
Quantum Money from Knots
Schuitemaker, G.P.N.

Citation
Schuitemaker, G. P. N. Quantum Money from Knots.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in the
Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/4171115

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/4171115

Ruben Schuitemaker

Quantum money
from knots

Bachelor thesis

30 June 2023

Thesis supervisors: dr. P.J. Bruin
dr. A.W. Laarman

Leiden University
Mathematical Institute

1

Abstract

Quantum computing has the potential to revolutionise the field of cryptography.
Quantum money is a cryptographic scheme that attempts to create unforge-
able currency. This thesis investigates the knot-based quantum money scheme
proposed by Farhi et al.[FGH+12], which assumes that finding transformations
between equivalent knots is computationally demanding. We start by providing
a comprehensive understanding of the relevant concepts of knot theory, par-
ticularly the Alexander polynomial. Next, we discuss the proposed quantum
money scheme. Finally, we discuss implementation challenges on a quantum
simulator.

Contents

1 Introduction 1

2 Topological preliminaries 3
2.1 Knots and links . 3
2.2 The link group . 10
2.3 The Wirtinger presentation . 11
2.4 The Alexander polynomial . 13
2.5 Fox derivatives . 16

3 Quantum preliminaries 19
3.1 Quantum states . 19
3.2 Measurement of quantum states . 19
3.3 Transformations on quantum states 20
3.4 No-cloning theorem . 20

4 Quantum money 21
4.1 Public-Key quantum money . 21
4.2 Farhi et al.’s quantum money scheme 22

4.2.1 Generation . 22
4.2.2 Verification . 23
4.2.3 Security . 25

5 The challenges of implementation 27

6 Conclusions and future work 28

References 30

A Python code 31

1 Introduction

Even though quantum computers are still in their developmental stage, they can
potentially create significant advancements in various scientific fields, including
cryptography, healthcare, and material sciences. One particularly captivating
application is the concept of quantum money, which utilises the principles of
quantum mechanics, such as the no-cloning theorem, to create secure, unforgeable
currencies. This thesis examines the current work on quantum money schemes.
In particular, it explores the paper ‘Quantum money from knots’ by Farhi et
al. [FGH+12]. In 2012, the authors of this paper proposed a quantum money
scheme with security based on the assumption that given two different-looking
but equivalent knots, it is difficult to find an explicit transformation that takes
one to the other. To do so, it leverages a particular topological invariant, the
Alexander polynomial.

First, this paper introduces some basic definitions of knot theory, working towards
a rigorous definition of the Alexander polynomial. Next, we briefly discuss some
basics of quantum mechanics, the idea of public-key quantum money, followed by
an outline of the proposed knot-based quantum money scheme. How is ‘quantum
money’ generated and verified? We conclude by discussing the challenges of
implementing such a scheme on a quantum simulator.

Quantum money has the potential to revolutionise financial transactions by
offering unparalleled security compared to classical cryptographic methods. For
example, traditional currency systems and cryptocurrencies still rely on classical
cryptography, which may be vulnerable to attacks from increasingly powerful
quantum computers. Moreover, cryptocurrencies are criticised for their high
energy consumption and inefficiency, stemming from the computationally intensive
proof-of-work protocols required for transaction validation. In contrast, quantum
money schemes based on knot theory may offer a more energy-efficient and
secure alternative. One key advantage of the proposed knot-based quantum
money scheme is the potential for a polynomial time public verification algorithm,
eliminating the need for a middleman in the verification process and leading to
increased efficiency and reduced transaction costs.

The proposed knot-based quantum money scheme remains unbroken, making it
a promising avenue for research. Understanding the mathematical foundations
of quantum money can have profound implications for secure communications,
financial systems, and digital currencies, whether or not the scheme is ultimately
proven to be secure. Exploring the security of this scheme can help guide the

1

development of future quantum-resistant technologies while also investigating
potential energy-efficient alternatives to existing currency systems.

Stephen Wiesner introduced the concept of quantum money in 1969, proposing
using the no-cloning theorem to generate bills that can not be copied. However,
Wiesner’s original definition had a limitation: only the mint that produced the
quantum money state could verify it. In recent years, there has been a growing
interest in designing quantum money that can be verified by anyone with a
quantum computer, also known as public-key quantum money. However, such
money cannot be information-theoretically secure and must rely on computational
assumptions.

Aaronson showed in [AC12] that public-key quantum money exists relative to
a quantum oracle and proposed a concrete scheme without an oracle, but later
it was broken. An oracle, in the context of theoretical computer science, is an
abstract entity that can answer specific questions or solve specific problems in a
way that is beyond the capabilities of the algorithm or machine requesting the
information. In the case of quantum money, think of a quantum oracle as a ‘black
box’ that aids in the design or security of the quantum money scheme. The main
open question in the field is how to design secure quantum money that does not
require an oracle and does not need the mint’s participation to use the money. It
was proposed in [LAF+09] to use quantum money that is not based on a classical
secret but instead on the hardness of generating a known superposition. However,
they did not present a complete proposal for a quantum money scheme, only a
blueprint.

The primary goal of this thesis is to provide a comprehensive understanding of
the algebraic definition and properties of the Alexander polynomial as a link
invariant and its application in the context of quantum money from knots.

This thesis is organised as follows:

1. Definition and properties of links, working towards the definition of the
Alexander polynomial.

2. A short introduction to some basic concepts from quantum mechanics

3. Exploration of the quantum money from knots scheme: how can we generate
and verify ’quantum money’?

4. Discussion of a simplified implementation of this scheme using quantum
simulation software.

2

2 Topological preliminaries

2.1 Knots and links

In this section, we introduce the concept of a mathematical knot, drawing
inspiration from [Lic12], [BZH13], [Rol03]. A basic understanding of topology is
assumed, particularly the theory of fundamental groups and covering spaces, as
outlined in [Bru21].

In topology, knot theory studies mathematical knots inspired by natural everyday
knots. Unlike a shoelace, a mathematical knot has its ends joined to form a closed
loop in 3-dimensional space. The simplest knot is called the unknot, which is
just a ring. Our knots also have an orientation: a preferred direction around the
closed loop.

Figure 1: The unknot, the trefoil, the figure eight knot and the 62 knot

As is customary, Rn will denote n-dimensional Euclidean space, and Sn will be
the n-sphere. We can thus think of Sn as the unit sphere in Rn+1.

Definition 2.1.1. A link of n ∈ Z>0 components is a continuous embedding⊔n
i=1 S

1 ↪→ R3 of the disjoint union of n circles into n disjoint closed curves
in R3. Each component of the link is equipped with an orientation induced by
considering the standard orientation of S1 (counter-clockwise). The components
are ordered. A 1-component link is called a knot.

Taking the embedding to S3 or some other 3-manifold is also possible. One
motivation is the fact that S3 is compact. However, we will not use this, so, for
simplicity, we will be using R3.

Topologically, any two links with the same number of components will always
be homeomorphic. In particular, any two knots are homeomorphic. An injection
S1 ↪→ R3 induces a bijection to its image. Since this is a continuous map from a
compact space to a Hausdorff space, it is a homeomorphism.

3

Figure 2: Examples of links

We, of course, want a way to distinguish different links. Therefore, a different
notion of equivalence between links is required. One that does not allow the knot
to cross over itself while deforming.

We will consider two links equivalent if they have the same number of components
and can be transformed into each other through a continuous deformation of the
ambient space without cutting or passing through the link. We also do not want
to distinguish between links that differ by reordering the components.

Definition 2.1.2. Let L and L′ be two links of n components. We say that L
and L′ are equivalent or ambient isotopic if there exists a continuous map

F : [0, 1]× R3 → R3,

with the following properties

• F (0,−) is the identity on R3.

• F (t,−) a homeomorphism for every 0 ≤ t ≤ 1.

• F (1,−) preserves the orientation of R3 and F (1,−) ◦ L ◦ σ = L′. Here,
σ :
⊔n
i=1 S

1
i →

⊔n
i=1 S

1
τ(i) is a reordering of circles induced by a permutation

τ ∈ Sn.

The map F is called an ambient isotopy taking L to L′. It preserves the orientation
but not the ordering of its components.

This definition gives us an equivalence relation on links: two links are equivalent
if and only if an ambient isotopy exists between them.

Remark 2.1.1. A choice can be made whether we want to consider links with
reordered components as equivalent. If we want to distinguish different orderings
of the components, we will have link diagrams that look entirely identical but
represent equivalent links that are not equivalent.

4

Example 2.1.1. Consider two different links of 2 components consisting of
an unknot linked with a trefoil knot that only differs in their ordering of the
components. Do we want these to be considered equivalent?

Another definition we need concerns how well-behaved a link is.

Definition 2.1.3. We call a link polygonal if each of its components can be
represented by a finite closed polygonal chain: a finite set of straight line segments
connected to form a closed loop. We call a link tame if it is equivalent to a
polygonal link; otherwise, it is called wild.

