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Abstract

There are many different classes of variable astrophysical sources (which
have a luminosity that varies over time), all having a certain physical

phenomenon causing their variability. This results in different
characteristic light curves, often containing periodicities within certain

ranges of frequencies. The Gaia satellite telescope has gathered
photometric data of variable sources, at semi-random nonuniform

observation times, influenced by the Gaia scanning law. This research
aims to use the nonuniform fast Fourier transform (NUFFT) to retrieve
the main frequency of the brightness variations of the variable source

from the photometric Gaia Data Release 3 data, where it is assumed that
the underlying signal has one main frequency. The main goals are to

investigate whether the frequency with maximal power in the NUFFT
periodogram is the main frequency of the underlying signal and whether
it is possible to distinguish between in this way correctly and incorrectly
determined frequencies. To this end a simulation of photometric data is
used, where the time series are taken from actual Gaia DR3 data and the

signal is simulated as a sine wave with a known frequency and a signal to
noise equal to 5. Taking the frequency with maximal power from the

corresponding periodograms results in a correct retrieval in about 90% of
the simulated cases. A positive correlation between the number of data



4

points or visibility periods and the fraction of correctly determined
frequencies is found. The incorrectly determined frequencies are most

likely caused by spurious periods or aliasing. Furthermore, a method to
compute a false alarm probability (FAP) for the determined frequency
was investigated, but turned out to give no useful results as almost all

FAPs were equal to zero. Therefore, further research on other methods is
necessary to find out how to correctly identify the main frequency.

4
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Chapter 1
Introduction

Variable sources have a luminosity that varies over time. Examples of
variable sources are pulsating stars, planetary transits, rotating stars and
eclipsing binaries [1]. In order to determine whether a source is vari-
able and, if so, what kind of variable source it is, the photometric data
of such a source over time is investigated. For example, the decomposi-
tion of the light signal into its underlying frequencies can help us to learn
more about which and how many frequencies are most important within
the signal, which can in turn uncover more about the cause of the vari-
ability. This information can, therefore, contribute to the classification of
the source. By classifying many variable sources, large samples of similar
types of sources are obtained, which gives the opportunity to investigate
these classes of sources even further [2].

With photometric data of more than 11 million sources in Data Release
3 (DR3), the Gaia satellite telescope data is very suitable to classify vari-
able sources. As this telescope is a satellite moving around multiple axes,
it is not possible to take photometric data of one source at uniform time
intervals, but the time intervals are also not completely random. In order
to find the main frequency of a large amount of variable sources, we need
to compute the frequency spectra of their flux signals. Therefore, we need
to have a method to compute the frequency spectrum (also called peri-
odogram) for nonuniformly sampled data. This problem has been inves-
tigated for many years and there are multiple ways to perform this task.
One such method is called the Lomb-Scargle periodogram [3], which is
also used by the Gaia Data Processing and Analysis Consortium for their
determination of the periods of variable sources [4]. Another method uses
the nonuniform discrete Fourier transform.

The Fourier transform is an operator that turns a signal into the spec-
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8 Introduction

trum of frequencies of which the signal consists. Since its first introduction
the Fourier transform has been investigated further and many variants
of the computation of the transform have been introduced, some specifi-
cally designed for the type of data it is to be used on. For example, the
so called discrete Fourier transform (DFT) is designed specifically to yield
the underlying frequency spectrum of a discrete signal that is sampled
uniformly, both in the time and frequency domain (meaning that the sam-
ple distance between two data points, both in time and in frequency, is a
fixed value). Implementations of this theoretic discrete Fourier transform
are generally referred to as fast Fourier transform (FFT). A variant of the
DFT is the so called nonequispaced / unequally sampled / nonuniform
discrete Fourier transform (NDFT / USDFT / NUDFT), which does not
require the discrete signal to have a uniform sampling. In this report we
will further call this transform the nonuniform discrete Fourier transform.
Again, the implementation of this transform is called the nonuniform fast
Fourier transform (NUFFT) and this can be computed in different ways
[5, 6]. As the Gaia photometric data is not uniformly sampled, the NUFFT
should theoretically be a correct method to perform the task of recovering
the frequency spectra of variable sources within this data.

In this report we investigate whether the NUFFT periodogram can be
used to recover the main frequency from variable source photometric data
of the Gaia satellite. More specifically, we assume that the underlying sig-
nal of the variable source consists of one main frequency. Then we use
the NUFFT to compute the corresponding periodogram and we analyse
whether the method of taking the frequency with maximal power from
this periodogram gives us the correct main frequency of the underlying
signal and whether it is possible to distinguish between correctly and in-
correctly determined frequencies.

To this end, we firstly discuss the background information needed to
understand the research area. This consists of theory about the variable
sources and information about the Gaia DR3 data used. Secondly, we con-
sider the theory behind the nonuniform discrete Fourier transform, which
tells us what the general limitations and points of attention of this method
are. Thirdly, we elaborate on the method used to do the period search
using the NUFFT, which does not only consist of the application of the
NUFFT, but also of the determination of the most important frequency
from the recovered periodogram. Continuing, we apply this method on
simulated photometric Gaia data, of which we know the simulated fre-
quency and can thus investigate whether we retrieve the correct frequency.
Lastly, we discuss all results and draw the conclusions.

8
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Chapter 2
Background information

In this chapter we discuss the most important background information
necessary to understand the research conducted. We start by explaining
what variable sources are, giving some examples of classes of variable
sources caused by different physical phenomena and showing how their
luminosity signals can differ. Secondly, we introduce the data that is used
in this research and elaborate on how the Gaia scanning law influences
the time series of the data, causing spurious periods. Lastly, we investi-
gate theoretically how the nonuniform discreteness of the data influences
the resulting periodogram.

2.1 Variable sources

There are many different kinds of variable sources on the sky, all giving
rise to a luminosity signal that varies over time. They can be classified by
the physical phenomena that cause their variability. These phenomena can
be either intrinsic or extrinsic, which respectively means that the source
itself has a varying luminosity or the variability is caused by other visual
effects (with respect to us as observer).

An example of an intrinsic variable is a pulsating variable, which is
a star that has a radius which alternatingly increases and decreases over
time. The luminosity of these stars varies with the radius, which can be
either periodic, semi-regular or irregular. Examples of light curves result-
ing from pulsating stars are shown in the first and second to sixth rows of
Figure 2.1. Another example of intrinsic variables are eruptive variables,
which are stars that for example undergo mass ejection. These flares of
ejecting mass cause irregular variability of the luminosity.

Version of July 6, 2023– Created July 6, 2023 - 19:17
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10 Background information

Figure 2.1: Folded light curves of different types of variable sources. Two phases
are plot for each source. The caption at the top of each panel shows the variable
name, period in days and type of variables respectively. From the top down we
have Mira variables (MIRA), Eclipsing binaries (EB), Cepheid variables (Funda-
mental mode (FU) and First Overtone (FO)) and RR Lyrae variables (RRab, RRc).
Sources in the same row are of the same class. The green lines show optimal fits
of the light curves. From [7].

Examples of extrinsic variables are planetary transits, eclipsing bina-
ries and rotating stars. A planetary transit causes the light of the host star
to be blocked for a certain amount of time, which results in a dip in the lu-
minosity signal of the star. As the planet’s orbit around the star is periodic,
the varying luminosity signal of the star will show the same periodicity.
Eclipsing binaries cause variability similar to that of planetary transits, as
the blocking of light caused by one of the stars in front of the other results
in a decrease of the total luminosity of the binary system. However, for

10
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2.1 Variable sources 11

eclipsing binaries both eclipsing objects emit light, but they do not have
to have the same luminosity nor the same size. Because of this, there are
effectively two different eclipsing moments: star 1 in front of star 2 and
the other way around. Each of these two eclipsing moments results in
its own specific dip in the total luminosity of the system, which alternate
each other. Examples of light curves resulting from eclipsing binaries are
shown in the second row of Figure 2.1. Rotation of stars can also cause
variability in the luminosity, for example because star spots move in and
out of sight. These variations are again periodic, because of the periodic
rotation of the star.

All these different classes of variable sources can be categorised accord-
ing to their physical origin. Such a categorisation is shown in Figure 2.2,
where sources other than stars are also included. More detailed explana-
tions of the physical processes behind many variable source classes can be
found in [1].

Figure 2.2: Variability tree showing a categorisation of variable source classes.
From [2].

As one can see from Figure 2.1, the luminosity signals for different
classes of variable sources can be quite different. Most classes, however,
have very specific light curves, with a clearly recognisable periodicity and
/or form of the signal, as we can also see from the similarities between
the light curves situated on the same row in Figure 2.1, which come from

Version of July 6, 2023– Created July 6, 2023 - 19:17
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12 Background information

sources of the same class. The luminosity signals can therefore be used to
classify observed variable sources.

Many of the classes do have periodic variability. Important describing
parameters of such luminosity variability are the main frequency and am-
plitude of the signal. As these parameters are influenced greatly by the
physical origin of the variability, as can also be seen in Figure 2.1 where
similar sources have periods of the same order of magnitude, many classes
have specific frequency and amplitude ranges for their luminosity signals.
Thus, retrieving these parameters from the data helps with the classifica-
tion of the source.

2.2 Gaia DR3 photometric data

In this research, photometric data of variable sources from Gaia Data Re-
lease 3 [8] is considered. The ultimate goal is to determine the periods of
such variable sources by using the nonuniform Fourier transform on the
data and investigating the resulting periodogram. The way the data is
gathered by the Gaia satellite affects the nonuniformity of the time sam-
plings, which can influence the resulting periodogram. Therefore, we will
discuss the data in this section.

Gaia DR3 includes photometric data of about 11 million variable sources,
in each of the photometric bands G, GRP and GBP. The photometric data
of one source in a certain band consists of the Julian Date at which the flux
of the source is measured in units of days and the corresponding mea-
sured flux F in electrons per second in the given photometric band. In this
research, we only work with the data in the G-band. An example of the
considered photometric data for one source is given in Figure 2.3.
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2000
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Epoch photometry band G, source 211945744020716672

Figure 2.3: The photometric data in the G-band from Gaia DR3 of one source (see
title).

