number ring and K its field of fractions. Then if x, y ∈ K are integral
over R, so are xy, x+ y and x− y.

Proof. We refer to proposition 3.17 in [5] for the sum and product. We have −1 is integral over
R as x+1 is a monic polynomial with coefficients in R. Then with the product we find that −y
is integral over R for y integral over R. Hence we get that x− y is integral over R. ■

For every number ring R with field of fractions K we have that R is integral over R. Hence the
previous lemma tells us that the set of all elements x ∈ K which are integral over R is a subring
of K which contains R. This subring is called the integral closure and we denote the integral
closure of R with R̃.

Definition 9 (Dedekind domain). A number ring R that is not a number field is called a
Dedekind domain if for every prime ideal p of R, the local ring Rp is a discrete valuation ring.

Theorem 3.6. Let R be a number ring with field of fractions K, and OK the ring of integers
of K. Then the following statements hold:

(a) OK = {x ∈ K : fxQ ∈ Z[X]};

(b) the integral closure of R equals R̃ = ROK ;

(c) R is Dedekind if and only if it contains OK .

Proof. We refer to theorem 3.20 in [5]. ■

Lemma 3.7. Every number ring R is of finite index in its integral closure R̃.

Proof. We refer to theorem 4.9 in [5]. ■

Proposition 3.8. Let R and R′ be number rings with field of fractions K. Then the following
statements hold:

(a) R̃ is commensurable with R;

(b) R and R′ are commensurable if and only if R̃ = R̃′.

Proof. For (a), let R be a number ring. Then with lemma 3.7 it follows that R is of finite index
in R̃. So alongside with R ∩ R̃ = R we conclude that (R̃ : R ∩ R̃) is finite and (R : R ∩ R̃) = 1.
Thus indeed we have that R and R̃ are commensurable.

For (b), suppose that R̃ = R̃′. Due to (a) we have that R and R̃ are commensurable. Similarly,
we have that R′ and R̃′ are commensurable. Hence it follows with proposition 3.3 that R and
R′ are commensurable.
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Suppose that R and R′ are commensurable. Then there exists an n ∈ Z>0 such that (R′ :
R ∩R′) = n. Furthermore, there exist bi ∈ R′ such that

R′ =

n⋃
i=1

(bi + (R ∩R′)).

Let x ∈ R′, then 1, x, x2, . . . , xn cannot all be contained in different cosets. Hence there exist
k, l ∈ Z>0 such that k < l and xk ≡ xl mod (R ∩R′). Thus there exists an r ∈ R ∩R′ such that
xl − xk − r = 0. Therefore, x ∈ R′ is integral over R. Hence R′ is integral over R. This gives

that R′ ⊂ R̃ and R̃′ ⊂ ˜̃R = R̃. Thus R̃′ ⊂ R̃, and interchanging R and R′ gives that R̃ ⊂ R̃′.
Therefore, we obtain that R̃ = R̃′. ■

Lemma 3.9. Let R be a number ring. Then for every f ∈ End(R+) there exists a unique
f̄ ∈ End(Q ·R+) such that f̄|R+

= f , and this f̄ is Q-linear. Furthermore, the map End(R+) →
EndQ(Q ·R+) given by f 7→ f̄ is an injective ring homomorphism.

Proof. Suppose that x ∈ Q · R+. Then x =
∑k

i=1 qiri, where qi ∈ Q and ri ∈ R+. For every

qi ∈ Q there exists ai, bi ∈ Z such that qi =
ai

bi
we can choose bi ∈ Z>0. Then x =

∑k
i=1

airi
bi

and
hence we can write

x =
∑k

i=1 airi(
∏k

1≤j≤k,j ̸=i bi)∏k
i=1 bi

.

Since all the bi ∈ Z>0 and
∑k

i=1 airi

(∏k
1≤j≤k,j ̸=i bi

)
∈ R+ as Z is a subgroup of R, we see that

we can write every x ∈ Q ·R+ in the form y
n for some y ∈ R+ and n ∈ Z>0.

Let us define f̄( yn ) :=
f(y)
n . We will now show that f̄ is well-defined. Let z ∈ R+ and m ∈ Z>0

such that y
n = z

m . Then my and nz are the same element of R+. This gives that f(my) = f(nz)

and because f is Z-linear we get that mf(y) = nf(z). Hence we find that f(y)
n = f(z)

m . Clearly,
we have that f̄|R+

= f since f̄( r1 ) = f(r) for all r ∈ R. We have that f̄ is Z-linear as f is Z-linear
and f̄( yn ) =

f(y)
n and hence an element of Q ·R+. Let w ∈ R+ and l ∈ Z>0. Then

f̄
(
y
n + w

l

)
= f̄

(
ly+nw

nl

)
= f(ly+nw)

nl

= f(y)
n + f(w)

l

= f̄( yn ) + f̄(wl ).