Figure 3 shows an example of a wild knot. Intuitively it is clear that this knot
with an infinite amount of crossings can not be represented by a polygonal knot.

Figure 3: Example of a wild knot

As opposed to tame links, wild links often display pathological behaviour. They
provide counterexamples to general versions of theorems which hold for the tame
knots. Certain invariants, namely, are not necessarily defined for a wild link.
In this text, we want to avoid this wildness, so from now on, all links here are
assumed to be tame.

Definition 2.1.4. Let L be a link of n components. A projection of L is a pair
(π,O) consisting of

• A projection π : im(L) → R2 induced by the standard projection R3 →
R2, (x, y, z) 7→ (x, y).

• An orientation assignment O: a choice of one of two possible orientations
(positive or negative) for each of the n closed curves in im(L). A curve is pos-
itively oriented if a counterclockwise walk of S1 induces a counterclockwise
walk of the closed curve under the projection π.

Such a projection of L is called regular if

• The set of crossings X = {x ∈ R2 : |π−1(x)| > 1} is finite.

• For every p ∈ im(L) we have |π−1(x)| ≤ 2 with equality precisily if p ∈ X.

5

• For each crossing x, the curves crossing at x are not tangent but cross over
each other.

Our choice to avoid wild links gives us the following pleasant result.

Proposition 2.1.1. Every equivalence class of links contains a representative L
which admits a regular projection.

Proof. See [Liv93] for knots and [Sto] for a full proof for links.

Note that information is lost by taking a regular projection of a link. In particular,
the relative height of the two points in the fibre π−1(x) of a crossing x is forgotten.
Remembering this distinction as well leads us to the following definition.

Definition 2.1.5. Let L be a link of n components. Then, a link diagram of L is
a triple (π,O, C) consisting of a regular projection (π,O) of L together with an
crossing assignment of the crossings of im(π): a choice of which curve lies above
the other. This data can be determined by L.

Determining C from L is relatively easy. Let n be the natural normal vector to the
plane. Then if x, y ∈ im(L) are distinct points such that π(p) = π(q), we must
have p− q = cn for some non-zero c ∈ R . If c > 0, then p and its curve segment
lie above q and its curve segment. If c < 0, we, of course, have the opposite.

This definition is helpful for visualising links; we have already seen some of these
diagrams earlier.

Remark 2.1.2. Every link has a link diagram. Conversely, a link diagram
also determines a link up to ambient isotopy. As long as we know the crossing
assignments, the distance between the lines of the crossing in the link can be
adjusted via ambient isotopy.

We have a notion of equivalence for link diagrams analogous to the notion of
ambient isotopy of links discussed earlier.

Definition 2.1.6. Let (π,O, C) and (π′,O′, C ′) be two link diagrams. We call
them equivalent or planar isotopic if there exists a continuous map

F : [0, 1]× R2 → R2,

with the following properties

• F (0,−) is the identity on R2.

• F (t,−) a homeomorphism for every 0 ≤ t ≤ 1.

6

• F (1,−)◦π = π′, such that the orientation and crossing assignments induced
by F (1,−), O and C agree with O′ and C ′.

The map F is called an planar isotopy.

The above gives us an equivalence relation on link diagrams: two diagrams are
equivalent if and only if a planar isotopy exists between them. However, envisioning
and thinking about link diagrams is much simpler than links. Therefore, it would
be very beneficial to have the necessary and sufficient conditions for determining
the equivalence of links based on their corresponding diagrams. Fortunately, such
a condition does indeed exist.

Definition 2.1.7. Two link diagrams are equivalent if and only if a finite sequence
of Reidemeister moves exists, taking one to the other. There are 3 different moves
(6 including inverses). Figure 4 displays the three types of moves (and their
inverses).

Figure 4: The three types of Reidemeister moves

One ’small’ drawback is that the best lower bound on the number of Reidemeister
moves required is rather ’large’ [CL14].

We can now characterise link equivalence in terms of their diagrams!

Theorem 2.1.1. (Reidemeister’s Theorem) Let L and L′ be links with link dia-
grams (π,O, C) and (π′,O′, C ′) respectively. Let D and D′ denote the equivalence
classes of these diagrams modulo planar isotopy. Then L and L′ are equivalent
(ambient isotopic) if and only if D and D′ are equivalent.

Proof. The main idea is that of subdivision. Working piecewise-linearly, one can
reduce to the case of only considering so-called minimal moves on link diagrams.
A finite sequence of Reidemeister moves can describe these minimal moves. See
for example section 2.1 [Kau05] or 4.1.1 from [MK96].

7

The following definition gives another way to specify a diagram of a link, one
that is more suitable to implement on a computer.

Definition 2.1.8. A link can also be represented by a so-called planar grid
diagram: a d× d grid on which we place d X’s and d O’s. There must be precisely
one X and one O in each row and each column, and there may never be an X
and an O in the same cell.

Horizontal arrows from O to X are drawn in each row. Vertical arrows are drawn
from X to O. Where horizontal lines and vertical lines intersect, the vertical line
always crosses above the horizontal line.

A planar grid diagram G can be specified by two disjoint permutations πX , πO ∈
Sd, in which case the X’s have coordinates {(i, πX(i))} and the O’s have coor-
dinates (i, πO(i)) for i ∈ {1, . . . , d}. Two permutations are said to be disjoint if,
for all i, we have πX(i) ̸= πO(i). Any two disjoint permutations πX , πO ∈ Sd thus
define a planar grid diagram G = (πX , πO). Every link can be represented by
many different grid diagrams.

Figure 5: Transformation of a projection of the figure eight knot to a planar grid
diagram

Implementation-wise, it will be convenient to use planar grid diagrams and
store links as two disjoint permutations, which can be represented as a single
bitstring. We will also need a way to apply Reidemeister-type moves to these
diagrams. Analogous to the Reidemeister moves, we have the so-called Cromwell
moves. These three types of moves (transformations) on planar grid diagrams are
sufficient to generate all planar grid diagrams of the same link equivalence class.

The three types of Cromwell moves are translation, commutation, and stabilisa-
tion/destabilisation. We shall define each type of move as follows.

Translation is either vertical or horizontal. A vertical translation moves the top
row of the diagram to the bottom of the diagram or vice versa while leaving the
rest unchanged. Horizontal translation, similarly, moves the leftmost column of
the diagram to the rightmost or vice versa. Note that the class of grid diagrams

8

modulo this translation action can be naturally identified with grid diagrams on
a torus.

Commutation interchanges two adjacent rows or two adjacent columns. We can
apply commutation in two cases: the line segment defined by the X and O of one
row (or column) must be strictly contained in or disjoint from the line segment
of the other row (or column).

The last type of Cromwell move is slightly more involved. An X (resp. O)
destabilisation replaces a 2× 2 subgrid containing two X’s and one O (resp. two
O’s and one X) with a single square containing an X (resp. O), removing one
row and one column in the process. Stabilisation is the inverse of destabilisation.
Each (de)stabilisation is identified by its type, X or O, along with the corner in
the 2× 2 subgrid not occupied by a symbol. We get eight possibilities: X:NW,
X:NE, X:SW, X:SE, O:NW, O:NE, O:SW, O:SE.

Figure 6: The four types of X (de)stabilisations grid moves

9

Theorem 2.1.2. Two planar grid diagrams represent the same link equivalence
class if and only if there exists a finite sequence of translation, commutation, and
(de-)stabilisation grid moves to relate one grid to the other.

Proof. See [Cro95] and also [Dyn06].

2.2 The link group

Our primary goal in this chapter is to define an invariant of links. A link invariant
is a map from equivalence classes of links to some mathematical structure. The
key requirement here is that it assigns equivalent links to the same value. There
are many different link invariants one could define, but we will focus on one
in specific, the Alexander polynomial. One reason for this choice is that this
invariant is well-understood and relatively easy to compute. Therefore, it is very
suitable for our application. To start defining the Alexander polynomial, we will
first take a look at a more basic invariant of a link: the link group.

Definition 2.2.1. A tubular neighbourhood VL of L is a neighbourhood of L
homeomorphic to a disjoint union of solid tori, one for each link component
containing that particular component in its interior.

Definition 2.2.2. Let L be a link and consider one of its components, K. A
simple closed curve m exists on the boundary ∂VK , which is null-homotopic in
VK but not on ∂VK . We call m a meridian of K. It is equipped with a standard
orientation induced by L.

Note that any two meridians of a knot K are homotopic in ∂VK .

Definition 2.2.3. Let L be a link. We call XL := R3 \ im(L) the link complement
in R3.

Definition 2.2.4. Let L be a link. We define the link group GL as the fundamental
group of the link complement, GL := π1(XL).