12
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2.2 Gaia DR3 photometric data 13

One can see that the time between two successive measurements dif-
fers a lot. By eye, the measurement times seem to be quite random. How-
ever, they are not actually completely random.

Figure 2.4: Illustration of the scanning law of Gaia caused by the movement of the
satellite telescope. It shows the path of the spin axis (z), and the corresponding
path of the preceding viewing direction, during four days. From [9].

Figure 2.5: Overview of the Gaia scanning law. Left: During the nominal scanning
law, the spin axis z makes overlapping loops around the Sun at a separation of
45◦ and rate of 5.8 cycles per year. Right: One source at point a may be scanned
whenever z is 90◦ from a, that is, on the great circle A at z1, z2, z3, etc. From [10].

This semi-randomness can be explained by the Gaia scanning law, which
describes the movement of the field-of-view of the satellite telescope on
the sky. Gaia scans the sky using uniform revolving scanning, which max-
imises the uniformity of the sky coverage [9]. A few important aspects of

Version of July 6, 2023– Created July 6, 2023 - 19:17
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14 Background information

the scanning law include the rotation of the spacecraft around its spin axis
z with a period of 6 hours, the fixed angle of 45◦ between the sun and the
spin axis and the rotation of the spin axis around the sun with a period of
about 63 days.

In Figures 2.4 and 2.5 an overview of the nominal scanning law is
given. They show that the movement of the field-of-view indeed has a
smooth and periodic nature, which causes a source to be observed at times
that are definitely not uniformly spaced, but also not random. Further-
more, Figure 2.4 shows that the great circles describing the viewing direc-
tions overlap, causing sources close to these points to possibly be scanned
multiple times over a short period. These clustered observations can be so
close together, that they do not give extra information about the light curve
of the source, as the flux hardly changes between the observations. This
is why we later use the Gaia parameter called ’visibility_periods_used’,
which describes the number of visibility periods of a time series, as a mea-
sure of the effective number of observations. A visibility period is here
defined as a cluster of observations separated from other clusters by a gap
of at least 4 days.

The scanning law also induces that some parts of the sky are scanned
more often and with other frequencies than other parts. The number of
field-of-view observations as a function of ecliptic coordinates during the
Gaia DR3 time range is shown in Figure 2.6. We use this information later
in Section 4.2.1 to select variable sources with varying numbers of fov ob-
servations, in order to get a more diverse set of time series.

Figure 2.6: Ecliptic coordinate plot with longitude zero at the centre and increas-
ing to the left, showing the simulated number of field-of-view observations dur-
ing the nominal scanning law phase of the Gaia DR3 time range. From [10].

14
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2.2 Gaia DR3 photometric data 15

The periodicities that are present in the time sampling caused by the
scanning law affect the resulting periodogram, as we will discuss in Chap-
ter 3. In Figure 2.7 the distributions of the Baluev false alarm probabilities
[11] for two photometric samples (consisting of respectively 73k and 38k
time series) of Gaia DR3 are shown. The false alarm probability for one of
the time series is provided by the distribution of the maximal periodogram
value in the case there is no signal present in the data. The false alarm
probability for a certain period for a certain time series thus indicates the
probability to find that period having maximal power in the periodogram
of photometric data without any signal being present in the data. In the
figure the false alarm probabilities for each period for each of the time se-
ries of the photometric sample are scattered, where the probabilities equal
to zero are omitted. The figure thus illustrates with the dense regions of
dots at certain periods that indeed specific periods occur more often with
maximal power, only because of the time sampling of the data (as there is
no signal present when computing the false alarm probability). For exam-
ple, the clear dense region at a period of 31.5 days is caused by the earlier
mentioned rotation of the spin axis around the sun, which proceeds with
a period of 2 × 31.5 = 63 days. The periods of the other dense lines cor-
respond in similar ways to multiples of periods that are induced by the
scanning law. These spurious periods are therefore important to take into
account when computing the main period of a signal.

Figure 2.7: Distributions of Baluev false alarm probabilities of two photometric
samples, illustrating the highly significant nature of most of the spurious periods.
From [10].

Version of July 6, 2023– Created July 6, 2023 - 19:17
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16 Background information

The Gaia DR3 sources are given a variability flag by the Gaia Data Pro-
cessing and Analysis Consortium [4], which indicates whether the source
is variable or not. We only use the photometric G-band data of variable
sources and we assume in our research that the data we use comes from a
variable source.

16
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Chapter 3
Theory of the periodogram

The data that we work with, the observations of the flux of a source at
certain moments, are only a sample of the underlying signal, which is the
continuous flux of the source. The goal of this research is to find the main
frequency of this signal, assuming that the source has a varying flux which
can be described as a signal with one main period, using the NUFFT pe-
riodogram. However, in order to decide which frequency is the main fre-
quency that we are looking for in this periodogram, we need to under-
stand what the actual meaning of such a periodogram is. Therefore, we
dedicate this chapter to the analysis of the origin and mathematics of the
periodogram. The content discussed in this chapter is inspired by [3, 12–
14], where more information on the topics can also be found. As the con-
tinuous signal underlying the discrete observations is the original signal
of which we want to determine the period, this chapter starts with the
corresponding continuous Fourier transform.

3.1 Continuous Fourier transform

We can describe the continuous underlying signal as a continuous function
g : R → C that assigns a flux to every time t ∈ R. In order to be able to
define the continuous Fourier transform of such a function, we first need
to have a notion of integrability.

Definition 1. Let g : R → C. We say that g is integrable if it is Borel
measurable and the Lebesgue integral

∫ ∞
−∞ |g(t)|dt is finite [15].

Definition 2. Let g : R → C be an integrable function. The continuous

Version of July 6, 2023– Created July 6, 2023 - 19:17
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18 Theory of the periodogram

Fourier transform ĝ : R → C of g is then given by

ĝ(ω) :=
∫ ∞

−∞
g(t)eiωtdt. (3.1)

Indeed, this is well defined, since t 7→ eiωt is continuous and |eiωt| = 1 for
all t ∈ R, so for every integrable g : R → C the function t 7→ g(t)eiωt is
also integrable for every ω ∈ R.

Depending on what kind of function g is and what the (physical) mean-
ing of this function is, the Fourier transform ĝ has different interpretations.
In our case, as g is a function of time t, ĝ can be interpreted as a function
of angular frequency ω. It then denotes to what extend each angular fre-
quency is present in the data. Of course, the Fourier transform is complex
valued. Thus, to get the right interpretation we take the absolute value
squared of the Fourier transform, which gives us the resulting power of
each angular frequency within the original time domain signal. The re-
sulting spectrum is called the periodogram.

Consider the Fourier transform F : g 7→ ĝ with domain given by the
set of all integrable functions g : R → C, which is a vector space. The
function F has a couple of useful properties, such as linearity, invertabil-
ity and shifting, which we shortly discuss now as we will use them later.
(Note that both the function F : g 7→ ĝ and ĝ itself are called the Fourier
transform, but ĝ is specifically the Fourier transform of the function g,
while F is the function which sends any integrable function to its Fourier
transform.)

Theorem 3 (Linearity). The Fourier transform F : g 7→ ĝ is linear, meaning
that for two integrable functions g, h : R → C and constants λ, γ ∈ R we have
that

λF (g) + γF (h) = F (λg + γh). (3.2)

Proof. This follows immediately from the definition of the Fourier trans-
form.

Theorem 4 (Shifting). Let g : R → C, t 7→ g(t) be an integrable function of t.
Consider the shifted version of g, denoted ga : R → C, t 7→ g(t − a), which is
thus integrable as well. Then

F (ga) = eiωaF (g). (3.3)

18
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3.1 Continuous Fourier transform 19

Proof.

F (ga) =
∫ ∞

−∞
ga(t)eiωtdt =

∫ ∞

−∞
g(t − a)eiωtdt

=
∫ ∞

−∞
g(τ)eiω(τ+a)dτ = eiωa

∫ ∞

−∞
g(τ)eiωτdτ

= eiωaF (g).

With other words, the Fourier transform of a shifted function is the
same as the Fourier transform of the original unshifted function, except for
a phase shift. As we are in the end interested in the squared absolute value
(power) of the Fourier transform, shifting a function does not influence
the determined main frequency. This is what we would expect, as the
frequency decomposition of a signal does not change as we shift the signal
in time.

Theorem 5 (Inverse). The Fourier transform is invertible. Let ĝ : R → C, ω 7→
g(ω) be an integrable function. The inverse Fourier transform g : R → C, t 7→
g(t) of ĝ is then given by

g(t) =
1

2π

∫ ∞

−∞
ĝ(ω)e−iωtdω =

1
2π

ˆ̂g(−t) almost everywhere. (3.4)

We can also write g = F−1(ĝ) where F−1 : ĝ 7→ g is the inverse of F : g 7→ ĝ.

Proof. See [12] page 80.

Thus, a function and its Fourier transform are uniquely coupled to each
other. Because of this, the Fourier transform of a function theoretically
contains all information of the original function, so we can always recover
the original function from its Fourier transform.

To get some more insight into what the Fourier transform does, we will
now look at some examples. Firstly, we look at the Fourier transform of
the delta "function", which comes back often in Fourier analysis. There is
a problem here: the delta "function" is not a function, but a distribution.
Because of this, we are not able to apply our notion of the Fourier trans-
form. A similar problem will arise later when we want to apply the Fourier
transform on the sin function, which is not integrable. Both these prob-
lems can be solved by using the Fourier transform for distributions. This
theory is explained and derived in Appendix A, where some examples of
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20 Theory of the periodogram

mathematically correct calculations are also given. However, those rigor-
ous calculations are more time consuming and harder to follow, which is
why we use a more intuitive notation in the rest of this chapter. Note that
all calculations should be interpreted in the sense of distributions.