Hence f̄ is additive and therefore we find that f̄ is indeed an element of End(Q ·R+) such that
f̄|R+

= f .

Let q ∈ Q and r ∈ R+. Then there exist a, b ∈ Z such that q = a
b . Considering f̄ is Z-

linear, we have that bf̄(qr) = f̄(ar) and bqf̄(r) = af̄(r). Again, f̄ is Z-linear so we obtain that
bf̄(qr) = bqf̄(r). Hence, multiplying with 1

b gives that f̄(qr) = qf̄(r). Thus we find that f̄ is
indeed Q-linear. Let q · Q and r ∈ R+, then f̄(qr+) = qf̄(r) = qf(r). Hence f̄ is uniquely
determined by the image of R+.
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Clearly, īdR = idQ·R+ as īdR(qr) = qīdR(r) = qr. Furthermore, we have that f + g = f̄ + ḡ and
f ◦ g = f̄ ◦ ḡ as both sides coincide on R+. Since we have proved that for every f ∈ End(R+)
there exists a unique Q-linear f̄ ∈ End(Q ·R+), we note that the map End(R+) → EndQ(Q ·R+)
given by f 7→ f̄ is an injective ring homomorphism. ■

Due to the inclusion stated in lemma 3.9 we can view End(R+) as a subring of EndQ(Q ·R+).

Lemma 3.10. Let R be a number ring. Then R is firm if and only if End(R+) is commutative;
if and only if Q · End(R+) is commutative.

Proof. The statement R is firm if and only if End(R+) is commutative is stated and proved
in theorem 2.3. Hence it is sufficient to prove that End(R+) is commutative if and only if
Q · End(R+) is commutative. We embed Q into EndQ(Q · R+) by sending every q ∈ Q to
the endomorphism x 7→ qx. Hence the elements of Q under the embedding commute with all
the elements of EndQ(Q · R+). Thus if End(R+) is commutative we get that Q · End(R+) is
commutative. When End(R+) is not commutative then so is Q · End(R+). Therefore, we find
that End(R+) is commutative if and only if Q · End(R+) is commutative. ■

Lemma 3.11. Let R be a number ring. Then

Q · End(R+) =
{
f ∈ EndQ(Q ·R+) : ∃n ∈ Z>0 : f(R+) ⊂ 1

nR
+
}
.

Proof. Suppose that h ∈ Q · End(R+), then there exists g ∈ End(R+) such that h = m
n g. How-

ever, mg ∈ End(R+), so it follows that h ∈
{
f ∈ EndQ(Q ·R+) : ∃n ∈ Z>0 : f(R+) ⊂ 1

nR
+
}
.

Now suppose that h ∈
{
f ∈ EndQ(Q ·R+) : ∃n ∈ Z>0 : f(R+) ⊂ 1

nR
+
}
then it holds that h(R+) ⊂

1
mR

+ for a m ∈ Z>0. Then it holds that m · h(R+) ⊂ R+ and therefore m · h ∈ End(R+), which
again implies that f ∈ Q · End(R+). ■

Theorem 3.12. Let K be a number field and let R and R′ be subrings of K such that R and R′

are commensurable. Then R is firm if and only if R′ is firm.

Proof. Let R and R′ be subrings of the number fieldK and let R and R′ be commensurable. Then
there exists an m ∈ Z>0 such that R ⊂ 1

mR
′ and R′ ⊂ 1

mR. Hence we have that Q ·R ⊂ Q ·R′

and Q ·R′ ⊂ Q ·R. Therefore, we find that Q ·R = Q ·R′.

Using Q ·R = Q ·R′, we will show that Q ·End(R+) = Q ·End(R′+), then by lemma 3.10 it will
follow that R is firm if and only if R′ is firm.

Let f ∈ Q · End(R+), then f ∈ EndQ(Q · R+) such that there exists an n ∈ Z>0 with f(R+) ⊂
1
nR

+. Then from Q · R+ = Q · R′+ it follows that f ∈ EndQ(Q · R′+). Lemma 3.11 lets us
write f(R′+) as there exists an m ∈ Z>0 such that R ⊂ 1

mR
′ and R′ ⊂ 1

mR. Hence we find that
f(R′+) ⊂ 1

m2nR
′+. Thus it follows that f ∈ Q · End(R′+). Proving f ∈ Q · End(R′+) implies

f ∈ Q · End(R+) goes analogous. This gives Q · End(R+) = Q · End(R′+). Lastly, applying
lemma 3.10 we find that R is firm if and only if R′ is firm. ■
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Corollary 3.12.1. Let R be a number ring, then R is firm if and only if R̃ is firm.