Proposition 2.2.1. The link group is well-defined and is an invariant of the
link.

Proof. Note that we do not require a base point since the complement of a (tame)
link is path-connected. For example, suppose L1 and L2 are equivalent links.
Then, by definition, there exist a homeomorphism R3 → R3 taking im(L1) to
im(L2), so their complements must be homeomorphic too.

10

2.3 The Wirtinger presentation

Given a link diagram of some link L, there is a straightforward method to obtain
a presentation for the link group. Divide the diagram into i segments with breaks
occurring at under-passes. For each such segment, we take a group generator gi.
Corresponding to each crossing c of the diagram, we add a relation rc. Suppose
at the crossing c the over-pass arc is labelled gk and the under-pass is labelled
gi; as it approaches c and gj as it leaves c. Then we take rc = gkgig

−1
k g−1

j if the
sign of the crossing is negative, that is, gk has orientation towards the left as we
approach along gi, see Figure 7. If the sign is positive, we take rc = g−1

k gigkg
−1
j

instead. The resulting presentation is called the Wirtinger presentation of the
link group.

Figure 7: Crossings with negative and positive sign

Note that equating a relation rc to the identity is the same as saying that gi and
gj are conjugate by means of gk or g−1

k .

Figure 8: Representations of generators of a link group.

One can image each generator g as a loop starting from a base point above
the diagram, encircling the ith segment in a positive direction and returning

11

immediately to the base point, as shown in Figure 8. In this context, the relations
we add ensure that the concatenation of gk, gi and g

−1
k is path homotopic to gj.

Theorem 2.3.1. The link group is generated by the (homotopy classes of the)
loops gi, and it has presentation

GL = ⟨g1, . . . gm|r1, . . . rn⟩,

the Wirtinger presentation. We have m = n unless L contains a component with
no underpasses.

Proof. Intuitively this is clear as shown in Figure 8. A proof can be found in
[BZH13, Theorem 3.4].

Corollary 2.3.1. Let L be a link and ⟨g1, . . . gm|r1, . . . rn⟩ a Wirtinger presen-
tation of GL. Then each relation ri is a consequence of the other relations. It
follows that a Wirtinger presentation with m generators requires, at most, m− 1
relations.

Proof. See [BZH13, 3.6].

Figure 9: A trivial link and the Hopf link

Example 2.3.1. The trivial link of 2 components in Figure 9 has 2 segments
and 0 crossings giving 2 generators and 0 relations between them. The Wirtinger
presentation ⟨g, h⟩, therefore, presents Z ∗ Z, the free group of rank 2.

Example 2.3.2. We will now use this recipe to find a presentation of the Hopf
link L, the simplest non-trivial link (as we will now prove). Both components have
a counterclockwise orientation. The diagram consists of two segments; we label
them g and h. There are 2 crossings, the first gives the relation r1 = g−1hgh−1

12

and the second gives r2 = h−1ghg−1. These both imply that gh = hg. The
associated group, GL, therefore has Wirtinger presentation

GL = ⟨g, h|gh = hg⟩,

which presents Z⊕ Z, the free abelian group of rank 2.

We have now shown the existence of a non-trivial link. This is because the link
groups of the trivial link and the Hopf are not isomorphic, and since the link
group is an invariant of links, this must mean that these links are not equivalent.

The generators of a Wirtinger presentation corresponding to a single link compo-
nent belong to the same conjugacy class in the group. Further, if the group is
abelianised, we would require that these conjugated elements commute. Then,
the group becomes just the direct sum of copies of Z, one for each link compo-
nent, with all the generators corresponding to a single link component becoming
the generator of one of the copies of Z. As we will soon see, this is the first
homology group of XL. The loops representing generators of GL in the Wirtinger
presentation also represent meridian generators of H1(XL).

2.4 The Alexander polynomial

It is now almost time to define the Alexander polynomial. However, first, we will
need a couple more definitions.

In order to better understand the link group, we can explore its structure by
looking at a specific covering of the link complement, the so-called infinite cyclic
cover. For this, we will need some information about the link group. Here is a
key fact that we will use.

Lemma 2.4.1. Let L be a link of n components. Then we have H1(XL) ∼= Gab
L

∼=⊕n
i=1 Z. In other words, the abelianisation of the link group is isomorphic to the

direct sum of n copies of Z.

Proof. This proof will make use of some homology theory. Consider a tubular
neighbourhood V of L in R3. Together with the link complement XL, we have
XL ∪ V = R3, so we can apply the theorem of Mayer-Vietoris to obtain the
following exact sequence of homology groups.

. . . −→ H2(R3) −→ H1(XL ∩ V) −→ H1(XL)⊕H1(V) −→ H1(R3) −→ . . .

The first and second homology groups of R3 are trivial. The intersection XL ∩ V
of the complement and a tubular neighbourhood of a link is homotopy equivalent

13

to the union of n (non-solid) tori. This gives us that H1(XL ∩ V) ∼= Z2n. The
tubular neighbourhood V is homotopy equivalent to the disjoint union of n circles,
this yields H1(V) ∼= H1(

⊔n
i=1 S

1) ∼= Zn. We obtain the exact sequence

0 −→ Z2n −→ H1(XL)⊕ Zn −→ 0,

so we see that Z2n ∼= H1(XL)⊕Zn and H1(XL) ∼= Zn. Finally, by the theorem of
Hurewicz, we obtain

H1(XL) ∼= π1(XL)
ab = Gab

L ,

as desired.

Proposition 2.4.1. The homology classes of the meridians of the individual
components of a link generate H1(XL) ∼=

⊕n
i=1 Z.

Proof. The first homology group H1(XL) can be obtained by abelianising a
Wirtinger presentation for GL. From the construction described earlier, it seems
reasonable to assume that the natural map GL → GAb

L
∼= H1(XL) maps each

generator to a meridian of the corresponding component. This is discussed in
depth in [Lic12, Theorems 1.5 and 1.7].

We are now ready to define interesting coverings of link complements. Let L be a
link of n components and consider a surjective group homomorphism ϕ : GL → F
to a free abelian group F ∼=

⊕m
i=1 Z. The link complement XL is semi-locally

simply connected and thus admits a universal covering [RSdJ22]. The Galois
correspondence of covering spaces shows the existence of a connected regular
cover p : Y → XL such that p∗(π1(Y)) = kerϕ. We then have

Aut(Y/XL) ∼= π1(XL)/p∗(π1(Y)) = GL/ kerϕ ∼= F.

Observation 2.4.1. As Y is connected, the induced homomorphism p∗ is
injective; this means we can consider the fundamental group of Y as a sub-
group of π1(XL) and therefore p∗(π1(Y)) ∼= π1(Y) holds. By Hurewicz, we have
H1(Y) ∼= π1(Y)ab ∼= (kerϕ)ab. We see that H1(Y) can be understood as a quotient
of a normal subgroup of GL.

Definition 2.4.1. Let L be a link of n components and consider the composition
of homomorphisms

GL −→ Gab
L

∼=
n⊕
i=1

Z −→ Z,

14

defined by the canonical quotient map followed by mapping each meridian to 1.
Call this surjective composition ϕ. We have a covering map

p : X∞ → X

corresponding to kerϕ with automorphism group

Aut(X∞/XL) ∼= π1(XL)/p∗(π1(X∞)) = GL/N ∼= Z.

We call X∞ the infinite cyclic cover of XL.

There is an action of Aut(X∞/XL) ∼= Z ∼= ⟨t⟩ on X∞. Any element t of this
automorphism group induces an automorphism t∗ on homology; we, therefore,
obtain an action of ⟨t⟩ on H1(X∞) as well. The ring Z acts on any abelian group,
so the group-ring Z[⟨t⟩] acts on H1(X∞). Recall that for any group G written
multiplicatively, the group-ring Z[G] refers to a collection of Z-linear combinations
of elements of G. The addition operation in ZG is defined by formal addition,
while multiplication is determined by the distributive law and the multiplication
operation in G. In this context, the ring Z⟨t⟩ can be viewed as the ring Z[t−1, t] of
Laurent polynomials in t. Using this action, we can turn H1(X∞) into a module
over the ring Z[t−1, t].

Definition 2.4.2. Let L be a link. The Alexander module A of L is the Z[t−1, t]-
module H1(X∞).

As we will see, this definition of the Alexander module gives rise to the single
variable (reduced) Alexander polynomial. One could also define a multiple-variable
Alexander polynomial, but this requires looking at different coverings of the link
complement, resulting in a slightly different definition of the Alexander module.

Definition 2.4.3. Let R be a commutative ring. A presentation for an R module
M is a short exact sequence

F
α−→ E

ψ−→M −→ 0

of R-modules where F and E are free. The map α will also be called a presentation.
We say thatM is finitely presented if F and E can be taken to be finitely generated.
A presentation matrix for a finitely presented module M is a matrix representing
α with respect to fixed bases of F and E.