Example 6. Let δ(t) ≈
{

∞ for t = 0,
0 else,

so that
∫ ∞
−∞ δ(t)dt = 1. An impor-

tant property of this delta "function" is that
∫ ∞
−∞ δ(t)v(t)dt = v(0) for well

behaved functions v. The Fourier transform of δ, in the sense of distribu-
tions, is given by

δ̂(ω) =
∫ ∞

−∞
δ(t)eiωtdt = eiω0 = e0 = 1. (3.5)

From the shifting rule, we find for the shifted delta function δ(t − a) that

F (δ(t − a)) = eiωaF (δ(t)) = eiωa. (3.6)

Because of this and the inverse Fourier theorem, we now know that

δ(t − a) = F−1(eiωa) =
1

2π

∫ ∞

−∞
eiωae−iωtdω =

1
2π

∫ ∞

−∞
eiω(a−t)dω. (3.7)

This is a useful expression of the delta function that we will see more often.

From this example, we can now easily derive the Fourier transform of
a constant function.

Example 7. Let g(t) = C be a constant function. Then

ĝ(ω) =
∫ ∞

−∞
g(t)eiωtdt = C

∫ ∞

−∞
eiωtdt = 2πCδ(ω). (3.8)

In our research, we look at a signal of which we assume it has one main
frequency. A common example of such a signal is a sine wave, which we
also use later in the simulation. This kind of periodic (harmonic) signal is
one that occurs often in nature and in variable sources as well. Its Fourier
transform is as we expect:

20
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3.1 Continuous Fourier transform 21

Example 8. Let g(t) = C + A sin(Bt). Then

ĝ(ω) = F (g(t)) = F (C) + AF (sin(Bt))

= 2πCδ(ω) + A
∫ ∞

−∞
sin(Bt)eiωtdt

= 2πCδ(ω) + A
∫ ∞

−∞

eiBt − e−iBt

2i
eiωtdt

= 2πCδ(ω) +
A
2i

∫ ∞

−∞
ei(ω+B)t − ei(ω−B)tdt

= 2πCδ(ω) +
Aπ

i
(δ(ω + B)− δ(ω − B)). (3.9)

Indeed, the Fourier transform gives us peaks at the angular frequencies B
and −B of the sine wave and one at frequency 0, which corresponds to the
constant shift (in flux) C of the sine wave. If C is too big, the peak at zero
will be higher than all other peaks, resulting in this peak dominating the
frequency spectrum as the highest peak. However, in our situation, this is
not the peak we are looking for, as we look for the peaks corresponding
with the frequency of the signal. Therefore, we often subtract the mean
from the signal before we compute the Fourier transform, so that the peak
at zero is not so dominating anymore. Of course, subtracting the mean
does not have any effect on the frequencies of the signal and, as the Fourier
transform is linear, it indeed also does not change the other peaks present
in the frequency spectrum.

However, we do not have data of an infinite sine wave at our disposal,
as all measurements lie within some finite time interval. We can account
for this by saying that our original infinite signal is now pointwise mul-
tiplied by some box function, often referred to as a rectangular window,
which takes on the value 1 within the observation time interval and the
value 0 outside this range. To understand what this pointwise multiplica-
tion of two functions does with the corresponding Fourier transforms, we
need to introduce another concept, called the convolution.

Definition 9 (Convolution). Let g, h : R → C be integrable functions. The
convolution g ⋆ h of g and h is defined by

(g ⋆ h)(t) :=
∫ ∞

−∞
g(τ)h(t − τ)dτ. (3.10)

This is well defined, since g(τ)h(t − τ) is integrable for all t as g and h are
integrable.
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22 Theory of the periodogram

Theorem 10 (Convolution theorem). Let g, h : R → C be integrable func-
tions. Then

F (g ⋆ h) = F (g) · F (h), (3.11)

where · denotes pointwise multiplication.

Proof. See [12] page 86.

However, in our case we want to compute the Fourier transform of the
pointwise multiplication of two functions, which is just slightly different
from the convolution theorem. Luckily, there is a similar rule for this situ-
ation.

Lemma 11. Let g, h : R → C be integrable functions such that g · h is also
integrable. Then

F (g · h) = F (g) ⋆F (h). (3.12)

With this statement, we can investigate what the effect of the pointwise
multiplication of the rectangular window with the sine function is on its
Fourier transform.

Example 12. Let the rectangular window function W(t) be given by

W(t) :=

{
1
T for t ∈

[
−T

2 , T
2

]
,

0 else.
(3.13)

The Fourier transform of this window function is

Ŵ(ω) =
∫ ∞

−∞
W(t)eiωtdt =

∫ T
2

− T
2

1
T

eiωtdt =
[

1
iωT

eiωt
] T

2

− T
2

=
e

iωT
2 − e

−iωT
2

iωT
=

2
ωT

e
iωT

2 − e
−iωT

2

2i
=

2
ωT

sin
(

ωT
2

)
= sinc

(
ωT
2π

)
. (3.14)

With Lemma 11 we can now compute the Fourier transform of the sig-
nal s(t) := g(t)W(t) that results from the pointwise multiplication of the
rectangular window with the original infinite signal g(t) = C + A sin(Bt)
of Example 8.
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Figure 3.1: An example of the effect of the finiteness of a continuous sine wave
(left) on the corresponding periodogram (right), resulting in spectral leakage.
There are peaks at frequencies 0 and ±5, which is as computed for a sine wave
with nonzero equilibrium value and frequency 5. The peaks are sinc formed and
have a width at half maximum equal to 1

T where T is the total observation time,
in this case both T and the width of the peaks are thus equal to 1. Between these
main peaks smaller side lobes are visible. (Note that the used frequency is not the
angular frequency ω but f = ω

2π .)

Example 13.

F (s(t)) = F (g(t)W(t)) = F (g(t)) ⋆F (W(t))

=
∫ ∞

−∞
ĝ(x)Ŵ(ω − x)dx

=
∫ ∞

−∞

(
2πCδ(x) +

Aπ

i
(δ(x + B)− δ(x − B))

)
sinc

(
(ω − x)T

2π

)
dx

= 2πCsinc
(

ωT
2π

)
+

Aπ

i

(
sinc

(
(ω + B)T

2π

)
− sinc

(
(ω − B)T

2π

))
(3.15)

Instead of sharp peaks at the relevant frequencies (at zero and at the fre-
quency of the sine wave ±B), we now find peaks at the same frequencies
that have a width at half maximum equal to 1

T and smaller side lobes.
This effect is often called spectral leakage, as some of the power at the fre-
quencies of the spectrum seems to leak to nearby frequencies. Because of
this, the power at a certain frequency is no longer completely independent
from the powers of other frequencies. Furthermore, the widening of the
true peaks influences the spectral resolution of the periodogram, as this
effect can cause peaks at nearby frequencies to overlap, making it impos-
sible to distinguish them. These effects thus make the interpretation of the

Version of July 6, 2023– Created July 6, 2023 - 19:17

23



24 Theory of the periodogram

periodogram much less straightforward. An example of spectral leakage
caused by the finiteness of the signal is given in Figure 3.1.

From the computation of the Fourier transform, we can also see that
the greater T (so the wider the window, meaning the greater part of the
original infinite signal is observed), the smaller the width of the peaks
in the spectrum, because the sinc function has a width at half maximum
equal to 1

T . This is exactly what we would expect, as in the limit T → ∞
we recover the complete infinite signal which has infinitely narrow peaks.

We have now converted the original infinite signal to a finite signal
using a rectangular window function. However, our observations do not
cover an entire finite time interval, but are a discrete sampling of times
within a finite time range. We will now look into how we can describe such
a discrete signal and how this affects the corresponding periodogram.

3.2 Discrete Fourier transform

Let us start with the assumption that our observations are uniformly spaced
throughout time, so at times n∆T for n ∈ Z and ∆T ∈ R>0 the time in-
terval between two measurements. In this case, we can describe our ob-
servations by multiplying the previously described finite signal by a Dirac
comb function, introduced in Example 14.

Example 14. Let the Dirac comb function be defined by

Ш∆T(t) :=
∞

∑
n=−∞

δ(t − n∆T), (3.16)

so that it resembles an infinite series of delta peaks that go through zero
and are spaced with steps of size ∆T. The Fourier transform of this Dirac
comb function, in the sense of distributions, is given by

Ш̂∆T(ω) =
∫ ∞

−∞
Ш∆T(t)eiωtdt =

∫ ∞

−∞

∞

∑
n=−∞

δ(t − n∆T)eiωtdt

=
∞

∑
n=−∞

∫ ∞

−∞
δ(t − n∆T)eiωtdt =

∞

∑
n=−∞

eiωn∆T

taking the limit to infinity of the Dirichlet kernel we get

=
1

∆T

∞

∑
n=−∞

δ

(
ω − 2πn

∆T

)
=

1
∆T

∞

∑
n=−∞

δ
( ω

2π
− n

∆T

)
=

1
∆T

Ш 1
∆T

( ω

2π

)
. (3.17)
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3.2 Discrete Fourier transform 25

Firstly, we look at the effect of discreteness on our original infinite sig-
nal, so that we can analyse the result without the presence of spectral leak-
age.

Example 15. Using Lemma 11, our original infinite signal g(t) from Exam-
ple 8 and the discrete window given by the Dirac comb function Ш∆T(t)
from Example 14, we find for the discrete infinite signal s(t) := g(t)Ш∆T(t)
that

F (s(t)) = F (g(t)Ш∆T(t)) = F (g(t)) ⋆F (Ш∆T(t))

=
∫ ∞

−∞
ĝ(x)Ш̂∆T(ω − x)dx

=
∫ ∞

−∞

(
2πCδ(x) +

Aπ

i
(δ(x + B)− δ(x − B))

)
1

∆T
Ш 1

∆T

(
ω − x

2π

)
dx

=
1

∆T

(
2πCШ 1

∆T

( ω

2π

)
+

Aπ

i

(
Ш 1

∆T

(
ω + B

2π

)
−Ш 1

∆T

(
ω − B

2π

)))
.