Proof. This follows directly from theorem 3.12 and proposition 3.8. ■

3.3 Firm number rings of quadratic extensions

Lemma 3.13. Let K be a finite field extension of Q, and R ⊂ K a subring. Suppose I ⊂ R is
an ideal with I ̸= (0). Then #(R/I) <∞.

Proof. Let α ∈ I such that α ̸= 0; such an α exists as I ̸= (0). Then there exists n ∈ Z>0 and
a0, . . . , an ∈ Q such that not all ai = 0 and

n∑
i=0

aiα
i = 0.

Without loss of generality, we can assume that a0 ̸= 0 and that ai ∈ Z. Therefore we obtain that

a0 = −
n∑

i=1

aiα
i ∈ α · Z[α] ⊂ I.

Hence I ∩ Z ̸= (0) and because a0 ∈ I we obtain that a0R ⊂ I. With Proposition 3.2 we get
that #(R/a0R) ≤ |a0|[K:Q] and thus using a0R ⊂ I, we find that #(R/I) ≤ |a0|[K:Q] <∞. ■

Lemma 3.14. Let R be a number ring. If there exists a prime p such that

#(R/pR) = p,

then the ring R is firm.

Proof. By theorem 2.10 it is suffices to show that

I :=

∞⋂
k=1

pkR = (0).

For every n ∈ Z>0 we know that I ⊂ pnR. Now since #(R/pnR) = #(R/pR)n = pn due to
corollary 3.1.1 and the fact that #(R/pnR) ≤ #(R/I) for every n ∈ Z>0 we get that p

n ≤ #(R/I)
for every n ∈ Z>0. Hence with lemma 3.13 we get that I = (0). ■

For example, the ring R = Z[ 1
2+i ] is a firm number ring, which is a subring of Q(i). The minimum

polynomial of 2 + i over Q is given by

f2+i
Q = X2 − 4X + 5

from this we deduce that i = 2− 5
2+i and therefore we obtain that Z[i] ⊂ R. To show that R is

firm, we will use lemma 3.14. The ring homomorphism Z[X]/(5X2 − 4X + 1) → Z[ 1
2+i ] defined

by X 7→ 1
2+i and n 7→ n for every n ∈ Z is injective and surjective. Hence it induces a ring

isomorphism Z[X]/(5, 5X2−4X+1) → Z[ 1
2+i ]/(5). Since Z[X]/(5, 5X2−4X+1) = Z[X]/(5, X+

1), we have that Z[X]/(5, 5X2−4X+1) ∼= Z/5Z. Thus we find that dimF5
(R/5R) = 1. Therefore,

we get that R is firm.
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Lemma 3.15. Let K be a quadratic extension of Q, and let R be a subring of K such that
R ̸⊂ Q. Let Z(p) denote the subring {a

b ∈ Q|a, b ∈ Z, b ̸∈ pZ} of Q. Then for all primes p such
that dimFp

(R/pR) = 2 we have that R is integral over Z(p).

Proof. Let p be a prime such that dimFp
(R/pR) = 2. Then R/pR = Fp · 1̄⊕ Fp · ᾱ for all α with

α ̸∈ Z+ pR. Since α ∈ R \ (Z+ pR) and R is a subring of K we have that there exist u, v, w ∈ Z
such that ggd(u, v, w) = 1 and

u · α2 + v · α+ w = 0.

Then it holds that

ū · ᾱ2 + v̄ · ᾱ+ w̄ · 1 = 0

as well, and therefore ū ̸= 0 as ᾱ and 1̄ form a Fp-basis for R/pR. As ū ̸= 0 we obtain that p ∤ u.
Hence we have that

α2 + v
u · α+ w

u = 0

with v
u ,

w
u ∈ Z(p). Thus we have for every α ∈ R \ (Z+ pR) that α is integral over Z(p). We have

that α ̸∈ Z+ pR if and only if ᾱ ̸∈ Fp. As dimFp
(R/pR) = 2 there exists an ᾱ ̸∈ Fp · 1̄.

Suppose that β ∈ Z + pR then α + β ̸∈ Z + pR and hence integral over Z(p). Since α + β is
integral over Z(p), we have that β = (α+ β)− α is integral over Z(p) using lemma 3.5. ■

Lemma 3.16. Let K be a quadratic extension of Q, and let R be a subring of K such that
R ̸⊂ Q. Suppose that for all primes p we have that dimFp

(R/pR) ∈ {0, 2}. Then R is integral
over R ∩Q.