Definition 2.4.4. Let M be a finitely presented module over a commutative ring
R. Suppose A is an m×n presentation matrix of M . The rth elementary ideal (or
Fitting ideal) Er ofM is the ideal of R generated by all the (m−r+1)×(m−r+1)
minors of A.

15

Proposition 2.4.2. The rth elementary ideals are all invariant under a change
of presentation of A.

Proof. See [CF12]

Now we have all the tools to define the Alexander polynomial.

Definition 2.4.5. An Alexander matrix of a link L is a presentation matrix of
its Alexander module.

Definition 2.4.6. The rth Alexander ideal Er is the r
th elementary ideal of the

Alexander module M . By definition, it is generated by the m×m minors of the
m× n Alexander matrix.

Definition 2.4.7. The rth Alexander polynomial ∆r ∈ Z[t−1, t] is defined to be
the greatest common divisor of the elements of the rth Alexander ideal. We call
the first Alexander polynomial the Alexander polynomial written as ∆L(t).

As we will see in the next section, the Alexander ideal exists for any knot since
the Wirtinger presentation will give us an Alexander matrix of shape m× n with
m = n− 1. It is known that the elementary ideals are independent of the choice
of presentation. Also, since ∆L(t) comes from a unique factorisation ring, the gcd
is well defined and determined up to multiplication by elements of (Z[t−1, t])∗,
which are precisely the monomials {±tn|n ∈ Z}.

2.5 Fox derivatives

The Alexander polynomial, as defined currently, is not a very tangible construct.
Therefore, this subsection will describe a method for obtaining the Alexander
polynomial explicitly from a presentation of the link group. More specifically, we
will use the Wirtinger presentation to obtain an Alexander matrix: a presentation
matrix for the Alexander module.

Definition 2.5.1. Let F be a free group on generators {g1, g2, . . . , gn}. The Fox
derivative with respect to gi is defined to be the map

∂

∂gi
: Z[F] → Z[F],

such that for any u, v ∈ F and x, y ∈ Z[F], it obeys the following axioms

• ∂
∂gi

(gj) = δij.

16

• ∂
∂gi

(x+ y) = ∂
∂gi

(x) + ∂
∂gi

(y).

• ∂
∂gi

(uv) = ∂
∂gi

(u) + u ∂
∂gi

(v).

In [CF12] it is proven that these axioms uniquely determine ∂
∂gi

.

Proposition 2.5.1. These axioms imply that

• ∂
∂gi

(e) = 0.

• ∂
∂gj

(−u) = − ∂
∂gj

(u).

• ∂
∂gj

(u−1) = −u−1 ∂
∂gj

(u).

For an extensive treatment of the Fox derivative, see [CF12].

Definition 2.5.2. Let L be a link and let GL = ⟨S|R⟩ be its finitely presented
group with generators S = {g1, . . . , gn} and relations R = {r1, . . . , rm}. Define
the free group F on generators S. Recall from definition 2.2.1 the homomorphism

ϕ : GL → Z ∼= ⟨t⟩,

sending each meridian to t. Combining this with the natural map F → GL yields
the map F → ⟨t⟩. his in turn induces the map

α : Z[F] → Z[t−1, t].

The Jacobian matrix of G with respect to the presentation ⟨S|R⟩ is the m× n
matrix A defined by

A :=

(
α
(∂ri
∂gj

))
1≤i≤m
1≤j≤n

.

It is dependent on the choice of presentation of GL.

Theorem 2.5.1. This Jacobian matrix of a Wirtinger presentation of a link group
XL is an Alexander matrix. The gcd of the determinants of the (n− 1)× (n− 1)
submatrices is the Alexander polynomial.

Proof. The Alexander ideal generated by these determinants does not depend
on the choice of the presentation of GL. See [BZH13, Section 9B] for details
regarding knots and 9.18 for a clarification for links.

17

Figure 10: The Hopf link.

Example 2.5.1. We will now use these techniques to calculate the Alexander
polynomial of the Hopf link L, see figure 10. As we have seen earlier, the associated
group GL has Wirtinger presentation

GL = ⟨g, h|gh = hg⟩,

which is the free abelian group of rank 2. In this presentation, g and h correspond
to meridians of K so we have α(g) = t = α(h). We calculate

∂ghg−1h−1

∂g
=
∂gh

∂g
+gh

∂g−1h−1

∂g
=
∂g

∂g
+g

∂h

∂g
+gh

∂g−1

∂g
+ghg−1∂h

−1

∂g
= 1−ghg−1,

and

∂ghg−1h−1

∂h
=
∂g

∂h
+ g

∂h

∂h
+ gh

∂g−1

∂h
+ ghg−1∂h

−1

∂h
= g − ghg−1h−1,

so the Jacobian matrix equals

A = (α(1− ghg−1), α(g − ghg−1h−1)) = (1− t, t− 1,).

This means the Alexander ideal is generated by (1− t, t− 1,) = (t− 1) so the
Alexander polynomial is ∆L(t) = t− 1.

18

3 Quantum preliminaries

We briefly discuss some basic concepts from quantum mechanics.

3.1 Quantum states

In quantum mechanics, quantum states are vectors in a d-dimensional complex
Hilbert space H. Elements in H are called ‘ket’ vectors written |ψ⟩ ∈ H. Here ψ
is just a name for the vector. These vectors can be thought of as column vectors.
For example, a state |ψ⟩ in a 2-dimensional vector space with basis vectors |0⟩
and |1⟩ can be written as |ψ⟩ = α|0⟩ + β|1⟩. More precisely, if H has basis
|v1⟩, |v2⟩, . . . , |vd⟩, we can write any quantum state in H as

|ψ⟩ = α1|v1⟩+ α2|v2⟩+ · · ·+ αd|vd⟩,

such that for all i, αi ∈ C is the amplitude corresponding to state vi, and these
amplitudes must satisfy

∑d
i=1 |αi|2 = 1.

Recall that the transpose takes elements in H to its dual H∗ by taking the inner
product. The transpose of a ket vector is called a ‘bra’ vector and is written as
⟨ψ|. These can be thought of as row vectors. We write ⟨ϕ|ψ⟩ and |ϕ⟩⟨ψ| for the
inner and outer products. We can also combine states from two different n-qubit
systems to form a joined state on 2n qubits by taking the tensor product. For
|ϕA⟩ ∈ HA and |ϕB⟩ ∈ HB we often simply write |ϕA⟩|ϕB⟩ for |ϕA⟩ ⊗ |ϕB⟩.

3.2 Measurement of quantum states

Quantum states are unable to persist indefinitely within an abstract domain; at
some point, they must undergo measurement. The most elementary measure-
ment can be carried out with respect to an orthonormal basis, represented as
|v1⟩, |v2⟩, . . . , |vd⟩. When measuring a quantum state |ψ⟩, the likelihood of obtain-
ing outcome i is given by |⟨vi|ψ⟩|2. It is important to emphasise that measurement
is a destructive process.

Once |ψ⟩ is measured and outcome i is observed, the state collapses to |vi⟩, leading
to the loss (or existence in parallel universes, depending on one’s interpretation
of quantum mechanics) of all other information pertaining to the original state.

It is vital to understand that measurements are the only way of accessing
information about a quantum state’s amplitudes. Numerous misconceptions about
quantum mechanics arise from the assumption that there exists an alternative
method for obtaining information about a quantum state besides measurements.

19

3.3 Transformations on quantum states

Measurement is a method for altering a quantum state; however, it is possible
to change a state by applying a quantum transformation. All quantum transfor-
mations are linear transformations acting on quantum states. We call a linear
map U : H → H unitary if its conjugate transpose is its inverse: U †U = UU † = I.
Alternately but equivalently, a unitary transformation is simply a linear map
that preserves the inner product between pairs of elements in H. This, in turn,
implies that a unitary transformation preserves the norm of a quantum state.
Therefore, a unitary transformation maps a quantum state into another quantum
state. In conclusion, all quantum operations are unitary linear transformations.

3.4 No-cloning theorem

We present a somewhat simplified version of the no-cloning theorem of quantum
mechanics.

Theorem 3.4.1. An arbitrary quantum state cannot be copied. More formally,
a unitary operation U on 2n qubits and an n-qubit state |e⟩ such that for any
n-qubit state |ψ⟩,

U(|ψ⟩|e⟩) = |ψ⟩|ψ⟩,
does not exist.

Proof. We will try to derive a contradiction by assuming that such a unitary
operator exists. Let |ψ⟩ and |ϕ⟩ be quantum states on n qubits. Since U is
supposed to clone states, we have U |ψ⟩|e⟩ = |ψ⟩|ψ⟩ and U |ϕ⟩|e⟩ = |ϕ⟩|ϕ⟩. Taking
the conjugate transpose gives (U |ϕ⟩|e⟩)† = ⟨ϕ|⟨e|U †. Take the inner product and
using U †U = I, we get

⟨ϕ|⟨e||ψ⟩|e⟩ = ⟨ϕ|⟨e|U †U |ψ⟩|e⟩ = ⟨ϕ|⟨ϕ|ψ⟩|ψ⟩ = ⟨ϕ|ψ⟩2.