(3.18)

Instead of just peaks at frequencies 0, B and −B we now find three infinite
series of peaks that each cause a peak at one of the frequencies 0, B and −B
and are linearly spaced with steps of size 2π

∆T . The heights of the peaks are
the same within each infinite series of peaks. Therefore, it is impossible
to distinguish between for example the peak at B and the peak at B + 2π

∆T .
This is caused by the fact that we do not have any information about the
signal between the discrete measurements, which results in these frequen-
cies to match the measured signal equally well. Thus, we would need
more information about the signal, by for example taking more measure-
ments of the signal at different time steps, in order to be able to distinguish
between these frequencies. This effect of getting multiple (infinitely many)
peaks in the periodogram caused by just one frequency that is present in
the underlying signal is called aliasing. The peaks at frequencies that are
not the actual frequency of the underlying signal are called aliases of the
original peak. An example of aliasing caused by the uniform discreteness
of the signal is shown in Figure 3.2.
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Figure 3.2: An example of the effect of uniform discreteness of a finite sine wave
signal (left) on the corresponding periodogram (right), resulting in aliasing. There
are peaks at the original frequencies of the signal: at 0 and ±5. These three peaks
are repeated periodically with a step size of 1

∆T = 1
T

# Data points−1
= # Data points−1

T =

30−1
1 = 29 in between. The finiteness of the signal results in the nonzero width

of the peaks and the side lobes in between, as in Figure 3.1. (Note that the used
frequency is not the angular frequency ω but f = ω

2π .)

Now that we have analysed the effect of discreteness on the original
infinite signal and we know what the effect is of the convolution of the
Fourier transform of a finite rectangular window with a sum of delta func-
tions, we can derive what the Fourier transform of the resulting uniform
discrete finite sine signal s(t) := g(t)Ш∆T(t)W(t) is: three infinite series
of alias peaks around the frequencies 0, B and −B with step sizes of 2π

∆T ,
where each individual peak has the form of a sinc function with full width
equal to 1

T at half maximum. Note that the step size of 2π
∆T is true when

considering the frequency spectrum as function of angular frequency ω.
When analysing the spectrum as function of frequency f = ω

2π we find the
corresponding step size to be 1

∆T . All described above is also illustrated in
Figure 3.2.

In conclusion, we find that the Fourier transform of the uniform dis-
crete finite signal results in a periodogram that is, although not perfect to
retrieve the main frequency, well understood. The effects of aliasing and
spectral leakage cause the periodogram to show peaks at frequencies that
are not present in the original underlying signal, but this is unavoidable
because of the missing information about the signal between the uniform
discrete measurements.

Our data, however, does not consist of uniform discrete data, but of
nonuniform discrete data. Therefore, the next section is dedicated to the
effects that this change imposes on the resulting Fourier transform.

26
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3.3 Nonuniform discrete Fourier transform 27

3.3 Nonuniform discrete Fourier transform

We have now considered two types of observation windows: a rectangu-
lar window, describing a continuous signal being measured continuously
throughout a finite time interval, and a finite Dirac comb window (which
can be regarded as an infinite comb combined with a rectangular window),
describing a uniform discrete signal being measured throughout a finite
time interval. In the case of a nonuniform discrete finite signal, we can
think of the observation window as a sequence of nonuniformly spaced
delta functions, peaking at the times at which the signal is measured.

Mathematically, if N ∈ N is the number of observations and {Tn} for
n = 1, . . . , N are the observation times, then we can describe the window
function as

W{Tn}(t) :=
N

∑
n=1

δ(t − Tn). (3.19)

Again, if we now want to compute the Fourier transform of the observed
signal s(t) := g(t)W{Tn}(t) we would compute the Fourier transform of
the window function W{Tn}(t) and of the original underlying sine wave
signal g(t) and convolve these to find the Fourier transform of s(t). How-
ever, the analytical computation of F (W{Tn}) has now become more com-
plicated because the symmetry of the Dirac comb function is broken and
the analytical computation of F (s(t)) will quickly become very tedious.

Therefore, we illustrate the effect of nonuniformity on the resulting pe-
riodogram by an example shown in Figure 3.3. In the upper figures we
see that the periodogram of the nonuniform discrete finite sine wave be-
comes very ’noisy’ with respect to the periodograms found in Figures 3.1
and 3.2. With noisy we mean that there are many seemingly random peaks
present in the periodogram. When analysing the periodogram of the ob-
servation window, as shown in the lower figures, we see that the same
kind of random noise is present here. In general, this is what we would
expect: the randomness of the random observation times should in some
way impose randomness on the resulting Fourier transform and thus on
the periodogram.

Furthermore, we see in the periodogram in the upper right figure that
the structured aliasing of the peaks at the original frequencies from the
uniform discrete case has completely disappeared. This is also what we
expected, as this was imposed by the regularity of the delta peaks in the
Dirac comb function, causing the Fourier transform of the window func-
tion to be a regular comb function itself. In this case, this results in the pos-
sibility to retrieve the frequency of the underlying signal with certainty:
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Figure 3.3: An example of a nonuniform discrete finite sine wave signal (upper
left) and its corresponding periodogram (upper right). The observation times
are chosen randomly between 0 and 1. There are significant peaks visible at the
frequencies 0, 5 and -5, but there are also a lot of noisy peaks at other frequencies.
The observation window corresponding to this data set and its periodogram are
shown in the lower figures. Noise similar to the noise in the upper periodogram
is visible here.

there are two significant peaks at frequencies 5 and -5 (ignoring the one at
0) and no other peaks that reach powers similar to theirs.

One might wonder how this is possible, as we still have the problem
of missing information between the discrete observations. However, with
the uniform sampling, the problem was actually the missing information
about specific parts of the phase of the signal, allowing sine waves with
alias frequencies to also fit the data. With the random nonuniform sam-
pling this problem disappears, as all parts of the phase of the original sig-
nal can now be observed by a random observation. In other words, a
nonuniform discrete sampling in general catches more information about
the underlying signal than a uniform discrete sampling, which systemati-
cally skips parts of the signal. Therefore, using a nonuniform sampling can
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Figure 3.4: An example of a nonuniform discrete finite sine wave signal (upper
left) and its corresponding periodogram (upper right). The observation times are
chosen randomly between 0 and 1. The observation window corresponding to
this data set and its periodogram are shown in the lower figures. The noise in the
periodogram caused by the observation window results in peaks with powers
higher than the powers of the peaks at the main frequencies ±5.

be a good way to increase the possibility of retrieving the main frequency
of the underlying signal, but it also imposes noise on the periodogram
which can overshadow the main peak. An example of this is given in Fig-
ure 3.4, where the peaks around ±25 have powers higher than the powers
of the main frequencies at ±5. The periodogram of the window function
also shows peaks with higher powers around frequency ±25, but these do
not have the exact same form as those in the periodogram of the sampled
signal as they are convolved with the Fourier transform of the underlying
signal.

In conclusion, the understanding of the periodogram of a nonuniform
discrete finite sine wave signal is much less straightforward than for a
uniform discrete signal. This is caused by the irregularities within the
time sampling which impose noise on the resulting periodogram. This
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30 Theory of the periodogram

noise can result in peaks with powers higher than the power of the main
frequency, making it more difficult to retrieve the correct frequency. How-
ever, there is no systematic aliasing as for the uniform discrete case, which
does make it possible to retrieve the main frequency with certainty if the
noise is low enough.

We have now discussed random nonuniform discrete samples. In re-
ality, it is difficult to achieve pure randomness, as there are often some
regularities in the way observations are made. For Gaia data we have
already discussed in Section 2.2 that the time series seem random, but
do actually contain regularities that are caused by the scanning law. We
found that this causes spurious periods to appear more often with max-
imal power in the resulting periodograms. This can be explained by the
effect of the semi-random time series, imposing semi-random noise on the
periodogram which results in higher noise peaks at the spurious periods.
As the form of the noise depends on the observation times, it is possible
to identify spurious period candidates caused by the window function be-
fore analysing the signal.

3.4 Deconvolution

One might think, after all this talk of convolutions, that it could be pos-
sible to use some sort of inverse convolution, or deconvolution, from the
Fourier transform of the observed signal with the Fourier transform of the
observation window in order to recover the true periodogram of the un-
derlying signal. However, because the window function is typically equal
to zero for large parts of its domain, especially in the case of discrete sam-
pling, the inverse of the convolution is not well defined. Thus, any sort of
deconvolution is no solution to our problem and we have to deal with the
periodogram of the observed signal.

30
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Chapter 4
Methods

In this chapter we elaborate on the methods that we used to investigate
which frequency in the NUFFT-periodogram corresponds to the true pe-
riod of the underlying signal. Before we can investigate the periodogram,
we of course have to compute it. Therefore, we explain in the first section
how this is done. In the second section we clarify how we have simu-
lated the data that is later used by the research methods. These methods,
which consist of taking the frequency with maximal power and examin-
ing whether this is the true frequency and later determining the false alarm
probability of these frequencies, are discussed in sections three and four.

4.1 Periodogram computation

In this research, the NUFFT-periodogram of the data is computed using
the FINUFFT Python package. This package includes multiple functions
to handle nonuniform data and its Fourier transform. In [5] they explain
what each of the implemented functions does.

In this research we use their Type 3 transform, which is specifically
designed to evaluate the Fourier transform of nonuniformly spaced data
at arbitrary (nonuniform) target frequencies. The corresponding function
is as follows finufft.nufft1d3(x, c, s), where the 1d stands for the 1
dimensional nature of the data and the 3 refers to the Type 3 transform.
The parameter x is called the ’nonuniform source points’, which in our
case are the times at which the flux is measured. Parameter c is called the
’source strengths’, which are the corresponding measured fluxes. As we
saw in Section 3.1 a constant shift of the fluxes of the signal causes a peak
at frequency zero, which can result in having the highest power in the peri-
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odogram, while this is not the frequency corresponding to the underlying
signal. Therefore, we subtract the mean flux from all measured fluxes and
use the result for c. Lastly, parameter s denotes the angular frequencies ω
at which we want to evaluate the Fourier transform (recall that f = 2πω).
These Fourier transform values are returned in an array with size equal
to that of s. As the Fourier transform is defined for functions g : C → C,
both c and the returned Fourier transform values are complex valued. We
turn the Fourier transform values into periodogram powers by taking the
absolute values and squaring these.