Proof. Let us denote with A the ring R ∩ Q. We have that A is a Principal Ideal Domain
(PID) and that every non-zero prime ideal of A is of the form pA for p a prime number and
dimFp

(R/pR) = 2. For prime numbers p with dimFp
(R/pR) = 0 we have that R = pR and thus

that 1
p ∈ R and hence that 1

p ∈ A. Suppose that for all p we have dimFp
(R/pR) = 0. Then

Q ⊂ A and it follows that R is integral over A as K is algebraic over Q. So now we can assume
there is at least one prime number p such that dimFp(R/pR) = 2. Now let α ∈ R and let

denA(α) :=

{
d ∈ A : ∃n ∈ Z>0 : dαn ∈

n−1∑
i=0

A · αi

}

then denA(α) is an A-ideal, because d ∈ denA(α) implies that for every r ∈ A we have

r(dαn) ∈ r

(
n−1∑
i=0

A · αi

)
=

n−1∑
i=0

rA · αi =

n−1∑
i=0

A · αi.

It is also closed under addition. Namely let d, h ∈ denA(α), then

dαn ∈
n−1∑
i=0

A · αi, hαk ∈
k−1∑
i=0

A · αi.
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Without loss of generality, we suppose that n ≥ k, then we can write

hαn ∈
n−1∑

i=n−k

A · αi ⊂
n−1∑
i=0

A · αi

hence we deduce that d+ h ∈ denA(α). With lemma 3.15 we know that for every α ∈ R and for
every prime number p such that dimFp

(R/pR) = 2 that α is integral over Z(p). So there exists a
monic polynomial f ∈ Z(p)[X] with f(α) = 0 for every such prime number. Clearly there exists
a d ∈ Z \ pZ such that d · f ∈ Z[X] and hence d ∈ denA(α). Since every denA(α) is an A-ideal
and A is a PID we have that there exists an ω ∈ A such that ωA = denA(α). Suppose that
ωA ⊂ pA, then one has that

kZ = ωA ∩ Z ⊆ pA ∩ Z = pZ

for a certain k ∈ Z. Now as there exists d ∈ denA(α) such that d ∈ Z \ pZ with the fact that
p | k we get that p should divide d, which gives a contradiction. Hence, for every prime number p
with dimFp(R/pR) = 2 we get that ωA ̸⊂ pA, so the ideal is ωA is not contained in any non-zero
prime ideal and thus ω ∈ A∗.

Therefore we have that denA(α) = A, so for every α ∈ R we have that there exists an n ∈ Z>0

such that

αn ∈
n−1∑
i=0

A · αi

and hence every α is integral over A. ■

Lemma 3.17. Let F be a free R-module, and M an R-submodule with R a PID. Then M is
free and its rank is less than or equal to the rank of F .

Proof. We refer to theorem 7.1 in [3]; part one. ■

Lemma 3.18. Let A be a PID, and L be a finite separable extension of its quotient field of
degree n. Let B be the integral closure of A in L. Then B is a free module of rank n over A.

Proof. We refer to theorem 1 in [4]; part one; chapter 2 integral closure. ■

Theorem 3.19. Let K be a quadratic field extension of Q, and let R be a subring of K such
that R ̸⊂ Q. Then R is either

(a) firm; and moreover, there exists a prime number p such that dimFp
(R/pR) = 1,

(b) or R is not firm; and moreover, for all prime numbers p we have that dimFp
(R/pR) ∈ {0, 2},

and R+ is a free (R ∩Q)-module of rank 2.
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Proof. Let K be quadratic extension of Q, and let R be a subring of K such that R ̸⊂ Q. If
there exists a prime p such that dimFp

(R/pR) = 1, we obtain with lemma 3.14 that R is a firm
number ring.

Suppose that there does not exist a prime p such that dimFp
(R/pR) = 1, so the dimension is

either 0 or 2. With lemma 3.16 we have that R is integral over R ∩ Q. Let R̃ be the integral
closure of R in K, where K is a field extension of Q(R ∩Q) = Q of degree 2. Then with lemma
3.18 we find that R̃ is a free R ∩ Q-module of rank 2. Because R ∩ Q is a PID and R is a
R ∩ Q-submodule of R̃ it follows that R is a free R ∩ Q-module of rank less than or equal to 2
with lemma 3.17. Now as R ̸⊂ Q it cannot be of rank 0 or 1; it has to be of rank 2. Thus R+ is
a free (R ∩Q)-module of rank 2, hence

M(2, R ∩Q) ⊂ End(R+).

Hence R is not a firm ring by theorem 2.3. ■
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