Using properties of the tensor product, along with the fact that quantum states
are normalised, we also get

⟨ϕ|⟨e||ψ⟩|e⟩ = ⟨ϕ|ψ⟩⟨e|e⟩ = ⟨ϕ|ψ⟩.

So this means that ⟨ϕ|ψ⟩ = ⟨ϕ|ψ⟩2, meaning that ⟨ϕ|ψ⟩ is either 0 or 1. This in
turn implies that |ϕ⟩ and |ψ⟩ are equal or orthogonal, but we have not assumed
this.

Hence, there is a contradiction. Therefore, a unitary operation that perfectly
clones an arbitrary state does not exist, which proves the No-cloning theorem.

20

4 Quantum money

Money has the flaw of being easily replicated. However, quantum states adhere to
the no-cloning theorem, meaning an unknown quantum state cannot be duplicated.
Initially, this might seem like a solution for using quantum states as currency,
a concept proposed by Wiesner in 1983 (with an original manuscript dating
back to circa 1969). However, unfortunately, his plan had its limitations, and
devising a quantum money system without major drawbacks was significantly
more challenging.

We will start by introducing the idea of public-key quantum money. Afterwards,
we will look at the quantum money from knots scheme[FGH+12].

4.1 Public-Key quantum money

Several candidate public-key quantum money schemes have been proposed,

In 1983, Wiesner and others presented the idea of public-key quantum money
[BBBW83]. Numerous quantum money protocols have been proposed since Wies-
ner’s work, but only Farhi et al.’s knot-theoretic scheme has not yet been broken.
A survey of efforts towards public-key quantum money can be found in section 9
of [Aar16].

The public-key quantum money scheme must satisfy three properties:

• The mint can produce money efficiently. There is a polynomial-time quantum
generation algorithm that randomly produces a quantum money state |$p⟩
and an associated serial number p. A list of all the valid serial numbers is
published.

• Anyone with a quantum computer can efficiently verify that a quantum
money state was produced by the mint without destroying the money. There
is a polynomial-time quantum verification algorithm

Ver: (|$p⟩, p) 7→ (|$′⟩, b),

which, when given a valid money state, outputs an ‘accepted/rejected’ bit
and, if accepted, the original money state.

• Given a valid quantum money state, nobody can copy it. There does not
exist a polynomial-time quantum algorithm that takes as input (|$p⟩, p)
and outputs two quantum money states such that the verification algorithm

21

accepts both quantum money states (when paired with p) as genuine with
more than exponentially small probability.

4.2 Farhi et al.’s quantum money scheme

A quantum money scheme was introduced by Farhi et al. in 2010, which utilised
superpositions of diagrams encoding oriented links with identical Alexander
polynomials. The authors anticipate that the scheme will remain secure against
adversaries with computational limitations.

The scheme’s security is based on the assumption that it is difficult to determine
whether two links are equivalent, even in the average case for a quantum computer.
This problem is referred to as the recognition problem, and even the unknot
recognition problem (determining if a given knot is equivalent to the unknot)
has no known polynomial-time algorithm. The best-known algorithms for both
problems have an exponential running time [BO14], which further supports the
use of links as the basis for the scheme’s security.

We will discuss how polynomial-time quantum money generation and verification
work in this scheme. We will go through all the essential details but make some
simplifications. For example, we will assume all superpositions discussed in the
next section are uniform. In Farhi et al.’s paper, the quantum money states are not
uniform superpositions; Instead, grid diagrams are weighted in the superposition
based on the size of the corresponding permutations, according to a Gaussian
distribution. This is in order to make specific attacks on the scheme less likely.

4.2.1 Generation

The generation of money in this scheme works as follows. The mint begins by
producing superposition over all pairs of permutations on d elements for all d ≤ D
for some large integer D:

D∑
d=2

∑
πX ,πO∈Sd

|πX , πO⟩.

Next, the mint measures if πX and πO are disjoint or not (they are disjoint with
probability close to 1

e
). If this is not the case, the mint starts over. If they are

disjoint, the mint will be left with a superposition of all planar grid diagrams of
size at most D ×D. After normalising, we get

1√
N

∑
Grid diagrams G

|G⟩.

22

Here N is the number of such diagrams. From this state, the mint computes the
Alexander polynomial of G into a second register.

1√
N

∑
Grid diagrams G

|G⟩|A(G)⟩.

The second register is measured, obtaining a polynomial p. The result is a
state |$p⟩ the weighted superposition of all planar grid diagrams with Alexander
polynomial p and size at most D ×D:

1√
N ′

∑
G with ∆G=p

|G⟩|p⟩.

The two registers are no longer entangled. Separating them yields the money
state

|$p⟩ =
1√
N ′

∑
G with ∆G=p

|G⟩.

All these steps can be done in polynomial time. In particular, a polynomial-
time classical algorithm for the Alexander polynomial can be converted into a
polynomial-time quantum algorithm that works on superpositions of links.

4.2.2 Verification

Given a supposed valid piece of quantum money (|ψ⟩, p), the verifier needs to
check whether |ψ⟩ is, in fact, the proper superposition over all diagrams with
Alexander polynomial p. We present the critical components of the verification
scheme.

To verify quantum money, a quantum verification procedure based on a classical
Markov chain is applied. Essentially, many randomly chosen Reidemeister moves
are applied to the money state superposition with the restriction that Reidemeister
moves that would expand the planar grid diagram beyond d dimensions are
ignored.

The three Reidemeister, or more precisely, in the case of grids, the three types
of Cromwell moves are sufficient to generate all planar grid diagrams of the
same link. Consider S as the set of all possible Cromwell moves on planar grid
diagrams of size d. Any move maps a grid diagram to another one representing
a link of the same equivalence class. While each move s ∈ S has an inverse, it
is, unfortunately, impossible to model this as a group action because not every
move can be applied to any diagram.

23

Algorithm 1 Verifying Quantum Money

1. Verify that p is a valid published serial number.

2. Verify that |ψ⟩ is a superposition over valid grid diagrams, i.e. two disjoint
permutations. Let A be a quantum algorithm for this purpose. The verifier
measures whether A accepts the input |ψ⟩. If it does not, the money is
invalid; otherwise, move on to Step 3. Note that if A accepts, the original
state |ψ⟩ may have included some invalid diagrams in the superposition (but
we happened to measure a valid one). In any case, the new post-measurement
state |ψ′⟩ will only include valid diagrams.

3. Verify that |ψ⟩ is a superposition over valid grid diagrams with polynomial
p. The Alexander polynomial (of a superposition of links) is computed on
the input |ψ′⟩. The result is measured. If the result is p, move on to Step
2. The new state is some |ψ′′⟩ that is a superposition over diagrams with
Alexander polynomial p. If the result is not p, the money is invalid.

4. Verify that the superposition over diagrams with Alexander polynomial p
contains all such diagrams. This will be done by supplying Algorithm 2
with |ψ′′⟩.

24

We can, however, consider the Markov chain defined on grid diagrams with the
update rule ‘apply a random valid move’. For each link L, the set of all diagrams
representing L is a stationary distribution for this Markov chain. Consequently,
the set of links with Alexander polynomial p forms a stationary distribution as
well. This means the diagrams in a valid quantum money superposition |pi⟩ form
a stationary distribution.

This Markov chain verification step, see Algorithm 2, will use slightly more
quantum computing theory than introduced in this text. The main idea is to
apply Cromwell moves. The money state will be invariant under these moves if it
is valid.

4.2.3 Security

Why are links used in this quantum money scheme instead of other mathematical
objects like graphs?

The reason is that links possess specific desirable properties. Firstly, there are
numerous distinct links, and each link has many link diagrams encoding it. It
has long been conjectured that the link equivalence problem, in other words,
distinguishing whether or not two links are equivalent or not, is hard. It is not
known if this problem is in NP. Even verifying whether some random knot is
trivial is a non-trivial task! However, this problem was recently shown to be in
NP, along with a quasipolynomial algorithm [Lac21]. If this could be generalised
to other knot equivalence, it would spell trouble for the scheme’s security.

Also, links have many invariants, such as the Alexander polynomial, which is also
simple to calculate. The Alexander polynomial is chosen because, in contrast,
other invariants like the Jones polynomial may be challenging to compute, even
for quantum computers.

On the other hand, using graphs where equivalence is based on graph isomorphisms
may not be ideal due to the solvability of the graph isomorphism problem on
most random graphs in practice. In [Bab16], it is shown that graph isomorphism
is solvable in quasipolynomial time.