4.1.1 Evaluation frequencies

We choose the evaluation frequencies f of s such that they are linearly
spaced between 0 and 100 [1/d], because these are the frequencies that
could realistically be reached by signals of variable sources and are still
detectable by the Gaia measurements. Note that there are variables with
timescales of minutes or even seconds, meaning that we would also have
to look at frequencies of tens of thousands per day. However, as the short-
est possible sample interval for Gaia data is 106.5 minutes, these short peri-
ods are very difficult to retrieve anyway, so we focus on longer timescales.
For the spacing between two evaluation frequencies, we use an approach
similar to that explained in [3]. As we saw in Chapter 3, the width of the
periodogram sinc peaks becomes 1

T , because of the rectangular window
with width T. As we do not want to miss any of the peaks in the peri-
odogram, the step width between two evaluation frequencies is chosen as
∆ f = 1

n0T , where n0 = 10 and T is the time between the first and the last
observation. In this way, every peak is covered by about n0 evaluations.

4.2 Simulated photometric data

In order to investigate whether a frequency that we find from a periodogram
is actually the frequency that we are looking for, we need to know the
original frequency underlying the signal. To achieve this, we simulate our
own photometric data in such a way that it resembles real photometric
Gaia data.

4.2.1 Time series

The time samplings for the simulation are taken from real Gaia data. As
explained in Section 2.2, the Gaia time series are nonuniform, but do in-
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4.2 Simulated photometric data 33

clude some specific regularities caused by the Gaia scanning law. Further-
more, the number of time samplings and their spacing are also influenced
by the position of the source on the sky, as explained in Section 2.2 and
shown in Figure 2.6. As the number of samplings and their spacing might
influence the periodogram and therefore the ease with which the right fre-
quency is found, we do not want to bias our research to certain fixed val-
ues of these parameters. Therefore, we chose to take actual time samplings
from Gaia data, from 35 sources with different ecliptic coordinates, reach-
ing from longitude 0 to 90 and latitude 0 to 60 with steps of about 15 in be-
tween. In this way, we try to reach many different kinds of time samplings
of Gaia data, with different numbers of data points and visibility periods.
Figure 2.6 was used to help choose different longitudes and latitudes that
would result in a diverse set of time series. Furthermore, the sources were
selected on having photometric data available (has_epoch_photometry =
’True’) and on being actual variable sources (phot_variable_flag = ’VARI-
ABLE’), such that the mean flux and amplitude of their signal could be
used as realistic values for these parameters.

4.2.2 Original signal

To construct photometric time series of variable sources, we start by sim-
ulating the original signal that would come from this variable source. As
we assume in this research that all variable source candidates have signals
consisting of one main frequency, we choose to model the original signal
as a pure sine wave. This method is similar to the approach used in [16].
We denote the amplitude of the sine function by A, its frequency by f and
its equilibrium value by C, which results in the function given by

g(t) = C + A sin(2π f t). (4.1)

Whether a frequency can easily be found from the periodogram might de-
pend on the frequency itself. For example, low frequencies can result in
not even one full phase being present in the data, while high frequencies
can easily be undersampled. Therefore, we chose to use 20 different fre-
quencies for our simulations, ranging uniformly between 0.002 and 65.34
1/d. We choose to take the simulation amplitude and equilibrium value
from one of the variable sources that we also used to take the time series
from. In this way, we assured that these values are realistic for variable
sources. Furthermore, by keeping these values the same for all simulated
data sets, we can more easily compare the results and ensure that the sig-
nal to noise ratio, which we define by the amplitude divided by the mea-
surement uncertainty on one flux measurement, does not influence the
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results, as this is now constant. The equilibrium value is thus given by the
mean of all fluxes of the chosen source and the amplitude is given by the
maximum flux for this source minus the found equilibrium value. This
results in the parameter values given in Table 4.1.

Parameter Value Unit
C 5194 electron/s
A 123 electron/s
f 20 linearly spaced between 0.002 and 65.34 1/d

σF 25 electron/s
S/N 5 -

Table 4.1: The parameter values used for all simulated light curves. The equilib-
rium value of the sine wave of Equation (4.1) is denoted by C, the amplitude by
A, the frequencies by f . The standard deviation used for all simulated data points
is denoted by σF and the resulting signal to noise given by A

σF
is denoted as S/N.

4.2.3 Flux

The simulated original signal and time series are combined to find the cor-
responding fluxes. The flux that would be measured from the original
signal at a certain measurement time from the time series is given by the
sine function g(t) from equation (4.1) evaluated at that measurement time.
However, in reality there is always a measurement error on the flux. For
Gaia data, this measurement error is mainly dependent on the flux itself.
The python library PyGaia by Gaia DPAC includes the typical measure-
ment errors on the magnitude, as a function of the actual magnitude and
the photometric band. (In this research we only consider the G-band flux.)
As we want our simulation data to represent Gaia data as realistically as
possible, we add this error to our fluxes.

The measurement uncertainty on the flux is computed as follows:
Firstly, we determine the magnitude m corresponding to the flux F us-

ing the expression

m = −2.5 log10(F) + z (4.2)

where z = 25.6873668671 is the (Vega) magnitude zero point in the G-
band for Gaia DR3. Secondly we use the PyGaia function magunc to find
the magnitude uncertainty σm for this magnitude m in the G-band. This
magnitude uncertainty is defined as the uncertainty on the average mag-
nitude, given in mmag. Therefore, we have to convert this to mag by divi-
sion by 1000 and we also have to convert it to the magnitude uncertainty
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per data point, which is done by multiplication by
√

N with N the number
of data points. This uncertainty is then converted to the flux uncertainty
σF by error propagation, giving that

σm =

√(
∂m
∂F

σF

)2

=

∣∣∣∣ −2.5
ln(10)F

σF

∣∣∣∣ = 2.5
ln(10)

σF

F
, (4.3)

so

σF = σmF
ln(10)

2.5
. (4.4)

This uncertainty σF can now be used to simulate the observed flux Fobs
by assuming the flux on each of the data points follows a Gaussian distri-
bution with mean F and standard deviation σF. Therefore, we get a realis-
tic Fobs by drawing a random sample from such a Gaussian distribution.

We could compute a separate standard deviation for each of the data
points to compute the final flux for the data points. However, as the dif-
ferent fluxes vary only quite little (given that the equilibrium of the sim-
ulated sine wave signal is much bigger than the amplitude), the resulting
σF would also vary only a little bit. As we then use this σF to compute a
random value from a Gaussian distribution to compute the resulting Fobs,
the effect of this small difference in σF really becomes quite negligible for
the fluxes. Therefore, we decided to compute σF once for all data points of
a certain signal, by using the σF on the equilibrium flux of the sine wave.
It is important to note here again that σF depends on the number of data
points as well, so the σF would in reality differ per time series. However,
in order to keep the signal to noise S/N constant for all data sets, we chose
to compute the σF for one data set and use this for all others as well. Both
the resulting values of this σF and S/N are shown in Table 4.1.

4.3 Maximal power frequency correctness

As explained in Chapter 3, from the interpretation of the periodogram we
generally expect the frequency with maximal power to be the main fre-
quency of the underlying signal that we are looking for. However, when
considering discrete signals we found that this is not always the case, be-
cause of aliasing, caused by the fact that we do not have any information
about the signal between the measurements. We also found in Section 2.2
that there are many spurious periods occurring more often with maximal
power in the periodograms of Gaia DR3 time series. Therefore, we are
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interested in to what extent this is a problem and whether we can distin-
guish between situations in which this method gives us either the correct
or an incorrect frequency.

Now that we have 700 simulated light curves (35 time series × 20 fre-
quencies), we compute the periodogram for each using the method de-
scribed in Section 4.1 and determine which frequency is the frequency
with maximal power. Thereafter, we look into which determined frequen-
cies are equal to the simulated frequencies. The periodogram is evaluated
at a finite number of frequencies, as explained in Section 4.1.1, with steps
of ∆ f = 1

10T where T is about 950 days. So we find that ∆ f = 1
9500 ≈ 0.0001

1/d. Therefore, a difference between the simulated frequency and deter-
mined frequency of about 0.0001 1/d can be explained by this step size
and thus any determined frequencies that lie within the range ’simulated
frequency ±0.0001’ are labelled as correctly determined. The other deter-
mined frequencies are labelled as being incorrect.

Note that the difference between the determined frequency and simu-
lated frequency for incorrect determinations is not actually of interest, as a
completely different peak has maximal power in the periodogram, so this
difference does not give us any information about the error on the simu-
lated frequency. Thus we are only interested in whether the determined
frequency is correct or incorrect.

4.4 False alarm probability computation

After computing the frequency with maximal power for the periodograms
of the simulated light curves and analysing which are correctly and incor-
rectly determined, we try to find a way to decide which frequencies might
be incorrectly determined.

To this end, we tested the idea of computing a false alarm probability
(FAP) as function of the frequency and the power of this frequency in the
periodogram of the data. This is done by taking bootstrap samples of the
data (explained in Section 4.4.1) and computing the periodogram power
for the given frequency for each of these bootstrap samples, after which a
cumulative distribution function (CDF) of the random variable Z describ-
ing the found powers is formed. The resulting false alarm probability for
the frequency f with power z in the original periodogram is then given by
FAP(z) = P(Z ≥ z) = 1 − P(Z ≤ z). In other words, the FAP is given by
the number of found bootstrap powers that are greater than the power in
the original periodogram divided by the total number of bootstrap sam-
ples.

36
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4.4 False alarm probability computation 37

This value describes the probability that the power at the given fre-
quency can be reached by similar data without the presence of an under-
lying signal. Thus, when this value is relatively high for an incorrectly
determined frequency (where the actual range of ’relatively high’ is still
to be determined), this could be an indication of the incorrectness of the
determined frequency, because the observed power has a relatively high
probability of being caused by factors other than the underlying signal.

Note that this computation and interpretation of a false alarm proba-
bility is different from the Baluev FAP used for Figure 2.7 and also dif-
ferent from other FAPs from literature [3] which are similar to the Baluev
FAP. Recall that the Baluev FAP denotes the probability that the given fre-
quency occurs with maximal power in random samples without under-
lying signal. Thus, an example of the computation of the Baluev FAP is
by using bootstrap samples similar to the ones used in this research and
considering the distribution of the maximal power frequencies in the cor-
responding periodograms.

4.4.1 Bootstrap method

To compute the FAP for a certain frequency and power, we use a bootstrap
method with 500 samples. Each of these bootstrap samples is constructed
as follows: The time series from the original data are kept the same and
a permutation of the flux measurements is taken. Thus, for each of the
measurement times one of the flux measurements is taken randomly and
with repetition (meaning that a certain flux measurement can be chosen
multiple times for different measurement times). In this way, the signal
underlying the data is removed while the describing parameters of the
data set, like its equilibrium value, amplitude and window function (time
series) remain the same. This ensures that the scaling of the powers in the
resulting bootstrap periodograms is similar to that of the periodogram of
the original data.
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Chapter 5
Results

5.1 Maximal power frequency analysis

In this section we discuss the results of the method from Section 4.3 ap-
plied to the simulated data sets described in Section 4.2, in which the fre-
quency with maximal power is retrieved from the periodograms of the
data as this frequency should have a high probability of being the one cor-
responding to the underlying signal that we are looking for. An example
of a simulated data set with its corresponding periodogram is given in
Figure 5.1. The determined and simulated frequencies are also indicated
here and it is clear that the determined frequency is incorrect.
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Figure 5.1: Left: Simulated light curve with simulated frequency of 0.002 1/d.
Right: Periodogram corresponding to the simulated data set. The red dotted line
marks the determined frequency with maximal power of about 80.36 1/d and the
green dashed line marks the simulated frequency of 0.002 1/d. This determined
frequency is thus incorrect.

Using the method on all simulated data sets results in the differences
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between the simulated and determined frequencies shown in Figure 5.2.
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Figure 5.2: Left: Difference between simulated and determined frequency as func-
tion of simulated frequency for the complete simulation. This includes 35 differ-
ent time series and 20 simulated frequencies, so 700 data sets in total. Right:
Zoomed in version of the figure on the left on the region around a difference of
zero. The colours represent the number of data points, so flux measurements, for
each data set.

As we can see in the left panel of this figure, for every of the 20 simu-
lated frequencies there are time series for which the determined frequency
is similar to the simulated frequency, resulting in the difference of about
zero. For most simulated frequencies there are also time series for which
the determined frequency is different from the simulated frequency, result-
ing in all other dots with an absolute difference much greater than zero.
Thus there is no simulated frequency for which all determinations are in-
correct. Furthermore, we see that the simulated - determined difference is
almost always negative for the low simulated frequencies, while it is more
often positive for the high simulated frequencies. Besides, we see a lower
and upper bound trend for the found differences. This is caused by the fact
that the periodogram is evaluated at frequencies between 0 and 100 1/d,
thus low simulated frequencies have a high chance of the determined fre-
quency being found at frequencies higher than the simulated frequency,
while high simulated frequencies have a higher chance of the determined

40
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frequencies being lower than the simulated frequency, because more fre-
quencies are evaluated in this range. The bounds are caused by the fact
that the periodogram is not evaluated at frequencies outside the bounds:
for simulated frequency of around 50 1/d, the absolute difference cannot
be greater than 50 1/d, because the periodogram frequencies range be-
tween 0 and 100 1/d. Moreover, we see that the incorrect determinations
all have colours within the range of about 30 to 50 data points. We will fur-
ther investigate this later. Lastly, we see that the dots around a difference
of 0 are very darkly coloured, indicating a dense region of dots.

Zooming in on this "correctly" determined region we see in the right
panel that there are indeed a lot of data sets situated here, with a wider
range of colours. The dots are clearly centred around zero with a spread
reaching mainly between -0.0001 and +0.0001. However, we also see quite
some dots in the regions towards ±0.0002 and even some outliers towards
±0.0003. These differences cannot be explained only by the step size of
about 0.0001 between the evaluation frequencies in the periodogram, but
they could be explained by a slight shift of the peak in the periodogram
caused by the measurement errors on the fluxes. Considering also that the
width of each peak is of the order of 1

T ≈ 0.001 1/d, so that the range of
dots around zero still falls within the range of the width of the peak (mean-
ing that they do not correspond to a different peak at another frequency),
we choose to regard all dots with a frequency difference between ±0.0004
1/d as being correctly determined.

This results in 625 of the 700 determined frequencies being correct, thus
about 90% of the determinations is correct. The incorrect determinations
are ’completely’ wrong in the sense that a completely different peak in the
periodogram at a frequency that is not the simulated frequency is found
having maximal power.

Now that we have decided which determined frequencies are correct
and incorrect, we can analyse the situations in which this method gives us
either correct or incorrect frequencies. In Figure 5.3 we see that the fraction
of correctly determined frequencies does not show any clear correlation
with the simulated frequencies.

We expect the probability to retrieve the right frequency from the pe-
riodogram to be higher the more information we have about the signal.
Therefore, we expect the fraction of correctly determined frequencies to
be higher for time series with more data points. As explained in Section
2.2, data points can be clustered which means they do not provide any
new information about the signal. Therefore, the number of these clus-
ters, called the visibility periods, is a better measure of the effect number
of data points. To analyse any relations present, we firstly look at the re-
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Figure 5.3: The fraction of correctly determined frequencies is shown for each
simulated frequency. Note that the y-axis does not start at zero.

lation between the number of data points and the number of visibility pe-
riods. We see in Figure 5.4 that there is a correlation between the number
of data points and the number of visibility periods: generally we see that
the more data points, the more visibility periods. However, when looking
closely we see that this correlation is mainly true for low visibility periods
and low numbers of data points, while the correlation lessens for higher
numbers of data points. This is to be expected as high numbers of data
points can also specifically be caused by quick successive measurements
causing for more clusters of measurements and thus less visibility periods.
Note also that there are many visibility periods that come back more of-
ten for different numbers of data points. As this correlation between the
number of data points and the number of visibility periods is not perfect,
we will take them both into account when analysing the relation with the
fraction of correctly determined frequencies.

In Figure 5.5 we see that there is a correlation between the number of
data points and the fraction of correctly determined frequencies: the more
data points the higher the correct fraction, as expected. We do see, how-
ever, that there is a slight spread present, so the relation is not perfect.
Furthermore, we see that from about 60 data points and higher, all fre-
quencies are correctly determined. Lastly, we also see in this figure that
for low numbers of data points the number of visibility periods is also
relatively low, while for higher numbers of data points the number of vis-
ibility periods can be either high or low.

Looking at Figure 5.6 we see a very similar relation between the num-
ber of visibility periods and the correct fraction. As there are multiple
time series that have the same number of visibility periods, we have not
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Figure 5.4: The number of visibility periods is plotted as function of the number
of data points for the time series used in the simulation.
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Figure 5.5: The fraction of correctly determined frequencies as function of the
number of data points within the 35 time series is shown. The colours depict the
number of visibility periods for these time series. Note that the y-axis does not
start at zero.

colour coded the dots by number of data points, as multiple numbers of
data points can correspond to a certain number of visibility periods. This
is also why there are less dots present in this figure then there are in Figure
5.5. The relation seems to be somewhat neater, so with less spread, than
for the number of data points. This, however, can be a visual effect caused
by the lower number of dots. On the other hand, almost all possible num-
bers of visibility periods from 14 to 28 are represented. For 21 visibility
periods or more all frequency determinations are correct.

Now that we have some idea about when the determinations are mostly
correct, we look at what happens when the determination is incorrect. In
Figure 5.7 the distribution of incorrectly determined frequencies is shown.
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Figure 5.6: The fraction of correctly determined frequencies as function of the
number of visibility periods is shown. Note that the y-axis does not start at zero.

There are some ranges of frequencies with higher peaks, indicating that
multiple incorrectly determined frequencies lie within that range.

0 20 40 60 80
Determined frequency [1/d]

0.00

0.02

0.04

0.06

0.08

No
rm

al
ise

d 
nu

m
be

r

Histogram of determined frequencies for the ones that are incorrect

Figure 5.7: Histogram showing the distribution of incorrectly determined fre-
quencies. There are 100 bins, each with width equal to 1.

5.2 FAP for simulated and determined frequency

We compute a false alarm probability for all determined and simulated
frequencies using the method described in Section 4.4. In this section we
analyse the corresponding results.

In Figure 5.8, 3 of the 500 bootstrap samples and their corresponding
periodograms used to compute the CDFs of the determined and simu-
lated frequencies of the simulated data set shown in Figure 5.1 are shown.
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The examples of the bootstrap samples in the left panels illustrate that the
bootstrap samples indeed all have the same time series with a random per-
mutation (with repetition) of the flux measurements of the original data set
from Figure 5.1. The corresponding periodograms in the right panels il-
lustrate the diversity of possible periodograms for random data (without
signal) with the same time series. While the periodogram from bootstrap
sample 2 seems to consist mainly of noise without any clearly recognisable
peaks, as one would expect from random data, the periodograms from
bootstrap samples 1 and 3 contain more structure with recurring patterns
of higher and lower power regions. Furthermore, the maximal power in
the periodogram is much higher for periodograms 1 and 3 with respect
to periodogram 2. It seems that the more structure there is in the peri-
odogram (and thus also in the random data set), the higher the powers in
the periodogram. Moreover, the incorrectly determined frequency from
the original data set from Figure 5.1, indicated with the red dotted lines,
also gives a peak in periodogram 3 (although not as high as other peaks),
but it lies between peaks in periodograms 1 and 2. Lastly, when we com-
pare the bootstrap periodograms with the periodogram from the original
data set in Figure 5.1, we see that the powers of the peaks in the orig-
inal periodogram are much higher than the powers of the peaks in the
bootstrap periodograms. However, analysing the periodicity and overall
structure of the periodograms it is remarkable how much bootstrap peri-
odogram 3 resembles the original periodogram, with the same width and
number of peak regions (7 from frequency 0 until 80) and both a peak at
the determined frequency.