25

Algorithm 2 Markov chain verification algorithm

1. Let S be the set of possible Cromwell moves on grid diagrams of dimension
≤ D. Each move s ∈ S can be represented by a permutation matrix Ps
that encodes the action of s on all grid diagrams of dimension ≤ D. In the
case that the move s is an invalid move for a specific diagram, it will act as
the identity. Let

V =
∑
s∈S

Ps ⊗ |s⟩⟨s|

where the second register has basis states |s⟩ for s ∈ S. Since permutation
matrices are unitary, so is V .

2. Adjoin a second register to |ψ′′⟩ and initialise it to the uniform superposition
on basis elements |s⟩ for s ∈ S.

|ϕ⟩ = |ψ′′⟩ 1√
|S|

∑
s∈S

|s⟩

3. Apply V to |ϕ⟩.

V |ϕ⟩ =
∑
s∈S

Ps ⊗ |s⟩⟨s|

(
|ψ′′⟩ 1√

|S|

∑
s∈S

|s⟩

)

=
∑
s∈S

1√
|S|

(Ps|ψ′′⟩)⊗ |s⟩

If |ψ′′⟩ is a valid money state, then Ps|ψ′′⟩ = |ψ′′⟩, so V |ϕ⟩ = |ϕ⟩, and the

second register will be separable from the first, with the value
√

1
|S|
∑

s∈S |s⟩.

Measure whether the third register of V |ϕ⟩ contains a +1 eigenvector of∑
s,s′∈S

1
|S| |s⟩⟨s

′|. If the result is no, then the money state is invalid. If the
result is yes, repeat step 3 with the current state of the two registers instead
of |ϕ⟩. The verification algorithm is complete once this step has passed a
polynomial amount in D times.

26

5 The challenges of implementation

This section discusses some of the challenges of implementing quantum money
from knots in a quantum simulator. Qiskit is an open-source framework developed
by IBM for working with quantum computers. In Qiskit, users can create quan-
tum circuits using quantum gates to manipulate qubits. It also offers tools for
visualising and analysing quantum computations. Qiskit provides access to real
quantum devices and simulators for running quantum circuits. For our exposition,
we would like to inspect our quantum state, and for this purpose, the ‘statevector
simulator’ backend is most appropriate.

In Qiskit, creating a uniform superposition over n qubits for some small integer
n (say n = 20) is relatively simple. Such a superposition consists of 2n basis
elements, each encoded by a bitstring of length n.

Our first challenge is to create a superposition over planar grid diagrams, so
we need a way to relate grid diagrams to bit strings. As discussed, a planar
grid diagram can be represented by two disjoint permutations. A permutation of
length n can be represented by a number from 1 to n! By this reasoning, in an
n qubit system, we can extract two bitstrings of length k = ⌊n

2
⌋. Now let m be

the greatest positive integer such that m! ≤ 2k − 1. This way, every basis vector
represents a pair of permutations in Sm × Sm, and every such pair is represented.
In particular, we can create superpositions over pairs of disjoint permutations by
filtering out the undesired basis vectors. This can be done through measurement
or, because we are simulating, by simply looping over the basis vectors.

The next challenge is to create a superposition over planar grid diagrams with
the same Alexander polynomial. Once we have a superposition of grid diagrams,
the next step is to calculate the Alexander polynomial for each of these diagrams.
Doing this sequentially would be very inefficient, as the number of diagrams
grows exponentially with the number of qubits. Fortunately, we can convert a
polynomial-time classical algorithm for calculating the Alexander polynomial to
a polynomial-time quantum algorithm that takes a superposition of links as input
and outputs a superposition of polynomials. Unfortunately, however, there is no
straightforward way to implement such a conversion and doing this from scratch
went beyond the project’s scope. We are therefore forced to do the calculations
sequentially.

Another big problem is that the currently available classical implementations of
the Alexander polynomial, like the one in Sage, need to be more stable for our
problems; the Sage function can often hang indefinitely and fail to return a result

27

for seemingly random links. The Python library pyknotid [ToSc17] also provides
ways to calculate the polynomial, but its incompatibility with newer Python 3
versions makes it difficult to work with. Calculating the Alexander polynomial is,
therefore, currently the biggest obstacle.

The next challenge is the verification of quantum money states. Assuming we
could calculate Alexander polynomial efficiently, the first three steps of algorithm 1
would be easy. Implementing the Markov chain verification algorithm, however,
while possible, would be quite the challenge. The main challenge is that we would
need to encode each possible grid move and create a quantum system with these
grid moves as basis states.

Another issue that might appear is quantum error and noise. Realistic quantum
computers and quantum simulators are affected by noise and errors, which could
degrade the security of quantum money as the scale increases. Error correction and
noise reduction techniques need to be incorporated, which add to the complexity
of the problem.

6 Conclusions and future work

This work explored the exciting domain of quantum money, shedding light on an
innovative application of quantum mechanics and knot theory. We focused on
understanding the quantum money scheme proposed by Farhi et al., which employs
the mathematical intricacies of links, specifically the Alexander polynomial, to
create secure and unforgeable quantum money.

In this endeavour, we have developed an understanding of the basics of knot theory,
emphasising the Alexander polynomial. We delved into the fundamental principles
of quantum mechanics to understand the workings of public-key quantum money.
This led us to unpack the concept of public-key quantum money based on knots,
exploring the generation and verification processes. Building on our exploration,
we propose future work to focus on an efficient quantum algorithm for the
Alexander polynomial and a better understanding of the verification procedure.

Despite the challenges, the potential of quantum money from knots is immense.
Further research and development in quantum algorithms, quantum error correc-
tion, and quantum hardware will lead to efficient and practical implementations
of this scheme in the future.

28

References

[Aar16] Scott Aaronson. The complexity of quantum states and trans-
formations: from quantum money to black holes. arXiv preprint
arXiv:1607.05256, 2016.

[AC12] Scott Aaronson and Paul Christiano. Quantum money from hidden
subspaces. In Proceedings of the forty-fourth annual ACM symposium
on Theory of computing, pages 41–60, 2012.

[Bab16] László Babai. Graph isomorphism in quasipolynomial time. In
Proceedings of the forty-eighth annual ACM symposium on Theory
of Computing, pages 684–697, 2016.

[BBBW83] Charles H Bennett, Gilles Brassard, Seth Breidbart, and Stephen
Wiesner. Quantum cryptography, or unforgeable subway tokens. In
Advances in cryptology: Proceedings of Crypto 82, pages 267–275.
Springer, 1983.

[BO14] Benjamin A. Burton and Melih Ozlen. A fast branching algorithm
for unknot recognition with experimental polynomial-time behaviour,
2014.

[Bru21] P. Bruin. Syllabus topologie, versie van najaar 2021.

[BZH13] Gerhard Burde, Heiner Zieschang, and Michael Heusener. Knots,
volume 5. Walter de Gruyter, 2013.

[CF12] R.H. Crowell and R.H. Fox. Introduction to Knot Theory. Graduate
Texts in Mathematics. Springer New York, 2012.

[CL14] Alexander Coward and Marc Lackenby. An upper bound on Reide-
meister moves. American Journal of Mathematics, 136(4):1023–1066,
2014.

[Cro95] Peter R Cromwell. Embedding knots and links in an open book i:
Basic properties. Topology and its Applications, 64(1):37–58, 1995.

[Dyn06] Ivan Dynnikov. Arc-presentations of links: monotonic simplification.
Fundamenta Mathematicae, 1(190):29–76, 2006.

[FGH+12] Edward Farhi, David Gosset, Avinatan Hassidim, Andrew Lutomirski,
and Peter Shor. Quantum money from knots. In Proceedings of the

29

3rd Innovations in Theoretical Computer Science Conference, pages
276–289, 2012.

[Kau05] Louis H Kauffmans. Knot diagrammatics. Handbook of knot theory,
pages 233–318, Elsevier, 2005.

[Lac21] Marc Lackenby. The efficient certification of knottedness and thurston
norm. Advances in Mathematics, 387:107796, 2021.

[LAF+09] Andrew Lutomirski, Scott Aaronson, Edward Farhi, David Gosset,
Avinatan Hassidim, Jonathan Kelner, and Peter Shor. Breaking
and making quantum money: toward a new quantum cryptographic
protocol. arXiv preprint arXiv:0912.3825, 2009.

[Lic12] WB Raymond Lickorish. An introduction to knot theory, volume 175.
Springer Science & Business Media, 2012.

[Liv93] Charles Livingston. Knot theory, volume 24. Cambridge University
Press, 1993.

[MK96] Kunio Murasugi and Bohdan Kurpita. Knot theory and its applica-
tions. Springer, 1996.

[Rol03] Dale Rolfsen. Knots and links, volume 346. American Mathematical
Soc., 2003.