Version of July 6, 2023– Created July 6, 2023 - 19:17

45



46 Results

1800 2000 2200 2400 2600
JD date [d]

5050

5100

5150

5200

5250

5300

Fl
ux

 [e
le

ct
ro

n/
s]

Bootstrap sample 1

0 20 40 60 80 100
Frequency [1/d]

0.0

0.5

1.0

1.5

2.0

Po
we

r

1e6 NUFFT periodogram

Determined frequency
Simulated frequency

1800 2000 2200 2400 2600
JD date [d]

5100

5150

5200

5250

5300

Fl
ux

 [e
le

ct
ro

n/
s]

Bootstrap sample 2

0 20 40 60 80 100
Frequency [1/d]

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r

1e6 NUFFT periodogram

Determined frequency
Simulated frequency

1800 2000 2200 2400 2600
JD date [d]

5100

5150

5200

5250

5300

Fl
ux

 [e
le

ct
ro

n/
s]

Bootstrap sample 3

0 20 40 60 80 100
Frequency [1/d]

0.0

0.5

1.0

1.5

2.0

2.5

Po
we

r

1e6 NUFFT periodogram

Determined frequency
Simulated frequency

Figure 5.8: Left: Three bootstrap samples for the computation of the FAP of the
simulated and determined frequency of the simulated light curve of Figure 5.1.
Right: Periodograms corresponding to each of the bootstrap samples. The lines
indicate the frequencies at which the periodogram is evaluated to find the powers
with which the CDFs for these frequencies are computed. The red dotted line
marks the determined frequency of the original light curve of about 80.36 1/d
and the green dashed line marks the simulated frequency of the original light
curve of 0.002 1/d.

Combining the powers in the periodograms of all 500 bootstrap sam-
ples, corresponding to the original data set of Figure 5.1, at the determined
frequency of 80.36 1/d and the simulated frequency 0.002 1/d, we get the
CDFs shown in Figure 5.9. In both panels of this figure it is clear that the
power at the given frequency in the original periodogram is much higher
than the powers at this frequency in the periodograms of any of the boot-
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strap samples. Thus, the resulting FAP for both the simulated and deter-
mined frequency of the simulated light curve of Figure 5.1 is equal to zero.
(The probability that the power at the given frequency in the original pe-
riodogram is reached in the periodograms of bootstrap samples without
any signal is zero.)
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Figure 5.9: Left: In blue the CDF for the determined frequency of 80.36 1/d of the
simulated light curve of Figure 5.1 is shown (this is computed with the bootstrap
method from Section 4.4.1). The red line indicates the power of this frequency in
the periodogram of the original light curve. Right: Same picture as on the left but
now for the simulated frequency of 0.002 1/d.

When computing the FAP for all simulated and determined frequen-
cies of all simulated light curves, we find that only a few of the simulated
frequencies have a FAP greater than zero and that none of the determined
frequencies have a FAP greater than zero, as shown in Figure 5.10.
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Figure 5.10: Computed false alarm probabilities for all simulated (left) and deter-
mined (right) frequencies as a function of the simulated frequency.
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Chapter 6
Discussion

In this chapter we discuss our findings. In the first three sections the re-
sults and some limitations of the simulation and used methods are dis-
cussed. In the fourth section general limitations for period determinations
of Gaia data that we found are pointed out. Lastly, the fifth section is
dedicated to ideas for further research in the direction of main frequency
search with the use of the NUFFT periodogram.

6.1 Simulated data

6.1.1 Limitations

In our simulations we simulate light curves by sine waves. Although
many realistic light curves do look much like sine waves or sine waves
with slight alterations, as we have seen in Section 2.1, there are also many
periodic signals that cannot realistically be resembled by a sine wave, like
the light curves of eclipsing systems. Therefore, the results from the simu-
lations cannot be translated directly to apply on actual Gaia data.

Furthermore, only very specific values for many of the simulation pa-
rameters have been chosen, like the fixed equilibrium value, amplitude,
derived flux error and resulting signal to noise. This approach is chosen to
ensure that these parameters do not influence the results, so that the focus
lies on the differences in simulated frequency and numbers of data points
and visibility periods between the different simulated data sets. However,
different values of the signal to noise, for example, likely affect the results,
meaning that for a full understanding of the effectiveness of the methods,
one would also need to analyse the results for different values of these
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parameters.

6.1.2 Reproducibility

It is important to note that the reproducibility of the simulation is not per-
fect, because of the random flux errors on the data points within each sim-
ulated light curve. We noticed that when running the simulation multiple
times, the results would slightly deviate each time. The figures shown in
this report are all from one of the runs of the simulation, to make sure that
they correspond to the same underlying simulated data. We have seen
when running multiple simulations that the average results for the 700
simulated light curves would stay about the same (for example, at one of
the simulations the number of correctly determined frequencies would be
625, while for a successive run of the simulation it would be 626). There-
fore, we still regard those results as reliable. However, for individual sim-
ulated light curves we found that, while the time series and simulated fre-
quency where the same, the resulting determined frequency could differ
greatly caused by the different flux errors on the data points (so a com-
pletely different peak has maximal power). This shows that the random
flux errors do have a significant affect on the periodogram. To analyse
this effect one could analyse the distribution of determined frequencies
for different runs (thus different random flux errors) of one simulated light
curve.

6.2 Determined frequency analysis

In the maximal power frequency analysis in Section 5.1 we looked for sit-
uations in which the determined frequency is either correct or incorrect.

We found that in general about 90% of the determinations were correct.
Thus for the specific parameters of our simulation the method of choosing
the frequency with maximal power in the periodogram as the main fre-
quency underlying the signal turned out to be quite good. However, it is
important to note here that our simulation is quite specific, including only
sine wave like light curves with very specific values for the amplitude,
equilibrium value, frequencies, flux error and resulting signal to noise.
The result can therefore not be regarded as generally true for sine wave
light curves on which the NUFFT is used to find the main underlying fre-
quency of the signal.

When analysing the fraction of correctly determined frequencies as a
function of the simulated frequency we found that there was no correla-
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tion between these variables. However, we have chosen our simulation
frequencies as linearly spaced between two realistic values and have only
used 20 different frequencies. Therefore, it is possible that there are specific
simulation frequencies for which the fraction of correct determinations is
either relatively high or low compared to the fraction for the average other
simulated frequency. This could for example be true for simulated fre-
quencies that lie close to a spurious period from Gaia DR3, causing them
to be correctly determined more often. In order to investigate this hypoth-
esis, one could use more simulation frequencies and choose simulation fre-
quencies close to spurious periods. However, it is questionable how useful
this information would be, as it would remain difficult to tell whether the
determined frequency corresponds to the signal or to the time sampling.

The analyses of the fraction of correctly determined frequencies as func-
tion of the number of data points and visibility periods showed that there
is a correlation here. In general we find that the more data points, the
higher the fraction of correctly determined frequencies. The same is true
for the correlation with visibility periods. This is as expected, as more data
points and/or visibility periods means more information about the signal
and thus a higher chance to recover its frequency correctly. We also saw
that the correlation with number of data points showed a larger spread
then the correlation with the number of visibility periods. This could be
explained by the fact that there is a higher diversity of numbers of data
points, causing this spread to be visible, while for the number of visibility
periods more simulated samples are taken together in one point as they
have the same number of visibility periods. For the correlation with num-
ber of visibility periods there are still some point that seem to be outliers,
in the sense that they do not follow the trend of the other points, at 15 and
17 visibility periods. This spread could be caused by the distribution of the
visibility periods over the observation time interval, which, as explained
in Section 3.3, also influences the resulting periodogram. As this distribu-
tion can be different for all our used time series and is thus not fixed, this
variable can result in the correlation with number of visibility periods to
be spread out.

Lastly, we looked at the distribution of incorrectly determined frequen-
cies. We found that there are some frequency ranges with width of 1 1/d
within which multiple incorrectly determined frequencies are found. This
could be a coincidence, but it could also be that these specific determined
frequencies correspond to spurious periods of Gaia DR3, causing them
to occur more often with maximal power in the periodograms. Whether
this is the case has not been investigated yet, but this would be interesting
to analyse, since this could give more information about whether the in-
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correctly determined frequencies are spurious periods or aliases and thus
about whether we can find a way to separate the correctly and incorrectly
determined frequencies. If one would want to analyse this, however, it
could be useful to use a larger simulation, so that there is a larger distribu-
tion of incorrectly determined frequencies to analyse (as there are only 75
cases of incorrectly determined frequencies in our simulation).

6.3 FAPs

In Section 5.2 we found that the computed false alarm probabilities turned
out to be equal to 0 for almost all determined and simulated frequencies.
Of course we already expected the FAP of the simulated frequency to al-
ways be relatively low, possibly 0, as removing the signal with the sim-
ulated frequency from the data should generally lower the power at the
simulated frequency in the bootstrap samples with respect to the power
at this frequency from the original signal, (the computation of this FAP
was always more of a sanity check), but we did not expect this for the FAP
of the determined frequency. We did not expect this beforehand, as we
specifically used the bootstrap method in order to keep all other parame-
ters describing the data the same, so that the values of the powers within
the bootstrap periodogram would be similar to those in the periodogram
of the original data set. We expected that we could then compare the pow-
ers in the bootstraps with the power in the original data and see what
the probability is to find a certain power without the signal being present.
There are a few possible explanations for this discrepancy.

Firstly, it could be that removing the signal from the data results in all
powers in the bootstrap periodograms generally being lower than they are
in the periodogram of data with the signal. We see that this is true for the
three bootstrap sample examples given in Figure 5.8, even for example 3
which has a periodogram that looks very much like the periodogram of the
original data set, except for the values of the powers, which are all lower
for the bootstrap samples. We do not know, however, whether this is the
case for all bootstrap samples for all simulated data sets. This could be
investigated by, for example, computing the maximal power in each of the
bootstrap periodograms and comparing these with the maximal power
in the periodograms of the original data sets. If the maximal powers in
the bootstrap periodograms are all lower than the maximal powers in the
original periodograms, this hypothesis would be confirmed.

Secondly, it could be that the powers at the determined and simu-
lated frequency specifically are lower in all bootstrap periodogram than
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they are at the original periodograms, because the heights of their pow-
ers in the original periodograms are caused specifically by the signal (or
the combination of the signal with the time series) and thus can never be
reached in the periodograms of the bootstrap samples, where the signal is
not present. This is what we already expected to be the case for the sim-
ulated frequency (for which we expected to always get a FAP of 0), but
for the determined frequency we thought there would be a possibility of
the power reaching its height in the original periodogram because of that
frequency being for example a spurious period, so that it would not need
the signal to reach that height. If this case is true, then the determined
frequencies from our simulation also need the signal to reach the height of
their powers in the original periodograms, indicating that the determined
frequencies are all some kind of alias of the underlying signal.

It is also possible for a combination of the two cases above to be the
actual explanation of the discrepancy.

In either of the cases we can conclude that our FAP did not give us the
desired result and the computation of this version of the FAP does not give
any useful information about the correctness of the determined frequency.

6.4 General limitations for period determination
of Gaia data

Our research is a first step towards finding a way to automatically de-
termine the main frequency of variable sources with Gaia data. In other
words, we are working towards an unsupervised algorithm which deter-
mines the main frequency. There are a few important limitations for any
possible algorithm of this kind.

Firstly, we choose periodogram evaluation frequencies between 0 and
100 1/d. However, in reality it is also possible for variable sources to have
frequencies up to tens of thousands per day. As mentioned in Section 4.1
these frequencies would be very hard or even impossible to retrieve from
the data because of the shortest possible time sampling in the Gaia data.
Therefore, no algorithm would be able to retrieve these frequencies from
the data with certainty. This in itself is not really a problem, because there
simply is not enough information about the signal to retrieve the right fre-
quency, so we cannot expect the algorithm to be able to do so. However,
it can form a problem if the algorithm is looking for the right frequency
within the range of 0 to 100 1/d, while the actual main frequency lies out-
side this range, as the algorithm will then appoint an incorrect frequency
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as the main frequency. It would be best if the method is such that the al-
gorithm would not appoint any frequency as main frequency in this case.
Either way, the algorithm will never be perfect because of this, so we have
to take this limitation into account when interpreting the outcomes of the
algorithm.

Secondly, we have found that spurious periods form a problem when
looking for the main frequency. Although we have tried to find a way to
determine whether a determined frequency might correspond to a spu-
rious period, this answer will always remain probabilistic. Thus we will
never be able to say with certainty whether a possible spurious period is or
is not equal to the main frequency. For example, there can be situations in
which the main frequency of the signal is very close to a spurious period.

Lastly, we found that too few data points will result in aliasing, because
we do not have information about all parts of the phase of the signal. Be-
cause of this there can also be frequencies that fit (almost) equally well
to the data, without being spurious periods in the sense of Gaia data in
general, making it impossible to distinguish between them. In such situa-
tions more information about the signal and thus more data points will be
necessary to determine the correct main frequency.

6.5 Ideas for further research

6.5.1 Samples with different noise realisations

Instead of computing a false alarm probability using a bootstrap method
and thus a permutation of the data points, one could try using samples
that each have the same time series and average flux per data point, but
with for every sample a different realisation of the noise added to the in-
dividual fluxes. This method would not be useful to compute a kind of
false alarm probability, as the signal would still be present in all samples,
meaning that the probability to get a certain period with maximal power
from the sample periodograms has nothing to do with a false alarm. In
fact, both the actual underlying frequency and spurious periods would
still be expected to occur with high power in the samples, as both the sig-
nal and the time series are still present. However, this method could be
used to analyse whether the determined frequencies with maximal power
also have high (similar) powers for all other samples. If this is not the case
and the power fluctuates much between the different samples, this could
indicate that the high power at this frequency is caused by noise and not
by the signal.
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6.5.2 Maximal power significance

Something else that could provide useful information about the correct-
ness or probability of correctness of the determined frequency is the sig-
nificance of the maximal power with respect to the powers of other peaks
in the periodogram. For example, if there is a periodic repetition of peaks
that all have similar power, causing the maximal power to be similar to
these other powers, this could be an indication of aliasing and thus of in-
distinguishability of these peaks. On the other hand, if the maximal power
is significantly higher than all other powers in the periodogram, this could
indicate that the determined frequency is the correct frequency that we
are looking for. However, these are only hypotheses, so more research in
this direction with the help of simulations would be necessary to find out
whether this could really help determining the correctness of the maximal
power frequency.

6.5.3 Improvement of the NUFFT periodogram

In this research we have worked with the FINUFFT periodogram. We
found in Section 3 that spectral leakage induced by the rectangular ob-
servation window causes a kind of noise in the periodogram in the form
of side lobes. Recently, a new way to compute a NUFFT periodogram
has been introduced in [17], which uses a NUFFT in combination with
different forms of tapers (which are similar to the idea of the rectangu-
lar window that we discussed) which are mathematically independent of
one another, after which they take the average over the resulting NUFFTs.
They claim that this method results in a final periodogram where spec-
tral leakage caused by the observation window is reduced. Although we
have not encountered any negative effects on the frequency determination
caused mainly by spectral leakage, as the effects of aliasing and the spu-
rious periods were more significant, it would be interesting to investigate
whether the so called mtNUFFT (multitaper NUFFT) helps achieve better
results with respect to the classical NUFFT periodogram.

Version of July 6, 2023– Created July 6, 2023 - 19:17

55





Chapter 7
Conclusions

Our main research questions were whether the method of taking the fre-
quency with maximal power from the NUFFT periodogram gives us the
main frequency of the underlying signal of the variable source and whether
it would be possible to distinguish between in this way correctly and in-
correctly determined frequencies.

We found for our simulations of sine wave signals using 35 different
Gaia DR3 time series and 20 different simulation frequencies with fixed
signal to noise of about 5 that about 90% of the determined frequencies
were correct. In general we found that the more data points and / or vis-
ibility periods, the more information about the signal and thus the higher
the probability to retrieve the correct frequency from the periodogram by
choosing the one with maximal power. Thus, the method of regarding the
frequency with maximal power in the periodogram as the main frequency
of the underlying signal is correct in many cases covered by our simulation
(taking different values of for example the signal to noise will likely influ-
ence this result), but the problems of aliasing and spurious periods caused
by the time sampling of the data points can influence the periodogram
powers such that the determined frequency is incorrect. Moreover, alias-
ing can make it impossible to distinguish between multiple frequencies as
they all fit the data almost equally well.

Our method to compute a false alarm probability resulted in almost all
false alarm probabilities of both the determined and simulated frequencies
being equal to zero. Therefore, this measure does not provide us with any
useful information about the correctness of the determined frequencies.
Other methods with the aim to distinguish between correctly and incor-
rectly determined frequencies have to be further investigated in order to
conclude whether this is possible.
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Appendix A
Fourier transform for distributions

The definition of the Fourier transform can be extended to objects called
distributions. In this Appendix we cover some of the theory behind and
the derivation of this extension of the Fourier transform, as well as some
examples of how this theory can be used and interpreted. The main theory
is taken from [13].

Definition 16. We define the Schwarz space by

S := {v : R → C|v is n times differentiable and
x 7→ |x|m|vn(x)| is bounded ∀n, m ∈ N}. (A.1)

Clearly, S is a vector space. The elements v of S are called test functions.

Definition 17. A distribution is a linear map ϕ : S → C. If g : R → C is a
function such that the product gv is integrable on R for all v ∈ S, then

ϕg(v) :=
∫ ∞

−∞
g(t)v(t)dt (A.2)

defines a distribution ϕg : S → C. This distribution is called the distribution
induced by the function g.

Proposition 18. If g : R → C is integrable or piecewise continuous and bounded,
then gv is integrable for all v ∈ S, thus g induces a distribution.

However, not all distributions are induced by functions.

Example 19. The map δ : S → C, v 7→ v(0) is a distribution by Definition
17, as it is a linear map from S → C. If g : R → C would exist such that

v(0) = δ(v) =
∫ ∞

−∞
g(t)v(t)dt for all v ∈ S, (A.3)
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62 Fourier transform for distributions

then one can show that g(t) = 0 for all t ̸= 0 while
∫ ∞
−∞ g(t)dt = 1. Thus,

g would be the Dirac delta "function", which is not a function. The map
ϕ = δ is called the Dirac delta distribution.

Distributions are sometimes called generalised functions.

Definition 20. If g : R → C is integrable, then ĝ : R → C is continuous
and bounded, so by Proposition 18, ĝ induces a distribution given by

ϕĝ(v) =
∫ ∞

−∞
ĝ(ω)v(ω)dω

=
∫ ∞

−∞

(∫ ∞

−∞
g(t)eiωtdt

)
v(ω)dω

=
∫ ∞

−∞

(∫ ∞

−∞
v(ω)eiωtdω

)
g(t)dt

=
∫ ∞

−∞
v̂(t)g(t)dt

= ϕg(v̂). (A.4)

Furthermore, if v ∈ S then also v̂ ∈ S and vice versa. Therefore, we can
define the Fourier transform of a distribution ϕ by

ϕ̂(v) = ϕ(v̂) for all v ∈ S. (A.5)

Example 21. Let δ be the Dirac delta distribution. For every v ∈ S we have
that

δ̂(v) = δ(v̂) = v̂(0) =
∫ ∞

−∞
v(t)ei0tdt =

∫ ∞

−∞
1v(t)dt = ϕ1(v). (A.6)

So we find that δ̂ is the distribution induced by the constant 1 function.
Loosely speaking, we say that δ̂ equals the constant 1 function.
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Example 22. Let g : R → C, t 7→ sin(t) = eit−e−it

2i . For all v ∈ S we find
that

ϕ̂g(v) = ϕg(v̂)

=
∫ ∞

−∞
v̂(t)g(t)dt

=
∫ ∞

−∞
v̂(t)

eit − e−it

2i
dt

=
1
2i

(∫ ∞

−∞
v̂(t)eitdt −

∫ ∞

−∞
v̂(t)e−itdt

)
=

1
2i

( ˆ̂v(1)− ˆ̂v(−1)
)

=
2π

2i
(v(−1)− v(1)) by Theorem 5

=
π

i
(δ−1 − δ1) by Example 19. (A.7)

This Fourier transform of the sine wave in terms of distributions is equal
to what we found with the more intuitive computations in Chapter 3.
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