[RSdJ22] S.van der Lugt R. S. de Jong. Syllabus behorend bij het vak inleiding
in de algebräısche topologie, Versie 16 augustus 2022.

[Sto] Jasper Stokman. Quantum groups and knot knot theory, https:
//staff.fnwi.uva.nl/j.v.stokman/week37.pdf.

[ToSc17] Alexander J Taylor and other SPOCK contributors. pyknotid knot
identification toolkit. https://github.com/SPOCKnots/pyknotid,
2017. Accessed 2023-30-06.

30

https://staff.fnwi.uva.nl/j.v.stokman/week37.pdf
https://staff.fnwi.uva.nl/j.v.stokman/week37.pdf
https://github.com/SPOCKnots/pyknotid

A Python code

The following Jupyter notebook can be found on https://github.com/Rubenschuit/
quantum-money.

31

https://github.com/Rubenschuit/quantum-money
https://github.com/Rubenschuit/quantum-money

Quantum Money

June 27, 2023

1 Implementing quantum money from knots
In this notebook we will make an attempt to implement quantum money from knots, see
https://arxiv.org/pdf/1004.5127.pdf. To start, we give an example of how to set up a uniform
superposition in qiskit on 𝑛 = 4 qubits.

[198]: import numpy as np
import GridPyM as g
from scipy.sparse import csc_matrix
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer,␣

↪transpile, assemble, execute
from qiskit.visualization import plot_histogram
from qiskit.circuit.library import ZGate, MCMT
from tqdm.notebook import tqdm
import random
import qiskit.tools.jupyter

1.1 Starting small: generate uniform superposition on 4 qubits

[199]: import numpy as np
from qiskit import QuantumCircuit, Aer, execute

Print the statevector in bra-ket notation with a maximum of 3 decimal places
def print_state(statevector, n):

print("Amplitudes of the statevector: ")
for i, amplitude in enumerate(np.asarray(statevector)):

binary = f"{i:04b}"
ket = "|" + binary.zfill(n) + ">"
print(f"{ket}: {np.round(float(amplitude), 3)} ")

def test(n):
Create a quantum circuit with n qubits
qc = QuantumCircuit(n,n)

Apply a Hadamard gate to each qubit to create a uniform superposition
qc.h(range(n))

Execute the circuit on the local simulator

1

backend = Aer.get_backend('statevector_simulator')
job = execute(qc, backend)

Get the resulting statevector
statevector = job.result().get_statevector(qc)

Filter out unwanted states, for example all even basis vectors
for i in range(len(statevector)):

if i % 2 == 0: # replace with your condition
np.asarray(statevector)[i] = 0

print_state(statevector, n)

test(4)

Amplitudes of the statevector:
|0000>: 0.0
|0001>: 0.25
|0010>: 0.0
|0011>: 0.25
|0100>: 0.0
|0101>: 0.25
|0110>: 0.0
|0111>: 0.25
|1000>: 0.0
|1001>: 0.25
|1010>: 0.0
|1011>: 0.25
|1100>: 0.0
|1101>: 0.25
|1110>: 0.0
|1111>: 0.25

Our goal will be to create a superposition over grid diagrams. So we will need to find a way
correspond grid diagrams to bitstrings.

1.2 From permutation to binary string
A permutation of n elements can be represented as a binary string of length n! using a technique
called factorial number system or factoradic. In this system, each digit of the binary string repre-
sents a factorial base (0!, 1!, 2!, 3!, …), and the value of the permutation is obtained by multiplying
each digit by its corresponding factorial base and summing the results.

Here’s an example of how to represent the permutation [2, 0, 1] as a binary string using the factorial
number system:

First, we need to find the Lehmer code of the permutation. This is done by counting the number
of elements to the right of each element that are smaller than it. For the permutation [2, 0, 1], the

2

Lehmer code is [2, 0, 0] because there are two elements to the right of 2 that are smaller than it (0
and 1), and no elements to the right of 0 or 1 that are smaller than them.

Next, we convert the Lehmer code to a binary string using the factorial number system. The first
digit of the Lehmer code (2) is multiplied by its corresponding factorial base (2!) to obtain 4. The
second digit (0) is multiplied by its corresponding factorial base (1!) to obtain 0. The third digit
(0) is multiplied by its corresponding factorial base (0!) to obtain 0. The sum of these values is
4 + 0 + 0 = 4.
Finally, we convert this value to a binary string to obtain the final representation of the permutation
as a binary string. In this case, the binary representation of 4 is ‘100’, so the permutation [2, 0, 1]
can be represented as a binary string ‘100’.

1.3 From binary string to permutation
First, we need to convert the binary string to its corresponding value in the factorial number system.
In this case, the binary string ‘100’ represents the value 4 in base 10.

Next, we need to convert this value to its corresponding Lehmer code using the factorial number
system. To do this, we divide the value by the largest factorial base (2!) and obtain a quotient of
2 and a remainder of 0. The quotient becomes the first digit of the Lehmer code. We then divide
the remainder by the next largest factorial base (1!) and obtain a quotient of 0 and a remainder
of 0. The quotient becomes the second digit of the Lehmer code. We repeat this process until all
digits of the Lehmer code have been obtained. In this case, the final Lehmer code is [2, 0, 0].
Finally, we need to convert the Lehmer code to its corresponding permutation. To do this, we start
with an ordered list of elements [0, 1, 2] and use the Lehmer code to construct the permutation.
The first digit of the Lehmer code (2) tells us that the first element of the permutation is the third
smallest element in the list (2). We remove this element from the list and obtain [0, 1]. The second
digit of the Lehmer code (0) tells us that the second element of the permutation is the first smallest
element in the list (0). We remove this element from the list and obtain [1]. The third digit of
the Lehmer code (0) tells us that the third element of the permutation is also the first smallest
element in the list (1). We remove this element from the list and obtain an empty list. The final
permutation is [2, 0, 1].

[3]: from math import factorial

def binary_to_permutation(binary_string, n):
Convert the binary string to its corresponding value
value = int(binary_string, 2)

Check if the value is within the valid range
if not 0 <= value < factorial(n):

raise ValueError

Convert the value to its corresponding Lehmer code
lehmer_code = []
for i in range(n - 1, -1, -1):

quotient, value = divmod(value, factorial(i))
lehmer_code.append(quotient)

3

Convert the Lehmer code to its corresponding permutation
elements = list(range(n))
permutation = []
for code in lehmer_code:

permutation.append(elements.pop(code))

return permutation

[4]: def permutation_to_factoradic(permutation):
n = len(permutation)
factoradic = [0] * n
for i in range(n):

factoradic[i] = permutation[i]
for j in range(i):

if permutation[j] < permutation[i]:
factoradic[i] -= 1

return factoradic

def factoradic_to_decimal(factoradic):
n = len(factoradic)
decimal = 0
for i in range(n):

decimal += factoradic[i] * factorial(n - i - 1)
return decimal

def permutation_to_binary(permutation):
factoradic = permutation_to_factoradic(permutation)
decimal = factoradic_to_decimal(factoradic)
binary = bin(decimal)[2:]
return binary

[5]: # Given an integer n, representing the number of bits available,
return the largest integer m such that all permutations of
length m can be reached by using n bits. This is the largest m
such that m! < 2^n - 1.
def max_permutation_length(n):

max_value = 2 ** n - 1
m = 0
while factorial(m) <= max_value:

m += 1
return m - 1

1.4 From two disjoint permutations to a planar grid diagram of a link
An 𝑛 × 𝑛 planar grid diagram is specified by two disjoint permutation of length 𝑛. GridPyM is
a python library that allows us to work with disjoint permutation representations of links. See
https://arxiv.org/pdf/2210.07399.pdf and https://github.com/agnesedaniele/GridPythonModule.

4

[7]: # An invalid grid: the permutations are not disjoint. Gives output 1
G = [[0,1,2,3,4],[0,3,4,0,1]]
g.check_grid(G)

[7]: 1

[209]: # Drawing example
G = [[5,1,7,3,12,4,6,0,11,2,8,13,19,10,21,15,17,9,18,14,20,16],

[0,4,2,6,5,8,1,7,3,10,12,9,11,18,14,20,13,16,15,19,17,21]]
if not g.check_grid(G):

g.draw_grid(G, markings='XO')
else:

print("invalid")

1.5 Gauss code
We use Sage for calculating Alexander polynomials. Unfortunately, Sage does not support the
disjoint permutation representation of links. Sage does support oriented Gauss code.

Label the crossings from 1 to 𝑛 (where 𝑛 is the number of crossings) and start moving along the
link. Trace every component of the link, by starting at a particular point on one component of the
link and writing down each of the crossings that you encounter until returning to the starting point.
The crossings are written with sign depending on whether we cross them as over or undercrossing.
Each component is then represented as a list whose elements are the crossing numbers. A second

5

list of +1 and −1’s keeps track of the orientation of each crossing.

[82]: #+++
Converts a grid consisting of two disjoint permutations (as lists) to␣

↪oriented gauss code supported by Sage.
def Gauss_code(grid):

num_trivial_components=0
A = grid[0]
B = grid[1]
final_gauss_code = []
crossing_assignment = []
c = 1
coord = []
columns = [i for i in range(len(A))]
while len(columns) > 1:

gauss_code = []
column = min(columns)
flag = False
start = column
while flag == 0:

valueB = B[column]
valueA = A[column]
if valueB < valueA:

for i in range(valueB + 1,valueA):
v1 = min(A.index(i), B.index(i))
v2 = max(A.index(i), B.index(i))
if v1 < column < v2:

pos = [column,i]
if pos not in coord:

coord.append(pos)
gauss_code.append(-c)
c = c + 1
if B.index(i) > A.index(i):

crossing_assignment.append(-1)
if B.index(i) < A.index(i):

crossing_assignment.append(1)
else:

caux = coord.index(pos) + 1
gauss_code.append(-caux)

if valueB > valueA:
for i in range(valueB - 1, valueA, -1):

v1 = min(A.index(i), B.index(i))
v2 = max(A.index(i), B.index(i))
if v1 < column < v2:

pos = [column,i]
if pos not in coord:

coord.append(pos)

6

gauss_code.append(-c)
c = c + 1
if B.index(i) > A.index(i):

crossing_assignment.append(1)
if B.index(i) < A.index(i):

crossing_assignment.append(-1)
else:

caux = coord.index(pos) + 1
gauss_code.append(-caux)

if B.index(valueA) > column:
for i in range(column + 1, B.index(valueA)):

if min(A[i], B[i]) < valueA < max(A[i], B[i]):
pos = [i,valueA]
if pos not in coord:

coord.append(pos)
gauss_code.append(c)
c = c + 1
if B[i] > A[i]:

crossing_assignment.append(1)
if B[i] < A[i]:

crossing_assignment.append(-1)
else:

caux = coord.index(pos)+1
gauss_code.append(caux)

if B.index(valueA) < column:
for i in range(column - 1 ,B.index(valueA), -1):

if min(A[i], B[i]) < valueA < max(A[i], B[i]):
pos = [i, valueA]
if pos not in coord:

coord.append(pos)
gauss_code.append(c)
c = c + 1
if B[i] > A[i]:

crossing_assignment.append(-1)
if B[i] < A[i]:

crossing_assignment.append(1)
else:

caux = coord.index(pos) + 1
gauss_code.append(caux)

columns.remove(column)
column = B.index(valueA)
if column == start:

flag = True
if len(gauss_code) > 0:

final_gauss_code.append(gauss_code)
else:

num_trivial_components += 1

7

return([final_gauss_code,crossing_assignment])

1.6 Calculating the Alexander polynomial
One of the few already existing implementations for calculating the Alexander polynomial of ori-
ented links is found in the Sage library. Unfortunately, the function often hangs indefinitely.

[213]: # Generate random 20 x 20 grid containing a 3-component link and plot it using␣
↪Sage

G = g.generate_random_grid(16, 3)
#g.draw_grid(G, markings='XO')
L= Link(Gauss_code(G))
L.alexander_polynomial()

[213]: t^-1 - 2 + t

[196]: # Generate random 20 x 20 grid containing a 3-component link and plot it using␣
↪Sage

G = g.generate_random_grid(20, 3)
#g.draw_grid(G, markings='XO')
L= Link(Gauss_code(G))
L.plot()

[196]:

8

[197]: # Calculate the Alexander polynomial, this often does not work for random links␣
↪on n x n grids with n > 18

L.alexander_polynomial()

[197]: t^-2 - 4*t^-1 + 6 - 4*t + t^2

[214]: # Sage doesnt like the following link for example
L = Link([[[1, 2, -2, -3, -4, -5, -6, 7, -8, 9, 10, 4, -7, -11, 5, 6, 11, 8],␣

↪[-9, -10, -12, -1, 3, 12]], [1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1]])
#%prun L.alexander_polynomial() # Does not work for this L
L.plot()

[214]:

9

1.7 Generating a uniform superpositions of planar grid diagrams

[144]: # Function to check if two permutations are disjoint
def is_disjoint(coord_perm1, coord_perm2):

for i in range(len(coord_perm1)):
if coord_perm1[i] == coord_perm2[i]:

return False
return True

Prepare a uniform superposition on n qubits and filter it to a superposition␣
↪of grid diagrams

def prepare_state(n):
The largest m such that we can generate all permutations of length m with␣

↪floor(n/2) bits
m = max_permutation_length(n // 2)

Create a quantum circuit with n qubits
qc = QuantumCircuit(n,n)

Apply a Hadamard gate to each qubit to create a uniform superposition
qc.h(range(n))

execute the circuit on the statevector simulator so we can inspect the␣
↪state afterwards

backend = Aer.get_backend('statevector_simulator')
result = execute(qc, backend).result()
statevector = result.get_statevector()

Filter non disjoint permutations and unnecessary ones by setting their␣
↪amplitutes to 0

for i in tqdm(range(len(statevector))):
binary_string = bin(i)[2:].zfill(n)
middle = len(binary_string) // 2
first_half = binary_string[:middle]
second_half = binary_string[-middle:]
try:

X = binary_to_permutation(first_half, m)
O = binary_to_permutation(second_half, m)
if not is_disjoint(X,O):

np.asarray(statevector)[i] = 0
except ValueError:

not all basis elements are required to generate all pairs of m␣
↪permutations

np.asarray(statevector)[i] = 0

Normalise the result
return statevector / np.linalg.norm(statevector)

10

L.alexander_polynomial() is too inconsistent unfortunately; it will hang often
def inspect_state(n, statevector, PRINT_RANDOM_SAMPLE = True, PRINT_DIAGRAM =␣

↪True,
PRINT_ALEXANDER = False):

m = max_permutation_length(n // 2)

Convert to sparse representation as a lot of the amplitudes have been set␣
↪to 0

sparse_statevector = csc_matrix(np.asarray(statevector))

Find indices of non-zero elements
looping over this list saves a lot of time compared to looping over the␣

↪statevector
nonzero_indices = sparse_statevector.nonzero()

sample = nonzero_indices[1]

Get random sample of grids
if PRINT_RANDOM_SAMPLE:

sample = random.sample(list(nonzero_indices[1]), 5)

Print some of the link diagrams generated
for i in tqdm(sample):

amplitude = statevector[int(i)]

if np.isclose(0, amplitude):
continue # skip basisvectors with 0 amplitude

binary_string = bin(i)[2:].zfill(n)
middle = len(binary_string) // 2
first_half = binary_string[:middle]
second_half = binary_string[-middle:]
try:

X = binary_to_permutation(first_half, m)
O = binary_to_permutation(second_half, m)
G = [X,O]
if PRINT_DIAGRAM:

g.draw_grid(G, markings='XO')
if PRINT_ALEXANDER:

L = Link(Gauss_code(G))
print("Alexander polynomial: ", L.alexander_polynomial())

except ValueError:
pass

except AssertionError as e:
print(e)

11

[110]: # Going higher then 30 qubits is not feasible
n=30
statevector = prepare_state(n)

0%| | 0/1073741824 [00:00<?, ?it/s]

[146]: inspect_state(n, statevector, PRINT_ALEXANDER=True)

0%| | 0/5 [00:00<?, ?it/s]

(X,O) = ([1, 6, 2, 5, 3, 4, 0] , [5, 2, 4, 0, 6, 1, 3])

Alexander polynomial: -t^-1 + 3 - t
(X,O) = ([1, 4, 5, 3, 0, 2, 6] , [3, 0, 2, 4, 6, 5, 1])

12

Alexander polynomial: 0
(X,O) = ([3, 2, 6, 0, 1, 5, 4] , [0, 5, 4, 6, 3, 1, 2])

13

Alexander polynomial: t^-1 - 1 + t
(X,O) = ([4, 0, 1, 6, 3, 5, 2] , [3, 6, 4, 0, 1, 2, 5])

Alexander polynomial: 0
(X,O) = ([6, 3, 2, 4, 1, 0, 5] , [2, 0, 5, 6, 4, 3, 1])

14

Alexander polynomial: -2*t^-1 + 2

15

	Introduction
	Topological preliminaries
	Knots and links
	The link group
	The Wirtinger presentation
	The Alexander polynomial
	Fox derivatives

	Quantum preliminaries
	Quantum states
	Measurement of quantum states
	Transformations on quantum states
	No-cloning theorem

	Quantum money
	Public-Key quantum money
	Farhi et al.'s quantum money scheme
	Generation
	Verification
	Security

	The challenges of implementation
	Conclusions and future work
	References
	Python code

